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CHAPTER ONE 

AN INTRODUCTION TO HOST-GUEST AND SUPRAMOLECULAR CHEMISTRY 

WITH THEIR APPLICATIONS IN NANOTECHNOLOGY 

Host-Guest Supramolecular Chemistry 

Host-guest chemistry involves complementary binding between two molecules.  

These binding interactions can involve electrostatics, hydrogen bonding, π-π stacking 

interactions, dispersion and inductive forces, and hydrophobic or solvatophobic effects.  

Organic host molecules have been synthesized to bind anions, cations, and neutral 

molecules such as proteins and enzymes, and have been used as optical sensors, 

electrochemical sensors, supramolecular catalysts, and in the pharmaceutical industry as 

anti-cancer agents.1 

Calixarenes are macrocylic molecules that have been shown to act as host 

molecules for small guests including solvent molecules, anions, and cations. 

Cyclotriveratrylene (CTV) is a calixarene and a common supramolecular scaffold that 

has been extensively employed in guest-host chemistry.2  CTV was first synthesized via 

the acid catalyzed condensation of veratryl alcohol by G. M. Robinson in 1915 (Scheme 

1), and involves the cyclic trimerization of veratryl alcohol via the veratryl cation.3  



2 

 

Scheme 1. Direct trimerization of veratryl alcohol to afford CTV 

MeO

MeO

CH2OH

MeO OMeMeO
MeO

OMe
OMe

formic acid

 
 

In 1995 Atwood et al.4 synthesized a CTV-ruthenium organometallic sandwich 

species that acts as a host molecule for the removal of nitrates, phosphates, and nuclear 

waste by-products such as 99TcO4
- from waste water.  This ruthenium organometallic-

CTV host ligand was synthesized in situ by mixing [{Ru(η6-p-MeC6H4-CHMe2)Cl(µ-

Cl)}2] with Ag[CF3SO3] in acetone, and then refluxing with CTV in neat CF3CO2H.  The 

X-ray structure revealed that the ruthenium metal complexes are sandwiched between the 

aromatic rings of the CTV, and are involved in π-π interactions with the MeC6H4-CHMe2 

aromatic ring from the organo-ruthenium complex.  The CF3SO3
- counter anion was 

found to be captured in the intercavity of the CTV bowl.  In order to determine the host-

guest potential of the CTV-organometallo complex, the anion binding properties were 

tested by exposure to [NBu4][ReO4] in nitromethane.  Here, Atwood et al.4 showed that 

the ReO4
- anion had replaced the CF3SO3

- anion within the CTV cavity.   

CTV has also been shown to be a good host molecule with other organometallic 

guests, including Ru(II) and Ir(III) complexes.  In 1996, Steed et al.5 determined that due 

to the electron donation from the methoxy groups into the arene rings, the aromatic rings 

were electron rich, making these rings excellent ligand sites forming stable arene 

complexes with transition metals.   Derivatized CTV chelating ligands have also been 

shown to form metallo-gels when in the presence of dimethylformamide (DMF) and 3 

equivalents of CuCl2.
6 
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In nature, host-guest chemistry is involved in interactions between bacteria and 

oligosaccharides for adhesion. Cell surface carbohydrates (e.g. glycoproteins and 

glycolipids) play a critical role in cell-cell recognition, adhesion, and signaling.7, 8  For 

example, pathogenic bacteria utilize carbohydrates on the surface of human cells for host 

recognition and attachment.9  Interactions between pathogenic bacteria and carbohydrates 

can be highly specific, and carbohydrate-binding specificities are known for a wide 

variety of microbes (Table 1).10, 11  For example, D-mannose binding is involved in 

Escherichia coli attachment in urinary tract infections 12 and adhesion lectins from 

Pseudomonas aeruginosa have been structurally characterized and shown to tightly bind 

monosaccharides.13  Therefore, carbohydrates are the biomolecule of choice for the 

recognition and capture of pathogenic bacteria.  One challenge is the relatively low 

affinity between glycan-binding proteins and carbohydrates. Typically the monomeric Kd 

values are in the micromolar to millimolar range. In biological systems this low affinity is 

overcome through multivalent interactions.14   

As with most bacterial species, pathogenic bacteria exhibit significant variation 

between strains, including variations in the presence of genes encoding virulence factors, 

toxins, and antibiotic resistance.15 Understanding the specific characteristics of an 

individual pathogenic strain (e.g. antibiotic resistance traits) can play a significant role in 

diagnosis and treatment of bacterial infections.  However, determining these 

characteristics requires analyses that go beyond simple detection of a pathogenic bacterial 

species.  In addition, genomic analysis of a pathogenic organism (which also requires 

significant analysis beyond simple detection) enables researchers to identify the source of 
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a pathogen and track its spread, which can facilitate more effective prevention.16 

Interaction of microbial proteins and host cell-surface carbohydrates is considered 

essential for successful infection, and the degree to which bacterial pathogens bind to 

cell-surface carbohydrates has been shown to correlate with virulence.17, 18  

 This important host-guest interaction allows bacterial cells to target host cells for 

infection as well as cell-cell signaling.  Nosocomial infections are a significant cause of 

morbidity and mortality in the United States.  In 2002, the estimated number of 

nosocomial infections in U.S. hospitals was 1.7 million, which represents approximately 

5% of hospital admissions, and the estimated deaths associated with these infections were 

greater than 98,000.19  Three of the most common organisms causing nosocomial 

infections are Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. 

The Centers for Disease Control (CDC) estimates that more than 76 million cases of 

food-borne illness occur each year in the US resulting in >300,000 hospitalizations and 

more than 5,000 deaths (www.cdc.gov).  Two of the most common causes of food borne 

infections are Escherichia coli and Salmonella enterica. Therefore, there is a need for 

rapid pathogen detection in industrial and hospital settings, and any detection and capture 

format based on carbohydrates must enable polyvalent interactions in order to be 

effective.10 
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Table 1. Carbohydrate specificity of selected bacterial strains. 

Bacteria Carbohydrate Specificity 

Pseudomonas aeruginosa D-galactose, L-fucose, L-rhamnose 

Streptococcus aureus 6’SLn, 3’SL2, Galβ1-4GlcNAc 

Escherichia coli D-mannose 

Salmonella enterica Galβ1-4(Fuc α(1-3))GlcNAc 

Candida albicans L-fucose 

Heliobacter pylori Neu5Ac(α2,3)Gal 

Streptococcus suis Gal(α1,4)Gal 
 

The overall goal of this research is to fabricate pre-designed, spatially controlled 

arrays of supramolecular and biological molecules utilizing both bottom-up and top-down 

approaches.  The data described in this thesis utilizes host-guest interactions between 

biologically active molecules as well as supramolecular scaffolds.  These explorations of 

host-guest interactions will advance the field of nanotechnology in the development and 

fabrication of biological nanoarrays, explore the interactions between metal binding 

ligands and transition metal ions in solution, as well as designing a new fabrication 

method for the development of nanoelectronic devices through host – guest interactions.   

Nanotechnology 

Nanoscience is the study of molecular structures in the 1 – 100 nm range.20  At 

the nanoscale level, molecular structures exhibit different properties than their 

corresponding bulk materials based on quantum and subdomain phenomena.21-23  

Nanoscale structures exist in nature that have the capability to act as photonic devices, 

motors, and power generators in the forms of photosynthetic apparatuses, isomerases and 

helicases, and mitochondria and chloroplasts.24  One of the goals of nanotechnology is to 
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be able to mimic these processes through the development of nanoelectronic and nano-

optical devices, drug delivery systems, and magnetic storage media.  

One commonly used nanofabrication method for the development of 

nanoelectronic and nano-optical devices is bottom-up, layer-by-layer assembly on a solid 

surface.25 Bottom-up, layer-by-layer assembly on surface substrates is achieved through 

the formation of molecules into self-assembled monolayers (SAMs) onto the surface.  

The standard and most studied substrate used is a gold surface.  Thin-film gold surfaces 

are prepared by physical vapor deposition, sputtering, or electrodeposition; and gold can 

also be easily patterned onto surfaces by a combination of micromachining, 

photolithography, or chemical etchants. In addition gold is a relatively inert metal that 

does not react with atmospheric O2, nor is it easily oxidized at temperatures below its 

melting point.20  The combination of these properties allows the formation of SAMs to 

occur at standard temperature and pressure (STP) and obviates the need for an ultra-high 

vacuum (UHV) and clean room environment.  SAMs have been shown to form easily on 

gold surfaces because gold has a high affinity for sulfur atoms thus quickly forming a 

strong gold-sulfur bond.26  The stability of the gold-sulfur bond that is formed is most 

likely due to a charge transfer from gold to the sulfur with an activation barrier around 30 

kcal/mol on an Au(111) surface.27, 28 

A growing priority in the field of nanoscience utilizes the gold-sulfur bond on 

surfaces for the building of new hybrid nanoelectronic and biological devices (e.g. 

bioarrays, biochips, biosensors, or microelectromechanical systems (MEMS)), and to 

understand the attachment chemistry, adhesion forces, and material compatibility of the 
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building blocks of these devices.  Significant efforts have been made to search for 

specific biological linkers 29-33 and resists 32-37 to provide selective and efficient binding 

of biomolecules, including living cells, to functionalized surfaces.  The mechanisms 

responsible for the adhesion chemistry of molecules to surfaces may include electrostatic 

interactions,34, 38, 39 hydrophobic interactions,33 or specific recognition.29-31, 40  Therefore, 

developing methods to pattern and immobilize supramolecular and biological molecules 

with micro- to nanometer spatial control will result in a broad range of new technological 

advancements not only in basic research but also in diagnostics and drug discovery.41-44  

Some of the most interesting and useful advancements have come in the areas of biochip 

array development that utilize DNA, proteins, or carbohydrates as linker molecules.7, 45  

Biochip development is particularly important given the explosion of proteomic and 

genomic studies requiring oligonucleotides or peptides bound to glass surfaces.  Patterned 

substrates have also been used as scaffolds for biomolecule binding and cell adhesion in 

tissue engineering studies, as well as components for microfluidic bioanalysis.8, 46, 47  

However, many challenges remain, particularly the development of patterning methods 

that combine micro- to nanoscale surface features with adhesion chemistries that not only 

provide selectivity in biomolecule binding and positioning but also preserve biological 

activities.  Importantly, unpatterned areas of the surface must resist non-specific 

biomolecule binding for the effective development of most biological and commercial 

applications.  

A specific area that has not been extensively examined is the selective and 

directed binding of biological molecules and bacterial cells to pre-designed, spatially 
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controlled nano- or micron scale arrays in directed orientations so that the biologically 

active center is accessible to substrates, or in the case of DNA or carbohydrates, 

complementary strands or receptor sites.  Moreover, the principles of molecular 

recognition such as hydrogen bonding, hydrophobic forces, van der Waals forces, π -π 

interactions, and electrostatic effects have not been fully explored for biological surface 

sensing and/or detection.  In order to selectively bind biologically active molecules such 

as proteins, oligonuclotides, carbohydrates, or linkers to surfaces in a controlled and 

directed fashion, control over both productive and nonproductive orientations is required.  

Overcoming these issues will open the door to fundamental studies involving enzymatic 

function as well as basic cellular function.8  Such spatially-controlled, directed 

biomolecule binding can also be utilized to fabricate artificial surface receptors, which 

will allow biological signaling processes to be studied and may prove useful in the design 

and development of detection systems or laboratories-on-a-chip.48   

Surface Patterning Methods 

Microcontact Printing  

A common method for transferring molecules to surfaces is through the patterning 

method of microcontact printing (µCP) which uses an elastic stamp made of 

polydimethylsiloxane (PDMS).  Deposition of molecules via µCP occurs when a PDMS 

stamp is “inked” with an organosulfur compound and the PDMS stamp comes into 

contact with a gold surface, allowing the molecules to be deposited onto the surface and a 

thiolate bond to form.  For example, in a study by Mrksich et al.49 PDMS stamps were 

http://en.wikipedia.org/wiki/Hydrogen_bond
http://en.wikipedia.org/wiki/Hydrophobic_effect
http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Pi-pi_interaction
http://en.wikipedia.org/wiki/Pi-pi_interaction
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used to pattern organosulfur SAMs that terminated in hydrophobic methyl groups for the 

adsorption of proteins onto the surface.  

Recent research on the immobilization of bacteria cells on surfaces in order to 

explore bacterial cell adhesion chemistries as well as methods for the fabrication of 

microarrays capable of binding motile bacterial cells in specific positions and alignments 

(Figure 6) utilized µCP.50  For example, micro-contact printing was used to prepare pre-

designed microarrays of 16-thiohexadecanoic acid (MHA), which were then covalently 

functionalized with Escherichia coli antibodies or poly-L-lysine (PLL).  The bare gold 

surfaces were passivated with 11-mercaptoundecyl-penta(ethylene glycol) (PEG-SH) or 

11-mercapto-1-undecanol (MOU) (Figure 1).50 

 

Figure 1. Schematic for the preparation of pre-designed microarrays for the attachment of 
motile bacterial cells to surfaces.51 

 
 

Once these pre-designed microarrays were prepared, E. coli K-12 cells were attached 

with little or no non-specific binding (Figure 2).  These data indicate that motile E. coli 

cells can be attached to pre-designed line or dot features and binding occurs via the cell 

body or the bacterium’s flagellum.  Interestingly, bacterial cells exhibit selective 
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adsorption to substrates patterned with poly-L-lysine and anti-lipopolysaccharide.   

Moreover, E. coli K-12 cells are alive and motile after adhesion to patterned surface 

features for more than four hours, based on direct optical monitoring utilizing a two color 

fluorescence viability assay.50  In addition, individual motile bacterial cells were shown 

to require a minimum pre-designed surface feature of at least 1.3 μm in diameter for 

reasonable attachment efficiencies to be obtained.50  High-resolution AFM images of 

bacterial cells, flagella and pilli, immobilized on MHA-PLL modified gold surfaces were 

presented.  The importance of controlling the adhesion of a single bacterial cell to a 

surface was discussed and one obstacle in the preparation of a biomotor powered by 

motile bacterial cells was overcome, i.e. increasing the percent attachment of motile 

bacterial cells to a surface with the formation of site-specific, uniform, microarrays of 

bacterial cells.31, 36, 52-55 

 
Figure 2. Attachment of E. coli cells to pre-fabricated poly-L-lysine patterned surfaces.51 

 
 

The attachment of E. coli K-12 cells to MHA-PLL surfaces was hypothesized to 

be due to electrostatic interactions between negatively charged groups on the cell surface 

of E. coli K-12 cells and the positively charged PLL molecule.50  In order to test this 
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hypothesis,  the effect of electrochemical potential on E. coli K-12 bacterial cell adhesion 

to bare gold surfaces was examined.56  The attachment of E. coli K-12 bacterial cells to 

bare gold surfaces was performed under ambient conditions using a BAS 100 

electrochemical apparatus.  Optical images of E. coli K-12 cells bound to bare gold 

surfaces at +1000, 0, and –1000 mV indicate that negatively charged surfaces repel E. 

coli K-12 cells while positively charged surfaces attract them and cause cell surface 

attachment.  These data are consistent with the proposal that E. coli cell surfaces are 

negatively charged due to surface phosphate and carboxylate groups, composing the core 

region of lipopollysaccharide (LPS) molecules.57  Applying a negative potential (-1,000 

mV) to electrochemically attached E. coli K-12 cells removes ~60% of the bacteria from 

the gold electrode surface.  These data indicate that the electrochemical attachment 

process is only partially reversible.  Based on the data, E. coli K-12 cells are only 

attracted to the gold electrode surface when a potential of at least +750 mV is applied.  

These data provide evidence that the negatively charged E. coli K-12 cells bind to 

positively charged PLL.  In addition, treatment of E. coli K-12 cells with 

ethylenediaminetetraacetic acid (EDTA) disrupted surface LPS molecules, which resulted 

in a loss of the negative charge on the cell surface.  Therefore, LPS is likely the main 

negatively charged species on the cell surface and, therefore, accounts for most of the 

electrostatic interaction with PLL.  These data also indicate that applying an electrical 

potential allows the direct, real time detection of live, dead, or damaged bacterial cells. 

The results presented in Chapter 2 shows the development and synthesis of 

carbohydrate derivatives with alkanethiol linkages that are capable of being patterned 
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onto gold surfaces for the development of carbohydrate nano- or micron sized arrays.  

These arrays consist of pathogen-specific carbohydrates immobilized on a solid support, 

which were used to specifically capture whole, live bacterial cells in parallel.  

Carbohydrate-based arrays have the potential to meet the challenge of rapid and accurate 

bacterial pathogen detection while simultaneously capturing whole, viable bacterial cells 

that can be utilized for post-capture analysis (Figure 3). 

 
Figure 3. Schematic of a carbohydrate microarray made up of six different carbohydrate 
inks. Upon addition of a pathogenic bacterial cell with binding specificity to one of the 
carbohydrates used (red), cellular recognition and capture occurs allowing rapid detection 
of the pathogenic bacterium. 

 
 

Dip-Pen Nanolithography 

In 1999, Mirkin et al.58, showed that thiolated molecules could be directly 

deposited onto a gold surface with an atomic force microscope (AFM) tip.  This 

deposition method was termed Dip-Pen Nanolithography (DPN), and this lithographic 

method affords the user the ability to transport an “ink” through the diffusion of the 

molecule through the water meniscus that is formed between the tip of a coated AFM 

cantilever and the gold surface.39 The DPN process of patterning can be broken into two 
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separate steps: 1) molecular transport of the ink from the tip to the surface through 

dissolution of the “ink” into the meniscus that form between the cantilever’s tip and the 

surface, and 2) adsorption of the “ink” onto the surface and the subsequent formation of 

the gold-sulfur bond.39 DPN is a particularly important nanolithography method for the 

patterning of biomolecules, since DPN is capable of positioning molecules on a substrate 

with 10 nm resolution.59  DPN has been used to prepare surface patterns of tailored inks, 

leading to nanoscale positioning of active proteins, virus particles, and cells.  In an 

innovative study by Maspoch et al., ferritin proteins, which can be visualized by a 

Transmission Electron Microscope (TEM), were patterned into dot patterns onto TEM 

slides to determine what controls the number of molecules deposited with DPN.  This 

study concluded that the factors that determine the amount of particle deposition onto the 

surface is controlled by the contact angle between the ink solution and the substrate, the 

initial concentration of the ink, and the size of the dot patterned onto the substrate.60  

DPN technology has been employed to create biological sensing devices, 

nanocircuitry for electronic devices, and hybrid nanodevices.59  Many of these patterned 

devices require the use of host-guest interactions to develop bottom-up, layer-by-layer 

assemblies.  For example, Mirkin et al.61 were able to create predefined virus nanoarrays 

with the guest tobacco mosaic virus (TMV) through the patterning of the host MHA onto 

gold substrates.  The surface was passivated with a monolayer of 11-thioundecyl-

penta(ethylene glycol) (PEG-SH) and Zn2+ was used to coordinate between the 

carboxylic acid groups of the MHA layer and the carboxylate-rich TMV surface.61  In a 

separate study, Mirkin et al.62 successfully utilized DPN to pattern oligonucleotides to a 
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silicon surface.  However, in this case as well the entire surface was modified with 

MPTMS prior to the attachment of acrylamide-terminated oligonucleotides.  

In an effort to explore bacterial cell adhesion chemistries as well as methods for 

the fabrication of arrays capable of binding motile bacterial cells in specific positions and 

alignments,63 submicron DPN-generated MHA line patterns that were covalently 

functionalized with PLL.50 "Blocks" were prepared in order to increase the surface area 

available for the electrostatic interaction with PLL.  An approximately 2 μm feature was 

prepared, which was made up of multiple closely spaced lines allowing PLL to span these 

surface features.  "Blocks" with 100 nm spacing between MHA lines were prepared using 

DPN and used for the attachment of motile Pseudomonas aeruginosa cells.  Motile P. 

aeruginosa cells were observed to bind to DPN generated MHA/PLL line patterns, 

"Blocks" made up of eight lines with 100 nm spacing, with ~80% occupancy (Figure 4).  

Cellular binding to these "Block" surface structures occurred via an electrostatic 

interaction between negatively charged groups on the bacterial cell surface with 

positively charged PLL assemblies.  It should be noted that the attached P. aeruginosa 

cells survived for >6 hours in an aqueous environment based on direct optical monitoring.  

Motile P. aeruginosa cells mostly attached through their body rather than their single 

flagellum suggesting an electrostatic interaction between the cell body and the MHA/PLL 

microarray is the predominant immobilization process.  Cellular attachment to pre-

designed DPN generated microarrays was found to be dependent on the shape and size of 

the surface feature.  While this observation is likely due in part to dense, well formed 

MHA monolayers generated via DPN, it may also simply be due to the physical shape of 
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the surface structure.  These data indicate that these DPN generated "block" surface 

structures provide a promising footprint for the attachment of motile bacterial cells that 

may find utility in cell based biosensors or single cell studies. 

 
Figure 4. TMAFM phase images of the P. aeruginosa cells attached to the DPN 
generated templates.  Scan sizes are a) 18 x 18 µm2 and b) 6 x 6 µm2.  The attachment of 
the bacterial cells is directed by the pre-programmed templates which are lines spaced by 
100 nm. 

3μm3μm 1µm1µm

 
  

DPN has also been utilized for the development of novel nanoelectrical systems.  

In an impressive study by Bao et al.,64 DPN was used to create gold electrodes on 

graphene sheets on SiO2/Si substrates.  This innovative process involved the deposition 

of a 10 nm optically transparent film onto a graphene sheet.  MHA was then written onto 

the gold surface as a mask.  The deposited gold layer was then removed by wet etching 

with a ferric nitrate/thiourea solution, and the exposed graphene surface was then O2 

plasma etched to reveal the graphene layer that was deposited with gold and masked by 

the MHA.65  The substrate was wet etched again to remove the MHA mask and gold 

layer, leaving only the graphene on the substrate.  In order to complete the gold contacts 
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to the graphene, a 10 nm thin film was again deposited onto the substrate.  From there, 

DPN was used to selectively deposit another MHA resist to define the gold contacts to 

the graphene.  Again, the substrate was wet etched to reveal the graphene with the two 

gold contacts.   

