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ABSTRACT 

 Adolescent binge ethanol (EtOH) abuse induces long-term changes in gene 

expression, resulting in an increased risk for the development of adult mood disorders. 

microRNAs (microRNAs) are small, noncoding RNAs that regulate gene expression by 

translational repression. microRNAs are implicated as important contributors to the 

neural mechanisms underlying alcohol addiction and are also altered in response to EtOH 

in the developing brain and can be expressed in sexually dimorphic manners. The 

biogenesis of mature 22-24 nucleotide (nt), single-stranded microRNAs involves 1) 

transcription of a 100-1000 nt primary-microRNA (pri-microRNA) product, 2) cropping 

of the transcript by the enzyme Drosha into the preliminary-microRNA (pre-microRNA), 

3) cleaving of the pre-microRNA by the enzyme Dicer and 4) loading of the mature 

microRNA onto the RNA induced silencing complex (RISC).  The microRNA/RISC 

complex (miRISC) is guided to the microRNA target gene and induces either cleavage or 

translational repression of the messenger RNA (mRNA) transcript. Our lab has found that 

repeated binge EtOH exposure alters gene expression in the hypothalamus and 

dysregulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis in a sexually dimorphic, 

long-term and gonadal hormone-dependent manner in Wistar rats, and that a subset of 

microRNAs targeting brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) 

are differentially expressed in the ventral hippocampus dependent on age and sex. We 

examine whether microRNA expression, microRNA biogenesis enzymes Drosha and 

Dicer, and microRNA target genes BDNF and SIRT1 are altered by peripubertal binge 



   

xi 
 

EtOH in the ventral and dorsal hippocampus. We also document sex differences in the 

expression of microRNAs sensitive to EtOH and 17β-estradiol during pubertal 

development. Overall, we demonstrate : 1) peripubertal binge EtOH exposure induces 

long-term alterations in mature microRNA expression levels in the male rat 

hippocampus, and has the potential to modulate the expression of their downstream target 

genes, 2) expression profiles of EtOH-sensitive microRNAs, miR-10a-5p, miR-26a, miR-

32, miR-103 and miR-495, and their target genes, are dependent on sex and age in the 

pubertal rat hippocampus and therefore may contribute to sexually dimorphic 

hippocampus neurodevelopment, 3) expression profiles of E2-responsive microRNAs, 

miR-7a, miR-9, miR-125a and miR-181a, are differentially dependent on sex and age 

throughout pubertal development, suggesting that they play distinct developmental roles 

during puberty and 4) EtOH-sensitive and E2-responsive microRNAs have distinct 

expression profiles in the dorsal and ventral hippocampus throughout pubertal 

development, suggesting that their respective functions are region-specific. This research 

increases our understanding of how pubertal binge EtOH exposure affects microRNA 

expression, provides evidence that microRNA are expressed in sexually dimorphic 

patterns throughout pubertal development, and suggest that microRNAs play a role in 

normal pubertal hippocampus development as well as hippocampus dysfunction 

following adolescent alcohol abuse. 
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CHAPTER ONE 

STATEMENT OF THE PROBLEM 

Introduction 

 A division of the Department of Health and Human Services, the Substance 

Abuse and Mental Health Services Administration (SAMHSA) has documented that 

alcohol is the most highly abused drug amongst adolescents, that binge drinking begins 

and peaks during puberty and that underage drinkers have the highest rates of alcohol 

dependence (SAMHSA 2000, 2002, 2003, 2008, 2009). Such reports led the U.S. 

Department of Health and Human Services Office of the Surgeon General to announce a 

call to action aiming to prevent and reduce underage drinking. Despite these efforts, more 

current reports from the Centers for Disease Control and Prevention (CDC) indicate that 

binge drinking is an even bigger problem than previously thought and that it is 

particularly serious and yet under-recognized among women and girls (CDC 2012, 2013). 

Indeed, binge drinking during puberty puts adolescents at an increased risk for 

neurological complications later in life [1,2,3,4,5,6,7]. For example, adolescent alcohol 

abuse has long-term consequences on many neurological systems responsible for 

learning, memory and the regulation of the stress response [8,9,10,11,12]. Indeed, 

research demonstrates that the pubertal brain continues to develop well into the twenties 

[13]. Adolescent brain development is characterized by a remodeling of neural networks 

established in the perinatal period [14,15,16] and the generation of new connections, 
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which together, refine the neural control of behavior [17]. Yet, despite our increased 

understanding of how the adolescent brain develops and how alcohol abuse alters this 

development, many questions remain about what regulates alcohol abuse-induced brain 

damage, particularly with respect to gene expression regulation and possible sex 

differences.  

Hypothesis and Specific Aims 

Pubertal brain development is characterized, in part, by sexually dimorphic 

alterations in physiology and behavior and is predominantly thought to be regulated in a 

sex biased manner, yet, precise sex-specific mechanisms of gene regulation remain 

largely elusive. A major regulator of gene expression includes microRNAs (microRNAs), 

which are small, noncoding RNA molecules that target and bind, via imperfect base 

pairing, to protein-coding messenger RNA (mRNA) transcripts and lead to mRNA 

degradation or translational repression. Despite the relatively short time during which 

microRNAs have been researched (~12 years), they are currently recognized as regulators 

of at least 70% of fundamental biological processes [18,19]. Development of the pubertal 

brain is a dynamic biological process that involves sexually dimorphic anatomical 

changes in grey and white matter and cellular strengthening of relevant neuronal 

networks. Therefore, as master regulators of gene expression, microRNAs may play a 

role in orchestrating the complex molecular adaptations taking place during adolescent 

brain development. In this way, microRNAs may regulate the cellular, anatomical and 

behavioral transformations manifested throughout this significant stage of brain 

development.  
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Typical adolescent behaviors are often “high-risk,” such as binge drinking, and 

moreover, can manifest in a sex-specific manner. Alcohol abuse induces particular 

morphological, cellular and molecular damage to the hippocampus, which plays a pivotal 

role in brain development, as it is the primary source of adult neurogenesis, spatial and 

emotional memory, and is a major contributor to the regulation of mood. Importantly, 

microRNAs have been linked to alcohol-induced neurological afflictions including 

addiction and fetal alcohol spectrum disorder (FASD) and in addition, demonstrate age, 

cell type and sex-specific expression profiles in multiple species. However, the normal 

developmental expression profiles of microRNAs during puberty and how peri-pubertal 

alcohol abuse alters these profiles, remains undocumented. Using multiple target 

prediction algorithms, four microRNAs (miR-10a-5p, miR-26a, miR-103 and miR-495) 

were identified to target the 3’UTR of two genes important for hippocampus function and 

development, BDNF and SIRT1. Importantly, miR-26a and miR-103 are in the top 15 

most highly expressed microRNAs in the rodent hippocampus, miR-10a is important for 

developmental processes as it regulates homeobox (Hox) gene expression [20],[21] and 

miR-495 regulates the neuroprotective effects of mood stabilizing drugs [22]. Therefore, 

I generated the following hypothesis that adolescent hippocampal microRNA expression 

throughout pubertal development is sex biased, dependent on age, and altered by peri-

pubertal binge EtOH exposure. The following specific aims were developed to test this 

hypothesis: 

AIM 1: Determine whether peripubertal binge EtOH alters expression of 

microRNA, microRNA processing enzymes and microRNA target genes throughout 

pubertal development. 
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 Pubertal binge drinking induces long-term changes in the expression of genes that 

regulate the stress response. An altered stress response often underlies depression and 

anxiety-related disorders. Importantly, these conditions are commonly experienced by 

over 50% of alcohol-dependent patients and present in a sexually-dimorphic fashion. Sex 

biased mood and memory impairments are often present in tandem with alcohol abuse 

and neuropsychiatric illnesses that emerge post-puberty. Disruption of mature microRNA 

expression and/or function has been linked to alcohol-induced neurological afflictions 

including addiction and FASD.  

The following questions were answered in this aim: 

1) Is the normal expression profile of miR-10a-5p, miR-26a, miR-103 and miR-495 

during pubertal development altered in response to peri-pubertal binge EtOH in 

an immediate manner? 

2) What is the long-term effect of peri-pubertal binge EtOH exposure on the 

expression profile of miR-10a-5p, miR-26a, miR-103 and miR-495? 

3) What are the expression profiles of microRNA biochemical processing enzymes 

and the downstream target genes of miR-10a-5p, miR-26a, miR-103 and miR-495 

(BDNF and SIRT1) throughout pubertal development immediately following 

mid/peri-pubertal binge EtOH exposure as well as 30 days post EtOH? 

 In order to answer these questions, males were chosen for the binge studies in 

order to avoid potential experimental design and data analysis complications due to the 

effects that cycling hormone levels in females would have on the results. Male Wistar 

rats were distributed into 3 groups: early pubertal (PND 30), peripubertal (PND 37), and 
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late pubertal (PND 73). The early, peripubertal and late pubertal age animals each had an 

untreated group (N=10/age group) which were sacrificed at PND 30, PND 44 and PND 

73, respectively. In addition to the untreated groups at each age, there were 2 groups 

administered treatments at peripubertal age (N= 20/treatment group; total of 40 animals): 

peripubertal water (control) and peripubertal binge EtOH treated. The water and EtOH 

groups were handled for 5 minutes once/day beginning at PND 30 to eliminate non-

specific effects of handling stress. Peripubertal water or EtOH treatments were treated 

with water or the following repeated binge alcohol (EtOH) paradigm via oral gavage 

beginning at PND 37 (3g/kg; 1x/day/3days EtOH, +1x/day/2days water + 1x/day/3days 

EtOH). Half of the peripubertal water/EtOH treated animals were sacrificed 60 minutes 

following the last EtOH/water treatment at PND 44 (N = 10 water + N = 10 EtOH). The 

remaining animals (N = 10 water + N = 10 EtOH) were left undisturbed following the 

last EtOH treatment in their home cage until sacrificed at late puberty (PND 73). Brains 

were sectioned at 200 m on a freezing microtome and ventral and dorsal hippocampi 

were microdissected using a 0.75 mm Palkovit’s brainpunch tool. Total RNA was 

isolated and cDNA was made using Invitrogen’s NCode microRNA Frist-strand cDNA 

synthesis kit. 

 In summary, the data from this aim demonstrate that the expression of each 

microRNA tested (miR-10a-5p, miR-26a, miR-103 and miR-495) is dynamic across 

pubertal development and that the developmental profiles for each microRNA are distinct 

between the dorsal and ventral hippocampus. Moreover, peripubertal binge EtOH 

exposure altered normal pubertal development expression patterns of miR-10a-5p, miR-

26a, miR-103, miR-495, Dicer, Drosha, BDNF and SIRT1 in an age- and brain region-
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dependent manner. Most striking, our results showed that peripubertal binge EtOH 

exposure had significant long lasting effects on several microRNAs studied, as well as 

their processing enzymes and target genes. These effects were evident for as long as one-

month following the last EtOH exposure, suggesting that EtOH could have lasting 

consequences on gene expression profiles in the male rat hippocampus through long-term 

regulation of microRNA expression patterns.  

AIM 2: Determine whether there are sex and brain region differences in EtOH-

sensitive microRNAs, microRNA processing enzymes and microRNA target gene 

expression throughout pubertal development 

 Pubertal binge EtOH changes in expression of genes regulating the stress 

response in a sexually dimorphic manner. microRNAs regulate gene expression by 

targeting RNA transcripts and have recently been recognized as critical mediators of 

nearly all basic cellular processes. microRNAs are small, non-protein coding RNAs 

which are sequentially processed to their mature form by the enzymes Drosha and Dicer, 

which allows them to bind their complementary mRNA sequences and lead to the 

prevention of gene translation. microRNAs regulate neuronal development during 

embryogenesis, postnatal neuronal maintenance and survival, and hippocampal 

neurogenesis throughout life. Preliminary data generated using an RT-microRNA-PCR 

array identified EtOH-sensitive hippocampal microRNAs and five microRNAs were 

chosen for further analysis: miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495. 

Importantly, these microRNAs target mutual genes—BDNF and SIRT1—which regulate 

synaptic plasticity [23,24,25,26,27] an essential element of hippocampus-dependent 

memory and mood processing. Moreover, pubertal EtOH abuse can alter the expression    
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of genes important for mood regulation in a sexually dimorphic manner, and some brain 

microRNAs are expressed differentially between males and females, but the fundamental 

sex differences in microRNA expression throughout puberty for EtOH-sensitive 

microRNAs is unknown.  

The following questions were answered in this aim: 

1) Are miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495 expressed in sex, age 

and brain region-dependent manners? 

2) In the dorsal and ventral hippocampus, are Drosha and Dicer expressed in sex, 

age, and brain region-dependent manners and do their expression profiles suggest 

that they regulate miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495 

expression profiles throughout pubertal development? 

3) Are BDNF and SIRT1 expressed in sex, age, and brain region-dependent manners 

and do their expression profiles suggest that miR-10a-5p, miR-26a, miR-32, miR-

103 and miR-495 regulate their expression profiles throughout pubertal 

development? 

 In order to answer these questions male and female Wistar rats  at PND 30, PND 

44 and PND 73 (N=10/group) were sacrificed by decapitation, brains were rapidly frozen 

and sectioned at 200 m, and the ventral and dorsal hippocampus were microdissected 

using a 0.75 mm Palkovit’s brainpunch tool. RNA was isolated using TriZol according to 

manufacturers’ instructions, and used to reverse transcribe microRNA (NCode™ 

microRNA First-Strand) and mRNA (SuperScript® VILO™) into cDNA. microRNA and 

mRNA expression levels were quantified using qRT-PCR with Fast Start Universal 
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SYBR Green Master Mix (Roche) and primers designed for the respective genes of 

interest.  

 In summary, data from this aim demonstrate that miR-10a-5p and miR-103 

expression in females and miR-26a and miR-495 expression in males was dynamic across 

pubertal development in the dorsal hippocampus. In the dorsal hippocampus, the normal 

expression profile throughout pubertal development was significantly different between 

males and females at early puberty for miR-10a-5p and at each time point for miR-26a. 

miR-10a-5p, miR-26a, miR-103 and miR-495 expression  profiles were dynamic in males 

as well as sexually dimorphic throughout pubertal development in the ventral 

hippocampus. Expression of BDNF and SIRT1 in males and SIRT1 in females was 

dynamic across pubertal development. Expression of BDNF and SIRT1 is significantly 

increased at peripuberty in males as well as sexually dimorphic in the ventral 

hippocampus. 

AIM 3: Determine whether there are sex and brain region differences in 

expression of estrogen-responsive microRNAs throughout pubertal development. 

 Circulating levels of gonadal hormones increase rapidly throughout pubertal 

development, particularly estradiol (E2) in females and play a role in the development of 

sexually dimorphic behaviors. Interestingly, microRNA expression has been 

demonstrated to be sensitive to E2 in many systems. For example, Rao et al. demonstrated 

that the expression of five microRNAs, including let-7i, miR-9, miR-125a and miR-181a, 

are dependent on age and E2 in female rats [28]. Furthermore, Morgan et al. demonstrated 

that blocking E2 synthesis can alter microRNA expression in neonates [29] and suggest 
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that microRNAs may play an important role in initiating brain sex differences during 

fetal development. Overall, E2 may modulate neuronal target genes using microRNAs as 

a fine tuning mechanism and it is important to determine pubertal sex differences in the 

expression of microRNAs sensitive to E2, as such information may yield insight into 

whether microRNAs play a role in brain sex differences arising throughout pubertal 

development. 

The following questions were answered in this aim: 

1) Are let-7i, miR-7a, miR-9, miR-125a and miR-181a expressed in sex, age and 

brain region-dependent manners? 

2) In the ventral hippocampus, specifically, how are let-7i, miR-7a, miR-9, miR-

125a, miR-181a expressed in males and females throughout and is the expression 

of each microRNA dynamic throughout pubertal development? 

3) In the dorsal hippocampus, specifically, how are let-7i, miR-7a, miR-9, miR-

125a, miR-181a expressed in males and females throughout puberty and is the 

expression of each microRNA dynamic througout pubertal development? 

 In order to answer these questions, male and female Wistar rats at PND 30, PND 

44 and PND 73 (N=10/group) were sacrificed by decapitation, brains were rapidly frozen 

and sectioned at 200 m, and the ventral and dorsal hippocampus were microdissected 

using a 0.75 mm Palkovit’s brainpunch tool. RNA was isolated using Trizol according to 

manufacturers’ instructions, and used to reverse transcribe microRNA (NCode™ 

microRNA First-Strand) into cDNA. qRT-PCR was performed with Fast Start Universal 
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SYBR Green Master Mix (Roche), using primers designed for microRNAs of interest, to 

quantify microRNA expression levels.  

In summary, data from this aim demonstrate that miR-7a, miR-9, miR-125a and 

miR-181a are expressed in sex, age and brain region-dependent manners. In the ventral 

hippocampus, expression of miR-7a, miR-9, miR-125a, miR-181a are sexually dimorphic 

throughout puberty, and miR-9 expression is dynamic throughout pubertal development. 

In the dorsal hippocampus, expression of miR-7a, miR-9, miR-125a, miR-181a are 

sexually dimorphic throughout puberty and expression of miR-7a, miR-9, miR-125a and 

miR-181a in female and miR-7a in males is dynamic throughout pubertal development. 



 

11 
 

CHAPTER TWO 

LITERATURE REVIEW 

Adolescence 

Propensity for Binge Drinking 

Adolescence in humans comprises, on average, the years between 10-25 years of 

age [30,31]. During this period, the brain is in an exceptionally plastic state, such that 

morphological changes occur in gray matter, white matter and ventricle volume [32,33] 

as well as in neural networks as due to highly active molecular events taking place 

involving neurogenesis [15] and synaptogenesis [34,35] as well as apoptosis [36] and 

synapse elimination [37,38]. This combination of complex molecular events gives rise to 

the adolescents’ brain being extremely sensitive to environmental stimuli, yet, impulse 

control and inhibitory drive are some of the last behaviors to develop [39]. Together, 

these characteristics lend adolescents to engage in increased risky behaviors such as 

binge drinking [17]. Binge drinking is defined as raising the blood alcohol concentration 

(BAC) greater than the legal limit (>0.08 g/100 g) within a two-hour period, typically 3-4 

servings of alcohol for a woman and 4-5 drinks for a man [40]. In 2007, SAMSA 

documented that on average, binge drinking begins around age 13 and peaks between 

ages 18-22 and that adolescents’ drink 2 times more EtOH per occasion than adults 

(SAMSA, 2007). Using rat models of adolescent binge drinking, studies from our lab and 

others have demonstrated that peripubertal binge drinking induces long-lasting alterations 
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in hypothalamus and hippocampus gene expression, suggesting that this behavior impairs 

normal brain development [8,10,11,12,41].  

Alcohol Alters Neurodevelopment 

Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis  

Alcohol is a potent physiological stressor, as it activates the neuroendocrine stress 

response controlled by the hypothalamic-pituitary-adrenal (HPA) axis [42]. HPA axis 

activation can be induced by acute psychological or physical stressors and entails 

hypothalamic release of corticotrophin-releasing hormone (CRH), which stimulates the 

release of adrenocorticotropic hormone (ACTH) from the anterior pituitary, and, in turn, 

causes the release of adrenal glucocorticoids. Further activation of the HPA axis is 

controlled by a negative feedback mechanism wherein the increased glucocorticoid 

(cortisol (CORT) in humans and corticosterone (CORT) in rodents) that is released from 

the adrenals inhibits further activation of the axis. Importantly, the development of HPA 

axis and other brain circuits is incomplete during puberty [43], making these immature 

neural networks at great risk for limited maturation and/or flawed development due to 

environmental insults that affect the brain, such as binge drinking. Indeed, the 

peripubertal rat is responsive acute EtOH, such that acute exposure significantly increases 

plasma CORT levels. However, following repeated exposure to high doses of EtOH 

(a.k.a. binge EtOH exposure) during puberty, HPA axis activation becomes desensitized, 

demonstrated by significantly lower plasma CORT levels compared to rats treated with a 

single high dose of EtOH [44]. Furthermore, EtOH abuse during puberty alters the 

expression of CRH in both an immediate and long-term fashion [12,44,45]. Moreover, 
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adult male rats exposed to peripubertal binge EtOH exhibit different responses to acute 

EtOH exposure compared to adult rats never previously exposed to binge EtOH, as 

indicated by different plasma CORT levels following a single dose of EtOH [12]. These 

data provide physiologic evidence that peripubertal binge EtOH induces long-lasting 

dysregulation of the neuroendocrine stress response, and suggest that peripubertal binge 

EtOH can have long-lasting consequences on an individuals’ ability to respond to stress.   

Interestingly, the effects of peripubertal alcohol abuse on the HPA axis are 

sexually dimorphic [42,44,46] and dependent on gonadal hormones [47]. Moreover, a 

dysregulated HPA axis is associated with mood disorders that present differentially in 

males and females and are often comorbid with alcohol abuse [48,49,50,51,52,53,54]. In 

females, fluctuating levels of circulating steroid hormones are associated with HPA axis 

activation [55] and the dysregulation of the HPA axis observed in patients with major 

depressive disorder (MDD) is associated with abnormal steroid hormone levels in women 

compared to healthy individuals [56]. Overall, EtOH consumption alters the adolescent 

stress response in a long-term manner which likely contributes to the development of 

anxiety and related mood disorders, however the molecular mechanisms underlying these 

events remain unclear. It is, therefore, possible that EtOH’s effects on other brain regions 

such as the hippocampus, contribute to EtOH-induced HPA axis dysregulation, as the 

hippocampus has major neural connections to the hypothalamus. 

Hippocampus Malfunctioning: Ventral and Dorsal Perspectives 

The hippocampus is a functionally and structurally complex brain region. It 

traverses both the dorsal and ventral planes and has various connections to cortical and 
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limbic areas, allowing the hippocampus to contribute to numerous neural networks 

regulating a range of behaviors. The information flow into the hippocampus enters 

through a restricted area, yet the monosynaptic outputs connect to a large variety of 

cortical and subcortical regions and contribute to the complex network of hippocampus 

circuit. Anatomical and genomic evidence supports the hippocampus playing a role in 

regulating both memory and cognitive processing, as well as stress, emotion, sensory–

motor integration and goal-directed activity via its dorsal and ventral regions, 

respectively [57,58,59]. Indeed, afferent and efferent connections to parahippocampal 

regions gradually shift along the dorsal and ventral axis and gene expression profiles 

differ between the two regions [60,61].  

Importantly, alcohol abuse imparts particularly detrimental effects on both 

memory and mood functions supported by the hippocampus. For example, hippocampus-

dependent memory capacity has long been evident in adults with a history of chronic 

heavy drinking [62] and long-term impairments in executive functioning, motor control 

and emotional memory capabilities following EtOH abuse are attributed to long-term 

alterations in neurocircuitry [63,64] and brain morphology [65,66]. Moreover, alcohol 

abusers often suffer from anxiety and other mood disorders [67,68,69,70,71,72], and both 

alcohol abuse and mood disorders are associated with a dysregulated stress response 

[73,74,75,76,77,78]. Therefore the effects of peripubertal binge drinking on the 

neuroendocrine stress response may be controlled by upstream mechanisms initiated 

within the hippocampus. Indeed, it is becoming more evident that heavy drinking during 

adolescence also damages hippocampus morphology, gene expression and behavior. For 

instance, adolescent rats previously exposed to EtOH perform worse on Morris water 
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maze, indicating that EtOH impairs spatial learning in adolescents to a greater extent than 

it does in adults [79]. Moreover, alcohol abuse by adolescents is also associated with a 

reduction in hippocampus volume [3] and EtOH abuse alters gene expression 

differentially in the ventral and dorsal hippocampus [8], but the mechanisms remain 

unclear. 

