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CHAPTER I 

INTRODUCTION 

Amyotrophic Lateral Sclerosis (ALS) is the most common adult motoneuron (MN) 

degenerative disease. The disease is fatal within approximately 3-5 years after clinical 

onset. Discovery of a small portion of familial cases with a mutation in the gene that 

encodes for Cu/Zn superoxide dismutase 1 (SOD1) led to the development of a 

transgenic mouse model for the disease in 1994 (Gurney et al., 1994). Pre-symptomatic 

SOD1 mice appear normal and show no clinical symptoms well into adulthood, however 

once symptom onset has occurred they display many of the pathological hallmarks of 

ALS patients (Chiu et al., 1995). It has been well-documented that the initial pathological 

event during the SOD1 pre-symptomatic stage is loss of neuromuscular junctions (NMJ), 

axonal retraction and compensatory sprouting in the lower limbs (Fischer et al., 2004; 

Schaefer et al., 2005). These findings and others has led to development of the die-back 

theory of ALS, where disconnection from target and the inability to maintain target 

connection leads to MN degeneration (Dadon-Nachum et al., 2011).  

The facial nerve injury model has proven to be a valuable tool used in our 

laboratory as well as others, to investigate the mechanisms of MN survival and

degeneration in wild-type (WT) and immunodeficient mice. Recently, we have utilized 

this injury model to investigate the mechanisms of MN survival in the pre-symptomatic 
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SOD1 mouse. Our lab has shown that following a facial nerve axotomy, pre-symptomatic 

SOD1 mice display enhanced facial MN (FMN) cell loss in the facial motor nucleus, 

compared to WT mice. The inability to retain WT FMN survival levels suggests that the 

mechanisms involved in MN degeneration are already present at the pre-symptomatic 

stage. Expression of MN regenerative genes as well as genes specific to the neuropil 

were previously analyzed following axotomy in both WT and pre-symptomatic SOD1 

mice. Surprisingly, MN regenerative genes were expressed to a similar extent in SOD1 

MN with respect to WT. Differences were seen among genes expressed by the neuropil, 

namely glial fibrillary acidic protein (GFAP), specific to the astrocytic response, and 

constitutive expression of tumor necrosis factor-α (TNFα; Mesnard et al., 2011). These 

results suggest that the SOD1 MN within the pre-symptomatic stage are capable of a 

“WT-like” molecular response to target disconnection, including upregulation of survival 

and regenerative genes. However, different molecular responses related to the neuropil 

and the presence of a pro-inflammatory microenvironment may explain the enhanced 

FMN cell loss following axotomy. 

The strengths of the facial nerve axotomy model have allowed us to begin initial 

investigation of dysregulation within the glial response, to identify mechanisms 

mediating MN degeneration and to determine potential factors involved in mediating 

neuroprotection. Experiments within this dissertation evaluated whether the axotomy-
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induced molecular response in pre-symptomatic SOD1 mice, resembles the disease-

induced molecular response within the facial nucleus in symptomatic SOD1 mice. 

A. Central Hypothesis 

The central hypothesis of the research presented in this dissertation is that the 

molecular response to axotomy in the pre-symptomatic SOD1 is similar to the 

molecular response to disease. To determine whether this central hypothesis can be 

supported, the research presented in this dissertation established four specific aims. 

B. Specific Aim 1: Survival and Molecular Responses to Facial Nerve Axotomy 

Aim #1 of this dissertation was to analyze the expression of genes involved in 

neuroprotective and neurodegenerative signaling systems as well as genes specific to 

the glial response, following a facial nerve axotomy in WT and pre-symptomatic SOD1 

mice. The working hypothesis for this aim was that molecular expression within the 

axotomized SOD1 facial motor nuclei will display enhanced mRNA levels, compared to 

WT, for death receptor signaling systems and other genes that have been shown to be 

present within the CNS of ALS patients and symptomatic or end-stage SOD1 mice. 

Experiments performed specifically investigated the molecular changes induced by 

axotomy within the facial motor nucleus of WT and SOD1 mice for neurodegenerative 

genes of death receptor signal transduction and signaling systems involved 

neuroprotection and genes specific to the glial cell responses to CNS injury. Similarities 

and differences in the expression between WT and SOD1 axotomized facial nuclei help 
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to elucidate mechanisms involved in the enhanced FMN cell death after axotomy in the 

pre-symptomatic SOD1 mouse.  

C. Specific Aim 2: Survival and Molecular Responses to Disease Progression 

Aim #2 of this dissertation was to determine whether molecular response to 

axotomy within the pre-symptomatic SOD1 facial motor nucleus resemble the disease-

induced molecular response within the facial motor nucleus. The working hypothesis 

for this aim was that the molecular response following facial nerve axotomy in pre-

symptomatic SOD1 mice resembles the molecular response of disease progression and 

subsequent MN degeneration within the symptomatic SOD1 facial motor nucleus. It has 

been well established in the SOD1 mouse model that neuronal target disconnection 

precedes MN cell death in the spinal cord and brainstem during disease progression. 

The experiments in Aim2 examined the effects of disease on FMN survival and mRNA 

expression of glial-specific genes and genes involved in neuroprotective and 

neurodegenerative signaling systems within the neurodegenerating, disease-affected 

facial motor nucleus.  

D. Specific Aim 3: Two Rates of Symptom Progression in SOD1 Mice 

Aim #3 of this dissertation was to confirm that a group of symptomatic SOD1 

mice displaying a faster rate of symptom progression also demonstrate a faster rate of 

disease progression within the facial motor nucleus. The working hypothesis for this 

aim was that the variability seen among motor scores during behavioral assessment is a 
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result of two different rates of symptom progression which correlates with evidence of 

increased disease progression rate within the SOD1 facial motor nucleus. Dramatic 

differences among severity of symptoms were apparent during behavioral assessment 

of motor function following symptom onset. The experiments analyzed FMN survival 

levels as well as differences in expression of genes involved in the response to target 

disconnection (axotomy/disease) between the two symptomatic groups.  

E. Specific Aim 4: Molecular Expression in Facial Motor Subnuclei 

Aim #4 of this dissertation was to analyze the axotomy-induced molecular 

expression of neuroprotective and neurodestructive signaling systems within the 

regenerative and degenerative subnuclei of the facial motor nucleus. The working 

hypothesis for this aim was that the regenerative, ventromedial (VM) subnucleus of the 

facial motor nucleus will display attenuated molecular expression of genes related to 

neurodegenerative signaling systems compared to the degenerative, ventrolateral (VL) 

subnucleus in both WT and SOD1 mice following axotomy. The experiments investigated 

differences between axotomy-induced mRNA expression within the WT VM and VL 

subnuclei, and separately, within the SOD1 VM and VL subnuclei. The purpose of these 

experiments was to provide additional information regarding axotomy-induced 

molecular responses of genes involved in neuroprotective and neurodestructive 

signaling systems among facial nuclei populations with inherent degenerative and 

regenerative characteristics.  
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The research presented within this dissertation addressed to the four aims 

stated above. The results support the conclusion that molecular response within the 

SOD1 facial nucleus is similar regardless of the method of MN injury (axotomy/disease) 

and therefore, allows for axotomy to be used in the pre-symptomatic mouse as a model 

of disease progression.
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CHAPTER II

LITERATURE REVIEW 

A. The Nervous System: A General Overview 

The human brain, known as the organ of the mind, is the most complex tissue in 

the body. It is made up of cells called neurons which are specialized for sending and 

receiving signals (Figure 1).  Four distinct parts make up the neuron: the cell body, the 

dendrites, the axon, and the presynaptic axon terminals. The cell body of the neuron, 

also called the soma or perikaryon, is the portion that surrounds the nucleus and 

contains many of the cell’s organelles and is responsible for most of the neuronal 

housekeeping functions, including synthesis and protein processing. Dendrites are 

processes that arise from the cell body like tentacles of varying complexity and are 

responsible for receiving incoming signals. Portions of the membrane display receptors, 

proteins capable of binding and transmitting the incoming signals that arrive via 

proteins or chemical compounds termed neurotransmitters. This message is translated 

into a biochemical event and may or may not be transmitted as a signal down the third 

part of the neuron known as the axon. The axon projects away from the cell body and is 

the message sending portion of the neuron. Biochemical signals that reach a certain 

threshold are propagated down the axon as an electrical signal known as an action 

potential, and ultimately reach the fourth part of the neuron the presynaptic axon 
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terminals. The presynaptic axon terminals result in multiple endings designed for rapid 

communications and convert the electrical signal back into a biochemical signal. The 

junction between the presynaptic axon terminal and the target is called the synapse, 

where neurotransmitters can diffuse across to the adjacent cell and communicate the 

signals.  

Subdivisions of the nervous system are somewhat arbitrary, since all elements of 

the nervous system work closely together without clear boundaries. However, 

traditional definitions provide a useful framework for understanding the brain and its 

connections. The central nervous system (CNS) consists of the brain and spinal cord 

which are contained within a specific environment that is separate from the rest of the 

body. The peripheral nervous system (PNS) consists of those parts of the nervous 

systems that lie outside the CNS, sending and receiving signals to and from the body. 

Sensory nerves carry messages from the periphery to the CNS and are called afferent 

nerves or signals. Peripheral motor nerves carry messages from the CNS to the 

peripheral tissues are termed efferent nerves or signals. Additionally, a third portion of 

the nervous system regulates and controls visceral functions such as digestion, heart 

rate, blood pressure, reproductive functions and is known as the autonomic nervous 

system (ANS). This system is anatomically part of the CNS and PNS, but is functionally 

distinct.  
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The human brain contains anywhere between 15-33 billion neurons, depending 

on age and gender (Pelvig et al., 2008). Neurons can vary greatly in their morphology 

throughout the nervous system. This dissertation will focus on a specific type of neuron, 

the motoneuron (MN). Two types of MN carry efferent signals that activate skeletal 

muscle; upper and lower MN (Figure 2). Upper MN originate in the motor cortex of the 

brain and send their axons, usually bundled together within a tract, down common 

pathways to synapse on lower MN in the brainstem or the spinal cord. Therefore, upper 

MN are mainly responsible for generating motor signals to lower MN via the 

neurotransmitter, glutamate, but do not directly stimulate the target musculature. 

Lower MN cell bodies reside within distinct anatomical groups referred to as a nucleus 

(localized within the brainstem) or ganglion (localized within the peripheral nervous 

system). Alpha MN (α-MN) are a type of lower MN that innervate extrafusal muscle 

fibers, the most numerous type of muscle fiber and those that are involved in skeletal 

muscle contraction. α-MN send their axons through the periphery, bundled together as 

“nerves” and using the neurotransmitter, acetylcholine, send their signals across the 

neuromuscular junction (NMJ). The NMJ is the space or synapse between the 

presynaptic terminals of the α-MN and the motor end plate, the highly-excitable region 

of muscle fiber plasma membrane. The motor end plate contains acetylcholine (ACh) 

receptors that generate an action potential in the muscle cell which serves as the signal 
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for muscle contraction once ACh crosses the NMJ and binds to them. A series of 

complex steps leads to the contraction of skeletal muscle and therefore movement.  

While neurons are often considered the main component, they are not the only 

cells that make up the nervous system. Neuroglial cells, often simply called glia or glial 

cells, are more numerous than neurons (Pelvig et al., 2008). They are non-neuronal cells 

which lack axons, action potentials, and synaptic potentials but play important roles and 

diverse functions within the nervous system. While the Greek word “glia” implies that 

they are the glue of the nervous system they are much more than that. Glial cells are 

involved in nearly every function of the brain; they structurally support neurons, 

insulate axons with myelin, supply nutrients and oxygen, destroy pathogens and remove 

the debris of dead cells, modulate neurotransmission, etc. The main types of CNS glia 

are ependymal cells, oligodentrocytes, astrocytes and microglial cells. Within the PNS 

the main types of glial cells are satellite cells in autonomic and sensory ganglia, enteric 

glial cells and Schwann cells.  

B. Amyotrophic Lateral Sclerosis 

Amyotrophic Lateral Sclerosis (ALS), colloquially known as Lou Gehrig’s disease, 

was first described by Jean-Martin Charcot in 1869. ALS refers to a form of MN disease 

which selectively targets both upper and lower MN. As mentioned previously, upper MN 

originate in the motor cortex and synapse on MN within brainstem nuclei or the spinal 

cord ventral horn. These lower MN comprise the majority of the peripheral nervous 
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system and innervate skeletal muscles to produce voluntary movement. “Amyotrophic” 

refers to the atrophy of the denervated skeletal muscles and “Lateral Sclerosis” refers to 

the hardening of the anterior and lateral corticospinal tracts observed during autopsy; a 

result of degenerating MN and gliosis, a proliferation of astrocytes (Rowland and 

Shneider, 2001).  ALS is the most common MN degenerative disease with a prevalence 

of 3-5/100,000 (Naganska and Matyja, 2011). Typical age of onset occurs between 55-65 

years of age however rare juvenile onset forms of the condition also exist. For reasons 

not currently known, the disease affects men more commonly than women with a male: 

female ratio of 1.5:1. ALS progresses rapidly, affecting voluntary muscle movement 

leading to respiratory failure and other pulmonary complications. Life expectancy after 

diagnosis is an average of 3-5 years (Wijesekera and Leigh, 2009). In the United States it 

is estimated that 20,000 people are affected with ALS and 5,000 new cases are 

diagnosed each year (Naganska and Matyja, 2011). The diagnosis of ALS is substantiated 

when patents present with signs of both upper and lower MN deficits, further 

investigation excludes other MN diseases, and the progression is consistent with that of 

ALS. Symptom onset is gradual and will often go unnoticed or patients attribute the 

symptoms to benign ailments or conditions. This, in addition to the clinical process of 

ruling out other MN diseases, neuropathies and neurological conditions, almost always 

results in a delay of diagnosis (Kraemer et al., 2010). The disease presents clinically as 

two forms; spinal onset of ALS (classical ‘Charcot ALS’) or bulbar onset ALS. Two thirds of 
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patients suffer from spinal onset ALS and will notice asymmetrical muscle weakness in 

the upper or lower limbs often of an insidious nature. Clinical examination will reveal 

focal muscle atrophy; in the lower limbs this includes proximal thigh and distal foot 

muscles. The upper limbs display atrophy of the hand musculature, forearms and 

shoulders. Spasticity and pathologically brisk tendon reflexes will also appear 

throughout the course of the disease. Patients experiencing bulbar onset ALS will 

frequently present with dysarthria of speech. Other symptoms include brisk jaw jerk, 

various facial weakness, fasciculations and atrophy of the tongue. Regardless of the type 

of onset, those affected with ALS will gradually develop both limb and bulbar symptoms 

within 1-2 years. Typical ALS cases will not exhibit sensory deficits. However, in non-

typical cases, multi-system involvement can occur including dementia and Parkinsonism 

(Wijesekera and Leigh, 2009).  

Treatment options for patients are limited. ALS is considered an incurable 

disease. More than 7,000 compounds have been suggested for treatment of ALS and 

approximately 100 reached clinical trials (Cozzolino et al., 2008; http://www.als.net). 

Riluzole, the active ingredient in Rilutek, was approved by the FDA December 12, 1995 

for the treatment ALS (http://www.fda.gov). Riluzole (2-amino-6-

(trifluoromethoxy)benzothiazole) has been shown to have neuroprotective and 

anticonvulsant actions attributed to its ability to reduce the K+-evoked release of 

glutamate and aspartate from synaptic terminals (Martin et al., 1993). Riluzole is the 
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only approved drug for treatment of ALS. It is most effective early in the disease process 

however; it provides only limited therapeutic benefits of increased survival of 4 months 

(Traynor et al., 2003). 

Although some genetic risk factors have been identified, the cause of ALS is still 

eludes scientists. Recent studies have attempted to determine environmental risk 

factors and found only smoking is associated with developing ALS (Sutedja et al., 2007; 

Kamel et al., 1999). Current theory suggests a complex genetic-environmental 

interaction leads to development of the disease.  

In 1986 it was discovered that a small portion of ALS cases appeared to be 

inherited in an autosomal dominant fashion (Mulder et al., 1986). These cases are 

known as inherited familial ALS (fALS) and make up approximately 10% of all ALS cases 

while in 90% of cases the disease occurs randomly, considered sporadic ALS (sALS). In 

1993 a landmark discovery was made identifying 11 missense mutations in the gene 

encoding for the anti-oxidant enzyme, Cu/Zn superoxide dismutase 1 (SOD1) in 13 fALS 

families (Rosen et al., 1993). Today 339 mutations related to ALS have been identified 

and among those more than 150 are mutations within the SOD1 gene. Surprisingly, 

cases caused by a mutation in the SOD1 gene makes up only 20% of fALS cases or 2% of 

all ALS cases (http://alsod.iop.kcl.ac.uk). Currently, ten known genes influence the 

development of ALS (Beleza-Meireles and Al-Chalabi, 2009). During normal biological 

processes, molecular oxygen acts as a strong oxidant and is capable of extracting 
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electrons from various molecules resulting in the production of the cytotoxic reactive 

oxygen radical, superoxide anion (O2
-). SOD1 is in part responsible for detoxification and 

subsequent maintenance of intracellular O2
- concentration in the low femtomolar range 

by catalyzing the dismutase of O2
- into hydrogen peroxide (H2O2) and molecular oxygen 

(Martin, 2007). The concentration of SOD1 in brain is approximately 4.5 times higher 

than in erythrocytes (Kurobe et al., 1990). Upon examination of the mouse spinal cord 

and brainstem immunoreactivity for SOD1 was much greater in MN than several classes 

of other neurons. The highest concentration appeared to be localized to the cytoplasm 

of the perikarya of MN; however SOD1 was also identified in axons, dendrites, and glial 

cells (Pardo et al., 1995). Later studies have analyzed the intracellular distribution and 

found that while SOD1 is primarily localized to the cytoplasm. Although, a small portion 

of the protein can be found within the intermembrane space of the mitochondria as 

well (Okado-Matsumoto and Fridovich, 2001). SOD1 protein is a soluble metalloenzyme 

made up of 153 amino acids. The functional enzyme is a 32 kilodalton (kDa) homodimer, 

covalently linked and bound to one Cu and one Zn ion per subunit (Martin, 2007). While 

the Zn ion is responsible for stabilizing the structure of the two subunits, the Cu ion 

carries out the catalysis (Forman and Fridovich, 1973). As many as 7% of sALS cases have 

mutations that occur within the SOD1 gene (http://alsod.iop.kcl.ac.uk). 

 

 

http://alsod.iop.kcl.ac.uk/


15 
 

 
 

C. ALS Mouse Model: SOD1 

Several transgenic rodent models have been developed based on mutations in 

the SOD1 gene. The mouse model that most resembles the pathological features 

observed in ALS patients is the G93A mouse model. Developed in 1994, the SOD1G93A 

mouse overexpresses a human, mutant protein with a Gly93→Ala substitution within 

exon 4 (Gurney et al., 1994). For the reasons that the SOD1G93A mouse was the first ALS 

rodent model developed and the similarities between disease progression within the 

mouse and in fALS and sALS patients, the SOD1G93A mouse has been the most widely 

studied and is the mouse model used throughout this dissertation. From this point on 

the SOD1G93A transgenic mouse will be referred to as simply SOD1, unless clarification of 

specific transgenic model is necessary.  

While the SOD1 mouse overexpresses the human mutant gene, this 

overexpression does not have any affects on its endogenous mouse SOD1 gene or the 

subsequent protein function (Borchelt et al., 1995). The overexpression of the human 

mutant gene brings about a toxic gain of function. This is supported by studies using 

SOD1 knock out (KO) mice that live well into adulthood and do not develop motor 

neuron disease suggesting that the toxicity of this mutation is not due to a reduction in 

the enzyme’s ability to scavenge free radicals (Reaume et al., 1996). Mice that over-

express the WT human SOD1 do not develop any symptoms of the disease (Dal Canto 

and Gurney, 1995; Bruijn et al., 2004). Additionally, analysis of mutant SOD1 enzyme 
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activity has been performed for all SOD1 transgenic models and variations within 

enzymatic activity have been found as complete inactivation (Borchelt et al., 1994). 

Mutant SOD1 enzymes across transgenic SOD1 mice have also varying degrees of 

stability, which can affect the ability to form stable dimers (Borchelt et al., 1995; 

Jonsson et al., 2006). The toxic gain of function of mutant SOD1 has not yet been 

identified.  

While there are differences in disease onset and rate of disease progression 

among the different SOD1 mouse models, all develop MN disease. The pathological 

phenotype is similar; massive death of MN in the ventral horn and loss of myelinated 

axons in ventral motor roots ultimately leads to paralysis and muscle atrophy (Cozzolino 

et al., 2008). SOD1 mice show three distinct phases of disease; pre-symptomatic, 

symptomatic, and end-stage. These stages have been determined by approximating 

deficits in motor function and MN cell death within the spinal cord (Chiu et al., 1995). 

Reports of symptom onset and disease progression of SOD1G93A vary widely within the 

literature, often a result of different methods of behavioral assessment. Many early 

studies exhaustively documented the progression of the disease and their findings are 

typically used as reference. The first symptoms develop at approximately 90 days of age 

(doa) and consist of a slight tremor of the hind-limbs. This tremor becomes more 

pronounced, including both hind-limbs and sometimes the forelimbs. Proximal muscle 

weakness and atrophy begin to develop by 120 doa as evident by shortness of stride. 
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SOD1 mice reach end-stage disease by 136 doa, marked by severe paralysis. The mice 

are unable to lift their pelvis, generally do not respond to tapping on the cage, and are 

unable to groom themselves. MN cell death accompanies the progression of symptoms. 

At symptomatic stage, 90 doa, the decrease in the number of somatic MN in C7 and L3 

segments reaches significance compared to aged-matched controls. The MN death 

continues into end-stage disease where the MN loss reaches 50% in the ventral horn of 

spinal cord. Previous studies within the brainstem showed MN in the hypoglossal motor 

nucleus revealed a trend for MN loss, however significance was not reached by end-

stage disease (Chiu et al., 1995). Research has focused on the mechanisms of the MN 

cell death which may be dysregulated in ALS and the SOD1 mouse model.  

D. Target Disconnection Theory of ALS: “Die-back” 

One of the leading theories suggests that disease progression and subsequent 

MN degeneration that occurs the SOD1 mouse model and ALS patients is initiated by an 

unknown pathological event within the periphery resulting in functional loss of the NMJ. 

This target disconnection ultimately results in a “die-back” pathophysiology and over 

time the MN will degenerate. This theory is supported by a variety of studies. As 

mentioned previously, the first initial pathological event that has been documented 

within the pre-symptomatic SOD1 mouse is significant denervation (40%) of motor end-

plates at 47 doa within the medial gastrocnemius (MG), soleus, and tibialis anterior (TA; 

Fischer et al., 2004; Durand et al., 2006). Electromyography (EMG) recordings revealed a 
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loss of motor units within the MG at approximately the same time (Hegedus et al., 

2007). Motor nerve conduction tests a MN ability to transmit signals from the spinal 

cord to the muscle. This evaluates a motor unit, one MN, and the many muscle fibers it 

innervates via many NMJ.  Results determined significant functional loss of TA as 

evident by the motor nerve conduction test and EMG recordings which revealed a loss 

of motor units at 56 doa (Mancuso et al., 2011). Also evident at 56 doa is a reduction of 

muscle mass and muscle fiber diameter within the biceps femoris (Marcuzzo et al., 

2011). These results display a pattern of target disconnection within the early pre-

symptomatic stage which is observed as loss of NMJ followed by a reduction in muscle 

mass. Additionally, compensatory sprouting of axons is observed at 60 doa which leads 

to reinnervation of lost NMJ (Schaefer et al., 2005; Frey et al., 2000). It has been 

suggested that within the later pre-symptomatic stage, the degree of target 

disconnection becomes overwhelming which leads to the “die-back” of the MN cell 

bodies within the spinal cord. By 90 doa, there is a significant reduction of synapse on 

MN within the lumbar spinal cord, evidence of neurodegeneration (Zang et al., 2005). 

Then between 90 – 100 doa, many studies report significant loss of MN within the 

lumbar spinal cord, decreased average body weight, and behavioral tests reveal 

appearance of motor symptoms (Mancuso et al., 2011; Fischer et al., 2004; Chiu et al., 

1995).  
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E. Cranial Nerve VII: The Facial Nerve 

In humans, acute lesions of the facial nerve, or cranial nerve VII, are the most 

common of the mononeuropathies that affect the cranial nerves. Bell’s palsy and 

trauma are frequent causes of ipsilateral, same side, facial paralysis. This is in part due 

to its long, boney course through the cranium as well as its superficial location through 

the face to innervate the muscles of facial expression (Netter, 1987).  

The facial motor nucleus, or referred to simply as facial nucleus, is located in the 

reticular formation of the lower pons where fibers from the motor cortex, namely the 

corticobulbar tract, synapse on MN of the facial nucleus. The facial nucleus sends 

efferent fibers to form the large motor root which loops around the abducens nucleus 

forming the genu of the facial nerve then course ventrolaterally en route to their exit 

from the brainstem. Prior to exiting, the motor root of the facial nerve is joined by the 

small nervus intermedius, also called the “sensory root” of the facial nerve. These fibers, 

from the superior salivatory nucleus, contain secretomotor fibers for salivary glands, 

lacrimal glands, as well as some pharyngeal and nasal mucosal glands. The nervus 

intermedius also carries parasympathetic efferent, vasodilator fibers for vessels in the 

areas supplied by the facial nerve. The facial nerve also contains afferents transmitting 

taste sensations from the tongue and palate, general sensations from the external 

acoustic meatus and the auricular concha, terminating in the spinal nucleus of the 

trigeminal nerve. The facial nerve, motor root and nervus intermedius, exit the 
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brainstem at the cerebellopontine angle and enter the internal acoustic meatus and 

travel through the facial canal which traverses through the petrous part of the temporal 

bone. The nerve travels through a treacherous course within the facial canal laterally, 

above and between the vestibule and cochlea then bends backwards, almost at a right 

angle, forming the facial geniculum. Finally, after curving inferiorly it reaches its exit 

from the facial canal at the stylomastoid foramen (SMF; Netter, 1991). 

F. Facial Nerve Axotomy Injury Paradigm 

Today, the facial nerve axotomy model represents one of the most widely used 

animal models to study MN regeneration and degeneration. In the mouse, the facial 

nerve axotomy is a relatively minor and easily replicated surgical procedure. It is 

performed by exposing the facial nerve as it exits the skull at the SMF and completely 

transecting the nerve prior to the distal branches which radiate rostrally within the face 

as the temporal, zygomatic, buccal, mandibular and cervical branches. Since the 

transection takes place in the periphery, there is no direct CNS trauma and no physical 

disruption of the blood-brain barrier (BBB; Moran and Graeber, 2004). Only the 

ipsilateral facial motor nucleus is affected by the axotomy, as there are no bilateral 

projections between the two nuclei. The contralateral nucleus can be used as an 

internal control because it remains uninjured (Cammermeyer, 1963). For descriptive 

purposes throughout this dissertation the ipsilateral facial motor nucleus affected by the 

axotomy, or injured by the axotomy will be referred to as the axotomized facial nucleus 
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(Ax). Additionally, the contralateral, uninjured facial motor nucleus will be referred to as 

the control facial nucleus (C). The facial nucleus contains a homogeneous population of 

MN which adds an additional level of control to this in vivo model. The mild and easily 

reproducible surgical procedure as well as the ability to make use of the contralateral, 

control nucleus, makes this a valuable injury model for studying MN survival and 

regeneration (Moran and Graeber, 2004). 

The facial motor nucleus of the mouse contains approximately 2,000 MN and can 

be divided into seven subnuclei. Six of the seven subnuclei, are encompassed within the 

main body of the nucleus and are as follows; the dorsolateral (DL), dorsal intermediate 

(DI), dorsomedial (DM), ventral lateral (VL), ventral intermediate (VI), and ventromedial 

(VM) subnuclei (Figure 3). The seventh nucleus, the dorsal accessory (DA), is located 

directly dorsal to the rostral portion of the main nucleus. The musculotopic organization 

of the mouse facial motor nucleus was determined in 1982 by a series of experiments 

using the retrograde tracer horseradish peroxidase and its anatomical organization 

corresponds to functional and morphological arrangement of the subnuclei (Table 1). 

The VM and DM subnuclei, located medially, supply the posterior and anterior auricular 

musculature. The mentalis and associated portions of the platysma are innervated 

mainly by the VI subnuclei. The nasolabial musculature is represented by the lateral 

subnuclei, the VL and DL, which account for approximately 43% of all MN in the facial 
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motor nucleus. The DA contains MN innervating the stapedius muscle as well as the 

posterior belly of the digastric muscle (Ashwell, 1982).  

G. Motoneuron Reactions After Facial Nerve Axotomy 

 Transection of the axon results in a process called Wallerian degeneration in 

which the separated portion undergoes degeneration. Within the cell body, the initial 

event is termed chromatolysis and is the disintegration, redistribution, and later, 

perceivable disappearance of the Nissl substance (Cammermeyer, 1963; Lieberman, 

1971). Nissl bodies consist of parallel cisterns of granular endoplasmic reticulum and 

clusters of free ribosomes between lamellae. Within 24 hours of facial nerve 

transection, ultrastructural changes are present in the neuronal cytoplasm. Clusters of 

free ribosomes become evident throughout the cytoplasm, known as dispersion of Nissl 

granules, and this process reaches a maximum at four days. Within a nerve crush injury, 

a transection of axons occurs but the nerve sheath maintains intact, the new Nissl 

bodies reappear within one week, however after transection of the facial nerve, the 

endoplasmic reticulum remains dispersed and there are no further changes for several 

weeks. During that time the cell bodies were almost completely surrounded by glial 

cells. Prior to disintegration, the cytoplasm of the MN displayed extensive degeneration, 

closely packed mitochondria, an increase in neurofibrils, large amounts of free 

ribosomes, and multiple small vesicles with or without attached ribosomes. Ultimately 

the neurons are removed by phagocytic microglia between 16 and 30 days post-
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axotomy (Torvik and Skjorten, 1971). Additionally, during the initial axon reaction is 

swelling of the entire cell body and dislocation of the cell nucleus and nucleolus closer 

to the cell membrane (Guntinas-Lichius et al., 1996; Brum, 1991). There is also an 

enlargement in the nucleolar volume which is associated with a dramatic increase in 

ribonucleic acid (RNA) and protein synthesis and enhanced nucleolar RNA synthesis 

(Lieberman, 1971). It has been proposed that the increase in RNA synthesis is due to 

axonal sprouting and the resulting expansion of the axonal membrane.  

 While changes in Nissl substance are present after facial nerve axotomy, facial 

methods of counting surviving MN after injury is still accomplished by staining cell 

bodies with a Nissl-stain, such as thionin or cresyl violet (Cammermeyer, 1963; Ashwell, 

1982; Torvik and Skjorten, 1971; Guntinas-Lichius et al., 1996). It has been well-

established that no changes in the control, uninjured facial motor nucleus take place 

after axotomy. Therefore, this non-operated side can be considered useful comparison 

for control purposes (Cammermeyer, 1963). Counting FMN using Nissl stain is still the 

gold standard in the facial nerve axotomy injury model. Retrograde tracing has technical 

limitations and in some instances application of the tracer itself can inadvertently 

produce injury. Additionally, immunohistochemical techniques that utilize antibodies to 

neuron-specific proteins can lead to identification problems because the targeted 

proteins themselves can be affected following injury. Facial nerve axotomy in adult mice 

results in an almost complete loss of expression of the cholinergic enzyme, choline 
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acetyltranferase (ChAT). This affect, not seen in young mice, could be mistakenly 

considered MN cell death (Kou et al., 1995). The neuronal nuclei (NeuN) antibody was 

identified in 1992 as a panneuronal marker against uncharacterized antigen/antigens 

and exhibits staining in the nuclei and diffuse cytoplasmic staining in neurons (Mullen et 

al., 1992). In mice and rats, facial nerve axotomy results in dramatic reduction of NeuN 

staining within the facial motor nucleus (McPhail et al., 2004). While these neuronal 

markers are widely used within the field of neuroscience, specific axotomy-induced 

changes in cellular protein prohibit their use in MN identification after facial nerve 

axotomy.   

H. Glial Reactions After Facial Nerve Axotomy 

 It is well-understood that microglia are the first cells to respond to even minor 

pathological changes within the CNS (Kreutzberg, 1996). After facial nerve axotomy, 

microglia cells undergo mitosis and are the only proliferating cells within the axotomized 

nucleus and are distinct from circulating blood mononuclear cells. Even inducing death 

of FMN by toxic ricin injection, results in no perivascular infiltrates of mononuclear cells, 

but again, increased proliferation of endogenous microglia ensues (Graeber et al., 1988). 

In the facial nucleus, microglia begin to proliferate approximately 3 days after axotomy 

and reach a peak between four to six days (Tetzlaff et al., 1988b). It has been repeatedly 

shown, in a variety of axonal-lesion models that endogenous microglial cells become 

activated and rapidly proliferate between one and three days post injury (Dissing-Olesen 
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et al., 2007; Hailer et al., 1999). Using electron microscopy, during the initial stage of the 

axonal reaction, proliferating perineuronal microglia displace morphologically intact 

synaptic terminals from the injured MN cell body and dendrites (Blinzinger and 

Kreutzberg, 1968). This process is known as synaptic stripping and is considered part of 

the first stage of microglial activation. After completion of synaptic stripping, 

perineuronal microglia migrate to the nearby parenchyma or neuropil of the axotomized 

nucleus where they remain, although they appear to decrease in number (Jones et al., 

1997). Upon death of FMN, microglia rapidly transform from activated to phagocytic 

cells, known as microglia-derived brain macrophages, and gradually remove the 

neuronal debris. This is known as the second stage of microglial activation and this 

transformation into potentially cytotoxic cells is under strict control within the healthy 

CNS (Kreutzberg, 1996). Studies using floro-gold labeled MN demonstrated that after 

transection of the vagus nerve, axotomized MN of the dorsal motor nucleus of the 

vagus, MN were phagocytosed by microglia or brain-derived macrophages (Rinaman et 

al., 1991). 

In the rodent facial nucleus, local astrocytes normally express low levels of glial 

fibrillary acidic protein (GFAP). GFAP is the major protein constituent of glial filaments 

and is the cell-specific intermediate filament in astrocytes. In the rat, facial nerve 

axotomy elicits a significant increase in GFAP messenger RNA (mRNA) expression by 

resident reactive astrocytes as early as 24 hours after peripheral nerve injury. However, 
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increased protein immunoreactivity for GFAP was not seen until two days after 

axotomy. These astrocytes become reactive and transform into fibrous astrocytes and 

this is considered the first of two phases the astrocytic reaction. It was determined that 

the astrocyte reaction, just like the microglial reaction, occurred only within the 

axotomized nucleus, not the contralateral control nucleus. Within the facial nerve 

axotomy model, no evidence of astrocyte proliferation has been detected. It has also 

been shown that continued synthesis of GFAP is influenced by functional contact with 

target musculature. In the crush lesion, GFAP synthesis begins to return to normal as 

functional recovery is attained (Tetzlaff et al., 1988b). Additional studies support these 

findings as well as report no increase in GFAP occurs within the uninjured, contralateral 

control facial nucleus (Laskawi and Wolff, 1996). After microglia have completed 

synaptic stripping and have left their perineuronal positions and moved into the 

neuropil, the second phase of the astrocytic reaction begins (Graeber and Kreutzberg, 

1988). Reactive astrocytes in the axotomized facial nucleus form very thin, sheet-like 

lamellar processes which become arranged in stacks and ultimately cover all surfaces of 

regenerating MN. This process, known as astrocytic ensheathment, begins two – three 

weeks post-operative is thought to insulate the MN from their synaptic inputs. 

Additionally, these astrocytic lamellar processes exhibited 5’-nucleotidase enzymatic 

activity, which is known to produce adenosine by hydrolyzing adenosine 

monophosphate (AMP). Adenosine is thought to inhibit synaptic transmission. This 
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further supports the theory that purpose of the second phase of the astrocytic reaction 

is synaptic insulation of the regenerating MN (Graeber and Kreutzberg, 1988).  

I. Facial Motoneuron Survival Following Axotomy 

The degree of neuronal cell death following facial nerve axotomy differs widely 

between species (Moran and Graeber, 2004). It has been well established that in the 

adult mouse, most FMN initially survive a facial nerve axotomy, however, agreement 

among researchers concludes that 28 days post operative (dpo) represents the first 

time-point at which maximal MN cell death occurs subsequent to peripheral nerve 

damage (Serpe et al., 1999; Lieberman, 1971). 