In an effort to advance the field of fabrication of nanoelectronic devices, the 

research described in Chapter 3 utilizes host – guest interactions for a novel apex-

modified CTV derivative with an attached thiolane-containing lipoic acid linker that was 

directly patterned onto gold substrates via DPN.  The addition of a dithiolane-containing 

linker to the apex of CTV provides a molecule that can adhere to a gold surface with its 

bowl shaped cavity directed away from the surface thereby providing a surface-bound 

CTV host that can be used for the directed assembly of guest molecules.  Subsequent 

exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of 

predesigned, spatially controlled, high-density microarrays of C60.  The molecular 

recognition capabilities of this CTV-template toward C60 provides proof-of-concept that 

supramolecular CTV scaffolds can be directly patterned onto surfaces providing a 

foundation for the development of organic electronic and optoelectronic materials. 

Nanoparticles 

 The first known historical use of gold nanoparticles (AuNPs), also known as 

colloidal gold or “soluble” gold, dates back to the 4th or 5th century B.C., where the 

Chinese and Egyptians were known to have used the “soluble” gold for both curative and 

artistic purposes.  In the Middle Ages, it was believed that colloidal gold could be used to 

cure dysentery, epilepsy, tumors, as well as heart and venereal complications.  In the last 
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two decades, there has been an explosion of interest in the use of AuNPs for therapeutics, 

detection, and new pharmaceuticals.  

There are three conventional methods for the synthesis of AuNPs from the 

reduction of Au(III) salts (Table 2).  The classical method for the synthesis of AuNPs was 

introduced by Turkevitch et al. in 1951.66  This synthesis involves the reduction of 

HAuCl4 in water by sodium citrate and leads to AuNPs that are approximately 20 nm in 

diameter.  In 1973, Frens67 found that nucleation of the AuNP from 16 – 147 nm could be 

controlled by reducing the Au(III) salt in the presence of an n-alkane thiol stabilizing 

agent (Scheme 2).  The modern method for the synthesis of AuNPs is the Brust-Schiffrin 

two-phase method that was developed in 1994.68  This method advanced the field of 

nanoparticle synthesis by offering a synthetic method that produces AuNPs that are in the 

1.5 – 5.2 nm range, that are easily functionalized, repeatedly isolated, and can be 

redissolved in organic solvents without decomposition or aggregation.  In this synthetic 

method, AuCl4
- is transferred from the aqueous phase to an organic phase (toluene) using 

tetraoctylammonium bromide as the phase-transfer agent. AuCl4
- is reduced with NaBH4, 

and due to the soft character of both S and Au, a simple alkanethiol caps and stabilizes 

the AuNP.69  

 
Table 2. Synthetic methods and capping agents for AuNPs of varying size.70 

Core size (d) Synthetic methods Capping 
Agents 

1 – 2 nm Reduction of AuCl(PPh3) with diborane or sodium 
borohydride 

Phosphine 

1.5 – 5 nm Biphasic reduction of HAuCl4 by sodium borohydride in 
the presence of thiol capping agents 

Alkanethiol 

10 – 150 nm Reduction of HAuCl4 with sodium citrate in water Citrate 
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Scheme 2. Synthesis of AuNPs by reduction with sodium citrate and subsequent 
stabilization with n-alkanethiol. 
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 Due to their unique distance-dependent optical properties, and large extinction 

coefficients, AuNPs have been functionalized to be highly selective and sensitive 

colorimetric detection systems for oligonucleotides, proteins, and metal ions.  In 2007, 

Mirkin et al.71 devised a selective and highly sensitive mercuric ion (Hg2+) colorimetric 

detection system that exploited thymidine-Hg2+-thymidine coordination chemistry 

(Figure 5).  In this colorimetric Hg2+ detection system, two different types of AuNPs 

were functionalized with complementary thiolated-DNA sequences with the exception of 

a single thymidine-thymidine mismatch.  In the presence of an aqueous solution of Hg2+, 

the complementary thymidine-thymidine mismatched DNA strands selectively 

coordinated with the mercuric ion, forming stable aggregates.  The formation of the 

DNA-AuNP aggregates turned the solution from a bright red in color to purple.  This 

selective colorimetric Hg2+ sensor was capable of measuring Hg2+ concentrations in the 

low micromolar range.  
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Figure 5. DNA-functionalized AuNPs used for the colorimetric detection of mercuric 
ions (Hg2+).71 

Blank or
with other
metal ions

With Hg2+

T>Tm(blank)

: Hg2+

: 5'-HS-C10-A10TA10-3'

: 5'-HS-C10-T10TT10-3'  
 

A growing field in the area of nanoscience is the use of AuNPs as nanocarriers for 

target-specific delivery of therapeutic agents to treat human diseases.70  An advantage 

that AuNPs have in the delivery of drugs over traditional delivery systems is the 

improved solubility, in vivo stability, biodistribution, and large pharmaceutical loading 

ability of AuNPs.70  For example, Zubarev et al.72 was able to couple the 

chemotherapeutic drug, paclitaxel, in a ratio of ~ 70 molecules per 2 nm AuNP.  

 AuNPs have also been utilized for the delivery and release of diatomic therapeutic 

agents like nitric oxide and singlet oxygen.  In 2002, Russell et al.73 functionalized 2 – 4 

nm AuNPs with a phthalocyanine (PC) photosensitizer that were soluble in polar solvents 

to be used in photodynamic therapy.  These PC functionalized AuNPs were shown to 

have a 50 % increase in the production of singlet oxygen when compared to free PC in 

solution.  Due to their high surface-to-volume ratio and large loading capabilities, AuNPs 

also offer the delivery of DNA and RNA for gene therapy.70  Recently, it has been shown 
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that positively charged triethylammonium-functionalized mixed monolayer protected 

clusters (MMPCs) are capable of binding to DNA through complementary electrostatic 

interactions.74  These MMPC-DNA complexes were shown to completely inhibit the 

transcription of T7 RNA polymerase.  Intracellular concentrations of glutathione (GSH) 

were shown to release the DNA from the nanoparticle and recover DNA transcription. 

 The results described in Chapter 4 describes the synthesis of an apex-modified 

CTV derivative with an attached thiol linker that was used to functionalize AuNPs.  

Previous X-ray crystallographic studies revealed that native CTV can form host-guest 

polymer aggregates with group 1 and lanthanide metal cations.75  Since the aggregation 

of AuNPs results in colorimetric changes, these CTV-functionalized AuNPs were used to 

develop a spectrophometric method to study the binding affinity between the CTV 

scaffold with transition metal ions in solution. 

Conclusion 

 The research described in this dissertation focuses on a bottom-up, layer-by-layer 

approach to fabricate supramolecular scaffolds for biological and inorganic detection or 

sensing.  The research focuses on the design and synthesis of biologically relevant linker 

molecules and supramolecular scaffolds that can be attached to gold surfaces.  These 

molecules were patterned into pre-designed arrays using both parallel lithiographic 

methods such as µCP and serial methods such as DPN.  Once patterned, the biological 

activity of the newly generated arrays was examined to provide “proof-of-concept” that 

the newly synthesized linker molecules retained their desired activity.   This work has 

also provided insight into the adhesion chemistries of both supramolecular scaffolds and 
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biologically relevant molecules.  The importance of this project is underscored by the 

growing demand for pre-designed arrays of immobilized supramolecular and biological 

molecules with micro- to nanometer scale control, given the explosion in studies related 

to nanoelectrical, MEMs, proteomic and genetic screening as well as detection and 

sensing of biological molecules and microorganisms.   
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CHAPTER TWO 

DIRECT PATTERNING OF CARBOHYDRATE MICROARRAYS WITH AFFINITY 

FOR INDIVIDUAL BACTERIAL CELLS 

Introduction 

Cell surface carbohydrates (e.g. glycoproteins and glycolipids) play a critical role in 

cell-cell recognition, adhesion, and signaling, and lectins are glycan-binding proteins of 

bacterial pathogens that are located on the outer membrane and are believed to be 

responsible for cell-cell interactions and the formation of biofilms.7, 8  For example, all 

pathogenic bacteria utilize carbohydrates on the surface of human cells for host 

recognition and attachment.9  Attachment of microbial proteins to host cell-surface 

carbohydrates is considered essential for successful infection, and the degree to which 

bacterial pathogens bind to cell-surface carbohydrates has been shown to correlate with 

virulence.17, 18  Interactions between pathogenic bacteria and carbohydrates can be highly 

specific, and carbohydrate-binding specificities are known for a wide variety of 

microbes.10, 76 For example, Gal(α-l,4)Gal binding is involved in Escherichia coli 

attachment in urinary tract infections and adhesion lectins from Pseudomonas aeruginosa 

have been structurally characterized and shown to bind tightly to monosaccharides.77, 78  

Therefore, carbohydrates are the biomolecule of choice for the recognition and capture of 

pathogenic bacteria.  One challenge is the relatively low affinity between glycan-binding 
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proteins and carbohydrates.  Typically the monomeric Kd values are in the micromolar to 

millimolar range.  In biological systems this low affinity is overcome through multivalent 

interactions suggesting that multivalent interactions should be essential for experimental 

detection and capture as well.79   

Microarrays are widely used in the biological sciences as tools for monitoring 

gene expression.80  These gene expression microarrays generally consist of nucleic acids 

arrayed and bound to a solid surface, and they enable massively parallel hybridization 

reactions to be conducted within a small surface area.  More recently the microarray 

approach has been applied to carbohydrates.  In general, carbohydrate microarrays have 

been based on carbohydrate libraries from natural sources or chemical synthesis and the 

attachment of carbohydrates to a solid surface via covalent or noncovalent binding.81  

Carbohydrate microarrays have been used primarily for the study of carbohydrate–protein 

interactions.14  However, carbohydrate microarrays have also been used recently to 

investigate the carbohydrate-binding specificity of intact bacterial cells.82  For example, 

Walz et al. 83 used a glycoconjugate array to characterize the adhesion specificities of 

Helicobacter pylori.  Microarrays are also an ideal format for studying the interactions 

between bacterial cells and carbohydrates since microarrays allow for polyvalent 

interactions between whole cells and carbohydrate monomers bound to the microarray.10, 

14  Therefore, mimicking the selective extracellular matrix on an artificial surface will 

allow for the immobilization and study of single cell binding interactions, potentially 

leading to the next generation of biological detection systems.64, 84-87 
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Previous uses of carbohydrate arrays have been limited by the large size of the 

arrays.72  Traditionally carbohydrate microarrays have not been built by directed self-

assembly on the nanoscale, but rather these microarrays are functionalized regions  of 

bound carbohydrates in the ~100 µm – 1 mm diameter range that have been prepared on 

functionalized glass or gold slides in no pre-defined patterns.73, 74, 88-91  For example, 

Disney et al.92 generated carbohydrate arrays to detect pathogenic bacteria, where the 

average carbohydrate spot size was ~250 µm and the carbohydrate was not directly 

patterned onto the surface.  The functionalized carbohydrates employed by Disney were 

terminated with an amine and the substrate was pre-coated with an amine-reactive 

homobifunctional disuccinimidyl carbonate linker.  In 2008, Mrksich et al.93 developed a 

new methodology for generating oligosaccharide biochips where the synthesis and 

growth of the oligosaccharide on the surface occurred in situ. Matrix-assisted laser 

desorption-ionization time-of-flight mass spectrometry (SAMDI-TOF MS) was used to 

monitor the reaction intermediates on the surface during the growth of the 

oligosaccharide.  However, none of these methods offer a directed, bottom-up, layer-by-

layer approach to assembling carbohydrates into pre-defined patterns on a surface for 

formation of carbohydrate microarrays. 

Carbohydrates have also been derivatized and attached to gold nanoparticles and 

magnetic beads for the colorimetric detection of bacteria and their corresponding lectin 

binding proteins.94, 95  For example, Chen et al.96 encapsulated 4 nm gold nanoparticles 

with D-galactose for the selective detection of the PA-1L lectin binding protein in 

solution.  These D-galactose derivatives were terminated with a thio-ethylene glycol 
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chain.  Incubation of these galactose coated AuNPs with PA-1L showed that these 

galactose-AuNPs had a detection limit of 78 fmol of PA-1L.  The binding between the 

galactose modified AuNPs and the PA-1L binding lectins were confirmed via MALDI-

TOF MS and TEM.  

Herein, is described a reproducible method to generate spatially controlled, 

bottom-up, layer-by-layer L-rhamnose microarrays in directed orientations, so that the 

biologically relevant carbohydrate moiety is directed away from the surface and is 

accessible for the binding of biological molecules and bacterial cells.  Two L-rhamnose 

derivatives that are terminated with an alkyl-thiol linker providing a surface-bound 

carbohydrate where the monosaccharide head group is directed away from the surface 

were designed and synthesized making the L-rhamnose available for interacting with 

bacterial lectins.  The use of the soft lithographic technique of micro-contact printing 

(µCP) to pattern the carbohydrates provided a method to pre-position the carbohydrate 

patterns down to ~0.3 µm resolution.11  The observed binding of P. aeruginosa to L-

rhamnose microarrays to provides proof-of-concept that carbohydrate scaffolds retain 

their biologically-relevant function after being patterned onto gold surfaces.  These 

studies provide a foundation for the development of the next generation of nanoscale 

biological detection and diagnostic systems. 

Experimental Section 

All solvents and reagents were used without further purification unless otherwise 

noted.  All solvents were distilled prior to use.  All reactions were conducted under a 

nitrogen atmosphere.  Sorbent Technologies silica gel 60 Å, 40 – 75 µm (200 x 400 
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mesh) was used for column chromatography unless otherwise noted. Sorbent 

Technologies aluminum-backed silica gel 200 µm plates were used for thin layer 

chromatography (TLC).  1H NMR spectra were obtained utilizing either a Varian INOVA 

300 or Varian GEMINI 2000 300 MHz spectrometer with trimethylsilane (TMS) as the 

internal standard.  CEM Discover ® Microwave (MW) Model # 908005 was used in all 

MW reactions. 

L-Rhamnopyranose tetraacetate (2a) 

To a mixture of L-rhamnose 1a (1.00g, 5.48 mmol) and acetic anhydride (20 mL) 

cooled to 0ºC was added 4 drops of H2SO4.  The reaction was allowed to stir for 20 h.  

The reaction was quenched with aqueous NaHCO3 (100 mL) and AcOEt (25 mL) and 

allowed to stir until all unreacted acetic anhydride was removed.  The two phases were 

separated and the organic phase was washed 3 × 5 mL aqueous NaHCO3 and 5 mL H2O.  

The organic phase was dried over sodium sulfate and the solvent was removed under 

reduced pressure to afford rhamonose tetraacetate 2a as a yellow oil (1.42 g, 88 %).  1H 

NMR (300 MHz, CDCl3) δ 6.02 (s, 1H), 5.29 (d, 1H), 5.25 (d, 1H), 5.10 (t, 1H), 3.94 (p, 

1H), 2.17 (s, 3H), 2.16 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.23 (d, 3H). 

2,3,4-tri-O-acetyl-β-L-rhamnopyranose chloride (3)  

           Rhamnose tetraacetate derivative, 2a (838 mg, 2.60 mmol) was mixed with 

SnCl4 (0.30 mL, 2.68 mmol) in 5.2 mL of CH2Cl2 in a microwave tube according to the 

general procedure of Steinmann et al.99 The reaction mixture was heated to 70º C for 30 

minutes and monitored via TLC using AcOEt/hexane (3/7) as the eluent.  Upon 

consumption of the starting material, the reaction was quenched with 40 mL of an 
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ice/H2O mixture.  The two phases were separated, and the aqueous phase was extracted 

with 4 × 10 mL of CH2Cl2.  The organic extracts were collected and washed with 2 × 10 

mL of H2O.  The organic phase was dried over Na2SO4.  The solvent was removed under 

reduced pressure to afford the chloro derivative 3 as a brown oil (630 mg, 78%).  1H 

NMR (300 MHz, CDCl3) δ 5.94 (d, 1H), 5.54 (dd, 1H), 5.39 (d, 1H), 5.14 (t, 1H), 5.18 

(m, 1H), 2.17 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.26 (d, 3H). 

11-Bromoundecyl 2,3,4-tri-O-acetyl-β-L-rhamnopyranoside (4a)  

 To a mixture of rhamnose tetraacetate derivative 2a was added 1.3 equivalents of 

11-bromo-undecanol and 0.13 M CH2Cl2.  The reaction was cooled to 0ºC and stirred for 

20 min, then 1.5 equivalents of SnCl4 (1.0 M heptane) was added dropwise and allowed 

to stir for 20 h warming to room temperature.  The reaction was monitored via TLC using 

1/2 AcOEt/petroleum ether.  The reaction was quenched with AcOEt (200 mL) and 

aqueous NaHCO3 (200 mL) and allowed to stir for 2 h then filtered over celite.  The 

filtrate was washed with 3 × 50 mL of AcOEt.  The organic phase was washed with 3 × 

25 mL of H2O and 25 mL of brine.  The aqueous fractions were combined and then 

extracted with 3 × 25 mL of AcOEt.  The organic fractions were collected and filtered 

over sodium sulfate, then concentrated under vacuum.  The crude reaction was purified 

by column chromatography on silica gel eluting with a gradient of AcOEt/petroleum 

ether (1/3 to1.5/3) providing 4a as a viscous orange oil (mg, 48%).  1H NMR (CDCl3): δ 

5.29 (dd, 1H), 5.22 (dd, 1H), 5.04 (t, 1H), 4.71 (d, 1H), 3.82 (q, 1H), 3.64 (m, 2H), 3.40 

(t, 2H), 2.15 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.84 (m ,3H), 1.57 (m, 3H), 1.41 (m, 3H), 

1.29 (m, 11H), 1.22 (d, 3H). 
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11-Acetylthioundecyl 2,3,4-tri-O-acetyl-β-L-rhamnopyranoside (5a) 

For the synthesis of the β-alkyl acetyl thio-rhamnose derivative according to the 

general procedure of Lin et al.,95 3 (610 mg, 2.0 mmol) was diluted with 6 mL of toluene 

in a flame dried round bottom flask.  The solvent was removed under reduced pressure to 

azeotrope any remaining H2O from the round bottom flask. Hg(CN)2 (303 mg, 2.4 

mmol), drierite (950 mg), toluene (1.25 mL) and MeCN (1.25 mL) were then added to 

the reaction flask.  The reaction was allowed to stir for 10 minutes before a solution of 

HO(CH2)11SAc in toluene (1.25 mL) and MeCN (1.25 mL) was added to the reaction 

dropwise.  The reaction was allowed to stir for 24 h and was monitored via TLC using 

AcOEt/hexane (1/2) as the eluent.  Upon consumption of the starting material, the 

reaction was filtered and rinsed with 10 mL of CH2Cl2.  The solvent was then removed 

under reduced pressure and the crude reaction mixture was diluted with 50 mL of 

CH2Cl2.  The organic phase was washed 3 × 10 mL of H2O, 1 × 10 mL of brine, and then 

dried over Na2SO4.  The solvent was removed under reduced pressure, and the crude 

mixture was purified using column chromatography with a 75× loading ratio and an 

eluent of AcOEt/hexane (1/3) to afford  β-alkyl acetyl thio-rhamnose 5a as a yellow-

tinted solid (238 mg, yield: 23%).  1H NMR (300 MHz, CDCl3) δ 5.29 (dd, 1H), 5.22 (dd, 

1H), 5.06 (t, 1H), 4.71 (d, 1H), 3.87 (m, 1H), 3.64 (dt, 1H), 3.43 (dt, 1H), 2.83 (t, 2H), 

2.32 (s, 3H), 2.15, (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.56 (m, 4H), 1.27 (m, 14H ), 1.23 

(d, 3H). 
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11-Mercaptoundecyl β-L-rhamnopyranoside (6a) 

For the synthesis of the alkyl-thiol terminated rhamnose derivative according to 

Robinson et al.,97  11-acetylthioundecyl 2,3,4-tri-O-acetyl-β-L-rhamnopyranoside 5a (215 

mg, 0.4 mmol), K2CO3 (20 mg), and 4.2 mL of methanol were mixed in a round bottom 

flask.  The reaction was allowed to stir at room temperature for 24 h and was monitored 

via TLC using MeOH/CH2Cl2 (1/9) as the eluent.  Upon consumption of the starting 

material, the reaction was filtered and rinsed with 3 × 5 mL MeOH.  The solvent was 

removed under reduced pressure.  The crude mixture was purified using column 

chromatography with a 75 × loading ratio and eluting with MeOH/CH2Cl2 (1/8) affording 

the alkyl-thiol terminated rhamnose derivative 6a as a white solid (29 mg, yield: 20%).  

1H NMR (300 MHz, CDCl3) δ 4.75 (s, 1H), 3.92 (s, 1H), 3.75 (d, 1H), 3.61 (m, 2H), 3.49 

(d, 2H), 3.39 (m, 2H), 2.51 (q, 2H), 1.56 (m, 4H), 1.31 (m, 19H).    

L-Fucopyranose tetraacetate (2b) 

  To a mixture of L-fucose 1b (1.00g, 6.09 mmol) and acetic anhydride (20 mL) 

cooled to 0ºC was added 4 drops of H2SO4.  The reaction was allowed to stir for 20 h and 

allowed to warm to room temperature.  The reaction was quenched with aqueous 

NaHCO3 (100 mL) and AcOEt (25 mL) and allowed to stir until all unreacted acetic 

anhydride was removed.  The two phases were separated and the organic phase was 

washed with 3 × 5 mL aq NaHCO3 and 5 mL H2O.  The organic phase was filtered over 

sodium sulfate and concentrated under vacuum to afford 2b as a white solid (1.02 g, 

63%).  1H NMR (CDCl3): δ 6.34 (d, 1H), 5.33 (m, 3H), 4.31 (p, 1H), 2.18 (s, 3H), 2.15 

(s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.53 (d, 3H). 
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11-Bromoundecyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside (4b) 

 To a solution of L-fucopyranose tetraacetate 2b (1.23 g, 3.82 mmol) in 38.2 mL of 

CH2Cl2, was added 11-bromo-undecanol (1.25 g, 4.97 mmol).  The reaction was cooled 

to 0ºC and stirred for 20 min. A solution of SnCl4 (7.64 mL, of 1.0 M in heptane) was 

added dropwise and the reaction allowed to stir for 20 h and allowed to warm to room 

temperature.  The reaction was monitored via TLC using AcOEt/petroleum ether (1/2).  