 Many studies have identified genes essential for hippocampus development 

including brain-derived neurotrophic factor (BDNF) which regulates dendritic branching, 

spine density, learning and memory, and neuronal survival and sirtuin 1 (SIRT1), a class 

III nicotinamide-adenine dinucleotide (NAD
+
)-dependent histone deacetylase recently 

implicated in the regulation of hippocampal synaptic plasticity, neurogenesis and anxiety. 

Importantly, both BDNF and SIRT1 expression levels are sensitive to EtOH, but what 

regulates this sensitivity is less understood. 

Hippocampal Brain-Derived Neurotrophic Factor Role in Development 

BDNF is a member of the neurotrophin family and is essential for synaptic 

plasticity—the alteration of the strength between two neurons—which involves 

functional and structural changes at the synapse [80,81,82,83,84,85]. Synaptic plasticity 

is required for the consolidation of hippocampal-dependent learning [24,26,27]. Indeed, 

heterozygous BDNF knockout mice (+/-) have impaired learning and memory processing 

which can be rescued with recombinant BDNF in the hippocampus [24,26,27]. The 

hippocampus expresses an abundance of BDNF, which is particularly essential to 

neuronal survival processes. BDNF is expressed in the astrocytes, fibroblast and various 

types of neurons found within the hippocampus, hypothalamus, amygdala and neocortex. 
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The highest expression of BDNF mRNA in the brain is found in the granule neurons of 

the dentate gyrus and the pyramidal neurons of areas CA3 and CA2 in the hippocampus, 

indicating that BDNF plays a critical role in hippocampus functions [86]. Indeed, 

hippocampus-dependent memory can be disrupted by EtOH [87,88,89]. For example, 

early postnatal pups exposed to EtOH vapor inhalation for 2 hours and 40 mins each day 

on PND 4-10 had significantly increased BDNF protein expression [90]. However, other 

studies suggest that the adolescent brain is particularly sensitive to EtOH-mediated 

changes in the molecular mechanism underlying learning and memory [4,5,91].  

Importantly, alterations in hippocampal BDNF expression lead to reduced hippocampal 

volume and poor performance on declarative memory tasks and impaired fear extinction 

[92]. Moreover, because BDNF expression is critical for memory formation and EtOH 

increases BDNF levels while disrupting memory function, it is important to understand 

how BDNF may play a role in the mechanisms underlying EtOH-mediated effects on 

memory function. Importantly, EtOH’s effects on various brain functions are likely 

mediated by multiple proteins with gene regulatory capacity, and interesting research 

indicates the chromatin modifying enzyme sirtuin1 (SIRT1) in the regulation of gene 

expression following EtOH abuse [93]. 

Hippocampal Sirtuin 1 Role in Development 

 SIRT1 is a NAD+ - dependent protein deacetylase and therefore, has the potential 

to regulate a large variety of biological functions by silencing the expression of genes 

coding for a wide range of cellular processes. Indeed, sirtuins are involved in neuronal 

development, neuroprotection, dendritic branching and neurogenesis 

[94,95,96,97,98,99,100] as well as hippocampus-specific functions including memory 



17 
 

 
 

performance and mood regulation. For example, SIRT1 expression in the hippocampus is 

positively correlated with adult hippocampal-dependent learning and memory 

[23,25,101], however, it is also mediates anxiety in mice [102]. These data suggest that 

SIRT1 may play an important role in both dorsal and ventral hippocampus functions. 

Moreover, SIRT1 gene variants are associated with a risk for anxiety [102], which is 

often comorbid with alcohol abuse [67,68,69,70,71,72]. Indeed, adolescent binge 

drinking in rats differentially alters SIRT1 expression levels in the male rat dorsal and 

ventral hippocampus [8] and SIRT1 expression is altered in the hypothalamus of male 

mice exposed to alcohol in utero [93]. Interestingly, many of the SIRT1 functions are 

associated with changes in expression levels of microRNA (microRNA) [8,23], small 

RNA molecules with gene regulatory potential. Indeed, the importance of SIRT1 in 

mediating hippocampal development and functions, as well as its potential to do so via 

microRNAs, requires future research to elucidate these mechanisms. 

microRNA 

What are microRNAs? 

Whole-genome sequencing data from a variety of species have underscored the 

importance of post-transcriptional and post-translational modifications needed to achieve 

extensive phenotypic diversity. microRNAs (microRNAs) are small, non-protein coding 

RNAs (∼22-nt long) and contribute to the complexity of the regulation of gene 

expression by mediating downstream target gene expression via translational repression 

and/or degradation. In this fashion, they can regulate virtually all biological processes 

[18,19]. 50% of microRNA genes are located in intergenic regions of the genome, 40% 
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within gene introns, and 10% are situated in exons, and thus, some microRNA expression 

mimics that of their host gene(s), however, much remains to be discovered regarding how 

microRNA expression is regulated. Evolutionarily, the emergence and conservation of 

microRNA genes localized within host protein-coding genes suggests that this 

localization emerged in response to environmental pressures that required tight control of 

gene expression and coordination of specific cell functions [103]. Importantly, 

microRNAs expression profiles are region-specific in the brain and 

[8,104,105,106,107,108,109,110] play critical roles in neuronal growth and synaptic 

plasticity [111,112,113,114,115,116] and their dysregulation has been implicated as a 

causative factor in a variety of neuropathologies [117,118,119,120,121,122]. Therefore, it 

is important to determine the mechanisms of microRNA biogenesis, regulation and 

dysregulation in both healthy and pathological tissues in order to better understand the 

mechanisms of microRNA-based regulation of gene expression and the consequences on 

biological phenotypes [123,124]. 

microRNA Biogenesis 

 The biogenesis of most mature 22-24 nucleotide (nt) single stranded microRNAs 

involves 4 processes: 1) transcription, 2) cropping, 3) dicing and 4) loading. microRNAs 

are transcribed in an RNA Polymerase II-dependent fashion which produces an intergenic 

pri-microRNA, about 100-1000 nt in length which forms a stem-loop structure [125,126]. 

Cropping of microRNA is performed by the microprocessor complex, composed of Di 

George Syndrome critical component 8 (Dgcr8), which recognizes the stem-loop 

structure, and the RNase III enzyme Drosha, which contains the catalytic component 

important for cleaving the double stranded stem, removing the loop, and generating the 
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pre-microRNA product [127,128]. The pre-microRNA is ~ 70-100 nt in average length 

and are exported from the nucleus. In the cytosol, the dicing step occurs via the RNase III 

enzyme Dicer, which catalytically cleaves the pre-microRNA into a double-stranded ~22 

nt-long product, one strand of which is the mature microRNA.  In the loading step, the 

single-stranded mature microRNA is transferred to the RNA-induced silencing complex 

(RISC), which comprises the microRNA-RISC complex (miRISC) which allows 

microRNAs to locate specific messenger RNA transcripts target genes and this leads to 

either translation repression or mRNA degradation. Interestingly, microRNAs 

imperfectly bind small (~6 nt) seed sequences on the 3’ UTR of their gene targets, 

permitting promiscuity to microRNAs, as a single microRNA can target multiple genes 

[129]. Likewise, one gene can be targeted by multiple microRNAs. Such features enable 

microRNAs to mediate quick, post-transcriptional gene silencing which would be 

particularly useful in the regulation of synaptic plasticity. 

microRNAs Regulate Neurodevelopment 

The central nervous system (CNS) development requires a precise temporal 

orchestration of events that is uniquely suited for the fine-tuning attributes of 

microRNAs. The importance of microRNAs in embryonic nervous system development 

was originally demonstrated using transgenic animal models that manipulated microRNA 

biosynthetic processing enzymes, including Dicer. There is a single gene that encodes 

Dicer in C. elegans, mice, and humans, and depletion of Dicer results in severe 

developmental consequences. Studies in Dicer-mutant zebrafish showed that they had 

disrupted embryonic morphogenesis and neural differentiation [130]. More specifically, 

the brains lacked ventricles, neuronal positioning was disrupted suggesting migration 
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defects, and many neurons had defasciculated axons [130]. Strikingly, injections of 

microRNAs from the miR-430 family (miR-430a/b/c) reversed many of the brain 

morphogenic defects that resulted from Dicer deletion in the zebrafish, revealing a direct 

connection between mature microRNAs and Dicer during development. The partial 

rescue of neuronal defects in this study also provided some of the first evidence for 

tissue-specific effects of microRNAs [130,131]. Global Dicer deletion in mice is 

embryonic lethal [132]  prompting the generation of tissue-specific conditional Dicer-null 

mouse models. In the developing neocortex, the absence of Dicer resulted in a smaller 

cortex, improper cortical layering, increased apoptosis, as well as an overall reduction in 

neural progenitor cells and oligodendrocytes [133,134,135].  

microRNAs and their biogenesis enzymes are found enriched in the synapto-

dendritic compartments of neurons [113,136,137,138] indicating their potential role in 

regulating synaptic plasticity. Indeed, rapid changes in local protein synthesis triggered 

by synaptic activation [139,140,141] may rely on the function of microRNAs [142]. It 

has been demonstrated that expression of the important synaptic plasticity molecule 

BDNF is regulated by miR-26a which targets the conserved sequences of the BDNF 

3’UTR [143]. Moreover, miR-26a and BDNF expression have been implicated in the 

vulnerability and onset of schizophrenia, alcohol abuse and mood disorders in both 

human patients and rodent models [143,144,145,146,147,148]. In the brain, it has been 

demonstrated that microRNAs play a role in synaptic plasticity [113,136,137,138,149] 

are expressed in a sexually dimorphic manner [150] and that their expression is 

dependent on steroid hormones [28]. Lamina-specific expression of miR-495 was 

observed to be complementary to the BDNF expression in human prefrontal cortex [151]. 
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Furthermore, miR-495 has been associated with the mechanism whereby the mood 

stabilizers valproate and lithium exert their neuroprotective effects [152]. Overall, 

microRNAs have the capacity to regulate neuronal development and maintenance—

essential processes for a functioning nervous system and they also demonstrate sensitivity 

to mood altering substances, including EtOH. 

Alcohol Effects on microRNA 

The effects of alcohol on brain microRNA remains an ongoing investigation, 

however many recent developments have pointed towards the sensitivity of microRNA 

expression in response to EtOH. In early life development, fetal brain microRNA 

expression levels are altered by high levels of alcohol consumption by the pregnant 

mother, and importantly, these changes in microRNA expression following maternal 

EtOH abuse have been implicated in the teratology of EtOH-induced malformations in 

fetal brain development [153,154]. Furthermore, microRNA expression levels are known 

to exhibit differential expression profiles in fetal vs. postnatal brain, suggesting that 

microRNAs are fundamentally involved in regulating developmental processes in the 

brain [80,105,155,156] and suggest that alterations in microRNA expression in response 

to EtOH can impart damage to brain development. microRNA expression levels in the 

adolescent rat brain are also altered following peripubertal binge drinking [8] and in the 

rat prefrontal cortex in alcohol dependent rats [157]. Importantly, peripubertal or adult 

alcohol abuse in rats does not impart global changes in microRNA expression levels, but 

rather alters the expression of specific microRNAs in distinct regions of the brain. This 

specificity suggests that EtOH alters specific microRNA expression levels in order to 

damage specific brain functions. microRNA expression profiles are also distinct in 
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human alcoholic prefrontal cortex, providing further evidence that EtOH mediates brain 

damage by altering microRNA expression [158]. Identifying the effector functions of the 

target genes of EtOH-sensitive microRNAs is indeed a more challenging task, however, 

in both rat prefrontal cortex and hippocampus, BDNF has been identified as a target gene 

of EtOH-sensitive microRNA [157], suggesting the importance of the microRNA-

mediated regulation of BDNF in the brain, and the potential for alcohol abuse to disrupt 

this regulation. How microRNA expression levels throughout the lifespan are expressed 

and what regulates their expression still remains unclear, however much evidence 

suggests the importance of gonadal hormones in this process. Indeed, gonadal hormones 

levels themselves are dynamic throughout different developmental stages of life as well 

as responsive to changes in the environment.  

Gonadal Hormone Effects on microRNA 

Steroid hormone regulation of microRNAs has been documented in a variety of 

sex-specific cancer models such as breast, prostate and endometrial cancer 

[159,160,161,162,163], however, less is known about steroid hormone regulation of 

microRNA expression in brain tissue. Nonetheless, studies examining the effects of sex 

steroid-induced microRNA regulation using in vivo models have indicated that sex-

steroid regulation of microRNA expression in the brain differs across the lifespan and 

support the theory that sex steroid functions in the brain evolve with age. For example, 

blocking synthesis of E2 in the neonate brain induces sexually dimorphic patterns of 

microRNA expression, such that males and female microRNA expression profiles 

become indistinguishable [29]. In the aging female brain multiple microRNAs were 

identified as E2-responsive in the hippocampus, central amygdala and the paraventricular 
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nucleus, some of which were differentially regulated by E2 dependent on age [28]. 

Despite these informative studies demonstrating steroid-mediated microRNA expression 

regulation in the brain, the mechanism remains unresolved.  

microRNA expression changes in response to differential hormone environments 

indicate that hormones may mediate changes in microRNA expression via their nuclear 

receptors. Steroid hormone receptors (i.e. nuclear receptors (NRs) classically function as 

transcription factors, by binding to promoter elements and recruiting coactivators and 

corepressors, together, induce gene activation or suppression. Because microRNA genes 

often lie within the protein-coding regions of genes, NRs can thereby regulate 

microRNAs in this way. Alternatively, downstream target genes regulated by NRs may, 

themselves, influence subsequent microRNA gene expression in an indirect fashion. 

Indeed, many NR target genes are transcriptionally regulated via secondary effects [164]. 

Another indirect manner in which microRNA expression can be regulated is via the 

proteins required for microRNA biogenesis and RNA interference (RNAi) activity, 

including the RNase III enzymes Drosha and Dicer which are responsible for the 

sequence-specific cleavage of complementary RNA targets. Indeed, E2 has been 

demonstrated to mediate expression of these proteins [165], however, no such regulation 

has been documented in the brain. 

Summary 

Peripubertal neurodevelopment is an important period of brain development 

wherein increased synaptic plasticity lends environmental exposures to play a large role 

in shaping how the neural circuitry develops. A common environmental exposure in the 
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United States is engagement in binge EtOH drinking behavior, which has been 

demonstrated to have sexually dimorphic, long-lasting neurological consequences in 

hippocampus-mediated functions. Neurological consequences of EtOH abuse have been 

recently demonstrated to alter microRNA expression, which have also recently been 

discovered to play vital regulatory roles in neuronal maintenance. Therefore, we conclude 

the introduction with the following hypothesis and aims to investigate microRNA 

expression in male and female pubertal hippocampus development as well as investigate 

the effects of peripubertal binge EtOH.
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CHAPTER THREE 

LONG-TERM EFFECTS OF PERIPUBERTAL BINGE ETOH EXPOSURE ON 

HIPPOCAMPAL MICRORNA EXPRESSION IN THE RAT  

Introduction 

 Heavy episodic alcohol consumption (i.e. binge drinking) has been steadily 

increasing among adolescents in recent decades [40,166]. Indeed, data from the 

Department of Health and Human Services: Substance Abuse and Mental Health Services 

Administration (SAMHSA 2005) showed that an alarming 90% of the alcohol consumed 

by youth occurs in a binge-like pattern, defined as raising the blood alcohol concentration 

(BAC) above the legal driving limit (0.08%) within a 2 hour time period (NIAAA, 2012). 

Extensive remodeling of the brain occurs during adolescence, which includes changes in 

cortical gray and white matter, synaptic connectivity, and increased neurogenesis 

[167,168,169,170,171] and alcohol exposure during this critical time can have severe 

detrimental effects on brain function [44,172,173,174,175,176]. Studies from our 

laboratory and others have demonstrated that adolescent binge-pattern alcohol exposure 

results in long-term dysregulation of the neuroendocrine stress response, memory 

impairments and behavioral deficits [12,67,177,178,179].An altered stress response often 

underlies depression- and anxiety-related disorders and importantly, these conditions are 

commonly experienced by over 50% of alcohol-dependent patients [67,180,181]. Indeed, 

mood and memory impairments are often present in tandem with alcohol abuse and 
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neuropsychiatric illnesses that emerge post-puberty [182,183].The hippocampus is an 

important brain region that mediates learning, memory, and mood and it has been well 

established that hippocampus structure and function is impaired by EtOH abuse 

[10,11,184,185,186,187,188]. Notably, pubertal EtOH abuse inhibits adult neurogenesis, 

impairs learning and memory in adulthood, and impairs information retention. The 

precise molecular mechanisms mediating the long-term effects of adolescent binge EtOH 

exposure are poorly understood, however short non-coding regulatory RNAs are sensitive 

to EtOH and have recently been recognized as critical mediators of nearly every basic 

cellular process [154,189]. In particular, microRNAs (microRNAs, ~22 nucleotide 

single-stranded non-coding RNA) regulate the translation of proteins important for 

neuronal development during embryogenesis, postnatal neuronal maintenance and 

survival, and hippocampal neurogenesis throughout life [112,113,190,191,192,193]. 

Moreover, disruption of mature microRNA expression and/or function has been linked to 

alcohol-induced neurological afflictions including addiction and fetal alcohol spectrum 

disorder (FASD) [194,195]. In this study we used a Wistar rat model to identify EtOH-

sensitive microRNAs that target genes involved in regulating hippocampal processes, 

such as memory and mood. Using multiple target prediction algorithms (Targetscan: 

www.targetscan.org; microRNA database: www.miRDB.org) [129,196,197], we 

identified brain-derived neurotrophic factor (BDNF) as a target gene of miR-10a-5p, 

miR-26a, miR-103, and miR-495, synapsin-2 (SYN2) as a target gene of miR-32, and 

sirtuin 1 (SIRT1) as a target gene of miR-26a, miR-103 and miR-495. BDNF and SYN2 

are both critical regulators of synaptic plasticity. For example, BDNF is a neurotrophic 

factor instrumental in neurodevelopment and alterations in its expression are evidenced in 
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numerous psychiatric disorders, SYN2 is a synaptic vesicle phosphoprotein that 

modulates neurotransmitter release onto the post-synaptic membrane and its 

dysregulation disrupts the delicate balance of excitatory and inhibitory neurotransmission 

throughout the brain whereas SIRT1 is a class III protein deacetylase that has been 

recently associated with anxiety behavior [102,180,181,198,199].  

 We tested the hypothesis that mid/peripubertal binge EtOH exposure alters 

hippocampal microRNA expression and that this leads to changes in the expression of 

their target genes. Importantly, the normal expression profile of these particular 

microRNAs during pubertal development has not been reported in any species studied to 

date. Therefore, we quantified the normal developmental expression profile of miR-10a-

5p, miR-26a, miR-103 and miR-495 in the rat hippocampus at three time points in 

pubertal development (early, peri, and late). Next, we determined how peri-pubertal 

binge EtOH exposure altered those normal expression levels immediately following 

EtOH exposure, as well as 30 days after the last EtOH dose using a binge pattern that is 

reliable for testing the effects of typical adolescent alcohol abuse [44,200]. Gene 

expression levels of microRNA processing enzymes, Drosha and Dicer, were also 

quantified at each time point in order to determine a possible molecular mechanism for 

binge EtOH effects. Lastly, to determine the downstream physiological effects of 

alterations in microRNA target gene transcription, we quantified the gene expression 

levels of putative microRNA target genes, BDNF and SIRT1 as well as their protein 

expression levels. Overall, our data provide evidence that peripubertal binge EtOH 

exposure induces long-term alterations in mature microRNA expression levels in the rat 
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hippocampus, which has the potential to modulate the expression of their downstream 

target genes.  

Approach 

Figures 2 and 3: Male Wistar were handled daily beginning at PND 30 and 

given one of the following treatment paradigms starting on PND 37 (n=6/group): 1) 

saline control (1x/day/8days), 2) acute EtOH (saline 1x/day/7days + 1x/day/1day EtOH) 

or 3) binge EtOH (1x/day/3days EtOH + 1x/day/2days saline + 1x/day/3days EtOH) via 

intraperitoneal injection. One hour after the last dose, brains were collected, rapidly 

frozen, sectioned at 200 μm on a freezing microtome and the whole hippocampus was 

microdissected using a 0.75 mm Palkovit’s brainpunch tool. The array was performed 

using SABiosciences RT
2
 miRNA PCR Array. Quantitative real-time reverse 

transcription PCR (qRT-PCR) was used to quantify the expression levels of six 

microRNAs: (miR-10a-5p, miR-26a, miR-32, miR-103, mmiR-423 and miR-495) as well 

as BDNF and SIRT1 mRNA. 

Figures 4-13: The dorsal and ventral hippocampus were microdissected from 

male Wistar rats that were either untreated or treated with an EtOH paradigm 

administered via oral gavage beginning at PND 37 (3g/kg; 1x/day/3days EtOH, 

+1x/day/2days water + 1x/day/3days EtOH) . Brains collected at three different ages 

during pubertal development (early puberty, PND 30; mid/peripuberty, PND 44; late 

puberty, PND 71; N=10/group). Importantly, peripuberty in rats is considered to be ~ 

PND 30-45 [201,202]. Quantitative real-time reverse transcription PCR (qRT-PCR) was 

used to quantify the expression levels of a total of five microRNAs: (miR-10a-5p, miR-



29 
 

 
 

26a, miR-32, miR-103 and miR-495) and four genes (Drosha, Dicer, BDNF and SIRT1). 

Western Blot was used to detect protein expression of pro-BDNF, BDNF and SIRT1. 

Results 

Blood alcohol concentrations following peripubertal binge EtOH exposure 

 In order to model typical pubertal binge alcohol drinking behavior, we utilized an 

8-day binge EtOH exposure paradigm that has been used previously to mimic the pattern 

of alcohol consumption commonly observed in human adolescents (Fig. 1A) [8,44]. 

Experimentally, this paradigm does not affect body weight/growth curves during pubertal 

development in male rats [8,44,200]. Blood alcohol concentrations (BAC) were measured 

on the final day of treatment (day 8) 60 minutes following the last dose. The BAC in 

EtOH treated animals was 190 ± 21 mg/dl which was consistent with our previous studies 

using this peripubertal binge EtOH paradigm (Fig. 1B) [8,44,200]. Overall, our observed 

BAC levels fall within the defined BAC threshold of binge drinking.  

miR-10a-5p, miR-26a, miR-103, miR-32 and miR-495 expression levels are sensitive 

to peripubertal binge-pattern EtOH exposure in the rodent hippocampus.  

In the brain, microRNAs play an important role in neurodevelopment and 

neurogenesis, two processes that continue to occur throughout adolescent development 

[203] and microRNAs are implicated in the teratology of EtOH-induced malformations 

infetal brain development [153,154]. Importantly, our understanding of microRNAs in 

the brain during adolescent development is severely limited and there is little to no data 
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Treatment

Figure 1: Peripubertal repeated binge EtOH paradigm alters blood 

alcohol concentration. On PND 37, male Wistar rats are given 3g/kg 

EtOH (20% v/v in water), or water alone, via oral gavage at 10AM 

and this process is repeated according to the following schedule: 3d 

EtOH, 2d water, 3d EtOH (A). Blood alcohol concentrations (BAC) 

1.0 h following the last dose of water (control) or peripubertal binge 

EtOH (B). Data expressed as mean BAC (mg/dl). *Statistically 

significant difference via Student’s T-test N=6 (p<0.05).
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describing how EtOH might affect microRNAs during this critical developmental period. 

microRNA expression was measured in the hippocampus of male rats treated with an 8-

day binge EtOH paradigm (see Fig. 1A) using a microRNA RT-PCR profiling array 

containing a genome-wide panel of the 88 most well-researched rat microRNAs (as 

annotated by the Sanger miRBase Release 14). We identified 2 novel EtOH-sensitive 

microRNAs (miR-10a-5p and miR-423) which demonstrated altered expression levels 

following an 8-day peripubertal binge-pattern EtOH exposure. Specifically, miR-10a-5p 

and miR-423 expression levels were increased >10-fold in the hippocampus of binge-

EtOH treated rats (Fig. 2). We next designed our own primers to validate the array-

generated results with qRT-PCR and when using these primers, the expression level of 

miR-10a-5p increased in the binge-treated animals as it did in the array (Fig. 3A). 