FMN percent survival is measured by counting the number of FMN in the 

axotomized facial nucleus and comparing to the number of FMN within the control 

facial nucleus. It has been previously shown that at 28 dpo the percent of FMN survival 

in WT mice is approximately 86%, significantly decreased compared to 7 or 14 dpo (97% 

and 93%, respectively). All WT mice used within this dissertation were on the C57BL/6 

background. They will be referred to as simply WT unless of a different background then 

the specific background strain will be identified. In 2000, our laboratory performed a 

facial nerve axotomy on severe combined immunodeficient (Scid) mice, an 

immunodeficient transgenic mouse which lacks functional B and T cells. The result was 

significantly lower FMN survival of 52% compared to the Balb/c WT, 86%. To verify 

these results, another immunodeficient mouse model was also used in the same study, 
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the recombinase-activating gene-2 KO (RAG-2 KO), which fail to develop mature B and T 

lymphocytes. After facial nerve axotomy, RAG-2 KO mice also displayed significantly less 

FMN survival of 64% compared to Balb/c WT (Serpe et al., 2000). The immunodeficient 

mice, both Scid and RAG-2 KO were reconstituted with WT splenocytes, which include 

cells of the acquired immune system, such as B and T cells. During reconstitution WT 

splenocytes are injected into the tail vein of the immunodeficient mouse and have been 

shown to migrate to, and segregate within, their respective compartments of the spleen 

and lymph node (Serpe et al., 1999). The previous decreases in FMN survival in the 

immunodeficient mice were reversed back to WT levels after having been reconstituted 

with WT splenocytes one week prior to facial nerve axotomy. These findings revealed 

the important role of the peripheral immune system in mediating neuroprotection after 

peripheral nerve injury (Serpe et al., 2000). Additionally, it was determined that the 

immune cell subset, within the splenocyte population, responsible for restoring the 

immune-mediated neuroprotection to the axotomized facial motor nucleus was the 

CD4+ T cell. Therefore, reconstitution of RAG-2 KO with CD4+ T cells one week prior to 

facial nerve axotomy rescued FMN survival back to WT levels. As a positive control, CD4 

KO mice were also reconstituted with WT CD4+ T cells and again, rescue of FMN survival 

occurred and FMN numbers were returned to 28 dpo WT levels (Serpe et al., 2003). 

FMN survival levels at time-points extended past 28 dpo reveal continued 

decreases in MN numbers within the WT facial motor nucleus. Balb/c WT mice reveal a 
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significant decrease from 86% FMN survival at 28 dpo to 60% at 70 dpo (Serpe et al., 

2000). Even further extended time-points within the C57BL/6 WT showed that FMN 

survivals decline to approximately 45% at 126 dpo and survival levels are maintained at 

182 dpo (roughly 40%). Similar results were seen in immunodeficient mice (Beahrs, 

2009). While Scid mice display dramatic FMN loss at 28 dpo compared to Balb/c WT, 

they present no significant difference in FMN survival at 70 dpo (52% and 45%, 

respectively). Reconstitution of Scid mice with WT splenocytes does rescue FMN survival 

at 28 dpo (83%) and even with this newly acquired immunity, Scid mice show 

significantly decreased FMN survival at 70 dpo (58%; Serpe et al., 2000). These findings 

have been replicated in the RAG-2 KO, however ultimately in both WT and 

immunodeficient mouse models, reconstituted or not, with time, FMN survival levels 

reach a plateau of approximately 40-50% (Serpe et al., 2000; Beahrs, 2009). Therefore, 

we hypothesize that within the facial motor nucleus there exists an immune-dependent 

MN subpopulation which persists for a limited time after peripheral nerve injury and is 

dependent upon a functional peripheral immune system. It is thought that this 

subpopulation is maintained indirectly by the CD4+ T cell and delays neurodegeneration 

for the purpose of axonal regeneration and subsequent reconnection to target (Xin et 

al., 2011). Also evident is a second subpopulation of MN in the facial motor nucleus that 

make up the 40-50% of cells that are a resilient population and survive for long periods 

of time, regardless of immune-status or target reconnection (Jones et al., 2005).  
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The distribution of FMN survival across the six subnuclei allows us to investigate 

functional or topographical responses to nerve injury. Previous studies revealed an 

uneven distribution of FMN survival at 28 dpo, with the VL showing the lowest percent 

survival at 70% and the VM subnuclei maintaining the highest level of FMN survival at 

nearly 100% (Canh et al., 2006). Additionally in the RAG-2 KO, this same variance in 

numbers of surviving MN was seen, although percentage FMN survival was much lower. 

This distribution was also maintained after FMN rescue by reconstituting the RAG-2 KO 

mouse prior to facial nerve axotomy. This identification of differing populations of MN 

within the facial nucleus is important and provides two populations with intrinsic 

differences and/or surrounding environments that can be further studied (Canh et al., 

2006).  

J. SOD1 Facial Motoneuron Survival following Axotomy 

Several investigators have utilized a variety of nerve injuries in SOD1G93A rodent 

models of ALS to determine MN responses to axonal damage. One study, using the 

SOD1 rat model performed a facial nerve transection as well as the more severe injury 

facial nerve avulsion, where the proximal end of the transected facial nerve is gently 

pulled or separated away from the brainstem during surgery. Both surgeries were 

conducted on pre-symptomatic rats, and FMN survival counts 14 dpo after axotomy 

showed no difference in FMN survival compared to controls. However, 14 dpo after 

facial nerve avulsion, revealed an even greater loss of MN at 35% FMN survival 
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compared to control rats, 77% (Ikeda et al., 2005). In the pre-symptomatic SOD1 mouse, 

sciatic nerve crush at 42 doa results in an acceleration in disease progression such that 

at 90 doa the injured mice showed deficits in muscle force, contractile characteristics, 

and MN survival that are only seen in uninjured, end-stage mice 130 doa (Sharp et al., 

2005). Significant decrease in FMN survival numbers at 30 dpo were determined 

following a facial nerve transection with a 1 mm resection in pre-symptomatic SOD1 

mice (Mariotti et al., 2002). In one of our previous studies, a facial nerve axotomy was 

performed on pre-symptomatic SOD1 mice and dramatic decreases in FMN survival at 

28 dpo compared to WT (41% and 85%, respectively) were observed (Mesnard et al., 

2011). Together this research employing nerve injuries within the pre-symptomatic 

stage of SOD1 models has revealed the vulnerability of SOD1 MN to stressful stimuli and 

the inability to retain WT survival levels. This apparent lack of neuroprotection after 

facial nerve injury and the possibility that axotomy may resemble the target 

disconnection that occurs prior to MN degeneration during disease, lead us to continue 

our investigation into the axotomy-induced FMN cell death in the pre-symptomatic 

SOD1 mouse.  

 Subsequent studies by our laboratory have advanced our understating of the 

susceptibility of MN within the SOD1 mouse model.  After facial nerve axotomy the 

distribution of FMN survival was assessed among the subnuclei as was previously 

performed by our laboratory (Canh et al., 2006). VM and VL subnuclei of pre-
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symptomatic SOD1 mice revealed a similar pattern of varying survival as seen 

previously; the “regenerative” VM subnuclei retained the highest percent FMN survival 

while the “degenerative” VL resulted in the lowest percent of FMN survival across the 

subnuclei (Mesnard, 2009). These results revealed that populations of MN within the 

SOD1 facial motor nucleus do retain a regenerative phenotype after injury in 

comparison to other MN populations within the nucleus. This distribution FMN survival 

was shown previously in WT and RAG-2 KO mice while the FMN levels within the 

subnuclei is closely aligned with that seen in the RAG-2 KO. While the SOD1 FMN loss is 

similar in magnitude and distribution when compared to the immunodeficient RAG-2 

KO, there is no agreement within the literature of peripheral immune deficits within the 

pre-symptomatic SOD1 (Barbeito et al., 2010). However, our laboratory has been 

studying immune-mediated neuroprotection for the last decade and is well-aware of the 

complexity of the signaling between the peripheral immune system and the CNS which 

leads to the neuroprotection. For these reasons, our lab has focused on the SOD1 MN 

and neuropil response to injury to uncover mechanisms involved in MN cell death and 

consequently the lack of neuroprotection. 

 In an effort to delineate neuronal and/or neuropil contributions to MN survival 

after axotomy, our laboratory recently began using the technique of laser 

microdissection (LMD) to accurately dissect axotomized facial motor nuclei or subnuclei 

for collection of RNA and analysis of the mRNA expression in response to axotomy 
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(Mesnard et al., 2010; Mesnard et al., 2011). The measurable outcome of mRNA 

expression was chosen over protein for the following reasons: in comparison to protein 

expression, mRNA expression identifies the initial response of the cell to the injury, its 

quantification can be considered less variable than protein, and the majority of MN 

survival research within the facial motor nucleus past and present utilizes mRNA 

expression.  

 The three most recent studies from our lab utilized LMD of the axotomized facial 

motor nucleus and axotomized VM and VL facial motor subnuclei of WT and pre-

symptomatic SOD1 mice.  Among the genes assessed for mRNA expression were MN-

specific genes involved in regeneration and survival, genes specific to the neuropil such 

as the astrocytic marker GFAP and tumor necrosis factor-alpha (TNFα), a pro-

inflammatory cytokine. The mRNA expression was measured at four time-points after 

facial nerve axotomy. Surprisingly, axotomized SOD1 FMN displayed a pro-

survival/regenerative response, similar to WT, despite the dramatic increase in FMN cell 

death after axotomy. However, differences were revealed during comparisons of 

neuropil-specific genes. In addition to differences in the axotomy-induced mRNA 

expression, the SOD1 control, uninjured facial nucleus revealed constitutive expression 

of TNFα (Mesnard et al., 2011). This constitutive expression was not seen within the WT 

control nucleus and is indicative of the presence of a pro-inflammatory 

microenvironment within the early pre-symptomatic stage. Therefore, the increased 
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susceptibility of pre-symptomatic SOD1 FMN cell death after axotomy may involve a 

dysregulated response within the neuropil. In addition, WT comparisons between the 

regenerative VM, maintaining almost 100% FMN survival after axotomy, and the 

degenerative VL, displaying the greatest cell loss among the six subnuclei at 70% FMN 

survival, were performed using the same experimental design. It was determined that 

regardless of neuronal fate after injury, both subnuclear populations responded with a 

similar survival/regenerative profile of mRNA expression. In addition, differences within 

mRNA expression specific to the neuropil were evident (Mesnard et al., 2010). The last 

comparison was made between the pre-symptomatic SOD1 VM and VL subnuclei after 

axotomy. Similar results from this study support the previous findings (Mesnard, 2009). 

In summary, we propose that MN fate is ultimately controlled or regulated by cells 

within the neuropil, we hypothesize that this lack of regulation by the neuropil may also 

result in the MN degeneration that occurs during disease progression.  

 In general the experiments detailed within this dissertation were aimed at 

verifying that axotomy-induced mRNA expression and FMN cell death in pre-

symptomatic SOD1 mouse resembles disease-induced mRNA expression and FMN cell 

death that occurs during disease-progression. Additional genes were also assessed to 

provide further insight into the mechanisms of neurodegeneration. 
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K. Gene Expression Profiling 

The remainder of this Chapter introduces the 21 genes used in the analysis of the 

mRNA expression following facial nerve axotomy in the WT and SOD1 facial motor 

nucleus as well as disease progression in the SOD1 facial nucleus. In general, each gene 

or category of genes will be identified and information if available will be presented; 1) 

information pertaining to its expression with regard to nerve injury, particularly facial 

nerve injury, 2) mRNA expression in WT and SOD1 whole facial motor nucleus following 

axotomy, if available,  3) mRNA expression in WT and SOD1 VM and VL subnuclei, if 

available, and 4) briefly, indications of differential gene or protein expression in the 

SOD1 mouse model or ALS patients within the literature. Table 2 summarizes the genes, 

their function, mRNA expression after facial nerve axotomy, if known, and their 

expression or connection with ALS or SOD1 disease progression, if known. Every gene 

listed within Table 2 and introduced in the subsequent section will be analyzed for 

mRNA expression in the experiments within this dissertation. Several genes have 

already been profiled in our laboratory using the LMD technique and reverse-

transcription polymerase chain reaction (RT-PCR), however the time course will need to 

be extended from 28 to 56 dpo. Therefore, regardless of previous profiling, all genes 

discussed will be analyzed throughout Chapters IV – VII.  
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a. Neuroregenerative Genes: βII-Tubulin and GAP-43 

The MN regenerative genes that were assessed include; βII-Tubulin and growth-

associated protein of 43 kilodaltons (GAP-43). It has been well-established that 

successful regeneration following peripheral nerve injury is dependent on neuronal 

survival. Differential regulation of mRNA expression and protein synthesis occur after 

peripheral nerve injury and play a role in transitioning the neuron from a signaling 

mode, to a regenerative, developmental, growth mode (Hoffman and Cleveland, 1988; 

Lieberman, 1971; Fu and Gordon, 1997). It has been demonstrated by insitu 

hybridization and northern blot analyses that following facial nerve axotomy, in contrast 

to the decrease seen in mRNA for neurofilament, there is an increase in mRNA of 

cytoskeletal proteins actin, αI-Tubulin, and βII-Tubulin as well as the regenerative gene, 

GAP-43 (Tetzlaff et al., 1991). GAP-43 is a calmodulin-binding phosophoprotein located 

on the cytoplasmic side of the plasma membrane and is a major protein component of 

axonal growth cones. Similar increases in gene expression have been shown after facial 

nerve axotomy within the hamster for αI-Tubulin, βII-Tubulin, βIII-Tubulin, and in the rat 

(Tetzlaff et al., 1988a; Jones and Oblinger, 1994; Jones et al., 1999; Sharma et al., 2010). 

Specifically, the isotype βII-Tubulin has been shown to be particularly important in 

axonal elongation during development and regeneration after injury during assembly of 

the cytoskeleton and has been shown to be predominantly expressed by MN within the 



37 
 

 
 

facial motor nucleus  (Hoffman and Cleveland, 1988; Moskowitz and Oblinger, 1995;  

Tetzlaff et al., 1991).  

In comparison of βII-Tubulin and GAP-43 mRNA within the WT VM and VL after 

facial nerve axotomy, it was surprisingly expressed at higher levels throughout the time 

course and this same finding was seen in the pre-symptomatic SOD1 VM and VL 

following facial nerve axotomy (Mesnard et al., 2010; Mesnard, 2009). 

The MN-specific regenerative genes, βII-Tubulin and GAP-43 were expressed to a 

similar extent in both the WT and SOD1 whole nucleus after axotomy (Mesnard et al., 

2011). 

Several studies have previously shown increased protein expression of GAP-43 

on anterior horn cells within the lumbar segments of spinal cords of five sALS patients 

(Ikemoto et al., 1999). In support of the previous finding, a two – four-fold increase of 

mRNA expression for GAP-43, was shown by Northern Blot. This expression was within 

anterior horn cells of the lumbar spinal cord in 11 ALS patients, 10 of which were sALS 

(Parhad et al., 1992). These mRNA expression results were later verified by a study using 

the RT-PCR method of measuring the increased mRNA expression of GAP-43 in the 

spinal cord of five ALS patients compared to controls (Kage et al., 1998). These data 

suggest increased mRNA expression for GAP-43 is a marker of sALS disease progression. 

In the symptomatic SOD1 mouse model, increased immunoreactivity for GAP-43 around 

MN was seen at 105 – 126 doa, within the lumbar anterior horn (Miyazaki et al., 2009). 
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b. Neuroprotective Signaling Genes: 

i. CX3CR1 

 It has been well-established that fractalkine (CX3CL1) and its receptor (CX3CR1) 

are important for signaling after neuronal injury and mediating neuroprotection. Within 

hours after injury CX3CL1 protein is increased on neurons. Membrane-bound or soluble 

CX3CL1, the latter cleaved from neuronal membranes via disintegrin and 

malloproteinase domain-containing protein 10 (ADAM10), results in signaling through 

its receptor CX3CR1 localized to microglia (Harrison et al., 1998; Hundhausen et al., 

2003; Chapman et al., 2000). CX3CL1 binding to its G-protein-coupled receptor (GPCR), 

CX3CR1, triggering phosphatidylinositol-3 kinase (PI3K)-dependent Ca2+ influx and 

mitogen-activated protein kinase (MAPK) activation, subsequent cytoskeletal changes, 

actin rearrangements and ultimately, a migratory response. Additionally, downstream 

signaling leads to activation of Akt pathways and cell survival signals as well as 

attenuation of pro-inflammatory molecules such as interleukin-6 (IL-6), interleukin-1β 

(IL-1β), TNFα, and downregulation of inducible nitric oxide synthase (iNOS), making up 

CX3CR1’s anti-inflammatory affects  (Figure 4; Re and Przedborski, 2006; Maciejewski-

Lenoir et al., 1999). Using insitu hybridization, it was determined that mRNA for CX3CR1 

increased after facial nerve axotomy in C57BL/6 mice as early as 2 dpo and persisted 

through 14 dpo. By the time-point of 21 dpo, the mRNA expression for CX3CR1 was 

nearly equal to that of the contralateral, uninjured facial motor nucleus. The same study 
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also saw similar upregulation of CX3CR1 mRNA in the dorsal motor nucleus after vagus 

nerve axotomy as well as in the red nucleus after rubrospinal tractotomy, a central 

axotomy model as opposed to a peripheral axotomy model (Zujovic et al., 2005). 

Additionally, CX3CR1 mRNA was shown to be upregulated in the axotomized facial 

motor nucleus of the rat and the increase CX3CR1 mRNA expression was found to 

parallel the transient increase in microglial cell numbers (Harrison et al., 1998). 

 CX3CR1 expression has not been investigated in ALS patients or SOD1 mice. 

However, one study crossed the SOD1G93A transgenic mouse with CX3CR1-/- mice. These 

mice displayed a more rapid loss of hind-limb grip strength and decreased survival 

compared to SOD1G93A/CX3CR1+/- mice (Cardona et al., 2006). These findings lend 

support to the neuroprotective role of CX3CR1 signaling in the SOD1 mouse in addition 

to that which has already been established in the WT.  

ii. PAC1-R 

 Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic and 

mutifunctional peptide known to promote neurite outgrowth and cell survival. It is 

considered to be a potent neurotrophic and neuroprotective peptide in several 

conditions such as brain trauma, ischemia, and several neurodegeneration diseases and 

is believed to possess anti-inflammatory properties (Somogyvari-Vigh and Reglodi, 2004; 

Reglodi et al., 2011). In support of these findings, facial nerve crush axotomy in PACAP-

deficient mice resulted in a significant delay of axon regeneration as well as an increase 
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in gene expression of pro-inflammatory cytokines such as TNFα and interferon-gamma 

(INF-γ; Armstrong et al., 2008). PACAP mRNA is upregulated has been well-established 

in a variety of axotomy models such as; sensory neurons of the dorsal root ganglia and 

the mesencephalic trigeminal nucleus, the sympathetic neurons of the cervical ganglia, 

and the facial motor nucleus (Zhang et al., 1995; Zhang et al., 1996; Larsen et al., 1997;  

Moller et al., 1997; Zhou et al., 1999; Sharma et al., 2010; Mesnard et al., 2010). While 

PACAP has been shown to bind to several receptors and exert its effects, one of these 

receptors, PACAP 1-Receptor (PAC1-R) is highly specific for PACAP. The neuroprotective 

affects of PACAP via signaling through the GPCR, PAC1-R, are thought to act through the 

activation of the adenylyl cyclase (AC) pathway. AC stimulation production of cyclic AMP 

(cAMP) leading to activation of protein kinase A (PKA) followed by phosphorylation of 

extracellular signal-related kinase 1/2 (ERK 1/2) which leads to a subsequent increase in 

expression of the gene c-fos. This downstream signaling pathway has been linked to 

PACAP’s effects on cell survival and anti-inflammatory effects such as inhibition of 

apoptosis, and attenuation of TNFα and Interleukin-1 (IL-1; Figure 5; Vaudry et al., 

2000). 

While PACAP mRNA after axotomy is upregulated, paradoxically, expression of 

PAC1-R is downregulated after facial nerve axotomy in the rat. It was determined by 

insitu hybridization that PAC1-R mRNA expression in the uninjured and injured facial 

motor nucleus was localized to almost all MN and within hours of facial nerve axotomy 
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the mRNA expression decreased by approximately 50% compared that of the 

contralateral, control nucleus and by 30 dpo PAC1-R mRNA expression was 10-20% less 

than control levels (Zhou et al., 1999).  The reason for this downregulation following 

injury is not currently understood. To date, PAC1-R has not been investigated in ALS 

patients or the SOD1 mouse. 

iii. TNFR2 

TNF receptor 2 (TNFR2) is a glycoprotein, preassembled as a trimer and is 

activated by the pro-inflammatory cytokine, TNFα (Figure 6). For additional information 

on TNFα, refer to Section K.e.i of this Chapter. TNFR2 is activated preferentially by 

transmembrane TNFα (tmTNFα) and is expressed within the CNS by microglia and 

endothelial cells (McCoy and Tansey, 2008). Like other members of the TNFR 

superfamily, TNFR2 does not contain a cytoplasmic death domain. Receptor activation in 

response to tmTNFα, leads to survival signals such as upregulation of anti-apoptotic 

molecules such as cellular inhibitors of apoptosis (c-IAP1 and -2), known to inhibit 

cysteine-dependent aspartate-directed protease 8 (Caspase-8) activity (Figure 8). In 

addition, endothelial/epithelial tyrosine kinase-1 (Etk-1), a TNFR2-specific kinase, leads 

to downstream activation of protein kinase B (PKB). PKB is a mediator of survival, cell 

adhesion and migration signals (Grivennikov et al., 2006). Although TNFR2 can promote 

cell survival it can also activate apoptotic signals. TNFR2 can enhance the association 

between TNFR1 and TNFα by a type of ligand passing mechanism. While TNFR2 is not 



42 
 

 
 

considered a death receptor it may play a role in promotion of death receptor signaling 

(McCoy and Tansey, 2008).   

TNFR2 has been evaluated in the facial nerve axotomy model and this 

information is detailed in Section K.e.i of this Chapter.  

TNFR2 mRNA and protein has been detected within the spinal cord within late 

symptomatic stage (Elliott, 2001; Hensley et al., 2002).  Additionally, soluble forms of 

both TNFR1 and TNFR2 were found in ALS patient serum, which suggests a significant 

activation of the TNF system during the disease (Cereda et al., 2008). 

TNFR2 and TNFR1 protein expression changes were evaluated after mouse 

sciatic nerve injury. For additional information on TNFR1 see Section K.e.i of this 

Chapter. While protein for both receptors was detectable at low levels within the spinal 

cord before injury, after injury TNFR1 increased by two-fold at 3 and 7 dpo, while TNFR2 

was significantly increased at 1 dpo and reached a level of seven-fold by 3 and 7 dpo. 

Protein expression for both receptors remained elevated out through 28 dpo (George et 

al., 2005).  While mRNA expression of TNFR1 or TNFR2 has not been investigated 

following facial nerve axotomy in the mouse, facial nerve axotomy in TNFR1 deficient or 

TNFR2 deficient mice do not show any significant decreases in FMN cell loss 29 dpo 

compared to WT. However, a combined TNFR1/TNFR2 deficient transgenic mouse 

revealed a massive reduction in FMN percent survival at 29 dpo (Bohatschek et al., 

2004). Recently our lab assessed FMN survival in TNFR1 KO and TNFR2 KO. It was 
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determined that no differences in FMN survival was seen 28 dpo compared to WT. 

These results support the results of the study previously mentioned. Additionally, FMN 

survival was determined for the VM and VL subnuclei of the TNFR1 KO and TNFR2 KO. 

No differences were seen in the VM subnuclei compared to WT 28 dpo. However, in 

both receptor KO transgenic mice, VL FMN survival was rescued back to uninjured WT 

VL levels. This suggests that FMN cell loss seen within the degenerative VL subnucleus 

may be related to TNFR1 and TNFR2 signaling (Mesnard, 2009).  

c. Glial-Specific Genes: 

i. GFAP 

 The important role of the astrocyte response after facial nerve axotomy and the 

increase in mRNA expression of GFAP has already been discussed in detail, refer to 

Section H of this Chapter.  

Upregulation of GFAP mRNA within the WT VM and VL after facial nerve 

axotomy, was similar between the subnuclei throughout the time course with peak 

expression displayed at 14 dpo which is consistent with previous findings (Graeber and 

Kreutzberg, 1988; Mesnard et al., 2010).  Within the SOD1 VM and VL, GFAP was also 

upregulated however, no peak at 14 dpo was seen and expression was significantly 

higher within the VL compared to the VM at 7 and 28 dpo (Mesnard et al., 2010). 

Within the whole facial motor nucleus, GFAP mRNA expression was found to be 

similar between WT and SOD1 after axotomy at all time-points except 14dpo, where the 
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WT showed expression at approximately 4000% higher than mRNA expression within 

the contralateral, uninjured control but in the SOD1 14 dpo axotomized nucleus, GFAP 

mRNA expression was drastically lower at approximately 1000% compared to control 

(Mesnard et al., 2011). This suppressed expression at 14 dpo helps to clarify the lack of 

peak mRNA expression within the SOD1 VM and VL.  

GFAP mRNA and protein expression related to the SOD1 mouse model and ALS 

patients is incorporated with that of CD68 below. 

ii. CD68 

The response of microglia to facial nerve axotomy has also been described in 

Section H of this Chapter. It has been established that the glycoprotein, Cluster of 

Differentiation 68 (CD68) is a monocyte and macrophage specific marker, often referred 

to as macrosialin in the mouse, and ED1 in the rat, can be used within the CNS as a 

marker for microglia (Graeber et al., 1990; Lemstra et al., 2007; Holness and Simmons, 

1993). After facial nerve axotomy in the rat, local microglia and perivascular cells as well 

as brain-derived macrophages newly express antigens of the myelomonocytic lineage, 

such as CD68. Therefore, unlike other brain injuries, such as cortical stab lesions which 

disturb the BBB, it is unlikely that a significant portion of the CD68 positive cells 

infiltrated the degenerating facial nucleus (Graeber et al., 1990).  

CD68 or markers for microglia have not been previously evaluated facial motor 

nucleus or subnuclei with our laboratories technique of LMD followed by semi-
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quantitative RT-PCR analysis of mRNA expression. CD68 was evaluated in experiments 

within this dissertation for WT and SOD1 whole nucleus and VM and VL subnuclei.  

Additional reasons for selecting the gene CD68 as the marker for microglial 

reactivity, is the overwhelming use of this gene as a microglial marker within the SOD1 

literature.  Increased mRNA expression from lumbar spinal cords of SOD1G93A mice for 

both CD68 and GFAP was shown in comparison to WT controls within the pre-

symptomatic stage and the symptomatic stage (Yoshihara et al., 2002; Chen et al., 

2004). Additional studies using CD68 mRNA as a marker for microglia in SOD1 spinal 

cord identify upregulation anywhere from 42 throughout 126 doa (Beers et al., 2011; 

Malaspina and de Belleroche, 2004; Chen et al., 2004).  

d. Neurodegenerative Gene: CRMP4 

 Collapsin response mediator protein 4 (CRMP4) is a member of a family of five 

developmentally regulated cytosolic phosphoproteins. CRMP4 protein has been found 

to be expressed in rat neurons during discrete periods of neuronal development (Wang 

and Strittmatter, 1996). Within the hippocampal dentate gyrus, CRMP4 is upregulated 

following transient global ischemia and was considered indicative of enhanced 

neurogenesis in the rat (Kee et al., 2001). Additionally, in another rat ischemia model, 

CRMP4-positive cells were found in immature neurons generated from neuronal 

precursors in the ischemic striatum (Liu et al., 2003). These studies suggest that CRMP4, 

normally only expressed during embryonic development within the brain, may be a 
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specific immature neuronal marker to be used in identifying proliferation of neuronal 

progenitors after brain injury such as ischemia. However, more detailed analysis has 

shown that the two splice variants of CRMP4, CRMP4a and CRPM4b, have different 

effects on cytoskeletal rearrangements and in vitro CRMP4b can inhibit neurite 

outgrowth in dorsal root ganglion neurons (Alabed et al., 2007). While initially 

considered a marker of neuroregeneration because of its role, neurite outgrowth in 

some neuronal populations following injury, additional studies do not support this 

theory. Overexpression of CRMP4a in cultured WT MN leads to inhibition of neurite 

outgrowth followed by cell death. This finding was verified in vivo by adeno-associated 

virus-mediated overexpression of CRMP4a in MN and this led to significant muscle 

denervation as well as reduction in MN cell numbers (Duplan et al., 2010). These 

findings suggest that CRMP4 and/or its splice variant, CRMP4a, do not play a 

neuroprotective role in MN. 

 The regulation of CRMP4 mRNA expression by peripheral nerve injury has not 

been investigated to date and because of the role of CRMP4a in inhibition of neurite 

outgrowth and MN cell death it is important to determine its expression after facial 

nerve axotomy. The primer set developed for use in the experiments within this 

dissertation was specific for the mRNA CRMP4 itself and will not reflect specific levels of 

the splice variants. 
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While the role of CRMP4a and CRMP4b in the adult, injured brain is not clear-

cut, increased expression of CRMP4a was recently observed in a subpopulation SOD1 

lumbar MN. At 45 doa, no difference in CRMP4a protein expression was detected, but 

by 60 doa, there was a 2.5-fold increase in protein and this increase peaked at 90 doa, 

among 25% of lumbar MN. While the percentage of MN expressing CRMP4a is relatively 

low, it is suggested that the expression within the pre-symptomatic stage may be 

specific to a particular subpopulation affected early by the disease. An additional in vitro 

study was performed in SOD1 MN that supports the neurodegenerative properties of 

CRMP4a in MN. Cultured SOD1 MN were treated with CRMP4a-specific short hairpin 

RNA (shRNA). Silencing of CRMP4a protected SOD1 MN from prevented NO-induced cell 

death (Duplan et al., 2010).  

e. Death Receptor Signaling System Genes: 

i. TNFR1 receptor signaling genes: TNFα, TNFR1, TRADD, TRAF2, SODD  

The pro-inflammatory cytokine, TNFα, is known to be synthesized within the CNS 

by microglia, astrocytes, and some neurons as tmTNFα which is inserted into the 

membrane as a homotrimer. The matrix metalloprotease, TNFα converting enzyme 

(TACE), is responsible for cleaving tmTNFα into soluble TNFα (solTNFα), a circulating 

trimer. Previous data from our lab has shown TNFα mRNA is constitutively expressed in 

the facial motor nucleus of pre-symptomatic SOD1 mice (Mesnard et al., 2011). Two 

different membrane glycoprotein receptors, TNFR1 and TNFR2, bind both forms of TNFα 
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(McCoy and Tansey, 2008). Receptor activation can be classified in two ways depending 

upon where the ligand is expressed. Cis activation occurs when a transmembrane ligand 

on the same cell binds and activates a receptor also expressed on the same cell. Trans 

receptor activation can occur through binding of a transmembrane ligand expressed on 

a different cell or a soluble ligand (Haase et al., 2008). TNFR1 has a higher affinity for 

solTNFα and is ubiquitously expressed. Activation of TNFR1 requires that the receptor is 

preassembled as a trimer prior to binding of solTNFα or tmTNFα (McCoy and Tansey, 

2008). TNFR1 is a member of the TNFR superfamily, while TNFR1 is classified as a death 

receptor. Death receptors contain a specific 80-amino acid sequence within the 

cytoplasmic tail, the death domain (Haase et al., 2008). After ligand binding the silencer 

of death domains (SODD) dissociates allowing subsequent association of the adaptor 

protein, TNFR1-association death domain (TRADD). TRADD is responsible for 

recruitment of other adaptor proteins such as receptor interacting protein-1 (RIP1) and 

formation of complex I (Figure 7). It is suggested that SODD plays an important 

regulatory role in TNFR1 signaling. 

It is thought that complex I transmits the activation signal to the pro-apoptotic, 

death-inducing signaling complex (DISC) consisting of TRADD, RIP1, and Fas-associated 

death domain protein (FADD; Grivennikov et al., 2006). DISC also contains a homodimer 

of procaspase-8, which are proteolytically activated by each other within the confined 

space of DISC. The result is an active caspase-8 dimer (Figures 7 and 8). Caspase-8 is 
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considered an initiator caspase; when it is activated it binds to the inactive procapsase-3 

dimer within the cytosol. The initiator caspase proteolytically activates the procaspase-3 

dimer, resulting in an active effector cysteine-dependent aspartate-directed protease-3 

(Caspase-3; Boatright and Salvesen, 2003). The effector caspase is responsible for the 

subsequent apoptotic cascade. While TNFR1 signaling is generally thought of as pro-

apoptotic, it may also activate transcription of survival signals. It is suggested that 

activation of DISC takes time and is only achieved if the survival signals initially 

upregulated during TNFR1 activation, remain below a threshold (Grivennikov et al., 

2006).  

TRAF2 interacts with TNFR1 or TNFR2 and can lead to a cell survival signal or a 

cell death signal. TRAF2 is expressed in MN within the CNS and displays increased 

expression in neurodegenerative diseases (Culpan et al., 2009). It is not clear whether 

the increased expression is destructive or protective.  

It is well-established that TNFα mRNA and protein expression is greatly increased 

in the SOD1 mouse model and in ALS patients (Cereda et al., 2008; McCoy and Tansey, 

2008; Mesnard et al., 2011; Hensley et al., 2003; Veglianese et al., 2006). TNFR1 mRNA 

and protein has been detected within the spinal cord within the symptomatic stage 

(Elliott, 2001; Hensley et al., 2002).  No differences in mRNA expression for TRADD in 

SOD1 symptomatic spinal cord were found (Hensley et al., 2002). Constitutive 

expression of mRNA for the ligand TNFα was previously shown in the pre-symptomatic 
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SOD1 mouse as well as sustained upregulation after axotomy at 28 dpo. While increased 

expression of the pro-inflammatory cytokine mRNA in pre-symptomatic SOD1 facial 

nucleus suggests the presence of a pro-inflammatory microenvironment prior to nerve 

injury, induction of TNFα mRNA was seen after axotomy in the WT facial motor nucleus. 

While this induction was no longer present at 28 dpo, the findings suggest that TNFα 

plays a role in signaling after axonal injury to MN (Mesnard et al., 2011). It is thought 

that TNFR1 signaling plays a role in the disease, however, those mechanisms have yet to 

be elucidated.  

ii. Fas receptor signaling genes: FasL, Fas, Daxx, ASK1, nNOS 

Fas receptor (Fas), another member of the TNFR superfamily and classified as a 

death receptor, is ubiquitously expressed and uses a similar downstream pathway for 

Caspase-8 activation. However, after Fas activation, DISC is formed while FADD interacts 

directly with the receptor (Figure 9). There are a few instances of Fas initiating survival 

signals, but in general Fas is implicated solely in death signaling. Like TNFR1, the 

outcome of receptor activation is thought to be a function of the thresholds for survival 

and death signals (Grivennikov et al., 2006). Within the CNS, Fas ligand (FasL) is 

expressed on both neurons and glial cells (Beer et al., 2000). Traditionally, constitutive 

expression of FasL within the brain is thought to play an important role in limiting 

inflammatory responses and maintenance of the relative immune suppression of the 

CNS (Choi and Benveniste, 2004). This ligand is expressed in an active membrane-bound 
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form and cleaved to an active soluble form. Recently, FasL has been investigated in the 

pre-symptomatic SOD1 mouse model which was found to exhibit two-fold higher FasL-

positive MN in the lumbar spinal cord at 75 doa using immunohistochemical techniques 

(Raoul et al., 2006). 

Basal expression of Fas within the healthy CNS are so low that they thought to be 

relatively nonfunctional, however inducible expression of Fas can lead to direct or 

bystander damage to neurons and/or glia (Tan et al., 2001). Fas expression and 

increased levels of activated Caspase-8 have been reported in response to brain 

ischemia. Cortical neurons and MN are the only types of neuronal culture systems 

sensitive to Fas activation. Exogenous activation of Fas induced death through Caspase-

8 in 50% of cultured MN after 48 hours, suggesting transcriptional events may be 

involved. Raoul et al. (2002), discovered a novel, MN-specific pathway downstream of 

Fas involving transcription of neuronal nitric oxide synthase (nNOS) (Figure 9). In 

response to Fas activation, death associated protein-6 (Daxx), a Fas-associated protein, 

binds to Fas and recruits apoptosis signal-regulating kinase-1 (ASK1). ASK1 

phosphorylates p38, phosphorylated p38 leads to transcription of nNOS and subsequent 

increased production of nitric oxide (NO) which can spontaneously react with 

superoxide anion to form peroxynitrite (Raoul et al., 2002). Peroxynitrite can be 

responsible for irreversible damage to complexes I and II of the respiratory chain, 

ensuing inhibition of ATP synthesis and eventual release of cytochrome c from the 
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mitochondria. Cytochrome-c can activate Caspase-3 leading to apoptosis. Peroxynitrite 

itself at high enough concentrations within the cell can cause lipid peroxidation, protein 

oxidation and nitration, inactivation of enzymes and necrotic cell death (Novo and 

Parola, 2008).  

Cell-type dependent differences in Fas signaling have been reported extensively 

in non-neuronal cells. Fas activation in type I cells leads to DISC formation, activation of 

Caspase-8 followed by activation of Caspase-3, and subsequent apoptosis, independent 

of mitochondrial function. Fas activation in type II cells involves Caspase-8; however 

Caspase-3 is activated as a result of cytochrome c release from the mitochondria. The 

discovery of the MN-specific Fas signaling pathway has lead to development of a third 

classification, type III cells. MN-death induced by Fas activation involves both the 

FADD/Caspase-8 and the Daxx/Ask1/p38/nNOS pathways. Blocking either of these 

pathways separately in cultured MN after treatment with Fas agonist produced no or 

minimal protection against cell death. However, blocking the pathways with both 

Caspase-8 and nNOS inhibitors provided complete protection of Fas-induced cell death. 