The reaction was quenched with aqueous NaHCO3 (200 mL) and AcOEt (200 mL) and 

allowed to stir for 2 h then filtered over celite.  The filtrate was washed with 3 × 50 mL 

of AcOEt and the two phases were separated.  The organic phase was washed with 3 × 25 

mL of H2O and 25 mL of brine.  The aqueous fractions were combined and then 

extracted with 3 × 25 mL of AcOEt.  The organic fractions were collected and dried over 

Na2SO4, then concentrated under vacuum.  The crude reaction was purified by column 

chromatography on silica gel eluting with a gradient of AcOEt/petroleum ether (1/3 to 

1.5/3).  The solvent was removed under vacuum pressure to afford an orange oil (836 mg, 

42 %).  1H NMR (CDCl3) δ 5.33 (dd, 1H), 5.29 (dd, 1H), 5.08 (dd, 1H), 5.04 (d, 1H), 

4.14 (p, 1H), 3.65 (m, 2H), 3.39 (t, 2H), 2.16 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.81 (p, 

3H), 1.55 (m, 3H), 1.28 (m, 14H), 1.13 (d, 3H). 

11-Acetylthioundecyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside (5b) 

 For the addition of the thio-acetyl group to the alkyl linked fucopyranoside, 11-

bromoundecyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside 4b (84 mg, 0.161 mmol) and 

potassium thioacetate (55 mg, 0.483) were mixed in a round bottom flask with 1.25 mL 

of DMF.  The reaction was stirred for 20 h and monitored via TLC with a mixture of 
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AcOEt/petroleum ether (1/3) as the eluent.  Upon consumption of the starting material, 

the reaction was quenched with 20 mL of H2O and 20 mL of AcOEt/petroleum ether 

(1/1).  The two phases were separated and the aqueous phase was extracted 3 × 6 mL 

AcOEt/petroleum-ether (1/1).  The organic fractions were combined and washed with 3 × 

6 mL of H2O.  The reaction was dried over Na2SO4 and concentrated under vacuum 

providing 5b as a brown oil (66 mg, 79 %).  1H NMR (CDCl3) δ 5.33 (dd, 1H), 5.29 (dd, 

1H), 5.08 (dd, 1H), 5.04 (d, 1H), 4.14 (p, 1H), 3.64 (m, 1H), 3.38 (m, 1H), 2.84 (t, 2H), 

2.32 (s, 3H), 2.16 (s, 3H), 2.07 (s, 3H), 1.99 (s, 3H), 1.54 (p, 6H), 1.23 (m, 15H), 1.13 (d, 

3H).   

11-Mercaptoundecyl β-L-fucopyranoside (6b)  

  For the synthesis of the alkyl-thiol terminated rhamnose derivative, 11-

acetylthioundecyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside 5b (66 mg, 0.127 mmol) K2CO3 

(5.0 mg), and 0.7 mL of methanol were mixed in a round bottom flask.  The reaction was 

allowed to stir at room temperature for ~24 hours and monitored via TLC using 

MeOH/CH2Cl2 (1/9) as the eluent.  Upon consumption of the starting material, the 

reaction was filtered and rinsed with 3 × 5 mL of MeOH.  The solvent was removed 

under reduced pressure. The crude mixture was purified using column chromatography 

with a 75 × loading ratio and an eluent of MeOH/CH2Cl2 (1/8). The alkyl-thiol 

terminated fucose derivative (6b) fractions were combined and removal of solvent to 

provide 6b as a white solid (10 mg, 23%).  1H NMR (CDCl3): δ 4.77 (s, 1H), 3.93 (s, 

1H), 3.79 (d, 1H), 3.62 (m, 2H), 3.37 (m, 4H), 2.49 (p, 2H), 1.52 (m, 4H), 1.28 (m, 19H). 
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D-Glucopyranose pentaacetate (2c)  

A mixture of D-glucose 1c (1.00 g, 5.55 mmol) and 20 mL acetic anhydride was 

placed into a round bottom flask and cooled to 0ºC.  Four drops of H2SO4 were then 

added to the reaction mixture.  The reaction was allowed to stir for 20 h and allowed to 

warm to room temperature.  The reaction was quenched with 100 mL aqueous NaHCO3 

and 25 mL AcOEt and allowed to stir until all unreacted acetic anhydride was removed.  

The two phases were separated and the organic phase was washed with 3 × 5 mL aqueous 

NaHCO3 and 5 mL H2O.   The organic phase was dried over Na2SO4 and concentrated 

under vacuum provided 2c as a white solid (1.63 g, 75 %).  1H NMR (CDCl3): δ 6.33 (d, 

1H), 5.45 (t, 1H), 5.13 (m, 2H), 4.25 (m, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H), 

2.02 (s, 3H), 1.24 (t, 2H). 

11-Bromoundecyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (4c) 

  To a solution of D-glucopyranose pentaacetate 2c (1.63 g, 4.18 mmol) in 42 mL 

of CH2Cl2, was added 11-bromo-undecanol (1.36 g, 5.43 mmol).  The reaction was 

cooled to 0ºC and stirred for 20 min. A solution of SnCl4 (6.27 mL, 1.0 M in heptane) 

was added dropwise and the reaction was allowed to stir for 20 h and allowed to warm to 

room temperature.  The reaction was monitored via TLC eluting with AcOEt/petroleum 

ether (1.5/3).  The reaction was quenched with 200 mL AcOEt and 200 mL aqueous 

NaHCO3 and allowed to stir for 2 h then filtered through celite.  The filtrate was 

extracted with 3 × 50 mL of AcOEt.  The organic phase was washed with 3 × 25 mL of 

H2O and 25 mL of brine.  The aqueous fractions were combined and then extracted with 

3 × 25 mL of AcOEt.  The organic fractions were collected and dried over Na2SO4, then 
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concentrated under vacuum.  The crude reaction was purified by column chromatography 

eluting with a gradient eluent of AcOEt/petroleum ether (1/3 to 1.5/3).  The solvent was 

removed under vacuum to provide glucopyranoside 4c as an orange oil (419 mg, 17 %).  

1H NMR (CDCl3): δ 5.48 (t, 1H), 5.06 (m, 2H), 4.85 (dd, 1H), 4.25 (dd, 1H), 4.01 (m, 

1H), 4.00 (m, 1H), 3.68 (dt, 1H), 3.42 (m, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 

2.01 (s, 3H), 1.86 (q, 2H), 1.59 (p, 2H), 1.43 (p, 2H), 1.29 (m, 12H). 

11-Acetylthioundecyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (5c) 

 For the addition of the thio-acetyl group to the alkyl linked glucopyranoside, 11-

bromoundecyl 2,3,4-tri-O-acetyl-β-D-glucopyranoside 4c (84 mg, 0.161 mmol) and 

potassium thioacetate (55 mg, 0.483) were mixed in a round bottom flask with 1.2 mL of 

DMF.  The reaction stirred for 20 h and was monitored via TLC using a mixture of 

AcOEt/petroleum ether (1/3) as the eluent.  Upon consumption of the starting material, 

the reaction was quenched with 20 mL of AcOEt/petroleum ether (1/1) and 20 mL of 

H2O.  The aqueous phase was extracted with 3 × 6 mL AcOEt/petroleum ether (1/1).  The 

organic fractions were combined and washed with 3 × 6 mL of H2O.  The reaction was 

dried over Na2SO4 and concentrated under vacuum providing 5c as a brown oil (66 mg, 

yield: 79 %).  1H NMR (CDCl3) δ 5.46 (t, 1H), 5.05 (dd, 2H), 4.84 (dd, 1H), 4.24 (m, 

1H), 4.08 (dd, 1H), 3.99 (m, 1H), 3.65 (m, 1H), 3.39 (m, 1H), 2.85 (t, 2H), 2.32 (s, 3H), 

2.09 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.56 (m, 7H), 1.27 (bm, 11 H). 

D-Galactopyranose pentaacetate (2d) 

To a mixture of D-galactose 1d (1.00g, 5.55 mmol) and acetic anhydride (20 mL) 

cooled to 0ºC, was added 4 drops of H2SO4.  The reaction was allowed to stir for 20 h 
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warming up to room temperature.  The reaction was quenched with 100 mL aqueous 

NaHCO3 and 25 mL AcOEt and allowed to stir until all unreacted acetic anhydride was 

consumed.  The organic phase was washed with 3 × 5 mL aqueous NaHCO3 and 5 mL 

H2O, dried over sodium sulfate, and concentrated under vacuum providing the desired 

acetylated pentaacetate 2d as a white solid (1.50 g, 69 %).  1H NMR (CDCl3): δ 6.38 (d, 

1H), 5.51 (d, 1H), 5.34 (d, 2H), 4.33 (t, 1H), 4.09 (m, 3H), 2.17 (s, 6H), 2.05 (s, 3H), 2.03 

(s, 3H), 2.01 (s, 3H). 

11-Bromoundecyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (4d) 

To a solution of D-galactopyranose pentaacetate 2d (1.12 g, 2.88 mmol) was 

added 11-bromo-undecanol (943 mg, 3.75 mmol) in 29 mL CH2Cl2.  The reaction was 

cooled to 0ºC and stirred for 20 min. A solution of SnCl4 (4.30 mL 1.0 M in heptane) was 

added dropwise and allowed to stir for 20 h warming to room temperature.  The reaction 

was monitored via TLC eluting with AcOEt/petroleum ether (1.5/3).  The reaction was 

quenched with 250 mL aqueous NaHCO3 and 250 mL AcOEt and allowed to stir for 2 h 

then filtered over celite.  The filtrate was extracted with 3 × 50 mL of AcOEt.  The 

organic phase was washed 3 × 25 mL of H2O and 25 mL of brine. The organic fractions 

were collected and dried over Na2SO4, then concentrated under vacuum.  The crude 

reaction was purified by column chromatography with a gradient eluent of AcOEt-

petroleum ether (1/3 to 1.5/3), to provide galactopyranoside 4d a viscous orange oil (586 

mg, 35 %).  1H NMR (CDCl3): δ 5.45 (dd, 1H),  5.34 (m, 1H), 5.10 (m, 2H), 4.22 (t, 1H), 

4.11 (m, 2H), 3.66 (dt, 1H), 3.41 (m, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.99 (s, 

3H), 1.86 (p, 2H), 1.59 (m, 2H), 1.28 (m, 14H). 
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11-Acetylthioundecyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (5d) 

 For the addition of the thio-acetyl group to the alkyl linked galactopyranoside, 11-

bromoundecyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 4d (586 mg, 1.01 mmol) and 

potassium thioacetate (346 mg, 3.03 mmol) were mixed in a round bottom flask with 8 

mL of DMF.  The reaction stirred for 20 h and was monitored via TLC eluting with 

AcOEt/petroleum ether (1/3) as the eluent.  Upon consumption of the starting material, 

the reaction was quenched with 20 mL of H2O  and 20 mL of AcOEt/petroleum ether 

(1/1). The aqueous phase was extracted with 3 × 6 mL AcOEt/petroleum ether (1/1).  The 

organic fractions were combined and washed with 3 × 6 mL of H2O.  The reaction was 

dried over Na2SO4 and concentrated under vacuum to provide thioacetate 5d as a brown 

oil (482 mg, 83 %).  1H NMR (CDCl3): δ 5.45 (dd, 1H), 5.33 (m, 1H), 5.09 (m, 2H), 4.19 

(t, 1H), 4.11 (s, 1H), 4.08 (d, 1H), 3.64 (m, 1H), 3.38 (m, 1H), 2.84 (t, 2H), 2.32 (s, 3H), 

2.14 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.54 (m 5H), 1.27 (m, 15 H). 

11-Mercaptoundecyl β-D-galactopyranoside (6d) 

  For the synthesis of the alkyl-thiol terminated rhamnose derivative, according to 

Lin et al.,97 11-acetylthioundecyl 2,3,4-tri-O-acetyl-β-D-galactopyranoside 5d (470 mg, 

0.815 mmol) K2CO3 (93 mg), and 4.0 mL of methanol were mixed in a round bottom 

flask.  The reaction was allowed to stir at room temperature for 24 h and was monitored 

via TLC eluting with MeOH/CH2Cl2 (1/9) as the eluent.  Upon consumption of the 

starting material, the reaction was filtered and rinsed with 3 × 5 mL MeOH.  The solvent 

was removed under reduced pressure.  The crude mixture was purified by column 

chromatography with a 75 × loading ratio and an eluent of MeOH/CH2Cl2 (1/8).  The 
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alkyl-thiol terminated galactose derivative 6d fractions were combined and the solvent 

removed under vacuum to provide galacto-thiol 6d a white solid (134 mg, 45 %).  1H 

NMR (CDCl3): δ 4.79 (m, 2H), 3.88 (s, 1H), 3.75 (m, 7H), 2.65 (t, 2H), 1.98 (s, 1H), 1.61 

(m, 8H), 1.32 (m, 16H). 

D-Mannopyranose pentaacetate (2e)  

To a mixture of D-mannose 1e (1.00g, 5.55 mmol) and 20 mL acetic anhydride 

cooled to 0ºC, was added 4 drops of H2SO4.  The reaction was allowed to stir for 20 h and 

allowed to warm to room temperature.  The reaction was quenched with 100 mL aqueous 

NaHCO3 and 25 mL AcOEt and allowed to stir until all unreacted acetic anhydride was 

removed.  The organic phase was washed with 3 × 5 mL of aqueous NaHCO3 and 5 mL 

H2O.  The organic phase was dried over sodium sulfate and concentrated under vacuum 

providing pentaacetate 2e a yellow oil (1.41 g, 65 %).  1H NMR (CDCl3): δ 6.09 (d, 1H), 

5.34 (m, 2H), 5.26 (t, 1H), 4.26 (dd, 1H), 4.12 (d, 1H), 4.08 (m, 1H), 2.18 (s, 3H), 2.17 

(s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). 

11-Bromoundecyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside (4e) 

To a solution of D-mannopyranose pentaacetate 2e (1.39 g, 3.56 mmol) was added 

11-bromo-undecanol (1.16 g, 4.63 mmol) in 35.6 mL of CH2Cl2.  The reaction was 

cooled to 0ºC and stirred for 20 min. A solution of SnCl4 (5.40 mL 1.0 M in heptane) was 

added dropwise and allowed to stir for 20 h and allowed to warm to room temperature.  

The reaction was monitored via TLC eluting with AcOEt/petroleum ether (1.5/3).  The 

reaction was quenched with 250 mL aqueous NaHCO3 and 250 mL AcOEt and allowed 

to stir for 2 h and then filtered through celite.  The filtrate was washed with 3 × 50 mL of 
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AcOEt, and the organic phase was washed with 3 × 25 mL of H2O and 25 mL of brine.  

The aqueous fractions were combined and then extracted with 3 × 25 mL of AcOEt.  The 

organic fractions were dried over sodium sulfate, then concentrated under vacuum 

providing a crude product that was purified by column chromatography with a gradient 

eluent of  AcOEt/petroleum ether (1/3 to1.5/3).  The solvent was removed under vacuum 

providing the bromo derivative 4e as a viscous orange oil (918 mg, 44 %).  1H NMR 

(CDCl3): δ 5.31 (m, 2H), 4.80 (d, 1H), 4.26 (dd, 1H), 4.08 (m, 1H), 3.96 (m, 1H), 3.66 

(m, 1H), 3.39 (m, 3H), 2.16 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.86 (p, 2H), 

1.60 (m, 2H), 1.29 (m, 14H). 

11-Acetylthioundecyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside (5e) 

 For the addition of the thio-acetyl group to the alkyl linked mannopyranoside, 11-

bromoundecyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside 4e (918 mg, 1.58 mmol) and 

potassium thioacetate (541 mg, 4.74 mmol) were mixed in a round bottom flask with 12 

mL of DMF.  The reaction was stirred for 20 h and was monitored via TLC eluting with a 

mixture of AcOEt/petroleum ether (1/3) as the eluent.  Upon consumption of the starting 

material, the reaction was quenched with 20 mL of H2O and 20 mL of AcOEt/petroleum 

ether (1/1). The aqueous phase was extracted with 3 × 6 mL AcOEt/petroleum ether 

(1/1).  The organic fractions were combined and washed with 3 × 6 mL of H2O.  The 

reaction was dried over Na2SO4 and concentrated under vacuum providing the manno-

thiolacetyl derivative 5e as a brown oil (852 mg, 94 %).  1H NMR (CDCl3): δ 5.33 (dd, 

1H), 5.27 (d, 1H), 5.22 (dd, 1H), 4.79 (d, 1H), 4.25 (m, 1H), 4.08 (m, 1H), 3.95 (m, 1H), 



38 

 

3.63 (m, 1H), 3.41 (m, 1H), 2.84 (t, 2H), 2.32 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 2.04, (s, 

3H), 1.99 (s, 3H), 1.54 (m, 5H), 1.28 (m, 15H). 

11-Mercaptoundecyl β-D-mannopyranoside (6e) 

  For the synthesis of the alkyl-thiol terminated mannose derivative, 11-

acetylthioundecyl 2,3,4-tri-O-acetyl-β-D-mannoopyranoside 5e (803 mg, 1.40 mmol) 

K2CO3 (109 mg), and 7.0 mL of methanol were mixed in a round bottom flask.  The 

reaction was allowed to stir at room temperature for 24 h and was monitored via TLC 

eluting with MeOH/CH2Cl2 (1/9) as the eluent.  Upon consumption of the starting 

material, the reaction was filtered and rinsed with 3 × 5 mL of MeOH.  The solvent was 

removed under reduced pressure.  The crude mixture was purified by column 

chromatography with a 75 × loading ratio and an eluent of MeOH/CH2Cl2 (1/8).  The 

alkyl-thiol terminated mannose derivative fractions were combined and the solvent 

removed under vacuum providing the alkyl-thiol mannose derivative 6e as a white solid 

(160 mg, 31 %).  1H NMR (CDCl3): δ 4.79 (m, 2H), 3.88 (s, 1H), 3.75 (m, 7H), 2.65 (t, 

2H), 1.98 (s, 1H), 1.61 (m, 8H), 1.32 (m, 16H). 

Preparation of Gold Substrates  

500 mm silicon wafers were purchased from WaferNet, Inc. (CA). These wafers 

were cleaned with piranha (3:1 = H2SO4: H2O2) for 1 hour, washed excessively with 

Milli-Q (18 MΩ) water and dried with nitrogen. For the evaporation, a base pressure of 

less than 1x10-6 torr was reached and 10 nm of Cr was used as an adhesion layer and 30 

nm of Au was applied using an Edwards Auto 306 system.     
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Fabrication of Carbohydrate Microarrays  

In order to remove any organic contaminant from the gold substrate before it was 

patterned, it was washed in a piranha solution at 40 ºC for 5 minutes. 11-

Mercaptoundecyl β-L-rhamnopyranoside (6a) was patterned onto the gold surface via 

microcontact printing using poly(dimethylsiloxane) (PDMS) stamps.  The PDMS stamps 

were fabricated by casting the PDMS polymer against photolithography-prepared silicon 

masters.  The silicon masters used for this work consisted of 4.5 µm dots spacing distance 

of 4.5 µm, and 5 µm lines with a spacing distance of 4 µm.  To coat the PDMS stamp 

with a thin layer of rhamnopyraniside 6a, a 10 mM inking solution of 6a in ethanol was 

dropped onto the PDMS stamp using a microliter pipette.  The PDMS stamp was allowed 

to cure in air.  The stamp was then applied to the gold surface for 5 seconds.  The gold 

substrate was then rinsed with acetonitrile, ethanol, and then dried under a stream of N2.  

Patterned substrates were then soaked in a 1 mM solution of MOU in ethanol for ~30 min 

to passivate the unpatterned areas.  

Bacteria Cell Preparation    

P. aeruginosa cells were grown from single colonies in Luria-Bertani (LB) broth 

in a rotary shaker incubator at 37 ºC and 225 rpm for 7-8 hours.  When the culture 

reached an optical density (OD600) of 0.5-0.8 (Shimadzu 2450 UV-vis), the bacterial cells 

were centrifuged at 4000 rpm for 20 min.  The cells were then resuspended in M9 media 

that was prepared from commercially available M9 salts.   
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Imaging and Surface Characterization  

  Fabricated microarrays were characterized by AFM.  A NanoInk, Inc. NscriptorTM 

was employed to acquire topography images.  A beam shaped, silicon tapping mode tip 

with a spring constant of 40 N/m, from Pacific Nanotechnology, was used for Tapping 

Mode AFM (TMAFM) imaging.   All the AFM images were acquired with resolutions of 

512 × 512 pixels. 

Results and Discussion 

Carbohydrate microarrays have been shown to be powerful tools to study 

carbohydrate-cell interactions for the detection of bacterial pathogens.98  Several general 

methods have been utilized to prepare carbohydrate microarrays, many of which involve 

the non-covalent immobilization of sugars to surfaces such as nitrocellulose-coated glass 

slides.81  Covalent attachment methods have also been reported in which chemically 

modified carbohydrates were attached to derivatized surfaces.7, 81, 98, 99  These bottom-up, 

layer-by-layer approaches often result in cross-contamination as well as non-productive 

sugar orientation,62 resulting in lost bacterial cell binding sensitivity.  Therefore, in order 

to prepare pre-designed, spatially controlled high density arrays of carbohydrates using a 

bottom-up approach, it is imperative that the carbohydrate derivative is synthesized such 

that the sugar head group is accessible and presented in a regular and homogenous 

manner, so that bacterial cells access the immobilized ligand.  To accomplish this goal, 

two different synthetic methodologies were developed to prepare a library of mono- 

and/or oligosaccharides with a thiol-containing tail that can form a covalent bond to gold 

surfaces.  
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In the first method, the carbohydrate was initially per-O-acetylated in 63-88% 

yield (Scheme 3).  Per-O-acetylation allows for the functionalization of the glycoside at 

the α-carbon without the risk of side-product reactions at the other alcohol groups.  

Typical per-O-acetylation requires the use of acetic anhydride as both the acetylating 

reactant and the solvent of the reaction, along with a catalyst.  A variety of catalysts for 

per-O-acetylation of glycosides can include bases such as pyridine100 and imidazole;101 

acids such as HClO4,
102 ZnCl2,

103 TMSCl,104 and FeCl3,
105 and enzyme catalysts such as 

lipases.106   

 
Scheme 3. Synthetic scheme for the synthesis of the alkyl-thiol terminated rhamnose 
derivative 6a via Koenig-Knorr gycosidation. 
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Tai and co-workers107 were able to efficiently per-O-acetylate hexapyranoses in yields 

between 90 – 99% using stoichiometric amounts of acetic anhydride and catalytic 

amounts of Cu(OTf)2.  An effective method for the per-O-acetylization of glycosides is 

through the use of acetic anhydride as the acetylating reagent and solvent along with a 

catalytic amount of H2SO4 (Scheme 3).108  This method offers a one pot synthesis to the 

per-O-acetylation glycosides in 63 – 88% yield (Table 3).  This reaction was chosen as 

the first step in synthesizing an alkyl-thiol terminated carbohydrate derivative as it 
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offered the protected derivatives of the desired glycoside products, and can be readily 

characterized by 1H NMR spectroscopy.  