However, miR-423 expression levels did not change when using the new primers, and 

therefore, miR-423 was not further studied. To add depth to the study, we also quantified 

the expression levels of additional microRNAs, miR-26a, miR-32, miR-103 and miR-495 

that were predicted to target genes which regulate hippocampus functions. These data 

revealed that peripubertal binge-pattern EtOH exposure increased miR-32, miR-103 and 

miR-495, and decreased miR-26a expression levels in the male rat whole hippocampus 

(Fig. 3A). Using the target prediction algorithms available via Targetscan: 

www.TargetScan.org and microRNA database: www.miRDB.org [129,196,197], we 

identified BDNF and SIRT1 as a putative target genes of miR-10a-5p, miR-26a, miR-103 

and miR-495. These computer algorithms identify predicted microRNA target genes  

http://www.targetscan/
http://www.mirdb/
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Figure 2. Peripubertal binge EtOH increases miR-10a-5p and miR-423 

expression in the male rat whole hippocampus. Scatter plot data represents 

microRNA expression levels in binge EtOH treated rats relative to controls 

(open circles).  miR-423 and miR-10a-5p (red) expression levels increased > 

10-fold in binge EtOH-treated rats compared to control (one-way ANOVA, 

*p<0.05). 
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based on a conserved 8 base pair (bp) seed sequence within the 3’UTR of the respective 

target gene. Analysis of the potential target genes for these EtOH-sensitive microRNAs, 
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Figure 3:  Peripubertal binge-pattern EtOH exposure alters microRNA and target gene 

expression in male rat hippocampus. microRNA (A) and target gene (B) expression levels 

1.0 h following the last dose of water or EtOH. Data represent mean fold change ± SEM as 

compared control. * indicates significance between groups (one-way ANOVA, p<0.05). 
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we identified one reported binding site for miR-10a-5p, miR-26a and miR-103 within the 

3’UTR of BDNF and four for miR-495. One binding site was reported within the 3’UTR 

of SIRT1 for miR-26a, mir-103 and miR-495. Importantly, the number of predicted 

binding sites is indicative of the relative specificity of the microRNA for that gene.  

We next quantified the expression levels of the EtOH-sensitive microRNA gene 

targets, BDNF and SIRT1, which displayed strong decreasing trends in the binge EtOH-

treated animals, but did not reach not statistical significance (Fig. 3B). Importantly, the 

male rat brain displays both age-, cell type- and region-specific microRNA expression 

profiles and the hippocampus consists of functionally distinct ventral and dorsal regions 

[57,58,105,204,205]. Therefore, we next aimed to determine the potential for peripubertal 

binge EtOH to induce region-specific alterations in the ventral and dorsal hippocampus.  

Mature miR-10a-5p, miR-26a, and miR-495 expression levels in the dorsal 

hippocampus of untreated male rats are age dependent. 

 Expression levels of these specific mature microRNAs in the brain during 

pubertal development have not been previously described. Therefore, we first determined 

the normal developmental profile of mature miR-10a-5p, miR-26a, miR-103 and miR-

495 expression in the dorsal hippocampus using untreated male Wistar rats. miR-32 

expression levels were not significantly altered in the dorsal or ventral hippocampus by 

age or EtOH, and therefore, it was not further studied. Mature microRNA expression 
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Figure 4. Diagram of experimental paradigm. Diagram depicting the age of sacrifice and 

specific treatment paradigms for each group of male Wistar rats. 3 groups received no 

treatments (A). 4 groups received water or binge EtOH treatments at peripuberty, for a 

total of 2 control and 2 EtOH groups (B). N=10/group. 
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Table 1. Statistical Analysis of Gene Expression Levels in the Dorsal Hippocampus 

microRNA MAIN EFFECT OF 

AGE 

MAIN EFFECT OF 

TREATMENT 

INTERACTION: AGE 

X TREATMENT 

miR-10a-

5p 

Yes: F(2,33) = 

12.293 p < 0.001 

No No 

miR-26a Yes: F(2,44) = 3.222 

 p < 0.049 

Yes: F(1,44) = 5.212  

p < 0.027 

Yes: p < 0.001 

miR-103 No No No 

miR-495 Yes: F(2,37) = 4.923  

p < 0.013 

Yes: F(1,37) = 59.23  

p < 0.001 

Yes: p < 0.001 

    

GENE MAIN EFFECT OF 

AGE 

MAIN EFFECT OF 

TREATMENT 

INTERACTION: AGE 

X TREATMENT 

Drosha Yes: F(2,54) = 

24.906 p < 0.001 

No Yes:  p = 0.008 

Dicer Yes: F(2,54) = 

18.725 p < 0.001 

No Yes: p < 0.001 

BDNF Yes: F(2,52) = 

12.845 p < 0.001 

Yes: F(1,52) = 6.574  

p < 0.013 

No 

SIRT1 No Yes: F(1,54) = 

110.941 p < 0.001 

Yes: p < 0.001 
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Figure 5. Peripubertal binge EtOH exposure alters microRNA expression during pubertal 

development in the dorsal hippocampus. miR-10a-5p (A), miR-26a (B), miR-103 (C), 

and miR-495 (D) expression levels in untreated (solid line) and EtOH-treated (dashed 

line) pubertal male rats. N=10/group. Data represent mean fold change ± SEM as 

compared to untreated PND 30 animals. Dissimilar letters indicate a statistically 

significant difference between groups (2-way ANOVA, p<0.05). 
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levels were measured using qRT-PCR at three time points throughout pubertal 

development(early = 30 d, peri = 44 d, late = 73 d) (Fig. 4A). In the dorsal hippocampus, 

a two-way ANOVA revealed a main effect of age on the expression levels of all 

microRNAs tested, except miR-103 (Table 1). Each of the three microRNAs that showed 

a significant effect of age in the dorsal hippocampus had a distinct developmental pattern. 

For instance, miR-10a-5p expression decreased significantly between early and 

peripuberty, and remained lower than early puberty levels until late puberty (Fig. 5A, 

solid line). By contrast, miR-26a expression did not change between early and 

peripuberty, but significantly decreased at late puberty (Fig. 5B, solid line). Finally, a 

significant increase was observed in miR-495 expression between early and peripuberty 

and these levels remained high until late puberty (Fig. 5D, solid line).   

Binge EtOH exposure during peripuberty significantly alters normal developmental 

profile of microRNAs in the dorsal hippocampus. 

Next, we determined the effects of repeated binge EtOH exposure during 

peripuberty on these microRNA levels in the brain. Rats were administered our repeated 

binge-pattern EtOH exposure paradigm (Fig. 1A) and dorsal hippocampal microRNA 

expression of miR-10a-5p, miR-26a, miR-103 and miR-495 was compared with untreated 

rats/water-treated rats immediately following binge EtOH exposure and one-month post-

EtOH exposure. Our results demonstrated a significant main effect of EtOH treatment on 

the expression of miR-26a and miR-495 and there was also a significant interaction 

between age and treatment, demonstrating that the effects of EtOH were age dependent 

(Table 1). Although there was no main effect of EtOH treatment on the expression of 

miR-10a-5p, and there was no immediate change following EtOH exposure at 
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peripuberty, by late puberty its expression was significantly increased compared to 

untreated rats/water-treated rats (Fig. 5A). miR-26a expression levels significantly 

decreased immediately following binge EtOH exposure at peripuberty, however this 

difference did not persist and was equivalent to those of untreated animals by late puberty 

(Fig. 5B). miR-103 was not significantly altered by peripubertal EtOH treatment in the 

dorsal hippocampus, similar to the results observed with age alone (Fig. 5C). Most 

striking were the results of EtOH exposure on miR-495.  Similar to miR-26a, miR-495 

was significantly decreased as a result of binge EtOH exposure at peripuberty. Notably 

however, expression levels remained significantly below normal even one-month post 

EtOH exposure (Fig. 5D), suggesting a potential long-term effect of pubertal binge EtOH 

exposure on miR-495 in the dorsal hippocampus. 

Mature miR-10a-5p, miR-26a, miR-103, and miR-495 expression levels in the 

ventral hippocampus of untreated male rats are age-dependent 

Distinct region and age-dependent expression of microRNAs has been 

demonstrated in the brain of a variety of species [105,206,207]. Therefore, we quantified 

the expression of miR-10a-5p, miR-26a, miR-103, and miR-495 in the ventral 

hippocampus across pubertal development in untreated rats to determine if there were 

region specific microRNA expression patterns in the hippocampus. In the ventral 

hippocampus, there was a significant main effect of age in the untreated animals on all 

four microRNAs tested, including miR-103, which previously did not show a significant 

change across pubertal development in the dorsal hippocampus (Table 2). Specifically,  
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Table 2. Statistical Analysis of microRNA Expression Levels in the Ventral 

Hippocampus 

microRNA MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

TREATMENT 

INTERACTION: 

AGE X 

TREATMENT 

miR-10a-

5p 

Yes: F(2,42) = 

17.492 p < 0.001 

Yes: F(1,42) = 8.847  

p = 0.005 

No 

miR-26a Yes: F(2,37) = 5.064 

p = 0.011 

No No 

miR-103 Yes: F(2,54) = 4.582 

p = 0.015 

Yes: F(1,54) = 5.739 

 p = 0.02 

Yes: p < 0.001 

miR-495 Yes: F(2,42) = 8.359 

p < 0.001 

Yes: F(1,42) = 5.998 

 p = 0.019 

Yes: p < 0.001 

    

GENE MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

TREATMENT 

INTERACTION: 

AGE X 

TREATMENT 

Drosha Yes: F(2,54) = 4.650 

p = 0.014 

No Yes: p < 0.001 

Dicer Yes: F(2,54) = 

10.746 p < 0.001 

No Yes: p < 0.001 

BDNF Yes: F(2,41) = 

13.622 p < 0.001 

Yes: F(1,41) = 9.109 

 p = 0.004 

Yes: p < 0.001 

SIRT1 Yes: F(2,43) = 

16.484 p < 0.001 

Yes: F(1,43) = 

14.759 p < 0.001 

Yes: p < 0.001 
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Figure 6. Peripubertal binge EtOH alters microRNA expression during pubertal 

development in the ventral hippocampus. miR-10a-5p (A), miR-26a (B), miR-103 (C), 

and miR-495 (D) expression levels in untreated (solid line) and EtOH-treated (dashed 

line) pubertal male rats. N=10/group. Data represent mean fold change ± SEM as 

compared to untreated PND 30 animals. Dissimilar letters indicate a statistically 

significant difference between groups (2-way ANOVA, p<0.05). 
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miR-10a-5p showed no change between early and peripuberty, but significantly increased 

by late puberty in the ventral hippocampus (Fig. 6A, solid line). Also, in contrast to the 

dorsal hippocampus miR-26a significantly decreased at peripuberty, but this change did 

not persist and was equivalent to early pubertal levels by late puberty (Fig. 6B, solid 

line). The ventral hippocampus levels of miR-103 and miR-495 had a similar profile. 

Both had a statistically significant decrease, or a strong trend towards decreasing, at 

peripuberty compared to early pubertal levels, but then the levels increased significantly 

above that of early pubertal levels by late puberty (Fig. 6C, D, solid line). Notably, miR-

495 expression in the ventral hippocampus demonstrated the most dynamic expression 

profile throughout pubertal development, as it had distinct expression levels at each time 

point measured. 

Repeated adolescent binge EtOH exposure differentially alters expression of miR-

10a-5p, miR-26a, miR-103 and miR-495 in the ventral hippocampus 

We predicted that peripubertal binge EtOH exposure would alter the normal 

developmental profile of microRNA expression in the ventral hippocampus, based on the 

evidence obtained from the dorsal hippocampus. Indeed, there was a significant main 

effect of treatment and a significant interaction between age/treatment for miR-10a-5p, 

miR-103, and miR-495 in the ventral hippocampus (Table 2). Interestingly, the 

magnitude of changes in microRNA expression was overall much higher in the ventral 

hippocampus compared to the dorsal, with some microRNAs changing by as much as 5-

fold (Fig. 6). One example of a large fold change was observed with miR-10a-5p. The 

mature expression levels of miR-10a-5p were significantly increased by an average of 3-5  
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Table 3. Summary of peripubertal EtOH exposure on microRNA and mRNA gene 

expression. Arrows indicate a statistically significant effect (increase/decrease) of EtOH 

compared to age-matched water-treated controls. 

microRNA 

Dorsal Hipp 

immediate 

ETOH effect 

Dorsal Hipp 

long-term 

ETOH effect 

Ventral Hipp 

immediate 

ETOH effect 

Ventral Hipp 

long-term 

ETOH effect 

10a-5p − ↑ ↑ − 

26a ↓ − − ↓ 

103 − − ↑ ↓ 

495 ↓ ↓ ↑ ↓ 

Gene 

Dorsal Hipp 

immediate 

ETOH effect 

Dorsal Hipp 

long-term 

ETOH effect 

Ventral Hipp 

immediate 

ETOH effect 

Ventral Hipp 

long-term 

ETOH effect 

Drosha ↑ ↑ ↑ ↓ 

Dicer ↑ ↓ ↑ ↓ 

BDNF ↑ ↑ ↓ − 

SIRT1 ↑ ↑ ↓ − 
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fold following peripubertal binge EtOH exposure (Fig. 6A, dashed line). Further, the 

expression levels continued to show an increase at late puberty, paralleling the untreated 

group at that same age (Fig. 6A). There was no observed statistical effect of peripubertal 

EtOH treatment on miR-26a. Nevertheless, the expression levels in the EtOH-treated 

group did not appear to follow the normal age-dependent increase observed by late 

puberty (Fig. 6B). The most striking effects of peripubertal binge EtOH exposure in the 

ventral hippocampus were observed in miR-103 and miR-495 expression, as their normal 

developmental expression levels at both peripuberty and late puberty were opposite 

following peripubertal binge EtOH exposure. Overall, our results demonstrate both 

immediate and long-term effects of peripubertal binge EtOH exposure in the rat 

hippocampus and these effects were distinct between the dorsal and ventral regions 

(Table 3). 

Mature microRNA biosynthetic processing enzymes are altered by peripubertal 

binge EtOH exposure in the dorsal and ventral hippocampus 

Primary microRNA transcripts are transcribed from the genome in a RNA 

polymerase II dependent manner and sequentially cleaved by the nuclear enzyme Drosha 

and the cytoplasmic enzyme Dicer to form the functionally mature single-stranded form 

of the microRNA [127,208,209]. We next measured mRNA levels of both Drosha and 

Dicer in our dorsal and ventral hippocampal tissue samples to better understand the 

molecular basis of altered mature microRNA expression levels. Drosha and Dicer mRNA 

expression levels were measured using qRT-PCR in the untreated animals at early, mid 

and late puberty and those levels were compared to animals that were administered our  
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Figure 7. Peripubertal binge EtOH exposure differentially alters microRNA biosynthetic 

processing enzymes in the dorsal and ventral hippocampus. Drosha (A, B) and Dicer (C, 

D) mRNA levels in the dorsal and ventral hippocampus in untreated (solid line) and 

EtOH-treated (dashed line) pubertal male rats. N=10/group. Data represent mean fold 

change ± SEM as compared to untreated PND 30 animals. Dissimilar letters indicate a 

statistically significant difference between groups (2-way ANOVA, p<0.05). 
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binge EtOH treatment paradigm at peripuberty. Our results showed a main effect of age 

on Drosha in both the dorsal and ventral hippocampus (Tables 1, 2; Fig. 7A, B, solid 

line). Specifically, Drosha mRNA levels were significantly decreased between early and 

peripuberty in both regions of the hippocampus. The gene expression levels remained 

low until late puberty in the dorsal hippocampus but returned to early pubertal levels in 

the ventral hippocampus (Fig. 7A, B, solid line), thereby demonstrating region-specific 

regulation. Further, there was a significant interaction between age and EtOH on Drosha 

mRNA expression in both hippocampal regions and an overall main effect of EtOH 

treatment in the ventral hippocampus (Table 1, 2; Fig. 7A, B, dashed line). In both 

regions, peripubertal binge EtOH exposure significantly elevated Drosha mRNA levels 

immediately following EtOH exposure, suggesting a potential for increased microRNA 

biosynthetic processing. These increased levels persisted for up to one month (late 

puberty, Fig. 7A) following EtOH exposure in the dorsal hippocampus, but were 

significantly decreased at that same age in the ventral hippocampus (Fig. 7B). Dicer 

mRNA expression followed the same pattern as Drosha in untreated animals for both 

regions of the hippocampus and there was a statistically significant overall main effect of 

age (Table 1, 2; Fig. 7C, D). Dicer mRNA levels decreased between early and 

peripuberty in both regions and the levels remained low until late puberty in the dorsal 

hippocampus (Fig. 7C). By contrast, at late puberty Dicer mRNA levels were no longer 

significantly different from those in early puberty in the ventral hippocampus (Fig. 7D). 

Binge EtOH exposure in peripuberty had the same effect on Dicer mRNA expression 

levels in both regions of the hippocampus, with a statistically significant overall main 

effect of treatment and a significant interaction between age and treatment (Table 1, 2; 
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Fig. 7C, D). Dicer mRNA levels were immediately increased compared to untreated 

animals following EtOH exposure at peripuberty, but then by late puberty had decreased 

significantly to levels even lower than that of untreated animals at early puberty (Fig. 7C, 

D). In sum, these results demonstrate that both Dicer and Drosha change dynamically 

throughout pubertal development in the hippocampus and that these levels can be 

dramatically altered by peripubertal binge EtOH exposure (Table 3). 

Peripubertal Binge EtOH exposure alters putative target gene mRNA of EtOH-

sensitive microRNA in the dorsal and ventral hippocampus. 

The most well understood mechanism of microRNA action is through microRNA 

complementary binding to the 3’ untranslated region (UTR) of a primary gene transcript 

and its subsequent facilitation of mRNA degradation and/or inhibition of mRNA 

translation [210,211]. This miR-mediated degradation of mRNA target genes is 

attributable to observed downstream phenotypic changes. We identified two genes that 

were putative targets of all 4 EtOH-sensitive microRNAs in the dorsal and ventral 

hippocampus using publically available software target prediction programs (Targetscan: 

www.targetscan.org; miR database: www.miRDB.org) [129,196,197]. Our analysis of 

potential targets for each EtOH-sensitive miR identified a single putative binding site in 

the 3’UTR of BDNF for each miR-10a-5p, miR-26a, and miR-103 (Fig. 8). Also, there 

were four possible binding sites on BDNF for miR-495, suggesting miR-495 might have 

a stronger regulatory effect on BDNF than the other microRNAs. There were no potential 

binding sites in the 3’UTR of SIRT1 for miR-10a-5p, but there was a single potential  

http://www.targetscan/
http://www.mirdb/
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Figure 8. Diagram depicting predicted microRNA binding sites for BDNF and SIRT1. 

Schematic diagram of the 3’UTR of (A) BDNF – 2,842 bp and (B) SIRT1- 1,607 bp. The 

putative binding sites for each microRNA were predicted using Targetscan 

(www.targetscan.org) and miRDB (www.miRDB.org) computer algorithm programs. 

The binding sites were predicted based on the presence of an 8-mer or 7-mer conserved 

microRNA seed sequence. Precise seed sequence positions are shown in parentheses. 
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Figure 9. Peripubertal binge EtOH exposure differentially alters miR target genes, BDNF 

and SIRT1, in the dorsal and ventral hippocampus. BDNF (A, B) and SIRT1 (C, D) 

mRNA levels in the dorsal and ventral hippocampus in untreated (solid line) and EtOH-

treated (dashed line) pubertal male rats. N=10/group. Data represent mean fold change ± 

SEM as compared to untreated PND 30 animals. Dissimilar letters indicate a statistically 

significant difference between groups (2-way ANOVA, p<0.05). 
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binding site for each of the other microRNAs tested (miR-26a, miR-103 and miR-495; 

Fig. 8).  

To determine whether peripubertal binge EtOH exposure altered the normal 

expression levels of BDNF and SIRT1 mRNA, we compared mRNA levels in untreated 

animals at each age (early, mid, and late puberty) to animals that had been treated with 

binge EtOH at peripuberty in both the dorsal and ventral hippocampus. Overall, there was 

a significant main effect of age on BDNF mRNA expression in both regions of the 

hippocampus (Tables 1, 2; Fig. 9A, B, solid line). By contrast, there was a significant 

main effect of age on SIRT1 mRNA expression in the ventral, but not dorsal, 

hippocampus (Tables 1, 2; Fig. 9C, D, solid line). There was also a significant main 

effect of EtOH treatment on BDNF and SIRT1 mRNA expression in both hippocampal 

regions (Tables 1, 2). A statistically significant interaction between age and EtOH 

treatment was observed for SIRT1 in the dorsal hippocampus (Table 1) and BDNF and 

SIRT1 in the ventral hippocampus (Table 2), demonstrating that the effects of binge 

EtOH exposure on BDNF and SIRT1 mRNA expression was dependent on age. 

Interestingly, EtOH exposure significantly increased BDNF and SIRT1 mRNA levels 

compared to untreated animals at peripuberty in the dorsal hippocampus (Fig. 9A, C, 

dashed line), while the opposite was observed in the ventral hippocampus (Fig. 9B, D, 

dashed line). The effects of EtOH persisted for up to one-month post-EtOH exposure for 

BDNF and SIRT1 in the dorsal hippocampus (Fig. 9A, C) and for BDNF in the ventral 

hippocampus (Fig. 9A). Although the ventral hippocampus mRNA levels of SIRT1 were 

not statistically different from untreated controls one-month following binge EtOH 

exposure, the data suggest that the normal developmental profile of SIRT1 gene 
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expression was retarded at a pre-pubertal phenotype as a result of peripubertal EtOH 

exposure (Table 3). 

We next investigated the effects of peripubertal binge EtOH exposure on BDNF 

and SIRT1 protein expression. We quantified the dorsal and ventral hippocampus pro-

BDNF (the higher molecular weight precursor of mature BDNF), mature BDNF and 

SIRT1 protein levels in peripubertal animals treated with water or binge EtOH one hour 

following the last treatment.. In the ventral hippocampus, binge EtOH-treated animals 

demonstrated a strong decreasing trend in expression of pro-BDNF, with a p-value = 0.05 

(Fig. 10B).  

Binge EtOH exposure did not alter circulating testosterone levels. 

Increased gonadal steroid hormones during pubertal development can potentially 

modulate microRNA and/or Drosha, Dicer, BDNF and SIRT1 mRNA levels. The animals 

in this study were kept gonad-intact throughout puberty, however previous studies have 

demonstrated that EtOH can alter gonadal steroid hormones [44]. To determine the 

effects of binge EtOH exposure during puberty on circulating gonadal steroid hormone 

levels in our system, plasma testosterone (T) was measured in each age group on the day 

of sacrifice. As expected, circulating T levels continued to increase with age in all 

animals (Fig. 11), demonstrating a normal progression through pubertal development. 

