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CHAPTER 1 
 

  INTRODUCTION  

 In the United States, there are 500,000 burn injuries per year that require medical 

treatment (ABA 2007).  About 40,000 of these result in hospitalization and an average of 

4,000 result in death (ABA 2007).  While only comprising approximately 13% of burn 

patients, individuals over the age of 65 are at the greatest risk of morbidity and mortality.  

With advances in treatment strategies over the last few decades, the overall mortality in 

elderly burn patients has decreased considerably (ABA 2005; Lionelli, Pickus et al. 

2005).  In the 1970’s, burn patients over the age of 65 had an overall mortality of 77% 

(Linn 1980; Lionelli, Pickus et al. 2005).  Today, only 20% of this same population 

succumbs to burn injury (Lionelli, Pickus et al. 2005).  Unfortunately, these patients still 

tend to require more aggressive treatment strategies and have an increased length of stay 

in the hospital (Linn 1980; Hammond and Ward 1991).  In addition, for aged individuals 

who survive burn injury, many end up in long-term care facilities, have greater 

disabilities, and report to have a decreased quality of life than younger patients (Slater 

and Gaisford 1981; Hammond and Ward 1991).  As these outcomes translate into a 

greater financial and societal burden, improvement in care for elderly burn patients in the 

acute care setting is warranted. 
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 Regardless of age, the lungs are the most frequent organ to fail as a result of burn 

(Dancey, Hayes et al. 1999; Fitzwater, Purdue et al. 2003).  The most common 

pulmonary complications are acute respiratory distress syndrome (ARDS) and 

pneumonia (Teixidor, Novick et al. 1983; Sheridan, Ryan et al. 1998; Fitzwater, Purdue 

et al. 2003; Davis, Santaniello et al. 2004).  Moreover, when an elderly individual 

sustains a burn, the chances of pulmonary sequelae are significantly greater than younger 

individuals (Li, Hsu et al. 1990).  It is therefore important that better treatment strategies 

which target the lung are developed to combat this serious issue.  

 

The presence of comorbidities has been shown to be a major factor in 

predisposing the aged to complications after burn.  Others have demonstrated that, even 

when controlling for comorbidities, the risks of developing serious consequences in the 

elderly are still considerably higher.  This observation indicates that there are underlying 

defects associated with increased age which need to be considered in order to properly 

treat the elderly burn patient.  

 

Previous experiments in our laboratory and others suggest that a pre-existing 

inflammatory state in aged mice prior to injury is likely to be the cause for the increased 

susceptibility to burn (Ershler 1993; Meyer, Rosenthal et al. 1998; Dinarello 2006; Sarkar 

and Fisher 2006; Franceschi, Capri et al. 2007; Gomez, Hirano et al. 2007).  We propose 

that burn injury in the aged is actually a “two hit” process, in which increased age primes 
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the immune system and makes the individual vulnerable to complications.  As in other 

two hit models of systemic inflammation, the occurrence of the second challenge results 

in an exaggerated response, greater than that which could be achieved by either challenge 

alone (Davis, Santaniello et al. 2004; Samonte, Goto et al. 2004; Moore, Moore et al. 

2005; Maegele, Sauerland et al. 2007).  Since these types of situations pose the greatest 

difficulties in the clinical setting, developing effective treatment strategies to combat 

them is of great importance.  The studies performed herein examine acute lung 

inflammation in a murine model of scald injury to determine why the aged are at an 

increased risk for pulmonary complications than a young individual receiving a 

comparable injury. 
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Hypothesis:  Exaggerated acute pulmonary inflammation after a dorsal scald injury in 

aged mice parallels increased neutrophil sequestration in the pulmonary vasculature.  

Blocking the neutrophil chemoattractant receptor, CXCR2, will alleviate neutrophil 

accumulation in the lungs following burn in the aged.  

  

Aim 1:  To determine whether aged mice have greater pulmonary neutrophil 

sequestration after a remote scald injury than young mice.  

 

Aim 2: To determine whether an elevation in neutrophil chemoattractant cytokines, MIP-

2 and KC, parallel the prolonged pulmonary sequestration of neutrophils in aged 

mice after burn injury. If so, whether blocking the receptor for these chemokines, 

CXCR2, will reduce this aberrant response of aged mice. 

 

Aim 3: To determine whether the neutrophils from uninjured aged mice have a defective 

 response to KC in in vitro chemotaxis assays relative to young and whether this 

 correlates with an alteration in the surface expression of CXCR2 and CD11b as a 

 result of burn injury. 
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CHAPTER 2 
 

REVIEW OF THE RELATED LITERATURE 

 
Clinical Outcomes after Burn Injury in the Aged 

  Regardless of age, the main causes of death following burn injury are multiple 

organ failure (MOF), sepsis, and acute respiratory distress syndrome (ARDS) (Sheridan, 

Ryan et al. 1998; Fitzwater, Purdue et al. 2003).  In other words, mortality from a burn 

does not necessarily result from the wound alone, but from complications that occur 

systemically.  In a burn patient over the age of 65, morbidity and mortality is 

significantly increased relative to younger patients (Dancey, Hayes et al. 1999; Fitzwater, 

Purdue et al. 2003; ABA 2005).  For example, a moderate sized burn covering 20% of the 

total body surface area (TBSA) produces a mortality of only 4% in healthy young adult 

patients, while elderly patients with the same injury have a mortality of up to 35% (ABA 

2005).  One explanation for this difference is that elderly patients typically have one or 

more comorbidities, such as cardiovascular disease or diabetes (Tran, Groeneveld et al. 

1990; Lionelli, Pickus et al. 2005).  However, even in the absence of clinically detectable 

disease, persons over the age of 65 still have an increased risk of complications and death 

after burn (Dancey, Hayes et al. 1999; Fitzwater, Purdue et al. 2003).  Unfortunately, the 

reasons for this have yet to be fully understood.    
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The Biology of Aging 

 Since the elderly are at an increased risk for both early and late MOF, as well as 

other complications following injury, it is important to understand the factors involved 

with aging and how they could be affecting the body’s response to systemic injury.  In 

the most basic sense, aging is simply the process of “getting older.”  However, if you 

survey the elderly population, it is quite obvious that everyone “gets older” in their own 

distinct way.  As defined by Mangel in 2001, aging is “a decline in physiologic repair, an 

increase in probability of death and a decline in fertility with advancing adult age” 

(Mangel 2001).  There is a great deal of evidence suggesting that the vast majority of 

problems which can manifest over time may be traced back to the changes that occur on a 

cellular level (Campisi 1996; Faragher and Kipling 1998; Campisi 2005).  For decades, it 

has been known that, when cells are removed from the body and grown in culture, they 

have a limited ability to replicate, acquire a multitude of phenotypic changes, and 

undergo cellular senescence (Hayflick 1965; Campisi 2005).  Although initially thought 

of as a purely in vitro phenomenon, further studies confirmed that there is a greater 

number of senescent cells in tissues from aged animals and humans that is not seen in 

those of the young (Dimri, Lee et al. 1995; Choi, Shendrik et al. 2000; Paradis, Youssef 

et al. 2001).  Since senescent cells do not function normally, many have hypothesized 

that their accumulation over time is responsible for decreased tissue structure and 

function seen with age (Campisi 2005).    
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Cells senesce in order to protect themselves against stressors.  These stressors can 

come either in the form of exogenous agents (ionizing radiation, UV radiation, etc.) or as 

naturally occurring byproducts of normal cellular activity, such as the reactive oxygen 

species (ROS) that are generated from oxidative phosphorylation (Wallace 1999).  It is 

because of these stressors that we have developed a system, governed by the aptly named 

caretakers and gatekeepers, to prevent overt crises from occurring on a daily basis 

(Kinzler and Vogelstein 1997).  The caretakers—including ROS scavengers, DNA repair 

enzymes, chaperones, and protein degradation pathways—act to quell the effects of the 

endogenous stressors that are consistently produced (Sierra 2006).  If the cellular stress 

exceeds that which the caretakers can handle, the gatekeepers—mainly p53 and pRb, 

which control key aspects of the cell cycle and cellular response to DNA damage—

control the decision to senesce or to die by apoptosis (Campisi 2005; Sierra 2006). 

  

Although the data are still correlative, there is strong support for the notion that 

increased DNA damage, leading to the accumulation of senescent cells, is responsible for 

many of the changes seen with age (Campisi 1996; Faragher and Kipling 1998; Baker, 

Jeganathan et al. 2004; Lombard, Chua et al. 2005; Vijg and Suh 2005).  When DNA is 

damaged within a cell, response proteins are upregulated and cause a series of 

downstream events to occur, including increased expression of p53.  Generally, p53 is 

thought to have a main role in cellular protection by initiating either senescence or 

apoptosis, depending on the degree of damage that is present within a cell (Campisi 2005; 

Lombard, Chua et al. 2005; Salvioli, Olivieri et al. 2006).  When p53 is knocked out in 
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rodents, the animals exhibit decreased longevity and significant increases in tumor 

development, as would be expected (Tyner, Venkatachalam et al. 2002).  Conversely, 

when p53 activity is augmented, mice have a striking resistance to tumor development 

and an increase in longevity.  However, when these animals with increased p53 activity 

are aged to 24 months, they show accelerated development of gross phenotypic changes 

commonly associated with aging, such as osteoporosis, muscle atrophy, decreased hair 

growth, and impaired wound healing (Tyner, Venkatachalam et al. 2002).  Evolutionarily, 

these studies may explain why the aging phenotype is so much more prevalent now than 

in the past.  Since increased p53 expression benefits organisms early in life, it is possible 

that this phenotype has been selected for in the population (Franceschi, Bonafe et al. 

2000; Campisi 2005; Kirkwood 2005).  This selection would create a high proportion of 

individuals with longer life-spans but a greater propensity for organ dysfunction with 

time.  The concept that certain genes may be protective early in life, but cause 

detrimental changes that manifest later in life is called antagonistic pleiotropy (Williams 

1957; Kirkwood and Austad 2000; Campisi 2005; Campisi 2005).   

  

It is important to note that the immune system—both the innate and the 

adaptive—is not exempt from the accumulation of DNA damage and cellular senescence.  

Although a great deal has been uncovered about the adaptive immune changes that occur 

with time, age-related defects in components of innate immunity have gained more 

attention in recent years (Albright and Albright 2003; Plackett, Boehmer et al. 2004; 

Plowden, Renshaw-Hoelscher et al. 2004; Gomez, Boehmer et al. 2005; Sebastian, Espia 
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et al. 2005).  Commonly observed in the elderly are decreased T cell memory, exhaustion 

of the naïve T cell population with involution of the thymus, and a chronic inflammatory 

status that has come to be called, “inflamm-aging” (Franceschi and Bonafe 2003; Meyer 

2005; Capri, Monti et al. 2006).  As a result, the elderly are more susceptible to viral and 

bacterial infections, reactivation of latent viruses, autoimmune diseases, and neoplasias 

compared to young adults (Franceschi, Bonafe et al. 2000; Effros 2003; Pawelec, Akbar 

et al. 2004; Prelog 2006; Weng 2006).   

  

According to one theory of aging introduced by Harman in the 1950’s, the 

accumulation of free radicals is the main mechanism behind many of the age-related 

diseases and disorders seen in the population (Harman 1956).  However, other sources of 

cellular stress may also be implicated (Lombard, Chua et al. 2005).  Current thought is 

that the way a person ages is dependent on both the internal and external environment, as 

well as the genetics which determine the ability for the individual to combat the cellular 

stresses and DNA damage (Franceschi, Bonafe et al. 2000; Salvioli, Capri et al. 2006).  

When studying the factors involved with increased longevity, it is evident that the ability 

to resist cellular stresses—either by decreasing the exposure to them, by having the 

optimal genetic makeup to oppose them, or both—is the key (Franceschi and Bonafe 

2003; Salvioli, Capri et al. 2006).  

 

As stated above, ROS and reactive nitrogen species (RNS) are produced during a 

variety of normal cellular activities, as well as in numerous pathologic states (Brigham 
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1990; Lavrovsky, Chatterjee et al. 2000; Balaban, Nemoto et al. 2005; Sarkar and Fisher 

2006).  The main issue with ROS in a biological system results from the instability of 

free radicals.  If one molecule is converted to a free radical, the reaction can be quickly 

propagated and potentially turn any molecule nearby into a free radical as well.  As 

oxidized proteins, lipids, and DNA do not function optimally, damage to entire areas of 

tissue can severely compromise normal function.  The direct tissue injury free radicals 

cause may also stimulate the inflammatory response, generating even more free radicals 

and creating a feed-forward loop of oxidative damage (Moraes, Zurawska et al. 2006).  

Free radicals can also stimulate innate immune cells directly by upregulating redox-

sensitive transcription factors—mainly nuclear factor-kappaB (NF-κB) and activator 

protein-1 (AP-1)—that are involved in inflammatory pathways (Lavrovsky, Chatterjee et 

al. 2000; Li and Verma 2002; Radak, Chung et al. 2004; Moraes, Zurawska et al. 2006).   

  

Since free radicals can be so detrimental to the cell, it is imperative that the 

body’s defense mechanisms that protect against these agents are optimal.  Unfortunately, 

this does not happen with age.  Over time, free radicals tend to accumulate, both because 

of excessive production and because of defects in the machinery that help eliminate them 

(Lavrovsky, Chatterjee et al. 2000; Salvioli, Olivieri et al. 2006).  As a result of the 

increased cell stress and damage, many of the elderly are in a state of chronic 

inflammation, marked by an elevation in circulating inflammatory markers, such as IL-6, 

tumor necrosis factor-α (TNF-α), C-reactive protein, and soluble TNF-α receptor 

(Franceschi, Bonafe et al. 2000; Gomez, Boehmer et al. 2005; Salvioli, Capri et al. 2006).  
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In fact most, if not all, problems or diseases associated with aging have some defective 

inflammatory component to them; these include but are not limited to cardiovascular 

disease, atherosclerosis, impaired wound healing, cancer, Alzheimer’s disease, 

Parkinson’s disease, Type II diabetes, and rheumatoid arthritis (Ashcroft, Horan et al. 

1998; Franceschi, Bonafe et al. 2000; Caruso, Lio et al. 2004; Chung, Sung et al. 2006; 

Salvioli, Capri et al. 2006; Sarkar and Fisher 2006).  Thus, to understand aging, it is not 

only important to determine the mechanisms of cellular damage, but also to understand 

how the defects in the immune system can lead to even greater problems.   

 

The Inflammatory Response 

In order to gain knowledge in the pathogenesis of burn injury in the elderly, it is 

important to first characterize the steps involved in an appropriate response to an 

inflammatory challenge.  In general, the function of inflammation is to prevent infection, 

to remove cellular debris, and eventually to promote tissue repair (Henson 2005).  To 

initiate this process, pro-inflammatory cytokines, such as interleukin (IL)-1β and TNF-α, 

from resident leukocytes and damaged cells must be released at the initial site of injury or 

infection to recruit more inflammatory cells (Sibille and Reynolds 1990; Garcia-Ramallo, 

Marques et al. 2002).  Typically, the first cells to infiltrate the site of inflammation are 

neutrophils (Demling, LaLonde et al. 1989; Baskaran, Yarmush et al. 2000; Nathan 

2006), closely followed by macrophages (Martin and Leibovich 2005).  In the case of a 

major insult, such as burn, the particular events surrounding this acute phase of 

inflammation tend to set the stage for consequences that can occur later.  Thus, a careful 
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examination of how these cells are recruited in the early inflammatory response may help 

to elucidate the mechanisms which lead to detrimental outcomes following burn.  

 

Setting the Stage 

Before entering the circulation, granulocyte-monocyte precursors are retained in 

the bone marrow via the chemokine, stromal cell-derived factor-1 (SDF-1), acting 

through its receptor, CXCR4 (Levesque, Hendy et al. 2003; Martin, Burdon et al. 2003; 

Nathan 2006; Christopher and Link 2007).  During an inflammatory challenge, the 

release of either granulocyte-colony stimulating factor (G-CSF) or granulocyte 

monocyte-colony stimulating factor (GM-CSF) mediates the movement of neutrophils 

from the bone marrow into circulation by disrupting this SDF-1/CXCR4 axis (Basu, 

Hodgson et al. 2002; Semerad, Liu et al. 2002; Levesque, Hendy et al. 2003; Nathan 

2006; Christopher and Link 2007).   

 

In the absence of a stimulus, circulating neutrophils undergo apoptosis within 8-

12 hours of their release from the bone marrow (Savill, Wyllie et al. 1989).  As 

neutrophils play an important role in immune surveillance under resting conditions, a 

constant neutrophil turnover is therefore required to maintain adequate numbers in the 

circulation (Weinmann, Scharffetter-Kochanek et al. 2003).  Upon insult, GM-CSF, 

secreted from a number of cellular sources, causes a delay in neutrophil apoptosis.  This 

delay increases the lifespan of neutrophils to 1-2 days, allowing more time for the cells to 
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infiltrate the source of inflammation (Chilvers, Cadwallader et al. 2000; Mukae, Zamfir 

et al. 2000).   

 

While macrophages are derived from the same progenitors as neutrophils, their 

divergent maturation process creates a number of functional differences between them 

(DeKoter, Walsh et al. 1998; Rosmarin, Yang et al. 2005; Sugimoto, Katayama et al. 

2006).  For one, macrophages are released from the bone marrow as monocytes, where 

they remain in circulation for approximately 1-3 days (Martinez, Gordon et al. 2006).  

Unlike neutrophils which undergo spontaneous apoptosis, the “life” of a monocyte ends 

when it migrates into tissues and differentiates into a macrophage (Martinez, Gordon et 

al. 2006). 

 

Neutrophils and Macrophages in the Inflammatory Response 

Once recruited to the site of inflammation, activated neutrophils can phagocytose 

bacteria and cellular debris (Reynolds 1985; Segal 2005), as well as release cytoplasmic 

granules containing proteases, antimicrobial proteins, and enzymes which generate ROS 

(Ward 1983; Moraes, Zurawska et al. 2006; Lehrer 2007).  However, while the actions of 

neutrophils are critical in the defense against microbes, they are also relatively 

nonspecific.  As a result, an overproduction or a prolonged release of these products can 

paradoxically lead to excessive tissue destruction and exacerbation of the inflammatory 

response (Ward 1983; Simon, DeHart et al. 1986; Brigham 1990; Hewett, Schultze et al. 

1992; Jaeschke and Smith 1997; Moraes, Zurawska et al. 2006).  Therefore, while 
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recruitment and activation of neutrophils are important components of inflammation, the 

ability to turn off this response is just as imperative.   

  

The main role for macrophages is phagocytosis of cellular debris and bacteria to 

maintain normal tissue function and to prevent infection (Goldstein, Lippert et al. 1974; 

Reynolds 1985; Savill, Wyllie et al. 1989).  As macrophages are sensitive to various 

cytokines and other inflammatory stimuli, they also play a significant role in initiating 

and resolving the inflammatory response within tissues (Sibille and Reynolds 1990; 

Heinrich, Messingham et al. 2003; Martin and Leibovich 2005; Smith, Ochsenbauer-

Jambor et al. 2005).   

 

Again, following their release from the bone marrow, the fate of both neutrophils 

and monocytes is dependent on the particular milieu as the cells circulate through various 

tissues.  When an inflammatory insult is present, a particular series of events must take 

place in order for the cells to migrate into the injured tissue: chemoattraction, adhesion, 

and diapedesis (or transendothelial migration) (Muller 2003; Cook-Mills and Deem 

2005).  While the specific events involved in this process occurs similarly for all 

leukocytes, this review will only focus on neutrophils from this point forward, as this is 

the cell type which dominates the acute phase of inflammation after injury. 
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Neutrophil Chemoattraction 

Neutrophils migrate to the site of inflammation following the local release of 

chemokines.  There are four main categories of chemokines, classified by the spacing of 

conserved cysteine residues near the N-terminal region of the protein: C, CC, CXC, and 

CXXXC, with each X standing for a nonconserved amino acid (Clark-Lewis, Kim et al. 

1995; Baggiolini 1998; Murphy, Baggiolini et al. 2000).  The way in which each of these 

cysteines forms disulfide bonds with other cysteines in the protein determines their three-

dimensional structure (Murphy, Baggiolini et al. 2000; Olson and Ley 2002).  In general, 

the CC chemokines attract monocytes, NK cells, and dendritic cells; one CC chemokine 

also attracts lymphocytes (Clark-Lewis, Kim et al. 1995; Baggiolini 1998).  The CXC 

chemokines can be further classified into two categories, based on the presence of a 

conserved sequence of glutamic acid-leucine-arginine (or ELR).  ELR+ CXC chemokines 

specifically attract neutrophils, whereas ELR- CXC chemokines tend to stimulate 

lymphocyte migration (Clark-Lewis, Kim et al. 1995; Murphy, Baggiolini et al. 2000; 

Olson and Ley 2002).  Only two C chemokines (lymphotactin α and β, which stimulate T 

lymphocytes) and one CXXXC chemokine (fractalkine, which can act as both a 

chemokine and an adhesion molecule) have been discovered (Clark-Lewis, Kim et al. 

1995; Murphy, Baggiolini et al. 2000).  In mice, KC and macrophage inflammatory 

protein-2 (MIP-2) are the main ELR+ CXC neutrophil chemokines (Piccolo, Wang et al. 