Unlike in MN, blocking only Caspase-8 provided complete protection of Fas-induced cell 

death in cortical neuron culture. Fas activation in type III cells or MN requires co-

activation of Caspase-8 and p38 with subsequent nNOS transcription in order to induce 

cell death. This additional level of control of the Fas pathway may be a way to protect 
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these essentially irreplaceable neurons from the common Fas-induced cell death (Raoul 

et al., 2002). 

Discovery of the novel Fas pathway in MN lead to investigation of Fas 

involvement in the MN degenerative disease, ALS. SOD1 MN cultured from three SOD1 

ALS mouse models showed a 10- to 100-fold increased sensitivity to Fas-induced cell 

death compared to WT MN. In addition, exogenous NO produces no cell death in WT 

MN, therefore NO alone is not sufficient to trigger MN death. SOD1 MN culture 

subjected to exogenous NO triggers as much as 50% cell death (Raoul et al., 2002). 

Further investigation using SOD1 MN cultures revealed a NO-triggered feedback loop 

not present in WT MN. In response to exogenous NO, SOD1 MN upregulate membrane-

bound FasL which is able to activate Fas via cis receptor activation (Figure 10). In 

addition, ASK1 has been shown to be solely responsible for activation of p38 in response 

to Fas-induced MN cell death (Raoul et al., 2002).  

Further support for this feedback loop was found in pre-symptomatic spinal 

cords of both SOD1G93A and SOD1G85R mice, with two-fold higher FasL-positive MN as 

well as an increase in Daxx. SOD1 mice crossbred with transgenic mice expressing a 

dominant negative form of Daxx, lead to a 36% reduction in FasL-positive MN. Increased 

levels of ASK1 and increased activation of p38 have been found in spinal cords of SOD1 

mice (Hu et al., 2003). The NO trigger for this feedback loop, NO, is produced by MN, 

microglia, and activated astrocytes. Evidence has lead to a proposed model in which 
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chronic cycling of a Fas feedback loop in SOD1 mice, leads to accumulation of signaling 

molecules overtime and eventually leading to MN-specific degeneration (Raoul et al., 

2006).  

Treatments against the Fas feedback loop in vivo have provided further support 

for this model. SOD1 mice were treated with Fas small interfering RNA (siRNA) at the 

beginning of the symptomatic stage for four weeks. Results of the treatment were 

dramatic; 52% reduction of Fas-positive MN in spinal cord, reduction of nNOS and 

activated p38, and complete blocking of activated Caspase-8, compared to non-specific 

siRNA-treated SOD1 mice. In addition, increased survival of spinal MN and axons, delay 

of motor deficit onset by 21 days and increased survival of Fas siRNA treated mice by 18 

days (Locatelli et al., 2007). Treatment of pre-symptomatic SOD1 mice for 10 days with a 

new, highly selective and specific nNOS inhibitor, AR-R 17,477, prolonged survival for 22 

days (Facchinetti et al., 1999). Lithium, a well-known anti-apoptotic agent, has been 

found to delay ALS progression in human patients. (Shin et al., 2007) used a 

combinatorial treatment of Lithium and Neu2000 in pre-symptomatic mice. Neu2000 is 

a novel antioxidant and alone treatment in pre-symptomatic SOD1 mice resulted in a 

decrease of reactive oxygen species (ROS) in the spinal cord. Lithium treatment alone 

completely blocked upregulation of Fas and several downstream mediators. When the 

treatments were combined in pre-symptomatic SOD1 mice, the beneficial effects were 

additive. Improvements were seen in motor strength and coordination, delay of 
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symptom onset by 23 days, and extended survival of the mice by 18 days. The dual 

treatment showed its greatest additive effect on MN survival, at near end-stage disease 

74% of MN in the spinal cord of control mice underwent degeneration. SOD1 mice 

treated with Lithium or Neu2000 alone showed significantly reduced MN cell loss (57 

and 58%) but in combination degeneration was reduced to only 17%. This combinatorial 

treatment strategy is thought to block the NO and Caspase-8 pathways of Fas-induced 

MN death, further providing support for the Fas pathways implicated in SOD1 MN 

degeneration (Shin et al., 2007).  

To date, genes or proteins involved in the Fas pathway have not been evaluated 

in the facial nerve axotomy model.  

iii. Shared factors genes:  

a. FADD. FADD is considered a promiscuous adapter protein capable of binding 

to the DD of Fas or TNFR1 via recruitment by TRADD. Once bound, it is capable of 

recruiting other signaling molecules, mainly Caspase-8 (Choi and Benveniste, 2004; 

Figures 7 and 9). For additional details about downstream signaling, refer to Section 

K.e.i and ii within this Chapter. While FADD has not been evaluated in the facial nerve 

axotomy model, FADD mRNA expression is increased within the symptomatic SOD1 

spinal cord.  

b. Caspase-3. Details on Caspase-3 can be found throughout Section e and 

Figures 7, 8, 9 and 10. Caspase-3 mRNA has been shown to be upregulated in the adult 
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rat facial motor nucleus after facial nerve axotomy within 24 hours and was still 

increased compared to uninjured control nucleus at the last time-point of 14 dpo. 

Although a dramatic increase in Caspase-3 mRNA was established after axotomy, no 

activated form of Caspase-3 was found (Vanderluit et al., 2000). Increased Caspase-3 

mRNA has been shown in SOD1 spinal cord during the symptomatic stage and 

additionally, it has been localized to SOD1 MN and glial cells within the lumbar spinal 

cord (Hensley et al., 2002; Ando et al., 2003).  

c. Caspase-8. Details on Caspase-8 can be found throughout Section e and 

Figures 7, 8, 9 and 10. Caspase-8 mRNA is upregulated to a greater degree in the WT VL 

compared to the VM and was similar to results from the SOD1 where expression was 

significantly upregulated in the VL subnucleus compared to the VM (Mesnard et al., 

2010; Mesnard et al., 2011). Within the whole facial motor nucleus axotomy also results 

in upregulation of Caspase-8 mRNA, however percent expression levels compared to 

control nucleus, across the time course are relatively similar except for 14 dpo, where 

SOD1 expression is significantly less (Mesnard et al., 2011). Increased Caspase-8 mRNA 

has been shown in SOD1 spinal cord during the symptomatic stage (Hensley et al., 

2002). 

L. Significance 

 ALS is the most common adult MN degenerative disease and with a mean 

survival of only 3-5 years after onset, it is rapid and fatal. Since 90% of cases are 
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sporadic there is no forewarning of the disease which blindsides patients and their 

families. With no suitable treatments to significantly extend the lives of patients more 

than 4 months, it is overwhelmingly clear that new, novel research approaches must be 

considered to improve our understanding of disease mechanisms and determine 

checkpoints for therapeutic intervention. 

Based on the literature, an axonal die-back process likely leads to the MN 

degeneration see during SOD1 disease progression. While the initial pathological event 

that results in the target disconnection is unknown, understanding the mechanism of 

MN degeneration and the lack of neuroprotection are important. We have shown that 

facial nerve axotomy in the pre-symptomatic SOD1 mouse results in dramatic FMN loss. 

Therefore, regardless of how the SOD1 MN are disconnected from target, they are 

unable to maintain WT survival levels. Facial nerve axotomy in the pre-symptomatic 

SOD1 mouse will help elucidate mechanisms important in disease progression. The 

experiments performed throughout this dissertation support that facial nerve axotomy 

in the pre-symptomatic SOD1 mouse can be used as a model for SOD1 disease 

progression.  

Use of a simple facial nerve axotomy in the pre-symptomatic stage results in a 

standardized time course to study molecular mechanisms involved in 

neurodegeneration following target disconnection which is considered to the initial 

event leading to MN death seen during disease. This model will also be useful for 
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assessment of therapeutic compounds and treatments for ALS. Their effects on the 

molecular expression and FMN survival will provide specific information on their 

mechanism of actions and beneficial properties. Finally, the development of the facial 

nerve axotomy model in the pre-symptomatic SOD1 mouse, experiments performed 

within the dissertation have already revealed the strengths of this model in uncovering 

and identifying several potentially dysregulated molecular mechanisms  initiated by 

target disconnection that are not seen in the WT.   
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Figure 1. General illustration of a neuron.



60 
 

 
 

 

Figure 2. Illustration of general motor pathways involved in transmitting motor signals from the 
motor cortex of the brain to the target skeletal musculature. 
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Figure 3. Distribution six of facial motor subnuclei. Representative photomicrograph of thionin-
stained facial motor nucleus superimposed with a template to identify the facial motor nucleus 
subnuclei. Adapted from Ashwell, 1982. Original magnification 20X. 
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Table 1. Facial motor subnuclei musculotopic organization. The six facial motor subnuclei, 
abbreviations, and the muscles they innervate in the mouse (Ashwell, 1982).
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Figure 4. Schematic of CX3CR1 signaling cascade. Adapted from Re and Przedborski, 2006.
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Figure 5. Schematic of PAC1-R signaling cascade. Adapted from Vaudry et al., 2000. 
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Figure 6. Schematic of TNFR2 downstream signaling cascade. Adapted from Grivennikov and 
Kuprash 2006; McCoy and Tansey, 2008. 
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Figure 7. Schematic of TNFR1 downstream signaling cascade. Adapted from Grivennikov and 
Kuprash 2006.  

 



67 
 

 
 

 

 

 

Figure 8. Schematic of Caspase activation. Adapted from Boatright and Salvensen 2003. 
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Figure 9. Schematic of Fas downstream signaling. Adapted from Grivennikov and Kuprash 2006; 
Boatright and Salvensen 2003; and Raoul and Estevez 2002. 
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Figure 10. Schematic of SOD1 MN-specific Fas feedback loop. Adapted from Grivennikov and 
Kuprash 2006; Boatright and Salvensen 2003; and Raoul and Buhler 2006. 
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Table 2. Genes differentially regulated by axotomy or ALS/SOD1 disease progression. 
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CHAPTER III 

MATERIALS AND METHODS 

A. Animals 

 Rodents used in the experiments described in this dissertation were mice 

purchased from Jackson Labs (Bar Harbor, ME) at seven weeks of age. The WT mouse 

strain used for the experiments in this dissertation was the C57BL/6 (stock #000664). 

The C57BL/6 WT mouse was the first to have its genome sequenced and is the most 

widely used inbred strain (http://jaxmice.jax.org; Waterston et al., 2002). For the past 

decade our laboratory has been using the C57BL/6 WT mouse in researching the 

mechanism of neuroprotection following peripheral nerve injury (Canh et al., 2006; 

Hashiguchi et al., 1992; Serpe et al., 2005; Beahrs et al., 2010; Xin et al., 2011). In a 

recent study, we observed regenerative and degenerative molecular phenotypes of MN 

and neuropil in the facial motor nucleus after axotomy using laser microdissection to 

obtain RNA followed by quantification of mRNA expression (LMD; Mesnard et al., 2010). 

Therefore, it was important to continue using the C57BL/6 WT, as results from 

experiments in this dissertation contribute to the overall understanding of how 

molecular mechanisms mediate neuroprotection or neurodegeneration after nerve 

injury. The ALS mouse model used was the SOD1G93A mouse (stock #002726) on a non-

uniform background consisting of a mixture of SJL and C57BL/6J called a hybrid

http://jaxmice.jax.org/
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background (Leitner et al., Jackson Labs). The B6SJL SOD1G93A was the first ALS mouse 

model developed and therefore has been the most widely used and well-characterized 

(Gurney et al., 1994). In order to ensure that differences in mRNA expression were not 

due to strain, B6SJLF1/J WT (stock #100012) were assessed for mRNA expression at two 

time-points. The mRNA expression within the control nucleus and percent change 

following axotomy were compared between the two WT strains at 7 and 28 dpo (data 

not shown). No strain difference in mRNA expression within the facial nucleus before or 

following axotomy has been shown previously in our laboratory (Mesnard et al., 2011). 

For the remainder of this dissertation, C57BL/6 WT mice will be simply referred to as 

WT, unless specific background strain differs, then the strain will be indicated. 

All mice used in this dissertation were female mice. Our laboratory has 

consistently used female mice mainly because of the research focus of neuroprotective 

effects of the immune system. Mice are social animals and prefer group housing. 

However, males in small cages can often display aggressive behavior. Fighting between 

two males could potentially disrupt surgical wounds and increase inflammation. 

Potential infections or inflammatory responses due to fighting could distort results. 

Additionally, many of our previous experiments required reconstitution or adoptive 

transfer of immune cells from one mouse to another. It has been well established that 

the male specific H-Y antigen can cause to an immune response of the syngeneic 

transfer and can lead to rejection (Gordon et al., 1975). Therefore, female mice have 
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always been used in our laboratory (Canh et al., 2006; Hashiguchi et al., 1992; Serpe et 

al., 2005; Beahrs et al., 2010; Xin et al., 2011).   

All manipulations and housing were performed in accordance with institutional 

and the National Institutes of Health guidelines on the care and use of laboratory 

animals for research purposes and approved by the Institutional Animal Care and Use 

Committee (IACUC). Mice were housed under a 12 hour light/dark cycle in autoclaved 

microisolator cages under social conditions (three – four mice per cage) and provided 

autoclaved pellets and autoclaved drinking water at libitum. The facility that housed the 

mice was equipped with a laminar flow system in order to maintain a pathogen-free 

environment. All mice were permitted one week to acclimate to the environment prior 

to any manipulations or surgical procedures.  

B. Surgical Procedures 

Surgical procedures were performed using aseptic technique and completed in 

accordance with the National Institutes of Health guidelines on care and use of 

laboratory animals for research purposes and approved by the IACUC. All mice were 8 

weeks of age at time of surgery and all surgeries took place approximately 6 hours into 

the daily light cycle. Prior to all surgical procedures, mice were fully anesthetized with 

3% isoflurane inhalation and maintained at 2% isoflurane throughout the procedure. 

Mice were monitored while under anesthesia by assessing reflexes such as toe-pinch 

and eye blink and visually observing respiration rate. The skin behind the right ear was 
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prepared for surgery by removing fur with a straight razor and sterilizing the area with 

70% ethanol (ETOH). A 5 mm incision was made behind the right ear and the muscles 

gently separated with forceps to expose the facial nerve. The right facial nerve was 

exposed at the level of the SMF and the facial nerve was completely transected with 

iridectomy scissors proximal to the bifurcation of the posterior and anterior auricular 

branches, as described previously (Whitehouse et al., 1985; Powrie and Mason, 1989). 

The proximal and distal facial nerve stumps were carefully positioned apart to 

discourage reconnection. Following the surgery, the separated muscles were re-

apposed and the skin was sealed with a wound clip. Maximum duration of procedure 

was 15 minutes. Mice were monitored after surgery and were considered recovered 

from anesthesia when they could walk with a normal gait. Successful transections were 

verified by complete, unilateral loss of vibrissae movement and eye blink reflex on the 

ipsilateral side. The left facial nerve remained intact and served as an internal control for 

comparison purposes. Additional post-operative monitoring was performed by daily 

visual inspection. Wound clips were removed 7-10 days following surgery.  

C. Animal Euthanasia and Brain Harvest 

At the time of euthanasia mice were again assessed for vibrissae movement and 

eye blink reflex on the ipsilateral side to verify maintenance of the facial nerve 

transection. Euthanasia time-points varied by experiment and were as follows; 3, 7, 14, 

28 and 56 dpo. The mice were euthanized by CO2 asphyxiation in an isolated chamber 
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followed by cervical dislocation. After which the brains were immediately removed from 

the skull and rapidly frozen in a bi-phasic solution containing n-butyl bromide (62.5%) 

and 2-methyl-butane (37.5%) for five minutes at -30⁰C. Brains were individually stored 

at -80⁰C until cryosectioned. 

D. Cryosectioning 

Prior to cryosectioning brains were allowed to warm from -80⁰C to -20⁰C for one 

hour to reach optimal temperature. The cryostat used was a Leica CM1850UV which 

uses an ultraviolet (UV) light as an additional measure to minimize contamination. The 

brains were mounted and embedded on frozen brain chucks using an OTC compound 

and allowed to solidify at -20⁰C for 15 minutes. Twenty five µm coronal sections were 

collected throughout the rostral-caudal extent of the facial motor nucleus. Precise 

location and symmetry between the control and axotomized nuclei were verified by 

presence of the nucleus ambigiouus rostral to both facial nuclei and the internal genu of 

the facial nerves at the caudal end of the facial nuclei. Tissue sections were thaw-

mounted onto Superfrost Plus glass slides (Fisher) for thionin staining or glass 

polyethylene (PEN) foil-membrane slides (Leica) for LMD. All slide-mounted tissue 

sections were stored at -80⁰C in slide boxes until fixation and staining. 

E. Thionin Staining and FMN Counts 

Slide-mounted tissue sections intended for FMN survival counts were removed 

from -80⁰C storage and allowed to acclimate to room temperature for one hour. The 
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tissue sections were then fixed in freshly prepared 4% paraformaldehyde (PFA) in 

phosphate buffered saline (0.01 M PBS; pH 7.4) for 15 minutes. The slides were rinsed 

twice for 5 minutes with deionized (DI) water then stained with 1X working thionin 

solution for 7 minutes. The 1X working thionin solution was prepared by combining 200 

mL of NaAc/HAc working buffer at pH 3.5 (20 mL 1M sodium acetate (NaAc) and 180 mL 

1M glacial acetic acid (HAc)), 560 mL of DI water, and 38 mL of 10% thionin in DI water. 

Tissue sections were rinsed for 30 seconds in DI water then dehydrated in a graded 

ETOH series for 30 seconds each (50%, 70%, 95%, 100%, respectively). The tissue 

sections were cleared overnight in Hemo-de followed by coverslipping using Permount 

mounting media. Two days of drying took place before slides labels were covered and 

coded by another investigator unaware of group divisions. This technique allows for 

analysis of FMN survival to occur under “blind” conditions. 

Light microscopy and the Neurolucida Tracing System were used to visualize MN 

and trace the sections. MN within the facial motor nucleus were identified by their 

morphology, displaying a clear nucleus and nucleolus, and were demarcated with a 

symbol using the tracing system. Subnuclei MN were not counted in any of the 

experiments within this dissertation. All sections were counted for the each animal to 

determine the number of FMN within the control nucleus compared to the axotomized 

nucleus for two time-points, 28 and 56 dpo or 84 and 112 doa, respectively.  
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Percent of FMN survival for the facial nucleus was calculated by dividing the total 

number of MN remaining in the axotomized nucleus by the total number of MN in the 

WT 28 dpo (84 doa) control nucleus, then multiplying by 100. This was done because at 

the 56 dpo time-point, or 112 doa, the SOD1 mice are well within the symptomatic 

stage and display MN cell loss within the control nucleus. Using total numbers of MN 

from a control facial nucleus with MN loss to calculate percent FMN survival would not 

accurately portray the FMN loss due to axotomy. Therefore, MN numbers from the WT 

28 dpo (84 doa) control nucleus were used and, for consistency purposes, the WT 56 

dpo percent FMN survival was calculated in the same manner as the SOD1 28 and 56 

dpo. At 84 doa there are no differences in the number of FMN between WT and SOD1 

mice. This data as well as further analysis of FMN loss which occurs during SOD1 disease 

progression can be found in Chapter V. 

Average number of FMN per section was determined for the uninjured control 

facial motor nucleus and was calculated by counting the total number of MN within the 

control nucleus and dividing by the number of sections counted for that mouse.  

To compensate for double counting MN in adjacent sections, the Abercrombie 

correction factor [N = (n x T) ÷ (T + D)], where N is the actual number of cells, n is the 

number of nuclear profiles, T is the section thickness (25 µm), and D is the average 

diameter of nuclei (5 µm) was used (Coggeshall, 1992).  
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F. Laser Microdissection 

The technique LMD was used to accurately collect tissue from the facial motor 

nuclei. A Leica AS LMD microscope equipped with a UV laser controlled manually was 

used to perform two different dissections previously described in detail (Mesnard et al., 

2010). The first involved dissecting the whole facial nucleus, both control and 

axotomized; while the second involved dissecting out the VM and VL facial subnuclei of 

both control and axotomized nuclei. The two subnuclei were identified by utilizing a 

template adopted from Ashwell, 1982 and modified by our laboratory (Canh et al., 

2006). Slide-mounted tissue sections intended for RNA analysis were removed from -

80⁰C storage and allowed to warm within their sealed slide boxes to -20⁰C for one hour. 

Each PEN foil-membrane slide contained 8-10 coronal sections and great care was taken 

throughout the procedure to minimize contamination or RNA degradation. Each side 

was removed from the slide box at -20⁰C, rapidly fixed and stained with thionin for 

histological identification of specific regions. The slides were fixed in 100% ETOH for one 

minute, washed twice for 15 seconds in 0.01% diethylprocarbonate (DEPC)-treated DI 

water then stained for 35 seconds in a 2X working thionin solution. The 2X working 

thionin solution was prepared by combining 200 mL of NaAc/HAc working buffer at pH 

3.5 (20 mL 1M NaAc and 180 mL 1M HAc), 522 mL of 0.01% DEPC-treated DI water, and 

76 mL of 10% thionin in 0.01% DEPC-treated DI water. Tissue sections were again rinsed 

twice for 15 seconds in 0.01% DEPC-treated DI water then dehydrated in a graded ETOH 
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series prepared with 0.01% DEPC-treated DI water for 30 seconds each (70%, 90%, 

100%, respectively). The tissue sections were placed in a covered container to dry for 

three minutes. Once dry, the slide was placed inverted on the LMD microscope stage for 

dissection and collection. The process of tissue collection occurs as follows; the tissue 

section and PEN foil membrane on the slide are cut with the UV laser and immediately 

the sample falls into one of the designated collection tube caps. Prior to the ETOH fix 

and thionin staining, the collection caps were each filled with 65 µL of extraction buffer 

(PicoPure RNA Isolation Kit; Arcturus). LMD tissue samples of the whole facial nucleus 

resulted in two collection tubes per mouse (control and axotomized), while samples of 

the VM and VL facial subnuclei resulted in four collection tubes per mouse (control and 

axotomized sample for each of the two subnuclei).  

G. RNA Isolation and Semi-Quantitative Real-Time RT-PCR 

Total cellular RNA was isolated from LMD samples of the whole facial motor 

nucleus or the VM and VL facial subnuclei using the PicoPure RNA Isolation Kit (Arcturus) 

including a deoxyribonuclease (DNase) treatment step (Qiagen). Total RNA 

quantification was determined using a NanoDrop 1000 spectrophotometer and the 

concentrations were standardized for reverse-transcription. Total RNA concentrations 

for whole nucleus samples averaged 110 ng while VM and VL samples averaged 28 ng. 

RNA samples for each time-point were standardized together relative to the lowest 

sample concentration. Complementary deoxyribonucleic acid (cDNA) was obtained 
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using Superscript First Strand Synthesis System for RT-PCR (Invitrogen) according to the 

manufacturer’s instructions.  

Polymerase chain reaction (PCR) primer sets used for amplifying target 

deoxyribonucleic acid (DNA) sequences were designed from published mouse 

sequences using Oligo Primer Analysis software version 6.54 (Molecular Biology 

Insights). The primer sets consisted 16-25 nucleotides each and produced amplicon 

lengths between 78 and 121 base-pair (bp; Table 3). Primers were designed and 

selected for duplex stability, internal stability, and low complementarity. In general, 

primers are stable at their 5’-termini, i.e. GC-rich, but somewhat unstable at their 3’- 

ends function well in PCR. These primers are less likely to initiate false priming on the 3’- 

end and will require complete annealing along the target sequence in order to prime 

efficiently. In addition, the optimal annealing temperature (TA) range is usually broad 

with unstable 3’-end primers, which is beneficial when selecting parameters for RT-PCR. 

Formation of primer-dimer artifacts can lead to non-specific DNA synthesis due to an 

unbalanced primer ratio. Therefore, the 3’-terminal end of a primer should be free of 

significant complementarity and is analyzed within the Oligo Primer Analysis software 

for its statistical likelihood of forming primer-dimers (Molecular Biology Insights 

Handbook). After several primer sets were selected, each individual primer’s nucleotide 

sequence was then examined for regions of local similarity to those within sequence 

databases using Basic Local Alignment Search Tool (BLAST) provided by the National 
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Center for Biotechnology Information (NCBI). BLAST compares the nucleotide sequence 

of interest with all published sequences with NCBI databases and calculates the 

statistical significance of matches. BLASTing a primer sequence provides a measure of its 

ability to form a stable duplex with the specific site on the target DNA as well as reveals 

any false priming sites on the target DNA. Only primer sequences which met all criteria 

were selected for RT-PCR. Primer sets were custom ordered from BioSynthesis, Inc. 

However one gene of interest, nNOS did not yield acceptable primer sets when designed 

with the Oligo Primer Analysis software and was purchased from SuperArray Biosciences 

(Table 3). GAPDH control for nNOS was also purchased from SuperArray Biosciences.  

Semi-quantitative real-time RT-PCR was performed using the iCycler iQ detection 

system (Bio-Rad; Fargo et al., 2008; Sharma et al., 2010; Mesnard et al., 2010). A 

reaction volume of 25 µL contained 1X SYBR Green PCR Master Mix (Applied 

Biosystems), 1 µL fluorescein, and 200 nM forward and reverse primers. RT-PCR cycle 

parameters used are as follows; 10 minute, 95⁰C denaturing step, followed by three 

steps, 30 seconds each, repeated for 45 cycles of denaturing at 95⁰C, annealing at the 

predetermined annealing temperature (TA) for the respective primer set, and extension 

at 65⁰C. The TA for each primer set (Table 3) was determined experimentally using 

either whole mouse brain cDNA or mouse spleen cDNA as the template over a 

temperature gradient based on the TA estimated by the design software. Immediately 

after conclusion of the amplification protocol, a melt curve analysis was performed to 
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verify specificity of the amplified product. The melting temperature (Tm) for each primer 

set was compared to the experimentally determined value (Table 3). 

After completion of the PCR run, the threshold cycle (CT) was determined for 

each well within the 96-plate. This was accomplished by first manually setting the 

baseline cycles according to the linear amplification curves. The first baseline cycle was 

selected as the cycle immediately following the stabilization of relative fluorescence 

units (RFU) and the last baseline cycle was 2 cycle values before the earliest visible 

amplification. Next, the threshold value was defined by visualizing the logarithmic 

amplification curves and placing the threshold line above background signal but within 

the lower third of the linear phase of the amplification plot. All cDNA samples were run 

in triplicates and an average CT was calculated. Relative mRNA expression levels were 

analyzed using the comparative CT method also known as the 2-∆∆CT, in which the CT 

value for a target gene is normalized to the CT value for the endogenous housekeeping 

gene or internal standard. The result is the CT difference or the ∆CT for a single sample. 

Next, the difference between two ∆CT‘s of a control and axotomized sample yields the 

∆∆CT. Since the CT is determined from a logarithmic scale, ∆∆CT must be converted to a 

linear form using the following formula, 2-∆∆CT. The housekeeping gene used for all PCR 

amplification protocols was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) which 

has been well-established in the as an internal standard for the facial nerve axotomy 

model for the reason that expression levels do not change with axotomy (Raivich et al., 
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1998; Livak and Schmittgen, 2001; Li et al., 2000; Wainwright et al., 2009). For the 

purposes of determining mRNA expression levels after axotomy, the results are 

calculated as the percent change relative to the control using the following formula, by 

(2-∆∆Ct -1) * 100 (Fargo et al., 2008; Mesnard et al., 2010).  

H. Electrophoresis 

Gel electrophoresis was used identify PCR amplified products for genes induced 

by axotomy, with below detectable levels of mRNA expression in the uninjured control, 

namely the gene TNFα. In addition, efficacy of all primer sets used within this 

dissertation amplicons of their PCR product were analyzed by gel electrophoresis to 

confirm amplicon size and to identify any non-specific amplification. None of the primer 

sets revealed any non-specific amplification products and all were confirmed to be 

appropriate size (data not shown). of a The samples used in the electrophoresis 

consisted of 12 µL of PCR amplified products extracted from the wells of the 96-well PCR 

plate and 3 µL nucleic acid sample loading buffer (Bio-Rad). The samples were loaded 

into wells of Criterion precast 10% Tris Borate Ethylenediaminetetraacetic acid (TBE) 

gels (Bio-Rad) along with a single 100 bp molecular weight marker (Bio-Rad) and a 

GAPDH sample as a positive control. Separation of the PCR products was accomplished 

using a Criterion cell vertical electrophoresis system (Bio-Rad) for 90 minutes at 100 V 

using 1X TBE running buffer, prepared from 10X TBE nucleic acid electrophoresis buffer 

(Bio-Rad) and contained 100 µL of SYBR Green I nucleic acid gel stain (Invitrogen). Gels 
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were scanned on a STORM 860 PhosphorImager (Molecular Dynamics) using Image 

Quant Software for visualization.  

I. Behavioral Assessment 

SOD1 mice were evaluated for symptom onset by a series of seven behavioral 

tests assessing general motor function. Reports of symptom onset vary with the type of 

motor or behavioral assessments used, even among the B6SJL SOD1G93A model. 

Therefore, it was necessary to design a behavioral analysis protocol which will provide 

us with a measure of symptom onset. Development of this protocol has important 

implications for our laboratories’ future research. 

Behavioral testing took place three times per week within the animal housing 

room approximately six hours into the daily light cycle. Behavioral testing began at 70 

doa and ended on the day of euthanasia, 112 doa, resulting in 15 time-points. The order 

in which the mice were tested was rotated, both the order of the cages and the mice 

within the cages. All behavioral equipment was sterilized after each cage of mice (three 

per cage) were tested, Versi-Dry bench paper (Fisher) was replaced if soiled by a mouse 

or after each cage, and gloves were changed after handling each mouse. Individual test 

scores for each mouse per test were recorded per time-point. A score of zero indicated 

normal function and higher scores indicated a loss of motor function for the particular 

task. WT control groups were also tested for baseline motor function. All observations 

and subsequent scoring are detailed within Figures 13, 14, 15, 16, 17, 18 and 19. 
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The extension reflex (ER) test assesses the ability to engage extensor/anti-gravity 

muscles in response to suspension by tail (Figure 13). Each mouse was suspended by the 

tail for 5 seconds. Observations on fore- and hind-limb extensions and equivalent test 

score are listed in Figure 13 (Feng et al., 2008).  

The paw-grip endurance (PGE) test is a measure of appendicular muscular 

endurance (Figure 14; Combs and D'Alecy, 1987, Feng et al., 2008). The lid of the mouse 

cage is held flat or horizontal and the mouse is lowered onto the lid. Once the mouse 

grips the lid with all four paws the lid is rotated to a vertical position for five seconds. 

Capabilities for this task and the corresponding test scores are reported in Figure 14.  

The balance beam (BB) test is a general test of overall muscle strength and 

requires suitable vestibular and proprioceptive functioning (Figure 15; Feeney et al., 

1982; Combs and D'Alecy, 1987; Feng et al., 2008). This test not only assesses the ability 

of the mouse to remain on the beam but also lift itself onto the beam. The mouse is 

carried over to the middle of the beam while suspended by its tail. Near the beam the 

mouse is lowered to a level so that the body of the mouse is level with the height of the 

beam. The mouse reaches for the beam with the forepaws and once the beam is 

gripped the suspension level of the mouse by the tail is reduced, requiring the mouse to 

pull itself onto the beam using the forelimbs followed by engaging of the hind-limbs to 

lift its body onto the beam. Once on the beam the mouse must remain, balancing on the 

beam without falling off for five seconds. All mice tested automatically began walking 
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once on the beam. Test scores are listed in Figure 15. Mice unable to lift their body onto 

the beam were physically placed onto the beam to assess the second part of the test, 

the ability to balance on the beam itself; however the test score reflected the inability to 

complete the first task.  

For the remaining behavioral tests, mice were placed in a transparent rat box 

with clean Versi-Dry bench paper lining the bottom. Four behavioral assessments took 

place in box, the open field tail elevation (OF-TE) test (Figure 17), the open field 

exploratory behavior (OF-EB) test (Figure 16), the open field complete rearing behavior 

(OF-CRB) test (Figure 18), and the open field gait analysis (OF-GA) test (Figure 19). Mice 

remained within the box for a maximum of two minutes or until all four test scores 

could be determined. The minimum amount of time in the box was one minute, 

regardless of how fast the mouse completed all four tasks. The OF-TE test assesses the 

level of elevation of the tail during forward movement. Normally, mice hold their tail 

straight or slightly elevated while moving. This action uses muscles at the base of the tail 

innervated by coccygeal MN (Shinohara, 1999). Holding the tail at a position less than 

horizontal during normal forward movement resulted in a test score greater than zero. 

See Figure 17 for observations and subsequent test scores.  

OF-EB test is routinely used as a measure of anxiety and it is based upon a 

rodent’s natural tendency to move along side walls when anxious (Schneider et al., 

2005). Anxiety itself can also be considered a feature of sickness behavior. The criteria 
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for maintaining a score of zero did not necessarily require the mice to enter the center 

of the field, but required them to explore all four corners within two minutes. 

Therefore, the OF-EB test assessed whether mice displayed anxiety or sickness behavior 

that resulted in them not exploring the four corners of the box. Test scores for exploring 

specific numbers of corners are listed in the table in Figure 16. 

The OF-CRB test evaluates the weight bearing ability of the hind-limbs during 

rearing behavior (Figure 18). Fortunately, rearing or standing upright on the hind-limbs 

at the walls of the open field box was a frequent and consistent behavior of all mice 

tested. It was a rare occurrence when mice did not perform this behavior at least twice 

within two minutes. Ability of mice to completely extend the hind legs while stretching 

up in a rearing position at the wall was easily observed and recorded. Their 

determination to perform this behavior was so great that even a severe loss of motor 

control and inability to bear weight on the hind-limbs did not deter them from 

attempting it. Figure 18 lists the test scores corresponding observations.  

The OF-GA test assesses gait, motility and posture (Figure 19). Mice were 

observed during forward movement for hind-limb gait, stride, and hind foot placement. 

Gross, abnormal movements were recorded, such as circumduction of the hind-limbs. 

Any impairment in forward movement by motor control was also recorded. 

Observations and their equivalent test scores are listed in Figure 19.  
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The sum of all seven test scores for one mouse per time-point was called the 

motor score. The motor scores of all mice per time-point were averaged and plotted to 

show the loss of motor control over time.  Symptom onset was determined to be the 

time-point in which the averaged motor scores were statistically higher than the 

previous. Once symptom onset was determined for the entire group of SOD1 mice, each 

individual mouse’s motor score per time-point was averaged from symptom onset until 

112 doa. This average motor score during the symptomatic stage was used to split the 

SOD1 mice into two different disease progression groups, a slow disease progression 

group (SPG) and a fast disease progression group (FPG). The rates of disease progression 

or the rate of increasing motor scores over time for the SPG and FPG was plotted.  

J. Statistical Analysis 

The relative mRNA expression was statistically compared using a two-way 

analysis of variance (ANOVA; group x time), followed by the Student-Newman-Keuls 

multiple comparison post-hoc test, with significance at p ≤ 0.05 (GB-Stat School Pak; 

Sharma et al., 2010).  

Statistical analysis of the FMN survival used a two-way ANOVA (group x time), 

followed by the Student-Newman-Keuls multiple comparison post-hoc test, with 

significance at p ≤ 0.05 (GB-Stat School Pak).  

Symptom onset was determined by statistically comparing average motor scores 

between two sequential time-points using a repeated measures ANOVA, then the 
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Student-Newman-Keuls multiple comparison post-hoc test, with significance at p ≤ 0.05 

(GB-Stat School Pak). The group of symptomatic SOD1 mice were divided into the two 

disease progression groups (SPG and FPG) by using a median-split of all individual motor 

scores averaged throughout the symptomatic stage. 
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Figure 11. LMD of whole facial motor nuclei. Representative photomicrographs depicting 
thionin-stained coronal sections for LMD of the axotomized facial motor nuclei. A, Coronal 
section displaying facial axotomized motor nucleus. B, Near complete LMD of axotomized facial 
motor nucleus. Original magnification 20x.
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Figure 12. LMD of VM and VL subnuclei. Representative photomicrographs depicting thionin-
stained coronal sections for LMD of the VM and VL subnuclei. A, Template of facial motor 
subnuclei. B, Coronal section displaying facial axotomized motor nucleus. C, Complete LMD of 
axotomized VM and VL subnuclei. Original magnification 20x.
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Figure 13. ER test, one of seven behavioral assessment tests used to determine SOD1 symptom 
onset and as a measure of motor symptoms severity. 

 
 
 
 

 

 
Figure 14. PGE test, one of seven behavioral assessment tests used to determine SOD1 
symptom onset and as a measure of motor symptoms severity.
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Figure 15. BB test, one of seven behavioral assessment tests used to determine SOD1 symptom 
onset and as a measure of motor symptoms severity. 

 
 
 

 
 

Figure 16. OF-EB test, one of seven behavioral assessment tests used to determine SOD1 
symptom onset and as a measure of motor symptoms severity.
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Figure 17. OF-TE test, one of seven behavioral assessment tests used to determine SOD1 
symptom onset and as a measure of motor symptoms severity. 

