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ABSTRACT 

 Viruses are obligate intracellular parasites that use the machineries inside living 

cells to replicate and disseminate.  Although relatively simple in structure and 

composition, viruses have evolved complex ways to penetrate barriers and cause disease.  

These barriers include the virus shells themselves and the host cell membrane.  

Enveloped viruses accomplish this task by viral glycoprotein-mediated binding to host 

cells and fusion of virus and host cell membranes.  For the coronaviruses, viral spike (S) 

proteins execute these cell entry functions.  After binding cellular receptors, S proteins 

undergo a series of conformational changes that drive virus and cellular membrane 

coalescence.  Despite extensive research, there is still limited knowledge on the 

intermediates of the fusion reaction and the factors controlling their refolding kinetics.  

Further understanding of these processes can reveal new ways to inhibit protein refolding 

and ultimately virus entry.  

 One potential determinant of refolding rate is in the S fusion protein endodomain. 

The S proteins are set apart from other viral and cellular membrane fusion proteins by 

their extensively palmitoylated membrane-associated tails.  Palmitate adducts are 

generally required for protein-mediated fusions but their precise roles in the process are 

unclear.  To obtain additional insights into the S-mediated membrane fusion process, we 

focused on these carboxy-terminal intravirion tails. Substituting alanines for the cysteines 

that are subject to palmitoylation had effects on both S incorporation into virions and S-
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mediated membrane fusions.  In specifically dissecting the effects of endodomain 

mutations on the fusion process, we used antiviral heptad repeat peptides that bind only 

to folding intermediates in the S-mediated fusion process, and found that mutants lacking 

three palmitoylated cysteines remained in transitional folding states nearly ten times 

longer than native S proteins.  This slower refolding was also reflected in the paucity of 

post-fusion six-helix bundle configurations amongst the mutant S proteins. Viruses with 

fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific 

infectivities.  These findings indicate that lipid adducts anchoring S proteins into virus 

membranes are necessary for the rapid, productive S protein refolding events that 

culminate in membrane fusions.  These studies reveal a previously unappreciated role for 

covalently-attached lipids on the endodomains of viral proteins eliciting membrane fusion 

reactions.   

 The membrane fusion process also requires an S protein conformational flexibility 

that is facilitated by proteolytic cleavages.  Most coronavirus S proteins are cleaved in 

their ectodomains, between their S1 and S2 domains, by a furin-like protease in virus-

producing cells.  Other coronavirus S proteins, such as those of severe acute respiratory 

syndrome (SARS) coronavirus, lack furin recognition motifs and virions exit cells 

bearing uncleaved spikes.  The SARS S proteins rely on host cell proteases in virus-target 

cells for fusion activation.  We hypothesized that the most relevant cellular proteases in 

this process are those closely linked to host cell receptors.  The primary receptor for the 

human SARS coronavirus is angiotensin-converting enzyme 2 (ACE2).  ACE2 

immunoprecipitation captured transmembrane protease / serine subfamily member 2 
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(TMPRSS2), a known human airway and alveolar protease.  ACE2 and TMPRSS2 

colocalized on cell surfaces and enhanced the cell entry of both SARS S – pseudotyped 

HIV and authentic SARS-CoV.  Enhanced entry correlated with TMPRSS2-mediated 

proteolysis of both S and ACE2.  These findings indicate that a cell-surface complex 

comprising a primary receptor and a separate endoprotease operate as portals for 

activation of SARS coronavirus cell entry.   

 Many viruses enter cells through specialized lipid microdomains or “lipid rafts”.  

Virus receptors, coreceptors and other cellular factors important for virus entry often 

concentrate within lipid rafts, thereby setting the stage for high affinity interactions 

during entry.  The receptor for SARS coronavirus, ACE2, has been shown to localize in 

lipid rafts.  Furthermore, it is known that the integrity of lipid rafts is important for 

efficient SARS-CoV entry into cells.  We wanted to determine whether the entry-

activating protease, TMPRSS2, also localized into membrane rafts together with ACE2 

and whether the lipid raft localization was important to augment virus entry.  We isolated 

detergent resistant membranes (DRMs), the in vitro equivalents of lipid rafts, and 

determined that ACE2 completely partitioned into lipid raft fractions, while only a 

portion of TMPRSS2 did so.  However, when cells were incubated with HIV particles 

displaying SARS-CoV S on the surface, almost all TMPRSS2 partitioned into lipid rafts, 

indicating that multivalent virus binding relocalizes cell entry cofactors into lipid rafts on 

the target cell membrane.  

 Collectively, my results indicate that multiple factors, including spike lipidation, 

proteolysis and lipid rafts, operate to facilitate coronavirus entry into cells.  These results 
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obtained using coronaviruses as models likely apply generally to influenza, paramyxo- 

and other pathogenic viruses and may serve as the basis for a general appreciation of viral 

surface protein refolding during entry.  These results also lay the groundwork for future 

evaluation of viral entry determinants.



 

1 

CHAPTER I 

INTRODUCTION 

 Some of the most devastating diseases in human history, such as smallpox, yellow 

fever, poliomyelitis, influenza and AIDS, are caused by viruses.  Viral diseases, ranging 

from the common cold to immunodeficiency and cancer, continue to be a burden in our 

society.  An estimated 15-20% of human cancers (Butel, 2000; Talbot and Crawford, 

2004) as well as many other chronic disorders are initiated by viral infections (Gern, 

2010; Grau, Urbanek, and Palm, 2010; Rao, 1991).  In addition to pathogenesis in 

humans, viruses cause serious disease in plants and livestock, thus greatly impacting the 

agricultural and veterinary industry (Fraile and Garcia-Arenal, 2010; Hanssen, Lapidot, 

and Thomma, 2010).   

 The need to prevent viral diseases, and find cures for ongoing viral infections, has 

fueled decades of scientific research studying viruses and their interactions with host 

organisms.  These studies have helped us understand mechanisms of virus-induced 

disease in molecular detail.  The knowledge gained has been applied to the development 

of vaccines and antiviral agents that have saved millions of lives.  The vaccine against 

smallpox has led to eradication of the disease worldwide (Parrino and Graham, 2006; 

Wehrle, 1980).  Other vaccination programs have led to prevention of 

diseases such as poliomyelitis, measles, mumps, rubella fever, adenovirus and influenza 

respiratory syndromes, hepatitis B, chicken pox, and cervical cancer (Bart, Orenstein, and 
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Hinman, 1986; Jacobson and Dienstag, 1985; Romanowski et al., 2009).  Antiviral 

therapies for several viral diseases are in place, such as acyclovir therapy for serious 

herpes virus infections (Elion, 1993), as well as highly active antiretroviral therapy 

(HAART) for treatment of HIV-1 induced AIDS (Mitsuya and Broder, 1987).   

 Studies of the interactions between viruses and their hosts have not only led to the 

development of vaccines and antiviral treatments, but also provided numerous insights 

into cell and structural biology, immunology and biochemistry.  For example, cellular 

RNA splicing mechanisms were elucidated by studying adenoviruses (Berget, Moore, 

and Sharp, 1977; Chow et al., 1977) and translational controls were demonstrated 

through the study of picornaviruses (Pelletier and Sonenberg, 1988).  Crystallization of 

tobacco mosaic virus in 1935 (Stanley, 1935) and more importantly the 2.9 Å atomic 

resolution of tomato bushy stunt virus crystal structure in 1978 (Harrison et al., 1978) 

were huge leaps for structural biology.  In the field of immunology, several discoveries 

were made by studying virus-host cell interactions.  Such were the discoveries of 

interferon in 1957 (Isaacs and Lindenmann, 1957) and major histocompatibility (MHC) 

locus restriction in 1974 (Zinkernagel and Doherty, 1974).  In the field of cellular 

biochemistry, the landmark discovery that single-stranded RNA can be transcribed into 

double-stranded DNA by the enzyme reverse transcriptase came through studying RNA-

containing retroviruses (Baltimore, 1970; Temin and Mizutani, 1970).  

 Studies of virus-host interactions will certainly continue to open new paths in 

understanding disease mechanisms as well as basic cellular biology.  The complex set of 

interactions between a virus and a host organism starts off with the virus breaching 
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physical cellular barriers and gaining entry into cells.  This virus-cell entry process is the 

primary topic of my dissertation research and is the focus of this introduction. 

Virus Entry into Animal Cells 

 Viruses are obligate intracellular parasites that use the machineries inside living 

cells to replicate and disseminate.  Even though relatively simple in structure and 

composition, viruses have evolved complex ways to penetrate hosts, move through the 

bloodstream and disperse in the body via motile cells (Smith and Helenius, 2004).  Many 

viruses can breach physical barriers in the body, including the tight endothelial cell lining 

such as the blood-brain barrier that restricts access to the central nervous system (Salinas, 

Schiavo, and Kremer, 2010).  

 One of the most important barriers the virus has to cross is the target cell 

membrane, and this is achieved in various ways depending on the virus type.  In this 

respect, there are two virus types, enveloped and nonenveloped.  Nonenveloped viruses 

have distinct cell entry programs that involve membrane lysis or pore formation in the 

target cell membrane to deliver their genomes into cells (Dimitrov, 2004).  Enveloped 

viruses, which will be the focus of my dissertation work, have their capsids surrounded 

by a lipid bilayer.  As such, they can fuse their membrane envelope with the host cell 

membrane, thereby releasing their capsids into the cell interior.   

 A subset of enveloped viruses can fuse their outer envelope directly with the 

plasma membrane of target cells, a process mediated by the viral surface proteins.  While 

providing a quick access to the host cytoplasm (Anderson and Hope, 2005), this route of 

entry may not be as efficient as the one involving the cellular endocytic network, because 
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delivered viral capsids have to travel considerable distances through the cortical 

cytoskeleton and the highly structured cytoplasm to reach sites of replication (Marsh and 

Bron, 1997).  Furthermore, direct fusion with the plasma membrane leaves residual viral 

glycoproteins on the cell surface, which may “mark” the infected cell and contribute to its 

detection by the immune system (Smith and Helenius, 2004).   

 The more commonly observed entry route for most viruses, both nonenveloped 

and enveloped, is internalization via the different cellular endocytic mechanisms, which 

allow viruses to get close to the site of replication while still protected in a membrane 

vesicle.  There are several endocytic routes by which viruses can be internalized, such as 

clathrin-mediated endocytosis, caveolar endocytosis, and clathrin-and caveolae-

independent endocytosis.  Most viruses are internalized via the well-studied clathrin-

mediated endocytosis (Marsh and Helenius, 1989; Mercer, Schelhaas, and Helenius, 

2010; Smith and Helenius, 2004).  This endocytic process is driven by the formation of a 

clathrin coat on the cytoplasmic leaflet of the plasma membrane (Mercer, Schelhaas, and 

Helenius, 2010).  Following invagination and pinching of the clathrin-coated pits, the 

clathrin-coated vesicles fuse with early endosomes and the clathrin coat is lost (Maxfield 

and McGraw, 2004).  The lumen of early endosomes is slightly acidic (pH 6.5-pH 6.0) as 

a result of proton pumps that transport protons into the endosome lumen (Casey, 

Grinstein, and Orlowski, 2010).  The pH changes in the maturing endocytic vesicle prime 

the virus for membrane fusion (Skehel and Wiley, 2000), while the resident acid-

dependent proteases assist in partial uncoating (Ebert et al., 2002).  Recent studies 

suggest that even herpes simplex virus 1 (HSV-1) and HIV-1, which can penetrate into 
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cells directly from the plasma membrane, nonetheless are typically endocytosed before 

they fuse with cell membranes and deliver their internal capsids to the cytosol (Mercer, 

Schelhaas, and Helenius, 2010; Miyauchi et al., 2009; Nicola, McEvoy, and Straus, 

2003).   

 One possible downside of endocytic entry is that viruses failing to deliver their 

capsids in a relatively short time frame would be transported to lysosomal degradative 

compartments, a dead end for lumenal contents.  To escape endocytic vesicles and reach 

the site of replication, viruses have different mechanisms in place.  In the next section, I 

will explain in detail how enveloped viruses escape endosomes via a membrane fusion 

event mediated by virus surface proteins.  

Virus Membrane Fusion 

 Enveloped viruses have their genomic material surrounded by a lipid bilayer 

membrane that is derived during budding from host cells.  Besides having structural and 

protective roles, the envelope provides the virus with the ability to fuse with cellular 

membranes.  The fusion process is mediated by transmembrane glycoproteins anchored 

on the virus membrane.  These viral proteins drive the coalescence of virus and cell 

membranes by undergoing a series of refolding events that release the energy needed to 

overcome barriers to membrane fusion.   

 Based on their structural features, the virus fusion proteins can be divided into 

three classes, I, II and III (Harrison, 2008; White et al., 2008) (Table 1).  The most 

common class I viral fusion proteins, which are central to my dissertation work, include 

the influenza virus hemagglutinin (HA) (Bullough et al., 1994; Wilson, Skehel, and 
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Wiley, 1981), HIV-1 gp41 (Chan et al., 1997; Weissenhorn et al., 1997), Ebola virus GP2 

(Malashkevich et al., 1999), human respiratory syncytial virus (HRSV) F1 (Zhao et al., 

2000), and the coronavirus (CoV) spike (S) protein (Bosch et al., 2003).  

 

 

Table 1.  Properties of Class I, II, and III Fusion Proteins. (Modified from (White et 
al., 2008)) 
 

 Class I fusion proteins are synthesized within the endoplasmic reticulum of 

infected cells as single-chain precursors, which then assemble into trimeric complexes.  

They are primed for fusion through a proteolytic cleavage event which gives rise to an N-

terminal receptor binding subunit and a C-terminal membrane anchored subunit.  The two 

subunits are held together via hydrophobic interactions, disulfide linkages and / or salt 

bridges.  Upon receptor engagement (White et al., 2008) or encounter with the acidic and 

proteolytic endosomal environment (Chandran et al., 2005; Mothes et al., 2000; Simmons 

et al., 2004), the subunits dissociate and structural refolding of the C-terminal subunit 
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ensues.  This latter subunit contains the fusion machinery composed of a fusion peptide 

(FP) and two alpha-helical heptad repeat (HR) regions, HR1 and HR2, with HR2-being 

the helices closest to the virion membranes (Fig. 1).  

  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Class I Protein-Mediated Membrane Fusion Model.  A hypothetical depiction 
of the native pre-fusion viral protein (left) is depicted binding to cellular receptor.  The 
viral protein is composed of two subunits generated by proteolysis of the single chain 
precursor.  The N-terminal subunit dissociation and the C-terminal subunit unfolding 
generates prehairpin structures (middle) depicted with cell membrane-intercalated fusion 
peptides (FP) and exposed heptad repeat regions (HR1 and 2).  Pre-hairpin closure 
through a lipid stalk intermediate generates a highly stable, rod-like 6-helix bundle (6-
HB), in which HR2 helices are positioned antiparallel to an interior HR1 trimer, and in 
which the viral transmembrane spans surround the FPs in an antiparallel trimeric 
arrangement within the fused membrane. 
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 The fusion peptide is generally an apolar stretch of 15-25 amino acids, rich in 

glycine and alanine residues, and containing several bulky hydrophobic residues (Tamm 

and Han, 2000).  Several studies have shown that the fusion peptide becomes associated 

with the target membrane during the fusion process.  The fusion peptide sequences are 

well-conserved among members of a virus family; however, it is not always clear which 

stretch of hydrophobic residues serves as a fusion peptide in each virus case (Martin and 

Ruysschaert, 2000).  Many enveloped virus surface glycoproteins have more than one 

stretch of residues that are consistent with a fusion peptide motif; however, not all of 

these residues are involved in interacting with target membrane during the fusion 

reaction.  The fusion peptide gains the conformational flexibility required for inserting 

into target membranes through a proteolytic cleavage at its N-terminus (Klenk and 

Garten, 1994).  In the case of influenza HA, proteolysis permits a normally buried 

hydrophobic fusion peptide to propel away from the virion membrane and into the 

apposed target cell membrane during low pH-induced HA conformational change (Bentz 

and Mittal, 2000).  

 Daggering of the fusion peptides into cellular membranes is followed by a 

refolding process that, in analogy to a closing hairpin, brings fusion peptides and 

associated cellular membranes toward the virion membranes, driving formation of a lipid 

stalk connecting the opposing outer membrane leaflets (Chernomordik and Kozlov, 2008) 

and culminating in complete cell-virion membrane coalescence (Melikyan et al., 2000; 

Skehel and Wiley, 2000) (see Fig. 1).  This allows for virus particle-cell content mixing 

and delivery of viral genetic material into the cell.  
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 For class I fusion proteins, the arms of the pre-hairpin intermediates are the HR1 

tri-helical bundles and HR2 helices.  The HR1 and HR2 domains consist of seven residue 

repeats (where the positions are labeled “abcdefg”) and are characterized by the 

occurrence of hydrophobic residues in the “a” and “d” positions comprising the interface 

of two interlocking helices.  These domains have high propensity to form α-helices that 

interact as coiled-coils (Burkhard, Stetefeld, and Strelkov, 2001).  The presence of coiled-

coils is widespread in fusion proteins, including the SNARE proteins which operate in 

cellular vesicular fusion (Rothman and Warren, 1994; Skehel and Wiley, 1998; Sollner 

and Rothman, 1996).   

 Due to the high affinity of HR2 helices for HR1, the pre-hairpin intermediate 

collapses and the HR2 helices fold back onto the central trimeric coiled-coil of HR1 

helices to form a highly stable rod-like structure otherwise known as a 6-helix bundle (6-

HB) (Colman and Lawrence, 2003; Skehel and Wiley, 2000) (Fig. 1).  In the 6-HB, there 

are no contacts between the HR2 monomers.  Instead, each HR2 instead associates with 

the HR1 grooves through hydrophobic interactions.  The formation of the 6-HB post-

fusion structure arrives temporally concomitant with coalescence of the viral and cellular 

membranes (Melikyan et al., 2000; Russell, Jardetzky, and Lamb, 2001).   6-HB 

complexes are resolved crystallographically for many virus fusion proteins, and extensive 

biochemical data indicate that the complexes are extremely stable, resistant to chemical 

denaturation, proteolytic digestion and high temperatures.  The stability of the post-fusion 

conformations is much higher than that of the pre-fusion states, and the energy released 
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from the refolding into 6-HBs is what drives membrane coalescence.  A schematic 

illustration of this process is provided in Fig. 1.  