 
Table 3. Percent conversion to the desired per-O-acetylayed glycoside 

Sugar Product yield (%) 
L-rhamnose monohydrate L-rhamnopyranose tetraacetate 2a 88 
L-fucose L-fucopyranose tetraacetate 2b 63 
D-glucose D-glucopyranose pentaacetate 2c 75 
D-galactose D-galactopyranose pentaacetate 2d 69 
D-mannose D-mannopyranose pentaacetate 2e 65 

 
 

The second step selectively chlorinates the glycoside at the α-carbon employing 

microwave radiation (Scheme 3).109  The use of microwave irradiation with the per-O-

acetylated sugar in the presence of a Lewis acid offers a rapid and operationally simple 

route to selectively chlorinate the α-carbon in high yields (< 75%) with no further 

purification needed.  The α-chloro-rhamnose (3) compound was then coupled to (11-

hydroxyundecyl) ethanethioate via a Koenig-Knorr gycosidation, which involves the 

formation of a β-glycosidic bond from an α-halocarbohydrate, affording the desired 

alkyl-thiol linked rhamnose derivative (5a) (Scheme 3).95, 110  Rhamnose derivative 5a 

was then deacetylated resulting in thiol-terminated rhamnose derivative (6a).  The 

addition of a thiol-containing linker to the α-position of rhamnose provides a molecule 

that can adhere to a gold surface with carbohydrate directed away from the surface 

thereby providing a surface-bound rhamnose group that can be used for the directed 

assembly of biological molecules that recognize rhamnose.  This synthetic method is 

applicable to any glycoside head group as shown in Table 3.  
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While Scheme 3 provides the desired alkyl-thiol terminated carbohydrate derivative, a 

highly toxic mercuric cyanide reagent was used in the Koenig-Knorr gycosidation step.  

In order to eliminate the use of mercuric cyanide, an alternative method was developed 

for β-anomeric thiol-linked glycosides (Scheme 4).  Consistent with the literature 

precedent, the unprotected sugar (1a-e) was diluted in acetic anhydride (38 eq) followed 

by the addition of an acid catalyst, H2SO4, at 0 to 5 ºC.  This reaction was allowed to 

proceed for 24 h allowing the reaction to warm to room temperature.  The reaction gave 

the desired per-O-acetylated products 2a-e in 63 – 88 % yield, respectively, with no 

detectable side products.  The excess unreacted acetic anhydride was removed during the 

separation of the desired product from the solvent.  It was discovered that increasing the 

catalytic amount of H2SO4 or the reaction time did not improve the overall yields of the 

reaction.   

 
Scheme 4. Alternative synthetic method for the synthesis of an alkyl-thiol linked 
carbohydrate library 
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The most important step of the synthesis of glycoside derivatives for the 

formation of SAMs is the glycoslation of the α-carbon with an alkyl chain.  In this 

glycosylation step, it is essential to control the ratio of the α/β glycosidic linkage 

products.  Traditional conversion to a β-n-alkanol glycosidic linkage requires the 

intermediate step of conversion to an O-acetyl-protected glycosyl-β-halide.111  Following 
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the conversion to the mono-halide, the n-alkanol is attached via the Koenigs-Knorr 

reaction with either mercury salts such as: Hg(CN)2,
95 HgBr2,

11 and Hg(CN)2-HgBr2
12; or 

with silver salts: Ag2CO3,
112 AgClO4,

113 and AgOTf114 as the promoter.  However, 

another efficient method for the glycosylation of glycosides is Schmidt’s 

trichloroacetimidate method.115, 116  This glycosylation method has been shown to be 

selective with reversible formation of O-glycosyl-tricholoracetimidate with control over 

the α/β anomers in high yields.117, 118  Therefore, a method was developed that utilizes 11-

bromo undecanol with SnCl4 as the catalyst for the direct glycosylation of per-O-

acetylated glycosides.118  The per-O-acetylated glycoside 2a-e was mixed with 11-bromo 

undecanol (1.3 eq) followed by the dropwise addition of SnCl4 (1.5 eq) at 0-5 ºC and 

allowed to warm to room temperature for 5-24 hours (Scheme 4).  The reaction was 

monitored via TLC and quenched when the per-O-acetate 2a-e was consumed. 

This SnCl4 catalyzed direct glycosylation of per-O-acetylated glycosides gave the 

desired glycosylated products 4a-e in 17-48 % yield (Table 4).  Column chromatography 

was used to purify each of these products from the remaining starting material and by-

products.  Chromatographic elution revealed Br(CH2)11OAc, Br(CH2)11OH as a by-

product, along with the Br(CH2)11OH-glycosylation product 4a-e, and pure 4a-e, 

respectively.  Since the mobility between the 11-bromo undecanol starting material and 

the desired glycosylated product were similar on TLC, the presence of glycosylated 

product was confirmed via 1H NMR.  Upon glycosylation, the C-11 protons resolve from 

a triplet into two separate doublets of triplets, each integrating to one proton.  The two 

resonances appear at 3.66 and 3.42 ppm.  This split from a triplet into two separate 
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doublet of triplets is due to the C-11 proton’s loss of symmetry giving rise to geminal 

coupling, whereas the C-1 proton’s are still resolved into a triplet without a field shift. 

 
Table 4. Percent conversion to the desired glycosylated product. 

Sugar Product yield (%) 
L-rhamnopyranose tetraacetate        11-Bromoundecyl 2,3,4-tri-O-

acetyl-β-L-rhamnopyranoside 4a 
 

48 
L-fucopyranose tetraacetate 11-Bromoundecyl 2,3,4-tri-O-

acetyl-β-L-fucopyranoside 4b 
 

42 
D-glucopyranose pentaacetate 11-Bromoundecyl 2,3,4,6-tetra-O-

acetyl-β-D-glucopyranoside 4c 
 

17 
D-galactopyranose pentaacetate 11-Bromoundecyl 2,3,4,6-tetra-O-

acetyl-β-D-galactopyranoside 4d 
 

35 
D-mannopyranose pentaacetate 11-Bromoundecyl 2,3,4,6-tetra-O-

acetyl-β-D-mannopyranoside 4e 
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Product identity was also confirmed by noting the shift of the α-1H of the glycoside from 

the acetylated starting material to the glycosylate bearing an alkyl chain via 1H NMR.  

For example, the α-H of L-rhamnopyranose tetraacetate shifted upfield from 6.02 to 4.71 

ppm, whereas the α-H proton of D-galactopyranose pentaacetate shifted from 6.39 to 5.46 

ppm upon glycosylation. 

Finally, the synthesis of the ω-mercaptoalkyl glycosides from the preceding ω-

bromoalkyl glycosides 4a-e was accomplished in a simple two step process.  Initially, the 

ω-bromoalkyl glycoside was reacted with potassium thioacetate (KSAc, 3 eq) in DMF 

and allowed to stir at room temperature for ~20 hours (Scheme 4).  TLC was used to 

monitor the consumption of starting material with 1.5/3 AcOEt/petroleum ether as the 

mobile phase.  This reaction gave the desired thioacetates 5a-e in high yields (Table 5).   
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Table 5. Percent conversion from the ω-bromoalkyl glycosides to the thio-acetate 
glycoside 

Sugar Product Yield (%) 
11-Bromoundecyl 2,3,4-tri-O-
acetyl-β-L-rhamnopyranoside 

11-Acetylthioundecyl 2,3,4-tri-O-
acetyl-β-L-rhamnopyranoside 5a 

 
81 

11-Bromoundecyl 2,3,4-tri-O-
acetyl-β-L-fucopyranoside 

11-Acetylthioundecyl 2,3,4-tri-O-
acetyl-β-L-fucopyranoside 5b 

 
79 

11-Bromoundecyl 2,3,4,6-tetra-O-
acetyl-β-D-glucopyranoside 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-glucopyranoside 5c 

 
79 

11-Bromoundecyl 2,3,4,6-tetra-O-
acetyl-β-D-galactopyranoside 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-galactopyranoside 5d 

 
83 

11-Bromoundecyl 2,3,4,6-tetra-O-
acetyl-β-D-mannopyranoside 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-mannopyranoside 5e 

 
94 

 
 

The reaction was purified through quenching with equal amounts of a 1:1 mixture of 

AcOEt/petroleum ether and H2O.  The aqueous phase was extracted with a 1/1 mixture of 

AcOEt/petroleum ether to remove the desired product from the remaining KSAc and 

DMF solvent.  The conversion to the desired thioacetate derivative was confirmed with 

1H NMR.  1H NMR showed the upfield shifted triplet of the C-1 protons from 3.41 to 

2.86 ppm.  The deactylation step of the thioacetate derivative utilized catalytic amounts 

of potassium carbonate (K2CO3) in freshly distilled methanol providing the final ω-

mercaptoalkyl glycoside products (Table 6).97  This reaction was monitored via TLC 

using 1/8 MeOH/CH2Cl2.  Upon consumption of the starting material the solution was 

filtered and the MeOH was removed under vacuum.  
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Table 6. Percent conversion to the desired thio-alkyl glycoside 
Sugar Product Yield (%) 

11-Acetylthioundecyl 2,3,4-tri-O-
acetyl-β-L-rhamnopyranoside 

11-Mercaptoundecyl β-L-
rhamnopyranoside 6a 

 
20 

11-Acetylthioundecyl 2,3,4-tri-O-
acetyl-β-L-fucopyranoside 

11-Mercaptoundecyl β-L-
fucopyranoside 6b 

 
23 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-glucopyranoside 

11-Mercaptoundecyl β-D-
glucopyranoside 6c 

 
- 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-galactopyranoside 

11-Mercatoundecyl β-D-
galactopyranoside 6d 

 
45 

11-Acetylthioundecyl 2,3,4,6-tetra-
O-acetyl-β-D-mannopyranoside 

11-Mercaptoundecyl β-D-
mannopyranoside 6e 
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The successful synthesis of the target molecule with a rhamnose head group on 

the hundred-milligram scale allowed for testing the hypothesis that placing the alkylthiol 

tether in the anomeric beta-orientation of the glycoside will preserve the biological 

recognition and binding properties of the carbohydrate head group to be tested.119  

Therefore, the uniqueness of this rhamnose ink resides in the alkylthiol attachment 

method and specific position of the linker to the carbohydrate head group.  The L-

rhamnopyranose ink has good solubility in methanol or ethanol and fair solubility in 

methanol(ethanol):water (50:50%) mixtures which is required for patterning on gold.   

Now that a tailored carbohydrate ink has been successfully designed and 

synthesized, presenting carbohydrate head groups in a homogeneous fashion on a surface 

was accomplished via PDMS stamping.  PDMS generated patterns of 6a were prepared 

by wetting the stamp with a 10 mM solution of rhamnose derivative 6a in acetonitrile and 

bringing the stamp into contact with a gold surface for 5 s at 20ºC.11 The sample was 

allowed to cure at room temperature in air for ~10 min, followed by rinsing the sample 

with acetonitrile, ethanol, and drying under a steady stream of nitrogen. In order to assess 
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the adsorption of 6a onto the surface, frictional and topography changes were monitored 

by tapping-mode atomic force microscopy (TMAFM) and lateral force microscopy 

(LFM).  Figure 6 shows typical LFM images of PDMS stamped patterns of 6a.  Surface-

bound 6a in Figure 6a are shown as vertical lines, ~5.3 µm in width.  Due to the 

difference in the frictional force, the patterned 6a lines are a lighter contrast to the 

unpatterned gold surface.  Figure 6b shows 6a patterned onto a bare gold surface in ~4.5 

µm dots that are lighter in contrast to the bare gold surface due to the difference in 

frictional force between patterned 6a and the bare gold surface. 

Typical TMAFM images of PDMS stamped patterns of 6a are shown in Figure 7.  

Surface-bound 6a in Figure 7a are shown as vertical lines, ~5.3 µm in width, that are 

lighter contrast compared to the unpatterned bare gold.  The estimated height of the 

PDMS generated line from Figure 7a was determined by TMAFM to be 1.4 ± 0.2 nm.  

The theoretical height of 6a, calculated using an energy minimized structure with Spartan 

Pro, was estimated to be 1.3 nm.  Thus the experimentally determined height-values 

obtained for 6a are consistent with the theoretical height, consistent with the formation of 

SAMs of 6a on the gold substrate.  The thiol tethered β-rhamnose derivatives were also 
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Figure 6. AFM generated image of line or dot patterns of rhamnose derivative 6a 
patterned onto the bare gold surface via PDMS stamping a) LFM image showing a lighter 
contrast of line patterns of 6a compared to the bare gold surface b) LFM image showing a 
lighter contrast of dot patterns of 6a compared to the bare gold surface.  

  
 

patterned into ~4.5 µm dots as shown in Figure 7c.  TMAFM height profiles of the thiol 

tethered β-rhamnose derivative of 6a from Figure 7d also confirm the height of the 

patterned images to be 1.4 ± 0.2 nm.   

The unpatterned bare gold surfaces on the substrate were passivated by immersing 

the gold substrates containing SAMs of 6a in a 1 mM solution of mercapto-1-undecanol 

(MOU) in ethanol for ~30 min.  The substrate was rinsed with ethanol and dried under a 

stream of nitrogen.  MOU was chosen to passivate the remaining bare gold due to its 

ability to significantly reduce bacterial adhesion compared to bare gold.51  Typical 

heights of generated MOU SAMs are reported to be 1.3 nm, creating a binding area with 

potential for biological activity.120  In Figure 8, the PDMS-generated rhamnose line 

patterns are shown as the lighter contrast in comparison to the backfilled MOU 

passivation SAMs.  This is in good agreement with the height of the rhamnose being 

slightly greater than the height of the MOU backfilled layer. 



50 

 

Figure 7. AFM generated image of line or dot patterns of rhamnose derivative 6a 
patterned onto the bare gold surface via PDMS stamping a) TMAFM image showing 
height increase of line patterns of 6a b) Step height profile from TMAFM of the sample 
c) TMAFM image showing height increase of dot patterns of 6a d) Step height profile 
from TMAFM of the sample. 
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Figure 8. AFM generated image of line or dot patterns of rhamnose derivative 6a 
patterned onto the bare gold surface via PDMS stamping and backfilled with MOU a) 
LFM image showing line patterns of 6a as a lighter contrast compared to the MOU 
backfilled layer b) LFM image showing dot patterns of 6a as a lighter contrast compared 
to the MOU backfilled layer. 

  
 

In order to determine if the PDMS generated rhamnose-template microarrays retained 

their bacterial binding activity, microarrays of 6a were exposed to Pseudomonas 

aeurginosa.   P. aeruginosa was initially tested as it is a significant contributor to 

nosocomial and/or food-borne infections.  Microarrays of 6a backfilled with MOU were 

immersed in a solution of M9 media containing P. aeruginosa cells for ~30 min.  The 

substrate was then washed with fresh M9 media followed by rinsing with Milli-Q (18 

MΩ) water.  An optical microscope was used to monitor the adhesion of the bacteria to 

the patterned surface (Figure 9).   As can be seen in Figure 9a, P. aeruginosa cells 

preferentially bind to rhamnose patterned lines with very little non-specific binding to 

MOU passivated gold.  Interestingly, the cell density on carbohydrate microarrays are 

significantly higher than what we have observed on MHA-PLL features.  TMAFM was 

used to further characterize the biological recognition of the PDMS-generated patterns of 

6a.  A typical TMAFM image shows the biological recognition capabilities of the 
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patterned rhamnose ink 6a to P. aeruginosa.  The P. aeruginosa cells appear to order 

themselves in a head-to-tail fashion on lines of rhamnose (Figure 9c).  These data provide 

"proof-of-concept" that carbohydrate-based nanopatterned inks provide excellent 

adhesion characteristics for bacterial cell surface binding.   

 
Figure 9. Images of the patterned samples of 6a after exposure to P. aeruginosa a) 
Optical microscope image showing the linear patterns of P. aeruginosa bound to the line 
patterns of 6a b) TMAFM image showing the bacteria bound to the line patterns of 6a c) 
TMAFM image showing the bacteria bound to the line patterned SAMs of 6a. 

   
 

 
 

 

Conclusion 

 Carbohydrate-based inks were designed and synthesized, which provide the 

foundation to examine bacterial cell surface recognition and capture.  The synthetic 
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methods using the classic Koenigs-Knorr glycosylation as well as the direct glycosylation 

of the per-O-acetylated carbohydrates described herein are generic so a library of 

carbohydrate based inks can be easily synthesized in order to take advantage of the 

specificity of bacterial cell-sugar interactions.  Individual carbohydrate nanoarrays or 

mixed carbohydrate nanoarrays can potentially provide a fingerprint for specific 

pathogenic bacterial cells resulting in a "chip-based" method for the accurate and fast 

detection of multiple pathogenic bacterial cell types in parallel.  Carbohydrate nanoarrays 

that can simultaneously recognize and capture bacterial cell pathogens lie at the interface 

between biological carbohydrate-cell binding and the chemistries associated with 

preparing nanoarrays of carbohydrate inks.  Understanding the adhesion chemistries of 

carbohydrate functionalized surfaces will open new research avenues for building 

complex, multi-functional biological arrays.  
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CHAPTER THREE 

DIRECT PATTERNING OF A CYCLOTRIVERATRYLENE (CTV) DERIVATIVE 

FOR DIRECTED SELF-ASSEMBLY OF C60 

Introduction 

With its unique structure, physical and electronic properties, C60 

(Buckminsterfullerene) has been shown to possess great potential for the development of 

organic electrical and optical devices.121-124  The ability of C60 to be a potent electron 

acceptor has led to its utilization in donor-chromophore-acceptor based molecular triads 

that are capable of intramolecular photoinduced electron transfer (PET).125  While C60 

thin-films on metal surfaces have been widely studied,123, 126-131 many challenges remain 

for the directed self-assembly of organic optoelectronic materials such as C60 into two-

dimensional surface structures.  Therefore, developing methods to pattern and immobilize 

organic electronic or optoelectronic materials with nanometer-scale control will provide a 

simple, robust, and flexible approach for the preparation of predetermined two-

dimensional organic materials.  By controlling the spatial distribution of organic 

molecules on a surface by directed molecular binding, these materials will potentially 

enable for the development of new nanooptical, nanoelectronic, and/or 

nanoelectrochemical systems (NEMS).3, 8-12
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One way to pattern and immobilize organic electronic or optoelectronic materials 

with nanometer scale control is to utilize a bottom-up, layer-by-layer approach based on 

host-guest chemistry.123  Host-guest chemistry involves complementary binding between 

two different molecules that can involve electrostatic, hydrogen bonding, π-π stacking 

interactions, inductive and dispersion forces, as well as hydrophobic or solvatophobic 

effects.132  Over the past decade, host-guest chemistry involving synthetic receptor 

molecules has received increasing interest partly due to the ever-advancing ability to 

synthesize complex molecular scaffolds to serve as host structures.  One such receptor 

molecule, CTV,3, 70, 71 has been extensively employed in host-guest chemistry as a 

supramolecular scaffold.2, 133, 134  Enabled by its rigid bowl-shaped structure, CTV has 

been shown to act as a host molecule for a variety of small molecules including neutral or 

ionic polyhedral C60 and o-carborane derivatives.4, 69  In 1994, Atwood et al.135 showed 

that the bowl-shaped crown conformer of CTV forms inclusion complexes with C60 in the 

ratio of (C60)1.5(CTV)(toluene)0.5  referred to as a “ball and socket” structure.  Zhang et 

al.136-139 utilized this ball and socket structure to prepare C60 self-assembled monolayers 

on gold utilizing CTV, however the CTV was derivatized on its perimeter resulting in the 

concave shape of the CTV molecule facing toward the gold surface, thus irreversibly 

trapping C60 against the surface and isolating it from neighboring CTV guests.  This 

orientation of CTV prohibits its ability to function as a template for a layer-by-layer 

approach to building organic electronic or optoelectronic materials. 

Herein describes a robust and reliable method to produce predesigned, spatially 

controlled, high-density microarrays of C60.  We have designed and synthesized an apex-



56 

 

modified CTV derivative providing a surface bound CTV template with its bowl shaped 

cavity directed away from the surface.  By utilizing a layer-by-layer approach and Dip-

Pen Nanolithography, which provides a flexible nanolithographic method capable of 

positioning molecules on a substrate with 10 nm resolution,58, 140 predesigned, spatially 

controlled microarrays of this modified CTV derivative were prepared on gold surfaces.  

The molecular recognition capabilities of this CTV-template toward C60 described herein 

provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned 

on surfaces and through host-guest interactions provide a template for the development of 

organic electronic or optoelectronic materials. 

Experimental Section 

All solvents and reagents were used without further purification unless otherwise 

noted.  All solvents were distilled prior to use.  All reactions were conducted under a 

nitrogen atmosphere.  Sorbent Technologies silica gel 60 A, 40 – 75 µm (200 x 400 

mesh) was used for column chromatography unless otherwise noted.  Sorbent 

Technologies aluminum-backed Silica gel 200 µm plates were used for TLC. 1H NMR 

spectra were obtained utilizing either a Varian INOVA 300 or Varian GEMINI 2000 300 

MHz spectrometer with trimethylsilane (TMS) as the internal standard.  

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]-cyclononene (7) 

According to the method of Robinson, veratryl alcohol (18 mL, 120 mmol) was 

mixed with formic acid (325 mL) in a round bottom flask and the reaction was stirred at 

60ºC for 3 h. The reaction was cooled to room temperature and filtered.  The crude 

mixture was purified via recrystallization from toluene and filtered to afford 7 as a white 
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crystalline solid (9.36 g, 52 % ).  1H NMR (300 MHz, CDCl3) δ 6.83 (s, 6H), 4.76 (d, 

3H), 3.83 (s, 18 H), 3.54 (d, 3H). 

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-5-one (8) 

For the synthesis of the CTV-ketone derivative according to the method of Lutz et 

al.,141 CTV 7 (2.0 g, 4.4 mmol), Na2CrO7·2H2O (2.1 g, 7.0 mmol), and 22 mL of HOAc 

were mixed in a round bottom flask.  The reaction was refluxed at 120 ºC for ~ 20 h and 

the reaction was monitored via TLC using AcOEt/CH2Cl2 (5/95) as the eluent.  Upon 

consumption of the starting material, the reaction was quenched with 25 mL of H2O.  The 

reaction was extracted 3 x 25 mL of CH2Cl2.  The organic fractions were collected and 

were washed with 3 x 15 mL H2O, and the organic fraction was dried over Na2SO4. 