1999; Reutershan and Ley 2004; Lomas-Neira, Chung et al. 2005).  The homologues for 

these genes in humans are growth-related oncogene alpha (GROα) and beta (GROβ), 

respectively (Murphy, Baggiolini et al. 2000).  
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In order to stimulate migration, chemokines must bind to their cognate receptors 

on leukocytes.  Interestingly, nearly all chemokine receptors in the body—including 

those involved in development, angiogenesis, and neuronal growth—signal through the 

Gi subclass of G-protein coupled receptors (GPCR) (Baggiolini 1998; Murphy, 

Baggiolini et al. 2000; Rossi and Zlotnik 2000; Olson and Ley 2002).  In general, GPCRs 

are seven transmembrane receptors that, when activated by ligand binding, a 

conformational change leads to the activation of a specific guanine nucleotide-binding 

protein (the G-protein) [reviewed in (Neves, Ram et al. 2002)].  In the inactive state, G-

proteins consist of three subunits: α, β, and γ (Figure 1).  When stimulated, the Gα 

subunit—which is bound to GDP when active—dissociates from the Gβγ subunits and a 

guanine nucleotide exchange factor (GEF) replaces the bound GDP with a new GTP 

molecule.  The Gα subunit can then activate other downstream pathways via hydrolysis of 

GTP to GDP.  In some situations, the Gβγ subunit can also act as a signaling molecule.  

Once GTP hydrolysis occurs, the Gα re-associates with the Gβγ subunit and the signal is 

terminated.  While the Gα subunit has endogenous GTPase activity, another group of 

regulatory proteins, called GTPase-activating proteins (GAP), can accelerate the 

hydrolysis and terminate the signal faster.  However, if the chemokine receptor is still 

available at the surface of the neutrophils, the signal can continually become activated if 

chemokines are present.  Therefore, distinct mechanisms for signal termination must be 

in place to prevent over-stimulation via this pathway.   
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Both KC and MIP-2 signal through the receptor, CXCR2, which leads to the 

activation of phospholipase A2, C, and D, Src-related kinases, and small GTPases 

(Figure 1) (Bokoch 1995; Olson and Ley 2002).  Signaling through CXCR2 on 

neutrophils thus stimulates a number of neutrophil functions.  Neutrophil chemotaxis, in 

Figure 1: Mechanisms of chemokine receptor activation via Gαi. Abbreviations: 
GEF: guanine nucleotide exchange factor; GAP: GTPase activating protein; GDP: 
guanine diphosphate; GTP guanine triphosphate; Pi: inorganic phosphate; PLD: 
phospholipase D; PLC: phospholipase C; PI3K: phosphatidyl inositol 3 kinase; 
MAPK: mitogen activated protein kinase. 
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particular, involves the small GTPase pathways of Rac and Rho.  These pathways 

culminate in actin cytoskeleton rearrangement to allow movement of cells towards the 

chemoattractants released at the site of inflammation (Reutershan and Ley 2004).  Other 

neutrophil chemokines that are not part of the CXC classification, but which signal 

through the same intracellular pathways, include the complement protein, C5a, and the 

bacterial peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (Hammond, 

Lapointe et al. 1995; Terashima, English et al. 1998; Piccolo, Wang et al. 1999; Burns, 

Smith et al. 2003; Reutershan and Ley 2004).   

 

Neutrophil Rolling 

Once neutrophils arrive at the site of inflammation, they must move out of central 

circulation and into the marginating zone of the vasculature before they can infiltrate the 

tissue.  This process is termed, “rolling adhesion” (Tedder, Steeber et al. 1995; Guo and 

Ward 2002; Beck-Schimmer, Schimmer et al. 2004).  Here, P-selectin and E-selectin 

become upregulated on the surface of activated endothelial cells and weakly bind to sialyl 

Lewis groups on neutrophils passing through the blood (Tedder, Steeber et al. 1995; 

Carraway, Welty-Wolf et al. 1998; Guo and Ward 2002).  Another molecule, L-selectin, 

is constitutively expressed on most leukocytes, but it mostly aids in the homing of cells to 

secondary lymphoid tissues, such as the spleen and lymph nodes (Tedder, Steeber et al. 

1995).   
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This process of rolling adhesion is only temporary, but it allows for neutrophils to 

integrate and process the signals being produced from the surrounding tissue.  The main 

signals that the neutrophils respond to during this phase are the concentration of 

chemokines being secreted from the site of inflammation and the degree of expression of 

adhesion molecules on the endothelium (Luu, Rainger et al. 2000; Zhang, Liu et al. 2001; 

Ley 2002).  If a certain threshold of these stimuli is reached, neutrophils then enter the 

“tight adhesion” phase and the selectins are shed from the endothelium (Furie and 

Randolph 1995; Tedder, Steeber et al. 1995).  If this threshold is not achieved, leukocytes 

will become untethered from the endothelium and will continue through the circulation 

(Ley 2002).   

 

Neutrophil Adhesion 

In the tight adhesion phase, intercellular adhesion molecule-1 (ICAM-1) and 

vascular cell adhesion molecule-1 (VCAM-1) are upregulated on endothelial cells and act 

to strengthen the interaction with neutrophils (Figure 2) (Elangbam, Qualls et al. 1997; 

Cook-Mills and Deem 2005).  The expression of cell adhesion molecules on the 

endothelium is highly dependent on stimulation by IL-1β and TNF-α (Lo, Everitt et al. 

1992; Mulligan, Vaporciyan et al. 1993; Elangbam, Qualls et al. 1997).  Neutrophils 

interact with these adhesion molecules mainly through the α integrins, CD11a and 

CD11b, for ICAM-1 and the β1 integrins of the very late antigen (VLA) family for 

VCAM-1 (Tonnesen 1989; Arnaout 1990; Mulligan, Till et al. 1994; Elangbam, Qualls et 

al. 1997; Piccolo, Wang et al. 1999).  The CD11 integrins can also associate with the β2 
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integrin, CD18, for increased migratory capacity (Tonnesen 1989; Hellewell, Young et 

al. 1994; Walzog, Seifert et al. 1994; Reutershan and Ley 2004).  In addition, integrins 

(mostly β1) bind to extracellular matrix (ECM) components, via a consensus sequence, 

RGD (arginine-glycine-aspartate), present in many ECM proteins, such as fibronectin, 

laminin, and collagen (Arnaout 1990; Elangbam, Qualls et al. 1997; Burns, Smith et al. 

2003).  In general, it is thought that the β2 integrins function more in cell-cell interactions 

and mediate the initial phases of adhesion to the vasculature, while the β1 integrins 

participate more in cell-matrix interactions to guide the cell through the tissue once 

migration begins to occur (Arnaout 1990; Elangbam, Qualls et al. 1997; Burns, Smith et 

al. 2003).   

 

Figure 2: Minimum requirements for neutrophil diapedesis.  
Not shown: actin cytoskeletal rearrangements causing endothelial cell 
retraction and neutrophil migration. Abbreviations: CD: cluster of 
differentiation; VLA: very late antigen; ICAM-1: intercellular adhesion 
molecule-1; VCAM-1: vascular cell adhesion molecule-1. 
 

CXCR2 

ICAM-1 or 
VCAM-1 

CD11/CD18 
or VLA 



21 
 

 
 

While CD11 is constitutively present on leukocytes, the relative levels of the a, b, 

and c isoforms differ according to their maturation state (Arnaout 1990; Mazzone and 

Ricevuti 1995).  CD11a is found mostly on granulocyte-monocyte precursors in the bone 

marrow; here, CD11b and c are not detectable (Arnaout 1990; Mazzone and Ricevuti 

1995).  Upon mobilization from the bone marrow, CD11a significantly decreases and 

CD11b and c begin to appear on the surface of neutrophils (Arnaout 1990; Burdon, 

Martin et al. 2005).  In resting states, most of the CD11b and c is contained within 

intracellular storage granules of mature neutrophils.  Upon activation with stimulants, 

such as C5a, CXC chemokines, and TNF-α, these integrins are upregulated on the surface 

of neutrophils to aid in the migration into tissues (Tonnesen 1989; Arnaout 1990; 

Mazzone and Ricevuti 1995).   

 

Interestingly, there are many other roles for the CD11/CD18 complex on 

leukocytes, including the binding of the complement component, C3bi, phagocytosis, and 

antibody dependent cell-mediated cytotoxicity (Arnaout 1990; Mazzone and Ricevuti 

1995).  On lymphocytes, CD11/CD18 is also involved with proliferation and cytotoxicity 

(Arnaout 1990; Mazzone and Ricevuti 1995).  Given that CD11/CD18 is involved in 

most leukocyte functions, it is understandable why disease states in which some 

component of this system is disrupted can lead to a fatal infection (Arnaout 1990; Tedder, 

Steeber et al. 1995; Elangbam, Qualls et al. 1997).  
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Neutrophil Diapedesis 

While the mechanisms involved in the transition from neutrophil adhesion to 

migration through the endothelium are not completely understood, it is generally 

accepted that there are minimum requirements for both the endothelium and neutrophils 

in this process.  The necessary components on the endothelium are the upregulation of 

cell adhesion molecules (Luu, Rainger et al. 2000; Zhang, Liu et al. 2001) and the 

activation of actin cytoskeletal rearrangement pathways, leading to cellular retraction and 

increased permeability (Dudek and Garcia 2001; Murphy and Duffy 2003; Tinsley, 

Teasdale et al. 2004).  The essential components for neutrophils are the increased surface 

expression of the relevant integrin ligands and actin cytoskeletal reorganization to allow 

for cell movement (Figure 2) (Luu, Rainger et al. 2000; Rosseau, Selhorst et al. 2000; 

Reutershan and Ley 2004).   

 

When all factors are present and functioning normally, neutrophils can then 

extravasate into the tissue with the help of platelet-endothelial cell adhesion molecule-1 

(PECAM-1), a constitutively expressed molecule on the lateral surfaces of endothelial 

cells and on neutrophils (Guo and Ward 2002; Beck-Schimmer, Schimmer et al. 2004; 

Cook-Mills and Deem 2005).  To aid in this process, proteins contained in junctional 

complexes—mainly occludin for tight junctions and β-catenins and cadherins for 

adhesion junctions (Saitou, Ando-Akatsuka et al. 1997; Dudek and Garcia 2001; 

Schneeberger and Lynch 2004)—become disrupted and vascular permeability is 

increased (Dudek and Garcia 2001; Reutershan and Ley 2004; Tinsley, Teasdale et al. 
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2004).  In addition, neutrophils can secrete matrix metalloproteinases (MMP) to digest 

the intercellular junctional proteins, which further aids in migration through the tissue 

(Alexander and Elrod 2002; Chakrabarti and Patel 2005).  MMPs can be released by 

neutrophils in response to CXCR2-mediated pathways (Chakrabarti and Patel 2005) and 

by NADPH-dependent ROS production (Cook-Mills and Deem 2005).  With this change 

in vascular permeability, fluid also leaks out of the vasculature, leading to edema 

formation, which significantly contributes to the pathology seen in various tissues after 

injury (Lo, Everitt et al. 1992; Kowal-Vern, Walenga et al. 1997; Dudek and Garcia 

2001; Turnage, Nwariaku et al. 2002; Tinsley, Teasdale et al. 2004).   

 

Inflammatory Resolution 

Again, as the consequences of inflammatory cell activation are relatively 

nonspecific, a prolonged response can eventually lead to tissue destruction.  Therefore, to 

consider an inflammatory response “appropriate”, the resolution may be just as important 

as the initiation (Henson 2005; Martin and Leibovich 2005; Serhan, Brain et al. 2007).  

Perhaps the most obvious way to end an inflammatory reaction is to remove the source—

whether it is a microbe, a foreign body, or cellular debris.  This, of course, is the function 

of the inflammatory response in the first place, which requires the activation of 

inflammatory cells, the release of reactive oxygen species and proteolytic enzymes, and 

phagocytosis (Ayala, Chung et al. 2003; Henson 2005).   
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In certain scenarios, however, the source or extent of the inflammatory stimulus 

may persist despite all efforts, such as in chronic inflammatory diseases (Ayala, Chung et 

al. 2003; Henson 2005).  Mechanisms to remove the inflammatory cells from the system, 

such as apoptosis, therefore exist as another level of regulation.  Again, the lifespan of a 

neutrophil exiting the bone marrow is limited, even when activated (Ayala, Chung et al. 

2003; Henson 2005; Serhan, Brain et al. 2007).  While the need for constant neutrophil 

turnover may seem uneconomical, especially in resting states, its benefit in resolving 

inflammation may ultimately outweigh the costs.  Furthermore, it has been shown that 

macrophages which have ingested apoptotic neutrophils secrete anti-inflammatory 

mediators, creating another pathway for limiting the response (Savill, Wyllie et al. 1989; 

Fadok, Bratton et al. 1998; Henson 2005).    

 

Yet another level of regulation for the inflammatory response is the inhibition or 

downregulation of pro-inflammatory mediators.  In general, cell signaling by pro-

inflammatory cytokines can be terminated by either removing the extracellular ligands 

which induce the reaction or by inhibiting the ability for the cell to respond.  The release 

of anti-inflammatory mediators from a number of cell types—including parenchymal 

cells, macrophages, natural killer cells, and natural killer T cells—is one of the main 

mechanisms to combat the actions of pro-inflammatory cytokines.  One group of anti-

inflammatory mediators includes those which target the pro-inflammatory cytokines 

directly, such as the soluble TNF-α receptor or IL-1 receptor antagonist (Ayala, Chung et 

al. 2003); these agents have been exploited clinically in the treatment of a number of 
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inflammatory conditions (Abraham and Allbee 1994; Dinarello 2000; Remick, Call et al. 

2001).  Another group—which includes anti-inflammatory cytokines, such as IL-10, IL-

4, and transforming growth factor β (TGFβ) (Ayala, Chung et al. 2003; Henson 2005), 

and certain acute phase proteins (Tilg, Dinarello et al. 1997; Hochepied, Berger et al. 

2003; Arredouani, Kasran et al. 2005)—acts indirectly on the cells to turn off the 

production of pro-inflammatory mediators.  While modulation of this second group of 

secreted products may seem to be clinically efficacious, results from in vivo studies have 

been highly variable (Dinarello 2000; Barnes 2001; Ayala, Chung et al. 2003; Marklund, 

Keck et al. 2005). 

 

While anti-inflammatory mediators can effectively shut down the release of pro-

inflammatory cytokines, there are two key processes involved in termination of the 

chemokine response: spontaneous GTP hydrolysis via endogenous Gα GTPase activity 

and receptor desensitization (Figure 3) (Pitcher, Freedman et al. 1998; Ferguson 2001; 

Olson and Ley 2002; Ishii and Kurachi 2003; Vroon, Heijnen et al. 2006).  As described 

above, even when Gαi is hydrolyzed to its inactive (GDP-bound) form, if the chemokine 

receptor is still available at the cell surface, the presence of any remaining ligand can 

trigger re-activation.  To completely render a cell unresponsive to chemoattractant 

stimulation, the receptor is downregulated through the process of desensitization   

(Figure 3).  Current thought is that G protein-coupled receptor kinases (GRKs), which 

phosphorylate the intracellular portion of chemokine receptors, are the main modulators 

of receptor desensitization (Prado, Suzuki et al. 1996; Mueller, White et al. 1997; Nasser, 
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Mechanism 2: Receptor Desensitization 

Figure 3: Mechanisms of terminating chemokine signaling pathways. 
Abbreviations: GDP: guanine dinucleotide phosphate; GTP: guanine trinucleotide 
phosphate; Pi: inorganic phosphate; PKC: protein kinase C; GRK: G-protein 
coupled receptor kinase. 
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Raghuwanshi et al. 2007).  GRKs are activated mainly by the protein kinase A (PKA) or 

C (PKC) pathways—both of which become active upon signaling by the chemokine 

receptor (Pitcher, Freedman et al. 1998; Ferguson 2001; Olson and Ley 2002).  As a 

result, phosphorylated receptors are unable to signal, even in the presence of extracellular 

ligand (Luu, Rainger et al. 2000).  Moreover, receptor phosphorylation leads to β-arrestin 

recruitment and endocytosis of the receptor via the formation of clathrin-coated vesicles 

(Mueller, White et al. 1997; Pitcher, Freedman et al. 1998; Ferguson 2001; Vroon, 

Heijnen et al. 2006; Nasser, Raghuwanshi et al. 2007).  Upon receptor internalization, the 

potential for chemokine signaling is abolished.  Interestingly, as all chemokines signal 

through the same intracellular pathways, the activation of one chemokine receptor, 

including those for C5a and fMLP, has the potential to desensitize all other chemokine 

receptors (Pitcher, Freedman et al. 1998; Ali, Richardson et al. 1999; Le, Li et al. 2000; 

Luu, Rainger et al. 2000; Ferguson 2001; Vroon, Heijnen et al. 2006).  This process, 

termed heterologous desensitization, therefore allows for absolute termination of receptor 

signaling, rendering the neutrophil incapable of migration towards any type of stimulant.  

 

The Systemic Response to Burn Injury 

Overall, the process of neutrophil recruitment to an inflamed tissue is quite 

complex.  Therefore, careful regulation of the steps involved in the inflammatory 

response, including those which terminate it, are critical to prevent infection and to 

initiate tissue repair.  For a small wound, the process described above is limited to the 

injury site, where cytokine secretion and endothelial cell activation occurs locally.  In the 
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case of a moderate to severe burn injury, however, a great degree of cellular and tissue 

damage is generated over a significant portion of the body.  As a result of this large 

surface area of damage, a local elevation of pro-inflammatory mediators progresses to a 

systemic circulation of these factors (Davis, Moore et al. 1987; Botha, Moore et al. 1996; 

Piccolo, Wang et al. 1999; Mimasaka, Hashiyada et al. 2001).  In this situation, as pro-

inflammatory cytokines travel through the blood and activate endothelial cells, even more 

cytokines are released into circulation, creating a positive feedback loop of inflammation 

(Ware and Matthay 2000).  Clinically, this can lead to what is called the systemic 

inflammatory response syndrome (SIRS), marked by hyper or hypothermia, increased 

heart and respiratory rate, and leukocytosis or leukopenia (Rangel-Frausto, Pittet et al. 

1995; Bone 1996).  

 

Again, since it is important that the inflammatory process is countered by anti-

inflammatory mechanisms, the reaction to SIRS manifests as a compensatory anti-

inflammatory response syndrome (CARS) (Robertson and Coopersmith 2006).  This is 

essentially an exaggerated, global immunosuppressive phase, marked by decreased 

interferon-gamma (IFN-γ) and IL-10, as well as increased IL-4 (Kovacs, Duffner et al. 

2004; Schneider, Schwacha et al. 2004).  The clinical outcomes of burn injury, as 

described above, are therefore determined by which particular phase of the inflammatory 

response the patient is in (Figure 4).  In the initial pro-inflammatory phase, the patient is 

at a significant risk for early MOF as a result of inflammatory-mediated destruction of 

vital organs, such as the heart and lungs (Demling, LaLonde et al. 1989; Moore, Sauaia et  
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al. 1996), and shock, whereby hypoperfusion renders tissues incapable of sustaining 

aerobic metabolism (Gutierrez, Reines et al. 2004).  In the later phase, where 

immunosuppression dominates, the risk of MOF is more likely to result from infection 

and sepsis (Moore, Sauaia et al. 1996; Fitzwater, Purdue et al. 2003; Davis, Santaniello et 

al. 2004; Tarlowe, Duffy et al. 2005).   
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It has long been recognized that one of the most serious threats to the burn patient 

is the development of respiratory complications, such as pneumonia and the development 

of acute lung injury, leading to ARDS (Shook, MacMillan et al. 1968; Achauer, Allyn et 

al. 1973; Teixidor, Novick et al. 1983; Hollingsed, Saffle et al. 1993; Dancey, Hayes et 

al. 1999).  Moreover, when pulmonary dysfunction develops in elderly patients, the risk 

of death is even higher than that of younger burn patients (Figure 4) (Le, Zamboni et al. 

1986; Clayton, Solem et al. 1995; Ely, Wheeler et al. 2002).  Whether from an infection 

or as a result of systemic inflammation, approximately 45% of burn patients show some 

degree of damage to the lungs, which is markedly higher than any other organ system, 

next to the skin (Fitzwater, Purdue et al. 2003).  Although the inciting injury is not in the 

lung, the accompanying tissue damage and edema formation can significantly 

compromise normal function (Lund, Onarheim et al. 1992; Iliopoulou, Markaki et al. 

1993).  One reason is that all the blood returning from the site of injury, containing 

cytokines and activated leukocytes, must eventually circulate through the lung to become 

reoxygenated.  Other characteristics of the lung that make it one of the most susceptible 

organs to damage following injury include its delicate alveolar architecture and the 

presence of numerous alveolar macrophages, which can independently respond to 

systemic cytokines (Williams, Bankey et al. 1994; Arbak, Ercan et al. 1999).   

 

While methods to block pro-inflammatory cytokines would seem advantageous to 

burn patients, a clinical efficacy for this mode of treatment has not been demonstrated.  