 Class II fusion proteins include the tick-borne encephalitis (TBE) E protein and 

the Semliki forest virus (SFV) E1 protein (Kielian and Rey, 2006; Lescar et al., 2001).  

They differ from class I fusion proteins in several aspects as outlined in Table 1.  While 

class I fusion proteins are trimeric both in pre-fusion and post-fusion conformations, class 

II fusion proteins start as dimers and rearrange into a more stable trimeric post-fusion 

conformation (Kielian and Rey, 2006) (Fig. 2).  Class II fusion proteins are not 

themselves cleaved for fusion activation, instead a tightly associated viral protein, acting 

as a chaperone, is cleaved to release the fusion protein from its metastable state, thus 

activating the membrane fusion process.  For example, in the case of alphaviruses, 

cleavage and release of partner protein E2 protein provides the activation trigger for the 

fusogenic E1 protein (Harrison, 2008). 

  The recently classified class III virus glycoproteins (Backovic and Jardetzky, 

2009) include the herpesvirus gB protein (Heldwein et al., 2006), the vesicular stomatitis 

virus glycoprotein (VSV G) (Roche et al., 2006; Roche et al., 2007) and the baculovirus 

gp64 protein (Kadlec et al., 2008).  Class III fusion proteins seem to combine features of 

both class I and class II proteins.  They contain two fusion loops that are rich in 

hydrophobic amino acids and thought to insert into the target membrane in the same 

manner that the class II viral fusion loops do (Heldwein et al., 2006).  In contrast to class 

I and class II fusion proteins, there is no proteolytic cleavage involved in activation of 

class III fusion proteins.  



 

 

                                                                                                                                            11 
 

 

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 2.  Pre-and Post-Fusion Structures from Class I, II, and III Viral Fusion 

Proteins. Crystal structures of the indicated viral proteins were modified from (Harrison, 
2008). The crystallographically determined components are depicted in ribbon 
representation, while the transmembrane segments, which are not structurally resolved, 
are shown as cylinders.  Each viral protein monomer is shown in a different color.  
 

 

 The viral fusion proteins undergo dramatic conformational changes during the 

fusion process (Fig. 1 and 2).  Detailed structural data have revealed the pre- and post-

fusion structures of several virus fusion proteins (Bullough et al., 1994; Heldwein et al., 

2006; Lescar et al., 2001; Roche et al., 2006; Roche et al., 2007; Wilson, Skehel, and 

Wiley, 1981; Yin et al., 2006), however there is no structural information yet on any of 

the intermediate conformations (Fig. 1), except a very recent early intermediate influenza 
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HA structure (Xu and Wilson, 2011).  Most of the work to date, therefore, has involved 

functional characterizations, which provides only inferential insights on possible 

structural intermediates.  For example, synthetic peptides derived from the HR2 region of 

gp41, such as the currently prescribed antiviral T20/enfuvertide (Eckert, 2001; Kilby et 

al., 1998; Wild, 1993), inhibit the fusion process by binding to the prehairpin 

intermediate folded states of gp41 that have exposed HR1 coils, thus interfering with the 

collapse of the HR1 and HR2 helices into the post-fusion 6-HB (Chan and Kim, 1998; 

Furuta et al., 1998).  These type of experiments revealed that for HIV-1 gp41 the half-life 

of pre-hairpin intermediates is several minutes, while for other viral glycoproteins such as 

influenza HA, the half-life is in seconds (Harrison, 2008).  These sorts of functional 

analyses, similar to the ones that I have pursued in my dissertation research, have been 

filling the current knowledge gaps related to viral glycoprotein-mediated membrane 

fusion reaction and its intermediates. 

Fusion Triggers 

 The triggering events that initiate membrane fusion vary significantly among 

different viruses.  These triggers force dramatic structural changes to occur at the right 

time (when virus is entering cells) and place (in organelles of the endocytic network) so 

that the fusion event is productive.  Depending on the particular virus, one or a 

combination of cell receptor bindings (Feng et al., 1996), protonations in the endosome 

(Skehel et al., 1982; White and Helenius, 1980), disulfide reductions (Barbouche et al., 

2003; Wallin, Ekstrom, and Garoff, 2004), and proteolytic cleavages (Chandran et al., 

2005; Simmons et al., 2005) triggers surface protein refolding and virus opening.  For 
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example, influenza HA is in metastable state and upon encountering the acidic endosomal 

environment is triggered to refold into a low energy conformation (Carr, Chaudhry, and 

Kim, 1997).  HIV-1 gp41, on the other hand, is triggered at neutral pH via binding to the 

receptor CD4 and chemokine coreceptor CCR5 (Furuta et al., 1998; Moore et al., 1990).  

For herpesviruses and paramyxoviruses, the trigger consists in changing the contact with 

another viral protein, which has altered conformation due to binding a cellular receptor.  

 I will focus on proteolytic processing as a fusion trigger, because this trigger 

relates closely to my dissertation work.  Proteolytic processing of viral proteins prior to 

cell entry is a common theme in virus biology.  This principle applies to nonenveloped 

viruses (Chandran and Nibert, 1998; Duncan, 1996; Greber et al., 1996; Lee, Monroe, 

and Rueckert, 1993) and to enveloped viruses as well, most notably in the surface 

glycoproteins extending from virion membranes (Chandran et al., 2005; Hallenberger et 

al., 1992; Lazarowitz and Choppin, 1975). Surface glycoproteins facilitating virus-cell 

membrane fusions are synthesized and often maintained in precursor intermediate folding 

states, and proteolysis allows these proteins to refold into lower energy states, with virus 

entry then achieved by coupling this refolding energy to stable virus-cell linkages and 

membrane coalescence (see Fig.1). 

 Such proteolysis is usually executed in virus producer cells by Golgi resident 

furin and furin-like proteases as fusion proteins flow from the endoplasmic reticulum to 

to the infected cell surfaces. Once cleaved, the viral fusion proteins are metastable and 

can be triggered to refold upon binding to cellular receptor and/or encountering acidic 

endosomal environments (White et al., 2008).  Typically the proteolytic cleavage occurs 
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immediately N-terminal to the hydrophobic fusion peptide, so that the fusion peptide can 

become exposed and insert in the target membrane upon trigger activation (White et al., 

2008).   

 

 

 

   

 

 

 

 

 

 

Fig. 3.  Schematic Depiction of Two Fusion Protein Activation Pathways. Proteolytic 
processing of virus glycoproteins can occur in the exocytic (assembly) route by furin and 
furin-like proteases (traditional activation pathway) or in the endocytic (entry) route by 
endosomal proteases (novel target-cell activation pathway), as indicated by the scissors in 
each panel. 
 

 

Notably some fusion glycoproteins do not get cleaved in virus-producing cells 

during assembly, but instead undergo cleavage in target cells during entry (Fig. 3). More 

viruses use this latter route of activation than was previously assumed, including 

important pathogens such as SARS-CoV and Ebola viruses (Chandran et al., 2005; 

Simmons et al., 2004).  This diversity among viruses with respect to the place and timing 
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of proteolytic fusion activation is interesting and generates many ideas on the advantages 

that each activation route offers.  One such idea is that viruses exiting cells with primed 

spikes have the advantage of successfully infecting a large range of target cells without 

any protease requirement, but suffer from the disadvantage of short-term maintenance in 

the extracellular milieu due to the propensity for primed proteins prematurely progressing 

into post-fusion conformations.  On the other hand, viruses with uncleaved glycoproteins 

may retain infectivity in extracellular environments but could be restricted in their host 

range to tissues and cells enriched in activating proteases (Fig. 3).  I will address these 

ideas later in my manuscript, using coronaviruses as models. 

Coronaviruses and Disease 

 Coronaviruses belong to the order Nidovirales, family Coronaviridae and genus 

Coronavirus.  Members of the Coronaviridae family are important pathogens that infect a 

wide variety of hosts including birds, domesticated animals and humans.  As such, they 

are of great clinical, veterinary, agricultural and economic importance.  The ensuing 

disease ranges from respiratory and enteric to neurologic and hepatic.  The disease in 

humans is mainly respiratory and to a lesser extent gastrointestinal (Lai and Cavanagh, 

1997).   Coronavirus disease, once considered to be routinely quite mild and 

inconsequential in humans, was dramatically reconsidered during and after the SARS 

coroanvirus epidemic of 2002-2003, in which ~ 10% of infected individuals died from 

severe coronavirus – induced respiratory disease (Cherry, 2004; Lee et al., 2003; Rota et 

al., 2003). 
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Group I Group II Group III

TGEV (Pig) MHV (Mouse) IBV (Chicken) 

PRCoV (Pig) BCoV (Cow) TCoV (Turkey) 

FIPV (Cat) RCoV (Rat) PhCoV (Pheasant) 
FCoV (Cat) SDaV (Rat) GCoV (Goose) 

CCoV (Dog) HCoV-OC43 (Human) PCoV (Pigeon) 

HCoV-229E (Human) HEV (Pig) DCoV (Mallard
PEDV (Pig) PCoV (Puffin) 

HCoV-NL63 (Human) ECoV (Horse) 

Bat-CoV-61 (Bat) CRCoV (Dog) 
Bat-CoV-HKU2  (Bat) SARS-CoV (Human) 

HCoV-HKU1 (Human) 

Bat-SARS-CoV (Bat) 

CORONAVIRUSES

 

Table 2. Coronaviruses and Their Hosts.  

  

 Coronaviruses are divided into three groups (I, II and III) initially based on 

immunological characteristics and more recently on sequence comparisons (Gonzalez et 

al., 2003).  Almost all viruses in groups I and II have mammalian hosts, while group III 

viruses have been isolated solely from avian hosts.  The human coronaviruses are 

distributed between groups I and II.  Table 2 lists all members of the Coronavirus family 

and their respective animal hosts. 

 The first two identified human coronaviruses, HCoV-229E and HCoV-OC43, 

were isolated in the mid-1960s from people with common cold symptoms (Hamre and 

Procknow, 1966; McIntosh, Becker, and Chanock, 1967).  They cause mild upper and 

sometimes lower respiratory infections that get efficiently cleared in normal healthy 
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individuals, or severe pneumonia in immunocompromised people (McIntosh, 2005).  

About one third of all common colds and upper respiratory tract infections can be 

attributed to HCoV-229E and HCoV-OC43 (Tyrrell, Cohen, and Schlarb, 1993; Vabret et 

al., 2003).  No new human coronaviruses were identified until 40 years later, when severe 

acute respiratory syndrome (SARS) coronavirus was discovered.  The SARS-CoV was 

responsible for the 2002-2003 epidemic that emerged from the Guangdong province in 

China, and quickly spread to infect circa 8000 individuals (Drosten et al., 2003; Rota et 

al., 2003).  Nearly 10% of infected individuals succumbed to death (Cherry, 2004; Lee et 

al., 2003).  It was confirmed that SARS-CoV was the etiologic agent of the disease, when 

macaques inoculated with the virus displayed disease symptoms almost identical to the 

ones observed in the human cases of SARS (Fouchier et al., 2003).  Notably, SARS-like 

coronaviruses are abundant in nature, infecting several bat species, civet cats and raccoon 

dogs (Kan et al., 2005; Poon et al., 2005).  The large number of species in which the virus 

can replicate indicates that SARS-CoV is capable of efficient zoonotic transmission.  

Indeed, SARS-CoV transmission into the human population was a result of zoonosis 

from bats and civet cats (Guan et al., 2003; Lau et al., 2005; Li et al., 2005b).   

 Since the emergence of SARS-CoV, two new human coronaviruses were 

identified, HCoV-NL63 isolated in 2004 (van der Hoek et al., 2004) and HKU1 isolated 

in 2005 (Woo et al., 2005).  Almost all children encounter their first NL63 infection 

during early childhood, resulting in conjunctivitis, croup, and sometimes serious infection 

that may lead to hospitalization (Esper et al., 2005; van der Hoek et al., 2004).  Unlike 

SARS-CoV being a novel pathogen, the two coronaviruses HCoV-NL63 and HKU1 were 
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already present in the human population.  It is likely that previously unidentified 

coronaviruses are circulating amongst us, and they may be discovered in the future due to 

the development of sensitive viral detection techniques. 

  While zoonotic potential and pathogenicity in humans is a complex function of 

many if not all viral genes and gene products, the viral spike (S) protein receives the 

greatest attention in the field.  This is because S proteins dictate cell entry events.  Spikes 

bind cell receptors and also mediate virus-cell membrane fusions.  Evolution of spike 

proteins thus correlates with virus “jumps” from animal to human cell receptors (Li et al., 

2005c; Sheahan et al., 2008) and also with increases in virus penetration into cells, spread 

through tissues, tropism and virulence (Casais et al., 2003; Haijema, Volders, and Rottier, 

2003; Kuo et al., 2000; Leparc-Goffart et al., 1998; Schickli et al., 2004).  For these 

reasons, our incentives are to increase understanding of the coronavirus spike proteins as 

well as other cofactors required for S-mediated entry into cells.  

The S Glycoprotein 

 The coronavirus S protein is the sole mediator of virus entry into cells as well as a 

determinant of host-range, tissue tropism, pathogenesis and virulence.  It is the largest 

known viral transmembrane fusion protein, ranging from 1162-1481 residues in length (~ 

three times larger than influenza HA), with an N-exo, C-endo orientation on the viral 

membrane.  The ectodomain constitutes the majority of the molecule, with only a small 

carboxy-terminal segment of ~71 amino acids comprising the endodomain.  The spike 

proteins occur as homotrimers and they protrude ~ 11-20 nm from the virion envelope 

(Davies and Macnaughton, 1979).   
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 The S protein contains a cleavable N-terminal signal sequence that allows for 

cotranslational insertion in the endoplasmic reticulum (ER).  Folding of the protein in the 

ER is a slow process, mainly due to the formation and rearrangement of several 

intramolecular disulfide bonds (de Haan and Rottier, 2005).  The S protein is heavily 

glycosylated; there are 21 potential N-glycosylation sites in MHV and 23 in SARS-CoV 

S.  At least 12 out of the 23 putative consensus sites in SARS-CoV are indeed 

glycosylated as determined by mass spectroscopy (Krokhin et al., 2003).  As with other 

integral membrane glycoproteins, initial N-glycosylation occurs cotranslationally, 

followed by trimerization of the spike monomers and further de-and re-glycosylations in 

the Golgi (Delmas and Laude, 1990). 

 .   

 

 

 

 

 

 

 

 

Fig. 4. Structural Features of the Coronavirus S Protein. The MHV-A59 spike protein 
is depicted in linear fashion.  SS = signal sequence.  S1= Peripheral spike proteolytic 
subunit 1.  S2 = Transmembrane spike proteolytic subunit 2.  FP= fusion peptide.  
HR1=heptad repeat 1.  HR2= heptad repeat 2.  TM= transmembrane span.   An expanded 
view of the transmembrane span and proximal cytoplasmic residues reveals the highly 
conserved cysteine rich motif.  

SS FP HR 1 HR 2 TM

S1 S2

MHV-A59 KWPWYVWLLIGLAGVAVCVLLFFICCCTGCG---SCCFKKCGNCCDEYGGHQDSIVIHNISSHED

SARS    KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCS-CLKGACSCGSCCKFDEDDSEPVLKGVKLHYT-

NL63    KWPWWVWLIISVVFVVLLSLLVFCCLSTGCCGCCNCLTSSMRGCCDCGSTKLPYYEFEK--VHVQ 

OC43    KWPWYVWLLICLAGVAMLVLLFFICCCTGCG---TSCFKKCGGCCDDYTGYQELVIKT---SHDD  

HKU1    KWPWYVWLLISFSFIIFLVLLFFICCCTGCG---SACFSKCHNCCDEYGGHHDFVIKT–--SHDD 

229E    KWPWWVWLCISVVLIFVVSMLLLCCCSTGCCGFFSCFASSIRGCCES--TKLPYYDVEK--IHIQ 

SS FP HR 1 HR 2 TM

S1 S2

MHV-A59 KWPWYVWLLIGLAGVAVCVLLFFICCCTGCG---SCCFKKCGNCCDEYGGHQDSIVIHNISSHED

SARS    KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCS-CLKGACSCGSCCKFDEDDSEPVLKGVKLHYT-

NL63    KWPWWVWLIISVVFVVLLSLLVFCCLSTGCCGCCNCLTSSMRGCCDCGSTKLPYYEFEK--VHVQ 

OC43    KWPWYVWLLICLAGVAMLVLLFFICCCTGCG---TSCFKKCGGCCDDYTGYQELVIKT---SHDD  

HKU1    KWPWYVWLLISFSFIIFLVLLFFICCCTGCG---SACFSKCHNCCDEYGGHHDFVIKT–--SHDD 

229E    KWPWWVWLCISVVLIFVVSMLLLCCCSTGCCGFFSCFASSIRGCCES--TKLPYYDVEK--IHIQ 
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 The S protein is synthesized as a single-chain precursor which in some cases gets 

cleaved in the Golgi by furin-like enzymes to generate an amino-terminal S1 subunit and 

a membrane-anchored S2 subunit, of roughly equal sizes (Sturman and Holmes, 1984; 

Sturman, Ricard, and Holmes, 1985) (Fig. 4).  The S1 subunit (or the equivalent in those 

viruses that do not get cleaved) is responsible for binding the cellular receptor and the S2 

subunit contains the fusion machinery necessary for mediating virus-cell membrane 

fusion.  The two subunits are held together via non-covalent interactions and they easily 

dissociate from each other upon encountering a fusion trigger (Sturman, Ricard, and 

Holmes, 1990) 

 The cleavage between the S1 and S2 subunits occurs after the last residue in a 

highly basic site, RRARR in mouse hepatitis virus (MHV) strain JHM, RRAHR in MHV 

strain A59 (Luytjes et al., 1987) and RRFRR in infectious bronchitis virus (IBV) S 

protein (Cavanagh et al., 1986).  Notably, several human coronaviruses such as SARS-

CoV, HCoV-NL63, and HCoV-OC43 S proteins do not have a basic furin recognition 

motif and thus do not get cleaved in virus producer cells.  The importance of S1/S2 

cleavage and how it relates to the S protein function will be discussed in more detail later 

in this dissertation. 

 The S1 subunit is the most divergent region when comparing coronavirus spikes 

within and across groups, and even among isolates of a single species (Gallagher, Parker, 

and Buchmeier, 1990; Wang et al., 1994).  The hypervariability of this region could be 

due to natural recombination, which is very common for coronaviruses.  Due to their 



 

 

                                                                                                                                            21 
 

 

replication strategy, coronaviruses exhibit high frequency of recombination and strain 

variability (Lai et al., 1994; Makino et al., 1986).   