Concentration afforded 8 as an off white solid (1.9 g, 92%). 1H NMR (300 MHz, CDCl3) 

δ 7.43 (s, 2H), 6.76 (s, 2H) 6.49 (s, 2H), 3.96 (s, 6H), 3.92 (s, 6H), 3.81 (s, 6H), 3.77 (br 

s, 4H). 

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-5-oxime 

(9a/b) 

For the synthesis of the crown and saddle CTV-oxime derivatives , CTV-

monoketone 8 (500 mg, 1.08 mmol), hydroxylamine hydrochloride (H2NOH·HCl) (750 

mg, 10.8 mmol), and 6 mL of pyridine were mixed in a round bottom flask and was 

brought to reflux.  The reaction was allowed to reflux for ~23 hours and was monitored 

via TLC using AcOEt/CH2Cl2 (5/95).  Upon consumption of the starting material, the 

reaction was cooled to room temperature and diluted with 20 mL of CH2Cl2. The reaction 

was washed 4 x 10 mL 10 % HCl, 2 x 10 mL H2O, and 10 mL of brine.  The organic 
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fractions were filtered over Na2SO4.  The solvent was removed under reduced pressure.  

The crude reaction mixture was purified using column chromatography with a 75× 

loading ratio and an eluent gradient of AcOEt/CH2Cl2 (1/4 to 1/1).  The crown/saddle 

(9a/b) fractions were combined and removal of solvent afforded a light brown solid was 

recovered (375 mg, 73 %).  1H NMR (300 MHz, CDCl3) δ 9.41(br s, 1H), 6.96 (s, 1H), 

6.90 (s, 1H), 6.86 (s, 1H), 6.81 (s, 1H), 6.71 (s, 1H), 4.77 (d, 1H), 4.38 (d, 1H), 3.89 (s, 

3H), 3.87 (s, 3H), 3.83 (s, 12H), 3.58 (d, 1H), 3.50 (d, 1H).  

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-O-[5-(1,2-

dithiolan-3-yl)pentanoyl]-5-oxime (10a/b) 

 For the synthesis of the crown and saddle CTV oxime-lipoic acid derivatives, 

lipoic acid (283 mg, 1.37 mmol), hydroxybenzotriazole (HOBT) (200 mg, 1.48 mmol), 

N,N’-dicyclohexylcarbodiimide (DCC) (330 mg, 1.60 mmol), and 3.0 mL of dry 

tetrahydrofuran (THF) were mixed in a round bottom flask and was allowed to stir at 

room temperature for 1 hour.  A mixture of crown and saddle conformers of CTV oxime 

9a/b (545 mg, 1.14 mmol) in 2.7 mL of dry THF was then added to the round bottom 

flask dropwise.  The reaction was allowed to stir for ~24 hours and was monitored via 

TLC using AcOEt/CH2Cl2 (1/9) as the eluent.  Upon consumption of the starting 

material, the reaction was filtered over celite to remove the insoluble urea and washed 

with ~30 mL of CH2Cl2.  The solvent was then removed under reduced pressure.  The 

crude mixture was purified using flash chromatography with an RS-40 cartridge and an 

eluent gradient of AcOEt/hexane (1/2 to 2/1, v/v).  The crown/saddle 10a/b fractions 

were combined and removal of solvent afforded a light brown solid (434 mg, 57%).  This 
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product was characterized by 1H NMR.  1H NMR (300 MHz, CDCl3) δ 7.33 (s, 1H), 6.94 

(s, 1H), 6.93 (s, 1H), 6.91 (s, 1H), 6.83 (s, 1H), 6.80 (s, 1H), 6.78 (s, 1H), 6.68 (s, 1H), 

6.65 (s, 1H), 6.64 (s, 1H), 6.58 (s, 1H), 6.54 (s, 1H). 

Preparation of Gold Substrates  

500 mm silicon wafers were purchased from WaferNet, Inc. (CA). These wafers 

were cleaned with piranha (3:1 = H2SO4: H2O2) for 1 hour, washed excessively with 

Milli-Q (18 MΩ) water and dried with nitrogen. For the evaporation, a base pressure of 

less than 1x10-6 torr was reached and 10 nm of Cr was used as an adhesion layer and 30 

nm of Au was applied using an Edwards Auto 306 system.  

Fabrication of CTV Microarrays   

A NanoInk, Inc. NscriptorTM was used to prepare DPN arrays under ambient 

conditions with temperatures ranging from 20 to 22˚C and humidity levels within the 

enclosed chamber between 25 and 35%.  V-shaped, silicon nitride contact mode tips 

(NanoInk, Inc.) with a spring constant of 0.5 N/m were used for DPN patterning.  A 10 

mM solution of 10a/b was prepared in acetonitrile containing 1% polysorbate 20 for 

wettability.  For DPN patterning, atomic force microscopy (AFM) tips were first dipped 

into inkwells filled with 10a/b.  The stationary diffusion constants were calculated based 

on the model developed by J. Jang et al.142 prior to each patterning process.  Dot shaped 

patterns were made by holding the tip stationary in contact with the surface according to 

calculated stationary diffusion constants.  The samples with DPN arrays were allowed to 

stand at room temperature for ~10 minutes and rinsed with acetonitrile then ethanol and 

dried under a stream of nitrogen.   
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Modification of the DPN-patterned templates  

Substrates with DPN-generated patterns were incubated in a 1 mM solution of 

octadecanethiol (ODT) in ethanol for ~30 min to block any exposed gold surface from 

further unwanted contaminations or modifications.  The samples were then rinsed with 

ethanol and dried under a stream of nitrogen.  Regions coated with 10a/b were then 

functionalized by exposure to a 1 mM solution of C60 in toluene with deposition times 

ranging from 20 minutes to 1 hour.  Functionalized samples were rinsed with toluene and 

dried under a stream of nitrogen. 

Imaging and Surface Characterization  

  Fabricated microarrays were characterized by AFM.  A NanoInk, Inc. NscriptorTM 

was employed to acquire topography images. A beam shaped, silicon tapping mode tip 

with a spring constant of 40 N/m, from Pacific Nanotechnology, was used for Tapping 

Mode AFM (TMAFM) imaging.  All the AFM images were acquired with resolutions of 

512 x 512 pixels. 

Results and Discussion 

It was hypothesized that derivatizing the apex of the CTV bowl would provide a 

supramolecular scaffold with the concave bowl receptor pointed away from the surface, 

enabling CTV to function as a surface-bound host molecule.  To accomplish this, CTV 

was oxidized to the monoketone and converted to the oxime in high yield as an 

equilibrium mixture of the crown 9a and the saddle 9b conformers (Scheme 5).16  The 

CTV oxime was coupled to (±)-α-lipoic acid affording a mixture of the coupled crown 

10a and saddle 10b conformers in 52% yield (Scheme 5).  The resulting CTV-lipoic acid 
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derivatives 10a/b contain a dithiolane-terminated linker for coordination to gold, thus 

enabling the bowl of CTV to face away from the surface.   

 
Scheme 5. Synthetic scheme for the synthesis of the apex-modified dithiol CTV-oxime 
(10a/b). 
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 With the successful design and synthesis of an apex modified CTV 

supramolecular scaffold head group with a dithiolane tail, microarrays of 10a/b were 

prepared via DPN by direct patterning using a NanoInk, Inc. NscriptorTM system.58, 140  
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DPN is a particularly important nanolithographic method for patterning molecular inks 

since DPN is capable of positioning molecules on a substrate with 10 nm resolution in 

pre-designed, spatially controlled arrays.58  As previously reported, the addition of 1% 

polysorbate 20 to a 10 mM solution of 10a/b in acetonitrile enhanced the diffusion of 

10a/b during the DPN process by making the solvent more wettable.143  DPN generated 

patterns of 10a/b were prepared at 20oC with humidity levels between 25 and 35%.144  To 

assess the adsorption of the 10a/b molecular ink, surface topography changes were 

measured by AFM (LFM and TMAFM) after curing in air at room temperature for ~10 

minutes, followed by rinsing with acetonitrile and ethanol and drying under a stream of 

nitrogen. LFM is a method of imaging a surface by detecting the change in the torsion of 

the cantilever as the cantilever tip encounters a change in friction on the surface as the tip 

moves in the forward and reverse directions.  Typical AFM images of DPN-generated 

10a/b patterns are shown in Figure 10.  Surface-bound 10a/b, which is more hydrophilic 

than gold, is observed as the light contrast areas in the TMAFM image (Figure 10a) and a 

darker contrast in the LFM image (Figures 10b).   
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Figure 10. AFM generated images of 10a/b dot patterns patterned onto the bare gold 
surface a) TMAFM image showing height increase of 10a/b patterned onto the bare gold 
surface via DPN b) LFM images of 10a/b patterned on a base gold substrate utilizing 
DPN c) Step height profile from AFM of the sample represented in image a. 

 
 

The estimated height of DPN generated patterns of 10a/b, measured from 

randomly placed height profiles using tapping-mode AFM revealed a height of 1.2 ± 0.3 

nm every 1.5 µm with a width of 0.5 µm (Figure 10c).  The calculated height of a 10a/b 

monolayer is 1.5 nm, consistent with the experimentally observed height values obtained 

for 10a/b, indicating the formation of a 10a/b SAM.  Gold substrates containing 10a/b 

SAMs were immersed in a 1 mM solution of ODT in ethanol for ~30 min, rinsed with 

ethanol, and dried under a stream of nitrogen.  A tapping-mode AFM topography image 

after passivation with ODT and a corresponding height profile are shown in Figure 11a.  

Tapping-mode AFM images demonstrate the comparable heights of spots containing the 
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10a/b SAM and the surrounding ODT back-filled resist layers due to the similar heights 

of their SAMs (ca. 1.5 nm vs. 1.8 nm, respectively).145  However, microarrays of 10a/b 

backfilled with ODT can be clearly differentiated by LFM due to the greater frictional 

force and darker contrast in comparison to the ODT resist layer between the AFM tip and 

the 10a/b SAM (Figure 11b).  The graininess of the images shown in Figures 11a and 

10b reveal the granularity of the gold surface, which was not investigated further. 

 
Figure 11. AFM generated images of 10a/b dot patterns after backfilling the bare gold 
substrates with ODT a) TMAFM and b) LFM images of 10a/b dot patterns. 
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The molecular recognition capabilities of the DPN generated CTV-template 

microarrays towards C60 were examined.  Arrays of 10a/b–ODT were immersed in a 1 

mM solution of C60 in toluene for ~40 min and after extensive rinsing with toluene they 

were dried with nitrogen and characterized via AFM.  A typical AFM image showing C60 

attached to the CTV-template is presented in Figure 11a.  The binding interaction of the 

10a/b–ODT SAMs with C60 results in a light TMAFM contrast (Figure 12a) and a clearly 

visible contrast in the LFM image (Figure 12b).  This is in good agreement with the 

frictional behavior of C60, which is somewhat more hydrophilic than ODT.  C60 was 

observed bound to individual dots with little or no binding to the resist ODT monolayer.  

Additional confirmation of C60 binding to DPN generated 10a/b templates was obtained 

from SAMDI-TOF mass spectroscopy.  Mrksich and co-workers have shown that 

SAMDI-TOF MS is an excellent tool to directly detect organic molecules, such as 

synthetic intermediates, at surfaces.93   Therefore, SAMDI-TOF MS spectra were 

collected on DPN generated SAMS of 10a/b before and after exposure to C60.  For SAMs 

of 10a/b, a significant (74%) m/z peak at 462.27 was observed, which I assign to the 

cleavage product of 10a/b at the N-O bond (Scheme 5).  No parent peak was observed for 

10a/b and no peaks at larger masses were detected indicating that the lipoic acid tail of 

10a/b was lost in the laser desorption process.  Exposure of DPN generated SAMS of 

10a/b to C60 resulted in the observation of an m/z peak at 720.05 (the mass of C60) in the 

SAMDI-TOF mass spectrum indicating the presence of C60 bound to the 10a/b 

monolayer.  These data, taken together, provide proof-of-concept that supramolecular 
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CTV scaffolds can be directly patterned on surfaces and retain their ability to bind host 

molecules such as C60.   

 
Figure 12. AFM images of the sample after C60 deposition a) TMAFM image showing 
that a height increase of ~1.0 nm is observed where the CTV-disulfide ink was patterned, 
but not on the surrounding ODT surface b) The frictional contrast between CTV-C60 is 
apparent relative to the backfilled ODT surface in the LFM image c) Cross-sectional step 
height profile from tapping-mode AFM shows the periodic height increase of ~1.0 nm on 
the sample. 

 

 
 

Given that the diameter of C60 is ~1 nm, a height increase for a SAM of 10a/b 

after the addition of C60 is expected if C60 binds to the CTV macrocycle in a ball and 

socket fashion as observed by Atwood et al.135 in the solid state.   AFM height profiles of 

the 10a/b-C60 SAM after the addition of the ODT resist was found to be 1.0 ± 0.3 nm 
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(Figure 12c).  Since 10a/b and ODT have approximately the same height, the 1 nm height 

increase is consistent with C60 binding through - interactions (Figure 13) similar to the 

binding mode reported for the solid state.135   Previously it had been shown that apex-

modified CTV derivatives interconvert between two different conformers, crown 9a and 

saddle 9b.141 The interconversion equilibrium between the two conformers was shown to 

be solvent dependent with the crown conformer being favored in non-polar solvents.146  

Given the nearly complete coverage with C60 of the CTV-surface bound template, the 

equilibrium between the crown conformer 10a and the saddle conformer 10b must be 

shifted towards 10a (Figure 13) enabling a ball-and-socket interaction between the host 

CTV molecules and the C60 guest.146  Therefore, the apex-bound lipoic acid-CTV linked 

molecule 10a must reside on the surface with its bowl shaped cavity directed away from 

the surface.  The proposed conformation of the CTV bowl is consistent with other 

cyclophane SAMs, such as calix[n]arenes (n = 4, 6, 8).137, 147   
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Figure 13. Proposed C60 binding to the apex-modified, surface-bound CTV 
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Conclusion 

It has been shown that an apex-modified CTV supramolecular scaffold can be 

patterned into pre-defined microarrays via DPN.  Through host-guest interactions, these 

microarrays have been shown to form bottom-up, layer-by-layer complexes with C60 with 

potential toward advancing nanoelectronics and optoelectronics.  Having the ability to 

directly pattern molecular host active surfaces via DPN opens the door to preparing a 

wide range of host-guest materials with reproducible, homogeneous features with high 

edge resolution, which will facilitate the fabrication of microcircuitry and 

opticalelectronics based on host-guest chemistry. 
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CHAPTER FOUR 

AN ANALYTICALLY QUANTITATIVE METHOD FOR DETERMINIG 

METHOXYARYL-TRANSITION METAL BINDING AFFINITY USING 

CYCLOTRIVERATRYLENE FUNCTIONALIZED GOLD NANOPARTICLES 

Introduction 

Cyclotriveratrylene (CTV) is a common supramolecular scaffold that has been 

previously employed in self-assembled binding motifs.1  The most common CTV 

derivative employed in host-guest chemistry is designated C3 due to its C3 point group 

symmetry.  This C3 derivative consists of alternating methoxy and phenol groups on the 

aromatic rings and enabled by its rigid shaped -bowl structure, CTV can form host-guest 

complexes.  For example, the CTV host forms “ball-and-socket” complexes with guests, 

including [Na[2.2.2]cryptate]+, fullerene-C60, closo-1,2-dicarbadodecaborane, and 

[CpFeII(arene)]+.4, 135, 148-152  C3 CTV can also be utilized as a tripodal scaffold for the 

attachment of other binding elements.  Liskamp, et al.5 O-alkylated the CTV-triol, which 

was then coupled with one or two amino acids, and solution phase combinational 

chemistry methods were used to catalog a 40-member library of tripodal molecules using 

CTV as a scaffold.  On the other hand, Zhang et al.136 utilized CTV derivatives to 

noncovalently but irreversibly bind fullerene-C60 to self-assembled monolayers on gold 

surfaces while Collet et al.153 synthesized C3 CTV derivatives with ligands capable of 

iron(II) and iron(III) octahedral coordination. 
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 CTV derivatives that bind both divalent and trivalent metal ions with their 

methoxy ether groups are an interesting aspect of host-guest chemistry.  Metal binding 

can occur via empty metal valence orbitals and electron loan pairs residing on the 

methoxy groups on the outer rim of the CTV bowl.  Metal ion binding to these methoxy 

moieties has been shown to form coordination polymers as well as clatharate crystalline 

materials.4,5, 69, 154  In a study conducted by Raston et al.155 X-ray crystal structures was 

obtained of CTV binding to alkali-earth metal cations (Na+, K+, Rb+, and Cs+) forming 

large crystalline coordinate polymers by binding the methoxy group of CTV.  Hardie et 

al.156 revealed that lanthanide metal ions can also bind to CTV-methoxy groups.  X-ray 

crystallographic data on CTV-lanthanide complexes indicated that the water molecules of 

the capped triangular dodecahedral [Eu(H2O)9]
3+ cations are at distances favorable for 

hydrogen bond formation with the CTV perimeter methoxy lone-pairs.   

In order to examine solution host-guest interactions between colorless di- and 

trivalent metal ions and CTV molecules, a colorimetric analytical device for the detection 

of di- and trivalent metal ions was developed based on gold nanoparticles (AuNP).  An 

apex-modified CTV supramolecular scaffold head group with a dithiolane tail for binding 

to a gold surface with the CTV bowl shaped cavity directed away from the surface was 

synthesized and bound to AuNPs.  Unlike traditional organic fluorescent dyes, AuNPs 

have much stronger molar absorptivities that are 3 -5 orders of magnitude higher than 

organic fluorescent dyes.157, 158  The optical properties of AuNPs are due to their unique 

surface plasmon resonance (SPR) where electrons on the surface of an AuNP are in 

collective oscillation and become in resonance with incident electro-magnetic 
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radiation.159, 160  Modified AuNPs make excellent colorimetric analytical platforms 

because NP aggregation due to analyte detection results in a color change from red to 

blue.41, 161-169  CTV-functionalized AuNPs provide the basis for the design of an 

analytical tool that can be used to examine the affinity of methoxy groups towards di- and 

trivalent transition metal ions in solution.  This analytical spectroscopic method provides 

a new method for the use of host-guest interactions as a detection method for 

environmentally toxic metal ions. 

Experimental Section 

All solvents and reagents were used without further purification unless otherwise 

noted.  All solvents were distilled prior to use.  All reactions were conducted under a 

nitrogen atmosphere.  Sorbent Technologies silica gel 60 A, 40 – 75 µm (200 x 400 

mesh) was used for column chromatography unless otherwise noted.  Sorbent 

Technologies aluminum-backed Silica gel 200 µm plates were used for TLC.  1H NMR 

spectra were obtained on either a Varian INOVA 300 or Varian GEMINI 2000 300 MHz 

spectrometer with trimethylsilane (TMS) as the internal standard.  

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]-cyclononene (7) 

Veratryl alcohol (18 mL, 120 mmol) was mixed with formic acid (325 mL) in a 

round bottom flask.  The reaction was stirred at 60 ºC for 3 h. The reaction was cooled to 

room temperature and filtered.  The crude mixture was purified via recrystallization in 

toluene and filtered to afford 7 as a white crystalline solid (9.36 g, 52 % yield).  1H NMR 

(300 MHz, CDCl3) δ 6.83 (s, 6H), 4.76 (d, 3H), 3.83 (s, 18 H), 3.54 (d, 3H). 
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10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-5-one (8) 

For the synthesis of the CTV-ketone derivative according to the method of Lutz et 

al.,141 CTV 7 (2.0 g, 4.4 mmol), Na2CrO7·2H2O (2.1 g, 7.0 mmol), and 22 mL of HOAc 

were mixed in a round bottom flask.  The reaction was refluxed at 120 ºC for ~20 h and 

the reaction was monitored via TLC using AcOEt/CH2Cl2 (5/95) as the eluent.  Upon 

consumption of the starting material, the reaction was quenched with 25 mL of H2O.  The 

reaction was extracted in 3 x 25 mL lots using CH2Cl2.  The organic fractions were 

collected and washed with 3 x 15 mL of H2O, and the organic fraction was dried over 

Na2SO4. Concentration afforded 8 as an off white solid (1.9 g, 92%). 1H NMR (300 MHz, 

CDCl3) δ 7.43 (2H, s), 6.76 (2H, s) 6.49 (2H, s), 3.96 (6H, s), 3.92 (6H, s), 3.81 (6H, s), 

3.77 (4H, br s). 

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-5-

oxime(9a/b) 

For the synthesis of the crown and saddle CTV-oxime derivatives, CTV-

monoketone 8 (500 mg, 1.08 mmol), hydroxylamine hydrochloride (H2NOH·HCl) (750 

mg, 10.8 mmol), and 6 mL of pyridine were mixed in a round bottom flask and refluxed 

for ~23 hours.  The reaction was monitored via TLC using AcOEt/CH2Cl2.  Upon 

consumption of the starting material, the reaction was cooled to room temperature and 

diluted with 20 mL of CH2Cl2.  The reaction was washed with 4 x 10 mL of 10 % HCl, 2 

x 10 mL of H2O, and 10 mL of brine.  The organic fractions were dried over Na2SO4 and 

the solvent removed under vacuum.  The crude reaction mixture was purified using 

column chromatography with a 75× loading ratio and an eluent gradient of 
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AcOEt/CH2Cl2 (1/4 to 1/1).  The crown/saddle (9a/b) fractions were combined and the 

solvent removed affording a light brown solid (375 mg, 73 %).  1H NMR (300 MHz, 

CDCl3) δ 9.41(br s, 1H), 6.96 (s, 1H), 6.90 (s, 1H), 6.86 (s, 1H), 6.81 (s, 1H), 6.71 (s, 

1H), 4.77 (d, 1H), 4.38 (d, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.83 (s, 12H), 3.58 (d, 1H), 

3.50 (d, 1H).  