The timing and dose of administration may be the critical reasons for why this strategy 
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has not been successful.  Chemokines, on the other hand, are also involved in neutrophil 

exit from the bone marrow, recruitment to inflammatory sites, integrin activation, tissue 

migration, and effector functions.  As their release occurs hours after key cytokines, such 

as IL-1β, it is possible that targeting the actions of chemokines following burn injury 

would be promising (Piccolo, Wang et al. 1999; Toth, Alexander et al. 2004).   

  

Neutrophil Defects with Aging 

Again, since the neutrophil response dominates the acute stages of inflammation, 

understanding the defects that occur in neutrophils with age may help to reveal some of 

the reasons why the elderly are more susceptible to complications after burn.  With 

increased age, there tends to be a decreased number of granulocyte precursors in the bone 

marrow of both mice and humans (Izumi-Hisha, Ito et al. 1990; Ogawa, Kitagawa et al. 

2000).  While the numbers in circulation are typically not different from younger 

individuals, the production of mature neutrophils under inflammatory conditions in aged 

individuals can be significantly compromised (Chatta and Dale 1996; Schroder and Rink 

2003).  This defect may have important implications for why the elderly are at an 

increased risk for infection (Schroder and Rink 2003; De Martinis, Modesti et al. 2004). 

 

While the average lifespan of neutrophils from an aged individual is typically not 

different from that of neutrophils from the young, the G-CSF mediated delay in apoptosis 

is not present in neutrophils from old mice and humans (Fulop, Fouquet et al. 1997; 

Tortorella, Piazzolla et al. 2001; Fortin, Larbi et al. 2007).  This is thought to be a result 
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of defective signaling through the Janus kinase (Jak)/signal transducer and activator of 

transcription (STAT) pathway (Fortin, Larbi et al. 2007).  It can be speculated that this 

defect in protecting neutrophil apoptosis may lead to a decrease in the ability for the 

elderly to effectively clear infections.   

 

Once neutrophils are released into circulation, a number of functional defects 

have been observed in the aged.  A few laboratories have reported that phagocytosis is 

significantly compromised in neutrophils from both humans and animals of increased age 

(Wenisch, Patruta et al. 2000; Butcher, Chahal et al. 2001; Lord, Butcher et al. 2001).  

However, there is controversy over whether the ability for neutrophils from the aged to 

generate ROS is dysfunctional.  Some have observed a decrease in superoxide production 

following stimulation with latex particles or fMLP (Nagel, Pyle et al. 1982; Biasi, 

Carletto et al. 1996; Fulop, Larbi et al. 2004), while others showed an increase following 

fMLP stimulation in vitro (Ito, Kajkenova et al. 1998; Butcher, Chahal et al. 2001).  

These differing results are likely a function of the experimental conditions by which they 

were performed.  Nonetheless, the dysfunction in neutrophil phagocytosis and ROS 

generation contribute to the decreased microbicidal activity of neutrophils from the aged.  

It has been speculated that these changes may be attributed to decreased intracellular Ca2+ 

release (Fulop, Fouquet et al. 1997; Wenisch, Patruta et al. 2000) and a reduction in actin 

polymerization following stimulation (Rao 1986; Piazzolla, Tortorella et al. 1998).  Both 

of these processes are integral to the activation of both phagocytosis and NADPH 

oxidase-dependent ROS production.   
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In fact, a number of intracellular signaling pathways have been shown to be 

defective in neutrophils from the aged, such as extracellular signal-regulated kinase 

(ERK), p38, phospholipase C, and cyclic AMP activation (Lipschitz, Udupa et al. 1991; 

Fulop, Larbi et al. 2004; Fortin, Larbi et al. 2007).  To explain this, it has been found that 

advanced age is associated with increased membrane fluidity, leading to the alteration in 

toll-like receptor (TLR) (Fulop, Larbi et al. 2004) and triggering receptor expressed on 

myeloid cell-1 (TREM-1) signaling (Fortin, Lesur et al. 2007).  As both of these 

pathways are involved in a number of neutrophil functions (Medzhitov and Janeway 

2000; Radsak, Salih et al. 2004), these results imply that changes in membrane fluidity 

may significantly affect overall neutrophil functions in the aged.  

 

In vivo studies show that aging is associated with an exaggerated neutrophil 

accumulation following a number of different insults, suggesting that there is an 

increased chemotactic response (Ashcroft, Horan et al. 1998; Corsini, Di Paola et al. 

2005; Gomez, Hirano et al. 2007; Ito, Betsuyaku et al. 2007).  However, in vitro studies 

show conflicting results.  Chemotaxis of neutrophils from aged subjects in response to 

fMLP or GM-CSF is reported as either decreased or unchanged compared to those of the 

young (Niwa, Kasama et al. 1989; Biasi, Carletto et al. 1996; Wenisch, Patruta et al. 

2000; Fulop, Larbi et al. 2004).  The inconsistencies in these results may be a function 

of the particular stimulant or experimental conditions employed.  To note, there are no 

publications characterizing the response to the CXCR2 chemokines, KC and MIP-2, in 

neutrophils from the aged.  However, levels of GRK2—involved in desensitization of a 
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number of receptors including CXCR2—have been found to be upregulated in aortas 

from aged animals.  Therefore, receptor desensitization may play a role in the defective 

chemotaxis seen in neutrophils from the aged (Gros, Chorazyczewski et al. 2000; 

Schutzer, Reed et al. 2001). 

 

Data indicate that the adhesion molecule profile is altered in aged individuals, 

which could potentially explain the results from in vivo models of inflammation (De 

Martinis, Modesti et al. 2004).  Even in the absence of clinically detectable disease, aged 

subjects had decreased levels of L-selectin on neutrophils, suggesting either decreased 

activation or increased shedding from overstimulation (Richter, Rassoul et al. 2003; De 

Martinis, Modesti et al. 2004).  In addition, increased levels of the soluble forms of 

ICAM-1 and VCAM-1 in circulation and membrane forms in the aorta were found in 

“healthy” aged humans and rats (Miles, Thies et al. 2001; Richter, Rassoul et al. 2003; 

Zou, Jung et al. 2004; Zou, Yoon et al. 2006).  This is consistent with the concept of 

inflamm-aging described above.  Furthermore, the relative levels of soluble VCAM-1 

were found to positively correlate with the risk for cardiovascular disease in the elderly 

(Richter, Rassoul et al. 2003).  Interestingly, however, neutrophil adhesion under basal 

conditions was not different between young and aged humans, which correlated with no 

change in CD11a and b on the cell surface of neutrophils (Biasi, Carletto et al. 1996; 

Butcher, Chahal et al. 2001).  
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Aging and Burn Injury: a Two-Hit Model? 

As inflammation is a factor associated with increased age in the absence of 

clinically detectable disease, it is interesting to speculate whether the inflammatory 

processes described above may be exacerbated in elderly burn patients.  Many of the 

neutrophil defects associated with aging—including impaired chemotaxis and elevated 

levels of circulating cytokines—are also seen in young individuals sustaining a systemic 

injury.  Therefore, taking into account the pathogenesis of burn injury, it can be 

proposed that increased age primes various cells throughout the body, leading to an 

exaggerated response once the insult occurs.  In other words, burn injury in aged 

individuals can be considered a “two hit” phenomenon.  As in other two-hit models of 

systemic inflammation, such as burn injury complicated by infection, the occurrence of 

the second challenge results in a response greater than that which could be achieved by 

either challenge alone (Davis, Santaniello et al. 2004; Samonte, Goto et al. 2004; Moore, 

Moore et al. 2005; Maegele, Sauerland et al. 2007).  Clinically, these situations pose the 

greatest challenge.  Therefore, developing effective treatment strategies to combat them 

is of great importance.  Current standards of care for burn patients are based on the 

typical response of a young, healthy adult.  Unfortunately, effective treatment strategies 

for elderly burn patients have yet to be realized.  Our understanding of the mechanisms 

involved in increased morbidity and mortality for burn patients over the age of 65 is 

missing a great deal of substance.  As a result, insights about what may be happening 

clinically are currently unattainable.   
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CHAPTER 3 

PULMONARY INFLAMMATION IS EXACERBATED IN  

AGED MICE AFTER BURN INJURY 

 

Abstract 

Burn patients over the age of 65 are at a greater risk for developing pulmonary 

complications than younger patients.  The mechanisms for this, however, have yet to be 

elucidated.  The objective of this study was to determine whether increased 

chemoattraction plays a role in the age-related differences in pulmonary inflammation 

after burn injury.  At 6 or 24 hours after receiving sham or 15% TBSA scald injury, lungs 

from young and aged mice were analyzed for leukocyte content by histological 

examination and immunostaining.  Lungs were then homogenized and levels of 

neutrophil chemokines, MIP-2 and KC were measured.  At 6 hours after burn, the 

number of neutrophils was 4 times higher in the lungs of both burn groups compared to 

aged-matched controls (p<0.05), but no age difference was evident.  At 24 hours, in 

contrast, neutrophils returned to sham levels in the lungs of young, burn-injured mice 

(p<0.05), but did not change in the lungs of aged, burn-injured mice.  Pulmonary levels 

of the neutrophil chemokine, KC, but not MIP-2, was consistently 3 times higher in aged, 

burn injured mice compared to young, burn injured mice at both time points analyzed.  
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Administration with anti-CXCR2 antibody completely abrogated the excessive 

pulmonary neutrophil content by 24 hours (p<0.05) while not affecting the inflammatory 

response of the wounds.  These studies show that CXCR2-mediated chemoattraction is 

involved in the pulmonary inflammatory response after burn and suggest that aged 

individuals sustaining a burn injury may benefit from treatment strategies that target 

neutrophil chemokines. 

 

Introduction 

Individuals over the age of 65 are at a greater risk of developing serious 

complications after burn injury than younger, otherwise healthy, adults (Linn 1980; 

McGill, Kowal-Vern et al. 2000; ABA 2005).  A main reason is that approximately 70% 

of elderly patients are admitted to the emergency room with one or more pre-existing 

conditions, such as cardiovascular disease or diabetes (Tran, Groeneveld et al. 1990; 

Lionelli, Pickus et al. 2005).  However, simply being over the age of 65 has been found 

to be an independent risk factor for the development of multiple organ failure, sepsis, and 

acute respiratory distress syndrome after traumatic injury (Dancey, Hayes et al. 1999; 

Fitzwater, Purdue et al. 2003).  Improvements in treatment strategies for burn patients 

have provided great benefit for younger individuals (2002).  Unfortunately, the current 

advancements have made little progress for elderly burn patients (Griffiths and Laing 

1981; ABA 2005).   
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It has long been recognized that one of the most serious threats to the burn patient 

is the development of respiratory complications (Achauer, Allyn et al. 1973; Hollingsed, 

Saffle et al. 1993).  Moreover, when pulmonary dysfunction develops in elderly patients, 

the risk of death is even higher than that of a younger burn patient (Clayton, Solem et al. 

1995; Ely, Wheeler et al. 2002).  It is currently thought that, with a moderate to severe 

burn injury, an extensive amount of pro-inflammatory mediators enter into circulation, 

incite a systemic inflammatory response, and affect organs other than the skin (Ward and 

Till 1990).  Since the lungs receive 100% of the cardiac output, their risk of being 

affected by a systemic inflammatory response is considerable.  The reasons why the lungs 

of aged individuals are even more susceptible to damage following injury than those of 

younger individuals, however, are not completely understood (Slater and Gaisford 1981; 

Duchateau 2003; Lionelli, Pickus et al. 2005).   

  

One of the acute markers of remote organ damage after burn injury is the 

infiltration of neutrophils (Demling, LaLonde et al. 1989; Baskaran, Yarmush et al. 

2000).  When activated, neutrophils release numerous proteases and reactive oxygen 

species, which can result in destruction of the surrounding tissue (Hansbrough, Wikstrom 

et al. 1996; Ravage, Gomez et al. 1998).  There are three main mechanisms involved in 

neutrophil recruitment to the site of inflammation: chemoattraction, endothelial cell 

adhesion, and vascular permeability (Hillyer, Mordelet et al. 2003; Reutershan and Ley 

2004).  In this study, we will only focus on chemoattraction.  Neutrophil chemokines—

mostly KC and MIP-2, which are orthologs of human GROα and β, respectively—are 
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released from a number of cell types in the lung in response to inflammatory stimuli 

(Piccolo, Wang et al. 1999; Lomas-Neira, Chung et al. 2005).  Upon their release, 

chemokines bind to their cognate receptors on circulating leukocytes and induce 

cytoskeletal changes that allow the cells to migrate into the tissue (Lomas-Neira, Chung 

et al. 2004; Reutershan and Ley 2004).  For neutrophils, the main receptor for MIP-2 and 

KC is CXCR2, which is upregulated in response to various pro-inflammatory mediators 

(Goodman, Pugin et al. 2003; Reutershan and Ley 2004).   

  

To date, most of the animal models that explore the mechanisms of pulmonary 

inflammation after injury utilize young adult animals (Stengle, Meyers et al. 1996; Dries, 

Lorenz et al. 2001; Lomas-Neira, Chung et al. 2005; O'Dea, Young et al. 2005).  

Although many have shown that pulmonary sequelae have a higher incidence in elderly 

burn patients and are more detrimental, few have investigated the cause (Linn 1980; 

Slater and Gaisford 1981; Lionelli, Pickus et al. 2005).  The main objective of this study 

was to examine pathologic differences in the lungs of young and aged animals in a 

murine model of burn injury and to determine whether the neutrophil chemokines, MIP-2 

and KC, play a role in this process.  We have employed a murine model in which animals 

receive only a moderate sized burn injury (15% of the TBSA).  In the human population, 

only about 1% of individuals from 2-60 years old would succumb to this size burn, 

whereas 15% of those over the age of 60 would die from a similar sized injury (ABA 

2005).  Here, we show for the first time that a moderate sized burn in aged mice parallels 

what is observed in humans and that a greater neutrophil accumulation is related to a 
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protracted expression of KC in the lungs of aged mice.  Blocking neutrophil 

chemoattraction through administration of anti-CXCR2 antibody effectively reduces 

pulmonary inflammation in the lungs of aged mice in the first 24 hours after burn.  

 

 

Materials and Methods 

Animals 

Young (3-6 months) and aged (18-22 months) BALB/c female mice were 

obtained from the National Institute of Aging colony at Harlan Laboratories 

(Indianapolis, IN) and maintained on a 12 hour light/dark cycle with standard laboratory 

rodent chow and water ad libitum.  All experimental procedures were performed 

according to the Animal Welfare Act and the Guide for the Care and Use of Laboratory 

Animals, National Institutes of Health, and approved by the Animal Care and Use 

Committee at Loyola University Medical Center.   

 

Induction of Burn Injury 

Mice were anesthetized with Nembutal (50 mg/kg) intraperitoneally (i.p.), shaved, 

and placed into a plastic template designed to give a 15% TBSA, full-thickness, dorsal 

scald injury when immersed in a boiling water bath for 8 seconds, according to a 

modified protocol of Walker and Mason (Walker and Mason 1968; Faunce, Gregory et 

al. 1997).  As a control, a separate group of mice received a sham injury, which entailed 

administration of anesthesia and shaving, but a room temperature water bath was used 
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instead.  Immediately following injury, the mice received warm saline resuscitation (1 ml 

per 20 g body weight) and their cages were placed on heating pads to prevent circulatory 

collapse and cardiovascular shock.  After recovering from anesthesia, this procedure 

leaves young, healthy mice able to eat, drink, groom, and ambulate at their pre-injury 

capacity.  Aged mice, on the other hand, take longer to recover from anesthesia, show 

labored breathing, and do not ambulate as well as before the injury.  The mice were 

sacrificed using CO2 inhalation and cervical dislocation.  No other therapeutic 

intervention was provided, as administration of anti-inflammatory or analgesic 

medication may introduce confounding factors into the assessment of inflammatory 

responses.  To eliminate the complication of hormones regulated by circadian rhythms, 

all burn injury procedures were administered between 8 and 10 am.  In addition, all 

mice—including those which died before the time of sacrifice—were examined for 

visible tumors and, if found, were removed from the study.  

 

Histologic Examination of the Lungs 

Lungs were removed and inflated with formalin immediately after sacrifice, as 

previously described (Patel, Faunce et al. 1999).  After overnight fixation, the lungs were 

embedded in paraffin, sectioned, and stained with hematoxylin and eosin (H&E).  Lung 

sections were examined by light microscopy for pathologic changes and neutrophil 

content (Patel, Faunce et al. 1999).  The total number of neutrophils in the lungs of each 

animal was determined in ten 400x fields.       
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Immunofluorescence of Leukocytes in the Lungs and Skin 

The lungs were removed at the time of sacrifice, inflated with 25% O.C.T. 

freezing medium, and embedded for frozen sectioning.  To compare the changes in the 

lung to the wound itself, the skin from the edge of the burn wound was also removed at 

the time of sacrifice and embedded in O.C.T freezing medium for sectioning.  Skin was 

not taken from the center of burn wounds, as most of this tissue is necrotic (Faunce, 

Llanas et al. 1999).  The lung and skin sections were fixed in acetone and blocked with 

normal goat serum.  Sections were first incubated with 1 µg/mL of rat anti-Gr-1 antibody 

(Invitrogen, Carlsbad, CA) followed by 4 µg/ml of goat anti-rat IgG conjugated to Alexa 

Fluor 488 (Invitrogen).  Since Gr-1 can also be found on certain macrophage populations 

(Vermaelen and Pauwels 2004; Sugimoto, Katayama et al. 2006), the sections were dual-

stained with 0.2 µg/mL of biotinylated anti-MOMA-2 antibody (BMA Biomedicals, 

Augst, Switzerland), a pan-macrophage marker, and detected with 2 µg/ml of Cy3 

Streptavidin (Invitrogen).  Using fluorescent microscopy, the total number of neutrophils 

(designated as Gr-1+ MOMA-2– cells) were counted across 10 high power fields for each 

animal in both lungs and skin (Lam, Caterina et al. 2002).  The total tissue area across 

which cells were counted was quantified and determined to be consistent between 

animals in all treatment groups (data not shown).   

 

KC and MIP-2 Levels in Lung and Skin Homogenates 

One lobe per mouse or one 5 mm punch from the edge of the wound was 

homogenized in protease inhibitor cocktail (Roche Applied Sciences, Indianapolis, IN) 
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(Faunce, Llanas et al. 1999; Gomez, Hirano et al. 2007).  Samples were analyzed for 

MIP-2 and KC content by enzyme linked immunosorbent assay (ELISA) (R&D Systems, 

Minneapolis, MN), according to the manufacturer’s specifications (Patel, Faunce et al. 

1999).  Total protein content of the same aliquot of lung homogenate used for ELISA was 

determined by BioRad protein assay (BioRad Laboratories, Hercules, CA).  Final 

concentrations of each chemokine are in pg/mg protein.   

 

Blocking CXCR2 

An initial set of dose response experiments were performed to determine the 

lowest dose of anti-CXCR2 antibody that would block neutrophil accumulation in lungs 

of young mice after burn injury without disturbing the inflammatory process in the skin.  

With these experiments, we determined that an i.p. dose of 20 µg per animal was 

sufficient to reduce neutrophil content in lungs of young, burn-injured mice to that of 

sham animals (data not shown).  In a separate set of experiments, both young and aged 

mice receiving a sham or 15% TBSA burn injury were injected i.p. with either 20 µg of 

control IgG (R&D Systems) or 20 µg of CXCR2 neutralizing antibody (R&D Systems).  

Mice were then sacrificed at 6 or 24 hours and the lungs and skin were collected for 

further analysis, as described above.  

 

Statistical Analysis 

Data were analyzed using GraphPad Prism 4 (GraphPad Software, Inc., San 

Diego, CA) and are expressed as mean ± SEM.  For comparisons of two groups, an 
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unpaired student’s t-test was used.  For time course experiments, a three-way analysis of 

variance was used.  Groups were considered significantly different at p values less than 

0.05.   

 

Results 

Histologic Changes in the Lungs after Burn 

To first examine whether pathologic differences exist in the lungs of young and 

age mice at 6 and 24 hours after burn injury, frozen sections were stained with H&E.  As 

shown by other laboratories (Stengle, Meyers et al. 1996; Arbak, Ercan et al. 1999; 

Baskaran, Yarmush et al. 2000), the lungs of young mice were found to have a greater 

accumulation of inflammatory cells, increased edema formation, and thickened alveolar 

walls at 6 hours after injury compared to young sham controls (Figures 5A and 5C).  At 

this time point, similar pathological changes were found in lungs of aged, burn-injured 

mice, which were not apparent in lungs of aged control animals (Figures 5B and 5D).  