 The receptor binding domains (RBD) in the S1 subunit have been mapped for 

many coronaviruses, and both the sequences and their positions within the S1 subunit 

vary among the different coronaviruses (Fig. 5).  The SARS-CoV S RBD has been 

defined at residues 318-510 of the S1 domain, and it was shown to bind the angiotensin 

converting enzyme 2 (ACE2) receptor with higher affinity than the full S1 domain 

(Wong et al., 2004).  The first 330 residues in the S1 subunit of MHV are sufficient to 

bind the carcinoembryonic antigen-cell adhesion molecule 1 (CEACAM1) receptor 

(Kubo, Yamada, and Taguchi, 1994).  A different region in the S1 subunit of HCoV-

229E comprising residues 407-547 is sufficient to associate with the aminopeptidase N 

(APN, CD13) receptor (Bonavia et al., 2003; Breslin et al., 2003). 

 The S2 subunit contains two heptad repeat (HR) regions (de Groot et al., 1987) 

that have similar characteristics with other class I fusion protein coiled coil domains.  

Condensed 6-HB of antiparallel HR1 and HR2 have been crystallographically resolved 

(Supekar et al., 2004; Xu et al., 2004).  The location of the fusion peptide is still 

unknown, despite several predictions (Bosch et al., 2004; Chambers, Pringle, and Easton, 

1990; Luo, Matthews, and Weiss, 1999).  Recently, residues 798-815 in SARS-CoV S 

were shown to have the ability to interact with membranes in vitro and they were also 

important for the membrane fusion process, thus implying that these residues might 

comprise a fusion peptide (Madu et al., 2009) (Fig. 4).   
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Fig. 5. Receptor Binding Domains in Coronavirus Spikes.  Shown here are linear 
depictions of three coronavirus spike glycoproteins. The receptor binding domains (RBD) 
are depicted in red and their positions along each spike glycoprotein are indicated by 
numbers. FP= fusion peptide.  HR1=heptad repeat 1.  HR2= heptad repeat 2.  TM= 
transmembrane span.   
 

  

 Besides the HR regions and the fusion peptide, other parts of the S2 subunit may 

be important for mediating the fusion process.  For example, downstream of HR2 there is 

a region comprised of mainly aromatic residues (KWPWYVWL), which are highly 

conserved among all coronaviruses (Fig. 4).  Substitution of the aromatic residues in this 

region of SARS-CoV S protein results in potent inhibition of fusion and virus entry 

(Howard et al., 2008).  This region may be the start of the transmembrane portion of the S 

protein, and transmembrane domains of several viral fusion proteins are shown to be 

important for fusion, even though a detailed mechanism is not yet elucidated (Langosch, 

Hofmann, and Ungermann, 2007).  A similar region in HIV-1 Env protein was shown to 

be important for Env-mediated membrane fusion (Salzwedel, West, and Hunter, 1999). 

 Immediately downstream of the transmembrane domain, there is another well-

conserved region among coronaviruses: the cysteine rich motif (CRM) (Fig. 4).  In the 
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prototype murine coronavirus, strain A59, the CRM spans 17 amino acids, 9 of which are 

cysteines.  A helical wheel depiction of this region, predicted to have alpha-helical 

structure, reveals that all 9 cysteines lie on one face of the putative helical rod (Fig. 6).  

Many of these cysteines are post-translationally modified with palmitic acids, suggesting 

that one face is markedly hydrophobic and likely intercalated into the cytoplasmic leaflets 

of intracellular membranes.  The functional role of the cysteine-rich domain is 

investigated later in this report. 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Hypothetical Helical Wheel Depiction of MHV-A59 S Cysteine Rich Motif.  

The ‘wheel’ is a view along the long axis of an alpha helix, with numbered positions and 
residues indicated.  MHV A59 S contains a cysteine rich motif in which 9 of 17 residues 
are cysteines.  A helical wheel depiction of this region reveals that all 9 cysteines lie on 
one face of the putative helical rod.   
  

 Only a proportion of the available S protein pool gets assembled into nascent 

virions through interactions with M proteins.  The remaining S proteins travel through the 
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exocytic pathway to reach cell surfaces where they can interact with receptors on 

adjacent cells to mediate cell-cell fusions.  Cell-cell fusion leads to formation of 

multinucleated cells, otherwise known as syncytia, and rapid spread of infections. 

Coronavirus Architecture 

 Coronaviruses are enveloped viruses with the largest known single-stranded 

positive sense RNA genome of ~30 kb (Lee et al., 1991).  The 5’ ~ two thirds of the 

genome encodes polyproteins that get cleaved into nonstructural proteins (nsps) 1-16 that 

operate in RNA-dependent RNA replication, polyprotein processing and host immune 

evasion.  The 3’ ~one third part of the genome encodes the structural proteins, S, E, M 

and N, needed to generate infectious viral particles.   

 

 

  

 

 

 

Fig. 7. Coronavirus Genome Organization.  Depiction of the human SARS coronavirus 
(GenBank accession number AY278741) positive strand RNA genome. There is a leader 
(L) sequence in the 5’ end of the genome.  Open reading frames (ORF1a and ORF1b), 
encoding for the polymerase and protease polyprotein complex, are translated via a 
ribosomal frameshifting mechanism.  Besides the main structural proteins (sequentially S, 
E, M, and N) the SARS-CoV genome contains additional accessory genes (3a, 3b, 6, 7a, 
7b, 8a, 8b and 9b) that might be important during in vivo infections.  
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 In between the structural genes in the coronavirus genome are several other genes 

called “accessory genes”, because many studies have shown that these genes and their 

products are not required for virus growth in vitro (de Haan et al., 2002; Yount et al., 

2005).  However, many of the accessory genes are maintained in coronavirus genomes, 

suggesting that they might be important for in vivo virus infections.  The severe acute 

respiratory syndrome coronavirus (SARS-CoV) genome organization is depicted in Fig. 

7.  SARS-CoV has a genome of 29 kb, encoding for 9 open reading frames (ORFs) 

(Marra et al., 2003).   

 The virions are pleimorphic in structure with a diameter of about 80-120 nm 

(Neuman et al., 2006a).  The transmembrane spike glycoprotein trimers protrude circa 20 

nm from the virion membrane giving the appearance of a crown or “corona”-like 

arrangement under the electron microscope.  The major protein species in the membrane 

is the triple-pass membrane glycoprotein (M) that mediates interactions of the genome 

structure with the viral envelope.  Recent cryoelectron tomographic 3D reconstructions of 

the mouse hepatitis virus (MHV) indicate that the C-termini of M proteins are organized 

as a proteinacious shell between the membrane and the virion interior (Barcena et al., 

2009).  The small envelope (E) protein is a minor component of the virion membrane 

and, in contrast to the M protein, it does not have a structural role in the virion.  The 

ribonucleoprotein (RNP) core contains a single copy of the positive strand genomic RNA 

wrapped into helical structures by multiple copies of the nucleocapsid protein (N) 

(Masters, 2006; Risco et al., 1998).  The virion architecture is illustrated in Fig. 8. 
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Fig. 8. Model of Coronavirus Architecture. S: spike glycoprotein trimers, M: triple-
pass membrane spanning glycoprotein, E: small envelope glycoprotein, N: nucleocapsid 
protein.  The positive strand RNA genome is depicted wrapped around N proteins 
forming helical arrays inside the virion.  
  

Coronavirus Assembly 

 Part of my dissertation research focuses on coronavirus assembly.  Most of the 

work on assembly has been concentrated on specific viral components and the 

coordinated interplay between them, while very little is known about the cellular factors 

involved in the process.  The development of virus-like particle (VLP) system for 

coronaviruses was central to understanding the molecular interactions involved in 

assembly.  In this system, expression of only M and E proteins was sufficient to generate 

VLPs with the same morphology as authentic coronavirions (Bos et al., 1996; Vennema 

et al., 1996).  M protein is the key player mediating virion assembly through homotypic 

interactions with each other (de Haan, Vennema, and Rottier, 2000), with RNP 

complexes (Kuo and Masters, 2002; Narayanan et al., 2000), and with the E and S 
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proteins (de Haan et al., 1999; Godeke et al., 2000).  The E protein may act to induce the 

membrane curvature required for viral assembly (Raamsman et al., 2000).  Intracellular 

targeting signals in S, E and M ensure localization of these proteins at the site of 

assembly (Corse and Machamer, 2002; Lontok, Corse, and Machamer, 2004; McBride, 

Li, and Machamer, 2007), which for coronaviruses occurs intracellularly on the 

membranes of the endoplasmic reticulum Golgi intermediate complex (ERGIC) (Krijnse-

Locker et al., 1994).    

 As mentioned above, the spike glycoproteins are dispensable for virion particle 

formation, which requires only the action of M and E proteins (Vennema et al., 1996).  

Only a proportion of the available S protein pool gets assembled into nascent virions 

through interactions with M proteins.  The remaining S proteins travel through the 

exocytic pathway to reach cell surfaces and mediate cell-cell fusions and spread of 

infection.  The number of spike glycoprotein trimers per virion varies from 50 to 100 

(Neuman et al., 2006b), and spikeless virions do form under specified conditions, 

indicating that the S protein is not an active participant in assembly (Holmes, Doller, and 

Sturman, 1981; Rottier, Horzinek, and van der Zeijst, 1981).  

Coronavirus Entry: Involvement of Viral and Cellular Cofactors 

 Successful virus entry and subsequent infection requires the coordinated interplay 

between viral, cellular proteins and the environment in which these factors reside. 

Understanding these interactions will provide insights into the mechanism by which 

viruses gain access into susceptible cells.   
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 Coronaviruses provide a good model in which one can study mechanisms of virus 

entry.  For many coronaviruses the fusion reaction takes place at cell surfaces, which 

makes them accessible to extracellular probes such as antibodies and peptides.  Also, 

assays to evaluate coronavirus fusion and entry reactions are in place and the assays are 

very robust with high sensitivity and broad >10,000-fold range.  Most importantly, a 

coronavirus reverse genetics system is in place to evaluate various mutations in the 

context of authentic virions.  In my dissertation research, I focused on identifying viral 

and cellular cofactors required for coronavirus entry.  I found that multiple factors, 

including coreceptors, proteolysis, lipid rafts and spike lipidation, operate to facilitate 

coronavirus entry into cells.   

Receptors on Susceptible Cells 

 Cellular receptors are of central importance to virus infectivity and understanding 

virus-receptor interactions can make significant contributions to the development of 

vaccines and antiviral therapies.  Typically, receptors provide a high-affinity docking site 

that enriches virus particles on the surface of target cells.  Upon binding, the receptor 

then induces conformational changes in the virus structure that are important for entry.  

In the case of nonenveloped viruses, the structural changes in the capsid upon receptor 

binding at the cell surface lead to limited disassembly, which is a prerequisite for 

complete opening of the virus at later stages (He et al., 2000; Nakano et al., 2000; Tsang 

et al., 2001).  Due to their ability to recycle between the surface of a cell and its interior 

compartments, receptors actively assist in virus internalization.  In addition to shuttling 

viruses inside cells, receptors may bring viruses in close proximity to additional factors 
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required for entry, such as coreceptors (Moore, Trkola, and Dragic, 1997) and proteases.   

Some receptors may also contain signaling modules (Barton et al., 2001; Brojatsch et al., 

1996; Hofer et al., 1994) that can get triggered upon virus binding to activate downstream 

effectors assisting in multiple aspects of virus entry and lifecycle.   

 Coronaviruses S proteins have a wide variety of receptor specificities as listed in 

Table 3.  Members of the CEACAM family, immunoglobulin-like type I-oriented 

membrane glycoproteins, serve as receptors for MHV (Dveksler et al., 1991; Williams, 

Jiang, and Holmes, 1991).  ACE2, present on the apical surfaces of pulmonary and 

gastrointestinal epithelial cells (Hamming et al., 2007), is a functional receptor for two 

human respiratory pathogens, SARS-CoV (Li et al., 2003) and HCoV-NL63 (Hofmann et 

al., 2005).  APN, a type II-oriented membrane glycoprotein abundant in respiratory 

epithelia, was shown to be a receptor for multiple group I coronaviruses including canine 

coronavirus (Benbacer et al., 1997), feline infectious peritonitis virus (Tresnan, Levis, 

and Holmes, 1996), HCoV-229E (Yeager et al., 1992) and transmissible gastroenteritis 

virus (Delmas et al., 1992).  To date, no receptors have been unambiguously identified 

for group III coronaviruses, although candidates include heparan sulfate (Madu et al., 

2007) and sialic acid (Winter et al., 2006). 

 For several coronavirus S proteins, binding to the primary cell surface receptor 

leads to conformational changes in the S protein.  For example, MHV S binds to the 

CEACAM receptor with an affinity of ~ 0.5 nM (Krueger et al., 2001).  This binding 

leads to structural changes in the S protein, namely the dissociation of S1 and S2 subunits 

and the refolding of spike into a post-fusion conformation (Gallagher, 1997; Matsuyama 
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and Taguchi, 2002; Zelus et al., 2003).  Similarly, SARS-CoV S binds the ACE2 receptor 

with a high affinity of ~ 2nM (Li et al., 2003), and this binding leads to structural 

rearrangements in the SARS-CoV S that can be visualized by cryo-electron microscopy 

reconstruction techniques (Beniac et al., 2007; Li et al., 2006). 

 

 

Table 3.  Coronavirus Receptors.  Listed are the known cellular receptors for group 1 
and 2 coronaviruses.  No receptors have been identified for group 3 coronaviruses.  
  

  

 Besides the primary cell surface receptor, other protein cofactors might be 

required for coronavirus S-mediated entry.  For example, even though HCoV-NL63 can 

bind ACE2, not all cell lines expressing ACE2 are able to support NL63 replication, 

suggesting that HCoV-NL63 may bind molecules on the host cell surface in addition to 

ACE2.  Indeed, many viruses interact with more than one cell surface molecule to 

mediate the process of attachment and internalization thereafter, such as Coxsackie B and 

HIV-1 viruses (Greber, 2002).   
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Integrins and their Roles as Virus Entry Cofactors 

 We hypothesized that β1 integrins might serve as coreceptors for HCoV-NL63 

entry.  Recently, Schornberg et al. described a new and interesting role for β1 integrins in 

Ebola virus entry (Schornberg et al., 2009).  Their findings indicated that β1 integrins 

regulated the activities of endosomal cathepsins required to render Ebola virus competent 

for cell entry (Schornberg et al., 2009).  Knowing that the HCoV-NL63 S proteins are 

uncleaved (van der Hoek et al., 2004), and that they might require endosomal proteases 

for fusion activation, led us to the hypothesis that β1 integrins may be operating as 

coreceptors to guide HCoV-NL63 into the appropriate endosomal environments. Several 

coronaviruses are dependent on endosomal cathepsin proteases for entry into cells (Qiu et 

al., 2006; Simmons et al., 2005); however, it is currently unknown whether integrins are 

involved.  

 Integrins are expressed on the cell surface as heterodimeric glycoproteins 

composed of α and β subunits.  The large integrin family is comprised of 18 α and 8 β 

units that can form 24 different α/β heterodimeric complexes (Hynes, 2002). These 

complexes are involved in many aspects of cellular life, including cell adhesion, 

migration, growth, survival and differentiation (Giancotti, 2000).  In addition to these 

roles, integrins serve as portals of entry for a variety of viral and bacterial pathogens 

(Triantafilou, Takada, and Triantafilou, 2001).  Both enveloped and non-enveloped 

viruses utilize integrins for entry, including members of the adeno-, herpes- (Akula et al., 

2002; Feire, Koss, and Compton, 2004; Wickham et al., 1993), hanta-, picorna-

(Bergelson et al., 1992; Jackson et al., 2002), reo- (Graham et al., 2003; Maginnis et al., 
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2006) and paramyxo-viridae (Cseke et al., 2009).   

 The integrin contributions during the course of viral infections are multifold and 

include virus attachment, entry as well as signaling events (Stewart and Nemerow, 2007).  

Virus binding to integrins is often enough to trigger cellular signaling pathways.  The 

cytoplasmic domains of integrins interact with a variety of intracellular factors that 

mediate the signaling events important for subsequent virus entry.  For example, Kaposi’s 

sarcoma-related herpesvirus and cytomegalovirus binding to β1 integrins activates focal 

adhesion kinase (FAK), which is critical for virus entry post-receptor binding (Krishnan 

et al., 2006).  Besides its well-known role in cell motility, FAK also impacts downstream 

molecules such as ERK1/ERK2 mitogen-activated protein (MAP) kinases (Eblen et al., 

2002; Schlaepfer et al., 1994). 

 There are several integrin recognition motifs (Plow et al., 2000) and all viruses 

known to use integrins as entry receptors have one or more of these sequences in their 

surface proteins.  Notably, the human coronavirus HCoV-NL63 contains the well-defined 

integrin recognition motif Asn-Gly-Arg (NGR) in its S sequence (Koivunen, Gay, and 

Ruoslahti, 1993).  The presence of this integrin recognition motif has probably gone 

unnoticed due to the fact that HCoV-NL63 uses the primary protein receptor ACE2 for 

entry (Hofmann et al., 2005).  My experimental results argue for a role of β1 integrins in 

HCoV-NL63 entry. 

Cellular Proteases and their Roles as Virus Entry Factors 

 During the course of identifying and characterizing cofactors for coronavirus 

entry, we discovered TMPRSS2 as a novel SARS-CoV activating protease.  Class I 
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fusion proteins, such as coronavirus S, require proteolysis for fusion activation.  

Coronavirus spikes vary in their mode of proteolytic priming.  Most of the group II and 

all of the group III coronavirus S proteins are cleaved between their S1 and S2 domains 

by a furin-like protease in the producer cells (Jackwood et al., 2001; Sturman, Ricard, and 

Holmes, 1985).  This cleavage correlates well with the ability of S proteins to mediate 

cell-cell fusion and formation of syncytia.  For example, MHV-A59 S proteins with 

mutations in their multibasic cleavage motif, cannot execute cell-cell fusion and 

formation of syncytia (Bos et al., 1995; Gombold, Hingley, and Weiss, 1993).  Also, 

inhibition of the furin protease correlates with inhibition of S protein cleavage and ability 

to mediate cell-cell fusion (de Haan et al., 2004).  