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]- cyclononen-O-[5-(1,2-

dithiolan-3-yl)pentanoyl]-5-oxime (10a/b) 

 For the synthesis of the crown and saddle CTV oxime-lipoic acid derivatives, 

lipoic acid (283 mg, 1.37 mmol), hydroxybenzotriazole (HOBT) (200 mg, 1.48 mmol), 

N,N’-dicyclohexylcarbodiimide (DCC) (330 mg, 1.60 mmol), and 3.0 mL of dry 

tetrahydrofuran (THF) were mixed in a round bottom flask and allowed to stir at room 

temperature for 1 hour.  A mixture of crown and saddle conformers of CTV oxime 9a/b 

(545 mg, 1.14 mmol) in 2.7 mL of dry THF was then added dropwise.  The reaction was 

allowed to stir for ~24 hours and monitored via TLC using AcOEt/CH2Cl2 (1/9) as the 

eluent.  Upon consumption of the starting material, the reaction was filtered over celite to 

remove the insoluble urea and washed with ~30 mL of CH2Cl2.  The solvent was then 

removed under vacuum.  The crude mixture was purified using flash chromatography 

with an RS-40 cartridge and an eluent gradient of AcOEt/hexane (1/2 to 2/1).  The 

crown/saddle (10a/b) fractions were combined and removal of the solvent afforded a 

light brown solid (434 mg, 57%).  This product was characterized by 1H NMR.  1H NMR 

(300 MHz, CDCl3) δ 7.33 (s, 1H), 6.94 (s, 1H), 6.93 (s, 1H), 6.91 (s, 1H), 6.83 (s, 1H), 
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6.80 (s, 1H), 6.78 (s, 1H), 6.68 (s, 1H), 6.65 (s, 1H), 6.64 (s, 1H), 6.58 (s, 1H), 6.54 (s, 

1H). 

Preparation of CTV -lipoate conjugated 15 nm AuNPs   

In order to modify the surface of AuNPs (Figure 1) with the CTV-lipoate 

conjugate derivatives (10a/b), 7.4 µL of a 2.7 mM 1% polysorbate 20/MeCN solution of 

10a/b was pipetted into 992.6 µL of tannic acid stabilized 15 nm AuNPs.  The 

microcuvettes were vortexed for 20 s and allowed to rest at room temperature for ~24 h.  

The microcuvettes were then centrifuged at 14,000 rpm for 30 min. and the supernatant 

removed.  The conjugated particles were then resuspended in a 1% polysorbate 20/ACN 

solution.  In order to remove any excess unbound CTV-lipoate conjugate 10a/b from the 

AuNP solution, the microcuvettes were centrifuged at 14,000 rpms for 30 min.  The 

supernatant was removed and the AuNPs were resuspended in a 1% polysorbate 20/ACN 

solution.  This centrifugation and resuspension procedure was repeated three times.  

 Titration of M2+ into AuNPs 

To 247 µL of CTV-lipoate conjugated to 15 nm AuNP in 1% polysorbate 

20/MeCN in each of six different microcuvettes was added 2.5 µL of 1, 2, 5, 6, 9, and 10 

mM solution of Pb2+, Cd2+, Zn2+, Cu2+, Hg2+, and Eu3+ in milli-Q nanopure water.  The 

microcuvettes were then vortexed for 10 s and were allowed to sit at room temperature 

for 20 h.   

UV/vis detection 

 A Shimadzu UV-3101PC spectrophotometer was used for all UV-Vis 

experiments.  A 100 µL sample of each metal titration into the CTV modified AuNP’s in 
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1% polysorbate 20/ACN was pipetted into a quartz cell with a 1 mm path length.  Spectra 

were recorded from 200 – 900 nm with a sample interval of 2 nm.  In between each 

sample, the UV-Vis cell was rinsed with aqua regia (3:1 HCl:HNO3) followed by 

nanopure water and dried under a stream of N2 gas.  It was then rinsed with 200 µL of 

1% tween 20/ACN solution and finally dried under a stream of N2 gas.  

Results and Discussion 

Cyclotriveratrylene (CTV) is a supramolecular scaffold that is known to bind 

mono and trivalent metal ions.4, 69, 154, 156, 170  CTV has been used to generate self-

assembled monolayers on gold surfaces through modifications of the outer perimeter of 

the CTV bowl, resulting in the concave shape of the CTV molecule facing toward the 

surface.136  Although SAMs of these outer perimeter modified CTV derivatives afford 

densely packed monolayers that were shown to bind host molecules such as C60, the non-

covalently bound host molecules were trapped against the surface.125  This configuration 

of the CTV bowl adhered to a gold surface limits its ability to bind di and trivalent metal 

ions and function as a template for a layer-by-layer approach to build novel 

nanostructures.  Therefore, we hypothesized that derivatizing the apex of the CTV bowl 

would provide a supramolecular scaffold with the concave bowl receptor pointed away 

from the surface, enabling CTV to function as a AuNP-bound host molecule.171  To 

accomplish this, CTV was oxidized to the monoketone and converted to the oxime in 

high yield as an equilibrium mixture of the crown 9a and the saddle 9b conformers 

(Scheme 6).16 The CTV oxime was coupled to (±)-α-lipoic acid affording a mixture of the 

coupled crown 10a and saddle 10b conformers in 52% yield.  The resulting CTV-lipoic 
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acid derivatives 10a/b contain a dithiolane-terminated linker for coordination to gold, 

thus enabling the bowl of CTV to face away from the surface of an AuNP. 

With the successful design and synthesis of an apex modified CTV 

supramolecular scaffold head group with a dithiolane tail, 15 nm AuNPs were 

functionalized by the addition of a 2.7 mM solution of 10a/b in a 1% polysorbate 20 

acetonitrile (ACN) solutiion (Scheme 7).163  These samples were then vortexed for 20s to  

 
Scheme 6. Synthetic method for the preparation of an apex-modified dithiol CTV-oxime 
(10a/b) for the modification of 15 nm AuNPs. 
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ensure homogeneity throughout the solution.  The AuNP/CTV-dithiolane solution was 

allowed to sit at room temperature for ~24 h to allow full functionalization of the AuNPs.  
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In order to remove the excess CTV-dithiolane, the AuNPs were centrifuged at 14,000 

rpm for ~30 min.  The denser CTV-dithiolane functionalized AuNPs precipitated  

while the excess CTV-dithiolane remained in solution.  The supernatant was carefully 

removed and the functionalized AuNPs were resuspended in a 1 % polysorbate 20/MeCN 

solution.  This process was repeated three times to ensure complete removal of any 

excess CTV-dithiolane from the AuNP solution.  Transmission electron 

microscopy (TEM) was used to confirm that the AuNPs were intact after  

 

Scheme 7. Route to functionalizing the AuNPs with the CTV-dithiolate ligand. 

 

 
 
functionalization with the CTV-dithiolate ligand (Figure 14).  TEM images reveal that 

the CTV-functionalized AuNPs retain their roughly spherical structure.  Due to the 

differences in the refractive indices between the water and acetonitrile solvents, the UV-



78 

 

vis spectra shifted to the right upon modification CTV-AuNPs in MeCN.  The expected 

shift in the SPR of the AuNP solution had shifted from 522 nm in water to 550 nm in 

MeCN solution (Figure 15).172  The decrease in absorbance is due to the loss of 

nanoparticles from the washing and extracting of solvent to remove excess CTV after 

modification.   

With the successful functionalization of stable CTV-dithiolate 15nm AuNPs, a 

series of colorless di- and trivalent metal ions (Cu2+, Pb2+, Hg2+, Zn2+, Cd2+, and Eu3+) 

were titrated into a solution of CTV-lipoate modified AuNPs in tween 20/MeCN.  

Various concentrations of each metal ion (10 µM, 20 µM, 50 µM, 60 µM, 90 µM, and 

100 µM) in nanopure water were pipetted into the CTV-dithiolate AuNP solution.  The 

solution was incubated at room temperature (~21 oC) for ~24 h in order to allow for 

complexation  

 
Figure 14. TEM images a) and b) of the CTV-dithiolate functionalized AuNPs show that 
after modification, the AuNPs retain their spherical shape and show that the CTV-lipoate 
AuNPs do not polymerize without the addition of metal cataions. 
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Figure 15. UV-vis spectra of the unmodified nanoparticles purchased from Ted Pella 
(black) versus the CTV-lipoate modified AuNPs in 1% Tween 20/MeCN (red) showing 
that modification of the AuNPs with the CTV-lipoate moiety and the subsequent solvent 
change results in a decrease and shift in absorbance from 515 nm to 550 nm. 
 

 

 

between CTV-methoxy moieties and the divalent metal cations, which resulted in the 

formation of a purple precipitate.  Binding interactions between the methoxy moieties of 

the CTV ligands and the metal cation in solution were examined by recording the UV-Vis 

spectrum of the supernatant between 450 – 750 nm.  Typical UV-Vis spectra are shown 

in Figures 16a-c.  The initial absorbance of the CTV-thiolate functionalized 15 nm 

AuNPs monitored at 550 nm decreases accompanied by broadening as the metal ion 

concentration is increased from 10 to 100 µM.  A decrease in absorbance at 550 nm and 

the observed precipitate are consistent with metal cation binding to CTV methoxy groups 

in and intra-NP fashion resulting in the formation of a metal ion assisted polymerization 

of the CTV-lipoate modified AuNPs.  Evidence of the formation of a metal ion-CTV-

AuNP polymerization was obtained from TEM images (Figure 17).   
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Figure 16. Typical spectroscopic metal binding titrations of increasing a) [Cu2+], b) 
[Pb2+], and c) [Eu3+] binding to 15 nm CTV-dithiolate functionalized AuNPs resulting in 
a decrease in absorbance after 24 hours. 
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Figure 17.  TEM image of the observed CTV-lipoate AuNP precipitate upon metal 
complexation. 
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Metal cation affinities to the methoxy moieties of the CTV-dithiolate 

functionalized AuNPs were determined by titrating metal ions into a CTV-dithiolate 

functionalized AuNP solution and monitoring the decrease in absorbance at 550 nm 

(Figure 17a-c).  Dissociation constants (Kd) for a single metal binding event were 

determined by fitting plots of absorbance vs. metal ion concentration to eq 1173 

 

 )/( mdm CKpCr   (1)

 

 where p is the number of sites for which the interaction with the metal cation is governed 

by the intrinsic dissociation constant, Kd, and r is the binding function calculated by 

subtracting the metal titration absorbance, Abm, at 550 nm from the initial absorbance, Abi 

using eq 2.  Cm is the concentration of the metal ion that was titrated into the AuNP 

solution.  

 
Mi AbAbr   (2)

 

A value for Kd was obtained by fitting the data via an iterative process that allowed both 

Kd and p values to vary (Figure 18a-c).  The best fits obtained provided p values that 

ranged from 0.3 - 1.4 and Kd values that range from 13 µM ± 1 for Cd2+ to 60 µM ± 1 for 

Cu2+ (Table 7).  Based on these Kd values, a binding affinity series was created 

represented by the following order: Cu2+>Zn2+>Pb2+>Hg2+>Eu3+>Cd2+.    
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Figure 18. Plot of binding function r vs Cm (the concentration of the metal ions in the 
solution) for a) Cu2+, b) Pb2+, and c) Eu3+ titrated into CTV-lipoate AuNPs. 
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Table 7. Metal binding affinity data for varying metals titrated into CTV-lipoate AuNPs. 

Metal p Kd (µM) σ (±) χ2 

Pb2+ 1.0 49 2 0.020
Cd2+ 1.4 13 1 0.069
Zn2+ 0.5 51 3 0.014
Cu2+ 0.9 60 1 0.013
Hg2+ 0.3 34 1 0.011
Eu3+ 0.8 29 2 0.033

 

Since the divalent metal ions used can adopt four, five, or six coordinate 

geometries in solution whereas Eu3+ can exhibit coordination geometries of 8 or higher, 

we hypothesized that the metal ion’s coordination sphere is made up of CTV-methoxy 

oxygens and water molecules.  Evidence for the existence of such a structure can be 

gleaned from X-ray crystallographic data of a Na+ bound CTV complex.170  In this 

structure, each Na+ ion coordinates to symmetry-equivalent CTV molecules resulting in 

the Na+ cation residing in a highly distorted octahedral geometry where each CTV 
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molecule chelates edge-bound to Na+ through one dimethoxy moiety and cis 

water/hydroxy ligands (Figure 19).  Likewise, the X-ray crystal structures of the Cs+ and 

Rb+ CTV complexes revealed that both of the larger monovalent cations bind to the 

dimethoxy moieties of CTV and two cis water/hydroxyl ligands forming a highly 

distorted six-coordinate complex in a similar fashion to Na+ (Figure 20).155  Interestingly, 

the X-ray structure of the Eu3+ CTV complex indicates that the methoxy moieties act as 

hydrogen bond acceptors with the aquo ligands of the [Eu(H2O)9]
3+ cations forming 

hydrogen-bonded superstructures (Figure 21).156  The [Eu(H2O)9]
3+ cations reside in two 

distinct environments but both retain their water ligands and do not form direct bonding 

interactions with the methoxy moieties of CTV. 

 
Figure 19. Section of the two-tiered, infinite two-dimensional sheet structure formed 
through hydrogen bonding and coordination of the CTV-methoxy ligands to the Na+ ions. 
Darkened CTV molecules represent those that are concave down, whereas the lighter 
CTV molecules represent those that are concave up. Na+ ions are represented as shaded 
black dots.170 
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Figure 20. Crystal structure of Cs+ bound to CTV through direct coordination of the 
methoxy groups and hydroxide/water bridges.155 
 

 
 
 
Figure 21. CTV molecules stacked back-to-back and hydrogen bonded to two distinct 
[Eu(H2O)9]

3+ complexes denoted as Eu(1) yellow, Eu(2) pink, MeCN in green, and 
unbound water in orange.  a) Type 1, regular CTV assembly and b) type 2, splayed CTV 
assembly.156 
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The binding mode observed for Eu3+, while different from that observed for the 

alkali metal ions, is likely the result of the more Lewis acidic Eu3+ ion vs. the M2+ cations 

examined.  Since methoxy moieties are not as strong a Lewis base as water molecules, 

the highly Lewis acidic Eu3+ cation will preferentially bind to water over CTV methoxy 

groups.  Therefore, one would expect the Kd value of 29 ± 2 nM observed for Eu3+ results 

from [Eu(H2O)9]
3+ cations hydrogen-bonding with the methoxy moieties of CTV, similar 

to the reported CTV-Eu3+ X-ray crystal structure.  For the remaining divalent transition 

metal complexes capable of forming octahedral complexes in solution (Cd2+, Pb2+, Cu2+), 

all three are soft metal acids and exhibit p values of ~1.  The Kd values for these three 

complexes increase with increasing hardness of these soft metal acids, suggesting that the 

softer the metal ion the better affinity for a methoxy ligand.  Therefore, we hypothesize 

that these three metal ions will be chelated by some combination of CTV-methoxy 

groups and water molecules (Figure 22), similar to the alkali metal cations.  Likewise, the 

soft metal acids Hg2+ and Zn2+ likely bind to the CTV-methoxy groups and water 

molecules in some combination, similar to the alkali metal cations, since the softer Hg2+ 

ion binds more tightly (34 ± 1nM) than Zn2+ (51 ± 3 nM).  However, the observed p 

values for these two divalent metal ions are 0.3 and 0.5, respectively, indicating a 

difference in the type of polymeric structure formed upon binding.  Given Hg2+ and Zn2+ 

preference for tetrahedral geometries, an altered superstructure is not unexpected. 
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Figure 22. Proposed binding interaction between a metal cation and the CTV-methoxy 
ligand in solution, forming insoluble AuNP based polymer aggregates. 
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A variety of selective colorimetric metal ion detection devices, such as 

chemosensors,174-181 metal ion induced colour change (MICC),182 and Förster resonance 

energy transfer systems183 have previously been reported for the detection of cations in 

solution.  Nanoparticle based colorimetric copper (II) sensors such as those reported by 

Larpent et al.184 utilized an aqueous 15 nm fluorescent metal-chelating polymer 

nanoparticle with a 1,4,8,11-tetraazacyclotetradecane (Cyclam) selective ligand on the 

surface and 9,10-diphenylanthracene (DPA) as the fluorophore that was encapsulated in 

the core.  These functional nanoparticles showed quenching of the observed fluorescence 

upon binding to Cu2+ in solution.  While these different devices allow for the detection of 

metal ions in solution, no determination of metal ion binding constants was reported. The 

CTV-AuNP method that was developed offers an advantage as being able to both detect 

and analytically quantify metal ion concentrations in the solution. 
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Conclusion 

An apex-modified CTV derivative containing a dithiolane tail was used to 

functionalize 15 nm AuNPs.  Taking advantage of the optical properties of AuNPs, a 

colorimetric analytical method was developed to determine the metal binding properties 

of a series of di- and trivalent metal ions in solution.  This spectroscopic method provides 

a new method for the use of host-guest interactions as a method for studying metal-ligand 

binding interactions.  It is of importance to develop spectroscopic detection methods to 

determine the binding properties of toxic colorless metal ions such as Hg2+ and Pb2+, as 

well as other potentially harmful metal ions such as Cd2+.  The environmental and 

biological impact of metal ion contamination is of great importance and the toxicity of 

lead and mercury ions are well documented.  Moreover, the toxicity of  Cu2+ at high 

concentrations to algae, fungi, bacteria and viruses as well as the fact that high copper 

concentrations in children leads to cirrhosis of the liver and potentially plays a role in 

neurodegenerative diseases such as Alzheimers suggests that a sensitive, optical detection 

method for the detection of Cu2+ would be advantagious.1,2    
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CHAPTER FIVE 

CONCLUSION 

 The overall goal of this thesis, as outlined in Chapter 1, was to examine host – 

guest interactions for the fabrication of pre-designed, spatially controlled arrays of 

immobilized supramolecular and biological molecules utilizing a bottom-up, layer-by-

layer approach.  This research was accomplished through the use of modern synthetic 

organic methodologies to produce novel biological and supramolecular scaffolds that 

were attached to gold surfaces via a gold – sulfur bond.  Lithographic techniques 

including microcontact printing (μCP) and dip-pen nanolithography (DPN) were used to 

fabricate pre-designed, spatially controlled arrays of immobilized biological and 

supramolecular scaffolds.  

 In Chapter 1, evidence was presented that carbohydrates could be synthesized and 

patterned onto gold surfaces.  Two different synthetic methods were developed to create 

an alkyl thiol-linked carbohydrate derivative where the sugar head group was accessible 

for bacterial attachment at a surface.  The first synthetic method utilized the classic 

Koeing-Knorr glycosylation reaction for the attachment of the alkyl-linkage while a 

second more simplified method was developed to facilitate the creation a library of 

different alkyl thiol-linked carbohydrate derivatives.  An L-rhamnose derivative that was 

developed from the first synthetic method was patterned onto a gold surface via 
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microcontact printing.  TMAFM data confirmed that the L-rhamnose derivative had been 

patterned into pre-designed, spatially controlled (5.3 µm) biological arrays.  To provide 

“proof-of-concept” that the biological activity of the carbohydrate arrays were retained, 

Pseudomonas aeruginosa bacterial cells in M9 media solution were applied to the L-

rhamnose array.  TMAFM images confirmed that P. aeruginosa selectively binds to the 

patterned L-rhamnose arrays. 

   In Chapter 2, the research involved the synthesis and patterning of a 

supramolecular scaffold, CTV.  This synthetic method was devised to produce an apex-

modified CTV derivative where the bowl-shaped cavity faced away from the surface.  

This apex-modified CTV molecule was patterned onto a gold surface into pre-defined, 

spatially controlled 0.5 µm dots via DPN.  These DPN patterned CTV substrates were 

then exposed to a solution of fullerene C60.  LFM, TMAFM, and SAMDI-TOF MS data 

confirmed the specific host-guest interaction between the patterned CTV scaffold and the 

C60.  This research establishes that host-guest interactions on the surface can be utilized at 

the nanometer scale using a bottom-up, layer-by-layer approach for the assembly of 

potential optical or electrical devices. 

  In Chapter 3, the apex-modified CTV molecule was used as a supramolecular 

scaffold for the development of an analytical, spectroscopic method to determine di- and 

trivalent metal ion binding affinities to the methoxy moieties of CTV.   In order to 

accomplish this, the apex-modified CTV molecule was used to functionalize gold 

nanoparticles.  These CTV-functionalized nanoparticles were then used to analytically 
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quantify the binding affinity between the CTV’s methoxy groups and transition metals. 

This work will lead to future insight into how to quantify host – guest interactions. 

The research detailed in this dissertation shows that host – guest interactions are 

integral to the future design and fabrication of nano-optical and nano-electrical systems. 

Future work from these projects will include the use of carbohydrate libraries to fabricate 

mixed carbohydrate-arrays that are capable of selectively binding specific, targeted 

bacterial cells.  The host-guest interaction between CTV and C60 will be expanded to the 

fabrication of pre-designed, spatially controlled arrays of supramolecular scaffolds for the 

directed placement of carbon nanotubes.185  Finally, the CTV-AuNP work will be 

expanded to include new dithiolate functionalized ligands and proteins with greater metal 

ion affinities.  

  

 

 

 

 

 

 

 

 

 

 



 

93 

REFERENCES 
 
 
1. Beer, P. D.; Gale, P. A.; Smith, D. K., Supramolecular Chemistry. Oxford University               

Press:  Oxford, England, 1999; p 4, 90. 

2. Hardie, M. J., Recent advances in the chemistry of cyclotriveratrylene. Chemical 
Society Reviews 2010, 39, 516-527. 

3. Robinson, G. M., Reaction of Homopiperonyl and Homoveratryl Alcohols. J. Chem. 
Soc. 1915, 107, 267-276. 

4. Holman, K. T.; Halihan, M. M.; Steed, J. W.; Jurisson, S. S.; Atwood, J. L., Hosting a 
Radioactive Guest: Binding of 99TcO4

- by a Metalated Cyclotriveratrylene. J. Am. 
Chem. Soc. 1995, 117, 7848-7849. 

5. Steed, J. W.; Zhang, H.; Atwood, J. L., Inclusion Chemistry of Cyclotriveratrylene and 
Cyclotricatechylene. Supramolecular Chemistry 1996, 7, 37-45. 

6. Westcott, A.; Sumby, C. J.; Walshaw, R. D.; Hardie, M., Metallo-Gels and Organo-
Gels with Tripodal Cyclotriveratrylene-Type and 1,3,5-Substituted Benzene-Type 
Ligands. New J. Chem. 2009, 33, 902-912. 

7. Houseman, B. T.; Mrksich, M., Carbohydrate Arrays for the Evolution of Protein 
Binding and Enzymatic Modification. Chem. Biol. 2002, 9, 443-454. 