Peripubertal EtOH exposure tended to decrease circulating T levels, but the differences 

between EtOH-treated animals and controls of the same age group were not statistically 
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Figure 10. Assessment BDNF and SIRT1 protein expression levels following 

peripubertal binge EtOH. Representative immunoblot for BNDF, pro-BDNF, SIRT1 and 

β-actin expression in the dorsal hippocampus and the % change in BNDF, pro-BDNF and 

SIRT1 expression normalized to β-actin (A). Representative immunoblot for BNDF, pro-

BDNF, SIRT1 and β-actin expression in the ventral hippocampus and the % change in 

BNDF, pro-BDNF and SIRT1 expression normalized to β-actin (B). Quantification of 

densitometric analysis of protein expression calculated from at least 3 independent 

experiments (N=6). No significant difference between groups was observed (2-way 

ANOVA, p<0.05). 

 

 

 

Ventral Hippocampus Dorsal Hippocampus 
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Figure 11. Peri-pubertal binge EtOH exposure did not affect circulating testosterone 

levels. Plasma concentrations of testosterone (T) 60 min. after the last treatment. Data 

expressed as mean ± SEM T pg/ml. No statistically significant differences were observed. 
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significant (Fig. 11). Moreover, there were no apparent long-lasting effects of 

peripubertal EtOH treatment on circulating T levels measured at one month post EtOH 

treatment (Fig. 11). 

Discussion 

 Adolescent alcohol abuse has been shown to exert long-lasting detrimental effects 

on brain function, neuronal gene expression and behaviors, yet the precise molecular 

targets of EtOH remain poorly understood. Indeed, previous studies by our laboratory and 

others have demonstrated both immediate and long-term effects of repeated peripubertal 

binge EtOH exposure on genes that regulate the physiological stress response 

[12,44,67,212,213]. Therefore, the goals of this study were to provide a potential 

mechanistic explanation for EtOH-induced effects on gene expression by quantifying the 

expression of EtOH sensitive microRNAs (miR-10a-5p, miR-26a, miR-103 and miR-

495) during normal pubertal development in the male rat hippocampus, and then 

elucidate how peripubertal binge EtOH exposure alters the expression of those 

microRNAs. Importantly, microRNAs have emerged as highly conserved critical 

regulators of downstream gene expression in nearly all physiological systems. Genome-

wide microRNA expression profiles revealed that the microRNAs investigated in this 

study, miR-103 and miR-26a, are among the top 15 most abundantly expressed 

microRNAs in the rodent hippocampus [104]. Taken together our data revealed that the 

expression of miR-10a-5p, miR-26a, miR-103 and miR-495 are dynamic across pubertal 

development and that the developmental profiles for each microRNA are distinct between 

the dorsal and ventral hippocampus. Moreover, peripubertal binge EtOH exposure altered 

normal pubertal development expression patterns of miR-10a-5p, miR-26a, miR-103, 
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miR-495, Dicer, Drosha, BDNF and SIRT1 in an age and brain region-dependent 

manner. Most striking, our results showed that peripubertal binge EtOH exposure had 

significant long lasting effects on several microRNAs studied, as well as their processing 

enzymes and target genes. These effects were evident for as long as one-month following 

the last EtOH exposure, suggesting that EtOH could have lasting consequences on gene 

expression profiles in the male rat hippocampus through long-term regulation of 

microRNA expression patterns.  

 Quantifying EtOH-induced changes in Drosha and Dicer mRNA levels can yield 

insight into the mechanistic actions of EtOH by revealing specific points of EtOH-

mediated perturbations along the microRNA biosynthetic pathway. The biogenesis of 

mature 22-24 nucleotide (nt), single-stranded microRNAs involves the following 

sequential processes: 1) transcription of a 100-1000 nt primary-microRNA (pri-

microRNA) product, 2) cropping of the transcript by the nuclear Rnase III enzyme 

Drosha into the preliminary-microRNA (pre-microRNA), 3) cleavage of the pre-

microRNA by the cytoplasmic RNAse III enzyme Dicer and 4) loading of the mature 

microRNA onto the RNA-induced silencing complex (RISC), which guides it to its 

mRNA target for degradation or translational inhibition [210,211]. Notably, the 

expression of microRNA biogenesis genes (i.e. Drosha, Dicer) was shown to be 

significantly correlated with addiction-related phenotypes [214]. Our studies revealed the 

interesting observation that both Drosha and Dicer mRNA significantly decreased 

between early and peripuberty, although these results do not necessarily reflect changes 

in enzyme catalytic activity. Regardless, decreased mRNA levels of microRNA 

biosynthetic enzymes would theoretically result in reduced mature microRNA levels 
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leading to increased translation of gene targets, consistent with the idea that there are 

global changes in overall gene expression during adolescent development. The effects of 

peripubertal binge EtOH exposure on Drosha and Dicer mRNA levels continued to 

persist for as long as one-month after the last EtOH exposure, which raises the possibility 

of a potential long-term EtOH-induced dysregulation of microRNA biosynthetic 

processing. 

One of the biggest challenges since the discovery of microRNAs has been the 

identification of their target genes. In mammals, their imperfect base pair hybridization 

with mRNA targets results in promiscuous binding, such that a single microRNA can 

have multiple mRNA gene targets. For instance, miR-495 is predicted to target as many 

as 754 genes in the rat genome (miRDB). Similarly, a single mRNA transcript can be 

regulated by several different microRNAs and whether multiple microRNAs must act in 

concert to regulate a specific target gene remains unresolved.  Indeed, BDNF is predicted 

to be targeted by 51 microRNAs (miRDB), therefore the results shown herein are not 

exhaustive of all potential regulators of BDNF. Nevertheless, our data demonstrating 

differential expression of the same microRNA in functionally distinct hippocampal 

regions strongly implied that the targets of these microRNAs may also be differentially 

expressed. Therefore, we identified putative target genes of miR-10a-5p, miR-26a, miR-

103 and miR-495 that were relevant to known dorsal and ventral hippocampus functions 

using target prediction software programs, Targetscan and MirDB. For instance, BDNF 

was identified as a putative target gene for miR-10a-5p, miR-26a, miR-103 and miR-495.  

BDNF plays a fundamental role in guiding neurodevelopment as well as in the fine-

tuning of synaptic plasticity, a critical event during adolescent brain development. 
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Previous studies have demonstrated that regulation of BDNF expression is mediated by 

miR-26a targeting the conserved BDNF 3’UTR sequence [143] and our data demonstrate 

inverse relationships between miR-26a and BDNF expression in the dorsal hippocampus 

(Fig. 5B, Fig. 9A). Together, these data suggest a role for miR-26a in the regulation of 

BDNF expression levels in the pubertal dorsal hippocampus. Importantly, both BDNF 

gene variants and miR-26a expression have been implicated in the vulnerability and onset 

of schizophrenia, alcohol abuse and mood disorders in both human patients and rodent 

models [143,144,145,146,147,148]. Moreover, these data serve as an important reminder 

that the computer algorithm-predicted microRNA target genes do not always translate 

into actual microRNA targets and that correlated changes in microRNA and target gene 

mRNA expression levels do not always indicate causality. Taken together, peripubertal 

disruption of miR-26a, miR-10a-5p and miR-495 expression following binge EtOH 

exposure could result in altered BDNF expression in the pubertal hippocampus.  

 The histone deacetylase sirtuin 1 (SIRT1) was also predicted by computer 

algorithms to be a putative gene target of miR-26a, mir-103 and miR-495 (Fig. 7B). 

Immediate responses to peripubertal binge EtOH resulted in increased SIRT1 expression 

in the dorsal hippocampus, and decreased SIRT1 expression in the ventral hippocmapus. 

These data suggest that SIRT1 mRNA expression may be regulated by distinct 

microRNAs in the dorsal and ventral hippocampus, a hypothesis consistent with studies 

demonstrating that these two hippocampus regions are functionally distinct, as they have 

dissimilar neuronal projection patterns [57,58,205]. Moreover, the ventral and dorsal 

hippocampus may utilize different cellular mechanisms to mediate their respective 

responses to EtOH. Our data further demonstrated that peripubertal binge EtOH exposure 
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had long-lasting effects on SIRT1 gene expression, showing significantly increased 

mRNA levels lasting until late puberty in the dorsal hippocampus. Similar to BDNF, 

SIRT1 has recently been implicated as critical for mediating synaptic plasticity, one 

mechanism underlying memory formation in rodent and human cell models [23,25]. 

Moreover, many studies have demonstrated that EtOH exposure has long-lasting 

consequences on gene expression, which may be regulated, in part, by microRNAs 

targeting chromatin-modifying enzymes, such as SIRT1.  

Regulation of gene expression mediated by microRNAs is theoretically carried 

out via the alterations in the microRNA target gene effector functions, i.e. the function of 

the protein encoded by the microRNA target gene. Effector function is best understood to 

occur following sequestration or degradation of the microRNA target gene mRNA. 

However, a single gene can be targeted and, therefore, regulated by multiple microRNAs 

suggesting that binding of multiple microRNAs to a single target gene’s 3’UTR could be 

necessary for alterations in protein expression to mimic changes in microRNA target 

gene mRNA expression. Indeed, our data make evident that miR-10a-5p, miR-495, miR-

103 and miR-26a expression are sensitive to the presence or absence of EtOH depending 

on age and brain region and that consequential alterations in BDNF and SIRT1 target 

gene expression are significantly correlated with observed EtOH-induced alterations in 

the expression of some of the microRNAs that target them in an immediate manner. The 

near significance values of BDNF and SIRT1 protein data suggest many different 

possibilities. One interpretation is that the protein levels of BDNF and SIRT1 following 

peripubertal binge EtOH may be altered to differing degrees amongst individuals. Indeed, 

unlike other drugs such as cocaine, alcohol alters cells membranes, ion channels, 
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enzymes, and receptors of neurons globally throughout the brain [215], and likely 

contribute to evidenced individual, sex and racial variations in alcohol metabolism and 

alcohol-induced neuroplastic changes [216,217] [218,219,220,221]. Importantly, the six 

rats whose tissue was collected for protein analysis were not from the same cohort of 

animals collected for RNA analysis. Furthermore, the groups of animals collected for 

RNA analysis had an N=10, whereas the groups collected for protein analysis had N=6. It 

is therefore, possible that there was not enough power to detect changes in protein 

expression levels, especially considering that protein levels change at a kinetically slower 

rate than mRNA. Alternatively, because any given miR targets multiple microRNAs, it is 

possible that target genes other than BDNF and SIRT1 may be altered by peripubertal 

binge EtOH exposure. For instance, miR-10a plays a role in regulating the homeobox 

developmental genes [21], and has similar expression patterns to HOXB4 in the mouse 

embryo suggesting that it may have similar important functional roles in development 

[20,222], and therefore may have pubertal brain developmental functions. Furthermore, a 

member of the Nkx family of homeobox genes, thyroid transcription factor 1 (TTF1), is 

expressed in the postnatal hypothalamus and this expression is required for rodent 

pubertal onset [222]. Therefore, it is possible that miR-10a-5p targets Hox gene 

transcription factors expressed during pubertal development, and alterations of target 

genes important for morphogenesis may contribute to disruption of brain development 

following peripubertal binge EtOH abuse. Lastly, Overall, the molecular mechanisms 

underlying differences in microRNA responses to pubertal binge EtOH warrant further 

studies and as it is possible that changes in microRNA expression may lead to 

complications in downstream target gene translation in some but not all individuals 
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engaging in binge drinking behavior during adolescence. Therefore, given the strong 

supporting evidence that changes it the expression of EtOH sensitive microRNAs 

significantly correlate with changes in target gene mRNA, and that corresponding 

changes in the protein expression reach near significance, it is important that further 

experimentation explore the effects of peripubertal binge EtOH exposure on protein 

expression changes in BDNF and SIRT1. 

Overall, our data reveal novel findings about the age and brain-region specific 

expression of miR-10a-5p, miR-26a, miR-103, and miR-495 during pubertal 

development in male rats. Further, we showed that mid/peripubertal binge EtOH 

exposure significantly alters the normal expression profile of these microRNAs, their 

biosynthetic processing enzymes, and two of their putative target genes, BDNF and 

SIRT1. However, it is important to note that these results are not necessarily predictive of 

microRNAs in females or other species, as several studies have demonstrated both 

species and sex-specific expression profiles for microRNAs [150,223,224]. Moreover, 

the precise molecular targets of EtOH in the biogenesis of microRNAs remain unclear 

and require further investigation. An important next step is the identification of specific 

cell types (i.e. neurons vs. glia) in which microRNAs are affected by binge EtOH 

exposure, as our study was limited to whole hippocampal tissue homogenates.  Taken 

together, our data raise the possibility that EtOH modulation of these fours microRNAs is 

a potential cellular mechanism underlying long-term changes in gene expression induced 

by adolescent EtOH abuse. 
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CHAPTER FOUR 

SEXUALLY DIMORPHIC GENE EXPRESSION OF HIPPOCAMPUS ETOH-

SENSITIVE MICRORNA, MICRORNA TARGET GENES AND MICRORNA 

PROCESSSING ENZYMES DURING PUBERTAL DEVELOPMENT  

Introduction  

 Adolescent binge drinking is a major public health issue [40,166] that incurs 

sexually dimorphic consequences on brain function and development 

[44,225,226,227,228,229,230]. Both male and female adolescents engage in underage 

drinking, and the Substance Abuse and Mental Health Services Administration 

(SAMHSA) has reported that males begin drinking earlier, drink more frequently and 

have a higher prevalence of binge drinking than their female counterparts (SAMHSA 

2006) [231,232]. However, more recently the Center for Disease Control and Prevention 

(CDC) reported that binge drinking among females--including young girls--is also a 

serious, yet unrecognized, problem (CDC 2012). Moreover, studies have demonstrated 

that females who abuse alcohol are more prone to developing alcohol addiction, 

alcoholism and anxiety than men [68,72]. Sex hormones have been demonstrated to 

mediate, in part, sexually dimorphic responses to EtOH [233,234,235,236,237], however, 

a clear mechanism remains unknown.  

Sex hormones can also influence microRNA expression in the brain [28,150].  

microRNAs are small (~20 nt) non-coding RNA molecules encoded in the genome. Their 

synthesis begins in the nucleus where RNA Polymerase II or III transcribes a primary-
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microRNA (pri-microRNA). The pri-microRNA is then processed by the nuclear 

enzyme Drosha into the precursor-microRNA (pre-microRNA) which can exit the 

nucleus. Once in the cytoplasm, the pre-microRNA is cleaved by the endoribonuclease 

Dicer into a small duplex. One strand of this duplex is the mature microRNA that then 

associates with the RNA-induced silencing complex (RISC) which guides the microRNA 

to the 3’ untranslated region (UTR) of a target gene to ultimately induce gene silencing 

by either translational repression or mRNA cleavage. In the brain, microRNAs have been 

shown to regulate neuronal differentiation [238], neuronal survival [112] and synaptic 

plasticity [113,136]. Interestingly, both sex hormones and microRNAs have been 

demonstrated to govern synaptic plasticity and the development of sexually dimorphic 

psychiatric disorders during puberty [113,151,239,240]. These data further suggest that 

microRNAs, in addition to sex hormones, may work in concert to contribute to pubertal 

brain development.  

 microRNA expression is sensitive to EtOH in a variety of species 

[157,158,241,242], neural cultures [195,243,244], and at developmental stages 

[193,245,246]. We previously identified 5 microRNAs as having age and brain region-

dependent expression profiles in the male rodent hippocampus that was also altered by 

peripubertal binge EtOH [247]. Other studies have also demonstrated that hypothalamic 

microRNAs are important regulators of pubertal onset in rats, and that this is true for both 

males and females [248]. In order to better understand how microRNA-based regulation 

of gene expression may play a role in the sexual dimorphic effects of EtOH abuse on 

brain development and behavior, it is essential to first establish the normative expression 

profile of microRNAs during healthy pubertal development in both sexes. In this pursuit, 
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the current study tested the hypothesis that during pubertal development, microRNA 

expression profiles of EtOH-sensitive microRNAs are sexually dimorphic. We further 

hypothesized that these pubertal microRNA expression profiles will be different in the 

ventral and dorsal hippocampus. In order to test our hypotheses, we quantified the 

expression levels of five EtOH-sensitive microRNAs, miR-10a-5p, miR-26a, miR-103 

and miR-495 [247], two target genes of the investigated microRNAs, neurotrophin brain-

derived neurotrophic factor (BDNF) and the histone deacetylase  sirtuin1 (SIRT1), as 

well as the major microRNA biosynthetic processing enzymes, RNAse III-type 

endonucleases Drosha and Dicer. Overall, we identified sex differences at multiple stages 

of normal pubertal development and in multiple brain regions in the gene expression of 

EtOH-sensitive microRNAs, their target genes and microRNA processing enzymes. We 

conclude that throughout puberty, the hippocampal miRNome of EtOH-sensitive 

microRNAs is dependent on sex and age, and suggest that both short and long-term 

developments within the hippocampus during pubertal development may rely on changes 

of microRNA expression over this period. Additionally, we determined that the 

microRNA expression profiles in both the male and female throughout pubertal 

development are distinct between the ventral and dorsal hippocampus. 

Approach 

The dorsal and ventral hippocampus were microdissected from untreated male 

and female Wistar rats and collected at three different ages during pubertal development 

(early puberty, PND 30; mid/peripuberty, PND 44; late puberty, PND 71; 

N=10/sex/group). Importantly, peripuberty in rats is considered to be ~ PND 30-45 

[201,202]. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to 
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quantify the expression levels of a total of five microRNAs (miR-10a-5p, miR-26a, miR-

32, miR-103 and miR-495), and four genes (Drosha, Dicer, BDNF and SIRT1). 

microRNAs were previously identified to be EtOH-sensitive in pubertal male Wistar rats 

[247], and in Chapter 2 preliminary data. 

Results  

Dorsal hippocampus expression levels of EtOH-sensitive miR-10a-5p, miR-26a, and 

miR-495 in untreated rats are age and sex dependent. 

 In the dorsal hippocampus, a 2-way analysis of variance (ANOVA) revealed 

significant main effects of age or sex on the expression of miR-10a-5p, miR-26a and 

miR-495 (Table 4). There was also a statistically significant interaction between age and 

sex for these 3 microRNAs, indicating that the sex differences are dependent on age 

(Table4). On the other hand, there was a main effect of age alone on miR-32 expression 

(Table 4). miR-10a-5p and miR-32 expression levels demonstrated differences across 

puberty in females but not males (Fig. 12A, C).  Specifically, early puberty expression 

levels of miR-10a-5p were significantly higher in females compared to males (Fig, 12A). 

By mid-puberty, the female levels decreased to match the expression levels of miR-10a-

5p observed in males, which stayed constant from early to late puberty (Fig. 12A). 

Expression of miR-32 in females remained constant between early and mid-puberty, after 

which it increased significantly at late puberty (Fig. 12C). Interestingly, the expression of  

 

 



65 
 

 

Table 4. Statistical Analysis of Dorsal Hippocampus Gene Expression 

microRNA MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

miR-10a-

5p 

Yes: F(2,39) = 

12.892 p < 0.001 

Yes: F(2,39) = 21.589  

p < 0.001 

Yes: p = 0.005 

miR-26a Yes: F(2,48) = 

16.703 p < 0.001 

Yes: F(1,48) = 

138.623 p < 0.001 

Yes: p < 0.001 

miR-103 No No No 

miR-32 Yes: F(2,53) = 3.379 

p = 0.042 

No No 

miR-495 Yes: F(2,44) = 

11.972 p < 0.001 

Yes: F(1,44) = 

174.639  

p < 0.001 

Yes: p < 0.001 

    

GENE MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

Drosha Yes: F(2,54) = 

14.973. p < 0.001 

Yes: F(2,54) = 

45.914p < 0.001 

Yes: p < 0.001 

Dicer Yes: F(2,54) = 

10.769  p < 0.001 

Yes: F(2,54) = 

145.010  p < 0.001 

Yes: p < 0.001 

BDNF Yes: F(2,54) = 

10.779  p < 0.001 

Yes: F(1,54) = 90.143 

 p < 0.001 

Yes: p < 0.001 

SIRT1 Yes: F(2,54) = 

92.432 p < 0.001 

Yes: F(1,54) = 94.246  

p < 0.001 

Yes: p < 0.001 
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Figure 12. Sexually dimorphic microRNA expression is evident during pubertal 

development in the dorsal hippocampus. miR-10a-5p (A), miR-26a (B), miR-32 (C), 

miR-103 (D) and miR-495 (E) expression levels in untreated male (grey line) and 

untreated female (pink line) pubertal rats. N=10/group. Data represent mean fold change 

± SEM as compared to untreated PND 30 male animals. * Dissimilar letters indicate a 

statistically significant difference between groups, two-way ANOVA (p<0.05). 
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miR-26a and miR-495 in males was significantly higher than in females throughout the 

entire duration of pubertal development (Fig. 12B, E). Moreover, relative to male at much 

lower levels (Fig. 12B, E). In males, both miR-26a and miR-495 expression levels 

increased between early and mid puberty, and by late puberty, miR-26a decreased 

significantly to reach an expression level lower than the early puberty level (Fig. 

12B).However, by late puberty, miR-495 continued to increase with age in the males 

(Fig. 12E). miR-103 expression levels were not significantly different between the sexes 

or between stages of pubertal development in the dorsal hippocampus (Fig. 12D).  

Ventral hippocampus expression levels of EtOH-sensitive miR-10a-5p, miR-26a, and 

miR-495 in untreated rats are age and sex dependent. 

 We next tested whether the expression levels of the five EtOH-sensitive 

microRNAs were sexually dimorphic in the ventral hippocampus.  RT-PCR analysis 

followed by a 2-way ANOVA revealed that EtOH-sensitive microRNA expression 

patterns were sexually dimorphic throughout pubertal development in the ventral 

hippocampus. Furthermore, the sex difference patterns observed in the ventral 

hippocampus of these microRNAs throughout puberty differed from those observed in 

the dorsal hippocampus. For example, there was a significant main effect of age and sex 

on expression levels of miR-26a, miR-103 and miR-495, and a significant interaction 

between age and sex in miR-10a-5p, miR-26a, miR-103 and miR-495 (Table 5). 

Specifically, miR-10a-5p expression levels did not change statistically over the course of 

pubertal development in females, but miR-10a-5p expression did significantly increase 

between mid and late puberty in males (Fig. 13A). Furthermore, no other EtOH-sensitive 

microRNA demonstrated any change in the female ventral hippocampus over time and, 
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similar to the dorsal hippocampus, female expression levels of miR-26a and miR-495 

were very lowly expressed compared to the levels in males (Fig. 13B, E). Male 

expression levels of miR-26a and miR-495 both decreased significantly between early to 

mid pubertal levels, followed by a stabilization of miR-26a expression at late puberty 

(Fig. 13B) and a significant increase in miR-495 expression between mid and late 

puberty, with levels exceeding those expressed at early puberty (Fig. 13E). In contrast, 

miR-103 expression levels in males remained stable between early to mid-puberty, 

followed by a significant increase at late puberty (Fig. 13D).  

Mature microRNA biosynthetic processing enzymes are altered by pubertal 

development in a sexually dimorphic manner in the dorsal and ventral 

hippocampus. 

We next assessed the expression of Drosha and Dicer in male and female dorsal 

and ventral hippocampus at early, mid and late puberty. We hypothesized that mature 

microRNA biogenesis enzyme expression levels are sexually dimorphic during puberty. 