By 24 hours, the inflammatory cell accumulation in the lungs of young, burn-injured 

animals diminished, making them indistinguishable from sham controls (Figures 5E and 

5G).  In the lungs of aged animals that sustained injury, however, the inflammatory 

infiltrate did not decrease at 24 hours compared to 6 hours (Figures 5F and 5H).  To 

note, the lungs of young and aged sham-injured mice did not appear different from young 

and aged unmanipulated animals (data not shown).  
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Figure 5.  Pathological changes in the lungs of young and aged mice after 
burn.  Representative micrographs of H&E stained lung sections are shown from 
young (A, C, E, and G) and aged (B, D, F, and H) animals at 6 hours after sham 
injury (A and B), 6 hours after burn injury (C and D), 24 hours after sham injury 
(E and F), and 24 hours after burn injury (G and H).  All images are at 100x. 
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Upon closer examination, the vast majority of the inflammatory cells in the lungs 

after injury were neutrophils.  To determine whether these neutrophils migrated into the 

tissue or remained in the circulation, lung sections from all burn-injured animals were 

examined at higher power (1000x).  High power images of lungs from young mice 24 

hours after burn looked identical to those of sham-injured mice; in these groups, the 
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Figure 6.  Neutrophil accumulation and alveolar wall thickening in the lungs 
of young and aged mice after burn.  High power view of H&E lung sections 
illustrating neutrophils within thickened alveolar walls of young and aged burn-
injured mice at 6 hours (A and B) and at 24 hours (C and D).  High power images 
of young, burn injured mice at 24 hours did not appear different from those of 
sham-injured mice (not shown).  All images are at 1000x magnification.   
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alveolar walls were thin and not very cellular.  In lungs of both young and aged mice at 6 

hours after burn, as well as in those of aged mice at 24 hours after burn, the opposite was 

the case.  While many neutrophils were also observed within the vasculature, the majority 

appeared to have extravasated and localized within the alveolar walls leading to increased 

wall thickness (Figure 6).  

 

Inflammatory Cell Accumulation in Lungs of Aged Mice After Burn 

To confirm that the injury-associated inflammatory cells seen in the lungs after 

burn injury were indeed neutrophils, frozen sections of lung were immunostained with 

anti-Gr-1 (Sugimoto, Katayama et al. 2006).  Since anti-Gr-1 can also detect certain 

macrophage populations, lungs were simultaneously stained with anti-MOMA-2—a pan-

macrophage marker (Vermaelen and Pauwels 2004; Sugimoto, Katayama et al. 2006).  

Thus, cells that were Gr-1 positive but were negative for MOMA-2 were considered 

neutrophils.  Representative images of immunostained lungs from all treatment groups 

are shown in Figure 7 and quantification of neutrophils is shown in Figure 8.  At 6 hours 

after injury, the number of neutrophils was more than 4 times higher in lungs of young 

mice compared to sham-injured controls (p<0.05) (shown in Figure 7A, 7C, and 8).  

Similar increases in pulmonary neutrophils were found at 6 hours in the lungs of aged, 

burn-injured mice (Figures 7B, 7D, and 8).  By 24 hours after injury, the number of 

neutrophils in the lungs of young, burn-injured mice decreased to sham levels (Figures 

7E, 7G, and 8).  Parallel to the H&E analysis in Figures 5 and 6, the neutrophils 

remained elevated in the lungs of aged, burn-injured animals at 24 hours compared to 
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sham controls (p<0.05) (Figures 7F, 7H, and 8).  Neither age nor burn injury affected 

the number of Gr-1+ MOMA-2+ cells or Gr-1+ MOMA-2+ cells observed in the lungs, at 

either time point analyzed (data not shown).  In addition, the number of neutrophils in the 

lungs of young and aged sham injured mice was not different from those of young and 

aged unmanipulated mice (data not shown). 

 

Chemokines in Lungs of Aged Mice after Burn Injury 

To determine whether increased numbers of neutrophils seen in the lungs of aged 

mice after injury correlated with enhanced levels of chemokines, lung homogenates 

obtained from young and aged mice were analyzed for neutrophil chemokines, MIP-2 

and KC, by ELISA.  At 6 hours after burn injury, both young and aged mice had 

significantly higher pulmonary KC levels than their sham controls, but levels were 3 

times higher in the lungs of aged mice compared to young mice after burn (Figure 9A).  

At 24 hours, KC levels remained elevated in the lungs of both young and aged, burn-

injured mice compared to shams, but levels were still 3 times higher in the lungs of aged 

mice receiving a burn injury.  In contrast, although pulmonary levels of MIP-2 were 2-6 

times higher than sham levels in all animals receiving a burn, there were no differences 

between age groups or time points after injury (p<0.05) (Figure 9B).  These data imply 

that, while both KC and MIP-2 are elevated in the lungs in the acute phases of burn 

injury, only levels of KC can account for the age-related differences in pulmonary 

neutrophil recruitment.  
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Figure 7.  Immunostaining for neutrophil s in the lungs after burn. Sections 
of lungs from young (A, C, E, and G) and aged (B, D, F, and H) mice at 6 and 24 
hours after receiving a burn injury were stained with anti-Gr-1 (green) and anti-
MOMA-2 (red) antibodies.  Representative images are shown with a differential 
interference contrast (DIC) overlay from animals 6 hours after sham injury (A 
and B), 6 hours after burn injury (C and D), 24 hours after sham injury (E and F), 
and 24 hours after burn injury (G and H).  All images are at 400x magnification. 
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Sham Burn 

Figure 8.  Neutrophil content in the lungs after burn.  Total numbers 
of Gr-1+ MOMA-2– cells from lungs of young and aged animals at 6 
and 24 hours after sham (white bars) or burn (black bars) injury were 
counted in sections of lung tissue.  Data are represented as the average 
number of cells counted in ten 400x fields for each group ± SEM.  N = 
4-7 mice per group.  *, p<0.05 compared to age and time matched sham 
groups; #, p<0.05 compared to young burn group at 6 hours.   
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Figure 9.  Neutrophil chemokines in the lungs after burn.  Levels of A) KC and B) 
MIP-2 were measured in lung homogenates of young and aged mice at 6 and 24 hours 
after sham (white bars) or burn (black bars) injury.  Data are represented as average 
concentration in pg/mg protein ± SEM.   N = 8-13 mice per group.  *, p<0.05 
compared to age and time matched sham groups; #, p<0.05 compared to burn animals 
at 6 hours; †, p<0.05 compared to young burn at the same time point. 

Sham Burn 

0

200

400

600

800

1000

1200

1400

* *
# *

*
†

*
#
†

6 hours 24 hours

Young Aged Young Aged

K
C

 (p
g/

m
g 

pr
ot

ei
n)

0

20

40

60

80

100

120 *

*

6 hours 24 hours

Young Aged Young Aged

M
IP

-2
 (p

g/
m

g 
pr

ot
ei

n)

B)  

A)  



52 
 

 
 

Blocking CXCR2 

To test the hypothesis that neutrophil chemokines are directly involved in the 

accumulation of pulmonary neutrophils after burn injury, mice were administered with 

either control IgG or a neutralizing antibody against CXCR2 i.p. thirty minutes after 

receiving a burn or a sham injury.  Animals were then sacrificed at 6 and 24 hours after 

injury.  As shown above, this time point correlated with neutrophil clearance in the lungs 

of young mice, while the lungs of aged mice still had a considerable degree of 

inflammation (Figures 5-8).  At 6 hours, anti-CXCR2 neutralization only caused about a 

50% reduction in the neutrophil count in the lungs of both young and aged mice after 

burn compared to IgG controls (Figure 10).  At 24 hours, on the other hand, the 

exaggerated neutrophil response seen in the lungs of aged, burn injured mice with control 

IgG was completely inhibited by the anti-CXCR2 antibody (Figure 10).   

 

While anti-CXCR2 treatment seemed to be effective in reducing neutrophil 

counts, it is important to assess the effects it had on the pulmonary pathology following 

burn.  Since the 24 hour time point was most critical for age-related differences, we only 

examined lungs at this time point.  As expected, the lungs of young mice 24 hours after 

burn did not appear different from the lungs of sham animals following injection of either 

control IgG or anti-CXCR2 antibody (Figure 11A-11D, compare to Figure 5).  

Administration of the anti-CXCR2 antibody to aged mice at this time point after injury 

not only blocked the neutrophil content, but it also significantly reduced the pulmonary 

pathology seen with the injection of control antibody (Figure 11E-11H).  Interestingly,  



53 
 

 
 

 

 

 

Sham + IgG 

Sham + anti-CXCR2 

Burn + IgG 
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Figure 10.  The effects of blocking CXCR2 on neutrophil content in the lungs 
of young and aged mice after burn.  Total numbers of Gr-1+ MOMA-2− cells 
from lungs of young and aged animals at 6 and 24 hours after sham or burn 
injury, receiving either 20 µg i.p. of control IgG or 20 µg ip. of anti-CXCR2 
antibody were counted in sections of lung tissue as described above.  Data are 
represented as the average number of cells counted in ten 400x fields for each 
group ± SEM.  The average tissue area over which cells were counted did not 
differ between groups.  N = 3-10 mice per group.  *, p<0.05 compared to sham 
IgG controls; #, p<0.05 compared to IgG controls.  
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Figure 11. The effects of blocking CXCR2 on the histopathology of the 
lungs after burn. Representative micrographs of H&E stained lung 
sections are shown from young (A-D) and aged (E-H) animals receiving 
either control IgG i.p. (A, B, E, and F) or anti-CXCR2 i.p (C, D, E, and H) 
at 6 hours after burn injury.  Images in the left column are at 100x 
magnification and images shown on the right are at 1000x magnification.   
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inhibiting CXCR2 significantly lowered the pulmonary levels of neutrophils in all sham 

treatment groups as well, except for the aged at 6 hours after injury, suggesting that this 

receptor also has a role in the normal homeostatic maintenance of neutrophil numbers in 

the lungs.  To note, KC, MIP-2, and IL-1β levels in the lungs were not different between 

control IgG and anti-CXCR2 administration in any of the treatment groups (data not 

shown), indicating that antibody treatment did not decrease neutrophil accumulation in 

the lungs through diminishing the pro-inflammatory response itself.  

  

Wound Analysis 

With the observation that chemokines are higher in the lungs of aged mice after burn and 

lead to greater neutrophil accumulation, we sought to determine whether this held true for 

the burn wound as well.  As shown in Table 1, levels of KC were significantly elevated 

in the wounds of burn injured mice at 24 hours, but age differences in the lungs at this 

time point were not apparent.  MIP-2 levels at this time point were below the minimum 

level of detection by ELISA in the wounds of all treatment groups (data not shown).  

Neutrophils in the skin at 24 hours after burn were also elevated compared to shams 

(p<0.05), but were not significantly different between the age groups (Table 2).  These 

data suggest that the exaggerated inflammatory response to burn injury in aged mice is 

specific for the lung.  
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Since the anti-CXCR2 antibody was given systemically, there was a concern that 

neutrophil migration to the wound itself would be compromised, potentially leading to 

abnormal wound healing or a risk of infection.  For this reason, the dose of anti-CXCR2 

antibody used (20 µg per mouse) was intentionally kept at a level which would 

effectively reduce the neutrophil accumulation in the lung while preserving the 

inflammatory response in the burn wound.  The results in Table 2 show that, in fact, the 

dose of anti-CXCR2 antibody given did not significantly affect the neutrophil 

accumulation in the wounds of mice at either age at 24 hours after burn injury.  Since 

anti-CXCR2 antibody treatment did not affect levels of KC or MIP-2 in the lungs, these 

chemokines were not measured in the wounds of this treatment group.  

Burn  

Table 1. Chemokine levels in wounds at 24 hours after burn 

Sham 

Levels of KC and MIP-2 were measured by ELISA in wound 
homogenates of young and aged mice at 24 hours after sham 
or burn injury. Data are represented as average concentration 
in pg/mg protein ± SEM.  N= 8-12 mice per group *, p<0.05 
compared to sham controls. MIP-2 was below the minimum 
detection level for all groups.  

Aged 

Young 

Wound KC (pg/mg protein) 

210.3 ± 32.2 * 44.7 ± 16.7 

200.0 ± 28.1 * 35.6 ± 144 
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Discussion 

It is widely recognized that advanced age is a significant risk factor for increased 

pulmonary complications after burn injury (Achauer, Allyn et al. 1973; Clayton, Solem et 

al. 1995).  However, few studies have directly examined the mechanisms that could 

contribute to this age-associated susceptibility.  In studies utilizing young animals, 

neutrophils are a main mediator of pulmonary inflammation and tissue damage in the 

acute stages of injury (Stengle, Meyers et al. 1996; Arbak, Ercan et al. 1999; Abraham, 

Carmody et al. 2000).  Here, we have shown that chemokines acting through CXCR2 

play a role in causing acute inflammation in the lungs after burn injury.  We have also 

shown that aged mice exhibit an exacerbated pulmonary response to burn as a result of an 

Aged 
Young 

Table 2. Neutrophil counts in wounds at 24 hours after burn 

Tissue from the edge of burn wounds of young and aged animals at 24 hours 
after sham or burn injury, receiving either 20 µg i.p. of control IgG or 20 µg ip. 
of anti-CXCR2 antibody were collected.  Total numbers of Gr-1+ MOMA-2− 
cells in paraffin sections were counted as described above for the lungs.  Data 
are represented as the average number of cells counted in ten 400x fields for 
each group ± SEM.  N = 7-14 mice per group. *, p<0.05 compared to sham 
controls. 

Sham  Burn  

7.3 ± 2.8 

Burn   

46.8 ± 11.1 * 

75.0 ± 7.0 *  

74.0 ± 8.3 * 

76.9 ± 9.2 * 9.5 ± 3.1 

1.3 ± 0.9 2.3 ± 1.1 

IgG (i.p.) 
 

Anti-CXCR2 
(i.p.) Sham 
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increased and sustained level of KC in the lungs.  Most importantly, these data indicate 

that, in this model of burn injury, blocking CXCR2 is an effective way to reduce acute 

pulmonary inflammation, especially in aged mice.    

  

Many have previously shown that chemokines are instrumental in neutrophil-

mediated pulmonary damage after injury in young animals (Mercer-Jones, Shrotri et al. 

1999; Piccolo, Wang et al. 1999; Calkins, Bensard et al. 2002; Goodman, Pugin et al. 

2003; Lomas-Neira, Chung et al. 2004).  Here, we demonstrate that levels of both KC 

and MIP-2 are elevated in the lungs within the first 24 hours after injury, but that only 

pulmonary KC levels are affected by age.  Experiments aimed at blocking CXCR2 show 

that inhibiting the neutrophil response to KC completely abrogates pulmonary 

inflammation at 24 hours after burn in young and aged mice, indicating that 

chemoattraction is indeed part of this mechanism for both age groups.  However, since 

antibody treatment at 6 hours after burn only reduced the neutrophil content of the lungs 

by half, perhaps there are temporal differences in mediating neutrophil migration into the 

lungs.  These results are consistent with those from other laboratories studying the effects 

of inhibiting CXCR2-mediated chemoattraction in various models of systemic 

inflammation, such as hemorrhagic shock and sepsis, as well as in wound healing (Ness, 

Hogaboam et al. 2003; Lomas-Neira, Chung et al. 2004; Gordon, Li et al. 2005; Lomas-

Neira, Chung et al. 2005).  Whether using CXCR2 knockout mice, neutralizing antibody 

against the receptor, small molecule inhibitors of the receptor, or antibodies against KC 

and MIP-2 themselves, these studies show that blocking CXCR2-mediated 
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chemoattraction sufficiently attenuates acute inflammatory responses following a 

systemic challenge.   

  

As a caveat, in vitro experiments conducted by other laboratories have indicated 

that neutrophils from aged animals actually display decreased chemotaxis in response to 

various inflammatory stimuli (Niwa, Kasama et al. 1989; Fulop, Larbi et al. 2004; 

Gomez, Boehmer et al. 2005).  The contradiction between these in vitro experiments and 

those conducted in the current study reveal the importance of cellular environment when 

analyzing defects associated with aging.  It is well known that, in vivo, aging is associated 

with increased circulating pro-inflammatory cytokines, such as IL-6, TNF-α , IL-1, and 

IL-8 (Ershler 1993; Franceschi, Bonafe et al. 2000; Bruunsgaard, Andersen-Ranberg et 

al. 2003; Sarkar and Fisher 2006).  Interestingly, we have also found that IL-1β levels are 

significantly higher in the lungs of aged mice (V. Nomellini and E.J. Kovacs, 

unpublished observations).  A significant increase in the levels of IL-1β in the lungs of 

elderly humans in the absence of clinically detectable disease has also been observed 

(Meyer, Ershler et al. 1996).  This increase in pulmonary IL-1β, however, does not 

correlate with higher levels of KC and MIP-2—both of which can be induced by IL-1β 

(Calkins, Bensard et al. 2002; Chen, Chang et al. 2007)—in the lungs of uninjured, aged 

mice (Figure 9).  After burn injury, on the other hand, KC levels are 3-fold greater in the 

lungs of aged mice compared to those of young mice at both 6 and 24 hours.  
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 In contrast, IL-1β is not different in the skin of young and aged uninjured mice 

(V. Nomellini and E.J. Kovacs, unpublished observations).  Following this, neither KC 

nor MIP-2 show age differences in the skin after burn (Table 1).  Differential levels of 

IL-1β in the absence of injury may help explain why the lungs of aged mice show an 

exacerbated response following an inflammatory challenge compared to those of young 

mice, while the wounds themselves do not.  To note, levels of IL-6, another key player in 

the inflammatory response, are not different in the lungs of young and aged, uninjured 

mice (data not shown). 

  

With the observation that aging is associated with an increased pro-inflammatory 

state, the results of the current study are similar to those seen in “two hit” models of 

injury.  In these models, the clinically important situation, whereby two inflammatory 

challenges occur simultaneously or as subsequent challenges results in an exaggerated 

response beyond that of either injury alone.  Examples of this include hemorrhagic shock 

plus sepsis or burn injury plus infection (Davis, Santaniello et al. 2004; Perl, Chung et al. 

2005).  We propose that burn injury in aged individuals parallels these two hit models.  

Advanced aged acts as the first hit by increasing the inflammatory milieu of the lungs.  

Once receiving a burn injury (the second hit), aged mice exhibit an augmented response 

beyond that of young mice receiving a comparable injury.  We have shown that blocking 

this excessive inflammation effectively reduces the pulmonary consequences in the aged 

mice after burn.  In the current studies, though, the anti-CXCR2 treatment did not 

decrease the mortality rate of the aged mice (data not shown).  Regardless of whether 
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they received anti-CXCR2 antibody, approximately 20% of the aged mice succumb to the 

burn injury within the first 24 hours, while all of the young mice survive.  In other words, 

a burn size that is normally manageable in young mice leaves aged mice at a greater risk 

for complications and death; this is very similar to what is seen in the human population 

(Hammond and Ward 1991; Clayton, Solem et al. 1995; Suchyta, Clemmer et al. 1997).  

In humans, on the other hand, mortality rates are 4 times higher in elderly patients with 

pulmonary failure compared to those without (Clayton, Solem et al. 1995).  Therefore, 

while anti-CXCR2 treatment does not affect mortality within the first 24 hours after burn, 

perhaps it will prove to be a valuable tool to prevent or limit pulmonary failure and death 

at later time points.   

  

While we have shown that CXCR2 chemokines are mechanistically important in 

mediating pulmonary neutrophil accumulation after burn, the therapeutic implications of 

these data are also intriguing.  As described above, the intended use of the anti-CXCR2 

antibody was to effectively reduce the systemic component to burn injury, while 

preserving the inflammatory response of the wound itself.  Using only 20 µg per mouse, 

we were able to accomplish this.  The reasons for this are unknown, but we believe that it 

is related to the degree of tissue injury and the number and types of pro-inflammatory 

mediators involved.  At the primary site of injury in the skin, there is a great deal of 

cellular damage and necrosis that is not seen in the lungs (Faunce, Llanas et al. 1999).  

The persistence of this necrotic tissue acts as a nidus for a protracted inflammatory 

response.  In addition, chemokine signaling via CXC receptors is not the only mechanism 
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that contributes to neutrophil migration to the wound.  Other candidate chemoattractants 

not examined in this study include C5a, platelet activating factor, and leukotriene B4 

(LTB4), all of which are potent mediators of neutrophil migration (Piccolo, Wang et al. 

1999; Burns, Smith et al. 2003; Reutershan and Ley 2004).  C5a, in particular, has been 

shown to play a role in burn injury (Schmid, Piccolo et al. 1997; Piccolo, Wang et al. 

1999).  

  

Interestingly, these data also show that blocking CXCR2 also decreases the 

number of neutrophils in the lungs of uninjured animals.  It is well known that there is a 

highly-controlled regulation of neutrophil numbers in the peripheral blood and in tissues.  