 
 

 
 

Figure 18. OF-CRB test, one of seven behavioral assessment tests used to determine SOD1 
symptom onset and as a measure of motor symptoms severity.
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Figure 19. OF-GA test, one of seven behavioral assessment tests used to determine SOD1 
symptom onset and as a measure of motor symptoms severity.
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Table 3: Primers designed for RT-PCR. Primer sets for nNOS and its control, GAPDH, were 
purchased from SuperArray Biosciences, therefore the primer sequence is proprietary 
information. 
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CHAPTER IV 

FACIAL NERVE AXOTOMY DIFFERENTIALLY REGULATES MOLECULAR EXPRESSION 

WITHIN THE FACIAL MOTOR NUCLEUS 

A. Abstract 

Previous research in our laboratory has shown that following axotomy, WT and 

SOD1 mice display similar mRNA expression of MN survival and regeneration genes, 

however, differences were observed among mRNA expression for genes specific to the 

neuropil, such as a decreased astrocytic response, as evident by reduced GFAP 

expression. Additionally TNFα was shown to be constitutively expressed within the 

control, uninjured nucleus as early as 59 doa. These results suggest that SOD1 MN 

respond to nerve injury in a conventional manner, upregulating regenerative gens, 

however, differences in neuropil mRNA expression suggests that this alternative 

response of the neuropil to the axotomy injury and may play a role in the enhanced 

FMN loss seen in the pre-symptomatic SOD1 at 28 dpo (Mesnard et al., 2011). The SOD1 

molecular response to axotomy was assessed further with genes involved in death 

receptor systems, neuroprotective signaling, neurodegenerative signaling, and genes 

specific to the glial response. Both WT and SOD1 mice revealed a transient increase in 

death receptor gene expression, however this expression appeared to have been 

regulated and was returned to baseline by 56 dpo. The pre-symptomatic SOD1 axotomy-
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induced response to death receptors suggests a dysregulation of these genes after 

target disconnection. This suggests that axotomy may resemble the target 

disconnection that occurs during disease, but more importantly the axotomy-induced 

molecular response may resemble the disease-induced molecular response. Data 

presented within this dissertation supports this resemblance.  

B. Introduction 

ALS is the most common, adult MN degenerative disease. The disease rapidly 

progresses with a mean survival of only three – five years after onset of clinical 

symptoms. The development of the SOD1 mouse model for ALS in 1994, has lead to 

significant advances understand the progression of fALS as well investigation of 

potential disease mechanisms. While the SOD1 mouse appears to develop normally well 

into adult hood, before symptoms become apparent, research has identified an initial 

pathological event early in the lifespan of the mouse. This initial event is loss of 

neuromuscular junctions of the lower limbs as early as 47 doa (Fischer et al., 2004). This 

phenomenon has been termed the die-back theory of ALS, where loss of the 

neuromuscular junction or target, results in compensatory sprouting of MN axons but 

ultimately neurodegeneration due to overwhelming target disconnection (Dadon-

Nachum et al., 2011). While significant loss of MN does occur within the symptomatic 

stage, it is thought that the inability for the MN to maintain target connection, 

specifically life sustaining musculature, ultimately results in fatality.   
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Our laboratory has been using the facial nerve axotomy injury model to study 

WT MN survival mechanisms for decades. Since the facial nerve axotomy is a neuronal 

target disconnection injury, it was performed in the pre-symptomatic SOD1 mouse to 

determine the percent FMN survival after axotomy. The result was a dramatic decrease 

in FMN survival levels 28 dpo compared to WT (41 and 85%, respectively; Mesnard et 

al., 2011). This dramatic decrease in FMN survival is also seen after axotomy in 

immunodeficient mouse models (Serpe et al., 2000).  

LMD was utilized to investigate the molecular response of WT and SOD1 FMN 

and neuropil to the facial nerve axotomy. Surprisingly, WT and SOD1 MN responded in a 

similar manner, upregulating regenerative genes to a similar extent. Differences, 

however, were seen in genes specific to the neuropil, suggesting that the target 

disconnect resulting in a dysregulated response of the neuropil which may play a role in 

the enhanced FMN loss after axotomy (Mesnard et al., 2011).  

The experiments within this Chapter were performed to provide a better 

understanding of the enhanced FMN cell loss that occurs in pre-symptomatic SOD1 mice 

following axotomy. mRNA expression changes in response to target disconnection were 

assessed in WT and SOD1 mice through an extended time course and the genes chosen 

were those which have been implicated in MN degeneration that occurs in SOD1 mice 

or ALS patients. Death receptors, their ligands, and downstream signaling factors that 

have been suggested as mechanisms within the disease such as those involved in the 
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TNFR1 and Fas pathway were investigated. In addition to the molecular expression of 

systems involved in neurodegeneration, several genes associated with neuroprotective 

signaling systems were also were assessed. Many of the protective signaling systems are 

also important in neuron-glial and glial-glial functional communication. The details of 

the genes used within this dissertation can be found in Table 2. Additional information 

of all 21 genes assessed is provided within Chapter II Section K. Investigating the 

axotomy-induced molecular response of these systems within the WT facial motor 

nucleus will provide an understanding of the normal, characteristic response to 

axotomy. Once the molecular expression patterns are determined for WT, investigation 

of the molecular expression response of the SOD1 can be analyzed and compared for 

similarities and differences within the molecular response.  

Additionally, FMN survival was investigated at the extended time-point of 56 dpo 

to determine whether axotomy-induced FMN loss continues or resembles the lack of 

neuroprotection of immune-deficient mice previously identified by our laboratory. 

Aim #1 of this dissertation was to analyze the expression of genes involved in 

neuroprotective and neurodegenerative signaling systems as well as genes specific to 

the glial response, following a facial nerve axotomy in WT and pre-symptomatic SOD1 

mice. The working hypothesis for this aim was that molecular expression within the 

axotomized SOD1 facial motor nuclei will display enhanced mRNA levels, compared to 

WT, for death receptor signaling systems and other genes that have been shown to be 
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present within the CNS of ALS patients and symptomatic or end-stage SOD1 mice. 

Experiments performed specifically investigated the molecular changes induced by 

axotomy within the facial motor nucleus of WT and SOD1 mice for neurodegenerative 

genes of death receptor signal transduction and signaling systems involved 

neuroprotection and genes specific to the glial cell responses to CNS injury. Similarities 

and differences in the expression between WT and SOD1 axotomized facial nuclei help 

to elucidate mechanisms involved in the enhanced FMN cell death after axotomy in the 

pre-symptomatic SOD1 mouse. 

C. Materials and Methods 

Animals and Surgical Procedures 

Mice were obtained and housed as previously described in Chapter III Section A. 

All mice received a right facial nerve transection axotomy described In Chapter III 

Section B. Also refer to experimental designs illustrated in Figures 20 and 23 of this 

Chapter.  

Tissue Preparation 

Refer to Chapter III Sections C and D as well as Figures 20 and 23 of this Chapter 

for details. 

FMN Survival Counts 

The experimental design for the FMN survival experiment is illustrated in Figure 

20. For specific details, refer to Chapter III Section E.  
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Laser microdissection 

Details are described in Chapter III Section F and the experimental design 

illustrated in Figure 23 of this Chapter. 

RNA Isolation and Real-Time RT-PCR 

Percent change of mRNA expression was assessed at 3, 7, 14, 28 and 56 dpo for 

the following genes: CX3CR1, TNFR1, TNFR2, Fas, FasL, Caspase-3, PAC1-R, CRMP4, 

ASK1, Daxx, FADD, TRAF2, TRADD, SODD, CD68, and nNOS. Genes TNFα, Caspase-8, 

GFAP, GAP-43, and βII-Tubulin were previously analyzed by our laboratory for the time-

points: 3, 7, 14, and 28 dpo. For this dissertation the time course was extended to 56 

dpo, and therefore the time-point of 28 dpo was replicated for conformation and 

comparison and the 56 dpo time-point was additionally assessed. However, the gene 

Caspase-8 does not include the fourth data point of WT 56 dpo. Due to failure of 

amplification during the real-time PCR run and insufficient volume of remaining WT 56 

dpo samples, the time-point could not be included in the analysis.  

For specific details refer to Chapter III Section G and the experimental design 

illustrated in Figure 23 of this Chapter. 

Electrophoresis 

Gel electrophoresis was used to determine the presence of the axotomy or 

disease-induced gene TNFα for the time-points of 28 and 56 dpo. Refer to Chapter III 

Section H for further information.  
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Statistical Analysis 

Details of statistical analysis for FMN percent survival following axotomy and 

axotomy-induced percent change mRNA expression can be located in Chapter III Section 

J. 

D. Results 

Facial Nerve Axotomy in Pre-Symptomatic SOD1 Mice Results in a Dramatic Reduction in 

FMN Survival Which is Maintained with Time and Resembles that of Immunodeficient 

Mice 

It has previously been shown that pre-symptomatic SOD1 mice are more 

susceptible to axotomy-induced death compared to WT 28 dpo. The results from the 

experiment confirm previous findings that at 28 dpo WT mice FMN survival in the entire 

facial motor nucleus was 81 ± 8% relative to the contralateral, control facial motor 

nucleus (Figures 21A and 22; Serpe et al., 1999; Serpe et al., 2000; Canh et al., 2006 ). In 

contrast, FMN survival in the entire facial motor nucleus of pre-symptomatic SOD1 mice 

at 28 dpo was 48 ± 8%, relative to contralateral, control facial motor nucleus (Figures 

21B and 22). This enhanced axotomy-induced MN loss at 28 dpo is in agreement with 

the literature (Mariotti et al., 2002; Mesnard et al., 2011).  

WT and SOD1 axotomy-induced FMN cell survival was assessed at a second time-

point of 56 dpo. WT FMN survival in the facial motor nucleus significantly declined 

further to 43 ± 13% (Figures 21C and 22), this is also in accordance with previous 
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published results from our laboratory at a 70 dpo (Serpe et al., 2000). Finally, SOD1 FMN 

percent survival was assessed within the entire facial motor nucleus at 56 dpo and 

found to be 42 ±4% (Figures 21D and 22). There were no significant differences found 

between FMN survival levels SOD1 56 dpo, WT 56 dpo or SOD1 28 dpo. The lack of 

significance between SOD1 FMN percent survival levels at 28 and 56 dpo is in 

accordance that the dramatic loss of FMN levels 28 dpo in immunodeficient RAG2-KO 

and Scid mice (Serpe et al., 2000; Beahrs, 2009). Therefore, the dramatic loss of FMN 

survival after axotomy in pre-symptomatic SOD1 mice suggests lack of immune-

mediated neuroprotection.  

The Initial Molecular Response to Axotomy in WT and SOD1 is Similar; However in SOD1 

Mice a Delayed Response to Axotomy Results in Upregulation of Death Receptor 

Signaling Systems 

This dissertation analyzed mRNA expression of genes involved in 

neurodegeneration, specifically death receptor signaling systems, the Fas receptor and 

TNFR1. Additional genes were assessed that are known to play a role in functional 

communication between neuron-glial and glial-glial and are thought be neuroprotective. 

Details of all 21 genes analyzed can be found in Table 2. A summary of axotomy-induced 

mRNA expression results from this Chapter can be found in Table 4. 

TNFR1 mRNA expression in the WT facial motor nucleus is significantly 

upregulated at 3 (70 ± 15%), 7 (96 ± 18%), 14 (86 ± 5%) and 28 (65 ±11%) dpo, relative 
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to the contralateral, uninjured control facial motor nuclei (Figure 24A). No difference 

was seen between 56 dpo (9 ± 12%) and control facial motor nucleus, however a 

significant decrease between the two time-points 28 and 56 dpo could account for the 

TNFR1 mRNA expression returning to baseline, i.e. control levels (Figure 24A). TNFR1 

mRNA expression in the SOD1 facial motor nucleus is significantly upregulated at all 

time-points investigated, 3 (78 ± 21%), 7 (94 ± 8%), 14 (97 ± 11%), 28 (82 ± 11%), and 56 

(58 ± 7%) dpo, relative to the control (Figure 24B).  

The SOD1 TNFR1 mRNA expression appears to resemble the WT expression 

pattern throughout 28 dpo, however by 56 dpo SOD1 is significantly upregulated 

compared to WT (Figure 24C). Therefore in WT and SOD1 facial motor nuclei are similar 

in their initial and delayed response to axotomy for the death receptor mRNA TNFR1 

mRNA in that it is upregulated to a similar extent and sustained (Figure 24C). However 

at 56 dpo, the TNFR1 mRNA in the SOD1 axotomized facial motor nuclei is still 

significantly upregulated relative to control and does not significantly differ from the 

previous, 28 dpo time-point (Figure 24B). While in the WT axotomized facial motor 

nucleus, the TNFR1 expression has returned to baseline and a significant decrease from 

the previous time-point of 28 dpo is apparent (Figure 24A). These results lead to a 

significant difference between the sustained upregulation of TNFR1 in the SOD1 facial 

nucleus and the WT at 56 dpo (Figure 24C). 
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The WT and SOD1 axotomy-induced response relative to TNFα mRNA was 

previously investigated in our laboratory, however it was only assessed out until 28 dpo. 

At 28 dpo, axotomized WT facial motor nucleus did not display any measurable 

amplicon for TNFα in accordance with previous findings and lack of any measureable 

PCR amplicon was also shown at 56 dpo in both control and axotomized WT facial motor 

nucleus (Figure 25A upper panel). As was previously shown, SOD1 control and 

axotomized nuclei display amplicons for TNFα mRNA which are still present at 56 dpo 

(Figure 25A lower panel; Mesnard et al., 2011). Note that amplicon band density is not 

representative of mRNA quantity for the reason that PCR product shown on the gel was 

post-linear phase of amplification. 

The axotomized SOD1 facial motor nuclei, displays a sustained upregulation (554 

± 91%) of TNFα mRNA expression relative to control at 28 dpo followed by a slight, but 

non-significant decrease in TNFα mRNA expression (348 ± 84%) at 56 dpo. Both time-

points were significantly different relative to control nucleus, but not between the two 

time-points (Figure 25B). 

It was unexpected to find that Fas mRNA expression in the WT facial motor 

nucleus is significantly upregulated at 3 (37 ± 10%), 14 (33 ± 13%), and 28 (43 ±20%) 

dpo, relative to the contralateral, uninjured control facial motor nuclei (Figure 26A). No 

difference was seen between 7 (13 ± 14%) and 56 dpo (48 ± 25%) and WT control facial 

motor nucleus. After target disconnection in the WT, there is a transient upregulation of 
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Fas mRNA which returns to baseline at 7 dpo then displays a second and delayed 

upregulation before returning to baseline by 56 dpo (Figure 26A).  

Fas mRNA expression in the SOD1 facial motor nucleus is significantly 

upregulated at 3 (59 ± 16%), 7 (57 ± 13%), 28 (125 ± 13%), and 56 (201 ± 51%) dpo, 

relative to the control (Figure 26B). The SOD1 Fas mRNA expression appears to have a 

resemblance to the WT expression pattern after axotomy. The initial, small transient 

upregulation seen in the WT from zero to 7 dpo is present after axotomy in the SOD1 

facial nucleus, however it is delayed to 14 dpo (48 ± 25%) where no significant 

difference exits relative to control (Figure 26A and B). The result of the increased 

interval of the initial transient response in the SOD1 reveals a significant difference 

between SOD1 compared to WT at 7 dpo (Figure 26C). While the second upregulation of 

Fas mRNA in the WT remains at low levels and returns to baseline by 56 dpo, the second 

upregulation of Fas receptor mRNA in the SOD1 axotomized nucleus is greatly increased, 

as demonstrated by the significance between 14 dpo and 28 dpo (Figure 26B). 

Compared to WT, the Fas mRNA expression within the delayed response to axotomy is 

significantly upregulated at 28 and 56 dpo (Figure 26C).   

FasL mRNA expression in the WT axotomized facial motor nucleus is unchanged 

compared to control at 3 dpo (1 ± 47%) but is significantly upregulated at 7 dpo (111 ± 

50%). This upregulation is transient because WT FasL mRNA expression returns to 

baseline at 14 dpo (13 ± 70%; Figure 27A). The high variability of WT data points during 
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the initial, transient upregulation does not allow for detection of potential significant 

differences between the time-points, however a similar initial transient upregulation 

pattern occurs in the SOD1 facial nucleus after axotomy (Figure 27B), suggesting that 

increasing number of WT samples would most likely decrease variability and reveal a 

more significant pattern of transient upregulation between 3, 7 and 14 dpo.  

Following the initial upregulation of FasL mRNA in WT, the delayed response to 

axotomy is down regulated, as shown by the 28 dpo (-57 ± 25%) which is significantly 

different that control mRNA expression. However, this second change in mRNA 

expression relative to control could be considered regulated as across time the 

expression returns to baseline by 56 dpo (1 ± 12%) and while 56 dpo is not significantly 

different than control, it is significant from 28 dpo (Figure 27A).  

FasL mRNA expression after axotomy in the SOD1 facial nucleus does not differ 

from control at 3 dpo (10 ± 32%) but displays a significant upregulation at 7 (183 ± 25%), 

14 (80 ± 37%), 28 (221 ± 60%), and 56 (102 ± 14%) dpo (Figure 27B). The decreased 

variability among the SOD1 data sets, in comparison with those of the WT, as well as the 

enhanced upregulation results in significance between subsequent time-points (3 to 7, 7 

to 14, 14 to 28 and 28 to 56 dpo; respectively; Figure 27B).  

Again, similarities in the axotomy-induced mRNA expression pattern of WT and 

SOD1 facial motor nuclei is seen for the fourth component of the two death receptors 

investigated thus far. No differences between WT and SOD1 apparent during the initial, 
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transient upregulation which occurs between 3 and 14 dpo (Figure 27C). After 14 dpo, 

considerable differences between SOD1 and WT are revealed throughout the remaining 

delayed response to axotomy. While the WT axotomized nucleus displayed a small 

down regulation between 14 and 56 dpo, SOD1 axotomized nucleus shows a significant 

upregulation from 14 to 28 dpo followed by a significant decrease from 28 to 56 dpo, 

but not substantial enough to reach baseline (Figure 27B). 

Following axotomy in WT mice, mRNA expression for TRADD displays an initial 

transient downregulation at 3 (-17 ± 5%) and 7 (-24.55 ± 9%) dpo, which is significant 

relative to TRADD mRNA in the control facial motor nucleus (Figure 28A). No difference 

exists between WT TRADD mRNA expression and control levels for 14 (-5 ± 7%) and 28 (-

10 ± 10%) dpo, however 56 dpo (-7 ± 2%) displays less variability and differs significantly 

relative to control (Figure 28A). It is unclear whether the significance of the 56 dpo 

time-point is suggestive of sustained downregulation throughout the entire time course. 

Potentially this sustained downregulation may be obscured by the variability of the 14 

and 28 dpo time-points.  

The SOD1 axotomized facial motor nucleus displays a similar pattern of WT 

TRADD mRNA expression after target disconnection with no significant differences 

between any of the time-points (Figure 28C). After axotomy, SOD1 facial nuclei displays 

a transient downregulation of TRADD mRNA that is significant from control at 7 dpo (-22 

± 9%; Figure 28B). The remaining SOD1 time-points 3 (-5 ± 7%), 14 (-12 ± 9%), 28 (-4 ± 
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19%) and 56 (7 ± 17%) dpo do not significantly differ from control facial nucleus (Figure 

28B). It is not clear why high variability plagues the SOD1 28 and 56 dpo time-points 

relative to previous data points and those of the WT time-course (Figure 28). 

WT axotomized facial motor nuclei display an increase of FADD mRNA 

expression at 3 (39 ± 14%), and 7 (12 ± 13%) dpo relative to control nucleus FADD 

expression (Figure 29A).  The FADD mRNA upregulation appears to be another initial, 

transient response to axotomy because throughout the remainder of the time-course 

FADD mRNA expression has returned to basal levels and shows no difference from 

control; 14 (13 ± 13%), 28 (-16 ± 15%) and 56 (9 ± 5%) dpo, respectively (Figure 29A).  

SOD1 FADD mRNA expression within the axotomized facial motor nucleus also 

displays a significant, initial transient upregulation at 3 (39 ± 8%) and 7 (26 ± 11%) dpo 

relative to control that returns to baseline at 14 dpo (10 ± 11%; Figure 29B). While no 

significant differences are seen comparing SOD1 axotomized facial nuclei to WT for the 

time-points of 3, 7 and 14 dpo, a delayed response to axotomy within the SOD1 facial 

nucleus results in significant difference at 28 and 56 dpo (Figure 29C). The increased, 

delayed regulation of FADD mRNA that occurs at 28 dpo (75 ± 12%) and out to 56 dpo 

(73 ± 24%) is nearly two-fold compared to the initial transient upregulation seen in both 

WT and SOD1 mice (Figures 29A and 29B). This second upregulation leads to a 

significant difference between 28 dpo and the previous time-point of 14 dpo (Figure 

29B).  
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Daxx mRNA is upregulated in WT facial motor nuclei after axotomy at 7 (19 ± 

6%) and 14 (43 ± 15%) dpo, relative to control (Figure 30A). No difference is seen 

between WT axotomized and control nucleus for 3 dpo (15 ± 13% dpo) or the remaining 

time-points after the initial transient upregulation, 14 (43 ± 15%), 28 (20 ± 11%) and 56 

(-3 ± 12%) dpo (Figure 30A).  

Like WT, SOD1 axotomized facial motor nuclei do not display a difference in Daxx 

mRNA expression at 3 dpo (6 ± 10%), but do display significance with respect to the 

control nucleus for the remaining points in the time course; 7 (13 ± 6%), 14 (25 ± 7%), 28 

(13 ± 5%) and 56 (48 ± 18%) dpo (Figure 30B). SOD1 axotomized facial motor nuclei 

mRNA expression is significantly upregulated at 56 dpo compared to WT (Figure 30C). 

The return of Daxx’s mRNA to baseline in the WT by 14 dpo suggests the initial transient 

upregulation is a normal response to target disconnection but is regulated and returns 

to baseline. Within the axotomized, SOD1 facial motor nuclei, Daxx mRNA expression is 

initially a comparable response to that seen in the WT facial nucleus, however the 

prolonged and enhanced upregulation and failure to return the expression to baseline 

levels is suggestive of dysregulation.  

In WT axotomized facial motor nuclei, ASK1 mRNA is unchanged relative to 

control facial motor nuclei for all time-points; 3 (16 ± 11%), 7 (3 ± 10%), 14 (-5 ± 9%), 28 

(-3 ± 12%) and 56 (1 ± 8%) dpo (Figure 31A). SOD1 axotomized facial motor nuclei does 

not display any change in ASK1 mRNA expression at 3 dpo (14 ± 17%), however a short, 
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transient downregulation occurs at 7 dpo (-25 ± 8%) that is significantly different than 

control, however this reduction in mRNA expression returns to basal levels at 14 dpo (9 

± 11%; Figure 31B). The return to basal mRNA expression at 14 dpo results in a 

significant difference between mRNA expression levels at 7 and 14 dpo (Figure 31B). 

The delayed response to axotomy in the SOD1 facial nuclei is an increasing upregulation 

at 28 (33 ± 15%) and 56 (59 ± 20%) dpo, both of which show significantly increased ASK1 

mRNA expression relative to SOD1 control facial nuclei (Figure 31B). During comparison 

of SOD1 axotomized mRNA expression relative to WT expression, significant differences 

were apparent during the initial transient downregulation within the SOD1 nucleus and 

again during the delayed response to axotomy at 56 dpo (Figure 31C). 

The mRNA expression of nNOS within the WT facial motor nucleus after axotomy 

is no different relative to the uninjured, control facial motor nucleus for the entire time 

course; 3 (-12 ± 12%), 7 (-12 ± 20%), 14 (-5 ± 8%), 28 (-23 ± 14%) and 56 (5 ± 5%) dpo 

(Figure 32A).  

Initially there is no change in nNOS mRNA expression within the SOD1 

axotomized facial motor nucleus relative to control at 3 (9 ± 15%) and 7 (-16 ± 12%) dpo 

(Figure 32B). A significant upregulation between 7 dpo and 14 dpo (65 ± 18%) reveals a 

delayed response to axotomy in the SOD1 facial motor nucleus (Figure 32B). In addition 

to the upregulated 14 dpo time-point, 28 (109 ± 16%) and 56 (104 ± 20%) dpo reveal 

sustained upregulation of nNOS mRNA and these data are significantly different relative 



113 
 

 
 

to SOD1 control facial nuclei and WT axotomized facial motor nuclei (Figures 32B and 

32C). Since it has been established that activation of the Fas-pathway in MN results in 

increased transcription of nNOS, the possibility that increased FMN loss after axotomy 

in SOD1 mice may be a result of Fas-induced cell death cannot be discounted.  

In WT facial motor nuclei, axotomy results in a large, significant upregulation of 

Caspase-3 mRNA expression relative to control nucleus at 3 (384 ± 98%), 7 (379 ± 65%), 

14 (443 ± 58%) and 28 (139 ± 29%) dpo (Figure 33A). The upregulation begins to subside 

after 14 dpo and there is a significant drop in Caspase-3 mRNA expression between 14 

and 28 dpo as well as between 28 and 56 dpo (25 ± 38%) and by 56 dpo the expression 

reaches basal levels and is no different than WT control mRNA expression (Figure 33A). 

In SOD1 axotomized facial motor nuclei Caspase-3 mRNA is also significantly 

upregulated at 3 (259 ± 38%), 7 (367 ± 53%), 14 (331 ± 40%), 28 (164 ± 37%), and 

continued at 56 dpo (111 ± 46%; Figure 33B). As seen in WT axotomized facial nuclei, in 

the SOD1 nuclei there is a significant decreases between the 14 and 28 dpo, however 

between 28 and 56 dpo there is no difference and the upregulation is sustained out to 

56 dpo relative to control (Figure 33B). During comparison of Capase-3 mRNA 

expression after axotomy in SOD1 relative to WT, no significant differences were seen 

suggesting upregulation of Caspase-3 mRNA is a normal, characteristic response to facial 

nerve axotomy (Figure 33C). 
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The WT and SOD1 axotomy-induced mRNA expression relative to Caspase-8 

mRNA was previously investigated in our laboratory, however it was only assessed out 

until 28 dpo.  

WT axotomized facial motor nucleus displays a significantly increased mRNA 

expression relative to control at 28 dpo (122 ± 57%; Figure 34A). SOD1 facial motor 

nuclei also display a similar, significant increase expression of Caspase-8 mRNA at 28 

dpo (213 ± 59%) relative to SOD1 control facial nuclei (Figure 34B). At 28 dpo no 

difference exists between Caspase-8 mRNA expression in SOD1 facial nuclei compared 

to WT (Figure 34C). The results of WT and SOD1 Caspase-8 mRNA expression at 28 dpo 

is consistent with previous findings from our laboratory (Mesnard et al., 2011). Due to 

errors during sample processing and insufficient sample volume Caspase-8 was not 

analyzed for WT 56 dpo within this dissertation, but will be analyzed in the future. SOD1 

axotomy-induced upregulation of Caspase-8 mRNA was significantly reduced between 

the 28 and 56 (12 ± 19%) dpo time-points and at 56 dpo mRNA expression levels have 

returned to baseline relative to SOD1 control facial motor nuclei (Figure 34B). The 

extended time course for Caspase-8 reveals that while it is upregulated after axotomy in 

both WT and SOD1 facial nuclei, it has returned to basal expression levels within the 

SOD1 nuclei suggesting the response is regulated. 

WT facial motor nuclei display an initial transient downregulation of TRAF2 

mRNA at 3 (-15 ± 9%) and 7 (-26 ± 4%) dpo with significance between 7 dpo and control 
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nuclei expression (Figure 35A). The return to baseline expression results in a significant 

difference between WT 7 dpo and 14 dpo (-6 ± 5%; Figure 35A). For the remainder of 

the WT time course, TRAF2 mRNA expression is maintained at baseline levels and 

therefore, no differences between WT axotomized facial nuclei and control nuclei are 

present; 28 (-1 ± 15%) and 56 (6 ± 11%) dpo (Figure 35A).  

SOD1 axotomized facial motor nuclei also display an initial, transient and 

significant downregulation of TRAF2 mRNA at 3 (-27 ± 8%) and 7 (-41 ± 9%) dpo (Figure 

35B). A dramatic upregulation occurs after 7 dpo resulting in the return to baseline 

mRNA expression at 14 (-6 ± 9%) dpo, and a significant difference between the time-

points 7 and 14 dpo (Figure 35B). After 14 dpo, expression of TRAF2 mRNA is 

maintained at baseline through 28 dpo (0 ± 11%; Figure 35B). However, there is a 

significant difference between 28 and 56 (55 ± 20%) dpo, and 56 dpo is also significantly 

different than SOD1 control facial nuclei mRNA levels (Figure 35B). No differences exist 

between SOD1 TRAF2 mRNA in response to axotomy and WT throughout the time 

course (Figure 35). 

In WT axotomized facial motor nuclei, SODD mRNA is significantly 

downregulated at 3 (-50 ± 5%), 7 (-51 ± 6%), 14 (-24 ± 7%) and 28 (-24 ± 8%) dpo relative 

to control (Figure 36A). The initial downregulation of SODD mRNA expression in WT is 

considered a transient response because a significant difference between 7 and 14 dpo, 

where although SODD mRNA levels are still downregulated they are to a lesser extent 
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and maintained through 28 dpo before returning to baseline by 56 dpo (-9 ± 17%; Figure 

36A).  

In SOD1 facial motor nuclei there is also an initial, significant downregulation in 

response to axotomy at 3 (-34 ± 6%), 7 (-32 ± 7%) and 14 (-12 ± 6%) dpo, relative to 

SOD1 control facial nuclei (Figure 36B). In a similar pattern as seen in WT, a significant 

difference between 7 and 14 dpo leads to the termination of the transient 

downregulation (Figure 36B). The remaining SOD1 time course of SODD mRNA 

expression is not significantly different than SOD1 control facial nucleus expression 

levels, 28 (3 ± 13%) and 56 (-12 ± 21%) dpo (Figure 36B). Comparison of axotomized 

SOD1 facial motor nuclei expression of SODD mRNA with that of WT reveals a significant 

difference at 3 and 7 dpo resulting in a diminished transient downregulation in the 

SOD1 compared to the WT (Figure 36C).  

In WT facial motor nucleus, axotomy results in a large upregulation of TNFR2 mRNA 

that is sustained throughout the time course and significantly different than WT control, 

uninjured nucleus at all time-points; 3 (865 ± 242%), 7 (1606 ± 162%), 14 (1084 ± 214%), 

28 (517 ± 93%) and 56 (115 ± 25%) dpo (Figure 37A). Throughout the WT time course of 

increased TNFR2 mRNA expression, significant differences can be seen between 3 and 7 

dpo, 14 and 28 dpo, and also between 28 and 56 dpo (Figure 37A).  

SOD1 axotomized facial motor nuclei also displays significant upregulation of 

TNFR2 mRNA throughout the time-course; 3 (1659 ± 388%), 7 (1479 ± 287%), 14 (721 ± 



117 
 

 
 

178%), 28 (502 ± 87%) and 56 (138 ± 14%) dpo (Figure 37B). Significant difference 

between 7 and 14 dpo as well as 28 and 56 dpo can also be seen (Figure 37B). The 

axotomy-induced upregulation of TNFR2 mRNA is similarly expressed between SOD1 

and WT facial motor nuclei (Figure 37C). 

PAC1-R is significantly different from WT control expression at the following 

time-points; 3 (-60 ± 10%), 7 (-65 ± 4%) and 14 (-46 ± 10%) dpo (Figure 38A). By 28 (-22 

± 13%) and 56 (15 ± 20%) dpo, WT mRNA expression of PAC1-R has returned to baseline 

(Figure 38A). PAC1-R mRNA expression within the axotomized SOD1 facial motor nuclei 

is also downregulated significantly at 3 (-52 ± 4%), 7 (-53 ± 7%) and 14 (-36 ± 7%) dpo, 

relative to SOD1 control nuclei (Figure 38B).  There is a significant increase between 14 

and 28 (7 ± 12%) dpo however no difference exists between 28 and 56 (15 ± 8%) dpo 

(Figure 38B). The axotomy-induced upregulation of PAC1-R mRNA is similarly expressed 

between SOD1 and WT facial motor nuclei (Figure 38C). Results suggest that like the 

WT, PAC1-R mRNA expression is regulated in SOD1 facial motor nucleus after neuronal 

target disconnection. 

In WT facial motor nucleus, axotomy results in a large upregulation of CX3CR1 mRNA 

that is sustained throughout the time course and significantly different than WT control 

nucleus at all time-points; 3 (391 ± 46%), 7 (624 ± 30%), 14 (461 ± 51%), 28 (275 ± 39%) 

and 56 (58 ± 14%) dpo (Figure 39A). Throughout the WT time course of increased 
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CX3CR1 mRNA expression, significant differences can be seen between every time-point 

and the preceding (Figure 39A).  

SOD1 axotomized facial motor nuclei also displays significant upregulation of 

CX3CR1 mRNA throughout the time-course; 3 (614 ± 89%), 7 (516 ± 56%), 14 (308 ± 

43%), 28 (270 ± 42%) and 56 (86 ± 17%) dpo (Figure 39B). Significant difference between 

7 and 14 dpo, as well as 28 and 56 dpo can also be seen (Figure 39B). The axotomy-

induced upregulation of CX3CR1 mRNA is similarly expressed between SOD1 and WT 

facial motor nuclei, however significant differences exist between SOD1 axotomized 

facial nuclei CX3CR1 mRNA expression at 3 and 14 dpo relative to WT CX3CR1 mRNA 

expression (Figure 39C). 

WT expression of CRMP4 mRNA in the axotomized facial motor nucleus differed 

significantly relative to WT control nucleus for the following time-points; 3 (-29 ± 4%), 7 

(13 ± 2%), 14 (36 ± 12%), 28 (38 ± 13%) dpo then returned to baseline expression by 56 

dpo (-18 ± 46%; Figure 40A). CRMP4 expression significantly differed between 7 and 14 

dpo (Figure 40A). CRMP4 mRNA expression in SOD1 axotomized facial nucleus is as 

follows; 3 (1 ± 8%), 7 (5 ± 12%), 14 (27 ± 14%), 28 (28 ± 12%) and 56 (-1 ± 25%) dpo 

(Figure 40B). The only time-point significantly different than control SOD1 CRMP4 mRNA 

expression is 28 dpo (Figure 40B). Regarding SOD1 CRMP mRNA expression compared 

to that of WT, the only significant difference is revealed at 3 dpo (Figure 40C). Overall no 
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noteworthy differences are seen regarding mRNA expression of CRMP4 between WT 

and SOD1 facial motor nuclei in response to axotomy. 

WT GAP-43 was found to be significantly upregulated at 28 dpo (612 ± 193%) 

relative to control but not at 56 dpo (116 ± 68%; Figure 41A).  SOD1 GAP-43 mRNA 

expression at 28 dpo (896 ± 197%) differs significantly from SOD1 control but does not 

differ from uninjured facial motor nucleus at 56 dpo (118 ± 47%; Figure 41B). There is 

no significant difference between SOD1 GAP-43 expression and WT (Figure 41C).  

The cytoskeletal protein βII-Tubulin is also considered a regenerative gene and 

was previously shown to be upregulated after facial nerve axotomy to a similar extend 

tin WT and SOD1 mice. Extension of the time course from 28 to 56 dpo was analyzed to 

determine whether βII-Tubulin mRNA expression returned to baseline in WT and SOD1 

axotomized facial motor nuclei. In WT axotomized facial motor nuclei there was no 

difference between the two time-points 28 (58 ± 48%) and 56 (16 ± 30%) dpo relative to 

WT control mRNA (Figure 42A). Within SOD1 axotomized facial motor nuclei, βII-Tubulin 

mRNA expression at 28 dpo (101 ± 33%) was significantly increase relative to control as 

well as significantly different than the 56 dpo (24 ± 11%) time-point (Figure 42B). Again, 

no difference was seen between this MN-regenerative gene in SOD1 axotomized facial 

motor nucleus and WT (Figure 42C).  

GFAP mRNA expression following axotomy has been previously assessed in our 

laboratory and SOD1 axotomized facial motor nuclei displayed a greatly suppressed 
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upregulation compared to WT. Here, the original time course was extended from 28 to 

56 dpo. At 28 dpo (660 ± 135%), WT axotomized facial nuclei display a significant 

difference from control nuclei and a significant difference between the two time-points 

28 and 56 dpo (122 ± 73%; Figure 43A). At 56 dpo, WT facial motor nuclei do not display 

significantly different GFAP mRNA expression relative to control (Figure 43A). In SOD1 

axotomized facial motor nuclei, both 28 (494 ± 125%) and 56 (298 ± 50%) dpo differ 

significantly than SOD1 control GFAP mRNA expression (Figure 43B). SOD1 axotomized 

facial motor nuclei GFAP expression is significantly higher at 56 dpo relative to WT 

(Figure 43A). While GFAP mRNA expression is significantly suppressed after facial nerve 

axotomy in SOD1 facial nucleus its upregulation is sustained for a longer period of time.  