8. Mrksich, M., What can surface chemistry do for cell biology? Curr. Opin. Chem. Biol. 
2002, 6, 794-797. 

9. Hooper, L.; Gordon, J., Glycans As Legislators of Host–Microbial Interactions: 
Spanning the Spectrum From Symbiosis to Pathogenicity. Glycobiol. 2001, 11, 1R-
10R



94 

 

10. Mammen, M.; Choi, S.-K.; Whitesides, G., Polyvalent Interactions in Biological  
Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.  
Angew. Chem. Int. Ed. Engl. 1998, 37, 2754-2794. 

11. Sperling, O.; Fuchs, A.; Lindhorst, T. K., Evaluation of the Carbohydrate Recognition 
Domain of the Bacterial Adhesion FimH: Design, Synthesis, and Binding Properties 
of Mannoside Ligands. Org. Biomol. Chem. 2006, 4, 3913. 

12. Karlsson, K., Microbial Recognition of Target-Cell Glycoconjugates. Curr. Opin. 
Struct. Biol. 1995, 5, 622-635. 

13. Imberty, A.; Chabre, Y.; Roy, R., Glycomimetics and Glycodendrimers as High 
Affinity Microbial Anti-adhesins. Chem. Eur. J. 2008, 14, 7490. 

14. Liang, P.-H.; Wu, C.-Y.; Greenberg, W.; Wong, C.-H., Glycan Arrays: Biological 
and Medical Applications. Curr. Op. Chem. Biol. 2008, 12, 86–92. 

15. Demerec, M., Origin of Bacterial Resistance to Antibiotics. J. Bacteriol. 1948, 56, 
63-74. 

16. Dobrindt, U.; Agerer, F.; Michaelis, K.; Janka, A.; Buchrieser, C.; Samuelson, M.; 
Svanborg, C.; Gottschalk, G.; Karch, H.; Hacker, J., Analysis of Genome Plasticity in 
Pathogenic and Commensal Escherichia coli Isolates by Use of DNA Arrays. J. 
Bacteriol. 2003, 185, 1831-1840. 

17. Sokurenko, E. V.; Chesnokova, V.; Dykhuizen, D. E.; Ofek, I.; Wu, X. R.; Krogfelt, 
K. A.; Struve, C.; Schembri, M. A.; Hasty, D., Pathogenic adaptation of Escherichia 
coli by natural variation of the FimH adhesin. Proc. Natl. Acad. Sci. USA 1998, 95, 
8922–8926. 

18. Sokurenko, E.; Chesnokova, V.; Doyle, R.; Hasty, D., Diversity of the Escherichia 
coli Type 1 Fimbrial Lectin. Differential Binding to Mannosides and Uroepithelial 
Cells. J. Biol. Chem. 1997, 272, 17880–17886. 

19. Klevens, R.; Edwards, J.; Richards, C., Estimating Healthcare-Associated Infections 
and Deaths In U.S. hospitals. Public Health Rep 2007, 122, 160-166. 



95 

 

20. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-
Assembled  Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. 
Rev. 2005, 105, 1103-1169. 

21. Korobov, M. V.; Mirakyan, A. L.; Avramneko, N. V.; Olofsson, G.; Smith, A. L.; 
Ruoff, R. S., Calorimetric Studies of Solvates of C60 and C70 with Aromatic Solvents. 
J. Phys. Chem. B. 1999, 103, 1339-1346. 

22. Wang, L.; Liu, B.; Liu, D.; Yao, M.; Hou, Y.; Yu, S.; Cui, T.; Li, D.; Zou, G.; 
Iwasiewicz, A.; Sundqvist, B., Synthesis of Thin, Rectangular C60 Nanorods Using m-
Xylene as a Shape Controller. Adv. Mater. 2006, 18, 1883-1888. 

23. Geng, J.; Zhou, W.; Skelton, P.; Yue, W.; Kinloch, I. A.; Windle, A. H.; Johnson, B. 
F. G., Crystal Structure and Growth Mechanism of Unusually Long Fullerene (C60) 
Nanowires. J. Am. Chem. Soc. 2008, 130, 2527-2534. 

24. El-Sayed, M. A., Some Interesting Properties of Metals Confined in Time and 
Nanometer Space of Different Shapes. Acc. Chem. Res. 2001, 34, 257-330. 

25. Ariga, K.; Hill, J. P.; Ji, Q., Layer-By-Layer Assembly As A Versatile Bottom-Up 
Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. 
Chem. Chem. Phys. 2007, 9, 2319-2340. 

26. Shin, H. S.; Yoon, S. M.; Tang, Q.; Chon, B.; Joo, T.; Choi, H. C., Highly Selective 
Synthesis of C60 Disks on Graphite Substrate by a Vapor-Solid Process. Angew. 
Chem. Int. Ed. 2008, 47, 693-696. 

27. Liu, H.; Li, Y.; Jiang, L.; Luo, H.; Xiao, S.; Fang, H.; Li, H.; Zhu, D.; Yu, D.; Xu, J.; 
Xiang, B., Imaging As-Grown [60]Fullerene Nanotubes by Template Techniques. J. 
Am. Chem. Soc. 2002, 124, 13370-13371. 

28. Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M., C60 Nanowhiskers 
Formed by the Liquid-Liquid Interfacial Precipitation Method. J. Mater. Res 2002, 
17, 83-88. 

29. Howell, S. W.; Inerowicz, H. D.; Regnier, F. E.; Reifenberger, R., Patterned Protein 
Microarrays for Bacterial Detection. Langmuir 2003, 19, 436-439. 



96 

 

30. Inerowicz, H. D.; Howell, S.; Regnier, F. E.; Reifenberger, R., Multiprotein 
Immunoassay Arrays Fabricated by Microcontact Printing. Langmuir 2002, 18, 5263-
5268. 

31. Premkumar, J. R.; Lev, O.; Marks, R. S.; Polyak, B.; Rosen, R.; Belkin, S., Antibody-
Based Immobilization of Bioluminescent Bacterial Sensor Cells. Talanta 2001, 55, 
1029-1038. 

32. Groves J. T.; Mahal, L. K.; Bertozzi C. R., Control of Cell Adhesion and Growth with 
Micropatterned Supported Lipid Membranes. Langmuir 2001, 17, 5129-5133. 

33. Rowan, B.; Wheeler, M. A.; Crooks, R. M., Patterning Bacteria within 
Hyperbranched Polymer Film Templates. Langmuir 2002, 18, 9914-9917. 

34. Razatos, A.; Ong, Y. L.; Boulay, F.; Elbert, D. L.; Hubbell, J. A.; Sharma, M. M.; 
Georgiou, G., Force Measurements between Bacteria and Poly(ethylene glycol)-
Coated Surfaces. Langmuir 2000, 16, 9155-9158. 

35. Qian, X.; Metallo, S. J.; Choi, I. S.; Wu, H.; Liang, M. N.; Whitesides, G. M., Arrays 
of Self-Assembled Monolayers for studying Inhibition of Bacterial Adhesion. Anal. 
Chem. 2002, 74, 1805-1810. 

36. Chapman, R. G.; Ostuni, E.; Liang, M. N.; Meluleni, G.; Kim, E.; Yan, L.; Peir, G.; 
Warren, H. S.; Whitesides, G. M., Polymeric Thin Films that Resist the Adsorption of 
Proteins and the Adhesion of Bacteria. Langmuir 2001, 17, 1225-1233. 

37. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A 
Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of 
Protein. Langmuir 2001, 17, 5605-5620. 

38. Razatos, A.; Ong, Y.-L.; Sharma, M. M.; Georgiou, G., Molecular Determinants of 
Bacterial Adhesion Monitored by Atomic Force Microscopy. PNAS 1998, 95, 11059-
11064. 

39. Rozhok, S.; Piner, R. D.; Mirkin, C. A., Dip-Pen Lithography: What Controls Ink 
Transport? J. Phys. Chem. B. 2003, 107, 751-757. 



97 

 

40. St. John, R. M.; Davis, R.; N., C.; Czajka, J.; Batt, C. A.; Craighead, H. G., 
Diffraction-Based Cell Detection Using a Microcontact Printed Antibody. Anal. 
Chem. 1998, 70, 1108-1111. 

41. Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 
1547-1562. 

42. Sarikaya, M.; Tamerler, C.; Schwartz, D. T.; Baneyx, F., Materials Assembly and 
Formation Using Engineered Polypeptides. Ann. Rev. Mater. Res. 2004, 34, 373-408.  

43. Medintz, I., Universal Tools for Biomolecular Attachment to Surfaces Nat. Mater. 
2006, 5, 842. 

44. Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S., A Classic Assembly of 
Nanobiomaterials. Nat. Biotech. 2005, 23, 1379 - 1380. 

45. Wilson, D. L.; Martin, R.; Hong, S.; Cronin-Golomb, M.; Mirkin, C. A.; Kaplan, D. 
L., Surface Organization and Nanopatterning of Collagen by Dip-Pen 
Nanolithography PNAS 2001, 98, 13660-13664. 

46. Ginger, D. S.; Zhang, H.; Mirkin, C. A., The Evolution of Dip-Pen Nanolithography. 
Angew. Chem. Int. Ed. 2004, 43, 30 – 45. 

47. Chovan T; Guttman, A., Microfabricated Devices in Biotechnology and Biochemical 
Processing. Trends Biotechnol 2002, 20, 116-122. 

48. Kikuchi, J.-I.; Murakami, Y., Steroid Cyclophanes as Artificial Cell-Surface 
Receptors.  Molecular Recognition and it Consequence in Signal Transduction 
Behavior.  J. Incl. Phenom. Mol. Rec. Chem. 1998, 32, 209-221. 

49. Michaud, F.; Barrio, M.; López, D. O.; Tamarit, J. L.; Agafonov, S. T.; Szwarc, H.; 
Céolin, R., Solid-State Studies on a C60 Solvate Grown from 1,1,2-Trichloroethane. 
Chem. Mater. 2000, 12, 3595-3602. 

50. Rozhok, S.; Clifton, K. F.; Shen, F.; Littler, P. H.; Fan, Z.; Liu, C.; Mirkin, C. A.; 
Holz, R. C., Methods for Fabricating Microarrays of Motile Bacteria. Small 2005, 1, 
445-451. 



98 

 

51. Rozhok, S.; Clifton K. F.; Shen, F.; Littler, P. L.; Fan, Z.; Liu, C.; Mirkin, C. A.; 
Holz, R. C., Methods for Fabricating Microarrays of Motile Bacteria. Small 2005, 1, 
445-451. 

52. Verschoor, J. A.; Meiring, M. J.; Van Wyngraardt, S.; Weyer, K., Polystyrene, Poly-
Lysine, and Nylon As Absorptive Surfaces for the Binding of Whole Cells of 
Mycobacterium terburculosis H37 RV to ELISA Plates. J. Immunoassay 1990, 11, 
413-28. 

53. Eisenbach, M.; Wolf, A.; Welch, M.; Caplin, S. R.; Lapidus, I. R.; Macnab, R. M.; 
Aloni, H.; Asher, O., Pausing, Switching, and Speed Flucuation of the Bacterial 
Flagellar Motor and Their Relation to Motillity and Chemotaxis. J. Mol. Bio. 1990, 
211, 551-563. 

54. Berg, H. C., Constraints On Models for the Flagellar Rotary Motor. Philos. Trans. R. 
Soc. London, Ser. B. 2000, 355, 491-501. 

55. Liang, M. N.; Smith, S. P.; Metallo, S. J.; Choi, I. S.; Prentiss, M.; Whitesides, G. M., 
Proc. Natl. Acad. Sci. USA 2000, 97, 13092-13096. 

56. Rozhok, S.; Holz, R. C., Electrochemical Adhesion of Motile Bacteria to Gold. 
Talanta 2005, 67, 538-542. 

57.  Abu-Lail, N. I.; Camesano, T. A., Specific and Nonspecific Interaction Forces 
Between Eschericia coli and Silicon Nitride, Determined by Poisson Statistical 
Analysis. Langmuir 2006, 22, 7296-7301. 

58. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A., "Dip-Pen" Nanolithography. 
Science 1999, 283, 661-663. 

59. Ginger, D. S.; Zhang, H.; Mirkin, C. A., The Evolution of Dip-Pen Nanolithography. 
Angew. Chem. Int. Ed. 2004, 43. 

60. Bellido, E.; de Miguel, R.; Ruiz-Molina, D.; Lostao, A.; Maspoch, D., Controlling the 
Number of Proteins with Dip-Pen Nanolithography. Adv. Mater. 2010, 22, 352-355. 



99 

 

61. Vega, R. A.; Maspoch, D.; Salaita, K.; Mirkin, C. A., Nanoarrays of Single Virus 
Particles. Angew. Chem. Int. Ed. 2005, 44, 6013-6015. 

62. Demers, L. M.; Ginger, D. S.; Park, S.-J.; Li, Z.; Chung, S.-W.; Mirkin, C. A., Direct 
Patterning of Modified Oligonucleotides on Metals and Insulators via Dip-Pen 
Nanolithography. Science 2002, 296, 1836-1838. 

63. Rozhok, S.; Fan, Z.; Nyamjav, D.; Liu, C.; Mirkin, C. A.; Holz, R. C., Attachment of 
Motile Bacterial Cells to Prealigned Holed Microarrays. Langmuir 2006, 22, 11251-
11254. 

64. Walter, N.; Selhuber, C.; Kessler, H.; Spatz, J. P., Cellular Unbinding Forces of 
Initial Adhesion Processes on Nanopatterned Surface Probed with Magnetic 
Tweezers. Nano Lett. 2006, 6, 398-402. 

65. Wang, W. M.; LeMieux, M. C.; Selvarasah, S.; Dokmeci, M. R.; Bao, Z., Dip-Pen 
Nanolithography of Electrical Contacts to Single-Walled Carbon Nanotubes. 
ACSNano 2009, 3, 3543-3551. 

66. Turkevitch, J.; Stevenson, P. C.; Hillier, J., A Study of the Nucleation and Growth 
Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55-75. 

67. Frens, G., Controlled Nucleation for the Regulation of the Particle Size in 
Monodisperse Gold Suspensions. Nature: Phys. Sci. 1973, 241, 20-22. 

68. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-
derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc., 
Chem. Commun. 1994, 801-802. 

69. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely. C. J., Synthesis and Reactions 
of Functionalised Gold Nanoparticles. J. Chem. Soc., Chem. Commun. 1995, 1655-
1656. 

70. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold Nanoparticles in 
Delivery Applications. Advanced Drug Delivery Reviews 2008, 60, 1307-1315. 



100 

 

71. Lee, J.-S.; Han, M. S.; Mirkin C. A., Colorimetric Detection of Mercuric Ion (Hg2+) 
in Aqueous Media using DNA-Functionalized Gold Nanoaprticles. Angew. Chem. Int. 
Ed. 2007, 46, 4093-4096. 

72. Adams, E. W.; Ratner, D. M.; Bokesch, H. R.; McMahon, J. B.; O'Keefe, B. R.; 
Seeberger, P. H., Oligosaccharide and Glycoprotein Microarrays as Tools in HIV 
Glycobiology: Glycan-Dependent gp120/Protein Interactions. Chem. Biol. 2004, 11, 
875-881. 

73. Seo, J. H.; Kim, C. S.; Hwang, B. H.; Cha, H. J., A Functional Carbohydrate Chip 
Platform for Analysis of Carbohydrate-Protein Interaction. Nanotechnology 2010, 21, 
215101-215109. 

74. Zhi, Z.-L.; Laurent, N.; Powell, A. K.; Karamanska, R.; Fais, M.; Voglmeir, J.; 
Wright, A.; Blackburn, J. M.; Crocker, P. R.; Russell, D. A.; Flitsch, S.; Field, R. A.; 
Turnbull, J. E., A Versatile Gold Surface Approach for Fabrication and Interrogation 
of Glycoarrays. ChemBioChem 2008, 9, 1568-1575. 

75. Ahmad, R.; Hardie, M. J. Building Cyclotriveratrylene Host Molecules into Network 
Structures. Cryst. Eng. Comm. 2002, 42, 227-231. 

76. Sperling, O.; Fuchs, A.; Lindgorst, T. K. , Evaluation of the Carbohydrate 
Recognition Domain of the Bacterial Adhesion FimH: Design, Synthesis, and 
Binding Properties of Mannoside Ligands. Org. Biomol. Chem. 2006, 4. 

77. Karlsson, K., Microbial Recognition of Target-Cell Glycoconjugates. Curr. Opin. 
Struct. Biol. 1995, 5, 622-635. 

78. Imberty, A.; Chabre, Y. M.; Roy, R. , Glycomimetics and Glycodendrimers as High 
Affinity Microbial Anti-Adhesins. Chem. Eur. J. 2008, 14. 

79. Liang, P. H.; Wu, C. Y.; Greenberg, W.; Wong, C. H., Glycan Arrays: Biological and 
Medical Applications. Curr. Opin. Chem. Biol. 2008, 12, 86-92. 

80. Gentry, T.; Wickham, G.; Schadt, C.; He, Z.; Zhou, J., Microarray Applications in 
Microbial Ecology Research. Microb. Ecol. 2006, 52, 159-175. 



101 

 

81. Feizi, T.; Fazio, F.; Chai, W.; Wong, C.-H., Carbohydrate Microarrays-A New Set of 
Technologies at the Frontiers of Glycomics. Cur. Opin. Chem. Biol. 2003, 13, 637-
645. 

82. Disney, M.; Seeberger, P., The Use of Carbohydrate Microarrays to Study 
Carbohydrate-Cell Interactions and to Detect Pathogens. Chem. Biol. 2004, 11, 1701-
1707. 

83. Walz, A.; Odenbreit, S.; Mahdavi, J.; Borén, T.; Ruhl, S., Identification and 
Characterization of Binding Properties of Helicobacter pylori by Glycoconjugate 
Arrays. Glycobiology 2005, 15, 700–708. 

84. Graeter, S. V.; Huang, J.; Perschmann, N.; López-García, M.; Kessler, H.; Ding, J.; 
Spatz, J. P., Mimicking Cellular Environments by Nanostructured Soft Interfaces. 
Nano Lett. 2007, 7, 1413-1418. 

85. Raghavan, S.; Desai, R. A.; Kwon, Y.; Mrksich, M.; Chen, C. S., Micropatterned 
Dynamically Adhesive Substrates for Cell Migration. Langmuir 2010, 26, 17733-
17738. 

86. Deeg, J. A.; Louban, I.; Aydin, Daniel; Selhuber-Unkel; Christine; Kessler, Horst; 
Spatz, Joachim P., Impact of Local versus Global Ligand Density on Cellular 
Adhesion. Nano Lett. 2011, 11, 1469-1476. 

87. Eisenberg, J. L.; Piper, J. L.; Mrksich, M., Using Self-Assembled Monolyaers to 
Model Cell Adhesion to the 9th and 10th Type III Domains of Fibronectin. Langmuir 
2009, 25, 13942-13951. 

88. Fritz, M. C.; Hähner, G.; Spencer, N. D., Self-Assembled Hexasaccharides: Surface 
Characterization of Thiol-Terminated Sugars Adsorbed on a Gold Surface. Langmuir 
1996, 12, 6074-6082. 

89. Revell, D. J.; Knight, J. R.; Blyth, D. J.; Haines, A. H.; Russell, D. A., Self-
Assembled Carbohydrate Monolayers: Formation and Surface Selective Molecular 
Recognition. Langmuir 1998, 14, 4517-4524. 



102 

 

90. Nimrichter, L.; Gargir, A.; Gortler, M.; Altstock, R. T.; Shtevi, A.; Weisshaus, O.; 
Fire, E.; Dotan, N.; Schnaar, R. L., Intact Cell Adhesion to Glycan Microarrays. 
Glycobiology 2004, 14, 197-203. 

91. Seo, J. H.; Adachi, K.; Lee, B. K.; Kang, D. G.; Kim, Y. K.; Kim, K. R.; Lee, H. Y.; 
Kawai, T.; Cha, H. J., Facile and Rapid Direct Gold Surface Immobilization with 
Controlled Orientation for Carbohydrates. Bioconjugate Chem. 2007, 18, 2197-2201. 

92. Disney, M. D.; Seeberger, P. H., The Use of Carbohydrate Microarrays to Study 
Carbohydrate-Cell Interactions and to Detect Pathogens. Chem. Biol. 2004, 11, 1701-
1707. 

93. Ban, L.; Mrksich, M., On-Chip Synthesis and Label-Free Assays of Oligosaccharide 
Arrays. Angew. Chem. Int. Ed. 2008, 47. 

94. Hatch, D. M.; Weiss, A. A.; Kale, R. R.; Iyer, S. S., Biotinylated Bi- and Tetra-
antennary Glycoconjugates for Escherichia coli Detection. ChemBioChem 2008, 9, 
2433-2442. 

95. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen, G. F.; Chen, C. C.; Wu, Y. 
C., Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in 
Escherichia coli. J. Am. Chem. Soc. 2002, 124, 3508-3509. 

96. Chen, Y. J.; Chen, S. H.; Chien, Y. Y.; Chang, Y. W.; Liao, H. K.; Chang, C. Y.; Jan, 
M. D.; Wang, K. T.; Lin, C. C., Carbohydrate-Encapsulated Gold Nanoparticles for 
Rapid Target-Protein Indentification and Binding-Epitope Mapping. ChemBioChem 
2005, 6, 1169-1173. 

97. Robinson, A.; Fang, J. M.; Chou, P. T.; Liao, K. W.; Chu, R. M.; Lee, S. J., Probing 
Lectin and Sperm with Carbohydrate-Modified Quantum Dots. ChemBioChem 2005, 
6, 1899-1905. 

98. De Paz, J.; Seeberger, P., Recent Advances in Carbohydrate Microarrays. QSAR 
Comb. Sci. 2006, 25, 1027 – 1032. 

99. Yonzon, C. R.; Jeoung, E.; Zou, S.; Schatz, G. C.; Mrksich, M.; Van Duyne, R. P., A 
Comparative Analysis of Localized and Propagating Surface Plasmon Resonance 



103 

 

Sensors: The Binding of Concanavalin A to a Monosaccharide Functionalized Self-
Assembled Monolayer J. Am. Chem. Soc. 2004, 126, 12669-12676. 

100. Rodríguez-Pérez, T.; Lavandera, I.; Fernández, S.; Sanghvi, Y. S.; Ferrero, M.; 
Gotor, V., Novel and Efficient Chemoenzymatic Synthesis of D-Glucose 6-
Phosphate and Molecular Modeling Studies on Selective Biocatalysis. Eur. J. Inorg. 
Chem. 2007, 2007, 2769-2778. 