Notably, some coronavirus S proteins, such as those of SARS-CoV, lack furin 

recognition motifs and nascent virions exit cells harboring uncleaved spikes (Song et al., 

2004; Xiao et al., 2003; Yao et al., 2004), thus relying on target cell proteases for 

activation (Simmons et al., 2004).  Therefore, the host cell proteases that cleave and 

activate SARS-CoV S are central entry determinants.   

 SARS-CoV binds to its ectopeptidase receptor, angiotensin converting enzyme 2 

(ACE2), with very high affinity (Sui et al., 2004).  ACE2 without ectopeptidase activity 

is also an efficient SARS-CoV receptor (Li et al., 2005c) and S proteins bind at a distance 

from the ACE2 enzyme pocket (Li et al., 2005a), making it clear that ACE2 is not a 

direct S-activating protease.  There are, however, several proteases that can cleave 

SARS-CoV S including trypsin, cathepsin L, elastase, factor Xa, thermolysin, and 

plasmin (Belouzard, Madu, and Whittaker, 2010; Du et al., 2007; Matsuyama et al., 2005; 
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Simmons et al., 2005).  The most prominent proteases in this group, trypsin and cathepsin 

L, are discussed in more detail below. 

 Trypsin is a well-characterized member of the serine protease family of proteins 

that gets secreted in the extracellular space.  Addition of exogenous trypsin protease 

induces SARS-CoV S-mediated syncytia formation in infected cell cultures (Matsuyama 

et al., 2005; Simmons et al., 2004).  The trypsin cleavage site maps to a position that 

aligns precisely with the furin cleavage site in MHV (Li et al., 2006).  Indeed, 

introduction of a furin cleavage site at this position in SARS-CoV S allows for cleavage 

of the protein into S1 and S2 fragments and the ability to induce cell-cell fusion and 

syncytia (Follis, York, and Nunberg, 2006; Watanabe et al., 2008).  As trypsin activity is 

tightly regulated in humans, it is not clear whether trypsin contributes to activation of 

SARS-CoV infections in vivo.  

  Cathepsin L is a member of the cathepsin family of proteins, which includes 

serine proteases (cathepsins A and G), aspartic proteases (cathepsins D and E), and the 

more numerous cysteine proteases (cathepsins B, C, F, H, K, L, O, S, W, V, and Z) 

(Reiser, Adair, and Reinheckel, 2010).  In general, the cysteine proteases are stable in 

acidic cellular compartments, such as endosomes and lysosomes.  Thus, unlike trypsin 

protease that is secreted into the extracellular space, cathepsin L protease remains cell- 

associated, residing mainly in endo-lysosomal compartments.  The initial evidence for 

involvement of cathepsin L in activating SARS-CoV S proteins came from studies using 

protease inhibitors.  Thus, specific inhibitors of the cathepsins L endosomal protease 

greatly inhibit SARS-CoV S-mediated entry into target cells (Huang et al., 2006; 
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Simmons et al., 2005).  Recently, the cathepsin L proteolytic target site in SARS-CoV S 

was mapped only 11 residues downstream of the trypsin cleavage site (Bosch, Bartelink, 

and Rottier, 2008). 

 Trypsin, cathepsin L and the other proteases known to activate S-mediated fusion 

in vitro are mostly soluble proteases and it is not obvious how they might be retained in 

the vicinity of the ACE2 receptor.  These questions of protease subcellular location and 

the timing of enzyme action are relevant because activating S protein cleavages take 

place only after ACE2 engagement.  Indeed, without prior ACE2 binding, these soluble 

proteases excessively cleave and inactivate virus spikes (Matsuyama et al., 2005; 

Simmons et al., 2005).  Given that the productive sequence is for S proteins to bind 

ACE2, then undergo activating proteolysis, it is reasonable to suspect that the relevant 

proteases activating SARS-CoV entry might be anchored into the plasma membrane and 

juxtaposed near the ACE2 receptors. 

Amongst the candidates for membrane-anchored virus-activating proteases are the 

type II transmembrane serine proteases (TTSPs), a family of serine proteases whose 

physiologic functions are just beginning to be discerned (Bugge, Antalis, and Wu, 2009).  

TTSPs belong to the same serine protease family as the well-studied trypsin, 

chymotrypsin, elastase, thrombin and plasmin proteases.  The main difference between 

TTSPs and the rest of serine proteases is the presence of an N-terminal transmembrane 

domain, which allows TTSPs to be membrane-associated.  The human TTSP family 

comprises 19 members that can be further grouped into four subfamilies: the HAT/DESC 

(human airway trypsin-like protease/differentially expressed in squamous cell 
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carcinoma), the Hepsin/TMPRSS (transmembrane protease/serine), the Matriptase and 

the Corin subfamily (Antalis et al., 2010).  

As it is true for all serine proteases, TTSPs are synthesized as inactive single-

chain precursors or zymogens.  They undergo autocatalytic cleavage to generate a mature 

form containing the serine protease domain and a sister transmembrane fragment, 

connected together via a disulfide linkage (Hooper et al., 2001).  At least for one member 

of the family, matriptase, it has been shown that the autocatalytic cleavage occurs at the 

plasma membrane (Miyake et al., 2009).  

The physiologic roles of the TTSPs are quite diverse and they may be key 

regulators of signaling events at the plasma membrane.  The TTSPs are involved in 

activating zymogen cascades, cleaving protease-activated receptors (PARs), processing 

growth factors, activating epithelial sodium channels as well as processing viral proteins 

and thus promoting virus spread and infectivity (Choi et al., 2009).  

Three TTSPs (TMPRSS2, TMPRSS11a and TMPRSS11d) are expressed in the 

surface of airway epithelial cells (Donaldson et al., 2002; Kam et al., 2009; Yasuoka et 

al., 1997), and thus can potentially be positioned appropriately at virus-cell junctions.  

Importantly, TTSPs are known to activate entry of some respiratory viruses including 

both seasonal and pathogenic human influenzae as well as human metapneumoviruses 

(Bottcher et al., 2006; Chaipan et al., 2009; Shirogane et al., 2008).  A recent report has 

implicated TMPRSS11a in the proteolysis of SARS-CoV S proteins (Kam et al., 2009).  

This valuable contribution stimulated our interest in cell entry cofactors and prompted 

questions concerning the transmembrane proteases, their substrate preferences and their 
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potential localization with the primary ACE2 receptors.  In considering these questions, 

we made discoveries that relate to SARS-CoV and potentially other virus entry events.  

These discoveries are described in section 3-2 of this dissertation document. 

Localization of Receptors and Proteases in Lipid Rafts: Roles for Lipid Rafts as Virus 

Entry Factors 

 Many viruses enter cells through specialized lipid microdomains or “lipid rafts”.  

Virus receptors, coreceptors and other cellular factors important for virus entry often 

concentrate within lipid rafts, thereby setting the stage for high affinity interactions 

during entry.  Both the receptor and coreceptor for HIV-1, CD4 and CCR5 respectively, 

are associated with lipid rafts (Campbell, Crowe, and Mak, 2001; Popik, Alce, and Au, 

2002).  Following virus-receptor/coreceptor engagement, membrane rafts continue to 

influence the entry process by assisting in shaping membrane invaginations and 

subsequent uptake of viruses into cells (Chazal and Gerlier, 2003).  In some cases, the 

cholesterol and sphingolipid moieties in rafts are crucial to virus entry and infectivities, 

such as Semliki Forest and Sindbis (Kielian and Helenius, 1984; Smit, Bittman, and 

Wilschut, 1999); however, the exact mechanisms of these lipid requirements remain 

unknown.  

 Lipid rafts can be operationally defined as nonionic detergent – insoluble, and 

thus are frequently referred to as detergent-resistant membranes (DRMs) (Brown, 2006).  

They are enriched in cholesterol and sphingolipids, and are readily isolated from the 

majority of cellular material by floatation in sucrose density gradients.  This biochemical 

cell fractionation process may arguably create low density lipid-protein assemblages that 
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are not present in intact cells; however, numerous immunofluorescence and electron 

mcroscopic investigations of living cells have revealed striking membrane 

heterogeneities, with distinct (~ 50 nm in diameter) “lipid rafts” present in the plasma 

membrane, apical transport vesicles, as well as Golgi and trans Golgi membranes 

(Brown, 2006; Simons and Ikonen, 1997).  The in vivo existence of bona-fide lipid rafts 

still remains debatable, even though multiple techniques independent of detergent 

extraction have been used to visualize lipid rafts in living cells (Schutz et al., 2000). 

 Even though detergent-resistant membranes can form in vitro solely by mixing 

cholesterol and sphingolipids in the absence of any proteins, certain proteins do associate 

with these special lipid microdomains (Simons and Ikonen, 1997).  Most proteins that 

associate with lipid raft membrane domains have post-translational lipid modifications 

that include glycophosphatidylinositol (GPI) anchors, N-terminal myristic acid tails, 

cysteine acylation, and the addition of C-terminal sterol moieties (Levental, Grzybek, and 

Simons).  Proteins that reside in less ordered membrane domains can move to lipid rafts 

through interaction with a raft associated protein.  Such is the case of influenza virus M1 

protein, which by interaction with the glycoprotein HA becomes incorporated into lipid 

rafts (Ali et al., 2000).  In many cases, virus binding relocalizes receptor from non-raft to 

raft microdomains.  This is in line with the documented, dynamic and rapid 

association/dissociation of lipid microdomains to form smaller or larger rafts (Kusumi 

and Sako, 1996). 

 Multiple studies have implicated lipid rafts in coronavirus entry.  CD13 and 

ACE2, which serve as receptors for human coronaviruses 229E and SARS respectively, 
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have been shown to localize in detergent-resistant membranes (Lu, Liu, and Tam, 2008; 

Nomura et al., 2004).  Furthermore, cholesterol depletion by pharmacological agents 

results in disruption of virus infection, implicating the importance of cholesterol in virus 

entry (Thorp and Gallagher, 2004).  The presence of ACE2 in lipid rafts could be a cell-

type specific phenomenon; ACE2 localizes to DRMs in Vero E6 cells (Lu, Liu, and Tam, 

2008), but not CHO cells stably expressing ACE2 (Warner et al., 2005). 

 We recently identified the transmembrane serine protease, TMPRSS2, as an 

important factor for SARS coronavirus entry (Shulla et al., 2011).  TMPRSS2 localizes 

on the cell surface and might be closely associated with the SARS coronavirus receptor, 

ACE2.  It is not known whether TMPRSS2 or any of the other 19 members of the type II 

transmembrane serine protease family are associated with raft membrane domains.  

Interestingly, all known cell surface substrates for these proteases are lipid raft resident 

proteins.  We wanted to determine whether ACE2 and TMPRSS2 were associated with 

lipid rafts and whether this association was important for virus entry. 

Spike Protein Palmitoylations as Virus Entry Factors 

 Palmitoylation is one of several post-translational modifications that influence 

protein stability, trafficking and interactions with lipid raft membranes.  Palmitate is a 16-

carbon saturated fatty acid that is attached to cysteine residues through a reversible 

thioester linkage catalyzed by protein acyltransferases (PATs) (Linder and Deschenes, 

2007).  Several viral membrane glycoproteins are palmitoylated at sites near the 

cytoplasmic face of the membrane shortly after synthesis (Schmidt and Schlesinger, 

1980; Veit and Schmidt, 1993).  
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 The S protein endodomains comprising the carboxy-termini are set apart by their 

abundance of cysteine residues (see Fig. 4).  Many, if not all of these cysteines, are well-

known to be post-translationally acylated with palmitate and / or stearate adducts (Bos et 

al., 1995; Chang, Sheng, and Gombold, 2000; Petit et al., 2007; Thorp et al., 2006); these 

posttranslational modifications add considerable lipophilicity to the endodomains and 

likely position the cytoplasmic tails against the inner face of virion membranes.  Indeed, 

the S proteins are set apart from other enveloped virus glycoproteins in having very richly 

acylated endodomains.  For example, there are nine acylated cysteines in coronavirus S, 

while there are only three in influenza HA (Veit et al., 1991) and two in HIV gp160 

(Yang, Spies, and Compans, 1995).  Interference with S endodomain palmitoylation, 

either by engineered mutations or by pharmacologic agents, diminishes or eliminates S-

mediated membrane fusion activities (Bos et al., 1995; Chang and Gombold, 2001; 

Chang, Sheng, and Gombold, 2000; Thorp et al., 2006), but the mechanisms by which 

these endodomain alterations influence membrane fusion activities are unknown.  My 

dissertation document will address the question of how endodomains and more 

specifically how palmitoylated cysteine residues influence membrane fusion reactions 

(Shulla and Gallagher, 2009).
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CHAPTER II 

MATERIALS AND METHODS 

Materials 

Cells 

 Murine 17cl1 fibroblasts (Sturman and Takemoto, 1972) were grown in 

Dulbecco’s modified Eagle medium (DMEM) containing 5% tryptose phosphate broth 

(Difco Laboratories) and 5% heat-inactivated fetal bovine serum (FBS).  293T, FCWF 

(Pedersen et al., 1981) and HeLa-CEACAM (carcino embryonic antigen cell adhesion 

molecule isoform 1a, cell line no. 3) cells (Rao and Gallagher, 1998) were grown in 

DMEM supplemented with 10% FBS.  hACE2-293 cells, obtained from Shibo Yang 

(New York Blood Center, NY), were grown in DMEM-10% FBS supplemented with 10 

µg/ml puromycin.  All growth media were buffered with 0.01M sodium HEPES (pH 7.4). 

Plasmid DNAs 

 Unless otherwise stated, all plasmids were propagated in E. coli strain DH5α and 

purified using Qiagen Maxiprep Kit (catalog no.12662) 

• pMH54.A59 (for targeted recombination reverse genetics) was obtained from Paul 

Masters, Wadsworth Center for Laboratories and Research, NY.  This vector, ~ 13 kb in 

size, is a donor RNA transcription vector containing a 5’ genomic fragment

attached to a synthetic linker which is fused to the rest of 3’ end of the MHV-A59 

genome.  This original vector was modified (Mai Nguyen) to encode for firefly luciferase 
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positioned between E and M genes and the new pMH54-E-FL-M construct was generated 

(Boscarino et al., 2008).  

• MHV-A59 S and M cDNAs were PCR amplified using template pMH54-A59 (Kuo et 

al., 2000; Masters and Rottier, 2005) and cloned into pCAGGS.MCS (Niwa, Yamamura, 

and Miyazaki, 1991) between SacI and XmaI restriction sites.   

• Mutations in the pCAGGS-A59 S construct were created using mutagenic primers 

and a site-directed mutagenesis protocol (QuikChange® XL; catalog no. 200519-5; 

Stratagene).  The pCAGGS-A59 S C1304A and pCAGGS-A59 S C1303A/C1304A 

constructs were generated by Hillary Logan in the Gallagher lab.  I used the following 

primers to introduce the C1300A mutation in pCAGGS-S C1303A/C1304A construct: 

forward 5’-GTTTTAAGAAGGCTGGAAATGCTGCTGATGAGTATGG -3’ and 

reverse 5’-CAGCAGCATTTCCAGCCTTCTTAAAACAACATGAGCC-3’.  All 

plasmid constructs were sequenced to confirm the presence of desired mutations. 

• The S cDNAs containing C1304A, C1303A/C1304A, and C1300A/C1303A/C1304A 

were subcloned into pMH54-E-FL-M plasmid between XhoI and SbfI restriction sites 

using pCAGGS-A59 S C1304A, pCAGGS-A59 S C1303A/C1304A and pCAGGS-A59 

S C1300A/C1303A/C1304A respectively, as templates.  The same primers were used for 

all three subclonings: forward 5’-GGTGTTACTATAAGCTCGAGACTGCCAGACGG- 

3’ and reverse 5’-CTGTCTTTCCTGCAGGGGCTGTGATAGTCAATCC- 3’.  

• pcDNA3.1 SARS SC9 and pcDNA3.1 ACE2C9 plasmids were obtained from Michael 

Farzan, Harvard Medical School, Boston, MA.  Both SARS S (codon optimized version 

of strain Urbani) and ACE2 contain a C9 tag (GGTETSQVAPA) at their C-termini.  
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• pCDM8-NL63 SC9 plasmid was obtained from Hyeryun Choe, Harvard Medical 

School, Boston, MA.  NL63 S contains a C9 tag (GGTETSQVAPA) at its C-terminus.  

This plasmid required propagation in E. coli strain MC1061/P3. 

• pCDM8-NL63 SC9-cl was generated by first synthesizing a 427bp stretch of DNA at 

GenScript Corporation.  The synthetic DNA contained the mutations (NSS to RSR and 

IAG to RAR) and it was between unique restriction enzymes NotI and BstE2 sites.  The 

synthetic DNA was cut out of pUC57 using NotI and BstE2 and ligated into pCDM8-

NL63 SC9 that was already digested with NotI and BstE2.  

• The pCDM8-NL63 SC9 R199K mutant was derived from pCDM8-NL63 SC9 using 

mutagenic primers and a site-directed mutagenesis protocol. (QuikChange® XL; catalog 

no. 200519-5; Stratagene).  The following primers were used to introduce the R119K 

mutation in pCDM8-NL63 SC9 construct: forward 5’GACCACCCACAACGGCAAGGT 

 GGTGAATTACACCG 3’ and reverse 5’CGGTGTAATTCACCACCTTGCCGTTGTG 

      GGTGGTC 3’.  

• pcDNA 3.1 Ebola Zaire glycoprotein (Ebo GP) and pHEF-VSV G (VSV G) were 

obtained from Lijun Rong, University of Illinois Chicago, Chicago, IL.  

• pNL4.3-Luc R-E- was obtained from the NIH AIDS Research and Reference 

Program # 3418.   

• pRL-TK plasmid encoding renilla luciferase was purchased from Promega.  

• pCAGT7 and pT7EMC-Luc plasmids (Okuma et al., 1999) were obtained from 

Richard Longnecker, Northwestern University Feinberg School of Medicine, 

Chicago, IL.  
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• pEGFP-N1 encoding a “red-shifted” variant of wild-type GFP for brighter 

fluorescence was purchased from Clontech.  This plasmid was used routinely to 

measure transfection efficiencies in various cell types.  

• TMPRSS2 cDNA containing a C-terminal FLAG epitope tag (DYKDDDDK) was 

PCR amplified using template pCMV-Sport6- TMPRSS2 (Open Biosystems) and 

primers: forward 5’-GGAGAGCTCCACCATGGCTTTGAACTCAGGGTC-3’ and 

reverse 5’- CGACTCGAGCTACTTGTCATCGTCATCCTTGTAGTCTCCGCCG 

      TCTGCCCTCAT – 3’. Subsequently, TMPRSS2 cDNA was cloned into 

 pCAGGS.MCS between SacI and XhoI restriction sites.  