Importantly, previous reports indicate that the expression of microRNA processing 

enzymes may be regulated, in part, by sex hormones or their nuclear receptors. For 

example, breast cancers can be distinguished by their estrogen receptor (ER) status (i.e. 

can either be ER positive (ER+) or negative (ER-) and indeed, ERα breast cancer cell 

lines and clinical mechanisms remains unknown [249].  Therefore, it is possible that 

Drosha and Dicer levels correlate with pubertal changes in gonadal hormone levels. We 

identified a significant main effect of both sex and age on Drosha and Dicer expression  
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Table 5. Statistical Analysis of Gene Expression Levels in the ventral hippocampus 

microRNA MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

miR-10a-

5p 

  No No Yes: p = 0.004 

miR-26a Yes: F(2,41) = 9.600 

p < 0.001 

Yes: F(2,41) = 

59.915  

p < 0.001 

Yes: p = 0.002 

miR-32 No No No 

miR-103 Yes: F(2,53) = 

13.038 p < 0.001 

Yes: F(1,53) = 8.244  

p = 0.006 

Yes: p = 0.002 

miR-495 Yes: F(2,41) = 

22.776 p < 0.001 

Yes: F(1,41)= 

136.974 p < 0.001 

Yes: p < 0.001 

    

GENE MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

Drosha Yes: F(2,54) = 4.401 

p = 0.017 

Yes: F(2,54) = 

21.607 p < 0.001 

Yes: p = 0.006 

Dicer Yes: F(2,54) = 5.547  

p = 0.006 

Yes: F(2,54) = 

53.759  p < 0.001 

Yes: p = 0.003 

BDNF Yes: F(2,45) = 4.310  

p = 0.019 

Yes: F(1,45) = 

14.607 p < 0.001 

Yes: p = 0.009 

SIRT1 Yes: F(2,47) = 

28.346  p < 0.001 

Yes: F(1,47) = 

53.143  p < 0.001 

Yes: p < 0.001 
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Figure 13. Sexually dimorphic microRNA expression is evident during pubertal 

development in the ventral hippocampus. miR-10a-5p (A), miR-26a (B), miR-32 (C), 

miR-103 (D) and miR-495 (E) expression levels in untreated male (grey line) and 

untreated female (pink line) pubertal rats. N=10/group. Data represent mean fold 

change ± SEM as compared to untreated PND 30 male animals. Dissimilar letters 

indicate a statistically significant difference between groups (p<0.05). 

E

. 



71 
 

 

levels, as well as a significant interaction between age and sex in both the dorsal and 

ventral hippocampus (Table 4, Table 5). Interestingly, female expression levels of Drosha 

and Dicer in the dorsal and ventral hippocampus were lower than the expression levels in 

males (Fig. 14), except for one stage of pubertal development in the ventral hippocampus 

wherein male and females had similar Drosha expression levels (Fig. 14B). Furthermore, 

significant differences across age were apparent in male Drosha and Dicer expression 

levels in both hippocampus regions. Between early and mid-puberty, the male Drosha 

and Dicer expression levels decreased and remained decreased throughout late puberty in 

the dorsal hippocampus (Fig. 164, C) and significantly increased between mid puberty to 

late puberty in the ventral hippocampus (Fig. 14B, D). In stark contrast, the female 

microRNA biogenesis enzymes varied very little throughout pubertal development, such 

that only in the ventral hippocampus, did Drosha expression levels significantly decrease 

between early and peripuberty, followed by a further decrease below early pubertal levels 

at late puberty (Fig. 14B).  

Expression levels of EtOH-sensitive microRNA target genes are differentially 

dependent on age and sex in the dorsal and ventral hippocampus.  

The neurotrophic factor BDNF and the histone deacetylase SIRT1 are both 

neuroprotective. BDNF mediates synaptic plasticity and hippocampus-dependent 

memory by supporting neurotransmitter release and inducing long-term potentiation 

[84,85,253]. SIRT1 also contributes to hippocampus-dependent learning and memory as 

well as regulates anxiety [23,25,102,254]. Importantly, memory and mood are partially 

controlled by the dorsal and ventral hippocampus, respectively. We have previously  
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Figure 14. Sexually dimorphic microRNA processing enzyme expression is evident 

during pubertal development in the dorsal and ventral hippocampus. Drosha (A, C) 

and Dicer (B, D) expression levels in untreated male (grey line) and untreated female 

(pink line) pubertal rats. N=10/group. Data represent mean fold change ± SEM as 
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demonstrated that alterations in the expression of microRNAs following peripubertal 

binge EtOH exposure in the male hippocampus significantly correlated with alterations in 

the expression levels of the microRNA target genes BDNF and SIRT1 [247]. The 

regulation of memory and mood are impaired by adolescent EtOH abuse [255,256] and 

such effects can also present in a sexually dimorphic manner [228,257] yet the 

mechanisms governing such processes remain unclear. Therefore, we hypothesized that 

the EtOH-sensitive microRNA expression previously reported in males would be 

differentially expressed in females across pubertal development and that the ventral and 

dorsal hippocampus would display region-specific sex differences. Our results indicate a 

statistically significant main effect of both age and sex on the expression levels of SIRT1 

and BDNF in both the dorsal and ventral hippocampus, as well as a statistically 

significant interaction between age and sex (Table 4 and Table 5). In the female dorsal 

hippocampus, SIRT1 expression was dynamic across puberty such that it decreased 

between early and mid puberty and remained lowly expressed into late puberty (Fig. 

15C). The same pattern throughout puberty was also observed for male ventral 

hippocampus SIRT1 expression, however, the level of SIRT1 was greater in males than 

in females at each time point (Fig. 15C). Overall, females expressed these EtOH-sensitive 

microRNA target genes at much lower levels relative to males and furthermore, 

expression levels in males demonstrated a great deal of variation over the course of 

pubertal development (Fig. 15). Interestingly, the expression patterns of BDNF in the 

ventral and dorsal hippocampus and of SIRT1 in the ventral hippocampus over puberty 

were similar, such that between early and mid puberty there was an increased in 

expression, which then lowered back to early pubertal levels at late puberty (Fig. 15A, B,  
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Figure 15. Sexually dimorphic microRNA target gene expression is evident during 

pubertal development in the dorsal and ventral hippocampus. BDNF (A, B) and SIRT1 

(C, D) mRNA levels in the dorsal and ventral hippocampus in untreated male (grey line) 

and untreated female (pink line) pubertal rats. N=10/group. Data represent mean fold 

change ± SEM as compared to untreated PND 30 male animals. Dissimilar letters 

indicate a statistically significant difference between groups (p<0.05). 
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D). This similar pattern suggests that mid puberty is a possible critical window of time 

during which high SIRT1 and BDNF expression is critical for developmental processes in 

the male hippocampus. 

Discussion 

In the current study we tested the hypothesis that EtOH-sensitive microRNAs 

exhibit sexually dimorphic expression profiles in the ventral and dorsal hippocampus 

during pubertal development. The dorsal hippocampus primarily operates learning and 

memory while the ventral portion regulates emotional memory and mood [57,58,258]. 

The continuous development of neuronal circuitry throughout pubertal development 

[43,259] is partially regulated by gonadal hormones [47,233,236,260,261]. Gonadal 

hormone signaling via nuclear receptors has also been demonstrated to influence the 

expression of microRNAs [165,262,263,264,265,266]. Therefore, gonadal hormone 

exposure may mediate hippocampal maturation during puberty via downstream 

microRNA effector molecules. Furthermore, the rise in sex steroids during pubertal 

development may contribute to a microRNA-mediated regulation of the sexually 

dimorphic development of memory capacities and emotional responses during this 

period. Bioinformatic analysis predicted that miR-10a-5p, miR-26a, miR-32, miR-103 

and miR-495 bind to the 3’ UTRs of genes regulating synaptic plasticity, including 

SIRT1, BDNF and synapsin II (SYN2). Four of these five microRNAs have recently 

been identified to demonstrate dynamic expression patterns throughout healthy pubertal 

development in the male rat hippocampus and furthermore, their normal developmental 

expression profile is disrupted following peripubertal binge EtOH, a typical adolescent 

behavior [247]. 
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 The main goal of this study was to quantify sex differences in the expression 

levels of miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495, the microRNA target 

genes SIRT1 and BDNF and the major microRNA biosynthetic processing enzymes 

Drosha and Dicer in the pubertal dorsal and ventral hippocampus. Overall, this study 

demonstrates that miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495 are expressed in 

an age and sex-specific manner during intact pubertal development and that these sex 

differences are distinct between the dorsal and ventral hippocampus. Furthermore, we 

quantified, to our knowledge for the first time, sex differences in the expression levels of 

BDNF, SIRT1, Drosha and Dicer mRNA in the dorsal and ventral hippocampus at three 

stages of pubertal development, and identified significant sex differences in expression 

levels throughout puberty and between the ventral and dorsal hippocampus. Taken 

together, sexually dimorphic expression levels of EtOH-sensitive microRNAs, their gene 

targets and microRNA processing enzymes during pubertal development suggests that the 

expression of these microRNAs may be influenced by sex hormones. Furthermore, the 

sex, age and hippocampus region-dependent fluctuations in EtOH-sensitive microRNAs 

and their target genes suggest that sex differences in pubertal microRNA expression may 

underlie the sexual dimorphisms observed in response to stress and alcohol abuse, 

suggesting that they may influence the development of anxiety and depression-related 

disorders during this period of life.  

The hippocampus plays a major role in regulating sexually dimorphic behaviors, 

such as learning, memory and the stress response. For instance, males perform better than 

females on hippocampus-dependent spatial memory acquisition tests despite the well-

known positive effects that E2 imparts on hippocampus-dependent function in females.  
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Indeed, it has been proposed that E2 and T differentially influence memory functions in 

males and females [267,268].  It is likely that the hormonal processes of sexual 

differentiation during development creates organizational differences in neural substrates 

and that these organizational differences underlie the sexually dimorphic effects of E2 and 

T on cognitive tasks in males and females as well as contribute to the different strategies 

males and females use to solve similar tasks [269]. However, it is difficult to ascertain 

clear sexually dimorphic effects that gonadal hormones have on hippocampus-mediated 

cognition in males and females because hormonal influences can differ with task type, 

task aspect and the degree to which the task relies on one or more brain region. In 

contrast, clear responses to gonadal hormone treatment can be observed when 

investigating morphological, anatomical and cellular aspects of hippocampus-mediated 

functions. For instance, synaptic plasticity in males and females relies on gonadal 

hormones. Gonadectomy (GDX) in males reduces spine density (structures that receive 

excitatory inputs and therefore serve as a measurement of synaptic plasticity and 

memory) and while E2 treatment fails to restore this loss [270], androgen receptor 

activation increases spine density via up-regulation of N-methyl-D-aspartate receptors 

(NMDARs) [270,271,272]. In contrast, female exposure to androgens and endogenous 

and exogenous E2 leads to increased spine density [270,272,273,274] and the 

electrophysiological measurement of learning and memory, long-term potentiation (LTP) 

[275,276]. These data demonstrate that differential mechanisms are initiated by AR and 

ER activation to mediate synaptic plasticity in males and females. Therefore, it is not 

unusual that we observed sex differences in the expression of hippocampal microRNAs 

(Fig. 12 and Fig. 13), as they may play a role in mediating signaling pathways 
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responsible for normal sexually dimorphic brain development during puberty as well as 

in the sexually dimorphic responses to peripubertal binge EtOH [44].   

 Our current understanding of how peripubertal binge EtOH affects the male and 

female developing brain differently is incomplete, and therefore requires further 

investigation into the potential molecular targets of binge-pattern of EtOH abuse. In our 

study we observed relatively low expression levels in the female hippocampus of the 

microRNAs sensitive to pubertal binge EtOH compared to males (Fig. 12 and Fig. 13). 

Indeed, it is possible that different microRNAs are sensitive to EtOH in males than in 

females. Alternatively, microRNAs may not be involved in mediating the effects of binge 

EtOH on the stress response or memory capacity in females, a theory in line with 

previous findings that binge EtOH exposure-mediated alterations in genes regulating the 

stress response were observed in pubertal males but not in females [44,47]. It is possible 

that sex differences in microRNA expression results from differences in the rates by 

which males and females reach sexual maturity, regarding reproductive function. Indeed, 

females typically develop reproductive capacity earlier than males [17,277]. While the 

rates of maturation for adult-like memory processing and stress responsiveness in males 

and females are not clearly delineated, some studies support the notion that observed sex 

differences in the pubertal stress response [278] are indeed established in the brain prior 

to pubertal onset in females [279]. These data suggest that microRNAs, microRNA 

biogenesis enzymes, BDNF and SIRT1 expression levels are sexually dimorphic during 

pubertal development and distinct between the dorsal and ventral hippocampus. Because 

the ventral hippocampus regulates the stress response, it is possible that the sexually 

dimorphic expression levels of microRNAs may play a role in sex differences in mood 
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and emotional memory regulation. A more completely developed female stress response 

and/or synaptic plasticity at pubertal onset may also underlie observed sex differences in 

the mechanisms employed by AR and ER activation-induced synaptic plasticity in the 

male and female adolescent brain, respectively. Taken together, these data underscore the 

need to better understand whether the observed sex differences in hippocampal 

microRNA expression may contribute to the sexually dimorphic adolescent responses to 

stressors such as binge alcohol exposure.  

 The biogenesis of mature microRNAs relies on the RNAse III enzymes, Drosha 

and Dicer which generate the pre-microRNA and microRNA, respectively. In cancer cell 

models, E2 interferes with microRNA biogenesis by acting via estrogen receptors α and β 

(ERα, ERβ), transcription factors of the nuclear receptor family of homeostatic regulators 

[161,264]. For instance, E2-induced ERβ signaling in an E2-responsive cancer cell line 

lead to an accumulation of pre-microRNA transcripts, possibly due to an ERβ-mediated 

release of Drosha from sequestration in an inhibitory chromatin complex [161]. 

Castellano et al. also observed alterations in pri-microRNA precursors more often than in 

the mature microRNAs derived from it following E2-induced nuclear receptor signaling 

in breast cancer cell lines, which suggests that the regulation of microRNA expression 

occurs at the level of microRNA biogenesis [264]. The details of how particular 

microRNAs are altered by nuclear receptor-mediated regulation of Drosha and/or Dicer 

activity remains unclear, yet these data set precedence for further investigation into the 

mechanisms by which mature microRNA expression can be regulated. Importantly, 

estrogen receptor-mediated regulation of microRNA expression has not been confirmed 

in the brain. However, it is possible that sex differences in hippocampal microRNA 
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expression throughout rat pubertal development are influenced by the regulation of the 

microRNA biogenesis. We demonstrate here that expression levels of Drosha and Dicer 

mRNA in males was overall much greater when compared to females (Fig. 14). 

Furthermore, the male expression levels of these enzymes fluctuated over pubertal 

development while the female expression levels of Drosha and Dicer had little to no 

changes over time (Fig. 14). The fluctuations in expression levels of Drosha and Dicer, or 

the lack thereof, in male and females respectively, do not correlate with the patterns of 

microRNA expression level changes during pubertal development in either sex. However, 

recent studies have repeatedly demonstrated in [280,281] multiple tissues, that models of 

Drosha and Dicer knockouts, knockdowns or mutants alters the expression of only subset 

of microRNAs [130,282,283]. For instance, homozygous Dicer mutant zebrafish 

demonstrate arrested growth and early death, yet ablation of Dicer does not induce 

complete abolishment of mature microRNA expression and the authors conclude that a 

maternal contribution of Dicer may maintain the biogenesis mature microRNAs [284]. 

An additional study examined a Dicer exon 5-deficient colorectal cell line which 

demonstrated once again, that only 57% of known microRNAs were downregulated in 

their expression in the mutant cells compared to wild type [280]. In addition, Kuehbacher 

et al. demonstrate that Drosha and Dicer siRNA downregulates expression of only two 

microRNAs  (let-7f and miR-27b) out of many (members of the let-7 family, miR-21, 

miR-126, miR-221 and miR-222) that are highly expressed in endothelial cells [282]. 

Therefore, although it is surprising that Drosha and Dicer expression levels don’t 

correlate with the observed changes in microRNA expression throughout pubertal 

development in our study, it is becoming clear that a lack these biogenesis enzymes may 
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not necessarily dictate a reduction in mature microRNA expression. Furthermore, 

because the in vivo function of Drosha remains unknown and because Drosha belongs to 

the same class of endonucleases as Dicer, it is not completely surprising that decreases in 

Drosha expression also do not correlate with decreases in microRNA expression.  

microRNAs are considered master regulators of the cellular transcriptome and 

have been repeatedly demonstrated to play critical regulatory roles in synaptic plasticity. 

Indeed, the highly plastic nature of the adolescent brain underlies the substantial brain 

maturation that takes place at this time and plays a particular role in the formation and 

consolidation of spatial and emotional memory. The evolutionary advantage to a 

microRNA-mediated regulation of synaptic plasticity is that it enables a neuron to 

quickly fine-tune its gene expression and protein composition in order to adapt to 

different environmental stimuli. We not only focused our study on identifying the 

expression pattern of microRNAs that are sensitive to EtOH exposure in the pubertal 

hippocampus, but also on the microRNA target genes important for hippocampus 

functions. Indeed, the two microRNA target genes of interest, BDNF and SIRT1, are also 

both important mediators of synaptic plasticity. In the male ventral hippocampus we 

demonstrated that the significantly dynamic expression patterns of BDNF and SIRT1 

correlated with the significant changes in expression levels of miR-26a, miR103 and 

miR-495 throughout pubertal development (Fig. 13B, D, E and Fig. 15B, D). 

Importantly, using target prediction software programs, Targetscan and MirDB, we 

identified BDNF and SIRT1 are targets of miR26a, miR-103 and miR-495. Moreover, in 

the male dorsal hippocampus, decreased SIRT1 expression levels during pubertal 

development correlated with increased miR-495 expression levels (Fig. 13E and Fig. 
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15C). These data suggest that mir-26a, miR-103 and miR-495 mediate important 

developmental roles in the pubertal male ventral and dorsal hippocampus, possibly by 

regulating the expression levels of BDNF and SIRT1. Consistent with this interpretation, 

previous studies have experimentally confirmed that miR-26a binds the 3’UTR of BDNF 

[143]. Also a separate study, by using massive parallel sequencing demonstrated that 

miR-26a is abundantly expressed in the mouse hippocampus and by using integrated 

genomics demonstrated that miR-26a shares a seed sequence with other microRNAs 

targeting genes important for hippocampus function [285]. Overall, female expression 

levels of EtOH-sensitive microRNAs, BDNF and SIRT1 did not correlate with one 

another in this study (Fig. 12, 13 and 15). Moreover, the expression levels of SIRT1 and 

BDNF were extremely low and nearly unchanging in the female hippocampus compared 

to males throughout pubertal development (Fig. 15). These “negative” data most likely do 

not reflect a lack of dynamic synaptic plasticity, but rather suggest that SIRT1 and BDNF 

are not the primary mediators of synaptic plasticity in the female pubertal hippocampus. 

Indeed, the female hippocampus may utilize different mechanisms responsible for 

synaptic plasticity. This interpretation is supported by previous work identifying that AR 

and ER in males and females, respectively, initiate different mechanisms to regulate 

synaptic plasticity [270,272,273,274,275,276]. Indeed, BDNF is well known to be 

regulated by gonadal hormones and it is possible that the differences we detect in 

pubertal male and female hippocampus BNDF expression is a reflection of respective 

male and female gonadal hormones partially directing different mechanisms of synaptic 

plasticity between the sexes. Importantly, gonadal hormone levels were not directly 

tested because pubertal gonadal hormone levels have been well characterized 
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[286,287,288]. Overall, this chapter determined that EtOH-sensitive microRNAs are 

expressed in different developmental and regional patterns within the male and female 

pubertal hippocampus, and suggests that these microRNAs may differentially regulate 

their gene targets in the pubertal male and female brain. 
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CHAPTER FIVE 

SEX DIFFERENCES IN HIPPOCAMPUS 17β-ESTRADIOL-RESPONSIVE 

MICRORNA EXPRESSION DURING PUBERTAL DEVELOPMENT OF THE 

WISTAR RAT  

Introduction 

Adolescence is a dynamic period of life during which the brain undergoes 

countless physiological and psychological developments. Pubertal maturation is the most 

clear physiological process that transpires during adolescence, one hallmark of which is 

the rapid rise in the gonadal hormones 17β-estradiol (E2) and testosterone (T) in females 

and males, respectively. Puberty is initiated, in part, by activity of the neuroendocrine 

hypothalamo-pituitary-gonadal (HPG) axis. In turn, gonadal hormones induce 

physiological changes in brain structure and gene expression, which are ultimately 

reflected in the functional development of adultlike behaviors. Indeed, differences in 

circulating gonadal hormones between males and females has long been supported to 

underlie sexually dimorphic brain morphology [289,290,291,292], neurochemistry 

[293,294,295,296,297,298], and function [294,299] in most species.  

Classical gonadal hormone action throughout the body and brain involves the 

binding of gonadal hormones to nuclear receptors which, upon activation, can regulate 

gene transcription. More recently, E2 has been of particular interest regarding its 

influence on the transcription of microRNAs [19,223]. Recently, Rao et al. demonstrated 

that microRNA expression is altered by E2 in an age-dependent manner in the 
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hippocampus of young and aged female rats [28], which suggests that E2 can 

influence microRNA expression levels differentially throughout the lifespan. Indeed, 

experimental manipulation of puberty at different ages also alters microRNA expression 

in the male rodent [248]. Furthermore, alterations in brain microRNA expression are 

associated with sexually dimorphic psychiatric disorders that develop during adolescence 

[182]. For example, miR-30b expression is lower in female schizophrenic brains 

compared to males and this expression is associated with mutations in the human 

estrogen receptor gene, Esr1 [151]. Moreover, miR-30b sensitivity to E2 in the brain 

suggests that E2-sensitive microRNA may play a role in the sexual dimorphic etiology of 

psychiatric disorders. The adolescent alterations in neurocircuitry and neurochemistry 

which contribute to the development of adultlike behaviors undoubtedly require a high 

degree of finely orchestrated synaptic plasticity and regulation of gene expression during 

this important developmental period. It is possible that the remarkable neuronal plasticity 

observed in the adolescent brain is mediated, in part, due to gonadal hormone-signaling 

via microRNAs. 

 Gonadal hormones and microRNAs have both been observed to influence 

synaptic plasticity, however, whether they do so during adolescence is not known. In the 

hippocampus, E2 alters synapse formation by increasing expression of pre- and post-

synaptic proteins and thereby increasing dendritic spine formation in vivo 

[300,301,302,303,304]. In addition, miR-132 promotes dendrite growth in response to 

neuronal stimulation, regulating synaptic plasticity in a p250GAP-dependent mechanism 

[305]. That microRNAs regulate synaptic plasticity and are differentially expressed in 

psychiatric disorders suggests that they are active players in adolescent brain 
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development. Moreover, differences in gonadal hormone levels between males and 

females may reflect differences in microRNA expression.  

Overall, the roles that microRNAs play in postnatal brain development and 

maturation still requires a great deal of investigation. Given that the hippocampus plays a 

critical role in synaptic plasticity, a process required for pubertal neuronal rewiring and 

maturation of adultlike behaviors, it is possible that the expression of microRNAs in the 

hippocampus are appropriately poised to play a crucial role in regulating the biological 

processes involved in pubertal neuronal development. To explore this theory, we 

hypothesized that hippocampal expression of E2-sensitive microRNAs is sexually 

dimorphic throughout pubertal development and that this expression is distinct between 

the dorsal and ventral hippocampus. To test this hypothesis, we quantified the ventral and 

dorsal hippocampus expression levels of 5 microRNAs discovered by Rao et al. to be 

altered by E2 dependent on age in the female brain: let-7i, miR-7a, miR-9, miR-125a and 

miR-181a. The ventral and dorsal hippocampus were examined separately because the 

dorsal hippocampus’ primary function is that of spatial memory acquisition, 

distinguishing it from the ventral hippocampus which regulates emotional memory and 

affective processing via its many projections to amygdalar nuclei [57,58,205]. 