Following axotomy in WT facial motor nuclei, CD68 mRNA is significantly 

upregulated relative to WT control at all time-points; 3 (549 ± 48%), 7 (1020 ± 111%), 14 

(1151 ± 222%), 28 (605 ± 145%) and 56 (220 ± 53%) dpo (Figure 44A). Among the WT 

time-points significant differences are revealed between 7 and 14 dpo as well as 28 and 

56 dpo (Figure 44A). Regarding the SOD1 time course for CD68 mRNA expression after 

axotomy, significant differences relative to SOD1 control expression is shown for all 

time-points; 3 (455 ± 155%), 7 (607 ± 105%), 14 (291 ± 61%), 28 (693 ± 157%) and 56 

(184 ± 50%) dpo (Figure 44B). In SOD1 axotomized facial motor nuclei significant 

differences occur between 14 and 28 dpo as well as 28 and 56 dpo (Figure 44B). In 

comparison between SOD1 and WT significantly reduced mRNA expression is seen in the 
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SOD1 axotomized nucleus compare to WT at 7 and 14 dpo (Figure 44C). This result is 

consistent with the findings from GFAP mRNA expression and suggests a dysregulation 

exists within in the glial response to neuronal target disconnection which reveals itself 

as a suppression of the astrocyte and microglial response.  
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Figure 20. Experimental Design: Percent FMN survival in axotomized WT and SOD1 facial motor 
nuclei at 28 and 56 dpo 

 
 

1. WT and SOD1 mice received a right facial nerve axotomy at 56 doa. 
2. Mice were euthanized at 28 and 56 dpo. 
3. Brains were removed and cryosectioned through the facial motor nucleus at 25 µm. 
4. Sections were fixed with 4% PFA and stained with thionin. 
5. FMN identified by morphology and a defined nucleus and nucleolus. 
6. F MN were demarcated under light microscopy using the Neurolucida Tracing System and 

total number of MN per section were recorded for both control (left) and axotomized 
(right) facial motor nuclei. 

7. The average percent of FMN survival was calculated by taking the total number of MN 
counted in the axotomized nucleus and dividing by the total number of MN counted in the 
WT 28 dpo (84 doa) control nucleus, then multiplying by 100. The percent of FMN survival 
for each mouse was averaged within a time-point (28 or 56 dpo) for the total percent of 
FMN survival
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Figure 21. Representative photomicrographs of thionin-stained control and axotomized facial 
motor nuclei of WT and SOD1 mice at 28 and 56 dpo. Original magnification 20x.
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SOD1 28 dpo 
(84 doa) 

WT 56 dpo 
(112 doa) 
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Figure 22. The average percent of FMN survival ± SEM in WT and SOD1 axotomized facial motor 
nuclei at 28 and 56 dpo relative to WT 28 dpo uninjured, control facial motor nucleus. a 
represents a significant difference between time among the same strain. * represents a 
significant difference between SOD1 relative to WT; p ≤ 0.05.
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Figure 23. Experimental Design: LMD of WT and SOD1 axotomized and control facial motor 
nuclei, real time RT-PCR and analysis of mRNA expression 

 

 
 

1. WT and SOD1 mice received a right facial nerve axotomy at 56 doa. 
2. Mice were euthanized at 3, 7, 14, 28 and 56 dpo. 
3. Brains were removed and cryosectioned through the facial motor nucleus at 25 µm. 
4. Sections were fixed with 100% ETOH and stained with thionin.  
5. Control and axotomized nuclei were separately collected by laser microdissected for each 

mouse. 
6. RNA was isolated from control and axotomized facial motor nucleus samples. 
7. Real-time, RT-PCR was performed for specific genes to profile the axotomy-induced 

molecular response in the SOD1 compared to the WT across time. 
8. The semi-quantitative, percent change of mRNA expression of the axotomized nucleus 

relative to the uninjured, control nucleus was calculated using the 2-∆∆C
T method.
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Figure 24. Percent change of TNFR1 mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; * represents a significant difference 
relative to WT at p ≤ 0.05. 
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Figure 25. Change of TNFα mRNA expression in WT and SOD1, control (C) or axotomized (Ax) 
facial motor nuclei at 28 and 56 dpo. A, scanned image of TNFα gel electrophoresis, amplicon 
length of 102 base pairs (bp). Molecular marker (MM) band represents 100 bp. GAPDH, 
housekeeping gene, amplicon length of 78 bp. Upper panel displays WT and lower panel displays 
SOD1 facial nuclei. B, Percent change of TNFα mRNA expression ± SEM in SOD1 axotomized 
facial nuclei at 28 and 56 dpo relative to control. # represents a significant difference relative to 
the control at p ≤ 0.05.
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Figure 26. Percent change of Fas mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 27. Percent change of FasL mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 28. Percent change of TRADD mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control at p ≤ 0.05.
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Figure 29. Percent change of FADD mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 30. Percent change of Daxx mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; * represents a significant difference 
relative to WT at p ≤ 0.05.
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Figure 31. Percent change of ASK1 mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 32. Percent change of nNOS mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.



135 
 

 
 

 
 
 
 

 
 
Figure 33. Percent change of Caspase-3 mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point at p ≤ 0.05. 
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Figure 34. Percent change of Caspase-8 mRNA expression ± SEM in SOD1 axotomized facial 
nuclei at 28 and 56 dpo and WT axotomized facial nuclei at 28 dpo relative to control. A, WT. B, 
SOD1. C, WT vs. SOD1. # represents a significant difference relative to the control; a represents 
a significant difference relative to the previous time-point at p ≤ 0.05.
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Figure 35. Percent change of TRAF2 mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point at p ≤ 0.05. 
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Figure 36. Percent change of SODD mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 37. Percent change of TNFR2 mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point at p ≤ 0.05.
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Figure 38. Percent change of PAC1-R mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point at p ≤ 0.05.
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Figure 39. Percent change of CX3CR1 mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 3, 7, 14, 28, and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 40. Percent change of CRMP4 mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Figure 41. Percent change of GAP-43 mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # represents a 
significant difference relative to the control; a represents a significant difference relative to the 
previous time-point at p ≤ 0.05.



144 
 

 
 

 
 
 
 
 
 

 
Figure 42. Percent change of βII-Tubulin mRNA expression ± SEM in WT and SOD1 axotomized 
facial nuclei at 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # represents a 
significant difference relative to the control; a represents a significant difference relative to the 
previous time-point at p ≤ 0.05.
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Figure 43. Percent change of GFAP mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # represents a 
significant difference relative to the control; a represents a significant difference relative to the 
previous time-point; * represents a significant difference relative to WT at p ≤ 0.05.
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Figure 44. Percent change of CD68 mRNA expression ± SEM in WT and SOD1 axotomized facial 
nuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, WT. B, SOD1. C, WT vs. SOD1. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to WT at p ≤ 
0.05.
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Table 4: Summary of axotomy-induced percent change mRNA expression responses % (Ax/C) in 
WT and SOD1 mice. Note that mRNA expression for the time-points of 3, 7, 14 and 28 dpo was 
previously determined by our laboratory and results from those genes (TNFα, Caspase-8, GAP-
43, βII-Tubulin and GFAP) are summarized within this table (Mesnard et al., 2011). 
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E. Discussion 

The experiments performed within this Chapter focused on MN survival and 

molecular expression following experimentally-induced neuronal target disconnection. 

It has been well-established that the initial pathological event in SOD1 disease 

progression is the loss of NMJ or target disconnection within the pre-symptomatic stage 

(Fischer et al., 2004; Dadon-Nachum et al., 2011). This denervation proceeds clinical 

symptoms and MN cell loss and therefore, resembles the “die-back” phenomenon.  

Facial nerve axotomy within the SOD1 pre-symptomatic stage was assessed as an 

experimental model of the “die-back” that is evident in ALS. This Chapter details the 

responses to the experimentally-induced target disconnection within the SOD1 facial 

motor nucleus. The measured outcomes of these responses were FMN cell survival and 

mRNA expression of genes involved in neurodegeneration, neuroprotection and the glial 

response. The results obtained from the axotomized SOD1 facial motor nucleus were 

compared to WT, axotomized facial motor nucleus. The WT FMN percent survival as well 

as the mRNA expression levels and patterns of expression over time, provide a 

reference or a standard of what can be considered a “normal” response to target 

disconnection. The ability to compare the SOD1 target-disconnection response to the 

WT allows for identification of potential dysregulated mechanisms. Identification of 

potential neurodegenerative mechanisms is generally the first step in development of 

potential and prospective therapeutics and treatment interventions.  
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Subsequent Chapters focus on the theoretical, diseased-induced target 

disconnection of the facial motor nucleus.  Responses within the disease-affected facial 

motor nucleus were analyzed utilizing the same measureable outcomes, FMN cell 

survival and mRNA expression of genes involved in neurodegeneration, neuroprotection 

and the glial response. Comparisons between FMN survival and gene expression within 

the SOD1 facial motor nucleus after axotomy and during disease progression suggest 

that facial nerve axotomy within the SOD1 pre-symptomatic stage resembles disease 

progression and strongly suggests disease progression is a result of a neuronal “die-

back” phenomenon. 

Susceptibility to Axotomy of the Immune-Dependent MN Subpopulation within the SOD1 

Facial Motor Nucleus 

After facial nerve axotomy, pre-symptomatic SOD1 mice display a dramatic 

reduction in FMN percent survival at 28 dpo compared to WT, which was previously 

reported by us (Mesnard et al., 2011). Additionally, WT FMN survival was only 

marginally decreased at 28 dpo but these levels were further reduced by 56 dpo, which 

is in agreement with our previous findings at 70 dpo (Serpe et al., 2000). The FMN 

survival experiment within this Chapter revealed that at the extended time-point of 56 

dpo the level of FMN survival was maintained in the SOD1 mouse. This pattern of 

dramatic FMN loss at 28 dpo followed by maintenance of FMN survival with time after 

axotomy has been shown by our lab before using immunodeficient mouse models 
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(Serpe et al., 2000; Beahrs, 2009). These findings suggest a lack of neuroprotection of 

the immune-dependent MN population within the SOD1 facial motor nucleus. The lack 

of neuroprotection may be due to a deficit within the SOD1 peripheral immune system 

or lack of successful communication between the acquired immune system and facial 

motor nucleus. Investigation of the SOD1 peripheral immune system is ongoing and 

recent findings from our lab suggest that the immune-dependent MN population within 

the SOD1 facial motor nucleus is capable of being rescued to WT FMN survival levels 

after reconstitution with WT splenocytes (unpublished data).  

Persistence of the Resilient MN Subpopulation within Axotomized SOD1 Facial Motor 

Nucleus at 56 dpo 

Additionally these results show the SOD1 facial motor nucleus, similar to the WT 

and immunodeficient models, may include a second, subpopulation of MN in the facial 

motor nucleus which consists of the 40-50% of cells that are a resilient population and 

survive for long periods of time, regardless of immune-status or target reconnection 

(Jones et al., 2005). This resilient population of MN appears to be evident within the 

SOD1 and ALS literature (Felice, 1997; Dadon-Nachum et al., 2011). 

mRNA Expression Time Course of 21 Genes within the WT and SOD1 Axotomized Facial 

Motor Nucleus  

The axotomy-induced mRNA expression data in WT and SOD1 mice is 

summarized in Table 4 and reveals several important conclusions. 
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Biphasic mRNA Expression Following Axotomy 

The majority of genes assessed within the facial motor nucleus reveal a biphasic 

pattern of mRNA expression throughout the extended time course in response to facial 

nerve axotomy. Among the 21 genes assessed, some variation exists. In addition, the 

intersecting time-point between the 2 phases can be somewhat arbitrary, depending on 

the specific gene. However, in general the expression patterns of WT and SOD1 suggest 

the presence of an initial and a delayed molecular response to axotomy. 

The distinct, initial phase typically includes the time-points of 3, 7, and 14 dpo 

and conclusion of this phase is marked by a return to baseline, i.e. a transient up/down-

regulation, or a significant change towards baseline expression. In the WT the delayed 

phase is typically unchanged, following transient expressions that occur within the initial 

phase, or includes a return to baseline by the last time-point (56 dpo). Several genes, 

such as TNFR1 do not reveal a biphasic pattern, but for comparison purposes the most 

common intersecting time-point that usually distinguishes the two phases (14 dpo) was 

chosen. While TNFR1 expression is recorded within Table 4 in both the initial and 

delayed response sections, the continued upregulation is still evident and reflected by 

the symbols within the table.    

WT mRNA Expression Levels and Patterns 

The only genes that remain upregulated in the WT and have therefore, not 

returned to baseline by 56 dpo are those related to the microglial response, CD68 and 
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the two neuroprotective receptors, localized to microglia, CX3CR1 and TNFR2. These 

findings suggest a continued response or sustained reactivity of microglia in the 

axotomized WT facial motor nucleus at 56 dpo. 

Within the WT facial motor nucleus, all death receptor signaling genes for TNFR1 

and Fas have returned to baseline by 56 dpo. The literature suggests that MN cell death 

after facial nerve axotomy most likely involves the TNFR1 death pathway (Mesnard et 

al., 2010; Mesnard, 2009; Raivich et al., 2002). The upregulation of TNFR1 genes within 

both the initial and delayed response phases supports this theory. Conversely, within 

the literature there is no indication that facial nerve axotomy results in Fas-induced MN 

cell death, yet upregulation of Fas genes occurs after axotomy in the WT.  It has been 

recently determined that Fas-induced MN cell death requires activation of 2 pathways 

downstream of Fas (refer to Chapter II Section K.e.iii) and while these results show 

increased mRNA for factors involved in the more typical downstream pathway, shared 

by TNFR1 (FADD/Caspase-8/Caspase-3), several factors required in the MN-specific Fas 

pathway (ASK1/nNOS) are not upregulated at all following axotomy in WT. For Fas-

induced MN cell death, both pathways downstream of Fas must be activated and 

blocking either pathway is protective. Potentially, the absence of increased expression 

of ASK1 and nNOS is evidence of regulation within the MN-specific Fas pathway and 

prevention of Fas-induced MN death in the WT after axotomy. However, it must be 

mentioned that these results are only suggestive and changes in mRNA expression levels 



153 
 

 
 

does not necessarily translate to protein concentration or activation states of those 

proteins. Further examination of protein concentrations, localization, and 

phosphorylation states will need to be examined to make more definitive conclusions. 

Similar Response of mRNA Expression During the Initial-Response Phase Between WT 

and SOD1 Mice 

In comparison to the WT, SOD1 mRNA expression within the initial-response 

phase following axotomy is overwhelmingly similar. Some similarities of expression 

between WT and SOD1 were anticipated; however the sheer number of genes that were 

expressed in a similar manner within the initial phase was surprising. Current theory, 

supported by the results of our previous studies as well as those conducted by other 

investigators, suggests that MN in the SOD1 mouse and in the ALS patient are capable of 

responding to injury or target disconnection in a regenerative manner.  These mRNA 

expression results within the initial-response to axotomy support this theory. 

SOD1 mRNA Expression is Dysregulated within the Delayed-Response Phase Compared 

to WT 

Although most genes assessed displayed equivalent expression levels and 

patterns between WT and SOD1 during the initial-response to axotomy, mRNA 

expression throughout the delayed-response was vastly different in the SOD1 facial 

nucleus compared to WT. It was apparent that in the SOD1 many of the genes analyzed 

failed to return to baseline by 56 dpo and appeared to show either maintenance of the 
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upregulation or a continual increase in upregulation. These findings led to the 

conclusion that certain genes are dysregulated in the SOD1 axotomized facial nucleus 

compared to the WT.  

Genes involved in the TNFR1 and Fas death receptor signaling pathways are all 

dysregulated in the SOD1 axotomized facial motor nucleus compared to WT. Every gene 

specific to the Fas pathway (Fas, FasL, Daxx, ASK1, nNOS) at 56 dpo are upregulated 

compared to WT and/or have not returned to baseline. Additionally FADD, Capsase-3, 

shared by TNFR1 and Fas signaling are also dysregulated compared to WT. Among genes 

involved in TNFR1 death pathway, TNFR1, TNFα, and TRAF2 are dysregulated in the 

SOD1 and this is evident by their increased upregulation and failure to return to baseline 

by 56 dpo. Other genes such as TRADD, SODD, and CRMP4 show a dysregulation in the 

SOD1 by an absence downregulation that is evident in the WT. This downregulation may 

be important in regulation of the signaling and inhibition of further neurodegeneration 

however these ideas are speculative.  

Glial cell response to axotomy initially appeared similar however it too is 

dysregulated following neuronal target disconnection in the SOD1 compared to WT. In 

SOD1 both genes, GFAP and CD68 do not reach the level mRNA expression seen in the 

WT response to axotomy. In addition, the upregulation of GFAP expression, while 

suppressed in the SOD1 compared to the WT is maintained at 56 dpo in the SOD1 facial 

nucleus and does not return to baseline as was seen in the WT facial nucleus. The 
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suppression of glial-specific genes in the SOD1 axotomized facial nucleus suggest that 

microglia and astrocytes do respond to neuronal target disconnection, however their 

response is significantly less robust than that seen in the WT. Therefore the glial 

response is dysregulated within the SOD1 facial nucleus (Mesnard et. al., 2011).  

While the majority of genes appeared dysregulated in the SOD1 several were 

regulated or expressed in a similar pattern and to an equivalent degree. These regulated 

genes included Caspase-8, the neuroprotective signaling genes (TNFR2, PAC1-R and 

CX3CR1) and the neuroregenerative genes (GAP-43 and βII-Tubulin). These results 

support what has been previously mentioned, that SOD1 MN are capable of 

regeneration and attempt to survive after peripheral nerve injury or target 

disconnection. It is unclear why Caspase-8 is only death receptor-associated signaling 

gene that appears regulated in the SOD1 compared to WT. This result may be better 

understood if protein levels for the activated form of the Caspase-8 were assessed.    

It should be mentioned that while the experiments within this dissertation focus 

FMN survival, many of these genes are ubiquitously expressed and the use of relative 

mRNA expression of the facial nucleus does not provide any information indicative as to 

which cell type is expressing the mRNA.  

Subsequent Chapters focus on the theoretical, diseased-induced target 

disconnection of the facial motor nucleus.  Responses within the disease-affected facial 

motor nucleus were analyzed utilizing the same measureable outcomes, FMN cell 
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survival and mRNA expression of genes involved in neurodegeneration, neuroprotection 

and the glial response. Comparisons between FMN survival and gene expression within 

the SOD1 facial motor nucleus after axotomy and during disease progression suggest 

that facial nerve axotomy within the SOD1 pre-symptomatic stage resembles disease 

progression and strongly suggests disease progression is a result of a neuronal “die-

back” phenomenon.
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CHAPTER V 

DISEASE-INDUCED MOLECULAR EXPRESSION IN 

SYMPTOMATIC SOD1 FACIAL MOTOR NUCLEUS 

A. Abstract 

ALS is a neurodegenerative disease resulting in MN cell death. The SOD1 

transgenic mouse model of ALS has similar disease pathology as observed clinically. 

Disease onset is initiated during the pre-symptomatic stage where MN axons withdraw 

from target muscles, i.e., an axonal die-back process. The process of axonal die-back 

results in a cellular response resembling peripheral nerve chronic transection axotomy. 

The well-established facial nerve axotomy model is used to investigate the properties of 

MN survival and regeneration. We have shown that pre-symptomatic SOD1 FMN are 

significantly more susceptible to axotomy-induced cell death compared to WT. In 

addition, we identified that the MN-specific gene expression response in pre-

symptomatic SOD1 facial nucleus after axotomy was similar to the WT response. 

However, a dysregulated neuropil gene expression response was observed in the pre-

symptomatic SOD1 facial nucleus after axotomy, which was significantly distinct from 

the WT response. Specifically, pre-symptomatic SOD1 MN in the facial nucleus are 

surrounded by a pro-inflammatory microenvironment constitutively expressing TNFα. 
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Recently, we examined the response of death receptor signaling gene expression after 

axotomy in WT and pre-symptomatic SOD1 mice. The results demonstrate that 

axotomy, itself, induces a characteristic molecular response in WT and SOD1 facial 

nuclei, involving the upregulation of death receptors and downstream apoptotic 

signaling molecules. Therefore, we propose that SOD1 MN susceptibility to cell death is 

due to a dysregulated interaction between the existing pro-inflammatory 

microenvironment and the MN molecular response to axonal injury. The current study 

investigated the molecular response to disease progression at the level of the facial 

nucleus in symptomatic SOD1 mice, and compared this molecular response to pre-

symptomatic SOD1 axotomy-induced response. The results indicate that the molecular 

response to disease within the control, facial motor nucleus of symptomatic SOD1 mice, 

resembles the axotomy-induced molecular response in pre-symptomatic mice.  

B. Introduction 

Chapter V investigates the molecular response to SOD1 disease progression 

within the facial motor nucleus. This molecular response is compared to the axotomy-

induced molecular response determined in Chapter IV. For specifics regarding the 

molecular response to axotomy in the pre-symptomatic SOD1 facial nucleus, refer to 

Chapter IV. 

The SOD1 mouse appears to develop normally, well into adulthood. The first 

symptoms develop at approximately 90 doa and consist of a slight tremor of the hind-
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limbs. This tremor becomes more pronounced, including both hind-limbs and 

sometimes the forelimbs. Proximal muscle weakness and atrophy begin to develop by 

120 doa as evident by shortness of stride. SOD1 mice reach end-stage disease by 136 

doa, marked by severe paralysis. The mice are unable to lift their pelvis, generally do not 

respond to tapping on the cage, and are unable to groom themselves. MN cell death 

accompanies the progression of symptoms. At symptomatic stage, 90 days, the decrease 

in the number of somatic MN in C7 and L3 segments reaches significance compared to 

aged-matched controls. The MN death continues into end-stage disease where the MN 

loss reaches 50% in the ventral horn of spinal cord. Previous studies within the 

brainstem showed MN in the hypoglossal motor nucleus revealed a trend for MN loss, 

however significance was not reached by end-stage disease (Chiu et al., 1995). 

However, the initial pathological event that is thought to initiate the disease is 

denervation of muscle endplates. Early within the pre-symptomatic stage loss of NMJ 

becomes significant within the hind-limb musculature. This is followed by evidence of 

distal axonopathy. Concurrent electrophysiological assessments reveal abnormalities 

which validate the histological findings (Fischer et al., 2004; Durand et al., 2006; 

Mancuso et al., 2011). Decreases in muscle mass and muscle fiber diameter are likely a 

result of the loss of functional motor units (Marcuzzo et al., 2011). Compensatory axonal 

sprouting is evident following the initial target disconnection and while some successful 

reinnervation occurs, NMJ loss continues and it is evident that with time compensatory 



160 
 

 
 

sprouting is inadequate (Schaefer et al., 2005; Hegedus et al., 2007). The loss of motor 

units continues with age and is paralleled by reductions in whole muscle force (Hegedus 

et al., 2007). By the time the SOD1 mouse reaches the symptomatic stage, significant 

loss of MN within the ventral horn and behavioral assessments reveal functional motor 

impairments (Zang et al., 2005; Chiu et al., 1995; Fischer et al., 2004; Durand et al., 

2006). 

Due to the increased susceptibility of SOD1 FMN to axotomy as well as the 

dysregulated molecular response after axotomy (see Chapter IV), we propose the 

increased susceptibility of SOD1 FMN cell death is not due to an aberrant MN response 

to injury, but the presence of a pro-inflammatory microenvironment within the pre-

symptomatic stage and a dysregulation of the neuropil after injury that results in the 

increased MN cell death. Our current working model of peripheral immune-mediated 

neuroprotection suggests that the glial cells play important roles in this communication 

between the acquired immune system and the injured neuron. Potentially, the 

dysregulated glial cells may not be functioning in a manner conducive to mediating the 

signals from the periphery to the CNS and within the CNS to the MN.   

 Aim #2 of this dissertation was to determine whether molecular response to 

axotomy within the pre-symptomatic SOD1 facial motor nucleus resemble the disease-

induced molecular response within the facial motor nucleus. The working hypothesis 

for this aim was that the molecular response following facial nerve axotomy in pre-
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symptomatic SOD1 mice resembles the molecular response of disease progression and 

subsequent MN degeneration within the symptomatic SOD1 facial motor nucleus. It has 

been well established in the SOD1 mouse model that neuronal target disconnection 

precedes MN cell death in the spinal cord and brainstem during disease progression. 

The experiments in Aim2 examined the effects of disease on FMN survival and mRNA 

expression of glial-specific genes and genes involved in neuroprotective and 

neurodegenerative signaling systems within the neurodegenerating, disease-affected 

facial motor nucleus.  

C. Materials and Methods 

Animals  

Mice were obtained and housed as previously described in Chapter III Section A, 

refer to experimental designs illustrated in Figures 45 and 47 of this Chapter.  

Tissue Preparation 

Refer to Chapter III Sections C and D as well as Figures 45 and 47 of this Chapter 

for details. 

FMN Survival Counts 

The experimental design for the FMN survival experiment is illustrated in Figure 

45. Refer to Chapter III Section E for further details.  
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Laser Microdissection 

Details are described in Chapter III Section F and the experimental design 

illustrated in Figure 47 of this Chapter. 

RNA Isolation and Real-Time RT-PCR 

Relative mRNA expression was analyzed for 70, 84, and 112 doa time-points for 

all of the following genes: CX3CR1, TNFR1, TNFR2, FasL, Caspase-3, PAC1-R, CRMP4, 

ASK1, Daxx, FADD, TRAF2, TRADD, SODD, and nNOS. Because of significant differences 

between early time-points, Fas was analyzed at one additional time-point (63 doa) and 

CD68 was analyzed for two additional time-points (59 and 63 doa). The genes TNFα, 

Caspase-8, GFAP, GAP-43, and βII-Tubulin were previously analyzed by our laboratory 

for the time-points up to 84 doa and no changes relative to age or disease progress 

where found. For this dissertation the time course was extended to 112 doa, therefore 

the time-point of 84 doa was replicated to confirm consistency purposes and the 112 

doa time-point was additionally assessed. However, the gene Caspase-8 does not 

include the fourth data point of WT 112 doa. Due to failure of amplification during the 

real-time PCR run and insufficient volume of remaining WT 112 doa samples, the time-

point could not be included in the analysis. For specific details refer to Chapter III 

Section G and the experimental design illustrated in Figure 47 of this Chapter. 
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Statistical Analysis 

Details of statistical analysis for average FMN per section and relative facial motor 

nucleus mRNA expression can be located in Chapter III Section J. 

D. Results 

By 112 doa, Symptomatic SOD1 Mice Display Significant MN Loss in the Facial Motor 

Nucleus 

Average FMN numbers per section was assessed for WT and SOD1 mice at 84 

and 112 doa in control, uninjured facial motor nuclei. No differences between FMN 

numbers per section were seen between WT 84 (100 ± 9; Figure 21A) and 112 (93 ± 10; 

Figure 21C) or SOD1 84 doa (97 ± 8; Figure 21E) and these findings are consistent with 

previous, published data from our laboratory (Serpe et al., 2000; Mesnard et al., 2011). 

However, by 112 doa, symptomatic SOD1 facial motor nuclei reveal a significant loss of 

FMN (59 ± 5; Figures 21G and 46). Therefore by 112 doa, disease-induced MN loss of 

approximately 40% of FMN has occurred in the symptomatic SOD1 facial motor nucleus.   

Increased Expression of Disease-Induced mRNA in Symptomatic SOD1 Facial Motor 

Nucleus. 

Specific details of all 21 genes analyzed can be found in Table 2. Results from 

Chapter IV, axotomy-induced molecular responses of pre-symptomatic SOD1 mice are 

summarized with in Table 5, as well as results from this Chapter, disease-induced 

molecular responses. Comparisons were made between the two.  
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TNFR1: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0139 ± 0.0005), 84 (0.0126 ± 0.0029) and 112 (0.0111 ± 0.0015) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0125 ± 0.0022), 84 

(0.0088 ± 0.0023) and 112 (0.0217 ± 0.0040) doa (Figure 48). SOD1 mRNA expression 

was significantly higher compared to WT at 112 doa. Increased variability within the 

SOD1 facial nucleus at 84 doa, is likely the reason it is significant to WT 70 doa. 

TNFα: TNFα was not detectable within the WT 112 doa facial motor nucleus 

(Figure 25). The relative mRNA expression for SOD1 facial motor nuclei are as follows; 

70 (3.1E-04 ± 2.9E-04), 84 (2.9E-05 ± 2.9E-06) and 112 (4.2E-05 ± 1.5E-05) doa (Figure 

49). 

Fas: The relative mRNA expression for WT facial motor nuclei are as follows; 63 

(2.9E-04 ± 2.3E-05), 70 (3.3E-04 ± 7.8E-05), 84 (3.7E-04 ± 1.2E-04) and 112 (3.1E-04 ± 

6.4E-05) doa. The relative mRNA expression for SOD1 facial motor nuclei are as follows; 

63 (4.4E-04 ± 1.4E-04), 70 (6.3E-04 ± 4.8E-05), 84 (5.7E-04 ± 2.0E-04) and 112 (8.1E-04 ± 

1.8E-04) doa (Figure 50). Significant differences were apparent between aged-matched 

SOD1 and WT at 70 and 112 doa. The additional time-point of 63 doa was added to 

determine a likely time course of a Fas-induced molecular response to disease. The 

additional time-point supports the conclusion that Fas-induced molecular response to 

disease occurs by 70 doa, there is a significant increase in mRNA expression between 
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SOD1 63 and 70 doa. SOD1 expression at 70 doa is also significantly higher than WT 63 

doa. A pattern of expression was revealed that is discussed in Section E of this Chapter. 

FasL: The relative mRNA expression for WT facial motor nuclei are as follows; 70 

(7.9E-06 ± 6.0E-06), 84 (7.1E-06 ± 3.1E-06) and 112 (9.5E-06 ± 6.6E-06) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (1.1E-05 ± 2.7E-06), 84 

(8.8E-06 ± 4.7E-06) and 112 (1.5E-05 ± 4.8E-06) doa (Figure 51). No differences in mRNA 

expression were detected. High variability was seen. 

TRADD: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0034 ± 0.0005), 84 (0.0029 ± 0.0004) and 112 (0.0036 ± 0.0006) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0040 ± 0.0004), 84 

(0.0026 ± 0.0007) and 112 (0.0041 ± 0.0008) doa (Figure 52). No differences in mRNA 

expression were detected. 

FADD: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (8.1E-04 ± 1.8E-04), 84 (4.3E-04 ± 2.7E-04) and 112 (7.2E-04 ± 4.5E-05) doa. The 

relative mRNA expression for SOD1 facial motor nuclei are as follows; 70 (8.3E-04 ± 

1.0E-04), 84 (4.9E-04 ± 1.1E-04) and 112 (7.6E-04 ± 6.2E-05) doa (Figure 53). While no 

difference between WT and FADD was seen at 112 doa, a significant increase was seen 

in the SOD1 control facial nucleus from 84 to 112 doa. Although, high variability within 

the 84 doa time-point for both WT and SOD1 mice was shown. Additional n’s should be 

added to these groups. 
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Daxx: The relative mRNA expression for WT facial motor nuclei are as follows; 70 

(0.0050 ± 0.0004), 84 (0.0033 ± 0.0012) and 112 (0.0038 ± 0.0007) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0044 ± 0.0002), 84 

(0.0040 ± 0.0002) and 112 (0.0046 ± 0.0006) doa (Figure 54). No differences in mRNA 

expression were detected. 

ASK1: The relative mRNA expression for WT facial motor nuclei are as follows; 70 

(0.0026 ± 0.0003), 84 (0.0018 ± 0.0008) and 112 (0.0034 ± 0.0005) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0028 ± 0.0004), 84 

(0.0030 ± 0.0004) and 112 (0.0050 ± 0.0004) doa (Figure 55). The SOD1 diseased, 

control facial nucleus revealed a dramatic increase in ASK1 mRNA at 112 doa which was 

statistically higher than WT and SOD1 at 70, 84, and 112 doa. 

nNOS: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (2.0E-04 ± 5.6E-05), 84 (2.3E-04 ± 1.0E-04) and 112 (1.7E-04 ± 3.4E-05) doa. The 

relative mRNA expression for SOD1 facial motor nuclei are as follows; 70 (1.8E-04 ± 

4.6E-05), 84 (2.3E-04 ± 6.7E-05) and 112 (1.3E-04 ± 3.2E-05) doa (Figure 56). nNOS 

mRNA expression revealed high variability and no statistical differences. 

Caspase-3: The relative mRNA expression for WT facial motor nuclei are as 

follows; 70 (0.0020 ± 0.0005), 84 (0.0018 ± 0.0001) and 112 (0.0019 ± 0.0004) doa. The 

relative mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0020 ± 

0.0003), 84 (0.0019 ± 0.0004) and 112 (0.0033 ± 0.0005) doa (Figure 57). Caspase-3 
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expression in the SOD1 control facial nucleus was significantly higher than SOD1 at 84 

doa and WT at both 84 and 112 doa. 

Caspase-8: The relative mRNA expression for WT facial motor nuclei are as 

follows; 84 (3.3E-05 ± 5.8E-06) doa. The relative mRNA expression for SOD1 facial motor 

nuclei are as follows; 84 (5.0E-05 ± 1.7E-05) and 112 (1.2E-04 ± 3.1E-05) doa (Figure 58). 

Previously our lab assessed Caspase-8 mRNA within WT and SOD1 control facial nuclei at 

70 and 84 doa and found no differences.  Additionally, loss of the samples during the 

PCR run and insufficient remaining sample is the explanation for the lack of WT 112 doa 

expression data. However, Capase-8 mRNA expression within the SOD1 control nucleus 

is significantly higher than WT and SOD1 at 84 doa.  

TRAF2: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0039 ± 0.0003), 84 (0.0038 ± 0.0008) and 112 (0.0036 ± 0.0003) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0042 ± 0.0004), 84 

(0.0041 ± 0.0005) and 112 (0.0044 ± 0.0004) doa (Figure 59). No differences in mRNA 

expression were detected. 

SODD: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0089 ± 0.0004), 84 (0.0111 ± 0.0011) and 112 (0.0107 ± 0.0016) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0109 ± 0.0011), 84 

(0.0070 ± 0.0013) and 112 (0.0137 ± 0.0017) doa (Figure 60). SOD1 mRNA expression at 

112 doa was not significantly different that WT at 112 doa, but it was higher compared 
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to WT at 70 doa. Interestingly, SOD1 mRNA expression of SODD was decreased at 84 

doa, compared to WT. A pattern of expression was revealed that is discussed in Section 

E of this Chapter. 

TNFR2: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (4.8E-04 ± 6.8E-05), 84 (5.1E-04 ± 1.1E-04) and 112 (4.1E-04 ± 8.3E-05) doa. The 

relative mRNA expression for SOD1 facial motor nuclei are as follows; 70 (3.9E-04 ± 

8.2E-05), 84 (4.8E-04 ± 5.5E-05) and 112 (7.5E-04 ± 3.4E-04) doa (Figure 61). While no 

statistical differences were seen, mean mRNA levels were increased in SOD1 control 

facial nucleus at 112 doa. High variability was also seen at that time-point. 

PAC1-R: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0413 ± 0.0110), 84 (0.0483 ± 0.0087) and 112 (0.0449 ± 0.118) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0050 ± 0.0040), 84 

(0.0353 ± 0.0020) and 112 (0.0382 ± 0.0037) doa (Figure 62). No differences in mRNA 

expression were detected. 

CX3CR1: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0074 ± 0.0030), 84 (0.0063 ± 0.0010) and 112 (0.0071 ± 0.0013) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0057 ± 0.0015), 84 

(0.0091 ± 0.0011) and 112 (0.0196 ± 0.0040) doa (Figure 63). The SOD1 diseased, 

control facial nucleus revealed a dramatic increase in CX3CR1 mRNA at 112 doa which 

was statistically higher than WT and SOD1 at 70, 84, and 112 doa. 
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CRMP4: The relative mRNA expression for WT facial motor nuclei are as follows; 

70 (0.0664 ± 0.0059), 84 (0.0814 ± 0.0136) and 112 (0.1377 ± 0.0859) doa. The relative 

mRNA expression for SOD1 facial motor nuclei are as follows; 70 (0.0903 ± 0.0068), 84 

(0.0640 ± 0.0139) and 112 (0.1208 ± 0.0256) doa (Figure 64). CRMP4 expression was 

highly variable at 112 doa, particularly within the WT facial nucleus. The mean for 

CRMP4 mRNA expression is higher than WT and SOD1 at 70 and 84 doa, however 

significance was only seen compared to WT at 70 doa. Later time-points will need to be 

assessed for CRMP4 expression. 

GAP-43: The relative mRNA expression for WT facial motor nuclei are as follows; 

84 (0.0111 ± 0.0026) and 112 (0.0069 ± 0.0009) doa. The relative mRNA expression for 

SOD1 facial motor nuclei are as follows; 84 (0.0136 ± 0.0023) and 112 (0.0154 ± 0.0021) 

doa (Figure 65). Previously our lab assessed GAP-43 mRNA within WT and SOD1 control 

facial nuclei at 70 and 84 doa and found no differences. Significantly higher SOD1 mRNA 

expression for GAP-43 was seen at 112 doa compared to WT.  

βII-Tubulin: The relative mRNA expression for WT facial motor nuclei are as 

follows; 84 (0.1411 ± 0.0302) and 112 (0.0879 ± 0.0144) doa. The relative mRNA 

expression for SOD1 facial motor nuclei are as follows; 84 (0.1224 ± 0.0256) and 112 

(0.1023 ± 0.0128) doa (Figure 66). Previously our lab assessed βII-Tubulin mRNA within 

WT and SOD1 control facial nuclei at 70 and 84 doa and found no differences.  No 

differences in mRNA expression were detected. 
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GFAP: The relative mRNA expression for WT facial motor nuclei are as follows; 

84 (0.0266 ± 0.0064) and 112 (0.0130 ± 0.0035) doa. The relative mRNA expression for 

SOD1 facial motor nuclei are as follows; 84 (0.1254 ± 0.0124) and 112 (0.1690 ± 0.0606) 

doa (Figure 67). Previously our lab assessed GFAP mRNA within WT and SOD1 control 

facial nuclei at 70 and 84 doa and found no differences. However, GFAP expression was 

significantly higher than WT at both 84 and 112 doa. This inconsistency is likely due to 

variation in SOD1 molecular responses to disease. Different rates of SOD1 disease 

progression are investigated in Chapter VI. 