• TMPRSS11a cDNA containing a C-terminal FLAG epitope tag (DYKDDDDK) was 

PCR amplified using template pCR-BluntII-TOPO-TMPRSS11a (Open Biosystems) 

and primers: forward 5’-GGAGAATTCCACCATGATGTATCGGACAGTAGG -3’ 

and reverse 5’CGACCCGGGCTACTTGTCATCGTCATCCTTGTAGTCTCCGAT 

      GCCTGTTTTTGAAG - 3’.   Subsequently, TMPRSS11a cDNA was cloned into    

      pCAGGS.MCS between EcoRI and XmaI restriction sites.  

• TMPRSS11d cDNA containing a C-terminal FLAG epitope tag (DYKDDDDK ) was 

PCR amplified using template pCR-BluntII-TOPO-TMPRSS11d (Open Biosystems) 

and primers: forward 5’- GGAGAATTCCACCATGTATAGGCCAGCACG -3’ and 

reverse 5’CGACCCGGGCTACTTGTCATCGTCATCCTTGTAGTCTCCGATCCC 

      AGTTTGTTGC – 3’.  Subsequently, TMPRSS11d cDNA was cloned into    

     pCAGGS.MCS between EcoRI and XmaI restriction sites.  
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• The catalytically inactive, pCAGGS-TMPRSS2(S441A)FLAG mutant was derived 

from pCAGGS-TMPRSS2FLAG using mutagenic primers and a site-directed 

mutagenesis protocol. (QuikChange® XL; catalog no. 200519-5; Stratagene).  The 

following primers were used to introduce the S441A mutation in pCAGGS-

TMPRSS2FLAG construct: forward 5’ GCCAGGGTGACGCTGGAGGGCCTCTGG 

      TC 3’ and reverse 5’ GACCAGAGGCCCTCCAGCGTCACCCTGGC 3’.  

Methods 

Virus Propagation, Harvesting, Storage, and Titer 

 MHV-A59 viruses were produced in murine 17cl1 cell cultures.  Cells were 

infected when ~ 80% confluent with virus multiplicities of 0.01 to 1 plaque forming unit 

(PFU)/cell.  Viruses were adsorbed on the cells for 1 hour at 37oC in serum-free DMEM.  

Subsequently, the inoculums were replaced with complete DMEM-5% FBS and cell 

supernatants containing progeny viruses were collected 17-20 hours post-infection (hpi).  

Cellular debris was removed by centrifugation at 2000 x g for 10 minutes, and 

subsequently the viruses were aliquoted and stored at -80oC.   

 Viral infectivities were determined by standard plaque assay using 17cl1 as 

indicator cells.  Briefly, cells seeded in 6-well cluster plates at ~ 80% confluency were 

overlaid with serial dilutions of virus in serum-free DMEM. Virus was adsorbed for 1 

hour at 37oC and subsequently the inocolum removed and replaced with DMEM-2% 

FBS, 0.5% Noble Agar.  Following incubation for 2-3 days, the cells were fixed in 37% 

w/w formaldehyde solution in saline for a minimum of 1 hour. Agar plugs were removed 
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by extensive rinsing and cells stained with 0.1% crystal violet in saline for a minimum of 

30 minutes.  Following rinsing of the crystal violet, individual plaques were counted. 

When viruses required plaque purification, following the 2-3 incubation, individual 

plaques were picked by punching out the agar plugs with a sterile pipette p200 tip and 

diluting the agar in 1 mL of DMEM-10% FBS.  

Generation of Recombinant Viruses 

 Recombinant (r) MHVs were created via targeted RNA recombination (Kuo et al., 

2000).  Mutations in the pMH54-E-FL-M construct (Boscarino et al., 2008) were created 

using site directed mutagenesis, as described above.  The plasmid DNAs were linearized 

by digestion with PacI enzyme and used as templates for in vitro transcription reactions 

using T7 RNA polymerase and reagents from Ambion (mMESSAGE mMACHINE®; 

catalog no. AM1344).  Transcripts were electroporated into ~107 feline FCWF cells that 

were infected 4 h earlier with recombinant coronavirus feline MHV-A59 (Kuo et al., 

2000) using a Bio-Rad Gene Pulser II. The electroporated FCWF cells were added to a 

monolayer of ~106 17cl1 cells.  Recombinant viruses, identified by syncytia development 

on 17cl1 cells, were then collected from media and isolated by three cycles of plaque 

purification on 17cl1 cells.   

Sequencing of recombinant viruses 

 Mutations fixed into the rMHVs were confirmed by reverse transcription PCR 

and sequencing.  Briefly, cytoplasmic RNA was harvested from infected 17cl1 cells at 20 

h post-infection, using an RNeasy Mini Kit (Qiagen; catalog no. 7414).  Then, reverse 

transcription of the RNA was performed using the Ambion retroscript kit (catalog no. 



 

 

47 
 

 

AM1710) and oligo(dT) primers.  PCR amplification of a 380 bp fragment spanning the 

intended site-directed mutations was performed using the following primers: forward 

5’GAATCAAGACGTCTATTGCGCC 3’ and reverse 5’CTGTCTTTCCTGCAGGGGC 

TGTGATAGTCAATCC 3’. The PCR fragment was subsequently sequenced to confirm 

mutations.  

Radiolabeling and Virus Purification 

 Viruses were adsorbed to 17cl1 cells at a multiplicity of infection of 1 PFU/cell 

for 1 h at 37oC in serum-free DMEM, then aspirated and replaced with DMEM 

supplemented with 5% FBS.  At 12 hpi, media were removed and cells rinsed extensively 

with saline (0.9% NaCl).  For radiolabeling with 35S amino acids, cells were first 

incubated for 30 min at 37oC in labeling medium (methionine- and cysteine-free DMEM 

containing 1% dialyzed FBS).  The cells were then replenished with labeling medium 

containing 60 µCi per ml 35S translabel (MP Biomedicals, Irvine, CA) and incubated for 

4 h at 37oC.  Media collected from infected cell cultures were centrifuged for 10 min at 

2,000 x g, then for 20 min at 20,000 x g and then overlaid on top of discontinuous 

sucrose gradients consisting of 5 ml 30% and 2 ml 50% (wt/wt) sucrose in HNB buffer 

(50mM HEPES [pH 7.4], 100mM NaCl, 0.01% BSA).  Virions were equilibrated at the 

30%-50% sucrose interface, using a Beckman Spinco SW41 rotor at 40,000 rpm for 2 h 

at 4oC, and recovered by fractionation from air-gradient interfaces. 

Determination of Virus Specific Infectivity 

 35S-radiolabeled viruses were purified and banded between 30%-50% sucrose as 

described above.  Following centrifugation, I collected 1 ml fractions starting from the 
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air-liquid interface.  30 µL from each fraction was evaluated biochemically by SDS-

PAGE followed by autoradiography.  Briefly, following electrophoresis of proteins 

present in each fraction, the SDS gel was fixed in fixing solution (10% glacial acetic acid, 

25% methyl alcohol) for 1 h at room temperature.  The fixed gel was allowed to dry 

before exposing to blue ultra autorad film (BioExpress F-9029).  Typically 2 days at  

-80oC were allowed for film exposure.  To determine the amount of radioactivity in each 

fraction, 4 µl from each fraction was subjected to scintillation counting.  The fraction 

containing the highest counts per minute (CPM) and the highest amount of viral proteins, 

was selected to be tittered on 17cl1 cells, as described above.  Virus specific infectivity 

was determined as the ratio of plaque forming units (PFU) to CPM.  

Generation of Viral-Like Particles 

 To produce viral-like particles (VLPs), 293T cells were co-transfected via 

calcium phosphate (Graham and van der Eb, 1973; Wigler et al., 1978) with equal DNA 

amounts of pCAGGS-A59 M, pCAGGS-A59 E, pCAGGS-A59 S, and pCAGGS-A59 N 

constructs.  At 40 h post-transfection, the media above cells were collected and subjected 

to centrifugation at 2000 x g for 10 minutes to remove cellular debris. To concentrate 

VLPs for biochemical analysis, the media were overlaid on top of a 30% sucrose cushion 

in HNB buffer and centrifuged at 70,000 rpm for 20 min at 4oC using a TLA 100.3 rotor.  

Pelleted particles were resuspended in electrophoresis sample buffer and processed by 

immunoblotting as described below.  MHV-A59 S proteins were detected with murine 

monoclonal antibody (MAb) 10G (Grosse and Siddell, 1994) (1:2000 in TBS-T).  MHV-
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A59 M proteins were detected with murine MAb J.3.1 (Fleming et al., 1983) (1:500 in 

TBS-T).  MHV-A59 N proteins were detected with murine MAb J1.3 (1:300 in TBS-T). 

Immunoprecipitations and Immunoblotting 

 To evaluate S-M associations, 293T cells were co-transfected via calcium 

phosphate with pCAGGS-M and pCAGGS-S constructs. At 40 h post-transfection the 

cell monolayers were lysed in HNB buffer containing 0.5% NP-40, 0.5% sodium 

deoxycholate (DOC) and 0.1% protease inhibitor (Sigma P2714).  Cell lysates were first 

clarified by centrifugation at 2,000 x g for 5 min then 160’000 cell equivalents were 

mixed with 0.01 ml of 1 mg/ml N-CEACAM-Fc (Gallagher, 1997) and 0.06 ml protein G 

magnetic beads (NEB Corporation, Inc.) for 2 h at 25oC.  Beads were rinsed three times 

with HNB buffer containing 0.5% NP-40, 0.5% sodium deoxycholate (DOC).  Proteins 

were eluted from beads by addition of electrophoresis sample buffer (0.125 M Tris [pH 

6.8], 10% dithiothreitol, 2% sodium dodecyl sulfate [SDS], 10% sucrose, 0.004% 

bromophenol blue) and heating to 95oC for 5 min and subsequently subjected to SDS-

polyacrylamide gel electrophoresis (SDS-PAGE).  SDS gels were transferred to 

polyvinylidene difluoride membranes that were subsequently blocked for 1 h with 5% 

nonfat milk powder in TBS-T (25mM Tris-HCl [pH 7.5], 140mM NaCl, 2.7 mM KCl, 

0.05% Tween 20).  MHV-A59 S proteins were detected with murine monoclonal 

antibody (MAb) 10G (Grosse and Siddell, 1994) (1:2000 in TBS-T).  MHV-A59 M 

proteins were detected with murine MAb J.3.1 (Fleming et al., 1983) (1:500 in TBS-T).   

 To evaluate ACE2-TMPRSS2 associations, 293T cells were co-transfected via 

calcium phosphate with pcDNA3.1-ACE2C9, pcDNA3.1 empty vector, pCAGGS.MCS 
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empty vector, pCAGGS-TMPRSS2FLAG, and pCAGGS-TMPRSS2(S441A)FLAG in the 

indicated combinations. At 35 h post-transfection the cell monolayers were lysed in HNB 

buffer containing 0.5% NP-40, 0.5% DOC and 0.1% protease inhibitor (Sigma P2714).  

Cell lysates were first clarified by centrifugation at 2,000 x g for 5 min then 150’000 cell 

equivalents were mixed with either 0.9 µg anti-FLAG antibody (Sigma, catalog no. 

F7425), 0.9 µg 1D4 antibody, or 0.9 µg mouse IgG and 0.06 ml protein G magnetic 

beads (NEB Corporation, Inc.) for 14 h at 4oC.  Beads were rinsed three times with HNB 

buffer containing 0.5% NP-40, 0.5% DOC.  Proteins were eluted from beads by addition 

of electrophoresis sample buffer and heating at 95oC for 5 min.  ACE2C9 proteins were 

detected with 1D4 antibody (1:5000 in TBS-T).  TMPRSS2FLAG and 

TMPRSS2(S441A)FLAG proteins were detected with rabbit anti-FLAG antibody (1:1000 

in TBS-T). 

Pseudotyped Virions and Transductions 

 To generate pseudotyped HIV particles, 293T cells were co-transfected via 

calcium phosphate (Graham and van der Eb, 1973; Wigler et al., 1978) with pNL4.3-Luc 

R-E- (NIH AIDS Research and Reference Program # 3418) and the various envelope 

constructs. For a 10 cm dish containing ~ 6 x 106 cells, 5 µg of pNL4.3-Luc R-E and 5 µg 

of plasmid encoding the spike of interest were used.  When producing HIV-bald particles, 

5 µg of pCAGGS.MCS was used in place of spike encoding vector.  After 2 days, media 

were collected, clarified for 10 min at 2,000 x g, then overlaid on top of a 30% sucrose 

cushion in HNB buffer and centrifuged at 40,000 rpm for 2 h at 4oC using a Beckman 

SW41 rotor.  Pelleted particles were resuspended in HNB buffer and stored at -80oC.  
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Alternatively, the media containing pseudoparticles were collected, clarified for 10 min at 

2,000 x g, and then stored at -20oC.   

 For biochemical analysis, pelleted HIV pseudoparticles were resuspended in 

electrophoresis sample buffer and processed by immunoblotting as described above.  

MHV-A59 S proteins were detected with murine monoclonal antibody (MAb) 10G 

(Grosse and Siddell, 1994) (1:2000 in TBS-T).  SARS-CoV S and HCoV-NL63 S 

proteins were detected using anti-C9 tag (1D4) antibody (1:5000 in TBST-T) obtained 

from Hyeryun Choe, Harvard Medical School, MA   HIV capsid protein (p24) was 

detected with murine MAb α-p24 (NIH AIDS Research and Reference Program) (1:5000 

in TBS-T).   

 For transductions, HIV particles, normalized to p24 levels, were adsorbed to 

HeLa-CEACAM cells in serum-free DMEM for 2 h.  Subsequently, the inoculum was 

removed and replaced with DMEM supplemented with 10% FBS.  At 2 d post-

transduction, the cells were rinsed with saline and dissolved in luciferase lysis buffer 

(Promega E397A).  Luminescence was measured upon addition of luciferase substrate 

(Promega E1501) using a Veritas microplate luminometer (Turner BioSystems). In other 

experiments, HIV particles were concentrated into 293T cells by centrifugation at 1600 x 

g for 2 h at 25oC, a process known as spinoculation.  Subsequently, the inoculum was 

removed and replaced with DMEM supplemented with 10% FBS.  Luminescence was 

assayed as described above.  
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Protease Digestion Assay 

 For the protease digestion assay (Matsuyama and Taguchi, 2002), 104 PFU of 

rA59 coronavirus in 20 µL  DMEM supplemented with 5% FBS or HIV pseudoparticles 

in 20 µL HNB buffer, were incubated with N-CEACAM-Fc (2µM) for various times at 

37oC. After samples were placed on ice for 10 min, proteinase K (Sigma) was added at a 

final concentration of 10 µg/ml and digestion was carried out at 4oC for 20 min. 

Reactions were terminated by addition of electrophoresis sample buffer and subjected to 

SDS-PAGE and immunoblotting as described above. 

Cell-Cell Fusion Assay 

 Cell-cell fusion was performed as described previously (McShane and 

Longnecker, 2005). Briefly, effector cells (HeLa) were transiently transfected with 

pCAG-T7 polymerase and the various pCAGGS-S constructs using Lipofectamine 2000 

reagent (Invitrogen).  Target cells were generated by Lipofectamine-transfection of 

HeLa-CEACAM cells with pT7pro-EMC-luc which encodes firefly luciferase under T7 

promoter control (Aoki et al., 1998).  At ~6 h post-transfection the target cells were 

quickly trypsinized and added to adherent effector cells in a 1:1 effector: target cell ratio.  

After a ~4 h co-cultivation period, luciferase levels were quantified as described above.   

 In other experiments, effector cells (293T) were transiently transfected with 

pCAG-T7 pol and pcDNA3.1-SARS S via calcium phosphate. Target cells were 

generated by co-transfection of 293T cells with pT7EMC-luc which encodes firefly 

luciferase under T7 promoter control, pcDNA3.1-ACE2C9 and pCAGGS-TMPRSS2FLAG.  

At ~24 h post-transfection the target cells were quickly trypsinized and added to adherent 
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effector cells in a 1:1 effector: target cell ratio. After a ~3 h co-cultivation period, 

luciferase was read as described above.  

Transductions in the Presence of HR2 Peptides 

 The HR2 peptide (NVTFLDLTYEMNRIWDAIKKLNESYINLKE) was 

synthesized from GenScript Corporation at a 90.0% purity. The lyophilized powder was 

dissolved in ddH2O to a final 2mM concentration and stored at -20oC.  In our 

experiments, the stock HR2 peptide was diluted to a final concentration of 25 µM in 

serum-free DMEM. 

Drug Treatments during Transductions 

 Target 293T cells seeded in 6-well plates were co-transfected with pcDNA3.1-

ACE2C9 and pRL-TK along with pCAGGS-TMPRSS2FLAG  or pCAGGS.MCS via 

calcium phosphate.  Two days post-transfection the cells were incubated with 

Bafilomycin A1 (Sigma) at 300 nM or NH4Cl (Sigma) at 25 mM concentrations in 

complete DMEM media for 1 hour at 37oC.  Parallel cultures were incubated in DMSO 

and water, the vehicle controls for stock Bafilomycin A1 and NH4Cl, respectively.  After 

the 1 hour incubation, HIV-SARS S particles in complete media were spinoculated onto 

the target cells in presence of endosomotropic agents.  Following spinoculation, the cells 

were incubated at 37oC for another 27 h until lysis and evaluation of both renilla and 

firefly luciferase accumulations (E1910, Promega). 

Integrin β1 siRNA Knockdown 

 The integrin β1 custom siRNA with the following sequence: sense strand (GCG 

CAUAUCUGGAAAUUUGtt) and antisense strand (CAAAUUUCCAGAUAUGCGC 
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tt) was purchased from Ambion (catalog no. AM16100).  I resuspended the individual 

siRNAs (sense and antisense) in nuclease free water and annealed the two strands 

together to a final siRNA concentration of 20 µM.  The negative control non-target 

siRNA (50 µM) was also purchased from Ambion (catalog no. AM4642).  To transfect 

siRNA duplexes into cells, I used Lipofectamine RNAiMax reagent (Invitrogen, catalog 

no. 13778) following Invitrogen’s guidelines.  A final RNAi concentration of 10 nM was 

used for each transfection.  The efficiency of RNAi knockdown was evaluated by 

immunoblotting with anti-integrin β1 monoclonal antibody (MAb 1965, Millipore) at 

1:1000 in TBS-T. 