The proposed mechanisms for neutrophil homeostasis are related to the β-integrin, CD18 

(Weinmann, Scharffetter-Kochanek et al. 2003), as well as G-CSF and IL-23 

(Christopher and Link 2007).  Some have also suggested that there is an important 

interplay between neutrophil responses to the CXCR4/SDF-1 axis and the CXCR2/KC 

axis (Martin, Burdon et al. 2003).  Upon downregulation or cleavage of CXCR4, 

neutrophils have an increased propensity to leave the bone marrow and migrate to the 

periphery via CXCR2 ligands.  Our results support this hypothesis, indicating that 

blockage of CXCR2 attenuates neutrophil numbers in the lungs of uninjured mice 

(Figure 11).  Although not a primary goal for the current study, these data provide 

further insight into normal maintenance of neutrophil homeostasis.  
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From the results of this study alone, it is not possible to predict whether the 

neutrophil retention in lungs of aged, burn-injured mice was only a result of enhanced 

recruitment to the tissue or whether increased adhesion to the pulmonary vasculature 

and/or diminished clearance also plays a role.  There has been extensive research on the 

role of endothelial adhesion molecules on neutrophil accumulation in the lungs after burn 

injury (Mulligan, Till et al. 1994; Muller, Cronen et al. 2002).  In young animals, mRNA 

expression of ICAM-1 is reportedly elevated in the lungs following burn injury (Jin, Zhu 

et al. 2003).  To date, there are no published reports that assess the cell adhesion 

molecule profile in lungs of aged animals after injury.  However, many have reported an 

upregulation of membrane and soluble forms of ICAM-1, VCAM-1, and selectins in the 

serum of aged humans and animals, whether in the absence or in the presence of injury 

(Forsey, Thompson et al. 2003; Richter, Rassoul et al. 2003; Laudes, Guo et al. 2004; 

Zou, Jung et al. 2004).  In addition, since both aging and burn injury are known to 

compromise the phagocytic capacity of macrophages, decreased removal of apoptotic 

neutrophils may provide an alternative explanation for the increased pulmonary 

inflammation seen in aged mice after burn (Plowden, Renshaw-Hoelscher et al. 2004; 

Sebastian, Espia et al. 2005).  In our hands, histologic examination does not reveal an 

accumulation of apoptotic bodies.  Specific staining for active caspase 3 and similar 

studies aimed at characterizing the state of neutrophil apoptosis, as well as macrophage 

phagocytosis, are required to define the role of neutrophil clearance in the lungs of aged 

animals in response to injury.   
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In summary, these data show that CXCR2-mediated neutrophil migration is 

important in the development of pulmonary inflammation in the acute stages of burn 

injury.  In addition, increased age is associated with an exaggerated response in the lungs, 

but not in the wounds, following burn injury, possibly as a result of differential levels of 

IL-1β expression before injury.  Regardless of age, prolonged neutrophil exposure can 

lead to excessive tissue destruction as a result of protease release and oxidative stress 

(Ward and Till 1990; Hansbrough, Wikstrom et al. 1996; Ravage, Gomez et al. 1998).  

This may explain why the elderly are at an increased risk for pulmonary complications 

after burn injury.  Low doses of CXCR2-neutralizing antibody are effective in attenuating 

acute pulmonary neutrophil accumulation in aged mice, while maintaining the 

inflammatory environment of the wound tissue.  Importantly, these data imply that the 

development of more targeted therapies against neutrophil chemokines may be beneficial 

for preventing or diminishing remote organ damage after injury, especially in the aged 

population.  
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CHAPTER 4 

INCREASED CXCR2 ACTIVATION PRIMES NEUTROPHILS FROM AGED MICE 

AND CAUSES PROLONGED PULMONARY INFLAMMATION AFTER INJURY 

 

Abstract 

 Pulmonary complications are the most frequent and often the most fatal for the 

burn patient, especially for individuals over the age of 65.  The main etiology of lung 

damage after burn, regardless of age, is the development of a systemic inflammatory 

response.  To determine why advanced age predisposes an individual to exaggerated 

pulmonary inflammation after burn injury, a murine model using a 15% TBSA scald 

injury was employed.  Using immunofluorescence on lung sections and flow cytometry 

on whole lung cell suspensions, neutrophils were found to be significantly higher in the 

lungs of aged mice after burn (p<0.05).  However, these neutrophils were not localized to 

the airspaces, as measured by flow cytometry of BAL.  To determine whether increased 

adhesion molecule expression could explain this neutrophil sequestration in the lungs, 

pulmonary vascular ICAM-1 expression was quantified by immunofluorescence on lung 

sections by dual staining with PECAM-1.  At 6 hours, there were no differences between 

any of the treatment groups.  At 24 hours, in contrast, ICAM-1 and PECAM-1 

coexpression was significantly higher in the lungs of aged, burn injured mice (p<0.05).  
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When CD11b, was measured on peripheral blood neutrophils, levels were decreased in 

aged, sham injured animals (p<0.05).  At 24 hours after burn, CD11b was found to be 

elevated only on neutrophils from young mice, although this was not significantly 

different.  Interestingly, neutrophils from aged mice showed increased migratory 

behavior in the absence of stimulus, but no further response to KC, when chemotaxis 

assays were employed.  This correlated with decreased expression of CXCR2 on 

pulmonary neutrophils, but not on peripheral blood neutrophils from aged mice in the 

absence of injury (p<0.05).  In response to burn, CXCR2 did not decrease further on 

neutrophils in the lungs of aged mice, but expression levels were significantly attenuated 

on peripheral blood neutrophils of aged mice (p<0.05), with no change on those of young 

mice.  In summary, increased age seems to prime neutrophils by generating an elevated 

state of activation in the absence of injury.  In response to burn injury, neutrophils from 

the aged appear to accumulate within the pulmonary vasculature in an ICAM-1 

dependent manner.  Targeting this hyperresponsiveness of the aged may help to attenuate 

the inflammatory response of the lungs following burn.  

 

Introduction 

 While the overall mortality of burn patients over the age of 65 has improved over 

the last few decades (ABA 2005), these patients still have poorer clinical outcomes and 

an increased length of stay (LOS) in the hospital (Gomberg, Gruen et al. 1999; Roth, 

Velmahos et al. 2001; Taylor, Tracy et al. 2002; Bergeron, Clement et al. 2006; 2007).  

As the proportion of elderly individuals is expected to grow considerably in the future, 
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this issue translates into a greater socioeconomic burden to our society.  It is therefore 

important that new treatment strategies are developed to minimize the effects of age on 

the response to injury.   

 

Similar to other insults which lead to systemic inflammation, the development of 

pulmonary complications, such as pneumonia and ARDS, are often the most serious 

threat to the burn patient, especially in elderly (Shook, MacMillan et al. 1968; Le, 

Zamboni et al. 1986; Hollingsed, Saffle et al. 1993; Dancey, Hayes et al. 1999; Ely, 

Wheeler et al. 2002).  In contrast to most other organs in the body, the lung has two 

potential routes for an inflammatory insult to enter: through the airway and through the 

bloodstream.  Interestingly, the pathogenesis of pulmonary inflammation is completely 

dependent on where the stimulus is localized.  When an inflammatory source is located in 

the airway, a rapid neutrophil recruitment to the alveolar space can be seen (Frevert, 

Huang et al. 1995; Gupta, Feng et al. 1996; Xing, Gauldie et al. 1998; Czermak, Friedl et 

al. 1999; Beck-Schimmer, Madjdpour et al. 2002; Sentman, Brannstrom et al. 2002; 

Quinton, Nelson et al. 2004; Gordon, Li et al. 2005; Reutershan, Basit et al. 2005; 

Speyer, Rancilio et al. 2005; Basit, Reutershan et al. 2006).  However, when the source is 

systemic (or administered intravascular (i.v.)), neutrophil accumulation within the lung 

tissue occurs, but cells do not migrate into the alveoli.  The neutrophils are said to be 

“sequestered” in alveolar capillaries (Johnson, Brigham et al. 1991; Standiford, Kunkel et 

al. 1995; Gupta, Feng et al. 1996; van Eeden, Kitagawa et al. 1997; Carraway, Welty-

Wolf et al. 1998; O'Malley, Matesic et al. 1998; Czermak, Friedl et al. 1999; Murphy, 
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Paterson et al. 2005; Rojas, Woods et al. 2005; Gomez, Hirano et al. 2007).  The 

differences in these results are not simply due to the location of the chemokines, as levels 

of these mediators can be detected in bronchoalveolar lavage (BAL) fluid following 

either type of injury (Schmid, Piccolo et al. 1997; Czermak, Friedl et al. 1999).   

 

The localization of neutrophils after an inflammatory challenge has important 

implications.  When activated, neutrophils in the alveoli can generate considerable 

damage through the release of proteolytic enzymes and ROS, but this response is 

typically limited to the lung (Brigham 1990; Ward and Till 1990; Hansbrough, Wikstrom 

et al. 1996; Jaeschke and Smith 1997; Carden, Xiao et al. 1998; Arbak, Ercan et al. 1999; 

Moraes, Zurawska et al. 2006).  On the other hand, activated neutrophils that are 

sequestered in pulmonary capillaries also cause damage to the endothelium and can 

exacerbate the systemic inflammatory response to injury (Simon, DeHart et al. 1986; 

Kowal-Vern, Walenga et al. 1997; Carden, Xiao et al. 1998; Usatyuk and Natarajan 

2005).   

 

Many laboratories have shown that the acute inflammatory response in the lungs 

of young rodents after burn injury peaks around 4-6 hours (Hansbrough, Wikstrom et al. 

1996; Stengle, Meyers et al. 1996; Arbak, Ercan et al. 1999; Baskaran, Yarmush et al. 

2000; Dries, Lorenz et al. 2001).  By 24 hours, this response is completely resolved, as 

assessed by neutrophil counts and levels of myeloperoxidase activity (a marker of 

neutrophil activity) (Hansbrough, Wikstrom et al. 1996; Stengle, Meyers et al. 1996; 
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Baskaran, Yarmush et al. 2000; Dries, Lorenz et al. 2001).  We recently published that 

the pulmonary inflammatory response to burn, in terms of neutrophil counts and KC 

levels, persisted at 24 hours in the lungs of aged mice receiving the same injury 

(Nomellini, Faunce et al. 2008).  When anti-CXCR2 neutralizing antibody was 

administered i.p. 30 minutes after burn, the prolonged response in aged mice was 

prevented (Nomellini, Faunce et al. 2008).  This study suggested that neutrophil 

accumulation in the lungs of the aged is a result of increased chemoattraction towards the 

CXCR2 chemokines, KC and MIP-2.    

 

In vitro and in vivo evidence indicates that chemokine signaling is much more 

complex than originally thought.  Not only do chemokines act to stimulate neutrophil 

movement towards an inflammatory stimulus, but also to induce firm adhesion to the 

endothelium and to mediate diapedesis (Luu, Rainger et al. 2000; Cinamon, Grabovsky et 

al. 2001; Zhang, Liu et al. 2001; Kim, Carman et al. 2004).  These studies also imply that 

the particular order of events in chemokine signaling is required for the appropriate 

response to occur.  First, CD11/CD18 on neutrophils binds loosely to ICAM-1 on the 

endothelium.  Once this interaction is in place, chemokine signaling causes CD11/CD18 

to become upregulated and to cluster, leading to firm adhesion (Chatila, Geha et al. 1989; 

Kim, Carman et al. 2004).  Once adherent, neutrophils can then interact with chemokines 

immobilized on the apical side of endothelial cells and begin the process of diapedesis 

(Rot, Hub et al. 1996; Luu, Rainger et al. 2000; Cinamon, Grabovsky et al. 2001).  Once 

movement through the endothelium occurs, other adhesion molecules, such as VCAM-1, 
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coordinate migration through the basement membrane and into the tissue (Burns, Smith 

et al. 2003). 

 

Decreased CXCR2 expression has been implicated in mediating pulmonary 

complications after a systemic insult (Cummings, Martin et al. 1999; Adams, Hauser et 

al. 2001; Tarlowe, Duffy et al. 2005).  Receptor desensitization is thought to regulate this 

effect in order to prevent overstimulation following injury (Cummings, Martin et al. 

1999; Adams, Hauser et al. 2001; Arraes, Freitas et al. 2006).  This observation seems to 

contradict the beneficial effect of systemic administration of CXCR2 inhibitors (Ness, 

Hogaboam et al. 2003; Lomas-Neira, Chung et al. 2004; Gordon, Li et al. 2005; 

Nomellini, Faunce et al. 2008).  The interpretation of these studies to determine a precise 

mechanism for the beneficial effects of anti-CXCR2 treatment in aged mice after burn 

injury is still not completely understood.  In the current study, we hypothesize that the 

prolonged pulmonary inflammation in aged mice following burn is a result of continued 

neutrophil sequestration in the vasculature caused by persistent downregulation of 

CXCR2.  

 

Materials and Methods 

Animals 

Young (3-6 months) and aged (18-22 months) BALB/c female mice were 

obtained from the National Institute of Aging colony at Harlan Laboratories 

(Indianapolis, IN) and maintained on a 12 hour light/dark cycle with standard laboratory 
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rodent chow and water ad libitum.  All experimental procedures were performed 

according to the Animal Welfare Act and the Guide for the Care and Use of Laboratory 

Animals, National Institutes of Health, and approved by the Animal Care and Use 

Committee at Loyola University Medical Center.   

 

Induction of Burn Injury 

Mice were anesthetized with Nembutal (50 mg/kg i.p.), shaved, and placed into a 

plastic template designed to give a 15% TBSA, full-thickness dorsal scald injury when 

immersed in a boiling water bath for 8 seconds, according to a modified protocol of 

Walker and Mason (Walker and Mason 1968; Faunce, Gregory et al. 1997).  As a control, 

a separate group of mice received a sham injury, which entailed administration of 

anesthesia and shaving, but a room temperature water bath was used instead.  

Immediately following injury, the mice received warm saline resuscitation (1 ml per 20 g 

body weight) and their cages were placed on heating pads to prevent circulatory collapse 

and cardiovascular shock.  After recovering from anesthesia, this procedure leaves young, 

healthy mice able to eat, drink, groom, and ambulate to their pre-injury capacity.  Aged 

mice, on the other hand, take longer to recover from anesthesia, show labored breathing, 

and do not ambulate as well as before the injury.  The mice were sacrificed using CO2 

inhalation and cervical dislocation.  No other therapeutic intervention was provided, as 

administration of anti-inflammatory or analgesic medication may introduce confounding 

factors into the assessment of inflammatory responses.  To eliminate the complication of 

hormones regulated by circadian rhythms, all burn injury procedures were administered 
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between 8 and 10 am.  In addition, all mice—including those which died before the time 

of sacrifice—were examined for visible tumors and, if found, were removed from the 

study.  

 

Immunofluorescence 

The lungs were removed at the time of sacrifice, inflated with 25% O.C.T. 

freezing medium, and embedded for frozen sectioning.  The lung sections were fixed in 

acetone and blocked with normal goat serum.  To determine neutrophil content in lungs, 

sections were first incubated with 1 µg/mL of rat anti-Gr-1 antibody (Invitrogen) 

followed by 4 µg/ml of goat anti-rat IgG conjugated to Alexa Fluor 488 (Invitrogen).  

Since Gr-1 can also be found on certain macrophage populations (Vermaelen and 

Pauwels 2004; Sugimoto, Katayama et al. 2006), the sections were dual-stained with 0.2 

µg/mL of biotinylated anti-MOMA-2 antibody (BMA Biomedicals), a pan-macrophage 

marker, and detected with 2 µg/ml of Cy3 Streptavidin (Invitrogen).  Using fluorescent 

microscopy, the total number of neutrophils (designated as Gr-1+ MOMA-2– cells) were 

counted across 10 high power fields for each animal (Lam, Caterina et al. 2002).  Data 

are expressed as mean number of neutrophils counted in ten 400x fields ± SEM.  The 

total tissue area across which cells were counted was quantified and determined to be 

consistent between animals in all treatment groups (data not shown).   

 

To determine the expression of adhesion molecules in the lung after burn or sham 

injury, sections were incubated with 0.25 µg/ml of Armenian hamster anti-mouse ICAM-
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1 (BD Pharmingen, San Diego, CA), followed by 3 µg/ml of goat anti-Armenian hamster 

IgG conjugated to Cy3 (Jackson Immunoresearch).  Since ICAM-1 is also expressed on 

lung epithelium, sections were dual stained with 0.16 µg/ml of rat anti-mouse PECAM-1 

(BD Pharmingen), followed by 4 µg/ml of  goat anti-rat IgG conjugated to Alexa Fluor 

488 (Invitrogen).  Expression of ICAM-1 on lung endothelium was determined by 

quantifying the total area of ICAM-1 and PECAM-1 colocalization across ten 400x fields 

per animal.  Data are expressed as mean levels of ICAM-1+ PECAM-1+ area ± SEM.  

 

To determine the expression of CXCR2 on neutrophils in the lungs, sections were 

first stained with 1 µg/ml rat anti-Gr-1 (Invitrogen) followed by 4 µg/ml of goat anti-rat 

IgG conjugated to Alexa Fluor 488 (Invitrogen) to detect neutrophils.  Then, sections 

were stained with 1.25 µg/ml of PE-conjugated rat anti-mouse CXCR2.  Expression of 

CXCR2 on pulmonary neutrophils was determined by quantifying the total area of 

CXCR2 on Gr-1+ cells in each field and dividing by the total number of cells.  Ten fields 

were measured for each animal in all treatment groups.  Data are expressed as mean level 

of CXCR2 expression per Gr-1+ cell ± SEM. 

 

Flow Cytometry 

Analyses utilizing flow cytometry were performed as previously described 

(Boehmer, Meehan et al. 2005).  Cells were washed with Hank’s Buffered Saline 

Solution (HBSS) and blocked with anti-CD16/32 antibody for 30 minutes.  Cells were 

then stained using anti-mouse antibodies of saturating concentrations at 4°C.  After 
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incubating the cells for 30 minutes, they were washed twice and fixed with 1% 

paraformaldehyde.  Fluorescence was measured by flow cytometry (FACSCanto, BD 

Biosciences).  Anti-mouse antibodies were used at the following concentrations: 2 µg/ml 

of PE-conjugated rat anti-mouse Gr-1 (Invitrogen), 20 µg/ml of APC-conjugated rat anti-

mouse F4/80 (eBioscience, San Diego, CA) 10 µg/ml of FITC-conjugated rat-anti mouse 

Gr-1 (eBioscience), 12.5 µg/ml of PE-conjugated rat anti-mouse CXCR2 (R&D 

Systems), 10 µg/ml of PE-conjugated rat-anti mouse CD11a (Invitrogen), 10 µg/ml of 

PE-conjugated rat anti-mouse CD11b (eBioscience).  

 

Bronchoalveolar Lavage 

 To determine the cell populations in the alveolar space, BAL was performed on 

young and aged mice 24 hours after receiving either a burn or a sham injury (Czermak, 

Breckwoldt et al. 1999).  Immediately following sacrifice, the tracheas were exposed and 

a small incision was made just below the cricothyroid cartilage.  Tracheas were then 

cannulated using 22 gauge needles and 1 ml of cold phosphate buffered saline was 

repeatedly injected until 5 ml of fluid was recovered for each animal.  BAL cells were 

centrifuged for 5 minutes at 300 g, then stained for Gr-1 and F4/80 using flow cytometry.  

.   

Isolation of Peripheral Blood Neutrophils 

 Blood was taken via cardiac puncture of the left ventricle.  Samples were diluted 

1:1 in HBSS and layered on Histopaque 1083 (Sigma, St. Louis, MO), and centrifuged at 

400 g for 30 minutes at 20°C without the brake applied.  The monocyte and plasma layers 
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were aspirated, leaving granulocytes and erythrocytes.  Samples were resuspended in 

HBSS and 3% dextran was added to sediment the erythrocytes.  After 45 minutes at room 

temperature, the top layer containing granulocytes was removed and centrifuged at 300 g 

for 5 minutes.  Any remaining erythrocytes were lysed using ACK buffer (Invitrogen).   

 

Chemotaxis Assay  

 Neutrophils were isolated as described above.  Cells were centrifuged at 300 g for 

5 minutes and resuspended in 40 µM of Cell Tracker Green (Invitrogen) in media 

containing HBSS, antibiotics, 25 mM HEPES and 1% bovine serum albumin at 106 

cells/ml.  Cells were incubated in the dark for 45 minutes at 37°C and 5% CO2.  Cells 

were then washed and resuspended in chemotaxis media at 106 cells/ml.  The bottom 

wells of a chemotaxis chamber (NeuroProbe, Gaithersburg, MD) were filled with various 

doses of recombinant mouse KC (R&D Systems).  A separate set of wells were filled 

with media alone as a negative control or 10-7 M fMLP (Sigma) as a positive control.  

Another set of wells were filled with sample inputs to determine the fluorescence of the 

starting cell suspension.  The filter membrane was then placed over the wells and cell 

suspensions were added to the upper side of the membrane at 106/ml.  Samples were 

incubated for 60 minutes at 37°C and 5% CO2.  Cell suspensions were then aspirated off 

the top membrane and 20 µM EDTA was added to the upper side of the membrane for 15 

minutes to allow any cells adhering to the membrane to detach.  The membrane was then 

removed and the fluorescence of the bottom wells was measured in a fluorescence 
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spectrophotometer.  The percent of cells migrating was determined by comparing the 

fluorescence of the cells in the sample wells to that of the input wells. 

 

Statistical Analysis 

Data were analyzed using GraphPad Prism 4 (GraphPad Software, Inc., San 

Diego, CA) and are expressed as mean ± SEM.  For comparisons of two groups, an 

unpaired student’s t-test was used.  Groups were considered significantly different at p 

values less than 0.05.   