CD68: The relative mRNA expression for WT facial motor nuclei are as follows; 59 

(0.0010 ± 0.0001), 63 (0.0012 ± 0.0002), 70 (0.0017 ± 0.0003), 84 (0.0018 ± 0.0004) and 

112 (0.0012 ± 0.0000) doa. The relative mRNA expression for SOD1 facial motor nuclei 

are as follows; 59 (0.0025 ± 0.0012), 63 (0.0051 ± 0.0015), 70 (0.0083 ± 0.0009), 84 

(0.0119 ± 0.0016) and 112 (0.0172 ± 0.0053) doa (Figure 68). Great differences in mRNA 

expression within the SOD1 control, facial motor nucleus was seen within the SOD1 for 

63, 70, 84, and 112 doa. This dramatic increasing expression over time indicates a 

pattern that is discussed in Section E of this Chapter.



171 
 

 
 

Figure 45. Experimental Design: FMN survival, average FMN per section of control facial motor 
nucleus in WT, pre-symptomatic and symptomatic SOD1 mice     
   

 

 
 

1. WT and SOD1 mice were euthanized at 84 and 112 doa. 
2. Brains were removed and cryosectioned through the facial motor nucleus at 25 µm. 
3. Sections were fixed with 4% PFA and stained with thionin. 
4. FMN identified by morphology and a defined nucleus and nucleolus. 
5. FMN within the facial motor nuclei were demarcated under light microscopy using the 

Neurolucida Tracing System and total number of MN per section were recorded. 
6. The average FMN per section was calculated by dividing the total number of MN 

counted by the number of tissue sections counted. 
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Figure 46. Average FMN per section ± SEM in WT and SOD1 uninjured, control facial motor 
nuclei at 84 and 112 doa. a represents a significant difference relative to another time-point 
within the same strain of mouse; * represents a significant difference relative to WT at p ≤ 0.05.
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Figure 47. Experimental Design: LMD of WT and SOD1 uninjured, control facial motor nuclei, 
real time RT-PCR and analysis of mRNA expression 

 

 
 

1. WT and SOD1 were euthanized at 70, 84 and 112 doa. 
2. Brains were removed and cryosectioned through the facial motor nucleus at 25 µm. 
3. Sections were fixed with 100% ETOH and stained with thionin.  
4. Left, uninjured facial motor nuclei were collected by laser microdissected for each 

mouse. 
5. RNA was isolated from facial motor nucleus samples. 
6. Real-time, RT-PCR was performed for specific genes to profile the relative mRNA 

expression in the SOD1 compared to the WT. 
7. The semi-quantitative, relative mRNA expression, normalized to GAPDH in the facial 

motor nucleus was calculated using the 2-∆C
T method.
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Figure 48. Relative mRNA expression ± SEM of TNFR1, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. * represents a significant difference 
relative to WT at p ≤ 0.05. 

 

 
Figure 49. Relative mRNA expression ± SEM of TNFα, normalized to GAPDH, in SOD1 uninjured, 
control facial motor nuclei at 84 and 112 doa. 
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Figure 50. Relative mRNA expression ± SEM of Fas, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 63, 70, 84 and 112 doa. a represents a significant 
difference relative to another time-point within the same strain of mouse; * represents a 
significant difference relative to WT at p ≤ 0.05. 

 

 
Figure 51. Relative mRNA expression ± SEM of FasL, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. 
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Figure 52. Relative mRNA expression ± SEM of TRADD, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa.  

 

 
Figure 53. Relative mRNA expression ± SEM of FADD, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse at p ≤ 0.05.
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Figure 54. Relative mRNA expression ± SEM of Daxx, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa.  

 

 
Figure 55. Relative mRNA expression ± SEM of ASK1, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse; * represents a significant 
difference relative to WT at p ≤ 0.05.
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Figure 56. Relative mRNA expression ± SEM of nNOS, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa.  

 

 
Figure 57. Relative mRNA expression ± SEM of Caspase-3, normalized to GAPDH, in WT and 
SOD1 uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant 
difference relative to another time-point within the same strain of mouse; * represents a 
significant difference relative to WT at p ≤ 0.05.
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Figure 58. Relative mRNA expression ± SEM of Caspase-8, normalized to GAPDH, in SOD1 
uninjured, control facial motor nuclei at 84 and 112 doa WT control facial motor nucleus at 84 
doa only. a represents a significant difference relative to another time-point within the same 
strain of mouse; * represents a significant difference relative to WT at p ≤ 0.05. 

 
 

 
 
Figure 59. Relative mRNA expression ± SEM of TRAF2, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. 
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Figure 60. Relative mRNA expression ± SEM of SODD, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse; * represents a significant 
difference relative to WT at p ≤ 0.05. 

 

 
Figure 61. Relative mRNA expression ± SEM of TNFR2, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. 
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Figure 62. Relative mRNA expression ± SEM of PAC1-R, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa.  

 
 

 
Figure 63. Relative mRNA expression ± SEM of CX3CR1, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse; * represents a significant 
difference relative to WT at p ≤ 0.05.
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Figure 64. Relative mRNA expression ± SEM of CRMP4, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 70, 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse; * represents a significant 
difference relative to WT at p ≤ 0.05. 

 

 
Figure 65. Relative mRNA expression ± SEM of GAP-43, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 84 and 112 doa. a represents a significant difference 
relative to another time-point within the same strain of mouse; * represents a significant 
difference relative to WT at p ≤ 0.05.



183 
 

 
 

 
Figure 66. Relative mRNA expression ± SEM of βII-Tubulin, normalized to GAPDH, in WT and 
SOD1 uninjured, control facial motor nuclei at 84 and 112 doa.  
 
 

 
Figure 67. Relative mRNA expression ± SEM of GFAP, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 84 and 112 doa. * represents a significant difference 
relative to WT at p ≤ 0.05.
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Figure 68. Relative mRNA expression ± SEM of CD68, normalized to GAPDH, in WT and SOD1 
uninjured, control facial motor nuclei at 59, 63, 70, 84 and 112 doa. a represents a significant 
difference relative to another time-point within the same strain of mouse;     * represents a 
significant difference relative to WT at p ≤ 0.05.
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Table 5: Comparison of disease-induced mRNA expression in the facial motor nucleus to 
axotomy-induced mRNA expression in pre-symptomatic SOD1 mice.  Axotomy-Induced columns: 
SOD1 mRNA expression during the initial and delayed response to axotomy (refer to Chapter IV). 
Disease-Induced column: relative mRNA expression level in SOD1 diseased, control facial motor 
nucleus compared to aged-matched WT or younger, pre-symptomatic SOD1 mice. A comma (,) 
separates disease-induced mRNA expression differences at multiple time-points.  
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E. Discussion 

In order to show that facial nerve axotomy in the pre-symptomatic SOD1 mouse 

can be used as a model for the target disconnection that initiates SOD1 disease 

progression, two requirements must be fulfilled. 1) diseased-induced FMN cell loss must 

occur and 2) the mRNA expression in the diseased facial motor nucleus must resemble 

that seen after SOD1 facial nerve axotomy. 

Significant Disease-Induced FMN Loss Occurs within the SOD1 Facial Motor Nucleus by 

112 doa 

 The SOD1 facial motor nucleus to susceptible MN cell loss, however this loss has 

only been documented within end stage (Haenggeli and Kato, 2002; Niessen et al., 

2006). Additionally, neurodegeneration within the facial motor nucleus of ALS patients 

has also been documented (DePaul et al., 1988). Results from the FMN survival 

experiment within this Chapter reveal that the average number of MN within the SOD1 

facial motor nucleus at 112 doa are significantly less than aged-matched WT or WT and 

SOD1 at 84 doa. This FMN loss is a result of the disease process.  

We hypothesizes that the FMN undergoing degeneration at 112 doa are most 

likely those within the immune-dependent population and once FMN numbers reach 

40-50%, a plateau will be reached and these remaining MN will be considered the 

resilient population. However this is a future direction and the identity of the FMN 
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population undergoing neurodegeneration at 112 doa is unclear within the context of 

the current experiments. 

It has been well-established that the initial pathological event in SOD1 disease 

progression is the loss of NMJ or target disconnection within the pre-symptomatic stage 

(Fischer et al., 2004; Dadon-Nachum et al., 2011). This denervation proceeds clinical 

symptoms and MN cell loss and therefore, resembles the “die-back” phenomenon. 

Therefore, conformation that at 112 doa, the control, uninjured facial motor nucleus is 

undergoing MN cell death due to disease progression allows for the investigation of 

mRNA expression in response to the “theoretical” target-disconnection that we 

hypothesizes is occurring. 

Experiments within Chapter IV examined the molecular response for genes 

known to be involved in neurodegeneration, neuroprotection and the glial response. 

These genes were assessed within the pre-symptomatic SOD1 facial motor nucleus after 

axotomy through an extended time course and those results have been re-summarized 

in Table 5. Experiments performed within this Chapter investigated the molecular 

expression within the SOD1 control facial nucleus, affected by disease, and was 

compared to relative mRNA expression levels in aged-matched WT control facial nuclei. 

Additionally, relative mRNA expression was compared between SOD1 and WT facial 

nuclei at earlier ages for control purposes and to confirm the age at which SOD1 

disease-induced mRNA expression occurs. 
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Considerations about Target Disconnection when Comparing Axotomy-Induced and 

Disease-Induced mRNA Expression 

When comparing mRNA expression levels within the diseased, SOD1 facial 

nucleus to mRNA expression levels of SOD1 axotomized facial nucleus, several aspects 

need to be kept in mind during analysis and interpretation of the results. The target 

disconnection produced by a transection axotomy severs all axons within the peripheral 

nerve and is therefore, greatly exaggerated and standardized in comparison to the 

target disconnection that occurs during SOD1 disease progression. The target 

disconnection during disease progression could be considered hundreds or thousands of 

individual transection axotomies per nucleus over an undetermined period of time. 

Thus, the time course of the mRNA expression response within the facial motor nucleus 

would not be expected to be the same during disease progression as it would after 

axotomy. This doesn’t suggest that the pattern of mRNA expression will not be present, 

but suggests that the pattern of mRNA expression per cell will be occurring at different 

times. Therefore, in order to achieve a significant difference in the mRNA expression 

level for a particular gene within the entire SOD1 nucleus, enough cells, MN or glia, will 

need to be affected by target disconnection for the mRNA difference to reach a 

threshold. It is expected that some MN will be target disconnected while others will not 

and results from Chapter IV suggest some the target disconnected MN may be within 

different phases of molecular expression depending on their individual time course. 
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However, the results of the FMN survival experiment demonstrates that a significant 

amount of neurodegeneration has occurred and regardless of the ratio of target 

disconnected MN vs. target connected MN, many MN and glia will be well within the 

experimental time course used in Chapter IV.  

Disease-Induced mRNA Expression Resembles Axotomy-Induced mRNA Expression at 112 

doa 

It is overwhelmingly clear that the mRNA expression within the SOD1 diseased 

facial motor nucleus at 112 doa resembles the mRNA expression seen after axotomy 

(initial or delayed response phase) in the SOD1 facial motor nucleus, refer to Table 6. 

The following genes have reached an expression level similar to that seen during the 

delayed-response to axotomy: TNFR1, TNFα, TRADD, Fas, ASK1, Caspase-3, Caspase-8, 

PAC1-R, CX3CR1, GAP-43, GFAP and CD68. In addition, there are gene expression 

differences that suggest they are equivalent to or within that of the initial-response to 

SOD1 axotomy: Fas, SODD, nNOS, CRMP4 and CD68.  

Several genes (TRAF2, FasL, FADD) do not reflect a significant change in relative 

mRNA expression levels. However, it is possible that the degree of target disconnection 

at 112 doa could place the mRNA expression somewhere between the initial and 

delayed response phase and therefore at this time-point may reflect a transient baseline 

expression. The following genes have no change in expression level and compared to 

the axotomy-induced mRNA expression should be upregulated throughout the initial 
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and delayed phase, Daxx, TNFR2, and βII-Tubulin. It is not clear why the mRNA 

expression level has not reached a threshold of significance. TNFR2 mRNA expression 

shows a trend for higher mRNA levels, but at 112 doa, the level is not significant. This 

may be reflective of differences between the two types of target disconnection injuries.  

Disease-Induced mRNA Expression Resembles Axotomy-Induced mRNA Expression at 

Multiple Time-Points 

Of particular interest are the results of genes Fas, SODD, CD68 and GFAP. 

Through analysis at earlier time-points/ages it was revealed that significant differences 

in relative mRNA expression are apparent earlier than 112 doa. GFAP expression is 

significantly higher in SOD1 control, diseased facial nucleus at 84 and 112 doa. 

Suggesting the astrocyte reaction to target disconnection and subsequent upregulation 

of GFAP mRNA has occurred as early as 84 doa. GFAP was previously assessed in our 

laboratory at earlier time-points and no differences were seen between SOD1 control 

mRNA expression and aged-matched WT, therefore GFAP was only assessed at 84 and 

112 doa for this dissertation (Mesnard et al., 2011).  

Fas showed higher mRNA expression levels within the SOD1 112 doa nucleus as 

well as 70 doa. Therefore, mRNA expression levels were analyzed from WT and SOD1 

facial nuclei at earlier time-points. In comparison to age-matched WT control facial 

motor nuclei, the SOD1 displays no difference in mRNA expression at 63 doa, an 

upregulation at 70 doa, which appears to be transient and back to baseline (WT level) at 
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84 doa followed by a return in significant Fas mRNA upregulation at 112 doa. 

Interestingly, this pattern reflects that seen during both the initial and the delayed-

response to axotomy.  

Regarding CD68, no differences between WT control facial nuclei and SOD1 was 

seen at 59 doa, but subsequent, significant increases in CD68 upregulation can be seen 

in 63, 70, 84 and 112 doa SOD1 mice, which is also replicative of the initial and delayed-

response to axotomy. These results suggest that microglia have already begun to 

respond to the disease by 63 doa. 

While the gene SODD was not found to reveal significant differences between 

expression within the SOD1 112 doa control nucleus compared to WT, a significantly 

lower mRNA expression was seen within the SOD1 control nucleus at 84 doa compared 

to the aged-matched WT. This transient downregulation at 84 doa and return to 

baseline (WT level) at 112 doa in SOD1 diseased nucleus is again, similar to both the 

initial and delayed-response to axotomy.  

Adding additional time-points to the to assess mRNA changes within the SOD1 

diseased, control facial nucleus before and after 112 doa is underway. Additionally, an 

experiment will be performed to quantify denervated neuromuscular junctions within 

the auricular and vibrissae muscles to confirm target disconnection of FMN.  
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Conclusions 

These findings lend support to the use of facial nerve axotomy as a model for the 

target disconnection that occurs during disease progression and strongly suggest that if 

a time course were performed throughout disease progression, similar patterns will 

likely become apparent and add strength to the model. These conclusions suggest that 

the constitutive expression of TNFα mRNA seen as early as 59 doa, previously shown by 

our laboratory, may not be evidence of a pro-inflammatory microenvironment present 

prior to disease onset, but may be the early response of the SOD1 facial  motor nucleus 

to initial target disconnection. TNFα mRNA expression may be highly responsive to 

target disconnection and therefore one of the most sensitive mRNA expression marker 

we have analyzed to date to reveal initial target disconnection. The fact that the mRNA 

is induced in WT supports this idea as well as preliminary data from SOD1 uninjured 

control facial motor nucleus at 42 doa, which contained no measureable TNFα mRNA 

expression (data not shown). Therefore, it is entirely possible that sometime after 42 

doa and before 59 doa, a small population of FMN undergo initial target disconnection 

and therefore an induction of TNFα mRNA. This is followed by a microglial response as 

evidenced by the upregulation of CD68 at 63 doa and a transient upregulation of Fas 

mRNA occurring by 70 doa, indicative of the initial-response to target disconnection. 

Downregulation of the gene SODD occurs as early as 84 doa as well as the presence of 

reactive astrocyte, evident by the upregulation of GFAP. After a significant amount of 
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time passes (28 days) and significant MN cell loss has occurred, Fas mRNA upregulation 

has returned (the delayed-response), TNFR1, Caspase-3, Caspase-8, CX3CR1, and GAP-

43 mRNA expression levels are up and these genes are most-likely somewhere within 

their time course response to axotomy, since no clear distinction exists between the two 

phases. Due to the considerable amount of time between 84 and 112 doa it is not clear 

if the initial, transient downregulation of TRADD, ASK1, and PAC1-R has already 

occurred (initial-response) and the expression levels are within the delayed-response 

phase (baseline for TRADD/PAC1-R and upregulated for ASK1). If the initial, transient 

upregulation of FasL and FADD as well as the initial, transient downregulation of TRAF2 

has occurred prior to 112 doa, it is possible that the upregulation within the delayed-

response phase is mounting or has not yet occurred for FasL, FADD, and TRAF2. The two 

genes that do not show an initial-response to axotomy but reveal upregulation within 

the delayed-response phase are CRMP4 and nNOS. Analysis of later time-points, greater 

than or after 112 doa, may reveal the presence of the delayed-response phase and 

increased mRNA expression.  

Results presented in Chapter IV and V concludes that facial nerve axotomy in 

the pre-symptomatic SOD1 mouse can be used as a model for disease that occurs in 

the SOD1 mouse. 
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CHAPTER VI 

TWO RATES OF DISEASE PROGRESSION IN SYMPTOMATIC SOD1 MICE 

A. Abstract 

ALS is a disease targeting MN. In the SOD1 mouse model of ALS, an axonal die-

back process is initiated during the pre-symptomatic stage where MN axons withdraw 

from target muscle. We have used facial nerve axotomy, which resembles the axonal 

die-back response, in pre-symptomatic SOD1 mice to investigate aspects of the disease. 

Apoptotic and pro-inflammatory gene expression is upregulated in pre-symptomatic 

SOD1 axotomized facial nuclei in addition to significant SOD1 MN death. Disease 

progression in symptomatic SOD1 facial nuclei resembles the molecular response 

initiated by axotomy. MN survival levels in symptomatic SOD1 and axotomized, pre-

symptomatic SOD1 facial nuclei are similar. Therefore, facial nerve axotomy produces a 

disease onset-like response. The current study used behavioral testing to assess motor 

function, and revealed two groups of SOD1 mice with differing rates of symptomatic 

disease progression. The slow progression group had significantly less motor 

impairments compared to the fast progression group, but no difference in symptom 

onset was seen. Fast progression group showed higher mRNA levels for genes related to 

axonal injury. Symptomatic severity in SOD1 mice correlates to the cellular and 
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molecular responses to axonal injury.  Therefore, research using treatments to slow 

disease or extend survival needs to assess different symptomatic progression groups.  

B. Introduction 

Development of this behavioral assessment protocol has important future 

implications. Delaying or slowing disease progression could be measured by behavioral 

assessment as an increase in age of symptom onset or a slower rate of disease 

progression in terms of the slope of the increased motor scores. Additionally, a decrease 

in the age of symptom onset or an increase in the slope of the increasing motor scores 

would signify a more severe disease pathology or a faster disease progression rate.   

While variability in symptoms, markers of disease progression, and survival is 

observed within the literature, only one other laboratory has described the presence of 

two different disease progression rates within the SOD1G93A mouse model and their 

discovery of these two groups is hardly discussed within the abstract of the publication. 

The existence of two different disease progression groups were revealed  when their 

pre-determined endpoint criteria (hind-limb ataxia and inability to forage due to 

paralysis) resulted in half of the SOD1 mice being euthanized a week later than the 

previous group. After significantly higher MN per section counted in the retrodorsal 

lateral nucleus (RDLN) of the older, slow disease progression group, they concluded that 

they had identified two groups of SOD1 mice with different rates of disease progression; 

both symptom progression and MN cell death, with respect to the RDLN. They termed 
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these two groups the fast disease progression group (FPG) and the slow disease 

progression group (SPG; Rinke, 1976). 

Aim #3 of this dissertation was to confirm that a group of symptomatic SOD1 

mice displaying a faster rate of symptom progression also demonstrate a faster rate of 

disease progression within the facial motor nucleus. The working hypothesis for this 

aim was that the variability seen among motor scores during behavioral assessment is a 

result of two different rates of symptom progression which correlates with evidence of 

increased disease progression rate within the SOD1 facial motor nucleus. Dramatic 

differences among severity of symptoms were apparent during behavioral assessment 

of motor function following symptom onset. The experiments analyzed FMN survival 

levels as well as differences in expression of genes involved in target disconnection 

between the two symptomatic groups.  

C. Materials and Methods 

Animals and Surgical Procedures 

Mice were obtained and housed as previously described in Chapter III Section A 

and all mice received a right facial nerve axotomy described in Chapter III Section B. Also 

refer to experimental designs illustrated in Figures 69, 71 and 74 of this Chapter. 

Behavioral Assessment 

 Starting at 79 doa, SOD1 mice were assessed for motor function three times per 

week using seven behavioral tests. After euthanasia at 112 doa, the SOD1 mice were 
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divided into two groups based on averaged motor score throughout the symptomatic 

stage, the FPG (Fast) and the SPG (Slow). Refer to Chapter III Section I and behavioral 

testing experimental design, Figure 69, of this Chapter. 

Tissue Preparation 

Refer to Chapter III Sections C and D and experimental designs illustrated in 

Figures 69, 71 and 74 of this Chapter for further details. 

FMN Survival 

The average percent of FMN survival for the whole facial nucleus was calculated 

for SPG and FPG by dividing the number of total MN in the axotomized facial motor 

nucleus by the number of FMN in the 84 doa uninjured WT, control facial motor nucleus 

then multiplying by 100. Average number of FMN in the 84 doa facial nucleus was 

previously determined and is used to calculate axotomy-induced FMN loss in 

symptomatic SOD1 mice. Refer to Chapter V Section D and Figure 46 for details 

regarding the average control FMN numbers of 84 doa SOD1 mice. The average FMN 

per section for the whole facial nucleus was calculated for each time-point and reflects 

disease-induced FMN cell loss. For specific details on FMN counts, refer to Chapter III 

Section E and the experimental design in Figure 71 of this Chapter.  
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Laser Microdissection 

LMD was performed on axotomized and contralateral control facial motor nuclei 

at of SPG and FPG mice at 56 dpo (112 doa). Details are described in Chapter III Section 

F and the experimental design in Figure 74 of this Chapter. 

RNA Isolation and Real-Time RT-PCR 

Percent change of mRNA expression in the axotomized facial motor nucleus was 

assessed between SPG and FPG at 56 dpo. Additionally the relative mRNA expression 

within the contralateral, disease-affected facial motor nuclei between SPG and FPG at 

112 doa as well as the relative mRNA expression within the axotomized facial motor 

nucleus. The genes investigated were as follows: CX3CR1, TNFR1, TNFR2, Fas, FasL, 

Caspase-3, PAC1-R, CRMP4, ASK1, Daxx, FADD, TRAF2, TRADD, SODD, CD68, nNOS, 

TNFα, Caspase-8, GFAP, GAP-43, and βII-Tubulin. Refer to Figure 74 for details on the 

experimental design or Chapter III Section G for more details. 

Statistical Analysis 

Refer to Chapter III Section J. 

D. Results 

Symptom Onset Occurs at 100 doa 

Seven different behavioral tests were used to determine age of symptom onset. 

Test scores from the seven tests were combined to yield the motor score for the time-

point and the motor scores were compared to determine at what is the increase in 
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motor score significant for the entire group of SOD1 mice. Average motor scores ± SEM 

per time-point are as follows, 79 (0.13 ± 0.037), 81 (0 ± 0), 84 (0.13 ± 0.025), 86 (0.07 ± 

0.018), 88 (0.13 ± 0.025), 91 (0.07 ± 0.018), 93 (0 ± 0), 95 (0.27 ± 0.057), 98 (0.80 ± 

0.112), 100 (2.47 ± 0.164), 102 (3.47 ± 0.114), 105 (4.80 ± 0.098), 107 (6.53 ± 0.222), 109 

(9.67 ± 0.319) and 112 (12.73 ± 0.446) doa (Figure 70A). Significance between motor 

scores of 98 and 100 doa determined that based on the behavioral tests used, symptom 

onset occurs by 100 doa. In addition, significant difference between 102 and 105, 107 

and 109, as well as 109 and 112 doa was also seen (Figure 70A).  

Behavioral Assessment Reveals Significant Differences in Rates of Motor Symptom 

Progression Among Symptomatic SOD1 mice 

Behavioral testing revealed two different groups of SOD1 mice which displayed 

different rates of symptom progression. In order separate these two groups for further 

analysis the average motor score per mouse during the symptomatic stage (100 to 112 

doa) was calculated. A median split was performed to separate the two groups into the 

SPG (slow) and FPG (fast). Average motor scores throughout the symptomatic stage for 

mice designated as part of the SPG were as follows: 6.2, 6, 3.2, 4.6, 5.6, 5.8, and 4.6. 

Average motor scores throughout the symptomatic stage for mice designated as part of 

the FPG were as follows: 7.6, 6.8, 9, 9.4, 10.4, 12.4, 8, 12. Once separate, the rate of 

symptom progression was calculated for each group using the average motor score per 
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group, per time-point and displayed graphically (Figure 70B). The slope of the FPG is 

2.9714 while the slope of the SPG was calculated to be 0.9918.  

No Difference in FMN Survival Within the Facial Motor Nucleus Between SPG and FPG 

The two symptomatic SOD1 groups, SGP and FPG displayed dramatic differences 

in rate of symptom progression during behavioral assessments for motor function. In 

order to investigate whether this difference was specific to motor symptom progression 

or overall increased rate of disease progression FMN survival was assessed between the 

FPG and SPG.  

Comparison of percent FMN survival following axotomy was compared at 56 dpo 

in SPG (45 ± 8%; Figure 72B) and FPG (38 ± 2%; Figure 72D). No significant differences 

were revealed (Figure 73A). Average FMN per section was also assessed for differences 

in disease progression within the facial motor nucleus at 112 doa in SPG (63 ± 11; Figure 

72A) and FPG (55 ± 5; Figure 72C). No significant differences were seen between 

average MN per section in the facial motor nucleus (Figure 73B). High variability coupled 

with low sample number (n = 3, per group) may have played a role in the results. Future 

analysis increasing the n per group may clarify whether FMN survival differences exist 

between the SPG and FPG. 
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No Differences in Axotomy-Induced Relative mRNA Expression Between FPG and SPG 

Within Only the Axotomized Facial Motor Nucleus 

Relative mRNA expression for TNFR1 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0223 ± 0.0002) mRNA expression and FPG (0.0351 ± 0.0100) within the facial motor 

nuclei at 112 doa (Figure 75C). The high variability seen within the FPG group may 

explain the lack of significance. Increasing the number of mice is a future direction. 

Relative mRNA expression for TNFα in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG (1.0E-

04 ± 7.3E-05) mRNA expression and FPG (2.5E-04± 1.0E-04) within the facial motor 

nuclei at 112 doa (Figure 76C). 

Relative mRNA expression for Fas in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG (1.3E-

03 ± 3.3E-04) mRNA expression and FPG (4.0E-03 ± 4.5E-03) within the facial motor 

nuclei at 112 doa (Figure 77C). As with TNFR1, high variability with the FPG may explain 

the lack of significance. Future direction is to increase number of mice per group. 

Relative mRNA expression for FasL in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference was observed 

between SPG (3.5E-05 ± 1.9E-05) mRNA expression and FPG (2.4E-05 ± 7.0E-06) within 

the facial motor nuclei at 112 do. (Figure 78C). 
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Relative mRNA expression for TRADD in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0041 ± 0.0011) mRNA expression and FPG (0.0044 ± 0.0014) within the facial motor 

nuclei at 112 doa (Figure 79C). 

Relative mRNA expression for FADD in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG (1.1E-

03 ± 1.5E-04) mRNA expression and FPG (1.4E-03 ± 2.8E-04) within the facial motor 

nuclei at 112 doa (Figure 80C). 

Relative mRNA expression for Daxx in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0059 ± 0.0002) mRNA expression and FPG (0.0071 ± 0.0008) within the facial motor 

nuclei at 112 doa (Figure 81C). 

Relative mRNA expression for ASK1 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference was seen between 

SPG (0.0077 ± 0.0009) mRNA expression and FPG (0.0076 ± 0.0008) within the facial 

motor nuclei at 112 doa (Figure 82C). 

Relative mRNA expression for nNOS in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. FPG mRNA levels (3.9E-04 ± 9.1E-05) were 

significantly higher than SPG (1.4E-04 ± 2.6E-05) mRNA expression within the facial 

motor nuclei at 112 doa (Figure 83C).  
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Relative mRNA expression for Capsase-3 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0047 ± 0.0008) mRNA expression and FPG (0.0089 ± 0.0037) within the facial motor 

nuclei at 112 doa (Figure 84C). High variability was seen within the FPG.  

Relative mRNA expression for Caspase-8 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG (1.0E-

04 ± 1.6E-05) mRNA expression and FPG (1.5E-04 ± 7.1E-06) within the facial motor 

nuclei at 112 doa (Figure 85C). There is a trend for higher expression within the FPG, 

however variability within the SPG may account for the lack of a significant difference. 

Relative mRNA expression for TRAF2 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0064 ± 0.0006) mRNA expression and FPG (0.0068 ± 0.0013) within the facial motor 

nuclei at 112 doa (Figure 86C). 

Relative mRNA expression for SODD in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0121 ± 0.0053) mRNA expression and FPG (0.0087 ± 0.0019) within the facial motor 

nuclei at 112 doa (Figure 87C). 

Relative mRNA expression for TNFR2 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG (1.3E-
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03 ± 2.0E-04) mRNA expression and FPG (2.2E-03± 6.3E-04) within the facial motor 

nuclei at 112 doa (Figure 88C). High variability seen again within the FPG. 

Relative mRNA expression for PAC1-R in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0409 ± 0.0047) mRNA expression and FPG (0.0459 ± 0.0093) within the facial motor 

nuclei at 112 doa (Figure 89C). 

Relative mRNA expression for CX3CR1 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0255 ± 0.0036) mRNA expression and FPG (0.0447 ± 0.0123) within the facial motor 

nuclei at 112 doa (Figure 90C). Data suggests that reducing variability within the FPG 

may lead to significantly higher expression within the FPG.  

Relative mRNA expression for CRMP4 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.1090 ± 0.0236) mRNA expression and FPG (0.0917 ± 0.0090) within the facial motor 

nuclei at 112 doa (Figure 91C). 

Relative mRNA expression for GAP-43 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0295 ± 0.0082) mRNA expression and FPG (0.0307 ± 0.0069) within the facial motor 

nuclei at 112 doa (Figure 92C). 
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Relative mRNA expression for βII-Tubulin axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.1029 ± 0.0142) mRNA expression and FPG (0.1120 ± 0.0135) within the facial motor 

nuclei at 112 doa (Figure 93C). 

Relative mRNA expression for GFAP in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.3099 ± 0.0402) mRNA expression and FPG (0.9146 ± 0.4147) within the facial motor 

nuclei at 112 doa (Figure 94C). Although there is no significant difference between the 

two groups, high variability within the FPG may be the cause. Average mRNA expression 

is much higher in the FPG. This strongly suggests increasing the number of mice per 

group will clarify these findings. 

Relative mRNA expression for CD68 in axotomized, facial motor nuclei was 

determined for symptomatic SOD1 groups. No significant difference between SPG 

(0.0266 ± 0.0053) mRNA expression and FPG (0.0455 ± 0.0177) within the facial motor 

nuclei at 112 doa (Figure 95C). Again there is a trend for increased expression in the 

FPG, however, high variability is seen within that group. 

No Difference in Percent Change mRNA Expression Between the FPG and SPG Facial 

Motor Nucleus (Ax/C) 

TNFR1 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 
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axotomized facial motor nucleus compared to control nucleus for SPG (63 ± 5%) or FPG 

(53 ± 15%) at 56 dpo (Figure 75A).  

TNFα percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (436 ± 146%) or 

FPG (261 ± 108%) at 56 dpo (Figure 76A). High variability within both groups makes it 

difficult to even assess for potential trends. 

Fas percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (145 ± 35%) or 

FPG (257 ± 100%) at 56 dpo (Figure 77A). High variability is seen within the FPG, but 

average percent change is much higher. 

FasL percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (106 ± 30%) or 

FPG (98 ± 14%) at 56 dpo (Figure 78A). 

TRADD percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (26 ± 22%) or FPG 

(-21 ± 5%) at 56 dpo (Figure 79A). The percent change mRNA for FPG reveals an 
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interesting reduced expression in the FPG axotomized nucleus compared to its control. 

Increasing number of mice per group may reveal interesting patterns such as this. 

FADD percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (69 ± 36%) or FPG 

(76 ± 49) at 56 dpo (Figure 80A). Results are extremely variable for both groups. 

Daxx percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (64 ± 25%) or FPG 

(33 ± 32%) at 56 dpo (Figure 81A).  Again, results are extremely variable for both groups. 

ASK1 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (66 ± 44%) or FPG 

(52 ± 23%) at 56 dpo (Figure 82A). Results are extremely variable for both groups. 

Demonstrates the need for increased number of mice per group. 

nNOS percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (103 ± 31%) or 

FPG (105 ± 38%) at 56 dpo (Figure 83A). 



208 
 

 
 

Caspase-3 percent change in mRNA expression (Ax/C) was in facial motor nuclei 

for symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (76 ± 78%) or FPG 

(147 ± 71%) at 56 dpo (Figure 84A). Results are extremely variable for both groups, 

however mean is higher in FPG.  

Caspase-8 percent change in mRNA expression (Ax/C) was in facial motor nuclei 

for symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (34 ± 22%) or FPG 

(-23 ± 9%) at 56 dpo (Figure 85A). Caspase-8 displays an interesting decreased percent 

change expression in the FPG compared to the SPG that was seen previously with 

TRADD expression. However, statistical significance must be reached to verify that these 

differences in expression patterns exist between the groups. 

TRAF2 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (70 ± 29%) or FPG 

(39 ± 33%) at 56 dpo (Figure 86A). TRAF2 percent change mRNA expression is highly 

variable in both groups. 

SODD percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 
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axotomized facial motor nucleus compared to control nucleus for SPG (-4 ± 28%) or FPG 

(-38 ± 25%) at 56 dpo (Figure 87A). 

TNFR2 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (132 ± 21%) or 

FPG (143 ± 26%) at 56 dpo (Figure 88A). 

PAC1-R percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (13 ± 20%) or FPG 

(17 ± 4%) at 56 dpo (Figure 89A). It is not clear why PAC1-R percent change in mRNA is 

so variable within the SPG. No other genes have shown this type of variability within the 

SPG.  

CX3CR1 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (104 ± 33%) or 

FPG (68 ± 14%) at 56 dpo (Figure 90A). 

CRMP4 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (22 ± 34%) or FPG 

(-37 ± 30%) at 56 dpo (Figure 91A). Another trend for decreased percent change in 
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mRNA within the FPG, previously seen with the death receptor adapter protein TRADD, 

and Caspase-8. Increased CRMP4 expression considered to be neurodegenerative, 

especially in SOD1 MN. Future direction is to increase group sizes. 

GAP-43 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (155 ± 101%) or 

FPG (80 ± 40%) at 56 dpo (Figure 92A). High variability shown within the SPG, similar to 

the high variability seen in PAC1-R percent change in expression.  

βII-Tubulin percent change in mRNA expression (Ax/C) was in facial motor nuclei 

for symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (21 ± 7%) or FPG 

(28 ± 26%) at 56 dpo (Figure 93A). Extremely high variability exists within the FPG. 

GFAP percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 

axotomized facial motor nucleus compared to control nucleus for SPG (378 ± 56%) or 

FPG (218 ± 55%) at 56 dpo (Figure 94A). There appears to be a definite trend for higher 

percent change mRNA expression within the SPG however these results were not 

significant.  

CD68 percent change in mRNA expression (Ax/C) was in facial motor nuclei for 

symptomatic SOD1 groups. No significant difference in percent mRNA expression in 
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axotomized facial motor nucleus compared to control nucleus for SPG (263 ± 79%) or 

FPG (106 ± 8%) at 56 dpo (Figure 95A). Interestingly, as seen with GFAP there appears to 

be a definite trend for increase percent change GFAP expression within the SPG, this 

was also seen with CD68. Future directions will increase group numbers to reduce 

variability.  

FPG Displays Increased Relative mRNA Expression Levels Within Disease-Affected, 

Control Facial Motor Nucleus Compared to the SPG  

Relative mRNA expression for TNFR1 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0166 ± 0.0034) mRNA expression and FPG (0.0268 ± 0.0071) within the facial 

motor nuclei at 112 doa (Figure 75B). Increased average TNFRI mRNA in the FPG control 

nucleus, however there is high variability. 

 Relative mRNA expression for TNFα in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. A significant difference between 

SPG (1.7E-05 ± 8.2E-06) mRNA expression and FPG (6.8E-05± 1.9E-05) was found within 

the facial motor nuclei at 112 doa (Figure 76B). TNFα mRNA expression levels are 

greatly increased within the FPG compared to the slow progression group.  