Immunofluorescence Microscopy 

 Immunofluorescence microscopy was performed by Taylor Heald-Sargent as 

described below.  293T cells seeded onto fibronectin coated coverslips were co-

transfected via Polyethylenimine (PEI) with a constant amount of pcDNA3.1-ACE2C9 

and varying doses of pCAGGS-TMPRSS2FLAG.  At 24 hours post-transfection the cells 

were fixed with 3.7% formaldehyde (Polysciences) in 0.1 M PIPES [piperazine –N,N’-

bis(2-ethanesulfonic acid)], pH 6.8.  Following blocking with 10% donkey serum the 

coverslips were incubated with primary antibodies in PBS containing donkey serum.  

Cell surface ACE2 was detected using SARS-RBDFc while TMPRSS2 was detected 

using rabbit anti-FLAG antibody (Sigma, catalog no. F1804).  The SARS-RBDFc protein 

contained a 15 amino acid CD5 signal sequence and residues 318 to 510 of SARS spike 

in a modified pCEP4 vector.  SARS-RBDFc protein was produced in 293-EBNA cells, 

harvested in serum free media, and purified using protein A sepharose beads (GE 
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Healthcare).  After thorough washing in PBS the coverslips were incubated with 

secondary antibodies goat anti-human conjugated to AlexaFluor488 (Molecular Probes) 

and goat anti-mouse conjugated to Cy5 (Jackson Immunoresearch).  Nuclei were 

visualized with DAPI stain (Invitrogen).  Coverslips were mounted on slides with Fluoro-

Gel (EMS) and visualized using a Deltavision deconvolution microscope.  

SARS-CoV Infections 

 For authentic SARS virus infections 293T cells were transfected in duplicate via 

calcium phosphate with pcDNA3.1-ACE2C9 and each of the indicated pCAGGS-

TTSPFLAG plasmids. At 20 hours post-transfection cells were infected with HCoV-SARS 

(Urbani) at a multiplicity of infection of 0.1. Subsequently, at 6 hpi one set of infected 

samples was dissolved in Trizol (Invitrogen) and total cellular RNA was harvested. 

SARS CoV N and human GAPDH-gene specific RNAs were quantified by real-time 

PCR using an ABI Prism7700 thermocycler and software.  The following primers were 

used: for SARS-CoV nucleocapsid (N) gene, forward primer 5'ATATTAGGTTTTTACC 

CAGG-3' and reverse primer 5'-CTTGCCCCATTGCGTCCTCC-3'; for human GAPDH 

gene, forward primer 5’- CCACTCCTCCACCTTTGAC-3’ and reverse primer 5’-ACCC 

TGTTGCTGTAGCCA-3’.  The levels of SARS N gene amplicons were normalized to 

that of GAPDH amplicons.  The other set of infected cell cultures were harvested at 24 

hpi and protein lysates in electrophoresis sample buffer were evaluated by western 

blotting for SARS N using rabbit anti-SARS N antibody (Imgenex, IMG-549), SARS S 

using anti-SARS S antibody (Imgenex, IMG-541) and mouse anti-beta actin antibody 
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(Sigma).  All work with infectious SARS-CoV was performed in a BSL3 laboratory at 

the University of Iowa. 

Preparation, Isolation and Detection of DRMs 

 293T cells were transiently transfected via PEI with pCDNA3.1-ACE2C9 (8 µg/7 

x 106 cells) and pCAGGS-TMPRSS2FLAG (4 µg/7x106 cells).  At 27 hours post-

transfection the cells were incubated with 2 ml of media containing HIV-SARS S or 

HIV-bald particles for 1 h at 37oC.  Subsequently the cells were thoroughly rinsed with 

ice-cold PBS and chilled to 4oC.  To biotinylate surface proteins, the cells were incubated 

with Sulfo-NHS-LC-Biotin (Pierce Cat no. 21335) (1mg/ml in PBS), a membrane 

impermeable reagent with a spacer arm of 22.4 Å.  Following rinsing twice in ice-cold 

PBS, the cells were lysed in 1 ml of cold TNE (50 mM Tris-HCl [pH 7.4], 100 mM NaCl, 

1 mM EDTA) containing 0.2% Triton X-100 for 30 min at 4oC.  Cell extracts were 

passed five times through a 27-gauge needle and subsequently pelleted (700 x g for 5 

min).  Postnuclear supernatants were mixed with equal volumes of 80% w/v sucrose in 

TNE-0.2% TX-100 containing protease inhibitors.  Samples were placed into Beckman 

SW41 ultracentrifuge tubes, overlaid sequentially with 7 ml of 30% w/v and 2.5 ml of 

5% w/v sucrose in TNE-0.2% TX-100. Following centrifugation at 4oC for 17 h at 

32’000 x rpm in a Beckman SW41 rotor, 1.3 ml fractions were taken starting from the 

air-liquid interface.  Fractions 3, 4, 8 and 9 were incubated with 10 µl Streptavidin 

magnetic beads in the presence of protease inhibitors for 8 h at 4oC.  Following three 

washes with HN buffer containing 0.5% NP-40 and 0.5% DOC, the biotinylated proteins 

were eluted off beads by addition of electrophoresis loading buffer and heating at 95oC 



 

 

57 
 

 

for 5 min.  ACE2C9 proteins were detected with 1D4 antibody (1:5000 in TBS-T). 

TMPRSS2FLAG proteins were detected with rabbit anti-FLAG antibody (1:1000 in TBS-

T). 

Use of Cholera Toxin as a Marker for Lipid Rafts 

 The cholera toxin subunit B peroxidase conjugate (CTB-HRP) (Sigma C3741) 

was used as a marker of lipid rafts, since it is known to bind to ganglioside GM1, a 

known resident of lipid raft membrane domains.  Prior to lysing in cold detergent, the 

cells were incubated with 580 µg conjugate of CTB-HRP in PBS for 1 h at 4oC. 

Subsequently the cells were rinsed with ice-cold PBS and subjected to lysing and further 

processing as described above.  To detect CTB-HRP, I spotted 3 µl from each fraction 

into nitrocellulose membrane, rinsed the membrane with PBS and after addition of 

chemiluminescence reagents, the membrane was exposed to film.  

Silver Staining of Lipid Raft Gradient Fractions 

 Analysis of the protein content in each fraction was done by silver staining 

(Pierce, catalog no. 24612).  Briefly, after ~ 1/100 of each fraction was subjected to SDS-

PAGE, the gel was rinsed in water and subsequently fixed in 30% ethanol/10% acetic 

acid for 30 min.  Following two washes in 10% ethanol and incubation in sensitizer 

solution, the gel was silver stained for 30 minutes.  Subsequently, the gel was developed 

and once the protein bands were distinct, the reaction was stopped using 5% acetic acid 

solution.
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CHAPTER III 

RESULTS 

Spike Protein Palmitoylations as Virus Entry Factors 

 While the current view of viral protein-mediated membrane fusion is satisfying in 

many ways, important details are missing.  For example, the importance of the TM and 

endodomain (ENDO) portions of the surface proteins demand more prominent attention 

in the membrane fusion models.  Because these TM and ENDO regions are not 

structurally resolved, it can be difficult to accurately add them into the models.  However, 

abundant literature indicates that TM-ENDO portions of many different virus fusion 

proteins do operate to control virus-cell and cell-cell fusion (Abrahamyan et al., 2005; 

Cathomen, Naim, and Cattaneo, 1998; Langosch, Hofmann, and Ungermann, 2007; 

Sakai, Ohuchi, and Ohuchi, 2002).  For example, an influenza hemagglutinin fusion 

protein with a glycosylphosphatidylinositol (GPI) anchor replacing its TM-ENDO 

domains was able to mediate outer membrane leaflet fusions, i.e., hemifusion, but could 

not create full membrane fusions (Kemble, Danieli, and White, 1994).  Moreover, the 

animal retrovirus envelope proteins contain long ENDO domains that include the “R 

peptides” that, once removed by proteolysis, facilitate the fusion reaction (Green et al., 

1981; Yang and Compans, 1996).  Furthermore, truncation of the human 

immunodeficiency virus (HIV) envelope ENDO tail modulates its fusogenicity (Wyss et 

al., 2005).  Finally, it is notable that many viral fusion protein ectodomain fragments 
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lacking TM and ENDO domains fold spontaneously into post-fusion states (Markosyan, 

Cohen, and Melikyan, 2003; Yin et al., 2005), suggesting that membrane-anchoring parts 

help maintain functional metastable high-energy conformations. 

 It is not entirely clear how the intra-virion parts of the fusion protein influence 

reactions that are carried out by the much larger exterior portion of the protein.  We and 

others consider it plausible that changes in the fusion protein endodomain impact 

refolding rates, which in turn control the route and timing of virus entry.  This is because 

the transitions from pre-hairpin intermediate to post-fusion states requires large-scale 

transit of TM-ENDO domains across lipid stalks (Chernomordik and Kozlov, 2003) (see 

also Fig. 1 in INTRODUCTION), which may be a rate-limiting step in the process.   

 Coronaviruses provide a good model in which one can study the relationship 

between endodomain changes and fusion reaction kinetics.  The spike protein 

endodomains are rich in cysteine residues, most or all of which are known to be stably 

thioacylated with palmitic acids (Bos et al., 1995; Chang, Sheng, and Gombold, 2000; 

Petit et al., 2007; Thorp et al., 2006).  Interference with S endodomain palmitoylation 

diminishes or eliminates S-mediated membrane fusion activities (Bos et al., 1995; Chang 

and Gombold, 2001; Chang, Sheng, and Gombold, 2000; Thorp et al., 2006), but the 

mechanisms by which these endodomain alterations influence membrane fusion activities 

are unknown.  In my dissertation research, I explored the mechanistic basis for these 

observations and further discovered that the endodomain cysteines and palmitoylations 

also influence S incorporation into virions.  I will first describe the effect of endodomain 

cysteines on S incorporation into coronavirus particles. 
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Effect of Endodomain Mutations on S Incorporation into Virions 

 The MHV strain A59 S protein has nine cytoplasmic (endodomain) cysteines 

(Fig. 4).  We mutated those cysteines most distal from the transmembrane span, the 

carboxy-terminal C1300, C1303 and C1304, to alanines, with the expectation that these 

changes would prevent S palmitoylation at these positions and thus untether the ends of 

the S tails from cytosolic membrane faces (Fig. 9).   

 

   

  

 

 

 

 

 
 

 

 

 

 

 

Fig. 9. Schematic Representation of the MHV-A59 S protein. The spike (S) trimer is 
depicted as peripheral S1 and integral-membrane S2 subunits.  The S2 subunits are drawn 
in the context of a virion membrane and in association with membrane (M) proteins.  
Endodomain mutations preventing S acylation are illustrated on one S2 monomer.  Loss 
of palmitoylation (black lines) and the hypothetical untethering of cytoplasmic tails from 
intravirion membrane leaflets are depicted by the dotted lines.    
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 We discerned the functional consequences of these changes by first using our 

established corona virus-like particle (VLP) system (Boscarino et al., 2008).  In this 

experimental design, 293T cells were co-transfected with pCAGGS plasmids encoding S, 

E, M and N proteins and subsequently radiolabeled with 35S cysteine and 35S methionine. 

Secreted 35S-labeled VLPs were harvested from culture media, purified by density 

gradient ultracentrifugation and evaluated for radioactive protein content by SDS-PAGE 

and autoradiography.   

 

 

 

 

 

 

 

 

Fig. 10.  Effect of S endodomain cysteine mutations on VLP incorporation.  VLPs 
were metabolically radiolabeled with 35S amino acids and purified by sucrose density 
gradient ultracentrifugation.  Equal 35S radioactivities were collected from each purified 
VLP preparation, electrophoresed on 10% SDS gel, and detected by autoradiography.  S 
agg, S aggregates; S unc, uncleaved S; N, nucleocapsid protein; M, membrane protein.  
Molecular weights are shown in kilodaltons. 
   

  

 Our results (Fig. 10) reveal that substitution of endodomain cysteines with 

alanines reduced the levels of S incorporation into VLPs.  Relative to standard VLPs, 
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those with C1304A (1C-A), C1303A/C1304A (2C-A) and C1300A/C1303A/C1304A 

(3C-A) had <5%, ~50%, and ~80% fewer spikes, respectively.  No VLPs were assembled 

in the absence of M protein given that coronavirus assembly is fully dependent on M 

proteins (de Haan et al., 1998).  On the contrary, normal levels of VLPs were synthesized 

in the absence of S protein, concurrent with the view that S protein is dispensable for 

assembly (Holmes, Doller, and Sturman, 1981; Rottier, Horzinek, and van der Zeijst, 

1981).  

  

 

 

 

 

 

 

  

 

 

 

Fig. 11. Generation of Recombinant Reporter Viruses. This technique takes advantage 
of the high rate of homologous recombination by coronaviruses. The synthetic donor 
RNA containing the firefly luciferase (FL) gene was introduced into cells that were 
infected with the parent virus, fMHV. fMHV is a variant MHV virus in which the spike 
(S) is replaced by the FIPV S, so that the virus has lost the ability to grow in murine cells. 
Recombinant viruses containing the FL gene also reacquire the MHV S and thus can be 
selected by their ability to grow in murine cells. 
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 Next, we wanted to assess whether endodomain mutant virions were depleted in S 

proteins, in accordance with the findings from VLPs.  To this end, we used targeted RNA 

recombination to direct mutations into the MHV genome, thus creating a series of 

recombinant (r) MHV viruses harboring cysteine-to-alanine substitutions.  The parent 

virus we used is a recombinant MHV- A59 strain engineered to produce firefly luciferase 

(FL) identical to that developed by de Haan and others (de Haan et al., 2003) (Fig. 11).  

 Biochemical evaluation of the newly generated recombinant viruses involved 

[35S] radiolabeling of infected 17cl1 cell monolayers.  [35S]-virions were harvested from 

culture media, purified by density gradient ultracentrifugation, and evaluated for 

radioactive protein content by SDS-PAGE and autoradiography.  Fig. 12 depicts the 

virion proteins associated with wild-type (WT) rA59 in comparison with C1304A (1C-A) 

and C1303A/C1304A (2C-A) rA59.  The single mutant C1304A (1C-A) recombinant 

virions were indistinguishable from WT rA59 in these electrophoretic analyses (Fig. 

12A).  The 2C-A mutant virions were noticeably depleted in S protein content (11-fold 

relative to WT), as depicted in Fig. 12B.  The triple mutant C1300A/C1303A/C1304A 

(3C-A) recombinant viruses were never isolated despite several attempts, suggesting that 

a threshold of spike density is required for virus viability.   

 An explanation for the reduced incorporation of endodomain mutant spikes into 

virions appeals to disruption of S protein interaction with M proteins, the M proteins 

being the key orchestrating agents in the virion assembly process (de Haan et al., 1999; 

Masters et al., 2006).  Thus, we co-expressed the various spike constructs individually 

with M protein in 293T cells and subsequently dissolved cell monolayers in a buffer 
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containing both NP-40 and sodium deoxycholate, a detergent formulation known to 

preserve association between S and M proteins (Opstelten et al., 1995).  S-M complexes 

were captured using the S-binding immunoadhesin N-CEACAM-Fc (Gallagher, 1997) 

and magnetic protein G beads.  Eluted proteins were detected by Western blot using anti-

S and anti-M antibodies and the results (Fig. 13) revealed that the poor incorporation of 

endodomain mutant spikes into recombinant virions correlated with their failure to 

efficiently associate with M proteins.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.   Effect of S Endodomain Cysteine Mutations on Virion Incorporation.  
Recombinant virions were metabolically radiolabeled with 35S amino acids and purified 
by sucrose density gradient ultracentrifugation.  Equal 35S radioactivities were collected 
from each purified virion preparation, electrophoresed on SDS gels, and detected by 
autoradiography.  S agg, S aggregates; S unc, uncleaved S; N, nucleocapsid protein; M, 
membrane protein.  Molecular weights are shown in kilodaltons. 
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Fig. 13.  Effect of S Endodomain Cysteine Mutations on Association with M 

Proteins.  293T cells co-expressing the indicated S constructs with M proteins were 
dissolved in NP-40/DOC buffer and S-M complexes were captured using an MHV 
soluble receptor immunoadhesin (nCEACAM-Fc) bound to magnetic protein G beads. 
Eluted proteins were detected by Western immunoblotting using S- and M-specific 
MAbs. S agg, S aggregates; S unc, uncleaved S. Molecular weights are shown in 
kilodaltons. 

 

 

 Further characterization of the recombinant viruses revealed that they had reduced 

specific infectivities (Table 4).  Recombinant viruses with double, but not single, cysteine 

substitutions displayed significantly reduced specific infectivities, which could be 

attributed to the low abundance of S proteins on mutant virions, intrinsic defects on S 

protein fusogenic activity, or a combination of the two.   

 The reduced specific infectivities of the double cysteine mutant recombinant 

viruses correlated with their delayed entry kinetics into 17cl1 cells.  We first assessed the 

entry kinetics of WT and 2C-A rA59 viruses by an endpoint dilution assay (Fig. 14A).  

Briefly, WT and 2C-A rA59 viruses at equal multiplicities of infection were bound to 
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17cl1 cells.  Following removal of the unbound virus population, fresh culture media 

were added onto the cell monolayers and bound virus infections were allowed to proceed. 

 

 

 

 

 

 

 

 

 

 

Table 4. Specific Infectivities of rA59 Viruses. Relative specific infectivities were 
determined for the indicated rA59 viruses by performing endpoint dilution plaque assays 
and relating infectivities to the 35S content of the purified virion preparations. * not 
recoverable.  