101. Tiwari, P.; Kumar, R.; Maulik, P. R.; Misra, A. K., Efficient Acetylation of 
Carbohydrates Promoted by Imidazole Eur. J. Inorg. Chem. 2005, 2005, 4265-4270. 

102. Dorokhin, D.; Hsu, S. H.; Tomczak, N.; Reinhoudt, D. N.; Huskens, J.; Velders, A. 
H.; Vancso, G. J., Fabrication and Luminescence of Designer Surface Patterns with 
β-Cyclodextrin Functionalized Quantum Dots via Multivalent Supramolecular 
Coupling. ACSNano 2010, 4, 137-142. 

103. Limousin, C.; Oleskar, A.; Cleophax, J.; Petit, A.; Loupy, A.; Lukacs, G., 
Halogenation of Carbohydrates by Triphenylphosphine Complex Reagents in 
Highly Concentrated Solution Under Microwave Activation or Conventional 
Heating. Carbohydrate Research 1998, 312, 23-31. 

104. Chuang, C. L.; dos. Santos, O.; Xu, X.; Canary, J. W., Synthesis and Cyclic 
Voltammetry Studies of Copper Complexes of Bromo- and Alkoxyphenyl-
Substituted Derivatives of Tris(2-pyridylmethyl)amine: Influence of Cation-Alkoxy 
Interactions on Copper Redox Potentials. Inorg. Chem. 1997, 36, 1967-1972. 

105. Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M., Improved 
Pattern Transfer in Soft Lithography Using Composite Stamps Langmuir 2002, 18, 
5314-5320. 

106. Bonifazi, D.; Enger, O.; Diederich, F., Supramolecular [60]Fullerene Chemistry on 
Surfaces. Chem. Soc. Rev. 2007, 36, 390-414. 

107. Deguise, I.; Lagnoux, D.; Roy, R., Synthesis of Glycodendrimers Containing Both 
Fucoside and Galactoside Residues and Their Binding Properties to PA-IL and PA-
IIL Lectins from Pseudomonas aeruginosa. New J. Chem. 2007, 31, 1321-1331. 



104 

 

108. Hyatt, J. A.; Tindall, G. W., The Intermediacy of Sulfate Esters in Sulfuric Acid 
Catalyzed Acetylation of Carbohydrates. Heterocycles 1993, 35, 227-234. 

109. Steinmann, A.; Thimm, J.; Thiem, J., First Direct Glycosylation of Unprotected 
Nonreducing Mono- and Disaccharides. Eur. J. Inorg. Chem. 2007, 2007, 5506-
5513. 

110. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, G. F.; Chen, Y. C.; Wu, Y. C.; Chen, C. 
C., Quantitative Analysis of Multivalent Interactions of Carbohydrate-Encapsulated 
Gold Nanoparticles with Concanavalin A. Chem. Commun. 2003, 2920-2921. 

111. Giguère, D.; Sato, S.; St-Pierre, C.; Sirois, S.; Roy, R., Aryl O- and S-galactosides 
and Lactosides as Specific Inhibitors of Human Galectins-1 and -3: Role of 
Elecrostatic Potential at O-3. Bioorg. Med. Chem. Lett. 2006, 16, 1668-1672. 

112. Kubo, S.; Diaz, A.; Tang, Y.; Mayer, T. S.; Khoo, I. C.; Mallouk, T. E., Tunability 
of the Refractive Index of Gold Nanoparticle Disersions. Nano Lett. 2007, 7, 3418-
3423. 

113. Turnbull, W. B.; Harrison, J. A.; Kartha, K. P. R.; Schenman, S.; Field, R. A., 
Observations on Chemical and Enzymatic Approaches to α-2,3-Sialylated Octyl β-
Lactoside. Tetrahedron 2002, 58, 3207-3216. 

114. Hanessian, S.; Banoub, J., Chemistry of the Glycosidic Linkage. An Efficient 
Synthesis of 1,2-trans-Saccharides. Carbohydr. Res. 1977, 53, C13-C16. 

115. Schmidt, R. R., Recent Developments in the Synthesis of Glycoconjugates. Pure &  
Appl. Chem. 1989, 61, 1257-1270. 

116. Schmidt, R. R.; Kinzy, W., Anomeric-Oxygen Activation for Glycoside Synthesis: 
The Trichloroacetimidate Method. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-
123. 

117. Urban, F. J.; Moore, B. S.; Breitenbach, R., Synthesis of Tigogenyl β-O-
Cellobioside Heptaacetate and Glycoside Tetraacetate via Schmidt's 
Trichloroacetimidate Method; Some New Observations. Tetrahedron Lett. 1990, 31, 
4421-4424. 



105 

 

118. Sinnott, M. L., Carbohydrate Chemistry and Biochemistry. RSC Publishing: 
Cambridge, UK, 2007. 

119. Mateo-Alonso, A.; Guldi, D. M.; Paolucci, F.; Prato, M., Fullerenes: Multitask 
Components in Molecular Machinery. Angew. Chem. Int. Ed. 2007, 46, 8120-8126. 

120. Schwendel, D.; Hayashi, T.; Dahint, R.; Pertsin, A.; Grunze, M.; Steitz, R.; 
Schreiber, F., Interaction of Water with Self-Assembled Monolayers; Neutron 
Reflectivity Measurements of the Water Density in the Interface Region. Langmuir 
2003, 19, 2284-2293. 

121. Mateo-Alonso, A.; Guldi, D. M.; Paolucci, F.; Prato, M., Fullerenes: Multitask 
Components in Molecular Machinery. Angewandte Chemie International Edition 
2007, 46, 8120-8126. 

122. Shirai, Y.; Guerrero, J. M.; Sasaki, T.; He, T.; Ding, H.; Vives, G.; Yu, B.; Cheng, 
L.; Flatt, A. K.; Taylor, P.; Gao, Y.; Tour, J. M. , Fullerene/Thiol-Terminated 
Molecules. J. Org. Chem. 2009, 74. 

123. Bonifazi, D.; Enger, O.; Diederich, F., Supramolecular [60]Fullerene Chemistry on 
Surfaces. Chemical Society Reviews 2007, 36, 390-414. 

124. Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A., A Porphyrin Nanobarrel That 
Encapsulates C60. Journal of the American Chemical Society 2010, 132, 16356-
16357. 

125. Saha, S. J., E.; Flood, A. H.; Tseng, H.; Zink, J. I.; Stoddart, J. F. , A Photoactive 
Molecular Triad as a Nanoscale Power Supply for a Supramolecular Machine. 
Chem. Eur. J. 2005, 11. 

126. Chen, W.; Zhang, H.; Huang, H.; Chen, L.; Wee, A. T. S., Orientationally Ordered 
C60 on p-Sexiphenyl Nanostripes on Ag(111). ACS Nano 2008, 2, 693-698. 

127. Sedona, F.; Di Marino, M.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; 
Tondello, E., Fullerene/Porphyrin Multicomponent Nanostructures on Ag(110): 
From Supramolecular Self-Assembly to Extended Copolymers. ACS Nano 2010, 4, 
5147-5154. 



106 

 

128. Tait, S. L., Function Follows Form: Exploring Two-Dimensional Supramolecular 
Assembly at Surfaces. ACS Nano 2008, 2, 617-621. 

129. Zhao, J.; Feng, M.; Yang, J.; Petek, H., The Superatom States of Fullerenes and 
Their Hybridization into the Nearly Free Electron Bands of Fullerites. ACS Nano 
2009, 3, 853-864. 

130. Zhong, D.; Wedeking, K.; Blömker, T.; Erker, G.; Fuchs, H.; Chi, L., Multilevel 
Supramolecular Architectures Self-Assembled on Metal Surfaces. ACS Nano 2010, 
4, 1997-2002. 

131. Marois, J. S.; Morin, J. F., Synthesis and Surface Self-Assembly of [3]Rotaxane-
Porphyrin Conjugates: Toward the Development of a Supramolecular Surface 
Tweezer for C60. Langmuir 2008, 24, 10865-10873. 

132. Beer, P. D.; Gale, P. A.; Smith, D. K. , Supramolecular Chemistry. Oxford 
University Press: Oxford, England, 1999. 

133. Huerta, E.; Isla, H.; Perez, E. M.; Bo, C.; Martin, N.; de Mendoza, J., Tripodal 
exTTF-CTV Hosts for Fullerenes. Journal of the American Chemical Society 2010, 
132, 5351-5353. 

134. Carruthers, C.; Fisher, J.; Harding, L. P.; Hardie, M. J., Host-Guest Influence on 
Metallo-Supramolecular Assemblies with a Cyclotriveratrylene-Type Ligand. 
Dalton Transactions 2010, 39, 355-357. 

135. Steed, J. W.; Junk, P. C.; Atwood, J. L.; Barnes, M. J.; Raston, C. L.; Burkhalter, R. 
S, Ball and Socket Nanostructures: New Supramolecular Chemistry Based on 
Cyclotriveratrylene. J. Am. Chem. Soc. 1994, 116, 10346-10347. 

136. Zhang, S.; Palkar, A.; Fragoso, A.; Prados, P.; de Mendoza, J.; Echegoyen, L., 
Noncovalent Immobilization of C60 on Gold Surfaces by SAMs of 
Cyclotriveratrylene Derivatives. Chem. Mater. 2005, 17, 2063-2068. 

137. Zhang, S.; Echegoyen, L. , Supramolecular Immobilization of Fullerenes on Gold 
Surfaces: Receptors Based on Calix[n]Arenes, Cyclotriveratrylene (CTV) and 
Porphyrins. Comptes Rendus Chimie 2006, 9. 



107 

 

138. Nierengarten, J. F.; Oswald, L.; Eckert, J.; Nicoud, J.; Armaroli, N. , Complexation 
of Fullerenes with Dendritic Cyclotriveratrylene Derivatives. Tetrahedron Lett. 
1999, 40. 

139. Nierengarten, J., Supramolecular Encapsulation of [60]Fullerene with Dendritic 
Cyclotriveratrylene Derivatives. Fullerenes, Nanotubes, and Carbon 
Nanostructures 2005, 13. 

140. Salaita, K.; Wang, Y. H.; Fragala, J.; Vega, R. A.; Liu, C.; Mirkin, C. A., Massively 
parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. 
Angewandte Chemie-International Edition 2006, 45, 7220-7223. 

141. Lutz Jr., M. R.; Frecnh, D. C.; Rehage, P.; Becker, D. P. , Isolation of the Saddle and 
Crown Conformers of Cyclotriveratrylene (CTV) Oxime. Tetrahedron Lett. 2007, 
48. 

142. Jang, J.; Hong, S.; Schatz, G. C.; Ratner, M. A., Self-Assembly of Ink Molecules in 
Dip-Pen Nanolithography: A Diffusion Model. J. Chem. Phys. 2001, 115, 2711. 

143. Nyamjav, D.; Holz, R. C., Direct Patterning of Silanized-Biomolecules on 
Semiconductor Surfaces. Langmuir 2010, 26, 18300-18302. 

144. Jung, H.; Dalal, C. K.; Kuntz, S.; Shah, R.; Collier, C. P., Surfactant Activated Dip-
Pen Nanolithography. Nano Lett. 2004, 4, 2171-2177. 

145. Barczewski, M.; Walheim, S.; Heiler, T.; Bl̷aszczyk, A.; Mayor, M.; Schimmel, T., 
High Aspect Ratio Constructive Nanolithography with a Photo-Dimerizable 
Molecule. Langmuir 2009, 26, 3623-3628. 

146. French, D. C.; Lutz, M. R., Jr.; Lu, C.; Zeller, M.; Becker, D. P. , A Thermodynamic 
and Kinetic Characterization of the Solvent Dependence of the Saddle-Crown 
Equilibrium of Cyclotriveratrylene Oxime. J. Phys. Chem. A  2009, 113. 

147. Zhang, S.; Echegoyen, L. , Supramolecular Incorporation of Fullerenes on Gold 
Surfaces: Comparison of C60 Incorporation by Self-Assembled Monolayers of 
Different Calix[n]Arenes (n = 4, 6, 8) Derivatives. J. Org. Chem. 2005, 70. 



108 

 

148. Hardie, M. J.; Raston, C. L., Solid State Supramolecular Assemblies of Charged 
Supermolecules (Na[2.2.2]cryptate)+ and Anionic Carboranes with Host 
Cyclotriveratrylene. Chem. Commun. 2001,  905-906. 

149. Atwood, J. L.; Barnes, M. J.; Gardiner, M. G.; Raston, C. L., Cyclotriveratrylene 
Polarisation Assisted Aggregation of C60. Chem. Commun. 1996, 1449-1450. 

150. Blanch, R. J.; Williams, M.; Fallon, G. D.; Gardiner, M. G.; Kaddour, R.; Raston, C. 
L., Supramolecular Complexation of 1,2-Dicarbadodeccarborane(12). Angew. 
Chem. Int. Ed. 1997, 36, 504-506. 

151. Hardie, M. J.; Raston, C. L.; Wells, B., Altering the Inclusion Properties of CTV 
through Crystal Engineering: CTV, Carborane, and DMF Supramolecular 
Assemblies. Chem. Eur. J. 2000, 6, 3293-3298. 

152. Holman, K. T.; Atwood, J. L.; Steed, J. W., Intra-Cavity Inclusion of 
[CpFeII(arene)]+ Guests by Cyclotriveratrylene Angew. Chem. Int. Ed. 1997, 36, 
1736-1738. 

153. Collet, A.; Dutasta, J.P.; Vériot, G.; Matouzenko, G., Synthesis of C3-
Cyclotriveratrylene Ligands for Iron(II) and Iron(III) Coordination. Tetrahedron 
1995, 51, 389-400. 

154. Hardie, M. J.; Raston, C. L., Alkali-Metal-Cyclotriveratrylene Coordination 
Polymers: Inclusion of Neutral C2B10H12 or Anionic [CB11H12]

- and DMF. Crystal 
Growth & Design 2001, 1, 53-58. 

155. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of Dip-Pen Nanolithography. 
Nature Nanotech. 2007, 2, 145-155. 

156. Ahmad, R.; Dix, I.; Hardie, M., Hydrogen-Bonded Superstructures of a Small Host 
Molecule and Lanthanide Aquo Ions. Inorg. Chem. 2003, 42, 2182-2184. 

157. Lim, S. Y.; Kim, J. H.; Lee, J. S.; Park, C. B., Gold Nanoparticle Enlargement 
Coupled with Fluorescence Quenching for Highly Sensitive Detection of Analytes. 
Langmuir 2009, 25, 13302-13305. 



109 

 

158. Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T., Bioconjugated 
Gold Nanodots and Nanoparticles for Protein Arrays Based on Photoluminescence 
Quenching Anal. Chem. 2008, 80, 1497-1504. 

159. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; 
Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. Javier, Modelling 
the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792-1805. 

160. Gosh, S. K.; Pal, T., Interparticle Couping Effects on the Surface Plasmon 
Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 
107, 4797-4862. 

161. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M., Directed Self-
Assembly of Nanoparticles. ACSNano 2010, 4, 3591-3605. 

162. Lee, J. S.; Han, M. S.; Mirkin, C. A., Colorimetric Detection of Mercuric Ion (Hg2+) 
in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. 
Int. Ed. 2007, 46, 4093-4096. 

163. Lee, J. S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A., A DNA-Gold Nanoparticle-
Based Colorimetric Competition Assay for the Detection of Cysteine. Nano Lett. 
2008, 8, 529-533. 

164. Liu, R.; Liew, R.; Zhou, J.; Xing, Bengang, A Simple and Specific Assay for Real-
Time Colorimetric Visualization of β-Lactamase Activity by Using Gold-
Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 8799-8803. 

165. Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W., Gold 
Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells. 
Anal. Chem. 2008, 80, 1067-1072. 

166. Kim, S. K.; Kim, S.; Hong, E. J.; Han, M. S., Alkyl Phosphate Functionalized Gold 
Nanoparticles-Based Colorimetric Probe for Pb2+ Ions. Bull. Korean Chem. Soc. 
2010, 31, 3806-3808. 

167. Velu, R.; Ramakrishnan, V. T.; Ramamurthy, P., Colorimetric and Fluorometric 
Chemosensors for Selective Signaling Toward Ca2+ and Mg2+ by Aza-Crown Ether 



110 

 

Acridinedione-Functionalized Gold Nanoparticles. Tetrahedron Lett. 2010, 51, 
4331-4335. 

168. Hung, Y. L.; Hsiunng, T. M.; Chen, Y. Y.; Huang, Y. F.; Huang, C. C., Colorimetric 
Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and 
Alkanethiols. J. Phys. Chem. C 2010, 114, 16329-16334. 

169. Kim, Y.; Johnson, R. C.; Hupp, J. T., Gold Nanoparticle-Based Sensing of 
"Spectroscopically Silent" Heavy Metal Ions. Nano Lett. 2001, 1, 165-167. 

170. Hardie, M. J.; Raston, C. L.; Wells, B., Altering the Inclusion Properties of CTV 
Through Crystal Engineering: CTV, Carborane, and DMF Supramolecular 
Assemblies. Chem. Eur. J. 2000, 6, 3293-3298. 

171. Osner, Z. R.; Nyamjav, D.; Holz, R. C.; Becker, D. P., Direct Patterning of a 
Cyclotriveratrylene (CTV) Derivative for Directed Self-Assembly of C60. 
Nanotechnology 2011, 22, 275611-275618. 

172. Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T., Solvent and Ligand Effects on 
the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids. J. Phys. Chem. 
B 2004, 108, 13963-12971. 

173. Winzor, D. J.; Sawyer, W. H., Quantitative Characterization of Ligand Binding. 
Wiley-Liss: New York, 1995. 

174. Dujols, V.; Ford, F.; Czarnik, A. W., A Long-Wavelength Fluorescent 
Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc. 1997, 119, 
7386-7387. 

175. Reynal, A.; Etxebarria, J.; Nieto, N.; Serres, S.; Palomares, E.; Vidal-Ferran, A., A 
Bipyridine-Based "Naked-Eye" Fluorimetric Cu2+ Chemosensor. Eur. J. Inorg. 
Chem. 2010, 1360-1365. 

176. Huang, J.; Xu, Y., Qian, X., A Colorimetric Sensor for Cu2+ in Aqueous Solution 
Based on Metal Ion-Induced Deprotonation: Deprotonation/Protonation Mediated 
by Cu2+-Ligand Interactions. Dalton Trans. 2008, 1761-1766. 



111 

 

177. Arunkumar, E.; Chithra, P.; Ajayaghosh, A., A Controlled Supramolecular 
Approach toward Cation-Specific Chemosensors: Alkaline Earth Metal Ion-Driven 
Exciton Signaling in Squaraine Tethered Podands. J. Am. Chem. Soc. 2004, 126, 
6590-6598. 

178. Cao, Y. D.; Zheng, Q. Y.; Chen, C. F.; Huang, Z. T., A New Fluorescent 
Chemosensor for Transition Metal Cations and On/Off Molecular Switch Controlled 
by pH. Tetrahedron Letters 2003, 44, 4751-4755. 

179. Cheng, Y. F.; Zhao, D. T.; Zhang, M.; Liu, Z. Q. ; Zhou, Y. F.; Shu, T. M.; Li, F. Y.; 
Yi, T.; Huang, C. H., Azo 8-hydroxyquinoline benzoate as selective chromogenic 
chemosensor for Hg2+ and Cu2+. Tetrahedron Letters 2006, 47, 6413-6416. 

180. Xia, W. S.; Schmehl, R. H.; Li, C. J.; Mague, J. T.; Luo, C. P.; Guldi, D. M., 
Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling 
Fluorescence Enhancement (SAFE). J. Phys. Chem. B 2002, 106, 833-843. 

181. Lin, W.; Cao, X.; Ding, Y.; Yuan, L.; Yu, Q., A Reversible Fluorescent Hg2+ 
Chemosensor Based on a Receptor Composed of a Thiol Atom and an Alkene 
Moiety for Living Cell Fluoresence Imaging. Org. Biomol. Chem. 2010, 8, 3618-
3620. 

182. Rodriguez-Morgade, M. S.; Planells, M.; Torres, T.; Ballester, P.; Palomares, E., A 
Colorimetric Molecular Probe for Cu(II) Ions Based on the Redox Properties of 
Ru(II) Phthalocyanines. J. Mater. Chem. 2008, 18, 176-181. 

183. Frigoli, M.; Ouadahi, K.; Larpent, C., A Cascade FRET-Mediated Ratiometric 
Sensor for Cu2+ Ions Based on Dual Fluorescent Ligand-Coated Polymer 
Nanoparticles. Chem. Eur. J. 2009, 15, 8319-8330. 

184. Gouanvé, F.; Schuster, T.; Allard, E.; Méallet-Renault, R.; Larpent, C., Fluorescence 
Quenching Upon Binding of Copper Ions in Dye-Doped and Ligand-Capped 
Polymer Nanoparticles; A Simple Way to Probe the Dye Accessibility in Nano-
Sized Templates. Ad. Func. Mater. 2007, 17, 2746-2756. 

185. Pradhan, B.; Kohl, R. R.; Chen, J. , Fabrication of in-Plane Aligned Carbon 
Nanotube-Polymer Composite Thin Films. Carbon 2010, 48, 217-222.



 

112 

 
 

VITA 
 

 Zachary Richard Osner was born in Des Plaines, IL, a suburb of Chicago. He 

grew up in Deerfield, IL and lived there until he was 11, when his family moved out east 

to Pennsylvania first and then Delaware. After graduating from high school in Newark, 

Delaware, he moved back to the Chicago-land area. As a young student, Zachary was 

interested in literature and music. It wasn’t until after he graduated from high school that 

Zachary found his passion for chemistry. As an undergraduate student at DePaul 

University, Zachary had the opportunity to do research in a synthetic organic chemistry 

laboratory. It was in this laboratory where Zachary discovered his passion for research 

and decided his future was going to graduate school. Zachary hopes to continue his 

research and looks forward to expanding his knowledge of synthetic organic chemistry as 

it relates to nanotechnology. 

 In addition to his scientific studies, Zachary is married and live with his wife, dog, 

and cat. He also enjoys reading, riding his bike, great beer, the Chicago Cubs, talking 

politics, and his friends.   


	Loyola University Chicago
	Loyola eCommons
	2011

	The Synthesis and Host-Guest Applications of Synthetic Receptor Molecules
	Zachary Richard Osner
	Recommended Citation


	THE SYNTHESIS AND HOST-GUEST APPLICATIONS OF SYNTHETIC RECEPTOR MOLECULES