Relative mRNA expression for Fas in disease-affected, control facial motor nuclei 

was determined for symptomatic SOD1 groups. A significant difference between SPG 
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(5.2E-04 ± 6.1E-05) mRNA expression and FPG (1.1E-03 ± 2.6E-04) was seen within the 

facial motor nuclei at 112 doa (Figure 77B). 

Relative mRNA expression for FasL in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (1.8E-05 ± 1.1E-05) mRNA expression and FPG (1.2E-05 ± 3.5E-06) within the facial 

motor nuclei at 112 doa (Figure 78B). FasL displayed high variability among both groups. 

Relative mRNA expression for TRADD in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0032 ± 0.0005) mRNA expression and FPG (0.0055 ± 0.0014) within the facial 

motor nuclei at 112 doa (Figure 79B). However, the FPG has a higher mean, but is also 

highly variable. 

Relative mRNA expression for FADD in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (6.9E-04 ± 8.3E-05) mRNA expression and FPG (8.3E-04 ± 9.6E-05) within the facial 

motor nuclei at 112 doa (Figure 80B). 

Relative mRNA expression for Daxx in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0037 ± 0.0007) mRNA expression and FPG (0.0056 ± 0.0007) within the facial 

motor nuclei at 112 doa (Figure 81B). Daxx mRNA expression is similar to that seen with 

another adapter protein TRADD, a higher mean in the FPG, but high variability as well. 
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Relative mRNA expression for ASK1 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0049 ± 0.0009) mRNA expression and FPG (0.0051 ± 0.0006) within the facial 

motor nuclei at 112 doa (Figure 82B). 

Relative mRNA expression for nNOS in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. A significant difference between 

SPG (7.1E-05 ± 1.7E-06) mRNA expression and FPG (1.9E-04 ± 3.0E-05) was seen within 

the facial motor nuclei at 112 doa (Figure 83B). This significant increase is likely due to 

the unusually low variability in the SPG.  

Relative mRNA expression for Capsase-3 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0031 ± 0.0008) mRNA expression and FPG (0.0036 ± 0.0008) within the facial 

motor nuclei at 112 doa (Figure 84B). 

Relative mRNA expression for Caspase-8 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. A significant difference between 

SPG (7.6E-05 ± 1.1E-06) mRNA expression and FPG (1.9E-04 ± 1.4E-05) was found within 

the facial motor nuclei at 112 doa (Figure 85B). Like nNOS an unusually low variability 

within the SPG may have resulted in this significant difference. Larger groups are 

needed to reduce variability so more consistent expression levels can be analyzed. 
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Relative mRNA expression for TRAF2 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0039 ± 0.0006) mRNA expression and FPG (0.0050 ± 0.0003) within the facial 

motor nuclei at 112 doa (Figure 86B).  

Relative mRNA expression for SODD in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0122 ± 0.0026) mRNA expression and FPG (0.0160 ± 0.0014) within the facial 

motor nuclei at 112 doa (Figure 87B). 

Relative mRNA expression for TNFR2 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (5.6E-04 ± 4.9E-05) mRNA expression and FPG (9.3E-04± 3.4E-04) within the facial 

motor nuclei at 112 doa (Figure 88B). High variability was seen in the FPG. 

Relative mRNA expression for PAC1-R in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0371 ± 0.0046) mRNA expression and FPG (0.0394 ± 0.0078) within the facial 

motor nuclei at 112 doa (Figure 89B). 

Relative mRNA expression for CX3CR1 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. A significant difference between 

SPG (0.0129 ± 0.0026) mRNA expression and FPG (0.0262 ± 0.0051) was seen within the 
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facial motor nuclei at 112 doa (Figure 90B). FPG revealed increased mRNA expression 

within the diseased, control nucleus compared to the SPG. 

Relative mRNA expression for CRMP4 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0947 ± 0.0202) mRNA expression and FPG (0.1598 ± 0.0611) within the facial 

motor nuclei at 112 doa (Figure 91B). CRMP4 reveals high variability within the FPG.  

Relative mRNA expression for GAP-43 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. A significant difference between 

SPG (0.0134 ± 0.0039) mRNA expression and FPG (0.0174 ± 0.0024) was seen within the 

facial motor nuclei at 112 doa (Figure 92B). 

Relative mRNA expression for βII-Tubulin disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.1152 ± 0.0271) mRNA expression and FPG (0.0894 ± 0.0064) within the facial 

motor nuclei at 112 doa (Figure 93B). 

Relative mRNA expression for GFAP in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. No significant difference between 

SPG (0.0648 ± 0.0027) mRNA expression and FPG (0.2733 ± 0.0817) within the facial 

motor nuclei at 112 doa (Figure 94B). The FPG revealed higher mRNA expression for 

GFAP, suggesting an increased astrocyte reaction compared to that within the SPG facial 

motor nucleus. 
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Relative mRNA expression for CD68 in disease-affected, control facial motor 

nuclei was determined for symptomatic SOD1 groups. Similar to the previous glial-

specific gene, GFAP, CD68 reveals a significant difference between SPG (0.0079 ± 

0.0023) mRNA expression and FPG (0.0265 ± 0.0065) within the facial motor nuclei at 

112 doa (Figure 95B). This also suggests an increased glial response, a microglial 

response within the diseased facial motor nucleus compared to that within the SPG 

facial nucleus.
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Figure 69. Experimental Design: Behavioral testing of symptomatic SOD1 mice 

 

1. Pre-symptomatic SOD1 mice received a right facial nerve axotomy at 56 doa. 
2. Starting at 79 doa mice underwent behavioral testing for assessment of motor function until 

euthanasia at 112 doa, 56 days post-operative (dpo). 
3. Symptom onset was determined by statistical comparisons between averaged motor scores 

per time-point among the SOD1 mice. 
4. Once symptomatic onset was determined, average motor score throughout the 

symptomatic stage was determined for each mouse and a median split was performed to 
separate the SOD1 mice into the following two symptomatic groups: the SPG (slow) and the 
FPG (fast).
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Figure 70. Behavioral testing for motor function during disease progression in SOD1 mice.  A, 
Average motor scores of SOD1 mice across time. a, represents a significant difference in average 
motor score between the time-point and the previous, p ≤ 0.05. B, rate of symptom progression 
between two symptomatic SOD1 groups, based on motor scores throughout the symptomatic 
stage.
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Figure 71. Experimental Design: FMN Survival, average FMN per section of control facial motor 
nucleus and percent FMN survival after axotomy in symptomatic SOD1 groups (SPG & FPG) 

 
1. Mice, which previously received a facial nerve axotomy, were assigned to two groups; FPG 

and SPG (see Figure 69). Brains were removed and cryosectioned through the facial motor 
nucleus at 25 µm. 

2. Sections were fixed with 4% PFA and stained with thionin. 
3. FMN were identified by morphology and a defined nucleus and nucleolus. 
4. FMN were demarcated under light microscopy using the Neurolucida Tracing System and 

total number of MN per section were recorded for both control (left) and axotomized (right) 
facial motor nuclei.  

5. The average percent FMN survival was calculated by taking the total number of MN counted 
in the axotomized nucleus and dividing by the total number of MN in the 28 dpo (84 doa) 
control nucleus (previously determined, see Chapter VI) then multiplying by 100.  

6. The average percent of FMN survival was calculated by taking the total number of MN 
counted and dividing by the total number of sections counted.



220 
 

 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 72. Representative photomicrographs of thionin-stained axotomized and control facial 
motor nuclei from symptomatic SOD1 groups (SPG and FPG) at 56 dpo (112 doa). Original 
magnification 20x.
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Figure 73. FMN survival ± SEM in symptomatic SOD1 groups (SPG and FPG) facial motor nuclei at 
56 dpo (112 doa). A, Percent FMN survival in axotomized facial motor nucleus. B, Average MN 
per section in symptomatic SOD1 groups (SPG and FPG). 
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Figure 74. Experimental Design: LMD of SPG and FPG facial motor nuclei and real time RT-PCR 
analysis of mRNA expression      

 
1. Mice, previously received a facial nerve axotomy and were assigned into two groups, FPG 

and SPG (see Figure 69). Brains were removed and cryosectioned through the facial motor 
nucleus at 25 µm. 

2. Sections were fixed with 100% ETOH and stained with thionin.  
3. Control and axotomized nuclei were separately collected by laser microdissected for each 

mouse. 
4. RNA was isolated from control and axotomized facial motor nucleus samples. 
5. Real-time, RT-PCR was performed for specific genes to profile mRNA expression in the facial 

motor nuclei of FPG compared to the SPG. 
6. The semi-quantitative, relative mRNA expression, normalized to GAPDH in the facial motor 

nucleus was calculated using the 2-∆C
T method. As well as the percent change of mRNA 

expression of the axotomized nucleus relative to the control nucleus was calculated using 
the 2-∆∆C

T method
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Figure 75. Relative mRNA expression of TNFR1 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 
 

 
 
Figure 76. Relative mRNA expression of TNFα in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05.
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Figure 77. Relative mRNA expression of Fas in facial motor nucleus of symptomatic SOD1 groups 
(SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG axotomized 
facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control facial motor 
nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. b 
represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05. 

 
 
 

 
Figure 78. Relative mRNA expression of FasL in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei.
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Figure 79. Relative mRNA expression of TRADD in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 
 

 
 

 
 

Figure 80. Relative mRNA expression of FADD in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
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Figure 81. Relative mRNA expression of Daxx in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 

 
 

 
 

Figure 82. Relative mRNA expression of ASK1 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
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Figure 83. Relative mRNA expression of nNOS in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05. 
 

 
 

 
 

Figure 84. Relative mRNA expression of Caspase-3 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei.
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Figure 85. Relative mRNA expression of Caspase-8 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05. 

 
 
 
 
 

 
 
Figure 86. Relative mRNA expression of TRAF2 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei.
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Figure 87. Relative mRNA expression of SODD in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 
 
 

 
 

Figure 88. Relative mRNA expression of TNFR2 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei.
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Figure 89. Relative mRNA expression of PAC1-R in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 

 
 

 
 

Figure 90. Relative mRNA expression of CX3CR1 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05. 
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Figure 91. Relative mRNA expression of CRMP4 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 

 
 

Figure 92. Relative mRNA expression of GAP-43 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei.
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Figure 93. Relative mRNA expression of βII-Tubulin in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 

 
 
 
 

 
 

Figure 94. Relative mRNA expression of GFAP in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05.
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Figure 95. Relative mRNA expression of CD68 in facial motor nucleus of symptomatic SOD1 
groups (SPG and FPG) at 112 doa. A, Percent change of mRNA expression in SPG and FPG 
axotomized facial nuclei relative to control. B, Relative mRNA expression in SPG and FPG control 
facial motor nuclei. C, Relative mRNA expression in SPG and FPG axotomized facial motor nuclei. 
b represents a significant difference in FPG mRNA relative to SPG at p ≤ 0.05.
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Table 6: Summary of facial motor nuclei mRNA expression levels between symptomatic SOD1 
groups, 112 doa.  Axotomy-Induced column (Ax vs. Ax): relative mRNA expression level of 
axotomized, facial motor nucleus of FPG vs. SPG. Disease-Induced column (C vs. C): relative 
mRNA expression level of control, diseased facial motor nucleus of FPG vs. SPG. Axotomy/ 
Disease-Induced column (Ax/C vs. Ax/C): % change mRNA expression (Ax/C) FPG vs. SPG. 
↑ indicates significantly higher mRNA expression in the FPG vs. SPG.
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E. Discussion 

Variability among SOD1 symptom progression and survival is evident when 

comparing the findings of multiple studies within the same SOD1 mouse model (Scott et 

al., 2008). Differences in reports of symptom onset can be attributed to the type of 

behavioral assessments used to measure changes in motor function and subsequently, 

symptom onset. It was important to use behavioral testing to determine symptom onset 

and symptom progression among the SOD1 mice used in Chapter IV and V. Additionally, 

development of a behavioral assessment protocol for use by our laboratory is essential 

for future research on the SOD1 mouse and will prove invaluable when potential 

therapeutic interventions or treatments are administered and changes in symptom 

onset and symptom progression are measureable outcomes of success. 

Symptom Onset Occurs at 100 doa 

 Seven behavioral tests were to assess motor function in SOD1 mice starting at 79 

doa and ending at the day of euthanasia, 112 doa. The seven combined test scores 

yielded the motor score which was used to determine symptom onset among the entire 

group of SOD1 mice. A significant increase in motor score or an increase in the severity 

of motor function led to the conclusion that symptom onset occurred at 100 doa, 

according to the behavioral assessment protocol used.  
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Results of this study revealed that throughout the symptomatic stage a 

subpopulation of SOD1 mice exhibited a far more rapid disease progression, relative to 

the severity of motor function or increased motor scores.  

Two, SOD1 Symptomatic Groups with Different Symptom Progression Rates 

 After statistically separating the symptomatic SOD1 mice, it was apparent that 

there were two groups undergoing symptom progression at different rates within the 

relatively short period of time these symptomatic mice were behaviorally assessed. The 

faster symptom progressing group revealed a rate that was 3 times that of the slower 

progressing group. While variability in symptoms, markers of disease progression, and 

survival is readily observed within the literature, only one laboratory has described the 

presence of two different disease progression rates within the SOD1G93A mouse model. 

They termed these two groups the fast disease progression group (FPG) and the slow 

disease progression group (SPG) and concluded that they had identified two groups of 

SOD1 mice with different rates of disease progression, based on differences in symptom 

severity and MN cell loss (Rinke, 1976).  

Therefore in addition to differences in symptom progression rates these two 

groups provided an excellent opportunity to use the facial motor nucleus to measure 

differences in disease progression (FMN survival and mRNA expression). Due to the fact 

that these two groups of symptomatic SOD1 mice were originally one experimental 

group, the result was an n=3 for each symptomatic group, for both the FMN survival 

experiments and the mRNA expression experiments. Therefore the FMN survival and 
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mRNA results are considered preliminary data and the experiments will be repeated 

with larger groups in the future. 

No Differences in FMN Survival 

 No significant differences were seen between percent FMN survival after 

axotomy or between the average number of MN per section within the control, 

diseased facial motor nucleus of FPG compared to SPG. While there appears to be a 

trend for increased MN loss in the FPG, no difference is statistically apparent.  

Increased, Disease-Induced mRNA Expression Within the FPG Compared to SPG, But Not 

Axotomy-Induced 

 Three different comparisons were made regarding mRNA expression levels 

between the FPG and SPG and are detailed in Table 6. First, relative mRNA expression 

levels within the control, diseased facial motor nucleus of the FPG were compared to 

the SPG. The FPG revealed significantly higher mRNA expression for the following genes: 

TNFα, Fas, nNOS, Caspase-8, CX3CR1, GFAP, and CD68. Comparisons between the other 

genes revealed no significant differences between the two groups and relative mRNA 

expression due to disease progression. While all 21 genes were differentially regulated 

by axotomy in the SOD1 facial nucleus (see Chapter IV, Table 4), it is important to keep 

in mind that at 112 doa, not all 21 genes were significantly different in comparison to 

WT (refer to Chapter V, Table 5). Within the SOD1 disease-induced mRNA expression at 

112 doa, the majority of genes were considered of equivalent expression to “some” 

time-point relative to the degree of disease-induced target disconnection. This 
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conclusion was reached in part because of the ability to examine mRNA expression 

within earlier time-points. These observations indicated transient patterns that would 

be considered unchanged or upregulated depending on the time-point chosen for the 

comparison. Therefore, when taking into consideration only the time-point of 112 doa 

and only accepting significantly increased or decreased mRNA expression, Chapter V 

reveals 11 genes significantly different at 112 doa compared to WT.  

Since the experiments in this Chapter, unlike those within Chapter V, provide no 

additional time-points, any difference in mRNA expression between FPG vs. SPG is 

considered substantial. Therefore, the seven upregulated genes in the FPG are due to 

disease-induced mRNA expression and among the seven genes, four are considered to 

be sensitive markers for target disconnection (TNFα, Fas, GFAP, and CD68). In addition, 

upregulation of nNOS suggests an increased rate of disease progression. Expression of 

nNOS after SOD1 facial nerve axotomy is not upregulated until the delayed-response 

phase. In addition, this upregulation was not seen at 70, 84, or 112 doa within the SOD1 

control, facial motor nucleus and it was suggested that the upregulation of nNOS had 

not yet occurred. It seems that the increase in nNOS within the FPG supports the 

previous suggestion that nNOS expression had not yet, upregulated its expression. 

Together, these mRNA expression results suggests one of two hypotheses, 1) 

that the FPG is undergoing disease progression at a more accelerated rate compared to 

the SPG, although the disease began at the same time in both groups, or 2) the FPG was 

subjected to an earlier disease onset and therefore initial target disconnection began 
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occurring earlier than the SPG, so while the two groups are the same age, they are not 

at the same time-point within the course of the disease. 

Two additional comparisons were made between the FPG and SPG, the relative 

mRNA expression level within the axotomized, facial motor nucleus and the percent 

change mRNA expression in the axotomized nucleus compared to the internal, control 

facial nucleus. Originally comparisons between the percent change mRNA expression 

after axotomy was not going to be analyzed due to the prediction that detecting 

axotomy-induced changes would be compromised or not detectable because of 

differences of expression levels within the control nucleus. However, for that very 

reason the percent change mRNA was included to provide additional insight on those 

comparisons when control mRNA levels may not be equivalent. The results show no 

differences between the two groups. Six genes expressed significantly higher mRNA 

levels within the control nucleus but not the axotomized. These findings suggest that 

percent change mRNA expression (Ax/C) is relatively insensitive to differences within 

the control facial nucleus.  

Regarding the relative mRNA expression within the axotomized FPG compared to 

the SPG, only one gene is expressed at a higher level. This suggests that while disease-

induced mRNA expression divides the two groups, axotomy-induced mRNA expression 

does not. This lends support to the conclusion that the FPG was subjected to an earlier 

disease onset and the initial target disconnection began occurring earlier than the SPG. 

Therefore, while the two groups are the same age, they are not at the same time-point 
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within the disease. Performing a facial nerve axotomy at 56 doa standardized the time 

of disease onset within the axotomized facial motor nucleus and the axotomy-induced 

mRNA expression was similar between the two groups. In support of this, one study 

performed a sciatic nerve crush at 42 doa in SOD1 mice, and showed an acceleration in 

disease progression such that at 90 doa the injured mice showed deficits in muscle 

force, contractile characteristics, and MN survival that are only seen in uninjured, end-

stage mice 130 doa (Sharp et al., 2005). Therefore, there is overwhelming support that 

target disconnection, experimentally-induced or disease-induced, initiates disease 

progression. 

 In conclusion, different rates of disease progression within symptomatic SOD1 

mouse is likely due to time of disease onset, i.e. the initial target disconnection, and 

resulting in the appearance of accelerated disease progression.
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CHAPTER VII 

MOLECULAR EXPRESSION OF SINGALING SYSTEMS IN REGENERATIVE 

AND DEGENERATIVE SUBNUCLEI FOLLOWING FACIAL NERVE ACOTOMY 

A. Abstract 

Facial nerve axotomy in the WT and SOD1 mice results in significant FMN loss, 

and to a far greater extent in the SOD1 facial motor nucleus. The distribution of loss 

over the six facial motor subnuclei is uneven. While the VM subnucleus retains nearly 

100% MN survival (28 dpo), the VL subnucleus displays the most FMN loss of all, 

retaining only 70% survival. This interesting finding led us to profile the molecular 

response to axotomy to determine whether differential gene expression in response to 

axotomy was a potential mechanism in the VL, increased FMN death. Surprisingly, the 

“degenerative” VL subnucleus responded similarly as the “regenerative” VM 

subnucleus. The VL upregulated MN-specific regenerative genes to an even greater 

extent, compared to WT for some time-points (Mesnard et. al., 2010). Similar findings 

were reported in the SOD1 VM and VL (Mesnard, 2009). The experiments performed 

within the Chapter were aimed at identifying possible increased expression of death 

receptor signaling genes within the VL subnucleus that could lead to greater 

understanding of the molecular mechanisms that mediate the “degenerative” 
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phenotype. Results show an increase in death receptor gene expression within the VL 

subnucleus compared to the VM. 

B. Introduction 

Facial nerve axotomy has been used extensively to investigate MN survival and 

peripheral nerve regeneration. An additional level of analysis can be reached by 

studying axotomies effects among the subnuclei. The distribution of FMN survival across 

the six subnuclei allows us to investigate functional or topographical responses to nerve 

injury. Previous studies revealed an uneven distribution of FMN survival at 28 dpo, with 

the VL showing the lowest percent survival at 70% and the VM subnuclei maintaining 

the highest level of FMN survival at almost 100% (Canh et al., 2006). Additionally in the 

RAG-2 KO, this same variance in numbers of surviving MN was seen, although 

percentage FMN survival was much lower. This distribution was also maintained after 

FMN rescue by reconstituting the RAG-2 KO mouse prior to facial nerve axotomy. This 

identification of differing populations of MN within the facial nucleus is important and 

provides two populations with intrinsic differences and/or surrounding environments 

that can be further studied. Additionally, SOD1 FMN distribution is uneven and closely 

resembles survival levels seen in the RAG-2 KO (Canh et al., 2006; Mesnard, 2009).  

The technique of LMD was utilized to accurately dissect the VM and VL subnuclei 

and analyzed for mRNA expression following axotomy. WT comparisons between the 

regenerative VM, maintaining almost 100% FMN survival after axotomy, and the 

degenerative VL, displaying the greatest cell loss among the six subnuclei at 70% FMN 
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survival, were performed using the same experimental design. It was determined that 

regardless of neuronal fate after injury, both subnuclear populations responded with a 

similar survival/regenerative profile of mRNA expression. In addition differences within 

mRNA expression specific to the neuropil were evident (Mesnard et al., 2010). 

Additionally, comparison was made between the pre-symptomatic SOD1 VM and VL 

subnuclei after axotomy. Similar results from this study support the previous findings 

(Mesnard, 2009). In summary, we propose that MN fate is ultimately controlled or 

regulated by cells within the neuropil, We hypothesize that this lack of regulation by the 

neuropil may also result in the MN degeneration that occurs during disease progression.  

Aim #4 of this dissertation was to analyze the axotomy-induced molecular 

expression of neuroprotective and neurodestructive signaling systems within the 

regenerative and degenerative subnuclei of the facial motor nucleus. The working 

hypothesis for this aim was that the regenerative, VM subnucleus of the facial motor 

nucleus will display attenuated molecular expression of genes related to 

neurodegenerative signaling systems compared to the degenerative, VL subnucleus in 

both WT and SOD1 mice following axotomy. The experiments investigated differences 

between axotomy-induced mRNA expression within the WT VM and VL subnuclei, and 

separately, within the SOD1 VM and VL subnuclei. The purpose of these experiments 

was to provide additional information regarding axotomy-induced molecular responses 

of genes involved in neuroprotective and neurodestructive signaling systems among 

facial nuclei populations with inherent degenerative and regenerative characteristics.  
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C. Materials and Methods 

Animals and Surgical Procedures 

Mice were obtained and housed as previously described in Chapter III Section A. 

All mice received a right facial nerve transection axotomy described In Chapter III 

Section B. Also refer to experimental design illustrated in Figure 96 of this Chapter.  

Tissue Preparation 

Refer to Chapter III Sections C and D as well as Figure 96 of this Chapter for 

details. 

Laser Microdissection 

Details are described in Chapter III Section F and the experimental design 

illustrated in Figure 96 of this Chapter. 

RNA Isolation and Real-Time RT-PCR 

Percent change of mRNA expression was assessed in WT VM and VL at 3, 7, 14, 

28 and 56 dpo. Additionally, percent change of mRNA expression was analyzed in SOD1 

VM and VL at 3, 7, 14 and 28 dpo. The SOD1 VM and VL subnuclei time course does not 

include a 56 dpo time-point because significant FMN cell loss due to axotomy and 

disease (control facial motor nucleus) resulted in extremely low levels of mRNA yield 

following RNA extraction. For this reason, there was not sufficient total RNA for 

successful reverse transcription. Therefore, WT VM and VL time courses contain an 

additional time-point which was incorporated in the analysis. The 56 dpo time-point was 

included because for many of the mRNA expression profiles, this last time-point 
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provides sufficient time to witness a return to baseline and additionally it is a 

comparison to data obtained from the WT and SOD1 whole, facial motor nucleus, which 

also contain a time course out to 56 dpo. 

Both WT and SOD1 VM and VL subnuclei were investigated for mRNA expression 

of the following genes: CX3CR1, TNFR1, TNFR2, Fas, Caspase-3, PAC1-R, CRMP4, CD68, 

ASK1, Daxx, FADD, TRAF2, TRADD, SODD, and nNOS. Genes, Caspase-8, GFAP, GAP-43, 

and βII-Tubulin were previously analyzed by our laboratory for the time-points: 3, 7, 14, 

and 28 dpo. For this dissertation the time course was extended to 56 dpo, in WT VM and 

VL only, and therefore the time-point of WT 28 dpo (VM and VL) was replicated for 

conformation and comparison as well as 56 dpo. The gene CD68 does not include the 

WT, VM or VL 3 dpo data point. Due to failure of amplification during the real-time PCR 

run and insufficient volume of remaining WT VM and VL 3 dpo samples, the time-point 

could not be included in the analysis.  

For specific details refer to Chapter III Section G and the experimental design 

illustrated in Figure 96 of this Chapter. 

Statistical Analysis 

Details of statistical analysis for FMN percent survival following axotomy and 

axotomy-induced percent change mRNA expression can be located in Chapter III Section 

J. 
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D. Results 

Comparisons of Percent Change of mRNA expression in WT VM Relative to WT VL 

Subnuclei, and Comparisons Between SOD1 mRNA Expression in VM and VL Subnuclei 

Comparisons were made between WT VM vs. VL and SOD1 VM vs. VL, at the 

time-points of 0 – 28 dpo. High variability and lower expression level changes particular 

to the genes analyzed did not reveal any additional benefit to the analysis between 

SOD1 and WT subnuclei. Therefore, analysis was limited to VM vs. VL of either WT or 

SOD1. See Table 7 for information regarding more specific information about statistical 

differences between the subnuclei. Additionally, the time-point of 56 dpo was analyzed 

in WT only. See Table 8 for WT, 56 dpo, VM vs. VL comparisons. 

TNFR1 mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (41 ± 7%), 7 (73 ± 13%), 14 (47 ± 24%), 

28 (29 ± 15%), and 56 (41 ± 11%) dpo (Figure 97A). In the WT VL subnucleus mRNA 

expression for TNFR1 was upregulated relative to the control at 3 (109 ± 19%), 7 (103 ± 

18%), 14 (156 ± 32%), 28 (114 ± 41%), and 56 (46 ± 35%) dpo (Figure 97B). 

TNFR1 mRNA expression in the SOD1 VM subnucleus was upregulated after 

facial nerve axotomy at 3 (66 ± 33%), 7 (57 ± 28%), 14 (101 ± 22%) and 28 (52 ± 28%) 

dpo (Figure 98A). In the SOD1 VL subnucleus mRNA expression for TNFR1 was 

upregulated relative to the control at 3 (53 ± 14%), 7 (137 ± 37%), 14 (108 ± 37%) and 28 

(58 ± 52%) dpo (Figure 98B). 
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Fas mRNA expression in the WT VM subnucleus was upregulated following facial 

nerve axotomy relative to the control at 3 (25 ± 5%), 7 (5 ± 7%), 14 (-6 ± 11%), 28 (-7 ± 

9%), and 56 (12 ± 40%) dpo (Figure 99A). In the WT VL subnucleus mRNA expression for 

Fas was upregulated relative to the control at 3 (79 ± 16%), 7 (1 ± 3%), 14 (24 ± 8%), 28 

(27 ± 6%), and 56 (-1 ± 12%) dpo (Figure 99B). 

Fas mRNA expression in the SOD1 VM subnucleus was upregulated after facial 

nerve axotomy at 3 (53 ± 9%), 7 (64 ± 6%), 14 (75 ± 19%) and 28 (154 ± 9%) dpo (figure 

100A). In the SOD1 VL subnucleus mRNA expression for Fas was upregulated relative to 

the control at 3 (98 ± 9%), 7 (78 ± 7%), 14 (135 ± 47%) and 28 (162 ± 27%) dpo (figure 

100B). 

TRADD mRNA expression in the WT VM subnucleus was downregulated 

following facial nerve axotomy relative to the control at 3 (-21 ± 5%), 7 (-26 ± 8%), 14 (-

17 ± 11%), 28 (-10 ± 12%), and 56 (-20 ± 7%) dpo (Figure 101A). In the WT VL subnucleus 

mRNA expression for TRADD was downregulated relative to the control at 3 (-30 ± 6%), 

7 (-27 ± 8%), 14 (-32 ± 8%), 28 (3 ± 16%), and 56 (13 ± 17%) dpo (Figure 101B). 

TRADD mRNA expression in the SOD1 VM subnucleus was downregulated after 

facial nerve axotomy at 3 (-2 ± 17%), 7 (-32 ± 14%), 14 (-17 ± 4%) and 28 (6 ± 16%) dpo 

(Figure 102A). In the SOD1 VL subnucleus mRNA expression for TRADD was 

downregulated relative to the control at 3 (-19 ± 4%), 7 (-32 ± 16%), 14 (-3 ± 18%) and 

28 (-3 ± 10%) dpo (Figure 102B). 
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FADD mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (37 ± 22%), 7 (-11 ± 19%), 14 (30 ± 20%), 

28 (13 ± 10%), and 56 (-10 ± 5%) dpo (Figure 103A). In the WT VL subnucleus mRNA 

expression for FADD was upregulated relative to the control at 3 (44 ± 26%), 7 (26 ± 

19%), 14 (17 ± 8%), 28 (-3 ± 16%), and 56 (19 ± 15%) dpo (Figure 103B). 

FADD mRNA expression in the SOD1 VM subnucleus was upregulated after facial 

nerve axotomy at 3 (58 ± 13%), 7 (34 ± 18%), 14 (21 ± 30%) and 28 (52 ± 26%) dpo 

(Figure 104A). In the SOD1 VL subnucleus mRNA expression for FADD was upregulated 

relative to the control at 3 (15 ± 14%), 7 (19 ± 17%), 14 (8 ± 21%) and 28 (77 ± 25%) dpo 

(Figure 104B). 

Daxx mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (15 ± 12%), 7 (44 ± 15%), 14 (2 ± 13%), 

28 (9 ± 14%), and 56 (-15 ± 17%) dpo (Figure 105A). In the WT VL subnucleus mRNA 

expression for Daxx was upregulated relative to the control at 3 (52 ± 25%), 7 (51 ± 

24%), 14 (56 ± 11%), 28 (6 ± 21%), and 56 (6 ± 32%) dpo (Figure 105B). 

Daxx mRNA expression in the SOD1 VM subnucleus was upregulated after facial 

nerve axotomy at 3 (27 ± 21%), 7 (19 ± 15%), 14 (12 ± 3%) and 28 (-12 ± 19%) dpo 

(Figure 106A). In the SOD1 VL subnucleus mRNA expression for Daxx was upregulated 

relative to the control at 3 (-4 ± 15%), 7 (26 ± 15%), 14 (6 ± 12%) and 28 (-1 ± 26%) dpo 

(Figure 106B). 
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ASK1 mRNA expression in the WT VM subnucleus was not significantly different 

from baseline following facial nerve axotomy 3 (31 ± 17%), 7 (24 ± 15%), 14 (19 ± 17%), 

28 (6 ± 11%), and 56 (-10 ± 8%) dpo (Figure 107A). In the WT VL subnucleus mRNA 

expression for ASK1 not significantly different from baseline following facial nerve 

axotomy l at 3 (33 ± 22%), 7 (-20 ± 15%), 14 (-4 ± 4%), 28 (-4 ± 9%), and 56 (7 ± 6%) dpo 

(Figure 107B). 

ASK1 mRNA expression in the SOD1 VM subnucleus was not significantly 

different from baseline  following facial nerve axotomy at 3 (5 ± 10%), 7 (5 ± 7%), 14 (12 

± 10%) and 28 (-8 ± 21%) dpo (Figure 108A). In the SOD1 VL subnucleus mRNA 

expression for ASK1 was not significantly different from baseline  following facial nerve 

axotomy at 3 (-6 ± 7%), 7 (-15 ± 9%), 14 (-21 ± 11%) and 28 (52 ± 31%) dpo (Figure 

108B). 

nNOS mRNA expression in the WT VM subnucleus was not significantly different 

from baseline  following facial nerve axotomy at 3 (-2 ± 20%), 7 (-11 ± 32%), 14 (23 ± 

30%), 28 (-15 ± 29%), and 56 (11 ± 28%) dpo (Figure 109A). In the WT VL subnucleus 

mRNA expression for nNOS was upregulated relative to the control at 3 (-24 ± 17%), 7 

(10 ± 33%), 14 (3 ± 29%), 28 (63 ± 27%), and 56 (41 ± 10%) dpo (Figure 109B). 

nNOS mRNA expression in the SOD1 VM subnucleus was not significantly 

different from baseline  following facial nerve axotomy at 3 (32 ± 53%), 7 (6 ± 43%), 14 

(7 ± 29%) and 28 (38 ± 35%) dpo (Figure 110A). In the SOD1 VL subnucleus mRNA 
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expression for nNOS was upregulated relative to the control at 3 (1 ± 69%), 7 (77 ± 47%), 

14 (29 ± 18%) and 28 (128 ± 24%) dpo (Figure 110B). 

Caspase-3 mRNA expression in the WT VM subnucleus was upregulated 

following facial nerve axotomy relative to the control at 3 (163 ± 50%), 7 (319 ± 55%), 14 

(465 ± 94%), 28 (91 ± 35%), and 56 (17 ± 36%) dpo (Figure 111A). In the WT VL 

subnucleus mRNA expression for Caspase-3 was upregulated relative to the control at 3  

288 ± 85%), 7 (693 ± 177%), 14 (670 ± 91%), 28 (146 ± 60%), and 56 (42 ± 12%) dpo 

(Figure 111B). 

Caspase-3 mRNA expression in the SOD1 VM subnucleus was upregulated after 

facial nerve axotomy at 3 (228 ± 46%), 7 (466 ± 172%), 14 (410 ± 66%) and 28 (92 ± 24%) 

dpo (Figure 112A). In the SOD1 VL subnucleus mRNA expression for Caspase-3 was 

upregulated relative to the control at 3 (291 ± 97%), 7 (395± 133%), 14 (428 ± 55%) and 

28 (274± 92%) dpo (Figure 112B). 

Caspase-8 mRNA expression was previously analyzed up to 28 dpo for WT and 

SOD1 VM and VL subnuclei, therefore in the WT the 28 dpo time-point was repeated  

and the additional time-point of 56 dpo was analyzed to determine whether mRNA 

expression returned to control levels in VM and VL. VM subnucleus was significantly 

increased following axotomy relative to the WT control at 28 dpo (70 ± 26%) and returns 

to baseline mRNA expression levels by 56 dpo (11 ± 23%; Figure 113A). In the WT VL 

subnucleus mRNA expression for Caspase-8 was significantly increased following 
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axotomy relative to the WT control at 28 dpo (112 ± 26%) and returns to baseline mRNA 

expression levels by 56 dpo (38 ± 32%; Figure 113B). 

Caspase-8 mRNA expression in the SOD1 VM and VL subnucleus was previously 

assessed by our laboratory through 28 dpo. The SOD1 VM and VL subnucleus at 56 dpo 

did not yield total RNA levels conducive to reverse transcription. Therefore the SOD1 

time course was not extended to 56 dpo and Caspase-8 mRNA expression in the SOD1 

was not performed. 

TRAF2 mRNA expression in the WT VM subnucleus was downregulated following 

facial nerve axotomy relative to the control at 3 (-16 ± 14%), 7 (-20 ± 6%), 14 (-15 ± 6%), 

28 (-11 ± 6%), and 56 (-16 ± 10%) dpo (Figure 114A). In the WT VL subnucleus mRNA 

expression for TRAF2 was no downregulated relative to baseline at 3 (-4 ± 15%), 7 (-25 ± 

8%), 14 (-4 ± 17%), 28 (-1 ± 16%), and 56 (16 ± 8%) dpo (Figure 114B). 

TRAF2 mRNA expression in the SOD1 VM subnucleus was downregulated after 

facial nerve axotomy at 3 (-25 ± 13%), 7 (-36 ± 8%), 14 (-17 ± 9%) and 28 (8 ± 12%) dpo 

(Figure 115A). In the SOD1 VL subnucleus mRNA expression for TRAF2 was no different 

than baseline at 3 (-17 ± 10%), 7 ( -26 ± 13%), 14 ( -12 ± 14%) and 28 (16 ± 22%) dpo 

(Figure 115B). 

SODD mRNA expression in the WT VM subnucleus was downregulated following 

facial nerve axotomy relative to the control at 3 (-30 ± 5%), 7 (-28 ± 3%), 14 (-27 ± 5%), 

28 (-16 ± 6%), and 56 (-14 ± 7%) dpo (Figure 116A). In the WT VL subnucleus mRNA 
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expression for SODD was downregulated relative to the control at 3 (-2 ± 10%), 7 (-28 ± 

7%), 14 (-28 ± 7%), 28 (-9 ± 10%), and 56 (7 ± 7%) dpo (Figure 116B). 