 

 

At different times post-infection, the media containing newly assembled virions were 

collected and titered onto 17cl1 cells.  Despite the fact that the 2C-A mutant viruses 

bound to target cells with the same efficiency as WT rA59 viruses, they were unable to 

yield progeny virions in a timely fashion (Fig 14A).  These data suggested that a post-

binding entry event was delayed for 2C-A virions.   
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Fig. 14.  Entry Kinetics of rA59 Viruses.  A. The entry kinetics of rA59 (WT) and (2C-
A) viruses was evaluated by assessing virus elution profiles.  Briefly, virus particles were 
allowed to bind to 17cl1 cells for 1 hour at 4oC.  Subsequently media containing unbound 
particles were removed and replaced with fresh media.  At each time point the media 
containing newly released virions were collected and titered on fresh 17cl1 cells.  B. The 
entry kinetics of rA59 (WT) and (2C-A) viruses was evaluated by measuring the 
accumulation of the luciferase reporter gene product that comes from a viral subgenomic 
RNA. At various times post infection the cells are lysed and luciferase activity is 
measured.  
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 We also evaluated entry of WT and 2C-A rA59 viruses by a method that monitors 

viral RNA replication as early as 4 hours post-infection.  Viral RNA replication was 

determined by measuring the accumulation of a luciferase reporter gene product, which is 

part of the recombinant virus genome (Fig. 11), at different times post-infection.  The 

data revealed that the double cysteine mutant viruses were delayed in their entry kinetics 

compared to wild-type viruses despite equal input multiplicities (Fig. 14B). 

Effect of Endodomain Mutations on S-Mediated Membrane Fusion 

 To investigate the role of endodomain cysteines on the membrane fusion reaction, 

we first performed cell-cell fusion assays.  To this end, cells transfected with various 

pCAGGS-spike constructs were co-cultivated with target cells containing murine 

CEACAMs, the primary MHV receptors.  Spike-bearing cells contained phage T7 

polymerase and CEACAM cells harbored luciferase genes whose transcription required 

the T7 polymerases, making it so that luciferase enzyme activities increased in response 

to spike-induced cell-cell fusions.  From these assays, we found that all spikes induced 

similar luciferase accumulations (Fig. 15).  Thus, at least within a 4 h cell co-cultivation 

period, the various endodomain mutant spikes were equivalent in cell-cell fusion 

activities.   

 An inference from the results of cell-cell fusion assays is that the various spike 

proteins accumulate equivalently on cell surfaces.  If so, then the spike proteins might 

incorporate equivalently onto HIV virus cores budding from plasma membrane sites 

(Cadd, Skoging, and Liljestrom, 1997), making HIV-coronavirus S pseudoparticles 

appropriate for virus-cell fusion assays.  Such HIV-S pseudoviruses could replace 
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authentic rA59 coronaviruses for use in virus-cell fusion assays, the rA59 viruses being 

unsuitable for correlating endodomain changes with virus-cell fusion because of the 

confounding effect that these endodomain changes have on assembly of spikes into 

virions (Fig. 12).   

 

  

 

 

 

 

 

 

 

Fig. 15. Analysis of Coronavirus S-mediated Cell-Cell Fusion.  The indicated S 
proteins were evaluated using assays involving luciferase reporter gene expressions as 
readouts of cell-cell fusion.  Luciferase readings made 4 h after co-cultivation with fusion 
targets are plotted as fold change in fusion over the negative control lacking spike 
proteins.    
 

 

 HIV-CoV S pseudotype virions were produced by co-transfecting 293 cells with 

an envelope deficient HIV vector (pNL4-3-Luc-R-E) along with pCAGGS-S constructs. 

Released pseudoparticles were harvested from culture media, purified by sucrose gradient 

ultracentrifugation, and subjected to SDS-PAGE.  The data (Fig. 16A) revealed that WT 

and endodomain mutant spikes did indeed incorporate into HIV particles with equal 
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efficiencies.  However, when the HIV – S particles were used to transduce CEACAM 

receptor-bearing target cells, the single (1C-A) double (2C-A) and triple (3C-A) cysteine 

mutants were about 2, 20 and 40 times less efficient at delivering the HIV cores into 

cells, as measured by a luciferase reporter that is part of the recombinant HIV genome 

(Fig. 16B).  These data indicate that endodomain cysteines, and most likely their 

palmitate adducts, are specifically needed to facilitate effective virus-cell fusion.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Analysis of Coronavirus S-mediated Transduction Potentials. A. 

Pseudotyped HIV particles were produced in 293T cells by co-transfection of plasmid 
DNAs encoding the indicatesd spikes together with the HIV vector (pNL4.3-Luc R-E-). 
Released particles were harvested from culture media and concentrated by pelleting 
through 30% sucrose. Proteins present in cell lysates and in virion particles were detected 
by immunoblotting using S- and p24-specific MAbs. B. HIV particles normalized to p24 
content were used to transduce HeLa-CEACAM cells. Two days post-transduction, the 
cells were lysed and luciferase activities assayed as described in Materials and Methods. 
*, p<0.05; **, p<0.002 (Student’s t-test for independent samples). 
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 I decided to investigate the mechanism by which these endodomain mutations 

suppressed virus entry.  One possibility is that S-mediated entry was impaired because 

endodomain mutations reduced the affinity of S ectodomains for CEACAM receptors.  

To address this speculation, I produced highly-purified [35S] WT and 2C-A rA59 virions 

and assessed their immunoprecipitation with N-CEACAM-Fc.  In 1 h, 4oC incubation 

periods, the 35S radioactivities that were captured varied by <10% between WT and 2C-A 

virions.  Furthermore, I observed no significant differences in the association of [35S]-

labeled WT and nC-A pseudovirions to CEACAM-bearing host cells (data not shown).   

 Given that the endodomain mutations had no obvious effect on receptor 

interactions, their suppression of virus entry was likely at the level of membrane fusion.  

To address this possibility and to evaluate S-mediated fusion in detail, I monitored S 

protein refolding events with an HR2 peptide that was previously shown to be a potent 

fusion inhibitor (Bosch et al., 2003).  The HR2 peptide used (NVTFLDLTYEMNRIQ 

DAIKKLNESYINLKE) corresponds to residues 1225-1254 of the MHV strain A59 

spike.  The view is that HR2 peptides bind exposed HR1 trimers, thereby occluding the 

cis refolding of endogenous HR2 helices onto HR1, preventing 6-HB formation, 

membrane fusion, and virus entry (Chan and Kim, 1998; Furuta et al., 1998).  These 

exposed HR1 trimers are present only in transitional S protein folding states; in support 

of this statement, I found that HR2 peptides could be incubated indefinitely with virions 

at 50 µM (50 x EC50) (Bosch et al., 2004) at 37oC,  and after diluting to 0.5 nM (0.0005 

x EC50)  exert no inhibition on plaque development.   
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Fig. 17. Time Course of Entrance Into and Exit from HR2-sensitive Folding States. 
HIV particles normalized to p24 content were pre-bound to HeLa-CEACAM cells at 4oC 
for 1 hour. Unbound particles were then aspirated and 37oC serum free DMEM with or 
without HR2 peptide (25µM) were added to the cells. The HR2 peptides were 
subsequently removed at 0, 2, 4, 8, 16, and 32 min time intervals (A) or added at 0, 2, 4, 
8, 16, and 32 min time intervals after the temperature shift (B). At the 64 min time point, 
all cells were rinsed, replenished with DMEM supplemented with 10% FBS, and 
luciferase accumulations were assayed 2 days post-transduction. 
  

  

 In my experiments, I used the HR2 peptide as a tool to monitor the exposure of 

HR1 (reflecting S unfolding) and subsequent disappearance of HR1 (reflecting S 
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refolding into post-fusion 6-HBs) during virus entry into cells.  In this experimental 

design, I applied HIV-S pseudoparticles to CEACAM-bearing HeLa cells at 4oC and 

incubated to equilibrium.  Unbound particles were aspirated and replaced with pre-

warmed 37oC media, as the 37oC temperature is required for fusion and for S protein 

conformational changes (Krueger et al., 2001; Zelus et al., 2003).  Then, the HR2 peptide 

(25 µM) was added at the 37oC temperature shift and subsequently removed at 0, 2, 4, 8, 

16, 32, 64 min time intervals (Fig. 17A) or added at early 0, 2, 4, 8, 16, 32, 64 min time 

intervals post the temperature shift (Fig. 17B).  At the 64 min time point, all cells were 

rinsed, replenished with complete media, and then assayed 40 h later for accumulated 

luciferase, which served as the readout for S-mediated pseudovirus entry.   

 When HR2 peptide was present from 0-64 min after the 37oC temperature shift, 

WT S-mediated infection was blocked by more than 1,000-fold (Fig. 17B).  However, 

when HR2 peptide was present from 2-64 min, blockade was only about 20-fold, 

suggesting that ~ 5% of the entry-related WT S protein refolding events took place within 

the first 2 min after 37oC temperature shift.  When HR2 was added after 16 min at 37oC, 

blockade was only 2 to 3-fold, again suggesting that ~ 30-50% of entry was completed 

within 16 min.  Quite strikingly, and in sharp contrast to the rapid refolding of the wild 

type S proteins, the single (1C-A), double (2C-A) and triple (3C-A) endodomain mutant 

pseudoviruses were more sensitive to inhibition by HR2 peptides added late after 37oC 

temperature shift, with the extent of this sensitivity to HR2 inhibition correlating directly 

with the degree of C-A substitution.  Entry mediated by the triple mutant S proteins was 

completely inhibited by HR2 peptides added as late as 16 min after the 37oC shift, 
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suggesting that the HR1 tri-helix either exposed itself in delayed fashion and / or 

remained exposed for remarkably prolonged periods in relation to the wild type protein.  

A reasonable speculation is that this slower fusion kinetics accounted for the general 

inefficiencies of the endodomain-mutant S proteins in mediating virus entry (Fig. 16B).  

This same degree of slower fusion kinetics is not revealed by the much longer 4 h cell-

cell fusion assay (Fig. 15).   

 The kinetics of S protein refolding was further examined using a biochemical 

approach.  A distinct experimental advantage of the coronaviruses is that their S proteins 

can be triggered to refold into 6-HBs in reductionist in vitro assays, by relatively simple 

exposure to soluble receptors at 37oC temperature (Matsuyama and Taguchi, 2002; Zelus 

et al., 2003).  The resulting 6-HBs, being extraordinarily stable (Yan, Tripet, and Hodges, 

2006) can be visualized in Western blots as ~58 kDa protease resistant bands 

(Matsuyama and Taguchi, 2002).  I incubated wild-type and double cysteine mutant (2C-

A) virions with soluble receptor (N-CEACAM-Fc) at 4oC, and once at equilibrium, 

shifted to 37oC for various time periods.  Increased levels of 6-HBs were observed with 

37oC incubation time (Fig. 18A).  Far more striking was the finding that the endodomain 

mutant 2C-A S proteins were less prone to advancing into 6-HB configurations (Fig. 

18A).  Similar experiments performed with HIV-S pseudoviruses generated corroborating 

findings of diminished 6-HBs in 2C-A and 3C-A S proteins (Fig. 18B).  The distal 

carboxy-terminal cysteines, and/or their palmitate adducts, increase the facility of S-

mediated refolding into post-fusion forms.   
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Fig. 18.  Effect of Endodomain Cysteine Mutations on the Formation of Post-fusion 

6-HB Hairpin Conformations. A.  Wild-type and double cysteine mutant (2C-A) rA59 
viruses in DMEM supplemented with 5% FBS were incubated with 2µM soluble receptor 
(N-CEACAM-Fc) at 37oC for 5, 15, 30 minutes.  Subsequently, proteinase K (Prot. K) 
was added to the indicated samples (final concentration 10 µg/ml) and all reactions were 
incubated for 15 min at 4oC.  The protease digestion was halted by addition of 
electrophoresis sample buffer and samples were immediately subjected to Western 
immunoblotting. S unc, uncleaved S; 6-HB, protease resistant 6-HB. Molecular weights 
are shown in kilodaltons.  B.  Concentrated HIV particles in HNB buffer were incubated 
with 2 µM soluble receptor for 5 minutes at 37oC.  Proteinase K digestion, quenching and 
immunoblotting were performed as described above.   

 

 

Proteolytic Activation of Coronavirus Entry by Type II Transmembrane Proteases 

 The membrane fusion process requires an S protein conformational flexibility that 

is facilitated by proteolytic cleavages.  The MHV-S proteins, which were discussed in the 

previous section, undergo cleavage activation in producer cells during virus assembly 

(Sturman, Ricard, and Holmes, 1985).  On the contrary, the SARS S proteins do not get 

cleaved in virus producer cells and rely on target cell proteases for their activation 
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(Simmons et al., 2005).  Here we describe the type II transmembrane serine proteases 

(TTSPs) and more specifically TMPRSS2 as a novel SARS-CoV activating protease.  

Effect of TTSPs on Pseudovirus Transductions 

 Three of the 17 known human TTSPs, TMPRSS2, TMPRSS11a and TMPRSS11d 

(also known as Human Airway Trypsin or HAT) were selected for study because they are 

expressed in human lungs and are known to activate cell entry of selected influenza virus 

strains (Bottcher et al., 2006; Chaipan et al., 2009).  On transfection of the three FLAG-

tagged TTSP cDNAs into 293T cells, all synthesized FLAG-tagged proteins of the 

expected molecular weights (Fig. 19).  TTSPs are synthesized as inactive single-chain 

proenzymes (zymogens) and undergo self cleavage into active forms during or after 

transport to cell surfaces (Afar et al., 2001; Miyake et al., 2009).  Cell-associated C-

terminal cleavage fragments were observed for TMPRSS11a and 2, but not for 11d, 

perhaps because the 11d member sheds its peripheral enzymatic domain into extracellular 

media (Yasuoka et al., 1997).  To confirm that the cleaved forms of one TTSP, 

TMPRSS2, were indeed generated by autocatalytic activity, I generated an inactive 

mutant harboring a serine to alanine substitution at position 441 (S441A) (Afar et al., 

2001).  As expected, the TMPRSS2S441A mutant was only present as a full-length ~ 70 

kDa zymogen form (Fig. 19). 

 To reveal the effect of TTSPs on HCoV entry, I co-transfected 293T cells with 

constant amounts of ACE2C9 plasmid along with varying doses of the different TTSPFLAG 

plasmid DNAs.  After two days, these cells were transduced by HIV-SARS S 

pseudoviruses, as measured by the accumulation of a luciferase reporter gene product that 
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is encoded in the HIV transducing vector.  We selected 293T cells as targets because they 

support early HIV infection events and because they do not express endogenous 

TMPRSS2 or 4 (Afar et al., 2001; Bertram et al., 2010; Chaipan et al., 2009).   

 

 

 

 

 

 

  

 
 
 

Fig. 19. TTSP Expression into 293T Cells.  Cells transfected with pCAGGS plasmids 
encoding the indicated FLAG-tagged TTSP constructs were lysed at 2 d post-transfection 
and proteins were evaluated by western immunobloting with anti-FLAG antibodies. 
Triangles mark the full-length zymogen and mature enzyme forms.  The asterisk is next 
to a non-specific 34 kDa band. 

 

 

  All three TTSPs enhanced SARS S-mediated pseudovirus entry.  The augmenting 

effects varied, with TMPRSS2 > TMPRSS11d > TMPRSS11a (Fig. 20A).  Peak effects 

of TMPRSS2 and TMPRSS11d were observed after 0.2 µg DNA transfection and then 

declined at the higher 1 µg DNA dose; this was presumably due to toxicities generated by 

TTSP overexpression. HIV transductions mediated by Vesicular Stomatitis Virus 

Glycoprotein (VSV G) and Ebola Zaire Glycoprotein (Ebo GP) spikes were not affected 
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by the presence of TMPRSS2 (Fig. 20B), indicating that this particular TTSP exhibits 

restricted, S– specific enhancing effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Effect of TTSPs on HIV-SARS S Entry. A. 293T cells (106) were transfected 
with ACE2 (1 µg) along with indicated amounts of the TTSP plasmids. At 2 d post-
transfection, cells were inoculated with HIV-SARS S and luciferase accumulations were 
evaluated 27 h later. The dotted line represents the transduction level in target cells 
transfected with ACE2 and empty vector. B. 293T cells co-transfected with equal 
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amounts of either ACE2 + empty vector (white bars) or ACE2 + TMPRSS2 (hatched 
bars) were inoculated with HIV-VSVG, -Ebo GP, or –SARS S pseudoviruses at 2 d post-
transfection. Luciferase accumulations were evaluated 27 h later. Error bars represent 
standard deviations (n=3). Experiments were repeated three times with similar results. 
 

 

TMPRSS2 Functions at the Cell Surface 

 I focused on the most potent TTSP, TMPRSS2, and determined whether this 

protease activates SARS S for plasma membrane – localized fusion using a cell-cell 

fusion assay.  Briefly, effector 293T cells were co-transfected with plasmids encoding 

SARS S and T7 RNA polymerase, while target 293T cells were co-transfected with 

plasmids encoding ACE2, TMPRSS2, and a luciferase reporter under control of a T7 

RNA polymerase promoter (Fig. 21A).  After a 3 hour co-culture of effector and target 

cells, cell-cell fusions clearly discernable as microscopic ~ 10 to 20-cell syncytia, were 

corroborated by luciferase assays, which indicated a ~10 fold increase in membrane 

fusion (Fig. 21B).  HCoV-NL63 S protein-mediated membrane fusion was also enhanced 

by TMPRSS2, albeit less potently than SARS-CoV S (Fig. 21B).  These data confirmed 

that the TMPRSS2 protease can exert its fusion-promoting effects on two somewhat 

distantly related HCoV S proteins, and that these effects can take place at cell surfaces.  