 

Results 

Localization of Neutrophils in the Lungs of Aged Mice after Burn 

 As a number of reports indicate, neutrophil accumulation in the lungs of mice 

after a systemic injury occurs within alveolar walls and capillaries rather than the airways 

(Johnson, Brigham et al. 1991; Standiford, Kunkel et al. 1995; Gupta, Feng et al. 1996; 

van Eeden, Kitagawa et al. 1997; Carraway, Welty-Wolf et al. 1998; O'Malley, Matesic 

et al. 1998; Czermak, Friedl et al. 1999; Murphy, Paterson et al. 2005; Rojas, Woods et 

al. 2005; Gomez, Hirano et al. 2007).  To determine the precise location of neutrophils in 

the prolonged response in the lungs of aged mice at 24 hours after burn, a number of 

methods were employed.  First, lung sections were immunostained with anti-Gr-1 

antibody (Sugimoto, Katayama et al. 2006).  Since Gr-1 is also present on certain 

macrophage populations, lungs were simultaneously stained with anti-MOMA-2—a pan-

macrophage marker, shown to adequately detect alveolar macrophages (Vermaelen and 
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Pauwels 2004; Sugimoto, Katayama et al. 2006).  Thus, Gr-1 positive cells that were 

negative for MOMA-2 were considered neutrophils.  Quantification of the number of 

neutrophils counted in a total of ten fields per animal in each group is shown in Table 3.  

At this time point, neutrophils in the lungs of young mice did not differ from shams.  

However, neutrophils were 4 times higher than sham controls in the lungs of aged mice 

(p<0.05).   

 

To confirm these studies, flow cytometry on intact cells harvested from whole 

lung homogenates was performed.  However, instead of using anti-MOMA-2 antibody 

for alveolar macrophages, anti-F4/80 antibody was used, since it also has the ability to 

detect circulating monocytes (Austyn and Gordon 1981; Hirsch, Austyn et al. 1981; 

Vermaelen and Pauwels 2004).  As shown in Table 3, while neutrophils (Gr-1+ F4/80- 

cells) in the lungs of young mice were similar to sham injured animals, those from aged 

mice were 6 times greater than sham controls (p<0.05). 

 

While immunohistochemistry and flow cytometry confirmed that there is 

increased neutrophil accumulation in the lungs of aged mice 24 hours after burn injury, 

these methods do not allow for precise localization of the neutrophils.  Therefore, lungs 

were lavaged to determine if the neutrophils migrated into the alveolar space (Table 3).  

As expected, BAL cells of both young and aged mice sham-injured mice were 

predominantly macrophages (F4/80+ Gr-1- cells, not shown).  Neutrophils (F4/80- Gr-1+ 

cells) only comprised 4% in the young and 7% in the aged of cells recovered from BAL.   
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At 24 hours after burn, the proportion of macrophages did not change.  Interestingly, the 

proportion of neutrophils in the BAL actually decreased in both young and aged mice, 

but was only significant in the aged mice receiving injury (p<0.05).  Altogether, these 

Young 

Table 3. Neutrophil localization in lungs at 24 hours after burn 

a Total numbers of Gr-1+ MOMA-2– cells in lungs of young and aged animals 
at 24 hours after sham or burn injury were counted in sections of lung tissue.  
Data are represented as the average number of cells counted in ten 400x fields 
for each group ± SEM.  N = 8-14 mice per group. *, p<0.05 compared to all 
other groups.  
b All five lung lobes were homogenized in HBSS as described above. Cells 
were stained for Gr-1 and F4/80 as described above and analyzed by flow 
cytometry.  Data are represented as the average percent of Gr-1+ F4/80- cells in 
the homogenate (after excluding cell debris) ± SEM. N = 6-8 mice per group. 
*, p<0.05 compared to all other groups. 
c Lungs were lavaged with 1 ml of saline until 5 ml of sample was collected.  
Cells were spun down and stained with Gr-1 and F4/80 as described above and 
analyzed by flow cytometry. Data are represented as the average percent of Gr-
1+ F4/80- cells in BAL (after excluding cell debris) ± SEM.  

2.0 ± 0.4 

Immunofluorescence a

using lung sections       
(total # in 10 fields) 

Flow cytometry of b 

lung homogenates  
(% Gr-1+ F4/80- cells) 

Sham Burn 

2.1 ± 0.2 1.8 ± 0.3 11.8 ± 3.0 * 

16.0 ± 2.4 16.1 ± 2.4 12.8 ± 2.5 63.29 ± 11.5 * 

Sham Burn 

Aged 

Method 

Flow cytometry of c 

BAL cells  
(% Gr-1+ F4/80- cells) 

4.1 ± 3.5 7.0 ± 2.7 0.4 ± 0.1 0.5 ± 0.2 * 
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data indicate that, while neutrophils continue to accumulate in the lungs of aged mice 24 

hours after injury, these cells do not have the capacity to migrate into the alveoli.  

  

The Role of Adhesion Molecules after Burn Injury 

 Many have shown that adhesion via the interaction of ICAM-1 on the 

endothelium and its ligand, CD11/CD18, on neutrophils is the main mechanism of 

neutrophil recruitment in the lungs after injury (Doerschuk 1992; Lo, Everitt et al. 1992; 

Mulligan, Till et al. 1994; Jin, Zhu et al. 2003; Reutershan and Ley 2004).  Expression of 

these adhesion molecules were therefore measured to test whether an alteration in either 

or both of them could explain the age-related differences in the lungs after burn.  First, 

lung sections from young and aged mice at 6 and 24 hours following burn or sham injury 

were immunostained for ICAM-1.  Since ICAM-1 is also expressed by pulmonary 

epithelial cells, sections were also stained for PECAM-1, a constitutively expressed 

endothelial marker (Eppihimer, Russell et al. 1998).  Coexpression indicated ICAM-1 

levels on the endothelium.  Results in Figure 12 show that ICAM-1 expression on the 

pulmonary vasculature did not differ in young and aged mice at 6 hours after injury.  In 

contrast, ICAM-1 expression on the pulmonary endothelium of aged mice at 24 hours 

after burn was increased greater than 5 fold compared to sham controls (p<0.05), while 

no differences were detected in the lungs of young, burn injured mice. 

 

 Although ICAM-1 was found to show age-related differences in expression after 

burn, the presence of its ligand on neutrophils is required in order for the interaction with  
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the endothelium to occur (Elangbam, Qualls et al. 1997).  To determine the surface 

expression of the ICAM-1 ligand on neutrophils after burn, peripheral blood was stained 

and analyzed for expression of CD11b by flow cytometry (Figure 13).  Interestingly, 

there was a decreased surface expression of CD11b on neutrophils from sham-injured 

aged compared to sham-injured young mice (p<0.05).  After burn injury, neutrophils 

from the young had elevated CD11b expression, although this did not reach statistical  

Figure 12. Pulmonary endothelial ICAM-1 expression after burn. Sections of 
lungs from young and aged mice at 6 and 24 hours after sham (white bars) or burn 
(black bars) injury were stained with anti-ICAM-1 and anti-PECAM-1 antibodies.  
Since ICAM-1 is also expressed on alveolar epithelial cells, expression of endothelial 
ICAM-1 was determined by measuring the total area in which the two markers co-
localized (µm2), normalized to the total tissue area (µm2).  Data are represented as 
mean ± SEM. N = 4-11 animals per group. *, p<0.05 compared to sham control.  
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Young Sham 

Figure 13.  Peripheral blood neutrophil CD11b expression following burn. 
CD11b expression on peripheral blood cells of young and aged mice 24 hours after 
sham or burn injury was determined by flow cytometry.  A) Representative graphs 
from each group. B) Quantification of the geometric mean fluorescence of CD11b 
expression per cell in sham (white bars) versus burn (black bars) injury.  Data are 
represented as mean ± SEM.  N = 4-6 mice per group.  *, p<0.05 compared to 
young sham. To note, p = 0.07 when comparing young and aged burn injured 
groups.  
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significance.  CD11b levels on neutrophils from aged mice at 24 hours after burn, on the 

other hand, were not different from sham controls.   

 

CXCR2-mediated Neutrophil Chemotaxis 

 While these data suggest that increased vascular adhesion may be responsible for 

neutrophil sequestration in the lungs after burn, the reasons why they are not capable of 

transmigrating out of the vasculature is still unclear.  It was hypothesized that chemotaxis 

was defective in neutrophils from aged mice, rendering them incapable of transmigration.  

To test this, cells were isolated from the blood and assayed for their ability to migrate 

towards KC.  This particular chemokine was chosen because our previous results 

indicated a role for CXCR2 in mediating pulmonary inflammation in aged mice after 

burn (Nomellini, Faunce et al. 2008).  Given that our previous data showed that there 

were age-related differences in levels of only one neutrophil chemokine in lung 

homogenates after burn (KC), we performed chemotaxis assays using this chemokine and 

purified peripheral blood neutrophils from young and aged mice.  The results in Figure 

14A showed that, in the absence of any stimulant, migration of neutrophils from aged 

mice was significantly higher compared to young mice (p<0.05).  In the presence of 

physiologic doses of KC, neutrophils from young mice had a robust response compared 

to unstimulated controls (p<0.05).  However, no further increases in migration were 

found in neutrophils from aged mice in response to the same doses of KC when 

expressed as percent of cells migrating (fluorescence of cells migrated/fluorescence of 

input wells x 100).  Since baseline migration was different, the results were re-expressed 
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Figure 14.  Defects in KC-mediated chemotaxis of neutrophils from aged mice. 
Peripheral blood neutrophils isolated from young (white squares) and aged (black 
triangles) mice were tagged with a fluorescent dye and incubated with varying 
concentrations of KC in a Boyden-like chemotaxis chamber for 1 hour at 37°C. fMLP 
was used as a positive control. Migrating cells are expressed as A) % of input 
(fluorescence of migrated cells/fluorescence of input x 100) or B) % of unstimulated 
cells (% input / % input of unstimulated cells x 100). Data are represented as mean ± 
SEM.  N = 3-6 mice per group.  *, p<0.05 compared to young unstimulated control; #, 
p<0.05 compared to young at the same chemokine dose. 
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in terms of percent baseline (percent of cells migrating/percent of cells migrating at 

baseline x 100), as shown in Figure 14B.  This allowed the age differences to become 

more apparent.  While neutrophils from young mice showed a robust response at all KC 

doses tested (p<0.05), those from aged mice showed no reaction to the same doses.  

Similar results were found in response to the positive control, fMLP, but this was not 

found to be statistically significant.  In summary, these data indicate that neutrophils from 

aged mice are in an elevated activation state, causing increased migratory behavior, but 

that the specific response to KC is blunted. 

 

CXCR2 Expression 

As described above, chemokine receptor desensitization is commonly seen after a 

systemic insult and is thought to be responsible for many of the resulting defects seen in 

neutrophil function.  Given that neutrophils from the aged were not able to respond to 

KC, it was hypothesized that the levels of CXCR2 may be altered.  To determine cell 

surface receptor expression, blood was collected from young and aged mice after sham or 

burn injury and red cells were lysed immediately.  The remaining leukocytes were stained 

with anti-CXCR2, as well as anti-Gr-1 and anti-F4/80, to determine expression on 

neutrophils by flow cytometry.  Baseline levels of CXCR2 expression on neutrophils 

were not found to be different between the age groups (Figure 15A).  At 24 hours after 

burn, there was an increase in the percentage of neutrophils (p<0.05), but no change in 

the relative amount of monocytes in the peripheral blood of aged mice compared to that 

of young mice (Figure 15A).  The majority of these circulating neutrophils in the aged 
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Figure 15. CXCR2 expression on peripheral blood neutrophils following 
burn. Peripheral blood from young and aged mice at 24 hours after sham or burn 
injury was stained for F4/80, Gr-1, and CXCR2 and analyzed by flow cytometry. 
Results are expressed as A) percent of each cell type and B) CXCR2 expression 
per cell.  Data are represented as mean ± SEM.  N = 12-15 mice per group.  *, 
p<0.05 compared to sham control; #, p<0.05 compared to young burn. 
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were CXCR2+.  Interestingly, a small but significant population of neutrophils 

completely lacking CXCR2 was found only in the aged, burn injured group (Figure 15A, 

p<0.05).  Moreover, while the amount of CXCR2+ neutrophils was elevated in the blood 

after burn, the total expression per cell was significantly diminished only in the aged 

mice (Figure 15B, p<0.05).  While is has been reported that monocytes express CXCR2 

(Browning, Diehl et al. 2000; Smith, Galkina et al. 2005), we were unable to detect  

 

significant levels on F4/80+ cells.  It is thought that other cell types express CXCR2 as 

well, such as endothelial and epithelial cells (Schraufstatter, Chung et al. 2001; Hillyer, 

Mordelet et al. 2003).  Although F4/80- Gr-1- cells comprised less than 1% of the 

population of cells analyzed, CXCR2 expression was detected.  However, levels of 

CXCR2 in this population did not change with burn injury.   

 

 While determining CXCR2 expression on neutrophils in the peripheral blood may 

be a useful tool to predict pulmonary outcomes, this does not necessarily depict what is 

happening in the lungs.  To determine whether similar receptor changes occur in the 

lungs of aged mice at 24 hours after burn, sections were immunostained using anti-

CXCR2 and anti-Gr-1 antibodies.  Although Gr-1 can also be detected on certain 

monocyte populations, we have shown that these double positive cells comprise less than 

5% of the leukocytes in the lungs and do not express CXCR2.  As a result, all Gr-1+ 

CXCR2+ cells were considered to be neutrophils.  Surprisingly, CXCR2 expression on 

neutrophils from aged mice was significantly lower than that of neutrophils from young  
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mice in the absence of injury (Figure 16).  At 24 hours after burn, CXCR2 was also 

downregulated in pulmonary neutrophils from young mice (p<0.05), but did not decrease 

any further in those of aged mice (Figure 16).  These data indicate that there is tissue-

specific regulation of this receptor.    

 

 

 

Figure 16. CXCR2 expression on neutrophils in the lungs after burn. Lung 
sections of young and aged mice at 24 hours after sham or burn injury were 
stained with anti-Gr-1 and anti-CXCR2 antibodies.  The average CXCR2 
expression was determined for each cell across ten 40x fields per animal by 
dividing the densitometric sum of one field by the number of Gr-1 positive cells 
in that field.  Data are represented as mean ± SEM.  N = 12-19 mice per group.  
*, p<0.05 compared to all other groups. 
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Discussion 

In sum, the data presented in this study implicate decreased CXCR2 expression as 

a mediator of prolonged neutrophil sequestration in the lungs of aged mice after burn 

injury.  We propose that this delayed response is a result of an inherent 

hyperresponsiveness of neutrophils from aged mice.  Consistent with the idea of 

inflamm-aging (Franceschi, Bonafe et al. 2000), neutrophils seem to have an elevated 

basal level of activation, measured by increased migratory capacity and decreased 

CXCR2 expression in the lungs.  Upon a challenge such as burn injury, the systemic 

inflammatory environment of aged mice persists longer that of young animals, as seen by 

increased ICAM-1 and KC levels in the lungs at 24 hours (Nomellini, Faunce et al. 

2008), rendering neutrophils incapable of further activation.  Although this concept 

seems contradictory to many reports showing defective neutrophil function in the aged, 

most studies tend to focus on the proinflammatory cytokines, fMLP, lipopolysaccharide 

(LPS), and C5a pathways, which are mainly present only during an infectious or 

inflammatory challenge (Rao 1986; Biasi, Carletto et al. 1996; Schroder and Rink 2003; 

Fulop, Larbi et al. 2004; Fortin, Lesur et al. 2007).  The CXCR2 pathway, on the other 

hand, is a constitutively active pathway, required to maintain neutrophil homeostasis and 

immune surveillance of tissues (Martin, Burdon et al. 2003).   

 

A few studies are consistent with our observations, indicating that advanced age is 

associated with an elevated activation state under resting conditions, as measured by 

increased intracellular Ca2+ and increased GRK activation (Wenisch, Patruta et al. 2000; 
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Schutzer, Reed et al. 2001; Fulop, Larbi et al. 2004).  Similar to the current study, this 

increased activity makes the cells incapable of generating a peak response once a 

secondary stimulus is applied (Wenisch, Patruta et al. 2000; Fulop, Larbi et al. 2004).  

This dysfunction may explain the increased susceptibility to infection in elderly 

individuals sustaining an injury (Linn 1980; Nagy, Smith et al. 2000; Bergeron, Lavoie et 

al. 2003).  

 

 Despite reports that adhesion molecules are upregulated in the aged (Miles, Thies 

et al. 2001; Forsey, Thompson et al. 2003; Kletsas, Pratsinis et al. 2004; Chung, Sung et 

al. 2006; Zou, Yoon et al. 2006), we did not find pulmonary ICAM-1 to be increased in 

aged, sham-injured mice in the current study.  Only in response to burn injury, were age-

related differences found in ICAM-1 expression in the lungs.  Alternatively, CD11b was 

only elevated in the young mice after burn.  Contrary to what was expected, CD11b 

expression on neutrophils from aged mice was not different from sham controls.  

According to most reports, chemokine signaling increases the affinity of CD11b for 

ICAM-1 by receptor clustering (Arnaout 1990; Ley 2002; Kim, Carman et al. 2004).  

Therefore, it is possible that flow cytometry is not the most appropriate method to 

measure the effects of age on CD11b function.  As CD11b is important in pulmonary 

neutrophil accumulation after burn, other means of analysis are required to fully 

understand the mechanism of chemokine signaling in neutrophils from aged mice 

(Mulligan, Till et al. 1994; Jin, Zhu et al. 2003). 
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As stated above, the precise role for CXCR2 in mediating neutrophil adhesion and 

transmigration is still not completely understood.  The current study suggests that 

neutrophil accumulation in the lungs occurs only when vascular adhesion molecules are 

elevated and CXCR2 is downmodulated.  In young mice, levels of CXCR2 on peripheral 

blood neutrophils were similar between injury groups.  Baseline levels of CXCR2 on 

peripheral blood neutrophils from aged mice were not different than those from young 

mice.  At 24 hours after burn, circulating neutrophils from the aged had attenuated 

CXCR2 levels and a significant number did not have any detectable receptor expression.  

Thus, expression levels of CXCR2 on circulating neutrophils may help predict pulmonary 

outcomes after injury, as previously suggested (Adams, Hauser et al. 2001; Tarlowe, 

Duffy et al. 2005).   

 

As seen in the lung sections from young mice, on the other hand, burn injury 

induced a significant attenuation of receptor expression on neutrophils.  These data 

suggest that, since pulmonary adhesion molecules were not elevated at this time point 

after burn, neutrophils were not able to accumulate within the vasculature.  Conversely, 

CXCR2 was found to be significantly reduced on neutrophils in the lungs of aged mice 

after sham injury.  These data may be explained by the increased inflammatory state seen 

in the lungs of “healthy” aged individuals (Meyer, Rosenthal et al. 1998; Nomellini, 

Faunce et al. 2008).  Again, since adhesion molecules were not present in the lungs of 

uninjured aged mice, this decreased CXCR2 expression did not translate into pulmonary 

neutrophil accumulation.  Consistent with our hypothesis, reduced CXCR2 on neutrophils 
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from aged mice at 24 hours after burn resulted in neutrophil accumulation, as elevated 

pulmonary ICAM-1 was also present.  As a limitation to this study, differential methods 

were used to detect surface expression of the receptor on peripheral blood neutrophils 

versus on neutrophils in tissue sections.  In addition, it is not completely evident whether 

the decreased CXCR2 expression seen in the lungs was on neutrophils within the 

vasculature or on those which were able to migrate into the alveoli.  Regardless, only a 

small number of neutrophils comprise the alveolar space and are not likely to affect the 

results of this study.  

 

Further support for the importance of CXCR2 availability for transmigration can 

be seen in the BAL analysis.  While neutrophils comprise an extremely small proportion 

of BAL cells under resting conditions, there was still a significant reduction following 

burn injury in the aged.  These data indicate that even the homeostatic regulation of 

neutrophil content in the lungs is compromised when CXCR2 is not available. 

 

The reasons for prolonged CXCR2 downmodulation in our model of injury have 

yet to be completely delineated.  It is not clear whether this decrease in CXCR2 is a result 

of prolonged desensitization or simply because of the continued exposure to high levels 

of chemokines in the lungs of aged mice at 24 hours after burn.  There is some evidence 

that GRK activity is increased in the aged (Schutzer, Reed et al. 2001).  While this may 

explain increased receptor downregulation, the role of GRK in neutrophils in response to 
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burn is unknown.  Again, GRK is activated by PKC, which is also elevated in the aged.  

Therefore, GRK inhibitors may be another potential target after burn. 

 

One question that arises from this study is that, if CXCR2 availability correlates 

with increased vascular adhesion following a systemic insult, how do blocking studies 

alleviate this response?  While only speculative, we believe that this relates back to the 

concept that a sequential order of events is required for the appropriate response to occur.  

Following a systemic challenge, circulating  proinflammatory mediators can activate 

neutrophils in the blood (Drost, Larsen et al. 1993; Bone 1996; Botha, Moore et al. 1996; 

Yeh, Lin et al. 1997; Rojas, Woods et al. 2005).  As chemokine signaling pathways are 

likely to be simulated before neutrophils reach the lungs, CD11b may continue to be 

active, allowing firm adhesion to take place.  However, since receptor levels are low, 

these neutrophils cannot sense the local chemokines produced by the lung and, therefore, 

cannot be guided through the endothelium (Le, Li et al. 2000; Luu, Rainger et al. 2000).  