SODD mRNA expression in the SOD1 VM subnucleus was downregulated after 

facial nerve axotomy at 3 (-27 ± 7%), 7 (-26 ± 13%), 14 (-35 ± 2%) and 28 (-15 ± 9%) dpo 

(Figure 117A). In the SOD1 VL subnucleus mRNA expression for SODD was 

downregulated relative to the control at 3 (-22 ± 7%), 7 (-20 ± 10%), 14 (-27 ±10%) and 

28 (-1 ± 15%) dpo (Figure 117B). 

TNFR2 mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (933 ± 257%), 7 (1127 ± 296%), 14 (1305 

± 456%), 28 (560 ± 67%), and 56 (279 ± 196%) dpo (Figure 118A). In the WT VL 

subnucleus mRNA expression for TNFR2 was upregulated relative to the control at 3 

(1369 ± 203%), 7 (1888 ± 497%), 14 (1406 ± 467%), 28 (1126 ± 118%), and 56 (286 ± 

125%) dpo (Figure 118B). 

TNFR2 mRNA expression in the SOD1 VM subnucleus was upregulated after 

facial nerve axotomy at 3 (448 ± 103%), 7 (1005 ± 216%), 14 ( 1036 ± 296%) and 28 ( 874 

± 599%) dpo (Figure 119A). In the SOD1 VL subnucleus mRNA expression for TNFR2 was 

upregulated relative to the control at 3 (1848 ± 463%), 7 (2191 ± 753%), 14 (1690 ± 

716%) and 28 (915 ± 624%) dpo (Figure 119B). 

PAC1-R mRNA expression in the WT VM subnucleus was downregulated 

following facial nerve axotomy relative to the control at 3 (-64 ± 5%), 7 (-65 ± 6%), 14 (-

61 ± 5%), 28 (-18 ± 12%), and 56 (-19 ± 2%) dpo (Figure 120A). In the WT VL subnucleus 
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mRNA expression for PAC1-R was downregulated relative to the control at 3 (-52 ± 3%), 

7 (-63 ± 3%), 14 (-27 ± 13%), 28 (17 ± 8%), and 56 (9 ± 9%) dpo (Figure 120B). 

PAC1-R mRNA expression in the SOD1 VM subnucleus was downregulated after 

facial nerve axotomy at 3 (-61 ± 3%), 7 (-59 ± 5%), 14 (-46 ± 9%) and 28 (-4 ± 8%) dpo 

(Figure 121A). In the SOD1 VL subnucleus mRNA expression for PAC1-R was 

downregulated relative to the control at 3 (-52 ± 7%), 7 (-53 ± 8%), 14 (-26 ± 9%) and 28 

(44 ± 13%) dpo (Figure 121B). 

CX3CR1 mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (330 ± 42%), 7 (503 ± 67%), 14 (283 ± 

68%), 28 (176 ± 54%), and 56 (33 ± 6%) dpo (Figure 122A). In the WT VL subnucleus 

mRNA expression for CX3CR1 was upregulated relative to the control at 3 (992± 161%), 

7 (934± 168%), 14 (975 ± 130%), 28 (342 ± 85%), and 56 (198 ± 50%) dpo (Figure 122B). 

CX3CR1 mRNA expression in the SOD1 VM subnucleus was upregulated after 

facial nerve axotomy at 3 (239 ± 76%), 7 (315 ± 62%), 14 (367 ± 37%) and 28 (259 ± 

102%) dpo (Figure 123A). In the SOD1 VL subnucleus mRNA expression for CX3CR1 was 

upregulated relative to the control at 3 (572 ± 91%), 7 (967 ± 128%), 14 (577 ± 122%) 

and 28 (719 ± 138%) dpo (Figure 123B). 

CRMP4 mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 3 (15 ± 12%), 7 (40 ± 17%), 14 (49 ± 20%), 

28 (47 ± 7%), and 56 (-6 ± 10%) dpo (Figure 124A). In the WT VL subnucleus mRNA 
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expression for CRMP4 was upregulated relative to the control at 3 (-16 ± 3%), 7 (22 ± 

11%), 14 (69 ± 20%), 28 (20 ± 12%), and 56 (22 ± 11%) dpo (Figure 124B). 

CRMP4 mRNA expression in the SOD1 VM subnucleus was upregulated after 

facial nerve axotomy at 3 (10 ± 6%), 7 (41 ± 18%), 14 (47 ± 15%) and 28 (48 ± 8%) dpo 

(Figure 125A). In the SOD1 VL subnucleus mRNA expression for CRMP4 was upregulated 

relative to the control at 3 (-10 ± 6%), 7 (44 ± 29%), 14 (60 ± 24%) and 28 (9 ± 14%) dpo 

(Figure 125B). 

GAP-43 mRNA expression was previously analyzed up to 28 dpo for WT and 

SOD1 VM and VL subnuclei, therefore in the WT the 28 dpo time-point was repeated  

and the additional time-point of 56 dpo was analyzed to determine whether mRNA 

expression returned to control levels in VM and VL. VM subnucleus was significantly 

increased following axotomy relative to the WT control at 28 dpo (425 ± 106%) and 

returns to baseline mRNA expression levels by 56 dpo (49 ± 21%; Figure 126A). In the 

WT VL subnucleus mRNA expression for GAP-43 was significantly increased following 

axotomy relative to the WT control at 28 dpo ( 661 ± 60%) and remains significantly 

increased at 56 dpo (254 ± 34%; Figure 126B). 

GAP-43 mRNA expression in the SOD1 VM and VL subnucleus was previously 

assessed by our laboratory through 28 dpo. The SOD1 VM and VL subnucleus at 56 dpo 

did not yield total RNA levels conducive to reverse transcription. Therefore the SOD1 

time course was not extended to 56 dpo and GAP-43 mRNA expression in the SOD1 was 

not performed. 
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βII-Tubulin mRNA expression was previously analyzed up to 28 dpo for WT and 

SOD1 VM and VL subnuclei, therefore in the WT the 28 dpo time-point was repeated  

and the additional time-point of 56 dpo was analyzed to determine whether mRNA 

expression returned to control levels in VM and VL. VM subnucleus was significantly 

increased following axotomy relative to the WT control at 28 dpo (65 ± 12%) and returns 

to baseline mRNA expression levels by 56 dpo (19 ± 11%; Figure 127A). In the WT VL 

subnucleus mRNA expression for βII-Tubulin was significantly increased following 

axotomy relative to the WT control at 28 dpo ( 102 ± 18%) and remains upregulated at 

56 dpo (16 ± 6%; Figure 127B). 

βII-Tubulin mRNA expression in the SOD1 VM and VL subnucleus was previously 

assessed by our laboratory through 28 dpo. The SOD1 VM and VL subnucleus at 56 dpo 

did not yield total RNA levels conducive to reverse transcription. Therefore the SOD1 

time course was not extended to 56 dpo and βII-Tubulin mRNA expression in the SOD1 

was not performed. 

GFAP mRNA expression was previously analyzed up to 28 dpo for WT and SOD1 

VM and VL subnuclei, therefore in the WT the 28 dpo time-point was repeated  and the 

additional time-point of 56 dpo was analyzed to determine whether mRNA expression 

returned to control levels in VM and VL. VM subnucleus was significantly increased 

following axotomy relative to the WT control at 28 dpo (586 ± 403%) and returns to 

baseline mRNA expression levels by 56 dpo (285 ± 259%; Figure 128A). In the WT VL 

subnucleus mRNA expression for GFAP was significantly increased following axotomy 
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relative to the WT control at 28 dpo (947 ± 409%) and remains upregulated at 56 dpo 

(583 ± 176%; Figure 128B). 

GFAP mRNA expression in the SOD1 VM and VL subnucleus was previously 

assessed by our laboratory through 28 dpo. The SOD1 VM and VL subnucleus at 56 dpo 

did not yield total RNA levels conducive to reverse transcription. Therefore the SOD1 

time course was not extended to 56 dpo and GFAP mRNA expression in the SOD1 was 

not performed. 

CD68 mRNA expression in the WT VM subnucleus was upregulated following 

facial nerve axotomy relative to the control at 7 (799 ± 243%), 14 (479 ± 172%), 28 (274 

± 53%), and 56 (123 ± 69%) dpo (Figure 129A). Due to failure of amplification during the 

real-time PCR run and insufficient volume of remaining WT 3 dpo VM and VL samples, 

the time-point could not be included in the analysis. In the WT VL subnucleus mRNA 

expression for CD68 was upregulated relative to the control at 7 (1200 ± 367%), 14 (970 

± 363%), 28 (719 ± 179%), and 56 (379 ± 192%) dpo (Figure 129B). 

CD68 mRNA expression in the SOD1 VM subnucleus was upregulated after facial 

nerve axotomy at 3 (198 ± 170%), 7 (174 ± 17%), 14 (529 ± 152%) and 28 (479 ± 283%) 

dpo (Figure 130A). In the SOD1 VL subnucleus mRNA expression for CD68 was 

upregulated relative to the control at 3 (404 ± 42%), 7 (354 ± 99%), 14 (496 ± 176%) and 

28 (677 ± 207%) dpo (Figure 130B).
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Figure 96. Experimental Design: LMD of WT and SOD1 facial subnuclei (VM & VL), real time RT-
PCR and analysis of mRNA Expression. 

 

 
 

1. WT and SOD1 mice received a right facial nerve axotomy at 56 doa. 
2. Mice were euthanized at 3, 7, 14, 28 and 56 dpo. 
3. Brains were removed and cryosectioned through the facial motor nucleus at 25 µm. 
4. Sections were fixed with 100% ETOH and stained with thionin.  
5. Control and axotomized VM and VL subnuclei were separately collected by laser 

microdissected for each mouse. 
6. RNA was isolated from control and axotomized VM and VL subnuclei samples. 
7. Real-time, RT-PCR was performed for specific genes to profile the axotomy-induced 

molecular response. 
8. The semi-quantitative, percent change of mRNA expression of the axotomized 

subnucleus relative to the uninjured, control subnucleus was calculated using the 2-∆∆C
T 

method.
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Figure 97. Percent change of TNFR1 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VM at p ≤ 0.05.
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Figure 98. Percent change of TNFR1 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control at p ≤ 0.05.
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Figure 99. Percent change of Fas mRNA expression ± SEM in WT VM and VL axotomized facial 
motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. 
# represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to VM at p ≤ 
0.05.
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Figure 100. Percent change of Fas mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05. 
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Figure 101. Percent change of TRADD mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point at p ≤ 0.05.
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Figure 102. Percent change of TRADD mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control at p ≤ 0.05.
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Figure 103. Percent change of FADD mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL.  
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Figure 104. Percent change of FADD mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to VL 
at p ≤ 0.05.
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Figure 105. Percent change of Daxx mRNA expression ± SEM in WT VM and VL axotomized facial 
motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. 
# represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to VM at p ≤ 
0.05.
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Figure 106. Percent change of Daxx mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control at p ≤ 0.05.
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Figure 107. Percent change of ASK1 mRNA expression ± SEM in WT VM and VL axotomized facial 
motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. 
* represents a significant difference relative to VM at p ≤ 0.05.
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Figure 108. Percent change of ASK1 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. a represents a significant difference relative to the previous time-point; * represents a 
significant difference relative to VL at p ≤ 0.05.
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Figure 109. Percent change of nNOS mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VM at p ≤ 0.05.
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Figure 110. Percent change of nNOS mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point at p ≤ 0.05. 
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Figure 111. Percent change of Caspase-3 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point at p ≤ 0.05.
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Figure 112. Percent change of Caspase-3 mRNA expression ± SEM in SOD1 VM and VL 
axotomized facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, 
VL. C, VM vs. VL. # represents a significant difference relative to the control; a represents a 
significant difference relative to the previous time-point at p ≤ 0.05.
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Figure 113. Percent change of Caspase-8 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. # 
represents a significant difference relative to the control at p ≤ 0.05.
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Figure 114. Percent change of TRAF2 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VM at p ≤ 0.05.
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Figure 115. Percent change of TRAF2 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control at p ≤ 0.05.
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Figure 116. Percent change of SODD mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VM at p ≤ 0.05.
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Figure 117. Percent change of SODD mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point at p ≤ 0.05. 
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Figure 118. Percent change of TNFR2 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05. 
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Figure 119. Percent change of TNFR2 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VM at p ≤ 0.05. 
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Figure 120. Percent change of PAC1-R mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05.
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Figure 121. Percent change of PAC1-R mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05.
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Figure 122. Percent change of CX3CR1 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05.
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Figure 123. Percent change of CX3CR1 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05.
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Figure 124. Percent change of CRMP4 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM 
vs. VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point; * represents a significant difference relative to 
VM at p ≤ 0.05. 
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Figure 125. Percent change of CRMP4 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; * represents a significant 
difference relative to VL at p ≤ 0.05.
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Figure 126. Percent change of GAP-43 mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point; * represents a significant difference relative to VM at p ≤ 
0.05.
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Figure 127. Percent change of βII-Tubulin mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. # 
represents a significant difference relative to the control; a represents a significant difference 
relative to the previous time-point at p ≤ 0.05.
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Figure 128. Percent change of GFAP mRNA expression ± SEM in WT VM and VL axotomized 
facial motor nucleus subnuclei at 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. # 
represents a significant difference relative to the control at p ≤ 0.05. 
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Figure 129. Percent change of CD68 mRNA expression ± SEM in WT VM and VL axotomized facial 
motor nucleus subnuclei at 7, 14, 28 and 56 dpo relative to control. A, VM. B, VL. C, VM vs. VL. # 
represents a significant difference relative to the control at p ≤ 0.05. 
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Figure 130. Percent change of CD68 mRNA expression ± SEM in SOD1 VM and VL axotomized 
facial motor nucleus subnuclei at 3, 7, 14 and 28 dpo relative to control. A, VM. B, VL. C, VM vs. 
VL. # represents a significant difference relative to the control; a represents a significant 
difference relative to the previous time-point at p ≤ 0.05.
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Table 7: Percent change mRNA expression (Ax/C) after axotomy, comparisons between WT VM 
and VL and SOD1 VM and VL. Time-points used were 3, 7, 14, 28 dpo, WT and SOD1. ↑ 
represents significant increased expression at one time-point, comparison of VM vs. VL, multiple 
arrows indicated significant increased expression at additional time-points.  No ∆ indicated no 
difference in expression between the subnuclei. 
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Table 8: WT VM and VL subnuclei expression mRNA at 56 dpo. Summary of the mRNA 
expression in each subnuclei (VM or VL) relative to baseline and comparisons between VM and 
VL mRNA expression. ↑ indicates a significant increase in mRNA expression in the VL relative to 
the VM.
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E. Discussion 

The distribution of FMN survival across the six subnuclei has proven to be a 

valuable model to study the mechanisms underlying axotomy-induced MN loss. We 

initially proposed that the VM “regenerative” subnucleus would present with a 

degenerative response to axotomy that would coincide with the increased MN loss. 

However, we were surprised to find that the WT VL subnucleus responded with a 

regenerative profile and actually revealed increased expression of MN-regenerative 

genes compared to the VM. We hypothesize that this increase in regenerative gene 

expression is a compensatory mechanism for the increased MN death. Neuropil genes, 

such as TNFα and Caspase-8, were slightly increased at certain time-points (Mesnard et 

al., 2010).  

“Degenerative” VL Subnucleus Reveals an Increased Axotomy-Induced Molecular 

Response Compared to VM 

Over the time course of 28 dpo, WT VL reveals increased mRNA expression 

throughout many of the genes analyzed as opposed to WT VM (Table 7). Increased 

mRNA expression for death receptor genes suggests they may play a role in the 

enhanced MN-loss within the VL subnucleus following axotomy. In support of our 

previous findings of increased regenerative-associated genes, the neuroprotective 

signaling receptor genes were also upregulated to a greater degree than in VM. Further 
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investigation will have to be performed in order to determine if the increase expression 

in death receptor genes plays a role in the enhanced FMN cell death. 

In comparison, the SOD1 VL does not appear to differ from its VM neighbor to 

such an extent. There are significant differences within the neuroprotective genes, this 

also supports previous findings from our lab that found a similar regenerative response 

in the SOD1 VL as seen in the SOD1 VM (Table 7; Mesnard, 2009). It appears from this 

data and previous work that the differences between the VM and VL subnuclei are not 

as pronounced as compared to the WT. Additionally, comparisons between WT VM vs. 

SOD1 VM, as well as WT VL vs. SOD1 VL were also analyzed (data not shown) but was 

similar to the differences seen between WT vs. SOD1 whole nucleus. Therefore, 

investigation of molecular phenotypes after axotomy is more beneficial when 

performed within the WT VM and VL. 

Axotomy-Induced Response Persists in WT Degenerative (VL) Subnuclei 

To add to previous data, the time course for WT was extended out to 56 dpo, 

refer to Table 8. This was performed to determine if specific axotomy-induced gene 

expression returns to baseline and whether the degenerative VL displays any increases 

in death receptor mRNA see during the delayed-response to axotomy in SOD1 whole 

facial motor nucleus. Degenerative VL subnucleus still differentially expresses some 

genes induced by axotomy, compared to baseline. Surprisingly, the majority of the 

genes are MN regenerative genes and the neuroprotective receptors. VM and VL results 

are often highly variable, most likely due to the small sample size during LMD resulting 
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in less total RNA for real time, RT-PCR. Increasing the number of samples would likely 

improve variability and that is a future direction. Nevertheless, differences within mRNA 

expression between the VM and VL subnuclei were also compared and revealed some 

differences that were not apparent with the original analysis. Overall, the VL subnuclei 

with enhanced MN cell loss at 28 dpo, reveals a persisting axotomy response that 

involves mostly neuroprotective and neuroregenerative genes. 

 Future use of the VM and VL axotomy model will be performed in WT to detect 

maximal differences between the two and additionally, this date presented here and 

throughout the dissertation that molecular responses during the delayed-phase are 

often more pronounced. Therefore time courses after axotomy should be extended to 

at least 56 dpo.
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CHAPTER VIII 

CONCLUSIONS, SUMMARY AND FUTURE DIRECTIONS 

A. Background 

ALS is the most common adult MN degenerative disease with a mean survival of 

only three – five years after onset. Only a small portion of cases are inherited resulting 

in 90% of cases that seem to occur randomly. Initial symptoms of the disease often go 

unnoticed which delays diagnosis. Once motor symptoms have become apparent the 

disease is already entering final stages of progression and severe MN degeneration has 

already occurred. Current treatments are virtually nonexistent, only extending the lives 

of patients for a maximum of four months.  

Research suggests that ALS is a multifactorial disease, arising through a 

combination of several mechanisms as well as a multisystemic disease affecting several 

cell types. Recent advances in understanding molecular mechanisms underlying the 

disease can be attributed to development of the SOD1 mouse model that overexpresses 

the human mutant SOD1 gene found in a portion of fALS cases. Disease progression 

within the SOD1 mouse resembles the clinical and pathological hallmarks that are 

observed in ALS patients. Use of the SOD1 model, experimentally, has revealed that the 

selective vulnerability of MN is likely due to some combination of mechanisms such as



298 
 

 
 

 mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, protein 

misfolding, deficits in axonal transport, excitotocixity, inadequate growth factor 

signaling and inflammation (Shaw and Eggett, 2000; Cozzolino et al., 2008; Shaw, 2005; 

Bilsland et al., 2010; Sahawneh et al., 2010). The majority of these mechanisms appear 

to be involved during disease progression. However, the initial pathological event that is 

thought to initiate the disease is denervation of muscle endplates. Early within the pre-

symptomatic stage loss of NMJ becomes significant within the hind-limb musculature. 

This is followed by evidence of distal axonopathy. Concurrent electrophysiological 

assessments reveal abnormalities which validate the histological findings (Fischer et al., 

2004; Durand et al., 2006; Mancuso et al., 2011). Decreases in muscle mass and muscle 

fiber diameter are likely a result of the loss of functional motor units (Marcuzzo et al., 

2011). Compensatory axonal sprouting is evident following the initial target 

disconnection and while some successful reinnervation occurs, NMJ loss continues and 

it is evident that with time compensatory sprouting is inadequate (Schaefer et al., 2005; 

Hegedus et al., 2007). The loss of motor units continues with age and is paralleled by 

reductions in whole muscle force (Hegedus et al., 2007). By the time the SOD1 mouse 

reaches the symptomatic stage, significant loss of MN within the ventral horn and 

behavioral assessments reveal functional motor impairments (Zang et al., 2005; Chiu et 

al., 1995; Fischer et al., 2004; Durand et al., 2006). 
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B. Conclusions 

The die-back theory of ALS suggests that physical loss of target leads to 

subsequent MN degeneration. Early in adulthood, SOD1 mice reveal no differences in 

quantity, morphology, or functional abilities of the MN-muscular system. However, an 

undetermined pathological event results in MN die-back. Our initial studies were geared 

towards assessing the SOD1 MN reaction to axonal injury. We performed facial nerve 

axotomy within the pre-symptomatic stage, at an age where no indications of the die-

back process are present within the facial motor nucleus (Niessen et al., 2006; Haenggeli 

and Kato, 2002). Axotomy-induced FMN death was dramatic compared to WT at 28 dpo 

(Mesnard et al., 2011). This loss of approximately 50% of FMN resembles the FMN 

survival seen in immunodeficient models, Scid and RAG-2 KO. Reconstitution of the 

immunodeficient mice prior to injury rescues this subpopulation of FMN to WT survival 

levels (Serpe et al., 2000). This rescue of FMN is achieved by functional CD4+ T cells 

which play an important role in the mechanisms of immune-mediated neuroprotection 

(Serpe et al., 2003). However, the survival of this immune-dependent subpopulation of 

FMN is transient in both WT and reconstituted immunodeficient mice, and without 

target reconnection the MN are lost. The remaining subpopulation is termed the 

resilient-subpopulation. This subpopulation, present in WT and immunodeficient mice, 

is resistance to axotomy-induced cell death irrespective of immune or target connection 

(Jones et al., 2005). We have shown that the resilient-subpopulation is still maintained 

26 weeks after axotomy (Beahrs, 2009). 
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FMN survival studies within this dissertation extended the time course following 

axotomy and revealed the presence of a resilient-subpopulation in the SOD1 facial 

nucleus that make up 45% of FMN. Reports within the literature of MN numbers within 

the lumbar and cervical spinal cord at end-stage support this finding and interestingly 

describe remaining MN levels at approximately 50% (Chiu et al., 1995; Zang et al., 2005; 

Fischer et al., 2004; Mancuso et al., 2011). Additionally, continued presence of the 

resilient-subpopulation insinuates that the initial axotomy-induced decrease in FMN is 

due to complete loss of the immune-dependent population. We have shown that the 

vulnerability of the immune-dependent subpopulation after axotomy in 

immunodeficient mice is due to a lack of neuroprotection mediated by the acquired 

immune system (Serpe et al., 2003). To date, there is no agreement within the literature 

of peripheral immune deficits with in the pre-symptomatic SOD1 mouse (Barbeito et al., 

2010). However, our laboratory has been studying immune-mediated neuroprotection 

for the last decade and understands the level of complexity of the signaling between the 

injured CNS and the peripheral immune system resulting in neuroprotection. Therefore, 

we propose lack of sufficient neuroprotection within the SOD1 mice leads to increased 

axotomy-induced FMN loss.  

To further investigate the susceptibility of SOD1 MN, we analyzed mRNA 

expression following axotomy of WT and pre-symptomatic SOD1 mice.  Surprisingly, 

both WT and SOD1 FMN displayed a pro-survival/regenerative response, despite the 

dramatic SOD1 FMN loss. However, several differences were revealed during 
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comparisons of neuropil-specific genes. Additionally, the SOD1 control, uninjured facial 

nucleus revealed constitutive expression of TNFα (Mesnard et al., 2011). This 

constitutive expression was not seen within the WT control and is indicative of the 

presence of a pro-inflammatory microenvironment within the early pre-symptomatic 

stage. Therefore, we propose the increased susceptibility of SOD1 FMN cell death is not 

due to an aberrant MN response to injury, but the presence of a pro-inflammatory 

microenvironment within the pre-symptomatic stage and a dysregulation of the 

neuropil after injury results in the MN cell death. Our current working model of 

peripheral immune-mediated neuroprotection suggests that the glial cells play 

important roles in this communication between the acquired immune system and the 

injured neuron. Dysregulated glial cells may not be functioning in a manner conducive to 

mediating the signals from the periphery to the CNS and between the CNS to the MN.   

Determining the dysfunction or deficit that leads to this lack of neuroprotection 

may rescue the immune-dependent FMN subpopulation, however, future directions are 

aimed at uncovering underlying mechanisms of MN degeneration that occur during 

disease progression. Validation is required to show that mechanisms mediating MN 

death and glial dysregulation that occur after axotomy resemble those mechanisms 

involved in or present during disease progression.    

Almost all SOD1 research takes place either in vitro or within the spinal cord 

during the symptomatic stage. While these studies have obvious strengths, they also 

have disadvantages. Benefits of using facial nerve axotomy as opposed to the target 
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disconnection during disease progression allows; 1) initiation of target within a motor 

nucleus before it is affected by disease, i.e. controlled environment, 2) axotomy 

transects all axons at once, standardizing the disconnection in contrast  to disease-

induced target disconnection that occurs over time. Standardization not only allows 

assessment of molecular responses over time but also detection of initial and/or 

transient expression which would likely go undetected without the standardization, and 

3) allows for comparisons to be made to between the SOD1 response compared to the 

WT response. Initiating disease-induced target disconnection in the WT lumbar spinal 

cord is not a realistic possibility. Therefore, responses in the SOD1 to the target 

disconnection during disease have no control to make comparisons.  

The strengths of the facial nerve axotomy model have allowed us to begin initial 

investigation of dysregulation within the glial response, to identify mechanisms 

mediating MN degeneration and to determine potential factors involved in immune-

mediated neuroprotection. While axotomy is a target disconnection, it is 

experimentally-induced and is not identical to the target disconnection that occurs 

during disease progression. Therefore, in order to validate facial nerve axotomy in the 

pre-symptomatic SOD1 as resembling disease progression, comparisons must be limited 

to the responses of the facial motor nuclei. 

Therefore, the central hypothesis of the research presented in this dissertation 

is that the molecular response to axotomy in the pre-symptomatic SOD1 is similar to 

the molecular response to disease. 
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Evidence exists, within the literature that target disconnection during disease 

resembles axotomy. Within the early pre-symptomatic stage partially occupied NMJs 

display fragmented axon tips resembling fragmentation seen during Wallerian 

degeneration and are not the characteristic morphology of naturally occurring synapse 

elimination (Schaefer et al., 2005; Keller-Peck et al., 2001). Following disease-induced 

target disconnection, there is a loss of upper MN synapses on lumbar MN, evidence of 

synaptic stripping that occurs following axotomy (Zang et al., 2005). There are many 

other aspects of disease progression that resemble axotomy, but it is difficult to be 

certain it is not an affect of other aspects of the disease.   

This dissertation analyzed the axotomy-induced molecular expression of genes 

involved in MN-regeneration, neuroprotective signaling, death receptor signaling, and 

the glial cell response in WT and SOD1 mice. The initial mRNA expression response of 21 

genes revealed that WT and SOD1 respond similarly to axotomy for nearly all genes 

analyzed. This finding was unexpected since more than half of these genes are involved 

death receptor signaling systems (TNFR1, TNFα, TRADD, TRAF2, SODD, Fas, FasL, Daxx 

ASK1, nNOS FADD, Caspase-3 and Caspase-8). Upregulation of these systems in WT after 

axotomy has not been shown previously. While mRNA for both systems is initially 

upregulated, genes involved in the Fas pathway display transient expression and return 

to baseline relatively quickly, suggesting a possible regulatory mechanism is present. 

There is no indication within the literature that facial nerve axotomy results in Fas-

induced MN cell death. Studies using TNFR KO suggests MN cell death after facial nerve 
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axotomy involves the TNFR1 death pathway (Mesnard et al., 2010; Mesnard, 2009; 

Raivich et al., 2002). The upregulation of TNFR1 genes remain elevated during the 

delayed-response to axotomy, a time consistent with axotomy-induced cell death in the 

WT, and supports findings within the literature. Although unlike Fas, TNFR1 genes 

remain elevated for longer, they eventually return to baseline. 

Death receptor gene expression for TNFR1 in the axotomized SOD1 facial nucleus 

was similar to WT. Although, comparable Fas signaling gene expression was seen initially 

seen in WT and SOD1, only the SOD1 facial nucleus revealed an upregulation during the 

delayed-response to axotomy. This delayed upregulation in the SOD1 is accompanied by 

the distinct amount of MN loss that occurs following axotomy. The literature reports 

that during SOD1 disease progression MN degeneration occurs via Fas-induced cell 

death (Raoul et al., 2006; Raoul et al., 2002; Xiong and McNamara, 2002). These results 

suggest that in the pre-symptomatic SOD1 axotomized facial nucleus Fas signaling genes 

are dysregulated and are suspected to be involved in the increased axotomy-induced 

FMN loss.  

Genes specific to the glial response (GFAP and CD68) displayed a similar mRNA 

expression pattern between WT and SOD1, however the levels appear to be suppressed 

and remain at this low level. Therefore, the SOD1 astrocytes and microglia respond 

differently to injured MN. Astrocytes and microglia play important, well-defined roles in 

response to MN injury. Microglial responses include proliferation of endogenous 

microglia, displacement of synaptic terminals from the injured MN and phagocytosis of 
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neuronal debris following FMN death (Blinzinger and Kreutzberg, 1968; Graeber et al., 

1988; Kreutzberg, 1996; Rinaman et al., 1991). After MN injury astrocytes become 

reactive, undergo hypertrophy and ensheath regenerating MN with their processes after 

microglia have removed synapses (Graeber and Kreutzberg, 1988). Additionally, 

activated microglia and reactive astrocytes secrete a variety of neurotrophic factors, 

such as growth factors and neurotrophic cytokines (Nakajima and Kohsaka, 2004; Streit, 

2002; Liberto et al., 2004). Trophic factors are important in MN survival and enhanced 

secretion after neuronal injury suggests they are vital to injured MN. In vitro trophic 

factor withdrawal induces apoptosis in MN which can be inhibited by blocking the Fas 

pathway (Estevez et al., 1998; Raoul et al., 2002; Raoul et al., 2006). Further 

investigation will be performed to determine what effects this reduced glial-specific 

gene expression in the SOD1 facial nucleus is having on glial cell’s ability to mediate 

neuroprotection.  

WT and pre-symptomatic SOD1 MN respond similarly to axotomy with respect to 

MN-specific regenerative genes (GFAP and βII-Tubulin; Mesnard et al., 2011). Additional 

neuroprotective genes (CX3CR1, PAC1-R, TNFR2) analyzed within this dissertation 

include receptor systems used by injured MN to signal and communicate between other 

MN and glial cells (Re and Przedborski, 2006; Reglodi et al., 2011). While PAC1-R mRNA 

is localized to the MN, CX3CR1 and TNFR2 are expressed on microglia (Harrison et al., 

1998; Hundhausen et al., 2003; Vaudry et al., 2000,). Similar expression of these 

receptors in SOD1 and WT may provide insights during further investigation of the SOD1 
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microglia response. In general, these results are evidence of the ability for SOD1 injured 

MN and perhaps microglia to express a regenerative/pro-survival phenotype and not 

only by upregulating genes directly involved in axon regeneration, but those involved in 

signaling among other neurons and glial cells.  

The analysis of gene expression after axotomy in WT and pre-symptomatic SOD1 

mice has provided a greater understanding of the molecular responses to MN injury and 

has uncovered several responses that appear to be dysregulated within the SOD1 

mouse. Further investigation may determine mechanisms important in the increased 

susceptibility of SOD1 MN to axotomy. However, the purpose of investigating MN cell in 

SOD1 mice is ultimately not to understand the MN degeneration that occurs after 

axotomy, but that which occurs after target disconnection during disease progression. In 

order to conclude that the molecular response to experimentally-induced target 

disconnection is similar to the molecular response to disease-induced target 

disconnection, mRNA expression analysis was performed on the control, uninjured facial 

nucleus within the symptomatic stage.   

 It was determined through MN cell counts that within the symptomatic stage 

(112 doa), disease-induced FMN loss (40%) has occurred. This is the first report of FMN 

survival levels during the symptomatic stage, although it has been documented that MN 

levels reach approximately 50% by end-stage (Haenggeli and Kato, 2002; Niessen et al., 

2006). Using SOD1 disease-affected, control facial motor nuclei, the relative mRNA 
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expression levels of the 21 genes were compared to the expression levels in WT control 

facial nuclei.  

 Results indicate that disease progression within the facial motor nucleus induces 

a similar molecular expression pattern to that seen after facial nerve axotomy in pre-

symptomatic SOD1. All 21 genes were differentially regulated by axotomy in both WT 

and SOD1 mice, if not within the initial-response phase then within the delayed phase. 

More than half of all genes revealed expression levels that were consistent with those 

seen after axotomy in the pre-symptomatic SOD1 and, in particular, the delayed-

response. As for many of the remaining genes additional time-points need to be 

assessed. mRNA levels after axotomy reveal dynamic patterns of expression over time. 

Confirmation that all genes are regulated by disease and axotomy in the same manner 

requires additional time points to capture the mRNA during its peak expression. 

Additionally, earlier time points were assessed but, they were within the pre-

symptomatic stage and were used mainly to confirm and establish baseline levels of 

expression. For several genes these early time-points revealed increased expression and 

these genes can be considered as early markers of target disconnection or disease. 

Among these early responders, Fas and CD68 showed differences in expression levels 

over several earlier time-points. Interestingly, the mRNA expression levels over time 

coincide with an identical pattern of expression seen throughout the axotomy-induced 

expression pattern over time.  
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C. Summary 

The mRNA expression results from this dissertation are in agreement with our 

previous findings that revealed a “regenerative-SOD1 MN” and a “dysregulated 

neuropil”. This dissertation identified that like SOD1 astrocytes, microglia show 

abnormal responses to axonal injury. In addition, increased molecular expression of 

death receptor genes is a reaction to MN injury in WT as well as in the SOD1. However, 

in comparison to WT these genes are dysregulated in the SOD1 axotomized facial 

nucleus, particularly the expression of Fas-associated genes which occurs at a time 

consistent with enhanced FMN loss. Increased mRNA expression was also seen in the 

SOD1 disease-affected nucleus during the symptomatic stage. This response of genes 

analyzed in this dissertation is in agreement with reports of their differential expression 

in ALS patients and SOD1 mice. Most importantly, the increased mRNA expression seen 

in the SOD1 disease-affected nucleus during the symptomatic stage is consistent with 

the mRNA expression response after axotomy in pre-symptomatic SOD1 mice. It has 

been well-established that target disconnection precedes MN degeneration in SOD1 

mice and likely occurs in the ALS patient.  This further validates the use of facial nerve 

axotomy in pre-symptomatic mice as an experimentally-induced target disconnection 

that resembles die-back during SOD1 disease progression. The work presented within 

this dissertation concludes that the molecular response within the SOD1 facial nucleus is 

similar regardless of the method MN injury (axotomy/disease) and therefore, allows for 

axotomy to be used in the pre-symptomatic mouse as a model of disease progression.  
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D. Significance 

This validation of facial nerve axotomy in the pre-symptomatic SOD1 mouse as a 

model for disease progression will likely have significant impact within the field of ALS 

research. The advantages of the facial nerve axotomy model have been exploited for 

many years in the field of peripheral nerve injury and those strengths of the facial nerve 

axotomy will prove invaluable for investigating molecular mechanisms of the disease 

and identification of checkpoints for therapeutic intervention. This model will also be 

beneficial during assessment of therapeutic compounds and treatments. Their effects 

on the molecular mechanisms and FMN survival can provide details on mechanism of 

actions and beneficial properties.  

E. Future Directions 

It is likely that the molecular response to disease is truly the response to target 

disconnection and subsequent die-back, but requires further investigation for validation. 

Future analysis of NMJ loss within muscles innervated by the facial nucleus, such as the 

auricular and nasolabial musculature, will be performed to confirm NMJ loss precedes 

FMN loss.  

The use of facial nerve axotomy within pre-symptomatic mice has already 

proven to be a valuable tool in uncovering potential mechanisms involved in response to 

injury and MN survival in WT and in SOD1 mice. Several potential mechanisms were 

uncovered within this dissertation.  Future studies will be designed to further 

understand the mechanisms of immune-mediated neuroprotection. While some of the 
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peripheral immune components and mechanisms have been identified using the RAG-2 

KO, information regarding the CNS molecular response to injury has not. Previous 

findings and the results within this dissertation have identified several aspects of the 

molecular response to injury both in the WT and in the SOD1. Future studies will 

combine WT, RAG-2 KO, SOD1 and use facial nerve axotomy as well as LMD to assess 

molecular responses to injury. Reconstitutions to modify the peripheral immune system, 

and a variety of techniques will be used to profile the peripheral immune cell within the 

pre-symptomatic SOD1 (Figure 131). The molecular response to axotomy in WT, RAG-2 

KO, reconstituted RAG-2 KO, and SOD1 mice will be compared and differences will help 

identify how neuroprotection is mediated from peripheral CD4+ T cell to injured MN. 
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Figure 131: Future directions to identify molecular mechanisms in immune-mediated 
neuroprotection.
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