Importantly, the normal developmental expression patterns these specific microRNAs 

have not been documented in either sex at any stage of puberty, nor between distinct 

functional regions of the hippocampus. 

Approach 

The dorsal and ventral hippocampus were microdissected from untreated male 

and female Wistar rats and collected at three different ages during pubertal development 
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(early puberty, PND 30; mid/peripuberty, PND 44; late puberty, PND 71; 

N=10/sex/group). Importantly, peripuberty in rats is considered to be ~ PND 30-45 

[201,202]. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to 

quantify the expression levels of a total of five microRNAs: (let-7i, miR-7a, miR-9, miR-

125a, and miR-181a). microRNAs were previously identified to be 17β-estradiol-

sensitive in female rats by Rao et al. [247]. 

Results 

let-7i, miR-7a, miR-9, miR-125a, and miR-181a expression levels throughout 

pubertal development in the dorsal hippocampus are dependent on age and sex. 

  microRNA expression can be regulated by E2 in whole body homogenates [306] 

as well as a variety of  other tissues [165,307,308]. In the brain, expression levels of 

mature let-7i, miR-7a, miR-9, miR-125a, and miR-181a are altered by E2 dependent on 

age in the adult female rat [28], however, the normal physiological expression profile of 

these microRNAs throughout puberty, when circulating E2 levels increase dramatically in 

females, is unknown. Therefore, we measured the expression levels of 5 E2-responsive 

microRNAs in the dorsal hippocampus using qRT-PCR at three time points throughout 

pubertal development (early = 30 d, peri = 44 d, late = 73 d) in untreated male and female 

rats (Fig. 16). In the dorsal hippocampus, a two-way ANOVA revealed a main effect of 

sex in 4 out of the 5 microRNAs tested including miR-7a, miR-9, miR-125a, and miR-  
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Figure 16. Diagram of experimental paradigm. Diagram depicting the age of sacrifice 

for each group of male and female Wistar rats. N=10/group. 
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Table 6. Statistical Analysis of microRNA Expression Levels in the Dorsal Hippocampus 

microRNA MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

let-7i No No No 

miR-7a No Yes: F(1,46) = 10.138 

p = 0.003 

Yes 

p = 0.015 

miR-9 Yes: F(2,48) = 

20.038 p < 0.001 

Yes: F(1,48) = 13.933 

p < 0.001 

Yes 

p = 0.003 

miR-125a Yes: F(2,48) = 4.984 

p = 0.011 

Yes: F(1,48) = 10.476 

p = 0.002 

Yes 

p = 0.004 

miR-181a Yes: F(2,45) = 

10.076 p < 0.001 

Yes: F(1,54) = 8.206 

p p = 0.006 

Yes 

p < 0.001 
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181a, and 3 of these microRNAs, (miR-9, miR-125a and miR-181a) demonstrated a main 

effect of age (Table 6). A statistically significant interaction between sex and age was 

observed for miR-7a, miR-9, miR-125a, and miR-181a expression in the dorsal 

hippocampus (Table 6), demonstrating that the sex differences in microRNA expression 

is dependent on age. Interestingly, the only E2-responsive microRNA that was expressed 

in a manner singly dependent on sex, miR-7a, demonstrated an expression pattern 

throughout puberty that was different from the other 3 sex-dependent E2-responsive 

microRNAs. Specifically, the expression levels of miR-9, miR-125a and miR-181a 

significantly decreased in females between early and peripuberty, and remain decreased 

until late puberty (Fig. 17C, D, E). In contrast, male expression levels of miR-9, miR-

181a and miR-125a remained constant. On the other hand, miR-7a expression did not 

change between early and peripuberty, but significantly increased and decreased between 

peripuberty and late puberty in females and males, respectively (Fig. 17B). These data 

suggest that miR-9, miR-125a, miR-181a may play important roles in dorsal 

hippocampus sexual dimorphisms during early puberty and that miR-7a may be 

important for mediating sex differences in brain function during late puberty. Overall, 

dorsal hippocampus microRNA expression levels that are dependent on sex and age 

decrease over the course of puberty whereas the microRNAs dependent on sex alone 

demonstrate divergent expression patterns between males and females. 

Sexually dimorphic expression patterns of E2-responsive microRNAs throughout 

pubertal development in the ventral hippocampus are distinct from the dorsal 

hippocampus.  
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Figure 17. Sexually dimorphic microRNA expression is evident during 

pubertal development in the dorsal hippocampus. let-7i (A), miR-7a (B), 

miR-9 (C), miR-125a (D) and miR-181a (E) expression levels in untreated 

male (grey line) and untreated female (pink line) pubertal rats. N=10/group. 

Data represent mean fold change ± SEM as compared to PND 30 male 

animals. Dissimilar letters indicate a statistically significant difference 

between groups based on a 2-way ANOVA (p<0.05). 
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microRNA expression levels in the brain can be dependent on age, sex and hormone 

levels [309,310,311]. However, sex differences in microRNA expression during puberty 

have not been compared between the anatomically and functionally distinct dorsal and 

ventral hippocampus regions [57,58,205]. Therefore, we next quantified the expression 

levels of the E2-responsive microRNAs let-7i, miR-7a, miR-9, miR-125a, and miR-181 

[28] in the ventral hippocampus to determine if they are differentially expressed from the 

dorsal hippocampus during pubertal development. In the ventral hippocampus there was a 

significant main effect of sex, independent of age, in 4 out of the 5 microRNAs, miR-7a, 

miR-9, miR-125a and miR-181a (Table 7). This is in stark contrast to the alterations in 

E2-responsive microRNAs in the dorsal hippocampus, in which these microRNAs were 

altered by sex dependent on age (Table 6). Interestingly, miR-7a, miR-125a and miR-

181a expression levels remained constant throughout pubertal development in both males 

and females, yet female microRNA expression levels were significantly greater than 

males throughout this time period (Fig. 18B, D, E). The expression level of miR-9 

however, was dynamic across pubertal development in males and not in females. 

Specifically, during early puberty, miR-9 expression levels were significantly greater in 

males compared to females, after which miR-9 significantly decreased below female 

levels at peripuberty and remained lowered until late puberty (Fig. 18C).  Finally, no 

interaction was detected between age and sex for the E2-responsive microRNAs in the 

ventral hippocampus which demonstrated sexually dimorphic expression levels, 

suggesting that these observed sex differences are not dependent on E2. 

Discussion  
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Table 7. Statistical Analysis of Gene Expression Levels in the Ventral Hippocampus 

microRNA MAIN EFFECT 

OF AGE 

MAIN EFFECT OF 

SEX 

INTERACTION:  

AGE X SEX 

let-7i No No No 

miR-7a No Yes: F(2,53) = 5.319  

p = 0.008 

No 

miR-9 No Yes: F(1,53) = 25.571 

p < 0.001 

No 

miR-125a No Yes: F(1,47) = 71.900 

p < 0.001 

No 

miR-181a No Yes: F(1,45) = 20.266 

p < 0.001 

No 
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Figure 18. Sexually dimorphic microRNA expression is evident during 

pubertal development in the ventral hippocampus. let-7i (A), miR-7a (B), 

miR-9 (C), miR-125a (D) and miR-181a (E) expression levels in untreated 

male (grey line) and untreated female (pink line) pubertal rats. N=10/group. 

Data represent mean fold change ± SEM as compared to PND 30 male 

animals. Dissimilar letters indicate a statistically significant difference 

between groups based on a 2-way ANOVA (p<0.05). 

 



95 
 

 

Two novel findings emerged from these studies. First, 4 E2-responsive 

microRNAs, miR-7a, miR-9, miR-125a and miR-181a, are differentially expressed 

between males and females throughout pubertal development. Second, the degree to 

which microRNA expression levels vary by sex differs between brain regions. To our 

knowledge, these are the first studies to identify sexually dimorphic microRNA 

expression within the ventral and dorsal hippocampus. Moreover, the regional expression 

patterns of microRNAs in the hippocampus suggest that these microRNAs have distinct 

roles in the ventral and dorsal hippocampus. Our study extends these findings by 

determining that miR-7a, miR-9, miR-125a and miR-181a expression levels are 

dependent on sex and age during pubertal development. Overall, we determined that E2-

sensitive microRNAs expression levels are distinct between three stages of pubertal 

development and that these expression profiles are sexually dimorphic and brain region-

dependent. 

 Our data support the concept that microRNA expression levels are dynamic 

during periods of significant hormone fluctuations (such as puberty), although more 

experiments would be required to ascertain whether gonadal hormones directly regulate 

these microRNA expression profiles. Importantly, E2 and T levels are well characterized, 

such that they increase during pubertal development [286,287,288] and recent studies 

also indicate that periods of shifting gonadal hormone levels are associated with shifts in 

microRNA profiles in the brain [28,29,312]. For example, perinatal exposure to T 

associated with brain masculinization dramatically changes microRNA expression 

patterns [29] and E2 treatment in the aged female brain leads to different patterns of brain 

microRNA expression in the aged compared to young female rats [28]. A recent miR RT-
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PCR array also revealed distinct microRNA expression profiles in the prefrontal cortex of 

pre-pubertal (PND 28) male and female mice, providing further evidence that sexually 

dimorphic gonadal hormones and/or sex can influence miR expression patterns in the 

brain [312]. Therefore, our results which revealed that miR-7a, miR-9, miR-125a and 

miR-181a are differentially expressed between males and females throughout pubertal 

development suggests that the expression of these microRNAs may be regulated by 

gonadal hormones. 

 The primary purpose of this study was to determine the effect of pubertal 

development (i.e. age) on the expression levels of E2-responsive microRNAs [28] in male 

and female rats, yet our data reveal that microRNA expression levels in the ventral 

hippocampus are dependent on sex alone throughout pubertal development. This is in 

contrast to the dorsal hippocampus, where none of the E2-responsive microRNAs were 

dependent on sex alone. Therefore, these data reveal that sex is a critical factor in 

determining the microRNA expression profile in the pubertal rat ventral hippocampus, 

suggesting that these microRNAs may regulate the development of the ventral 

hippocampus and the sexually dimorphic mood and memory behaviors that it mediates.  

 Our data also demonstrate regional differences in the expression levels of sexually 

dimorphic E2-responsive microRNAs during puberty. For instance, in the dorsal 

hippocampus, the expression levels of 3 microRNAs (miR-9, miR-125a and miR-181a) 

are altered by sex dependent on age, whereas only one microRNA (miR-7a) is dependent 

on age alone. These data indicate that the expression levels of miR-9, miR-125a and miR-

181a are likely to regulate key sexually dimorphic developmental processes in the dorsal 

hippocampus occurring at distinct stages of puberty. This further suggests pubertal 
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microRNA expression levels can be sensitive to alterations in hormonal signaling and 

synaptic activation, two constantly evolving processes that shape the developing 

adolescent brain [313]. Interestingly, the expression level of let-7i is not dependent on 

sex or age in either the ventral and dorsal hippocampus, despite previous findings 

indicating its E2-responsiveness in the hippocampus of older rats [28]. This discrepancy 

underscores the concept that microRNAs can have very specific functions at different 

stages of development and/or different stages of hormonal environments in the brain and 

suggest that regional differences in ventral and dorsal hippocampus neurodevelopment 

during puberty may be mediated, in part, by differential E2-responsive microRNA 

expression  

Currently, there is not much information regarding the functions of the 

microRNAs measured in this study, particularly in the brain. Indeed, many efforts in the 

microRNA field are focused on identifying the potential target genes of microRNAs in 

different biological systems in order to elucidate their functions. However, most of these 

studies rely largely on imperfect computer algorithms to predict gene targets, making it 

difficult to draw compelling conclusions from such experimentally-derived data. For 

example, current microRNA target prediction programs cannot determine cell-type 

specificity nor indicate whether multiple microRNAs—as opposed to a singly identifiable 

microRNA—may be required to act in concert to regulate the expression of a given target 

gene, and indeed, complete mechanisms regarding microRNAs’ regulatory potential 

remain to be elucidated. Of the 5 microRNAs Rao et al. found to be E2-responsive, miR-9 

is by far the most widely researched regarding its neuronal functions including 

neurogenesis and neuronal outgrowth. For instance, undifferentiated human [314] and 
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mouse-derived [315] stem cells rely on miR-9 expression during neural progenitor cell 

differentiation and miR-9 can also convert human fibroblasts into neurons [316,317]. 

miR-9 plays an instructive role in mediating neuronal cell fate by targeting transcription 

factors[318,319], suggesting that miR-9 may influence hippocampal neurogenesis during 

puberty. Moreover, miR-9 contributes to neuronal communication by regulating dendritic 

branching [320]. Together, these studies reveal that miR-9 regulates the generation and 

architecture of neuronal networks, linking miR-9 function to synaptic plasticity. 

However, our limited understanding of microRNAs lends functional studies to appear far-

reaching. Therefore, documenting the developmental profiles of microRNAs in all 

biological systems is a logical starting point towards the goal of identifying functional 

capacity. Towards this aim, the current study identified both temporal and sex-specific 

expression patterns of E2-responsive microRNA in the adolescent brain, and provided 

insight into their potential functions as being mediators of sexually dimorphic pubertal 

brain development. Taken together, the data presented here establish fundamental 

rationale for future studies aiming to classify the effector (i.e target gene) functions of 

these microRNAs. 
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CHAPTER SIX 

GENERAL DISCUSSION 

Summary 

The previous chapters have described the following four main findings: 1) 

peripubertal binge EtOH exposure induces long-term alterations in mature microRNA 

expression levels in the male rat hippocampus, and has the potential to modulate the 

expression of their downstream target genes, 2) expression profiles of EtOH-sensitive 

microRNAs, miR-10a-5p, miR-26a, miR-32, miR-103 and miR-495, and their target 

genes, are dependent on sex and age in the pubertal rat hippocampus and therefore may 

contribute to sexually dimorphic hippocampus neurodevelopment, 3) expression profiles 

of E2-responsive microRNAs, miR-7a, miR-9, miR-125a and miR-181a, are differentially 

dependent on sex and age throughout pubertal development, suggesting that they play 

distinct developmental roles during puberty and 4) EtOH-sensitive and E2-responsive 

microRNAs have distinct expression profiles in the dorsal and ventral hippocampus 

throughout pubertal development, suggesting that their respective functions are region-

specific. Taken together, these data chapters significantly contribute to the scientific 

literature that the expression levels of microRNAs can vary throughout pubertal 

development in brain region and sex-specific manner, and that distinct microRNAs are 

sensitive to peripubertal binge EtOH. Global analysis of our findings suggest the 

following two overarching possibilities that 1) peripubertal binge EtOH-mediated 

alteration of  microRNA expression and/or processing underlies long-term alcohol abuse-
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induced central nervous system impairments, and 2) that microRNAs may play a 

regulatory role in sexually dimorphism of adolescents. Chapters 3-5 have delivered data 

generating a framework from which one can further study the above two 

theories/hypotheses. 

Key Findings 

 Chapter III:  

 A) Characterization of EtOH-sensitive microRNAs: 

 dorsal hippocampus miR-10a-5p expression decreases between 

early and mid puberty, remaining decreased until late puberty 

 dorsal hippocampus miR-26a expression levels decrease between 

mid and late puberty 

 dorsal hippocampus miR-103 expression levels do not change 

throughout pubertal development 

 dorsal hippocampus miR-495 expression levels increase between 

early and mid puberty, remaining increased until late puberty 

 peripubertal binge EtOH increases miR-10a-5p expression levels 

between mid and late puberty in the dorsal hippocampus 

 peripubertal binge EtOH decreases miR-26a expression levels 

immediately following the last treatment at mid puberty in the 

dorsal hippocampus 

 peripubertal binge EtOH does not alter miR-103 expression levels 

during puberty in the dorsal hippocampus 
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 peripubertal binge EtOH decreases miR-495 expression levels 

immediately following binge, remaining decreased until late 

puberty in the dorsal hippocampus 

 ventral hippocampus miR-10a-5p expression levels increase 

between mid and late puberty 

 ventral hippocampus miR-26a expression levels decrease between 

early and mid puberty, and increase again by late puberty 

 ventral hippocampus miR-103 expression levels increase between 

mid and late puberty 

 ventral hippocampus miR-495 expression levels decrease between 

early and mid puberty and increase beyond early puberty levels by 

late puberty 

 peripubertal binge EtOH increases miR-10a-5p expression levels 

immediately following the last treatment in the ventral 

hippocampus 

 peripubertal binge EtOH does not alter miR-26a expression levels 

in the ventral hippocampus 

 peripubertal binge EtOH increases miR-103 and miR-495 

expression levels immediately following the last treatment, and the 

levels are decreased by late puberty in the ventral hippocampus 

 B) Characterization of microRNA biogenesis enzymes: 
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 dorsal hippocampus Drosha and Dicer expression levels decrease 

between early and mid puberty, remaining decreased until late 

puberty 

 ventral hippocampus Drosha and Dicer expression levels decrease 

between early and mid puberty, and increase by late puberty 

 peripubertal binge EtOH increases Drosha expression levels in an 

immediate and long-term manner in the dorsal hippocampus 

 peripubertal binge EtOH increases dorsal hippocampus Dicer and 

ventral hippocampus Drosha and Dicer expression levels 

immediately following treatment and these levels are decreased 

beyond untreated levels by late puberty 

  C) Characterization of microRNA target genes BDNF and SIRT1: 

 dorsal hippocampus BDNF expression levels increase between 

early and mid puberty, then decrease by late puberty 

 dorsal hippocampus SIRT1 expression levels decrease between 

early and mid puberty, and increase by late puberty 

 ventral hippocampus BDNF and SIRT1 expression levels increase 

between early and mid puberty then decrease by late puberty 

 peripubertal binge EtOH increases BDNF and SIRT1 expression 

levels in immediate and long-term manners in the dorsal 

hippocampus 
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 peripubertal binge EtOH decreases BDNF expression levels 

between early and mid puberty, and levels increase beyond 

untreated levels by late puberty in the dorsal hippocampus 

 peripubertal binge EtOH decreases SIRT1 expression levels in an 

immediate and long-term manner in the ventral hippocampus 

 Chapter IV:  

A) Characterization of sex differences in EtOH-sensitive microRNAs: 

 dorsal hippocampus miR-10a-5p expression levels are increased at 

early puberty in the female relative to male  

 dorsal hippocampus miR-26a and miR-495 expression levels are 

decreased throughout pubertal development in the female relative 

to male 

 dorsal hippocampus miR-32 and miR-103 expression levels are not 

sexually dimorphic  

 ventral hippocampus miR-10a-5p expression levels are increased 

at early puberty, equivalent at mid puberty and decreased at late 

puberty in the female relative to male  

 ventral hippocampus miR-26a and miR-495 expression levels are 

decreased throughout pubertal development in the female relative 

to male 

 ventral hippocampus miR-103 expression levels are increased at 

mid puberty and decreased at late puberty in the female relative to 

male 
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 ventral hippocampus miR-32 expression levels are not sexually 

dimorphic  

B) Characterization of sex differences in miR biogenesis enzymes and 

EtOH-sensitive miR target gene expression: 

 Dorsal hippocampus Drosha and Dicer and ventral hippocampus 

Dicer expression levels are decreased in the females relative to 

males throughout pubertal development 

 Ventral hippocampus Drosha expression levels are decreased at 

early and late puberty, but equivalent at mid puberty in females 

relative to males 

 Dorsal hippocampus BDNF and SIRT1 expression levels are 

decreased throughout pubertal development in females relative to 

males 

 Ventral hippocampus BDNF and SIRT1 expression levels are 

equivalent at early and late puberty but decreased at mid puberty in 

females relative to males 

 Chapter V: 

A) Characterization of sex differences in E2-sensitive microRNAs: 

 Dorsal and ventral hippocampus let-7i expression levels are not 

sexually dimorphic, nor do they change, throughout pubertal 

development 
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 Dorsal hippocampus miR-7a expression levels increase and 

decrease in females and males, respectively, between mid and late 

puberty 

 Dorsal hippocampus miR-9, miR-125a and mir-181a expression 

levels are increased at early puberty in females relative to males; 

male expression levels do not change throughout puberty 

 Ventral hippocampus miR-7a, miR-125a and miR-181a expression 

levels are not dynamic throughout puberty in males or females, 

however, females expression higher levels relative to males 

throughout pubertal development 

 Ventral hippocampus miR-9 expression levels in females is 

increased at early puberty and decreased at mid and late puberty 

relative to males 

Final Remarks  

Selection of Model Organism 

Rats demonstrate markers unique to an adolescent growth spurt such as 

hyperphagia (developmental overeating) and accelerated growth [321], making them a 

valuable model organism of choice for this study. Memory processes are more adversely 

affected in adolescent rodents abusing alcohol than in the adults abusing the same dose 

[5,79,322], highlighting the important need to study how alcohol alters the adolescent 

brain, and the hippocampus in particular. Importantly, our lab has demonstrated that no 

differences in body weight results from administering our binge EtOH paradigm in 

adolescent Wistar rats and that the blood alcohol concentration does not significantly 
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differ when administering EtOH via gavage or intraperitoneal injection [8,12,44]. 

Moreover, our binge EtOH exposure paradigm has been shown to be a reliable model for 

administering amounts of EtOH typically consumed amongst adolescents [200]. 

microRNA Functions in the Brain: Relevance to Neuronal Development 

The discrete biological functions of individual microRNAs during neuronal 

development are not well understood. Lsy-6 was the first specific microRNA recognized 

to have a role in nervous system development in vivo, where it was shown to regulate 

left/right asymmetrical patterning of the taste receptor neurons in C. elegans [323]. Two 

other microRNAs, miR-9 and miR-10, are highly expressed in the brain and have been 

shown to play important roles in the brain development of many species including 

humans, rodents, zebrafish, and drosophila, demonstrating a high degree of evolutionary 

conservation among these microRNAs. Specifically, miR-9 promotes migration and 

proliferation in human neural progenitor cells by targeting stathmin, a gene required for 

microtuble assembly [314] and peripheral nervous system sensory organ development in 

drosophila [324]. Further, miR-9 is significantly reduced in the presenilin-1 null mouse 

model, which exhibits severe CNS developmental defects, during specific stages of 

development compared with wild-type mice [325]. Although our microRNA RT-PCR 

array experiment did not identify miR-9 as EtOH sensitive following peripubertal binge 

EtOH, it is possible that by examining the whole hippocampus, we were unable to 

delineate ventral vs. dorsal hippocampus EtOH-mediated alteration in miR-9 expression. 

This is further supported by our experiments identifying ventral vs. dorsal differences in 

miR-9 expression levels in untreated peripubertal rats. Another important microRNA 

during development is miR-10, which targets members of the HOX gene family, a highly 
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conserved group of transcription factors that coordinate anterior-posterior body axis 

alignment in zebrafish and other species during development [326]. These studies have 

revealed that specific microRNAs are critical for proper gene expression and brain 

function throughout development, however, the role of microRNAs beyond early 

developmental periods is just beginning to be investigated. Mature microRNA expression 

is age-dependent, and accordingly, microRNAs regulate both early developmental gene 

expression changes as well as those that occur throughout the lifespan in various species 

[43, 46, 47, 111]. In our studies, miR-10a-5p was sensitive to EtOH in both a short and 

long-term manner in the ventral and dorsal hippocampus, respectively. Moreover, as 

microRNAs can regulate the expression of numerous target genes, it is extremely likely 

that targets change as a function of age. Indeed, microRNAs have been demonstrated as 

important regulators neuronal stem cell fate determination such as the SOX family of 

transcription factors which control NSC differentiation and gliogenesis [327,328].  