This mechanism is supported by in vitro observations utilizing endothelial monolayers 

and neutrophils (Luu, Rainger et al. 2000).  When neutrophils from healthy humans are 

allowed to flow over an activated endothelial monolayer, they rapidly adhere and 

transmigrate.  Notably, migration through the endothelium occurred only when 

chemokines were also present in the media; activated endothelium alone did not cause 

firm adhesion.  When neutrophils are preincubated with fMLP, IL-8, C5a, or GROα, the 

cells adhere but they do not transmigrate, similar to what is observed in a systemic insult.  

In the case of chemokine receptor neutralizing experiments, anti-CXCR2 antibody was 
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administered i.p. at 30 minutes after burn or sham injury (Nomellini, Faunce et al. 2008).  

Here, it is thought that chemokine signaling is blunted immediately upon neutrophil 

release into circulation, inhibiting firm adhesion altogether.  Other laboratories have also 

shown a beneficial effect of blocking CXCR2 following a systemic response (Lomas-

Neira, Chung et al. 2004; Gordon, Li et al. 2005).  Further experiments analyzing the 

affects of neutralizing CXCR2 in the early response to burn are required to better define 

this mechanism. 

This study also raises the question of why only certain intracellular pathways are 

enhanced in neutrophils from the aged.  A common signaling molecule reported to be 

involved in the hyperresponsiveness of neutrophils from aged mice in this study is PKC.  

Activated PKC has been shown to mediate chemokine receptor cross-desensitization 

through the activation of GRKs (Richardson, Ali et al. 1995; Pitcher, Freedman et al. 

1998; Ali, Richardson et al. 1999; Le, Li et al. 2000; Ferguson 2001; Heit, Tavener et al. 

2002; Arraes, Freitas et al. 2006), CD11/CD18 phosphorylation to increase receptor 

clustering (Chatila, Geha et al. 1989; Kim, Carman et al. 2004), and increased NADPH 

oxidase-mediated ROS production (Martins Chaves, Prates Rodrigues et al. 2002; Olson 

and Ley 2002).  Interestingly, an increase in PKC activity and a decrease in the G-

proteins involved in chemokine signaling (Gαi) has been found in aged humans 

(Busquets, Ventayol et al. 1996).  Therefore, increased basal levels of chemokine 

signaling, leading to elevated PKC activity may play a causal role in mediating the results 

of the current study.  Future studies are required to characterize PKC activity in 

neutrophils from the aged.   
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Since a number of differences between humans and rodents exist, the observations 

we have made in this study may not necessarily translate to the human condition.  Most 

importantly, human neutrophils also express CXCR1, which binds almost exclusively to 

IL-8—a chemokine that does not have a direct murine ortholog (Baggiolini 1998; 

Richardson, Pridgen et al. 1998; Murphy, Baggiolini et al. 2000; Adams, Hauser et al. 

2001; Nasser, Raghuwanshi et al. 2007).  While CXCR1 signals through the same 

pathway as CXCR2, the kinetics of cell surface expression are very different.  Both 

CXCR1 and CXCR2 are rapidly downregulated after chemokine binding (Chuntharapai 

and Kim 1995).  While CXCR2 stays internalized for a significant amount of time, 

CXCR1 expression is quickly restored on the surface and is available for further 

signaling (Cummings, Martin et al. 1999).   

 

Clinical studies have indicated that post-traumatic outcomes depend mostly on the 

relative levels of CXCR2 expression rather than CXCR1 (Adams, Hauser et al. 2001; 

Tarlowe, Duffy et al. 2005).  Decreased CXCR2 responses correlated with increased 

susceptibility to pneumonia (Adams, Hauser et al. 2001; Tarlowe, Duffy et al. 2005).  

Fitting this observation with the current study, if CXCR2 is not available, neutrophils 

cannot migrate into the alveoli and protect against offending organisms.  On the other 

hand, when neutrophils from trauma patients expressed increased levels of CXCR2, the 

development of ARDS was more likely (Adams, Hauser et al. 2001).  Presumably, if 

CXCR2 activation is enhanced, migration into the alveoli will be increased, leading to the 
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airway congestion seen in ARDS.  In summary, despite the presence of CXCR1, these 

results can still be explained by the mechanism proposed in the current study.   

 

Overall, these data indicate that an increased basal activity of neutrophils from the 

aged in the absence of injury acts to “prime” the cells for a protracted response following 

burn.  In particular, it seems as though defects in CXCR2 pathways are a main mediator 

in this process, causing increased vascular adhesion and congestion of the pulmonary 

vasculature.  Therefore, CXCR2 may be an effective target of therapy.  
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CHAPTER 5 

SUMMARY AND DISCUSSION 

 

 In our murine model of a 15% TBSA scald injury, pulmonary sequelae parallel 

that which is seen clinically (Teixidor, Novick et al. 1983; Dancey, Hayes et al. 1999; 

George, Gupta et al. 2003).  In young animals, neutrophil infiltration into the lungs 

begins around 4 hours, but recedes by 24 hours (Stengle, Meyers et al. 1996).  When the 

same type of injury is administered to aged mice, neutrophils begin to enter the lungs at a 

similar time as in young mice, but are still present at 24 hours (Nomellini, Faunce et al. 

2008).  While the data are still correlative, there is strong evidence that neutrophils persist 

in the lungs of aged mice after burn because of increased adhesion and congestion within 

the pulmonary vasculature.   

 

The Established Model of Neutrophil Infiltration into Inflamed Tissues 

 Normally, neutrophils entering the circulation of an inflamed tissue undergo 

margination in the post-capillary venules by the tethering of selectins (Figure 17) (Muller 

2003).  Neutrophils then undergo loose adhesion with ICAM-1 (Luu, Rainger et al. 

2000).  This interaction is stabilized via signaling through CXCR2 to cause CD11b 

clustering and firm adhesion (Muller 2003; Kim, Carman et al. 2004).  The continued  
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availability of CXCR2 to guide the cell towards endothelial junctions is crucial for the 

final step of transmigration into the interstitial space (Luu, Rainger et al. 2000).      

 

The proposed model for prolonged inflammation in the lungs of aged mice after burn 

 As neither CXCR2 nor CD11b was measured at 6 hours after burn on neutrophils 

from mice of either age, the exact mechanism of neutrophil accumulation at this time 

Figure 17. Established model of neutrophil infiltration into the interstitiu m of 
inflamed tissues. According to reports published by other laboratories, this 
mechanism requires a series of events occurring in sequential order.  In most tissues 
of the body, this takes place in post-capillary venules.  Neutrophils passing through 
inflamed tissue are initially slowed by the tethering of selectins (1).  The initial 
interaction between ICAM-1 and CD11b is then established for loose adhesion (2).  
Signaling through CXCR2 mediates CD11/CD18 clustering and firm adhesion to 
ICAM-1 (3).  Further stimulation through CXCR2 mediates neutrophil migration 
over the endothelium and, upon reaching an intercellular junction between 
endothelial cells, diapedesis into the interstitial space (4). 
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point is still unclear.  However, since ICAM-1 was not upregulated, it is thought that the 

cells are sequestered in the lungs at this early phase via ICAM-1 and CD11b independent 

pathways, as previously suggested (Doerschuk 1992; Hellewell, Young et al. 1994) 

 

  By 24 hours, it is thought that neutrophil transmigration requires ICAM-1 and 

CD11b dependent pathways (Doerschuk 1992).  Since ICAM-1 was still not increased in 

the lungs of young mice at this later time point, we propose that the neutrophils were not 

able to undergo loose adhesion and thus continued on in circulation (Figure 18A).  The 

lungs of aged mice at 24 hours after burn, on the other hand, exhibited increased ICAM-1 

on endothelium and KC in tissue homogenates (Figures 12 and 9, respectively).  While 

these conditions normally lead to neutrophil transmigration, CXCR2 surface expression 

was observed to be decreased in the lung of aged mice ate this time point.  We therefore 

propose that prolonged KC expression in the lungs of aged mice after burn causes 

CXCR2 to be saturated.  As such, neutrophils may undergo adhesion, but the lack of 

ability to further respond to KC and MIP-2 in the tissue correlates with decreased 

migration through the endothelium and increased sequestration within the vasculature.   

 

Passive Neutrophil Accumulation in the Lungs after Burn 

 Since many pathways of neutrophil activation stimulate actin remodeling 

(Piazzolla, Tortorella et al. 1998; Dinauer 2003; Hannigan, Huang et al. 2004; Reutershan 

and Ley 2004), some laboratories have posited that cells become more “stiff” and cannot 

migrate through the intricate pulmonary capillary network (Worthen, Schwab et al. 1989; 
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Figure 18. Proposed mechanism of neutrophil sequestration in the lungs of young 
versus aged mice at 24 hours after burn. A) Since ICAM-1 is not upregulated in the 
lungs of young mice at 24 hours after burn, vascular adhesion does not occur and cells 
may continue in circulation.  B) Neutrophils enter pulmonary circulation with levels of 
CD11b and CXCR2 that do not differ from those of young mice at this time point (1). 
Since ICAM-1 is upregulated, however, neutrophils loosely adhere (2) and are 
potentially able to undergo firm adhesion (3).  Since CXCR2 expression is significantly 
low, neutrophils cannot be guided to migrate through the endothelium via further 
activation of the receptor (4).  As a result, neutrophils sequestered in the vasculature and 
continue to accumulate (5). 
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Skoutelis, Kaleridis et al. 2000; Suwa, Hogg et al. 2001; Yoshida, Kondo et al. 2006).  

These studies have concluded that the inability for neutrophils to alter their cell shape is 

the main cause of pulmonary vascular congestion.  While not measured in this study, the 

prolonged stimulation of neutrophils from the aged mice may cause increased actin 

polymerization and cell stiffness.  It is thus possible that part of the mechanism of 

neutrophil accumulation seen in the lungs of aged mice at 24 hours also involves 

decreased deformability.   

 

The Role of ICAM-1 Dependent and Independent Adhesion in the Lungs 

 Despite proposals that actin polymerization is the only mechanism of neutrophil 

sequestration in the lungs after burn, passive accumulation is not likely the only cause.  

Data indicate that ICAM-1 is also important in mediating vascular adhesion in the lungs 

after burn (Mulligan, Till et al. 1994; Jin, Zhu et al. 2003).  While other adhesion 

molecules are known to be involved in the inflammatory response to burn, such as 

VCAM-1, VLA, and PECAM-1, studies aimed at blocking these factors do not show an 

effect (Mulligan, Till et al. 1994; Reutershan and Ley 2004).  Since ICAM-1 inhibition 

significantly attenuates pulmonary consequences after injury (Mulligan, Till et al. 1994), 

this particular adhesion molecule was chosen for our study.   

 

 Interestingly, at 6 hours, levels of ICAM-1 on the pulmonary endothelium were 

not different between any of the treatment groups (Figure 12).  The concept that 

neutrophils utilize ICAM-1 independent pathways to migrate into the lung has been 
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recognized by others (Doerschuk 1992; Hellewell, Young et al. 1994; Issekutz, Chuluyan 

et al. 1995; Burns, Smith et al. 2003).  For nearly all tissues in the body, including the 

skin, leukocytes undergo diapedesis at post-capillary venules (Burns, Smith et al. 2003; 

Muller 2003; Reutershan and Ley 2004).  In the lungs, however, leukocyte 

transmigration, in general, occurs at the capillaries (Burns, Smith et al. 2003; Laudes, 

Guo et al. 2004; Reutershan and Ley 2004).  Since post-capillary venules have a diameter 

that is much wider than that of leukocytes, flow through these vessels is much faster than 

in capillaries (Jung, Norman et al. 1998; Burns, Smith et al. 2003).  As such, to ensure 

that a leukocyte enters an inflamed tissue, margination, rolling, and firm adhesion in post-

capillary venules are required to give cells enough time to sense and to respond to the 

locally produced chemokines.  The diameter of a capillary, on the other hand, is typically 

the same or smaller than leukocytes (Burns, Smith et al. 2003).  Therefore, the rate of 

flow is much slower through these vessels.  The increased transit time offered by 

capillary circulation seems to be adequate for leukocytes to recognize any local 

inflammation (Lien, Henson et al. 1991).  This is thought to be the reason why cells can 

migrate via ICAM-1 and CD11/CD18-independent mechanisms in the lungs, which is 

predominantly composed of capillaries (Doerschuk 1992; Hellewell, Young et al. 1994).   

 

The Required Components for Neutrophil Adhesion and Migration 

 Chemokine signaling, particularly via CXCR2, seems to be an important factor in 

determining where neutrophils accumulate within the lung tissue.  Again, the role of 

CXCR2 is not only for cell movement in general, but also for upregulating and clustering 
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CD11b, and transmigrating through the endothelium (Chatila, Geha et al. 1989; Arnaout 

1990; Frevert, Huang et al. 1995; Ley 2002).  Other laboratories have indicated that, 

when CXCR2 is functional in an inflamed tissue, CD11b on neutrophils binds ICAM-1 

and the endothelial-bound KC helps to guide the cell out of the vasculature (Tonnesen 

1989).  If any one of these components is absent, cells do not transmigrate (Luu, Rainger 

et al. 2000; Zhang, Liu et al. 2001).     

 

 Although others have shown that CXCR2 signaling upregulates CD11b on 

neutrophils, this observation was not found after burn injury (Figure 13) (Frevert, Huang 

et al. 1995; L'Heureux, Bourgoin et al. 1995).  However, the particular method of 

analysis chosen may not have been appropriate for a few reasons.  First, the levels of 

CD11b were measured on peripheral blood neutrophils.  As seen with the CXCR2 

analysis (Figure 15), expression may depend on the tissue analyzed.  Therefore, the 

effects of CXCR2 signaling on CD11b may be better understood by determining 

expression within the lung tissue itself.  In addition, it has been shown that CXCR2 

activation not only stimulates CD11b upregulation, but also clustering on the cell surface 

(Arnaout 1990; Ley 2002; Kim, Carman et al. 2004).  Since flow cytometry can only 

measure the average expression per cell, the clustering effect may have been obscured.  

Moreover, it has been suggested that the ability for chemokine signaling to induce CD11b 

expression requires cells to first be bound to ICAM-1 (Luu, Rainger et al. 2000; Kim, 

Carman et al. 2004).  In other words, CXCR2 signaling may not be necessary for the 
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initial CD11b/ICAM-1 interaction to take place, but for the formation of a more stable 

interaction between them.   

 

 The need for loose adhesion prior to CXCR2-mediated firm adhesion of the 

CD11b and ICAM-1 interaction is exemplified by in vitro experiments from Luu et al 

(Luu, Rainger et al. 2000).  If neutrophils were allowed to flow over activated 

endothelium, many of the cells were able to migrate through.  When various chemokines 

were added to the flow, neutrophils immediately stopped rolling, adhered firmly to the 

endothelium, and changed shape, but only migrated over and not through the 

endothelium.  This lack of transmigration was presumably because there was no 

chemotactic gradient on the other side of the monolayer to guide the cells through.  If 

neutrophils were preincubated with these chemokines, however, cells were only able to 

undergo rolling and not firm adhesion or migration, presumably because the chemokine 

receptors were already downregulated and not available for transmigration.  Moreover, 

this study showed that the ability for neutrophils to adhere and to migrate was a result of 

CXCR2 signaling and the upregulation of CD11b.  

 

The Effects of Age on Pulmonary Neutrophil Accumulation after Burn 

 From the results of our study, it seems that neutrophils from aged mice have an 

elevated activation status, making them predisposed to aberrant responses following a 

secondary challenge.  Evidence for this hypothesis is increased chemotaxis and low 

CXCR2 expression on pulmonary neutrophils in the absence of injury (Figures 14 and 
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16).  As described above, most of the studies analyzing neutrophil defects with age focus 

on pathways that are only relevant during inflammation (Rao 1986; Biasi, Carletto et al. 

1996; Schroder and Rink 2003; Fulop, Larbi et al. 2004; Fortin, Lesur et al. 2007).  

Conclusions from these analyses implicate that the aging environment “primes” 

neutrophils, making them unable to respond as robustly upon an inflammatory challenge.  

By assessing the effects of age on a constitutively active pathway (CXCR2) we have 

demonstrated that these neutrophils may, in fact, be in an increased activation state under 

resting conditions.  Using the example of CXCR2, our data showed that, while expression 

levels may not necessarily be different on peripheral blood neutrophils isolated from aged 

mice, chemotactic behavior was increased (Figure 14).  Upon further stimulation with 

KC, these cells were no longer able to migrate.  After burn injury, this overstimulation 

translated into prolonged neutrophil accumulation in the lungs of aged mice.   

 

 One particular signaling pathway that may be involved in the observed increase in 

activation of neutrophils from aged mice is protein kinase C (PKC).  As described above, 

activated PKC has been shown to activate G-protein related kinases (GRKs) to induce 

chemokine receptor desensitization (Richardson, Ali et al. 1995; Pitcher, Freedman et al. 

1998; Ali, Richardson et al. 1999; Le, Li et al. 2000; Ferguson 2001; Heit, Tavener et al. 

2002; Arraes, Freitas et al. 2006) and to increase CD11/CD18 clustering (Chatila, Geha et 

al. 1989; Kim, Carman et al. 2004).  Since some laboratories have reported increased 

PKC activity in the aged (Busquets, Ventayol et al. 1996; Martins Chaves, Prates 
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Rodrigues et al. 2002), it is possible that this pathway may play a role in priming 

neutrophils from the aged in the absence of injury.   

 

 It is important to note that the effects of age on all cells of the body need to be 

considered in order to fully explain the pulmonary consequences of burn.  Saturation of 

chemokine pathways may explain the decreased expression of CXCR2 observed in the 

current study.  However, chemokine signaling is not known to trigger ICAM-1 

expression.  It can therefore be proposed that aging also primes endothelial cells in the 

lungs.  Our laboratory and others have reported that aged individuals express elevated 

levels of IL-1β—the main mediator of ICAM-1 upregulation—in the lungs of “healthy” 

aged mice and humans (Meyer, Rosenthal et al. 1998; Nomellini, Faunce et al. 2008).  As 

a caveat, we did not find increases in pulmonary endothelial ICAM-1 until 24 hours after 

burn (Figure 12).  Therefore, we hypothesize that the ICAM-1 becomes expressed in 

aged mice receiving a burn only as a result of prolonged accumulation of pulmonary 

neutrophils leading to excessive tissue damage.  In the lungs of young mice, the 

neutrophil accumulation is only transient and therefore may not induce the same degree 

of tissue injury (Figures 5-8).  It is interesting to note that we did not find elevated IL-1β 

in the skin of uninjured aged mice (Nomellini, Faunce et al. 2008).  In addition, no age-

related differences in neutrophil accumulation or KC levels were found in the wounds 

after burn injury (Tables 1 and 2).  Therefore, the effects of age on the response to burn 

injury are tissue specific and may be dependent on the pre-injury environment. 
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 Since pulmonary endothelial ICAM-1 does not appear until 24 hours after burn in 

aged mice, we believe that the mechanism we proposed for pulmonary neutrophil 

accumulation is most relevant at this later time point.  Support for this hypothesis is 

exemplified by CXCR2 blocking studies (Figures 10 and 11).  Anti-CXCR2 neutralizing 

antibody was only able to reduce neutrophil counts in the lungs of both young and aged 

mice at 6 hours after burn by about 50%.  This means that neither CXCR2 nor ICAM-1 is 

the only mediator of neutrophil adhesion in the lungs at this time point.  Here, we suggest 

that neutrophil accumulation occurs in the lungs of both young and aged mice via both 

ICAM-1/CD11b dependent and independent pathways, as described above.   

 

 At 24 hours after burn, in contrast, anti-CXCR2 was able to completely inhibit 

pulmonary neutrophil accumulation in aged mice.  One explanation is that ICAM-

1/CD11b dependent adhesion dominates at this later time point.  Studies by Doerschuk et 

al also suggest that early pulmonary neutrophil accumulation after a systemic insult is 

mainly CD11/CD18 independent, while later time points require CD11/CD18 dependent 

adhesion (Doerschuk 1992).  Since the precise mechanism of ICAM-1 and CD11b 

independent adhesion is not understood, however, further exploration into this 

mechanism is necessary.  In addition, future experiments are required to determine the 

precise mechanism of the benefit of anti-CXCR2 therapy. 

 

 Overall, it seems that burn injury in elderly individuals is an example of a two hit 

injury, as suggested above.  Before an insult, aging may affect a number of different cells 
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throughout the body—including endothelial cells and neutrophils.  Once the injury 

occurs, the response becomes exaggerated beyond that which is seen with burn alone (i.e. 

in young individuals).  As two hit injuries are more clinically challenging, an awareness 

of the effects of age is important in order for better treatment strategies to be developed.  

 

Fitting Our Model to Other Animal Models of Pulmonary Inflammation  

 This proposed mechanism of neutrophil migration shown in Figure 18 can be 

applied to a number of conditions which lead to pulmonary inflammation.  It has been 

demonstrated that, when an inflammatory stimulus is located within the airway, 

neutrophil content in the BAL is significantly increased (Frevert, Huang et al. 1995; 

Gupta, Feng et al. 1996; Xing, Gauldie et al. 1998; Czermak, Friedl et al. 1999; Beck-

Schimmer, Madjdpour et al. 2002; Sentman, Brannstrom et al. 2002; Quinton, Nelson et 

al. 2004; Gordon, Li et al. 2005; Reutershan, Basit et al. 2005; Speyer, Rancilio et al. 