The origin of oligodendroglial fate determination has been historically 

controversial in the literature, and interesting recent studies implicate microRNAs in this 

process. For example, in a mouse model of Dicer1 KO specific to oligodendrocytes, miR-

219 and miR-338 expression is absent, whereas they are abundantly expressed in 

wildtype oligidendrocytes [329,330]. Moreover, manipulation of these microRNAs in 

oligodendrocyte precursor cells demonstrates that they are essential for the differentiation 

of oligodendrocyte precursors into myelinating oligodendrocytes. Myelination of neurons 

by oligodendrocytes is essential for the process of salutatory nerve conduction and many 

studies have implicated reduced myelination as a mediator of neurological insults during 
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adolescence. Therefore, the control of oligodendrocyte maturation via microRNAs 

highlights yet another important role of microRNAs in brain development.  

How microRNA expression changes over time is another active area of research 

in the microRNA field. A deep sequencing study recently highlighted 75 microRNAs that 

were differentially expressed in the brain with age [206]. Interestingly, let-7 microRNAs 

are inhibited by the RNA binding protein Lin28 in the reproductive areas of the neonate 

rat brain, yet, upon progression towards puberty, this expression pattern is reversed with 

increasing and decreasing expression of let-7 and Lin28, respectively, in the rat 

hypothalamus [248]. These data suggest a role for microRNA in the regulation of 

pubertal onset and highlight the potential for microRNAs to regulate pubertal brain 

development. Moreover, our data demonstrating that in the healthy adolescent brain, 

microRNA expression is dynamic at 3 distinct time points during pubertal development 

suggests that microRNAs are important for brain development at this time. Much still 

remains to be discovered regarding the role of microRNAs in regulating brain 

development, however, compelling data suggests that negative effects of alcohol on the 

developing brain may be mediated by alterations in brain microRNA expression and/or 

the mechanisms of their transcriptional regulation. 

The Role of microRNAs in Ethanol Neurotoxicity During Development 

Neurological consequences of alcohol abuse (repetitive and heavy drinking) occur 

throughout the lifespan, and an emerging role for microRNAs in mediated alcohol’s 

effects on addiction, toxicity and teratology is becoming evident. The long-term 

consequences of alcohol exposure during important neurodevelopmental time periods has 
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recently become widely discussed, particularly with regards to prenatal EtOH exposure 

leading to fetal alcohol spectrum disorder (FASD). FASD describes a wide range of 

effects that a mother drinking alcohol during pregnancy can inflict upon the developing 

fetus and symptoms of FASD range from physical abnormalities, identified as fetal 

alcohol syndrome (FAS), to neurobehavioral alterations including depression, 

hyperactivity, learning disabilities and psychosis [331,332,333]. microRNAs have been 

implicated in the development of FASD. For example, a murine miR-9  (KO) model 

results in FASD phenotypes and growth retardation presumably by inhibiting the miR-9-

mediated inhibition of Foxg1, a gene that promotes proliferation and prevents 

differentiation and whose mutation also leads to fetal growth retardation, microcephaly 

and mental retardation [318,334].This miR-9 KO leads to increased Foxg1 expression 

and inhibits maturation of neuronal populations. Interestingly, a subset of EtOH-sensitive 

microRNAs that play a role in cell and tissue maturation, miR-10a/b, miR-21 and miR-

335, demonstrate developmental stage-specificity in their sensitivity to EtOH in neuronal 

stem cells (NSCs) [193]. This finding provides support to our observation that expression 

of a subset of microRNAs is dependent on age, sex and EtOH. As mentioned previously, 

miR-9 was not altered by peripubertal binge EtOH in males however it is possible that in 

females, miR-9 may be sensitive to EtOH. For instance, we observe sex differences in 

steady-state miR-9 expression in our untreated peripubertal rats and it is possible that 

miR-9 operates the peripubertal neuronal differentiation (i.e. peripubertal neuronal 

growth) in female rats. If so, the sex-differences observed in binge EtOH-exposed rats 

may be explained by a sensitivity of miR-9 to EtOH in females and not males. Future 

studies can investigate this possibility further with binge-EtOH-exposed female rodents. 
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Interestingly, Sathyan et al. demonstrated that miR-10a demonstrated senisitiviy to EtOH 

in NSC’s as we did in peripubertal male rats. However, different target genes are 

implicated in these two EtOH studies. This difference may be due to EtOH-sensitive 

microRNAs identified in these two studies being responsible for regulating unique sets of 

developmental genes, supported by the fact that 5p- and 3p-microRNAs are expected to 

be complementary to different target genes. 

The neurochemical mechanisms responsible for such EtOH-induced anatomical 

and behavioral alterations remain unclear. It is compelling to suggest that the mechanism 

of binge EtOH effects on the pubertal brain—such as an increased risk of adult alcohol 

abuse [335], spatial learning impairments [79], reduced hippocampus volume [3]—are 

carried out by microRNA-mediated regulation of gene expression. Our studies 

demonstrate that peripubertal binge EtOH leads to long-term alteration in microRNA and 

BDNF expression, suggesting a potential long-term effect of peripubertal binge drinking 

on microRNA-mediated regulation of synaptic plasticity (of which BDNF is a primary 

mediator). Moreover, differential effect of EtOH on microRNAs and target gene BDNF 

expression between the ventral and dorsal hippocampus in the peripubertal male rat 

suggest that EtOH may disrupt both ventral and dorsal hippocampus functions. In support 

of this possibility, others have demonstrated that EtOH alters mood and memory in 

response to peripubertal binge EtOH and have also described conflicting data regarding 

expression levels of BDNF mRNA and protein expression following EtOH. For instance, 

one study investigated early postnatal pups exposed to EtOH vapor inhalation for 2 hours 

and 40 mins each day on PND 4-10 and reported a significant increased BDNF protein 

expression [90]. Other studies also describe that BDNF increases in its expression in the 
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hippocampus following EtOH exposure and suggest that these effects lead to changes in 

synaptic plasticity leading to behavioral responses to EtOH [147]. Indeed, ethanol has 

been shown to increase neuronal synaptic adaptation [336] but also decrease hippocampal 

LTP [4,91,337] and CA3 BDNF mRNA expression [338]. Based on our data, such 

inconsistencies in the literature may be due to different responses of the ventral and 

dorsal hippocampus to EtOH, however, factors including experimental design, model 

organisms, EtOH paradigm, age and sex of test subjects cannot be ruled out. Controversy 

also exists regarding whether an ethanol-induced increase or decrease in hippocampal 

BDNF expression during developmental periods is neuroprotective or neurotoxic. Our 

data also indicate that this may also depend on whether the ventral or dorsal region is 

under consideration, as our data indicate that EtOH increases and decreases BDNF 

expression in a long-term manner differently in the dorsal and ventral hippocampus, 

respectively. Although we do not know from our studies whether these results directly 

result in reduced hippocampal functional capacity, it is compelling to suggest that our 

observed increases in the dorsal hippocampus BDNF and decreases in the ventral may 

correlate with the known impairment in mood and memory following EtOH abuse. It is 

important to continue to tease out the mechanisms behind EtOH-mediated effects and the 

potential role of BDNF expression in the hippocampus. 

It is also possible that microRNA processing is broadly influenced by EtOH. Our 

data demonstrate that that Drohsa and Dicer expression are altered in both short and long-

term fashions following binge EtOH.  It has also been previously demonstrated in 

zebrafish embryos that pre-miR-9-3 transcripts accumulate in response to EtOH [194]. In 

our study, it is possible that the pri- and pre-microRNA transcripts are differentially 
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altered by binge EtOH and leads to altered mature microRNA expression. However, 

because binge EtOH doesn’t alter global microRNA expression, it remains unclear 

whether microRNA processing is a mechanism by which EtOH alters expression of 

mature microRNAs. 

Chapter 3 data introduces the novel finding that pubertal miR expression profiles 

for miR 10a-5p, miR-26a, miR-103 and miR-495 are altered by peripubertal binge EtOH 

exposure differentially in the dorsal and ventral hippocampus. The hippocampus is 

involved in learning and in consolidation of explicit memories from short-term to long-

term memory storage in the cortex. Importantly, stress impairs hippocampal-dependent 

memory in both human and rats [339,340,341]. Its sensitivity to stress is thought to be 

due to its high expression of glucocorticoid receptors through which it participates in the 

termination of stress responses via the glucocorticoid-mediated negative feedback of the 

hypothalamo-pituitary-adrenal (HPA) axis [342,343]. Interestingly, studies have 

demonstrated a dissociation of stress-induced increases in corticosterone levels and the 

ability to induce hippocampal long-term potentiation (LTP) (the cellular process 

underlying memory), suggesting stress-induced effects on the hippocampus may extend 

beyond cellular LTP. Indeed, other studies have implicated that peripubertal binge EtOH 

imparts dysregulation of the neuroendocrine stress axis in a long-term manner [12]. The 

adolescent stress response is still maturing, evidenced by enhanced stress reactivity 

[344](Dahl RE and Gunnar, 2009, [345,346,347], suggesting that an altered development 

of the stress response following adolescent alcohol abuse may increase the risk of 

developing mood disorders commonly associated with alcohol abuse.  Our studies 

suggest that the physiological stress of adolescent binge EtOH may incur long-lasting 
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stress-induced molecular alterations via changes in the expression levels of microRNAs 

that target genes important for synaptic plasticity. However, it has long been noted that 

changes in long-term potentiation LTP and/or dendritic spine density in the hippocampus 

are believed to demonstrate stress-induced hippocampal effects at the anatomical and 

cellular level [348,349,350,351]. Taken together, these studies demonstrate that high 

levels of alcohol consumption during adolescence lead to permanent adolescent-like brain 

function, such that the brain does not reach full maturity or that its development is 

altered.  

EtOH-Induced Changes in Hippocampal microRNA Correlate with Altered BDNF and 

SIRT1 mRNA: Proposed Role of Ethanol Metabolism 

The hippocampus is particularly sensitive to the negative effects of EtOH 

[62,352,353] and oxidative stress has been implicated in mediating EtOH’s neurotoxicity 

[354], however, the complete neurobiological mechanism remains unclear. In this study 

we observe binge EtOH-mediated changes in hippocampal microRNA expression, and 

therefore, it is possible that this may be due to increased oxidative stress of hippocampal 

mitochondria. For example, ethanol metabolism begins with its conversion into 

acetaldehyde, which in the brain of binge drinkers, is accomplished largely by 

microsomal enzyme cytochrome (CYP2E1) [355]. This is because alcohol dehydrogenase 

(ALDH) becomes saturated under conditions of heavy alcohol consumption. CYP2E1, in 

turn, generates superoxide and hydrogen peroxide reactive oxygen species (ROS) leading 

to EtOH-induced oxidative DNA damage [356,357]. Mitochondrial oxidative stress 

disrupts the permeability of the inner and outer mitochondrial membrane, which leads to 

an increase in cytochrome c release and overproduction of ROS, which together, increase 



114 
 

 

DNA damage and programmed cell death or apoptosis [358]. It is unlikely that our 

paradigm of binge drinking increases programmed cell death because we do not see 

global decreases in microRNA expression and moreover, one would also expect that the 

control gene, U6, would also be decreased under conditions of global apoptosis.  Based 

on evidence that EtOH induces mitochondrial oxidative stress response in the brain [359], 

it is possible that EtOH-mediated oxidative stress may be a mechanism through which 

microRNAs regulate expression of SIRT1 and BDNF in our study. For example, it has 

been demonstrated that microRNAs can be primarily expressed in the mitochondrial 

genome [360], that mature microRNAs can even localize to the mitochondria [361] and 

that these mitochondrial microRNAs may play a role in apoptosis. Under such 

circumstances, EtOH-mediated oxidative stress in neuronal mitochondria could release 

mature microRNAs into the cytoplasm where they can regulate the expression of target 

genes. Our observation that microRNAs increase following binge EtOH in the ventral 

hippocampus may do so via mitochondrial pore formation following an oxidative stress 

response, allowing microRNAs to leak into the cytosol where they can associate with 

RISC and regulation expression of BDNF and SIRT1 mRNA. In support of this theory, 

mitochondrial disruption has previously been reported to mediate translational repression, 

one of the mechanisms through which microRNAs postranscriptionally regulate gene 

expression [362]. Overall, our data identifying EtOH-sensitive microRNAs in the 

hippocampus and correlative alterations in BDNF and SIRT1 expression may be specific 

to repeated heavy (binge) EtOH consumption leading to an oxidative metabolic response. 

To further investigate this theory, one could fractionate cell lysate and run expression 

analysis on mitochondrial RNA. In summary, EtOH metabolism disrupting mitochondrial 
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membrane permeability demonstrates a targeted approach in which heavy doses of EtOH 

can disrupt gene regulation of a variety of cellular processes, as it may unleash the 

mitochondrial genome-containing epigenetic regulatory agents such as microRNAs. 

However, it remains necessary to identify whether our observed EtOH-mediated 

microRNA changes directly alter the expression of BDNF and SIRT1. One way to test 

this is to assay for direct binding of these microRNAs to the target gene 3’UTR following 

EtOH exposure, as successfully demonstrated previously by Caputo et al. using luciferase 

reporter assays for the binding of miR-26a to the BDNF 3’ UTR [143]. If direct 

microRNA-3’UTR binding is indicated, then to take this research one step further and 

test the functional effect of altered BDNF and SIRT1 mRNA in response to peripubertal 

binge EtOH. For example, performing behavioral assays which measure learning, anxiety 

and memory behavior may indicate whether CNS impairments occur as an extension of 

with EtOH-induced alterations in microRNA and BDNF and SIRT1 expression in our 

peripubertal binge EtOH paradigm.  

Finally, given the developmental nature of the peripubertal period and the 

promiscuous nature of microRNAs, it is plausible that EtOH-sensitive microRNAs 

regulate the expression of a host of additional developmental genes. On that order, a 

microarray can efficiently identify potential additional target genes. However, an 

alternate hypothesis to EtOH-induced alterations in microRNA expression regulating the 

correlative changes in BDNF and SIRT1 mRNA is that these microRNAs are performing 

unconventional regulatory functions. For instance, it is becoming clear in the literature 

that microRNA functions are not restricted to mRNA degradation and translational 

repression but also orchestrate alternate gene regulatory mechanisms. For example, 
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epigenetic gene regulation by microRNAs include binding to the 5’UTR of mRNA 

targets to enhance translation [363], tethering Argonaute proteins to promoter regions to 

enhance or inactivate gene transcription [364,365], secretion into plasma to alter target 

cell behavior [366,367] which suggest microRNAs as potential endocrine factors. These 

additional functions of microRNAs demonstrate that microRNAs are not limited to 

regulating gene expression in the typical method of 3’UTR binding and therefore future 

experiments testing for BDNF and SIRT1 3’UTR binding will not exhaust all of the 

possible ways in which EtOH-sensitive microRNAs may regulate these gene targets. 

Possible Role for Gonadal Hormones in Mediating Sexually Dimorphic Pubertal miR 

Expression  

Puberty is a period of life associated with an increased risk of developing 

psychiatric disorders, most likely due to the incomplete maturation state of the brain in 

addition to increased risky behaviors common amongst adolescents. We have identified 

that the expression levels of 10 microRNAs (let-7i, miR-7a, miR-9, miR-10a-5p, miR-

26a, miR-32, miR-103, miR-125a, miR-181a and miR-495) are specific to sex, stage of 

puberty and brain region, indicating that they play specific roles in the brain development 

of males and females during puberty. Moreover, normal fluctuations of brain microRNAs 

during puberty and their apparent sensitivity to EtOH, targets them as mediums through 

which noxious environments or genome may disrupt gene expression. To that end, it is 

possible that the regulation of miR expression levels may not only play a large role in 

normative brain maturation, but may also underlie the molecular mechanisms leading to 

psychiatric disorders. In agreement with this theory, we have recently shown that 

peripubertal exposure to repeated episodes of binge EtOH alters the normal 
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developmental profiles of microRNAs in the hippocampus [247], a brain region 

susceptible to alcohol-abuse and suggested to be damaged in a host of neuropathologies 

[11,338,358,368,369,370]. Furthermore, many studies in rodents and humans 

demonstrate that substance abuse during puberty leads to altered adult gene expression, 

memory dysfunction and continued substance abuse and dependence 

[4,5,10,11,12,79,247,371]. Therefore, microRNAs altered by EtOH may have a variety of 

negative (or positive) neurological consequences including impaired memory and stress 

response regulation, however the mechanisms remain unclear. 

 Sexually dimorphic expression levels of microRNAs may be due to differences in 

circulating gonadal hormones between males and females. It has been recently reported 

that gonadal hormone-mediated generation of sexually dimorphic physiology is, in part, 

due to their ability to influence miR expression. microRNAs are important regulators of 

the genome, but what controls their regulation is not well understood. Studies using both 

in vivo and in vitro systems have demonstrated that miR expression profiles (miRNomes) 

can be altered by T, E2 and their respective nuclear receptors (androgen receptor and 

estrogen receptor ) in healthy and cancerous tissues, as well as during different stages of 

development [28,150,151,161,165,264,372,373]. These studies suggest that microRNAs 

may contribute to the development of typical adolescent sexual dimorphisms.   

 Gonadal steroids can also influence the miR target genes we tested in our studies. 

For instance, female levels of circulating E2 is much higher in females than in males and 

E2 replacement following GDX restores levels of BDNF mRNA and protein in the 

postnatal developing rat hippocampus, indicating that E2regulates the expression of 

BDNF factor mRNA and protein in the rat hippocampus [374]. How E2 regulates the 
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expression of BDNF is not known, but it is possible that E2regulates peripubertal BDNF 

expression in a sexually dimorphic manner. For instance, in the second postnatal week 

male rodents express higher levels of aromatase, the enzyme that converts T to E2, as 

well as ERα/β in the hippocampus, suggesting a greater effect of E2 signaling in males 

than in females at this developmental period [375]. Indeed, BNDF mRNA in the 

hippocampus is increased by E2 [376], and peripubertal males may have greater local 

E2synthesis in hippocampal neurons and this may increase the levels of BDNF during the 

mid-phase of pubertal development.  Furthermore, BDNF mRNA is known to fluctuate 

across the estrous cycle, in correspondence with the changing levels of E2 [377] and it is 

possible that the lack of BDNF mRNA changes observed in our females compared to 

males may have occurred due to the females being in diestrus stage of their menstrual 

cycle when E2 levels are lower. The consequences of differences in circulating E2 levels, 

is that both E2 and BDNF positively affect synaptic plasticity, and therefore, the dynamic 

expression of microRNAs throughout pubertal development in males may correspond 

with alterations in the BDNF and/or SIRT1 target genes and ultimately play a role in 

mediating the formation of long-term alterations in brain development during puberty.   

The role of gonadal hormones and their influence on growth-promoting signals 

may underlie the necessity of peripubertal exposure to E2 and T for development of 

adultlike mating, social and cognitive behaviors. For instance, ovariectomized (OVX) 

reduces mRNA and protein expression of (BDNF) and this is reversed with E2 

replacement [378,379]. The hippocampus is also a rare site wherein de novo synthesis of 

E2 occurs outside of the gonads, and its expression is implicated in regulating local 

synaptic plasticity in dendritic spines [380]. Indeed, our data demonstrate clear sex 
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differences in the miR expression throughout pubertal development in multiple brain 

regions. In stark contrast to E2 effects on BNDF and synaptic plasticity, gonadectomy 

(GDX) in adult male rats increases BDNF protein expression and synaptic plasticity in 

hippocampus mossy fibers [381] and the same pattern was observed in PND 90 male rats 

that gonadectomized at early puberty (PND 30) [86], suggesting that T represses 

hippocampal BDNF protein during puberty. Indeed, the author concludes the effects of 

gonadectomy are independent of pubertal status, however, because the immediate effects 

of PND 30 GDX on BNDF expression was not measured, it is impossible to know 

whether levels of BDNF were increased during peripuberty. Given that GDX incurs a 

reduction in BDNF protein measured at 4, 7 and 10 days post-GDX [374], it is clear that 

GDX at different developmental ages can have differential effects on BDNF protein 

expression. Furthermore, our data reveal that BDNF mRNA in male dorsal and ventral 

hippocampus is significantly increased at peripuberty compared to early puberty, 

suggesting that the rising levels of T correlate with rising BDNF mRNA. Our observed 

correlation in levels of T and BDNF are in contrast to experiments demonstrating that 

GDX increases BDNF protein levels. However, Solum and Handa have previously 

observed that neonatal GDX decreases BDNF mRNA yet increases BDNF protein levels 

in the same animals [374], demonstrating that BDNF mRNA levels do not always 

correspond with protein levels. Variable measurements of BDNF expression may also 

reflect differences in expression within the whole hippocampus vs. the isolated 

hippocampal subregions, the ventral and dorsal hippocampus. Indeed, differences in brain 

region expression levels of BDNF are to be expected, evidenced by T levels in the pelvic 

ganglia being correlated with BDNF protein expression following adult male GDX, such 
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that GDX decreased the number of BDNF-immunoreactive neurons [382].  In addition, T 

has been shown to contribute to the anxiogenic effect of exposure to a novel environment 

observed in male rodents as well as contribute to their social behavior [383,384], whereas 

in male Syrian hamsters, pubertal exposure to T contributes to aggressive, sexual and 

communication behaviors [385]. Lastly, T exposure during puberty in humans is 

necessary for the sex differences observed in spatial memory, performance of which is 

primarily controlled by the dorsal hippocampus [386,387]. Overall, the hippocampus 

plays a clear role in contributing to the gonadal hormone-mediated alterations in synaptic 

plasticity throughout pubertal development and as microRNAs can regulate gonadal 

hormone receptors, it is possible that microRNAs help to orchestrate the role that gonadal 

hormones play in the development of the adolescent brain.   

Overall, female expression levels of EtOH-sensitive microRNAs and their target 

genes, BDNF and SIRT1, did not correlate with one another in this study. Moreover, the 

expression levels of SIRT1 and BDNF were extremely low and nearly unchanging in the 

female hippocampus compared males throughout pubertal development. These data most 

likely do not reflect a lack of dynamic synaptic plasticity. Indeed, the female expression 

levels of EtOH-sensitive microRNAs, BDNF and SIRT1 demonstrating no correlation 

whereas they did in the males (Chapter 4, Fig. 12, 153and 14), it is important to point out 

that these EtOH-sensitive microRNAs were identified in male specimens in (see Chapter 

3, Fig. 3). Therefore, it is possible that future studies using the same approach which was 

used in Chapter 3 males (aka the microRNA array) in females, would indeed discover a 

set of different EtOH-sensitive microRNAs that is specific to females. Moreover, due to 
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the promiscuous nature by which microRNAs bind their mRNA target genes, it is very 

likely that potential female-specific EtOH-sensitive would also target BDNF and SIRT1.  

Gonadal hormones also influence behavioral systems required for learning and 

memory. For instance, it has been demonstrated in multiple species that T acts via 

NMDAR circuits to alter synaptic plasticity and learning [388,389,390]. Specifically in a 

rodent model, males that are not exposed to androgen receptor (AR) activation during 

puberty exhibit altered hippocampal CA1 synaptic plasticity, as measured by social 

recognition memory [388]. Together these data suggest that organizational events 

mediated by T activation of ARs during puberty are required for the development of 

adultlike social behaviors and effective hippocampal-dependent learning and memory 

processes.  

Adolescent EtOH abuse-induced disruption of neurodevelopment occurs in both 

males and females [391,392,393], although often times to different magnitudes [46], as 

well as in one sex and not the other. These studies implicate a role for the involvement of 

circulating gonadal steroids, yet the causality of these sexually dimorphic effects remain 

unclear. Evidence from both rodent and human studies supports the theory that gonadal 

hormones play a role in mediating the sex differences observed in EtOH consumption, a 

typical adolescent behavior. Indeed, T moderates EtOH intake in male rodents, such that 

pre- or post-pubertal castration increases adult EtOH intake and  dihydrotestosterone 

(DHT) or T replacement following castration sufficiently increases EtOH intake back to 

intact, GDX, and sham-GDX male and female controls [236,394].  Furthermore, this 

increased EtOH consumption in adult male rats that were GDX either pre- or post-

puberty, is not due a weakened aversion to the taste of EtOH over time as conditioned 
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taste aversion (CTA) experiments demonstrated an increased CTA in males GDX in pre-

puberty compared to post-puberty [395], whereas GDX at either time point resulted in a 

similar increase in EtOH intake [236,260]. Interestingly, in adult male rodents bred 

selectively for high EtOH preference compared to those bred to not prefer EtOH, high T 

levels are strongly correlated with a  preference for EtOH throughout the day when not 

intoxicated [396]. In human male twin studies, following individual analysis and 

adjustment for pubertal stage, a higher T levels correlated with a greater number of 

alcohol symptoms as well as diagnosis for alcohol dependence [397]. Indeed, T is 

positively correlated with EtOH consumption not only in males but also in females. In 

self-report studies, higher levels of T and E2 in male and female adolescents, was 

positively associated with alcohol use [398]. Furthermore, female rodent consumption 

also varies across the estrous cycle, such that during proestrus (slowly rising E2) and 

estrus (high E2) there is a decrease in total alcohol consumption [399,400]. Potential 

neural mechanisms underlying sex differences in alcohol drinking behavior involves 

dopamine release, which is greater in the female rat nucleus accumbens [401]. These data 

underlie the importance of distinguishing sex differences regarding substance 

abuse.Although steroid hormones are likely not an exclusive factor, an important next 

step is to determine whether E2 and/or T are responsible for mediating the sex-specific 

differences in EtOH-sensitive miR expression.    

It is clear that gonadal hormones contribute to the exceedingly plastic nature of 

the adolescent brain as they contribute to neurite outgrowth, increases in neurogenesis 

and alterations in steroid receptor expression [240]. Moreover, the effects of sex 

hormones on synaptic plasticity are sexually dimorphic [402], yet the mechanism remains 
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unclear. It is possible that microRNA-mediated regulation of gene expression has evolved 

to adapt to changing hormonal environments during puberty (and menstrual cycle), 

however, contemporary lifestyles of adolescents including experimentation with binge 

drinking and the use of oral contraceptives may have detrimental effects on microRNA 

expression that is critical for adolescent brain development. Chapter 5 data demonstrate 

that there are clear sex differences in the expression of 5 E2-responsive microRNAs, let-

7i, miR-7a, miR-9, miR-125a and miR-181a, throughout pubertal development. We also 

demonstrated that their expression is distinct between the functionally dimorphic 

hippocampal regions, the ventral and dorsal hippocampus. In conclusion, we have 

identified that males and females express E2-responsive microRNAs in an age and sex 

dependent manner throughout pubertal development and that the expression patterns are 

unique between the dorsal and ventral hippocampus. However, it remains unclear 

whether the pubertal expression levels of E2-responsive microRNAs are correlated with 

gonadal hormone levels in a sexually dimorphic manner. Therefore, it will be important 

to determine how pre-pubertal removal of endogenous hormones and subsequent 

exogenous treatment with E2 alters the expression of these microRNAs in the male and 

female dorsal and ventral hippocampus in future studies. It will be important to monitor 

the stage of the estrus cycle in female rats and the analysis of expression levels of 

microRNAs should be separate for females in different estrous cycle stages. It is 

important to note that symptoms of depression, schizophrenia and anxiety fluctuate 

across the menstrual cycle [403,404,405,406,407,408,409], and puberty is period of life 

wherein there is an increased risk for developing anxiety and other related mood 

disorders. Moreover, the course and prevalence of mood disorders are sexually 
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dimorphic, and it is possible that microRNAs expressed differentially between males and 

females in the mood-regulating ventral hippocampus target genes important for 

regulating mood. In addition, gonadectomy (GDX) followed by T treatment would be 

important to determine T effects on microRNA expression levels as gonadal androgen 

exposure during puberty is required for male-typical behaviors associated with the stress 

response such as anxiety-related decrease in social behavior in an unfamiliar environment 

[384]. Lastly, target genes of these microRNAs, such as GABA, SIRT1, BDNF and GR, 

could be measured in male and female hippocampi to identify potential mood-regulating 

target genes that these microRNAs may control the expression of during pubertal 

development. Indeed, puberty is a period of continuous sexual differentiation in the brain 

[410]and pubertal development is controlled by functionally connected networks 

coordinated by epigenetic mechanisms [411], indicating that miR expression levels can 

influence the establishment of neural networks during puberty which can have long-

lasting consequences on adult brain function.   

The dorsal hippocampus reduction of microRNA expression in females contrasts 

rising levels of circulating E2 in females at this time. Furthermore, the dorsal 

hippocampus microRNA expression in males remains stable and indeed, males exhibit an 

increase in T throughout puberty but not E2. These data would suggest that the decrease 

in these female microRNAs during pubertal development is E2-dependent, however, one 

would also expect the early puberty levels of male microRNAs to be similar to the female 

early puberty levels. Overall, the lack of change in microRNA expression levels in males 

mimics their lack of exposure to changes in circulating E2 throughout puberty. Of note, 

the early pubertal expression level of these 3 microRNAs is significantly increased in 
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females, but this may be due to the fact that it is not typical for males and females to 

exhibit similar levels of circulating E2 at this time age [286,287,288]. Indeed, activation 

of the HPG axis in females can occur before males, and could explain the differences 

observed in E2-responsive miR expression at early puberty between males and females. 

However, reduced miR expression over time as E2 levels rise in females does not agree 

with the sex differences observed at early puberty such that female miR expression is 

high as their E2 levels begin to rise. It is possible that ligand-independent effects can be 

regulating miR expression levels before the rise in gonadal hormones at pubertal onset, 

such that the estrogen receptor (ER) acts on the miR promoters to increase their 

transcription. Indeed, ERβ has been shown to have transcriptional activity in rodent 

neuronal cell lines [412,413] and protein-protein interactions in the female rodent ventral 

hippocampus [414] that are altered in the presence of E2, suggesting that ERβ has ligand-

independent functions in the female brain. Overall, it is possible that E2 regulation of 

microRNAs can be dynamic throughout pubertal development, however, more 

experiments a required to adequately address this theory.  

Take Home Message 

In summary, adolescent alcohol abuse is strongly associated with multiple other 

health risk behaviors including alcohol-related motor-vehicle accidents, alcohol-related 

sexual assault, suicide and weakened learning and memory capacities [415,416,417,418] 

supporting the role that adolescence is a sensitive period with regards to brain 

organization. The mechanisms regulating EtOH abuse-induced brain changes remains 

unclear. These studies provide important data that peripubertal binge EtOH alters 

microRNA expression in both an immediate and long-term fashion. Our data also suggest 
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that BDNF and SIRT1 are potential effector molecules of microRNAs altered by EtOH. 

However, the mechanisms regarding miR biogenesis as well as their regulation of target 

genes expression remains controversial [223,419], and thus, the mechanisms underlying 

EtOH-mediated regulation of miR expression as well as whether changes in miR target 

gene expression plays a role in altering mood or memory function requires more studies. 

Future studies are important in order to increase our understanding of the molecular 

events leading to the maturation of an organized and functional brain and therefore, 

increase the capacity for human livelihood. 

Future Directions  

One of the most interesting findings regarding microRNAs gene regulatory 

capacity is that their mechanisms of gene regulation and even their biogenesis can me 

mediated by different mechanisms. In particular, the potential for microRNAs to function 

as endocrine molecules is an exciting new prospect. In this respect, circulating 

microRNAs are suggested to mediate cell to cell communication in a long-distance 

fashion to various cells and organs throughout the body. Moreover, the potential for 

microRNAs to be able to function as biomarkers and as tools for disease prevention. Just 

in this past year, studies have highlighted microRNAs as biomarkers for various 

neurological impairments including but not limited to autism [420], glioblastoma [421], 

neurodegeneration [422], stroke [423,424] and neurotoxicity [425]. Therefore, 

microRNAs provide promising opportunities for better understanding and potentially 

treating or preventing ETOH abuse-mediated neurological impairments. 
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CHAPTER SEVEN 

GENERAL METHODS 

Animals 

All Wistar rats were purchased from Charles River Laboratories (Wilmington, 

MA) at weaning (postnatal day (PND) 23)) and allowed to acclimate for 7 days, after 

which they were randomly distributed into 3 groups: early pubertal (PND 30), 

peripubertal (PND 37), and late pubertal (PND 73). For Chapter 2 and 3 experiments 

there were male and female early, peripubertal and late pubertal grouped animals which 

were left untreated (N=10/age group) until euthanized at PND 30, PND 44 and PND 73, 

respectively. For Chapter 3 whole hippocampus experiments, there were 2 male groups, 

one administered treatments of peripubertal water (control) at peripubertal age and the 

other administered treatments of peripubertal binge EtOH (see methods below) (N= 

6/treatment group; total of 12 animals).  These 2 groups of animals were euthenized 1 hr. 

following the last treatment.For Chapter 3 dorsal and ventral hippocampus experiments, 

there were 3 male groups left untreated and euthenized at early (PND 30), mid (PND 44) 

and late (PND 73) puberty. In addition, there were 2 male groups administered treatments 

of peripubertal water (control) at peripubertal age (N= 10/treatment group; total of 20 

water-treated animals) and 2 male groups administered treatments of peripubertal binge 

EtOH (N= 10/treatment group; total of 20 EtOH-treated animals) (Fig. 19B). The water 

and EtOH groups were handled for 5 minutes once/day beginning at PND 30 to eliminate 

non-specific effects of stress associated with handling. Peripubertal water or EtOH 

A 
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treatments (see methods below) began on PND 37, an age which has been 

previously defined as peripuberty based on circulating gonadotropin levels and stages of 

spermatogenesis [286,287,288]. One group each from of the mid/peri-pubertal water and 

EtOH treated animals were sacrificed 60 min. following the last water  and EtOH 

treatment, respectively, at PND 44 (N= 10 water + N= 10 EtOH). The remaining 2 

groups (N= 10 water + N= 10 EtOH) were left undisturbed following the last EtOH 

treatment in their home cage until sacrificed at late puberty (PND 73). All animals were 

pair-housed on a 12:12 light/dark cycle with lights on at 07.00 h. Food and water were 

available ad libitum. 

Ethics Statement 

All animal protocols were approved by the Institutional Animal Care and Use 

Committee at Loyola University Chicago permit #2011002. All measures were taken to 

minimize animal numbers and suffering. 

Binge Exposure Paradigm and Treatment Design  

For Chapter 3 whole hippocampus experiments, peripubertal (PND 37) male 

animals were randomly assigned to either 1) peripubertal water (N = 6) or  2) peri-

pubertal binge EtOH (N = 6) treatment groups, such that a total of 12 animals were used 

in these experiments. For Chapter 3 dorsal and ventral hippocampus experiments, 

peripubertal (PND 37) male animals were randomly assigned to either 1) peripubertal 

water (N = 20)  or  2) peripubertal binge EtOH (N = 20) treatment groups. These animals 

were compared to the untreated groups (N=10) at each age, such that a total of 70 animals 

were used in these studies.  
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All animals in the binge EtOH group received the following 8-day peripubertal 

repeated binge-pattern EtOH paradigm: on PND 37, animals are given 3g/kg EtOH (20% 

v/v in water), or water alone, via oral gavage at 10.00 hr. This process is repeated 

according to the following schedule: 3d EtOH, 2d water, 3d EtOH (i.e. a total of 6 EtOH 

treatments over the course of 8 days). This binge exposure paradigm has been used 

previously to mimic the pattern of binge alcohol consumption typically observed in 

adolescents [44,200]. Moreover, our previous studies have shown that this repeated 

binge-pattern EtOH paradigm did not affect body weight/growth curves during pubertal 

development and consistently resulted in similar blood alcohol concentrations (BAC) 

[8,44,200]. The water group was administered room temperature tap water via oral 

gavage once/day for 8 consecutive days. The animals were anesthetized with inhalation 

of isoflorane then euthanized by rapid decapitation 60 minutes following EtOH treatment 

(PND 44, “immediate EtOH effects”) or [in the Chapter 3 ventral and dorsal 

hippocampus experiments] 30 days following the last day of treatment at late puberty 

(PND 73, “long-term EtOH effects”). The blood alcohol concentration in EtOH treated 

animals was 190 ± 21 mg/dl, which is consistent with our previous reports using this 

peripubertal binge EtOH paradigm [12]. It is important to note that the untreated and the 

water-treated mid/peri- and late-pubertal groups were not statistically different for any 

parameter measured and were therefore, combined into one group for further statistical 

analyses. 

Tissue Collection 

Trunk blood and brains were collected immediately following decapitation. Trunk 

blood was collected on ice into heparinized glass tubes, centrifuged at 4000 rpm for 10 
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minutes, plasma separated and stored at -20°C until processed for testosterone levels 

using enzyme immunoassay (EIA, see below). Brains were rapidly dissected, flash-frozen 

in isopentane (-35°C) on dry ice, and stored at -80°C until further processing. Frozen 

brains were sectioned at 200 µm on a freezing microtome, mounted onto glass slides, and 

the ventral and dorsal hippocampi were microdissected using a 0.75 mm Palkovit's brain 

punch tool (Stoelting Co., Wood Dale, IL). The coordinates of the microdissected regions 

was determined using The Rat Brain in Stereotaxic Coordinates, Fourth Edition Atlas (G. 

Paxinos and C. Watson). The ventral hippocampus was defined as being located between 

1.8 mm to 3.8 mm posterior to Bregma, 3 mm below the top of the brain and 6.6 mm 

from the bottom of the brain.  The dorsal hippocampus was defined as being located 

between 4.16 mm and 6.05 mm posterior to Bregma, 3 mm below the top of the brain and 

2 mm above the bottom of the brain. Brain tissue punch samples were collected on ice 

into microcentrifuge tubes containing 1 ml of TriZol reagent (Invitrogen, Inc., Carlsbad, 

CA). Tissue samples were sonicated on ice prior to total RNA isolation. 

RNA Isolation 

Total RNA was isolated from micropunched tissue samples using Trizol reagent 

(Invitrogen Inc., Carlsbad, CA) according to the manufacturer's directions. All RNA 

samples were analyzed for quality by Nanodrop spectrophotometry and by visualization 

of the RNA on a 1.5% agarose gel.  

Rat RT
2 

microRNA PCR Array 

The Rat RT
2 

microRNA PCR array (SABiosciences) was performed according to 

manufacturer’s instructions. Briefly, the cDNA was combined with RT
2
 SYBR Green 
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qPCR Master Mix, RT
2 
microRNA universal primer and water. Next, the mixture was 

aliquoted across the 96-well RT
2 

microRNA PCR Array platform containing a panel of 

primers for 88 well-researched microRNAs in the rat genome followed by quantitative 

reverse transcription PCR quantification of gene expression using the ∆∆Ct method 

[426]. Data analysis was performed using the free Web and Excel based microRNA PCR 

Array Data Analysis Software. (Importantly, the RNA population used for this 

experiment was a microRNA population isolated from total RNA using Qiagen’s 

MiRNeasy Mini Kit and cDNA synthesis was performed using SABiosciences RT
2 

microRNA First Strand Kit (MA-03) according to the manufacturer’s instructions). 

Quantitative Reverse Transcription PCR (qRT-PCR)  

Following RNA isolation, 1.0 µg total RNA was reverse transcribed using the 

First Strand Synthesis SuperMix for qRT-PCR (Invitrogen, Inc., Carlsbad, CA) for 

mRNA quantification, and 1.0 µg total RNA was used for NCode microRNA First-Strand 

cDNA Synthesis Kit for microRNA quantification. microRNA and mRNA qRT-PCR was 

performed with Fast Start Universal SYBR Green Master Mix (Roche) on an Eppendorf 

Realplex4 with a silver block. Forward primers for specific microRNAs were designed as 

described in the Ncode™ microRNA First-Strand cDNA synthesis kit handbook 

(Invitrogen, Inc., Carlsbad, CA) and using miRBase 18 as a sequence reference. The 

small RNA, U6 and housekeeping gene hypoxanthine guanine phosphoribosyl transferase 

1 (HPRT) were used as a loading control and to normalize the data for microRNA and 

mRNA analysis, respectively, as neither were altered by EtOH treatment [44]. The 

following thermocycler program was used for mRNA target genes: 1) 95°C for 10 

minutes, 2) 95°C for 30 seconds, 3) 59°C for 30 seconds, 4) 72°C for 30 seconds, and 



132 
 

 

melting curve analysis.  The following thermocycler program was used for microRNA: 1) 

95°C for 10 minutes, 2) 95°C for 30 seconds, 3) 65.3°C for 20 seconds, 4) 72°C for 12 

seconds. Quantification of the gene expression was achieved using the ∆∆Ct method 

[426]. Importantly, all miR and mRNA fold change values were generated using the 

normalized expression levels of untreated male PND 30 rats as a baseline value. The 

following intron-spanning primers were used for analysis of selected microRNA target 

genes and for microRNA processing enzymes:  

SIRT1:5’GCGGCCGCGGATAGGTCCATA, 3’TCCCACAGGAGACAGAAACCCCA, 

BDNF: 5’AGCCTCCTCTGCTCTTTCTGCTGGA, 

3’CTTTTGTCTATGCCCCTGCAGCCTT,  

Drosha: 5’GAAGTCACCGTGGAGCTGAGTA, 

3’ATCATTGCATGCTGACAGACATC, 

Dicer: 5’GGGAAAGTCTGCAGAACAAAC AND 

3’GGCTGTCTGAGCTCTTAGTTC. 

The following forward primers were used for analysis of selected mature microRNA 

along with a universal reverse primer provided in the NCode microRNA First-Strand 

cDNA Synthesis Kit:  

miR-10a-5p: 5’CGCTACCCTGTAGATCCGAATTTGTG,  

miR-26a: 5’CCGGGTTCAAGTAATCCAGGATAGGC,  

miR-103: 5’GGAGCAGCATTGTACAGGGCTATGA,  

miR-495: 5’CGCGAAACAAACATGGTGCACTTCTT.  
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let-7i: 5’CGCGTGAGGTAGTAGTTTGTGCTGTT 

miR-7a: 5’GCGCTGGAAGACTAGTGATTTTGTTCT 

miR-9: 5’ CGCGTCTTTGGTTATCTAGCTGTATG 

miR-125a: 5’CGTCCCTGAGACCCTTTAACCTGTGA 

miR-181a: 5’CGAACATTCAACGCTGTCGGTGAGT 

Hormone Measurements 

Plasma levels of testosterone were measured using a commercially available EIA 

kit (Cayman Chemical, Ann Arbor, MI) according to manufacturer's instructions.  The 

range of detection was between 3.9 and 500pg/ml and the intra-assay CVs was 2.2. 

Briefly, blood samples were collected in heparinized tubes and centrifuged at 3,000 rpm 

for 10 min. at 4°C, and plasma was stored at −20°C.  Plasma samples were combined 

with a testosterone-acetylcholinesterase (AChE) conjugate (testosterone tracer) as well as 

testosterone EIA antiserum and incubated in a 96-well IgG-coated plate for 2.0 hr. at 

room temperature. Samples were washed 5 times with provided wash buffer then 

combined with Ellman’s reagent containing the substrate for AChE, and the plate was 

developed for 60 minutes, shaking and covered, at room temperature. Absorbance was 

read at 412 nm on a multimode Synergy HT plate reader (BioTek Instruments, Inc., 

Winooski, VT). 

Blood Alcohol Concentration Assay 

Trunk blood samples were collected into heparinized tubes, centrifuged at 3000 

rpm for 10 min. at 4°C; and plasma stored at −20°C. Blood alcohol levels were 
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determined by measuring the change in absorbance at 340 nm following enzymatic 

oxidation of EtOH to acetylaldehyde (Point Scientific Alcohol Reagent Kit). Assay range 

is 0 to 400 mg/dl and intra and interassay CV = 6.4% and 7.9%, respectively. 

Western Blot 

Total protein is isolated using Tissue Protein Extraction Reagent (Thermo 

Scientific, Waltham, MA) supplemented with protease inhibitor cocktail (Roche 

catalogue #04693159001; 7x stock solution), according to manufacturer's instructions 

and boiled at 95⁰ C for 5 mins. 10 µg of protein was loaded onto 10% SDS-PAGE gel 

and then transferred onto a PVDF membrane (Millipore, Billerica, MA). The membrane 

was blocked with 5% bovine serum albumin (BSA) for 0.5 hr. and incubated with the 

following primary antibodies: SIRT1 (Santa Cruz Biotechnology, H-300) at 1:200 or 

BDNF (Santa Cruz Biotechnology, N-20) at 1:200 in TBST for 2 hr. at 4°C. Following 

primary antibody incubation, the membrane was washed three times for 10 min. each in 

10 ml TBST (Tris Base Solution containing 0.1% Tween 20), incubated in secondary 

antibody (HRP conjugated goat anti rabbit IgG, Santa Cruz Biotechnology) at 1:5000 

concentration in TBST for 1.5 hr., and washed three times for 10 min. each in TBST. 

Stripping blots was performed with 6 M GnHCl, 0.2% Triton 100, 20mM Tris-HCl pH8, 

two times at RT for 5 min. each followed by two 10 min. washes with TBSTr. In order to 

control loading efficiency, blots are stripped as described above, re-blocked with 5% 

BSA and incubated in primary rabbit β-actin antibody (Cell signaling, 4970S) at 1:3000 

dilution in TBST for 1.0 hr., washed three times for 10 min. each in TBST, incubated in 

HRP conjugated goat α rabbit IgG (Santa Cruz Biotechnology, sc-2004) at 1:5000 

dilution in TBST for 1.5 hr., and washed three times for 10 min. each in TBST. 
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Following antibody applications and washes, each blot was imaged on the Biorad 

Chemidoc XRS+ imager using ECL Chemiluminescent substrate (Pierce).  

Statistical Analysis 

Statistical analyses were performed by the Biostatistics Core Facility at Loyola 

University Stritch School of Medicine in consultation with Dr. James Sinacore. Data 

obtained from qRT-PCR or blood alcohol and hormone concentration assays were 

analyzed by a one-way Analysis of Variance (ANOVA) when EtOH was a single 

variable factor or by a two-way ANOVA when age and EtOH or age and sex were the 

two variable factors followed by Tukey’s posthoc test for all pair-wise comparisons when 

there was a significant main effect and interaction. The above tests were performed using 

SigmaStat Statistical Analysis Software. A p-value of less than 0.05 was designated as 

significant. Exclusion criteria comprised outliers greater than or equal to 2 times the 

standard deviation of the mean. Please note that all qRT-PCR age-dependent miR and 

mRNA fold change values were generated using the normalized expression levels of 

untreated male PND 30 rats as a baseline value. Importantly, the untreated and the water-

treated peri and late pubertal groups were not statistically different for any parameter 

measured and were therefore, combined into one group for statistical analyses.  

Data obtained from western blotting were subject to densitometry analysis using 

ImageLab software. Lanes were detected manually and bands were detected using the 

‘high sensitivity’ detection limit and lane-based background subtraction was applied. 

Statistical significance was analyzed by a two-way ANOVA followed by Tukey’s post-

hoc test using an average of 3 independent blots containing samples from 6 different 
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animals per treatment group (N=3, p<0.05). Western blotting data analysis tests were 

performed using SigmaStat Statistical Analysis Software. A p-value of less than 0.05 was 

designated as significant. Exclusion criteria comprised outliers greater than or equal to 3 

times the standard deviation of the mean. 
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