2005; Basit, Reutershan et al. 2006).  In a study by Frevert, et al, when recombinant KC 

was instilled intratracheally in rats, a dose-dependent infiltration of neutrophils into the 

alveolar space was observed (Frevert, Huang et al. 1995).  In this same study, neutrophil 

content in BAL was significantly attenuated when animals were given anti-KC or anti-

MIP-2 antibody i.p. immediately before administration of LPS into the airway.  As 

explained by our proposed model, neutrophils were able to migrate into the airway only 

when increased CXCR2 signaling within the lungs was possible.   
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 When the inflammatory stimulus is systemic, neutrophils accumulate within the 

lungs, but do not migrate into the airspace (Johnson, Brigham et al. 1991; Standiford, 

Kunkel et al. 1995; Gupta, Feng et al. 1996; van Eeden, Kitagawa et al. 1997; Carraway, 

Welty-Wolf et al. 1998; O'Malley, Matesic et al. 1998; Czermak, Friedl et al. 1999; 

Murphy, Paterson et al. 2005; Rojas, Woods et al. 2005; Gomez, Hirano et al. 2007).  

Wagner et al showed that, while LPS instillation into the airway caused a significant 

accumulation of neutrophils in the BAL, this response was completely ablated when LPS 

was given i.v. at 1.5, 3, or 6 hours beforehand (Wagner, Harkema et al. 2002).  In 

accordance with our model, if LPS was first given systemically, CXCR2 expression on 

the cell surface was likely to be reduced.  This effect was likely due to the systemic 

release of proinflammatory mediators rather than the LPS itself, as signaling through the 

LPS receptor (TLR4) has actually been shown to augment CXCR2 activity (Fan and 

Malik 2003).  Therefore, by the time these neutrophils reached the lung, they could no 

longer respond to the locally produced chemokines and could not migrate into the airway.  

Interestingly, this same study showed that i.v. LPS given after intratracheal (i.t.) 

instillation can also inhibit neutrophil influx into the airspaces, only if it is given within 

the first 1.5 hours of i.t administration (Wagner, Harkema et al. 2002).  If LPS was 

injected i.v. at 2 hours after i.t. LPS, neutrophils were still able to migrate into the 

airspace.  These results imply that the effects of the systemic inflammatory mediators 

cause immediate CXCR2 desensitization.  If functional neutrophils are allowed enough 

time to enter the alveoli (after 2 hours, according to this report), LPS administered i.v. no 

longer has an effect.   
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Fitting Our Model to Clinical Data 

 The results from this study and others may explain why patients suffering from 

systemic inflammation have a significantly increased risk of pneumonia (Teixidor, 

Novick et al. 1983; Shirani, Pruitt et al. 1987; Hollingsed, Saffle et al. 1993; Adams, 

Hauser et al. 2001).  It has been shown that trauma patients with decreased CXCR2 

expression on peripheral blood neutrophils are more predisposed to pulmonary infection 

(Adams, Hauser et al. 2001; Tarlowe, Duffy et al. 2005).  As a caveat, some neutrophils 

from humans show increased CXCR2 activity.  Interestingly, these patients tend to be 

predisposed to acute respiratory distress syndrome (ARDS) with increased neutrophil 

congestion of the alveoli (Adams, Hauser et al. 2001).  Currently, there are no studies 

which examine CXCR2 expression in neutrophils from elderly trauma or burn patients.  

However, since burn patients over the age of 65 have a significantly greater risk of 

pneumonia (Martin, Mannino et al. 2006), it is interesting to speculate whether these 

individuals will be more likely to have decreased CXCR2 expression on neutrophils.  

 

The Clinical Use of Anti-CXCR2 Therapy in Burns 

  While our model minimally requires three components, a number of factors are 

involved in the inflammatory response.  Theoretically, targeting any one of these 

components may be effective in preventing pulmonary inflammation after a systemic 

insult.  We believe that targeting CXCR2 will prove to be the most effective strategy for 

a number of reasons.   
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 Inhibition of cytokines upregulated early in the inflammatory response, such as 

IL-1β or TNF-α, have shown to be beneficial in animal studies of systemic insults, but 

have yet to be efficacious in the clinical setting (Dinarello 2000; Calkins, Bensard et al. 

2002).  It is thought that the timing of administration, as well as the futility of trying to 

block only one cytokine is a cause for this discrepancy (Dinarello 2000; Remick, Call et 

al. 2001).  Blocking selectins has also been performed in animal models, but the results 

are highly dependent on the particular tissue being targeted and the modality of injury 

(Mulligan, Till et al. 1994; Carraway, Welty-Wolf et al. 1998; Chandra, Katahira et al. 

2003).  Inhibiting other adhesion molecules, such as VCAM-1, VLA, and PECAM-1, 

generally do not show a benefit in animal models of a systemic insult (Mulligan, Till et 

al. 1994; Reutershan and Ley 2004).  In contrast, inhibition of the ICAM-1/CD11b 

interaction has been demonstrated in animals (Mulligan, Till et al. 1994; Cotran and 

Mayadas-Norton 1998; Jin, Zhu et al. 2003).  Because both of these molecules have a 

number of roles on a wide variety of cell types, the severe side effects that may 

precipitate from anti-ICAM-1 or anti-CD11b therapy may not be a desired mode of 

treatment for burn patients.   

 

 As CXCR2 is fairly specific for neutrophils, targeting this receptor in patients 

with burn injury may show the most benefit.  As described above, however, CXCR2 

expression in human trauma patients can be either increased or decreased (Adams, 

Hauser et al. 2001; Tarlowe, Duffy et al. 2005).  If CXCR2 levels are high, methods 

applied in the current study may be effective.  Alternatively, if CXCR2 levels are low, 
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methods to increase the receptor via GRK inhibitors—which would decrease receptor 

phosphorylation and desensitization—may be more appropriate, as enhanced activity of 

this pathway has been shown to correlate with neutrophil defects following a systemic 

insult (Arraes, Freitas et al. 2006).  Standards of care when targeting CXCR2 may 

therefore require quick and effective tests to determine the receptor status of the patient 

before a particular treatment option is chosen.     
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APPENDIX A 

ADDITIONAL FIGURES 
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Figure 19. Oxygen saturation in young and aged mice at 24 hours after burn . 
Oxygen saturation was measured at 24 hours after sham (white bars) or burn 
(black bars) injury in young and aged mice.  Animals with tumors were not 
included.  Data are represented as mean ± SEM.  N = 3-4 mice per group.  *, 
p<0.05 compared to all other groups. 
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Figure 20. Differential IL-1β expression in the skin and lungs of young and 
aged uninjured mice.  Levels of IL-1β were measured in lung and skin 
homogenates of young and aged uninjured mice.  Data are represented as 
average concentration in pg/mg protein ± SEM.   N = 13-19 mice per group.  *, 
p<0.05 compared to young lungs. 
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Figure 21. Pulmonary occludin expression after burn.  Sections of lungs from 
young and aged mice at 6 and 24 hours after sham (white bars) or burn (black 
bars) were stained with anti-occludin antibody. Expression of pulmonary occludin 
was determined by measuring the total area of positive staining (µm2), normalized 
to the total tissue area (µm2).  Data are represented as mean ± SEM.  N = 3-7 mice 
per group.  *, p<0.05 compared young receiving the same injury at the same time 
point. 
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APPENDIX B 

SPECIFIC METHODS 

 

 

 

 

 

 

 

 

 

 

 

 



117 
 

 
 

Induction of Burn Injury 
 
Materials 
-CO2 tank and chamber 
-scale 
-Nembutal (50 mg/kg)  
-Normal saline (0.9%) 
-1 ml syringes with 27 g needle 
-3 ml syringes with 27 g needle 
-Heating plate  
-2 H2O basins: one with room temperature H2O and one with boiling H2O 
-Electric shavers 
-Burn templates (to give 15% TBSA burn) 
-Warming pads 
 
Procedure 
1. Tailmark and weigh animals. Be sure to replace dirty cage bottoms with clean ones.  
2. Fill 1 ml syringes with Nembutal to give 50 mg/kg to each animal. 
3. Fill 3 ml syringes with normal saline.  
4. Inject animals with Nembutal.  
5. When they are asleep, shave their backs. 
6. Administer 15% TBSA sham or burn injury.  
7. Resuscitate with normal saline (give 1 ml per 20 g)  
8. Place animal cages on top of warming pads. Keep room temperature warm. 
9. Monitor animals until they awaken. Record any deaths.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



118 
 

 
 

Lung Inflation for Immunohistochemistry 
 

Materials 
-27 gauge needle 
-3 ml syringe 
-25% O.C.T. in PBS 
-100% O.C.T  
-Weigh boats 
-Pennies or embedding boats 
-Dry ice 
 
Procedure 
1. Fill a 3 ml syringe with diluted O.C.T. and attach a 27 gauge needle. 
2. Remove lung lobe of interest from hilar structures. 
3. Place lung lobe on the side of a weigh boat, dorsal side up. 
4. Insert needle into the dorsal side of the lung lobe nearly parallel with the lobe surface 

and inject diluted O.C.T. until the lobe is fully inflated. 
5. Place one drop of 100% O.C.T onto a penny or in embedding boats. 
6. Immerse the inflated lung lobe in the O.C.T.  
7. Cover any exposed lung with the 100% O.C.T. 
8. Allow embedded lobe to freeze using dry ice. 
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Indirect Immunofluorescence  
 

Materials 
-Frozen tissue sections, cut at a maximum of 5 µm thick, on Superfrost Plus slides 
-Copland jar 
-Acetone 
-PAP pen  
-PBS, pH 7.2-7.4 
-Humidified chamber 
-Normal serum (from same species as the secondary antibody was made in) 
-Primary antibody against mouse antigen to detect 
-Fluorochrome-conjugated secondary antibody against the IgG of the species that the 
primary antibody was made in 

-Coverslips 
-Mounting medium (Crystal Mount, Aqua Polymount, or other anti-fading medium) 
 
Procedure 
1. Remove slides from -20°C freezer, dry at room temp until condensation completely 

evaporates (minimum 30 mins, maximum 24 hrs). 
2. Fix in ice-cold acetone for 10 min at -20°C. 
3. Let slides air dry. 
4. Encircle tissue samples with PAP pen. 
5. Rehydrate in PBS for 5 min. 
6. Tap off excess PBS and apply normal serum (diluted 1:10 in PBS) to block. 
7. Incubate 20-30 min in humidified chamber. 
8. Pour off serum, DO NOT RINSE.  
9. Dilute primary antibody in PBS containing 2% normal serum. 
 *Dilution will need to be determined for each antibody beforehand.  
10. Apply primary antibody to each slide. 
11. Incubate 30-60 minutes in humidified chamber. 
12. Rinse slides in PBS for 5 min.  
13. Dilute secondary antibody in PBS containing 2% normal serum.  
 *Dilution will need to be determined for each antibody beforehand.  
14. Apply secondary antibody to each slide. 
15. Incubate 30 min in humidified chamber. 
16. Rinse in PBS for 5 min.  
17. Quick rinse in tap H2O and allow slides to dry. 
18. Apply mounting medium and cover slip. 
19. Let dry overnight at 4°C. 
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Hematoxylin and Eosin Staining for Frozen Sections 
 

Materials 
-Slide holders and staining wells 
-EtOH (80%, 95%, 100%) 
-Formalin 
-Harris Hematoxylin 
-0.5% Acid Alcohol (250 ml of 80% EtOH + 1.2 ml HCL) 
-Ammonia H2O (250 ml of tap water + 9-10 drops of ammonia) 
-Eosin 
-Xylene 
-Cover slips 
-Mounting medium 
 
Procedure 
1. 50% alcohol – 5 min 
2. Tap H2O – 20 dips 
3. 10% formalin – 2 min 
4. Tap H2O – 20 dips 
5. Hematoxylin – 8 min 
6. Running tap H2O – until clear 
7. 0.5% acid alcohol – 3 dips 
8. Running tap H2O – until clear 
9. Ammonia H2O – 10 dips 
10. Running tap H2O – 3 min 
11. 95% EtOH – 10 dips 
12. Eosin – 5 dips 
13. 3x 95% EtOH – 20 dips each 
14. 2x 100% EtOH – 20 dips each 
15. Xylene – minimum 5 min 
16. Coverslip (keep the rest of the slides in xylene). 
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Lung Homogenization 
 

Materials 
-Lung lobes, flash frozen  
-Liquid nitrogen 
-Scale 
-Wet and dry ice 
-2 containers for washes: 1 for ddH2O and 1 for EtOH 
-Small beaker of ice H2O 
-14 ml polypropylene tubes, 17mm x 100 mm 
-Protease inhibitor cocktail (PIC) 
-Homogenizer 
-Sonicator 
-1 ml syringes with 25 gauge needles 
-1.2 µm syringe filters 
-1.5 ml tubes (2x sample number) 
 
Procedure 
1. Weigh lung samples. Keep samples on dry ice, flash freeze in liquid nitrogen after 

weighing. 
2. Fill 12 x 100 mm plastic tubes with 0.9 ml PIC. Keep on ice. 
3. Wash homogenizer, first with EtOH (minimum10 sec), then with ddH2O (minimum10 

sec). 
4. Place frozen lung sample in tube with PIC.  
5. Place tube in beaker of ice H2O.  
6. Homogenize sample. Start at speed 4, moving tube slowly up and down 5 times. Turn 

off for 10 sec, then turn to speed 7 and repeat. 
7. Be sure that all tissue is homogenized. 
8. Wash homogenizer between samples, first with EtOH then with ddH2O, making sure to 

check for any pieces of tissue that may be stuck to the blade. Dry with kimwipes. 
9. Sonicate samples at 30% output for 30 sec each. Keep samples on ice. 
10. Wash sonicator between samples, first with EtOH then with ddH2O, and dry probe 

with kimwipes. 
11. Centrifuge samples at about 800 g (2000 rpm in large Beckman centrifuge) for 2 

minutes at 4°C to pellet debris. 
12. Transfer supernatant to 1.5 ml tubes.  
13. Spin in tabletop centrifuge at 14000 rpm for 15 minutes at 4°C.  
14. Remove supernatants using 1 ml syringes with 25 gauge needles.  
15. Detach needle and filter contents of the syringe through 1.2 µm syringe filters into 

new 1.5 ml tubes. 
16. Aliquot filtered samples.  
17. Store samples at -80°C. 
 



122 
 

 
 

Preparation for anti-CXCR2 Injection 
 

Materials 
-Anti-mouse CXCR2 antibody (R&D Systems, Catalog #: MAB2164, Lot KPM016071) 
-IgG2A Isotype Control (R&D Systems, Catalog #: MAB006, Lot CAO076061) 
-Sterile PBS 
-1 ml syringes with 27 gauge needles 
 
Procedure 
1. To stock vial of anti-CXCR2, add 1 ml sterile PBS (= 500 µg/ml) 
2. Dilute anti-CXCR2 to 200 µg/ml, estimate about 200 µl per animal  
 -Example: for 3 animals, need 600 µl. Make 1000 µl total according to the calculation: 
     (500 µg/ml)(x)=(200 µg/ml)(1000 µl) 
    x = 400 µl of stock antibody + 600 µl of PBS 
3. To stock vial of IgG control, add 1 ml sterile PBS (=500 µg/ml) 
4. Dilute IgG to 200 µg/ml, again estimate about 200 µl per animal 
5. Fill needles with 100 µl of either anti-CXCR2 or control IgG for a total of 20 µg per 

mouse. 
6. Administer sham or burn injury 
7. Inject animals i.p. with either control IgG or anti-CXCR2 30 minutes after injury. 
8. Sacrifice at desired time point. 
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Peripheral Blood Neutrophil Isolation 
 

Materials 
-1 ml syringes with 27 gauge needles 
-Heparin 
-HBSS 
-Histopaque 1083 (Sigma, Catalog #: 18031) 
-3% Dextran in PBS 
-ACK lysis buffer  
-15 ml conical tubes (3x number of samples) 
-Ice bucket 

 
Procedure 
1. Fill conical tubes with 3 ml Histopaque. Let sit at room temperature while collecting 

samples. 
2. Coat 1 ml syringes with heparin (fill syringe to 1.0ml and decant, leaving some heparin 

in the hub). 
3. Collect blood from animals via cardiac puncture of the right ventricle. 
4. Decant into 15 ml conical tubes. Keep samples on ice. 
5. Dilute blood 1:1 with HBSS. 
6. Carefully add diluted blood on top of Histopaque. Do not disturb the interface between 

the 2 fluids.  
7. Centrifuge at 400 g for 30 min at 20°C. TURN OFF BRAKE. 
8. Aspirate off top layer and save the pellet containing erythrocytes and neutrophils.  
9. Add 2 ml of HBSS and resuspend. 
10. Add 5 ml of 3% dextran to each sample. 
11. Mix by inverting 3x slowly. 
12. Incubate at room temperature for 45-60 min.  
13. Remove top layer and place into new 15 ml tubes. Discard the pellet. 
14. Add 5 ml HBSS to each sample. 
15. Centrifuge at 300 g for 5 min.  
16. Aspirate supernatant.  
17. Add 2.5 ml ACK lysis buffer. Immediately vortex or pipette samples up and down.  
18. Incubate for 2 min.  
19. Stop the reaction by adding 10 ml ice cold HBSS.  
20. Centrifuge at 300 g for 5 min. 
21. Aspirate supernatant. 
22. Repeat lysis if necessary. 
23. Resuspend cells in 0.5 ml HBSS. 
24. Count cells at 1:1 dilution with trypan blue (20 µl of sample + 20 µl trypan blue). 
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Chemotaxis Assay 
 

Materials 
-See protocol for “Peripheral Blood Neutrophil Isolation” 
-Fluorescent cell dye (ex; Cell Tracker Green: Invitrogen, Catalog #: C2925) 
-Chemotaxis media (HBSS, Penicillin/Streptomycin/Glutamate, 25 mM HEPES, 
1%BSA) 

-Recombinant mouse CXCL1/KC, Carrier Free (R&D Systems, Catalog #: 453-KC/CF) 
-N-formyl-methionyl-leucyl-phenylalanine (Sigma, Catalog #: F3506) 
-Chemotaxis chamber (NeuroProbe, Catalog #: 101-8) 

 
Procedure 
1. Isolate neutrophils from peripheral blood.  
2. Count cells in 0.5 ml HBSS. 
3. Centrifuge at 300 g for 5 min.  
4. Dilute Cell Tracker Green to 40 µM in chemotaxis media. 
5. Aspirate the supernatant and resuspend to106 cells/ml in diluted Cell Tracker Green. 
6. Incubate samples for 45 min in the dark at 37°C and 5% CO2. 
7. Wash at least twice in HBSS. 
8. Resuspend in chemotaxis media to 106 cells/ml.  
9. Remove 100 µl of each sample for input wells.  
10. Centrifuge input samples at 300 g for 5 min.  
11. Prepare dilutions of rmKC in chemotaxis medium. 
12. Add 29 µl of each chemokine or Prepare a separate set of wells for negative controls 

(media alone) and positive controls (fMLP (10-7 M)). 
13. Resuspend sample inputs in 58 µl of chemotaxis media.  
14. Plate 29 µl of sample inputs in a separate set of wells in duplicate.  
15. Place filter membrane over wells. 
16. Pipette 50 µl of each sample onto upper side of membrane in duplicate. 
17. Incubate 60 min in incubator (37°C and 5% CO2).  
18. Aspirate cells from upper side of membrane.  
19. Pipette 50 µl of 20 µM EDTA in PBS to upper side of membrane to detach adherent 

cells.  
20. Incubate 15 min at room temperature. 
21. Read plate in fluorescence spectrophotometer at an excititation of 492 nm and an 

emission of 517 nm to measure Cell Tracker Green. 
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Flow Cytometry  
 

Materials 
-Cells for control staining (unstained cells + single stain control for each antibody) 
-1.5 ml tubes 
-Flow buffer: 1% BSA, 0.1% NaN3 in PBS, 0.2 µm filtered 
-Blocking solution: 1:20 dilution (0.5 mg/ml) of anti-CD16/32 FcRδ II/III (clone 2.4G2, 
BD Pharmingen, Catalog #553142) 
-Fluorochrome-conjugated antibodies of choice (determine dilutions beforehand) 
-1% paraformaldehyde in PBS – make new each time 
 
Procedure 
1. Wash and count cells.  
2. Centrifuge at 300 g for 5 min. 
3. Aspirate supernatant and add 50 µl of blocking buffer to each tube. 
4. Mix samples and incubate 20 min at 4°C. 
6. Add antibodies of choice to each sample tube and to control tubes.  
7. Incubate for 30 min at 4°C protected from light. 
8. Centrifuge at 300 g for 5 min.  
9. Wash 3x in flow buffer. 
10. Aspirate supernatant and resuspend in 300 µl of 1% paraformaldehyde. 
11. Cover tubes with foil and store at 4°C until analysis.  
12. Wash 3x before running on FACS machine to remove paraformaldehyde. 
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