 Endosomal cathepsin L is a known S-activating protease (Bosch, Bartelink, and 

Rottier, 2008; Simmons et al., 2005).  Many cysteine proteases in the 

endosomal/lysosomal compartment, including cathepsin L, become activated and 

function optimally at acidic pH (Honey and Rudensky, 2003).  To determine whether 

TMPRSS2 at the target cell surface might nullify any requirements for this and related 
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acid pH-dependent proteases during SARS S-mediated virus entry, the endosomal H+ / 

ATPase inhibitor bafilomycin A1 (Yoshimori et al., 1991) or the endosomotropic weak 

base NH4Cl (Gordon, Hart, and Young, 1980) was applied to target cells immediately 

before and during HIV-SARS S inoculation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21. TMPRSS2 Effect on SARS S-Mediated Membrane Fusion. A. Schematic 
diagram of cell-cell fusion.  Effector 293T cells were generated by co-transfection of 
plasmids encoding the indicated spike constructs along pCAG-T7pol (1 µg DNA per 106 
cells).  Target 293T cells were generated by co-transfection of pcDNA3.1-ACE2 + 
pCAGGS-empty vector (-) or pcDNA3.1-ACE2 + pCAGGS-TMPRSS2 (+) together with 
pEMC-T7pro-luc. B. Luciferase readings 3 h after co-cultivation of effector and target 
cells (1:1 ratio) were plotted as fold change in fusion over negative controls without S 
proteins.  
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 These inhibitors of endosomal acidification potently suppressed S-mediated 

transductions (Fig. 22), with 2 and 3 - log10 reductions by NH4Cl and bafilomycin A1, 

respectively.  Suppressions were eliminated by TMPRSS2 (Fig. 3-13), indicating that 

TMPRSS2 fully activates SARS S-mediated entry (~ 1,000-fold) when acid pH-

dependent protease(s) are absent.  The findings in Fig. 22 thus reveal the indiscriminate 

nature of SARS S entry functions, with either the cell-surface neutral pH TMPR serine 

protease or the endosomal acid pH-requiring (likely cathepsin) cysteine proteases 

operating as entry catalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. TMPRSS2 Effect on HIV-SARS S Entry into Drug-Treated Cells.  293T 
cells were co-transfected (1 µg per 106 cells) with ACE2 + empty vector (white bars) or 
with ACE2 + TMPRSS2 (hatched bars).  One day later, and 1 h prior to transduction with 
HIV-SARS S pseudoviruses, cells were incubated with Bafilomycin A1 (300nM) or 
NH4Cl (25mM).  Vehicle controls were DMSO and water for Bafilomycin A1 and 
NH4Cl, respectively.  HIV-SARS S particles were then concentrated onto cells by a 2 h 
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spinoculation.  Bafilomycin and NH4Cl remained on cells during and after spinoculation, 
until 6 h post-transduction, at which time cells were rinsed and replenished with fresh 
media. Luciferase accumulations were determined at 28 h post-transduction.  Error bars 
represent standard deviations (n=3).  The experiment was repeated three times with 
similar results. 
 

 

SARS S Protein Cleavage by TMPRSS2 

 I assumed that the S proteins would be the relevant TTSP substrates for enhancing 

virus entry.  Proteolyses at two positions, designated S1-S2 and S2’, are necessary to 

enhance S-mediated membrane fusions (Belouzard, Chu, and Whittaker, 2009) and there 

are arginines at both of these cleavage sites that could comprise TTSP substrates (Antalis 

et al., 2010; Kam et al., 2009).  To determine whether incoming S proteins on 

pseudoviruses might be cleaved specifically by TMPRSS2, I generated target hACE2-

293 cells with or without TMPRSS2FLAG and adsorbed HIV-SARS S particles by 

spinoculation.  After rinsing steps, cells and bound viruses were incubated for 1h at 37oC, 

lysed, and S proteins visualized by immunoblotting.  There was slight but convincing 

evidence of TMPRSS2-specific SARS S cleavage, as indicated by the presence of C-

terminal ~ 120 and ~ 85 kDa S fragments (Fig. 23).  The extent of proteolysis was 

admittedly low; however it is certainly conceivable that this very small proportion of S 

proteins undergoing cleavage represents the activated S proteins operating in pseudovirus 

entry. 
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Fig. 23. Cleavage of SARS S Proteins during Virus Entry. HIV-SARS S 
pseudoviruses were spinoculated onto target hACE2-293 cells transfected 2 days earlier 
with pCAGGS empty vector or pCAGGS-TMPRSS2 (1 µg per 106 cells, in duplicate). 
After spinoculation, cells were incubated at 37oC for 1 h to allow for cleavage of S 
proteins by cell-surface TMPRSS2. After removing unbound pseudovirions and washing, 
cells were lysed and evaluated by immunoblotting for S proteins using anti-C9 tag 
antibody.  Molecular weights are shown in kilodaltons.  
 

 

 I also evaluated the cleavage of S proteins during assembly in virus producer cells 

expressing TMPRSS2.  Interestingly, HIV pseudoviruses harboring SARS-CoV spikes 

that were pre-cleaved by TMPRSS2 displayed reduced transduction potentials (Fig. 24).  

This was in sharp contrast to the augmentation of SARS S-mediated entry when 

TMPRSS2 was expressed in target cells (Fig. 20) and also in contrast to published reports 

on activation of influenza HA by TMPRSS2 during virus production (Bottcher et al., 

2009; Bottcher et al., 2006).  HIV-Ebola GP pseudoviruses produced in cells expressing 

TMPRSS2 were slightly augmented in their entry, while HIV-VSV G pseudoviruses 

transduction potential was not affected by the presence of TMPRSS2 (Fig. 24).  These 
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results suggest that premature cleavage of SARS S leads to inactivation rather than 

activation of its fusogenic potential.  In order to get fusion activation, SARS S has to be 

cleaved at the right time and place, i.e. after ACE2 receptor engagement on target cell 

surfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. TMPRSS2 in Producer Cells Decreases SARS S Transduction Potential. 

HIV-particles produced in +/- TMPRSS2 293T cells were used to transduce target 
hACE2-293 cells. Luciferase accumulated in the cells was assayed 2 days post-
transduction.  The dotted line represents the limit of detection for the assay.  
 

 

ACE2 Protein Cleavage by TMPRSS2 

 The discovery that S proteins were targeted by TMPRSS2 led me to consider 

whether the integral-membrane ACE2 proteins might also be substrates.  Thus I 
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introduced graded doses of the TTSP plasmids along with constant amounts of 

pcDNA3.1-ACE2C9 into 293T cells, and evaluated expressed proteins 2 days later.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25. Effect of TTSP Expression on ACE2 and HIV-SARS S Transductions. A. 
Cells (106) transfected with constant 1 µg amounts of ACE2 and increasing doses of the 
indicated TTSPs or pCAGGS empty vector (EV) were analyzed at 2 d post-transfection 
by immunoblotting for the C9 epitope appended to the ACE2 C-terminus. B. Cells 
transfected with 1 µg amounts of ACE2C9 and the indicated amounts of TMPRSS2 were 
analyzed at 2 d post-transfection with anti-C9 and anti-FLAG tag antibodies respectively. 
C. Parallel unlysed cell cultures were transduced with HIV-SARS S pseudoviruses and 
luciferase accumulations were measured at 40 h post-transduction.  
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A striking finding was that all three TTSPs targeted ACE2 for distinctive proteolysis 

(Fig. 25A).  In a separate experiment, 293T cultures with gradually increasing levels of  

TMPRSS2 revealed doses ultimately eliminating the full-length ACE2, leaving a slightly 

smaller ~ 115 kDa (perhaps underglycosylated) form and a ~ 20 kDa C-terminal ACE2 

fragment (Fig. 25B).  Remarkably, these cultures with undetectable complete ACE2 were 

~30 fold more susceptible to HIV-S transduction than controls (Fig. 25C), suggesting that 

few receptors can mediate efficient entry provided that the relevant protease is nearby to 

activate incoming virions.  These findings raised additional questions about the levels and 

distributions of ACE2 and TMPRSS2 on susceptible cell surfaces. 

ACE2 Associations with TMPRSS2 

 We hypothesized that ACE2 and TMPRSS2 interact both in cellular exocytic 

pathways and cell surfaces, and that cleavage of ACE2 was a result of these interactions.  

This was first evaluated by Taylor Heald-Sargent using immunofluorescence assays 

(IFAs).  Briefly, she co-synthesized ACE2C9 and TMPRSS2FLAG in 293T cells, fixed cells 

without permeabilization, and then used a human IgG1 Fc –tagged form of the SARS S 

receptor-binding domain (RBD) to detect ACE2 and a mouse anti-FLAG antibody to 

detect TMPRSS2.  The confocal images (Fig. 26A) indicated that cells expressing surface 

TMPRSS2 typically did not have ACE2.  Thus it was likely that TMPRSS2 cleaved 

ACE2 before it reached the cell surface or shortly afterwards.  On slides transfected with 

low amounts of TMPRSS2 (1:0.1 and 1:0.01 ACE2:TMPRSS2 plasmid ratios), rare cells 

were identified with both ACE2 and TMPRSS2 (Fig. 26B).  In these cells, the receptor 

and protease colocalized on the plasma membrane, although the levels of each were 
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decreased compared to cells expressing either protein alone.  Therefore, the majority of 

cells expressing TMPRSS2 had undetectable ACE2, but when TMPRSS2 was scarce, 

ACE2 localized to TMPRSS2 containing regions.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26. Cellular Localization of TMPRSS2 and ACE2. A. Cells were co-transfected 
with ACE2 and TMPRSS2 at various ACE2:TMPRSS2 ratios. 24 h post-transfection 
cells were fixed without permeabilization and incubated with anti-FLAG and SARS-
RBDFc.  Secondary antibodies, anti-human IgG (green) and anti-mouse IgG (red), were 
used to detect bound SARS-RBDFc and anti-FLAG antibodies, respectively.  All images 
were obtained using identical acquisition times and display levels. B. A representative 
ACE2+ TMPRSS2+ cell from the 1:0.1 ACE2:TMPRSS2 DNA ratio.   

 

To further evaluate ACE2 – TMPRSS2 interactions, I used an 
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in a buffer containing Nonidet P-40 and sodium deoxycholate; this detergent formulation 

is known to completely lyse cells while preserving selected membrane protein 

interactions (Opstelten et al., 1995).   
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Fig. 27.  Interaction between TMPRSS2 and ACE2. A. 293T cells transfected with 
pCAGGS-TMPRSS2FLAG (0.5 µg per 106 cells) and pcDNA3.1-ACE2C9 (1 µg per 106 
cells), individually or in combination, were lysed and subsequently incubated with rabbit 
anti-FLAG, mouse anti-C9, or mouse IgG antibody on protein G magnetic beads.  Eluted 
proteins were analyzed by immunoblotting using the indicated antibodies. B. Lysates 
from 293T cells transfected with pCAGGS-TMPRSS2FLAG (0.5 µg per 106 cells) or 
pCAGGS-TMPRSS2(S441A)FLAG (0.5 µg per 106 cells), individually or in combination 
with pcDNA3.1-ACE2C9 (1 µg per 106 cells), were subjected to immunoprecipitations 
using rabbit anti-FLAG antibody.  Eluted proteins were analyzed by immunoblotting 
using mouse anti-C9 antibody.  
 
 

From these lysates, ACE2C9 and TMPRSS2FLAG were captured onto magnetic protein G 

beads using mouse anti-C9 and rabbit anti-FLAG antibodies, respectively, and then 

detected proteins by immunoblotting using the same epitope-specific antibodies.   

The results (Fig. 27) revealed specific co-IP of both TMPRSS2 and ACE2 by 

either the C9 or FLAG antibodies.  As there was digestion of the ~ 130 kDa ACE2 form 

in these cultures (see Fig. 25), the predominant IP form of ACE2 was ~ 115 kDa.  I 

attempted to determine whether the complete ~ 130 kDa ACE2 might co-IP with the 

catalytically inactive TMPRSS2-S441A.  While the anti-FLAG IPs efficiently adhered 

both the wild type and the inactive mutant TMPRSS2(S441A)FLAG, the co-IP of ACE2 

was only observed with the wild type form (Fig. 27B).  These data indicated that 

enzymatic activity was required for TMPRSS2 association with ACE2.  

ACE2:TMPRSS2 Associations in Cis and in Trans 
 

Some TTSPs, notably HAT, will cleave cellular substrates both in cis and in trans, 

i.e., when presented from neighboring cells (Beaufort et al., 2007).  This is because some 
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TTSPs shed their catalytic C-terminal domains into media (Szabo and Bugge, 2008; 

Yasuoka et al., 1997), thereby creating paracrine proteolytic activities.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. ACE2:TMPRSS2 Associations in Cis and in Trans. Four 293T cell 
populations were transfected with renilla luciferase (RL) control plasmid along with 
empty vector (EV), TMPRSS2 and ACE2 plasmids, either alone or together, as indicated. 
One day later, cell populations were cocultivated as indicated by the “+” signs. A. After a 
20 h co-cultivation period, cells were lysed and evaluated for ACE2 cleavage by 
immunoblotting using anti-C9 tag antibody. B. After a 20 h co-cultivation period, cells 
were transduced with HIV-SARS S. Firefly luciferase relative to renilla luciferase 
(FL/RL) was measured 27 hptd.  Error bars represent standard deviations (n=3). The 
experiment was repeated three times with similar results. 
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 I sought to determine whether the TMPRSS2 that fosters SARS S entry and 

cleaves ACE2 in cis would do the same in trans.  To this end, a mixed population of 

target cells was generated, with half being ACE2+ and the other half TMPRSS2+.  These 

cells were both challenged with SARS S pseudotype viruses and evaluated for ACE2 

cleavage.  If TMPRSS2 extended its effect broadly, then the mixed populations would be 

highly susceptible to S-mediated entry and would also have cleaved ACE2.  Unlike the 

condition in which ACE2 and TMPRSS2 were expressed in the same cells, the 

expression of these two proteins on separate cells did not foster virus entry above that 

observed when only ACE2 was expressed (Fig. 28A).  In addition, the ACE2 proteins 

were not proteolyzed when TMPRSS2 was on separate cells, even though the 

TMPRSS2+ and ACE2+ cells were contacting each other in the monolayers (Fig. 28B). 

This was in striking contrast to the ACE2 digestion during cis presentation of TMPRSS2. 

These data suggest that the relevant in vivo targets are those in which both ACE2 and 

TMPRSS2 entry factors are simultaneously present in the same cells, and that 

extracellularly shed or adjacent TMPRSS2 has no effect on infection. 

Effect of TTSPs on SARS-CoV Infections 

To determine whether the TMPRSS2 also increased cell susceptibility to authentic 

SARS-CoV infections, Jincun Zhao at the University of Iowa challenged the transfected 

293T cells with authentic SARS-CoV (Urbani strain).  He evaluated SARS N RNA levels 

at 6 h post-infection by qRT-PCR (Fig. 29A) and I evaluated SARS S and N protein 

levels at 24 h post-infection by immunoblotting (Fig. 29B).  There was 9-fold more 

SARS N RNA in cells expressing TMPRSS2 compared to cells expressing the 
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enzymatically-inactive TMPRSS2 (S441A) [p < 0.0005].  These viral RNAs were 

translated to generate significantly more N proteins in the TMPRSS2+ cells (Fig. 29B).  

Additionally there was significantly more S protein in the TMPRSS2+ cells.  These 

findings, notably the comparisons of proteolytically active and inactive TMPRSS2s, 

allowed us to assign natural infection-enhancing activity to proteolysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Effect of TTSPs on SARS-CoV Infections. Cells transfected with ACE2 and 
each TTSP were challenged with SARS–CoV at MOI = 0.1.  A. SARS-CoV N and 
human GAPDH-gene specific RNAs were quantified by real-time PCR and levels of 
SARS N gene amplicons were normalized to that of GAPDH amplicons. Data is plotted 
as ratio of each RNA to the empty vector RNA. Statistics was performed using Student’s 
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t-test for unpaired samples on ∆CT values (n = 3). The experiment was performed twice. 
B. SARS S, N and β actin protein levels were evaluated at 24 hpi by immunoblotting 
using anti-SARS S, anti-SARS N and anti-β actin antibodies.  
 
 

 

Relationship between SARS S: ACE2 Affinity and TMPRSS2 Activation 

 We hypothesized that  TTSPs may especially support coronaviruses having low 

affinities for their receptors; for example, zoonotic coronaviruses entering new host 

organisms bearing orthologous receptors (Li et al., 2005c).  These viruses might benefit 

from the TMPRSS2-mediated rapid activation at the cell surface before eluting away.  By 

contrast, endosome – localized activations are delayed until after subcellular virus 

transport (Matsuyama et al., 2005) and demand that viruses remain attached to ACE2 

receptors for much longer times.  I began to test this hypothesis by determining whether 

HIV-SARS S pseudoviruses that bound ACE2 with low affinity were greatly enhanced in 

their entry by TMPRSS2.  To this end, I used site-directed mutagenesis to generate S 

proteins with mutations in the ACE2 receptor binding domain (RBD) known to affect the 

affinity of S for ACE2.  Residues N479 and T487 in the RBD of SARS-CoV S protein 

appear to be critical for high affinity association with the ACE2 receptor (Li et al., 

2005c).  Thus, changing the aspargine at position 479 to a lysine reduces the binding 

affinity of SARS-CoV RBD to ACE2 by ~ 30 fold, while changing the threonine at 

position 487 to a serine reduces the affinity by ~ 22 fold (Li et al., 2005c).  Of note, 

changes in these residues were suggested to contribute to adaptation of SARS-CoV from 

palm civets to humans (Li et al., 2005c).  
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Fig. 30. Incorporation of SARS S RBD Variants into HIV Particles.  Pseudotyped 
HIV particles were produced in 293T cells by co-transfection of plasmid DNAs encoding 
the indicated spikes together with the HIV vector (pNL4.3-Luc R-E-).  Released particles 
were harvested from culture media and concentrated by pelleting through 30% sucrose.  
Proteins present in cell lysates and in virion particles were detected by immunoblotting 
using C9 tag (SARS S) and p24-specific MAbs. 
  

 

 SARS S proteins harboring the RBD mutations, N479K and T487S, were 

efficiently incorporated into HIV particles relative to Gag and p24 proteins (Fig.30).  

These same HIV particles harboring SARS S (wt) or SARS S with the indicated RBD 

mutations were used to transduce target cells expressing ACE2 +/- TMPRSS2, with the 

expectation that TMPRSS2 would be more effective in augmenting the entry of SARS S 

proteins with RBD mutations.  The data (Fig. 31) revealed that SARS S N479K proteins 

were less efficient than the wild-type counterparts in mediating entry into ACE2 positive 
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cells, consistent with the fact that the mutation lowered the spike-receptor affinity by ~ 

30 fold (Li et al., 2005c).   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Effect of RBD Mutations on SARS S-mediated Entry into 293T Cells 

Expressing TMPRSS2.  293T cells (106) were transfected with pCDNA3.1-ACE2C9 (1 
µg) along with 0.05 µg of pCAGGS-TMPRSS2FLAG or pCAGGS empty vector.  At 2 d 
post-transfection, cells were inoculated with the indicated HIV-SARS S pseudoviruses 
and luciferase accumulations were evaluated 27 h later. 

 

 

TMPRSS2 augmented SARS S (wt)-mediated entry ~28 fold and SARS S N479K-

mediated entry ~75 fold (Fig. 31).  Even though the TMPRSS2 augmentation of the low 

affinity SARS S protein seemed to be more than the wild-type one, the data were not 

strong enough to conclude that cell surface TMPRSS2 offered an advantage to low 

binding viruses. 
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Localization of Receptors and Proteases in Lipid Rafts: Roles for Lipid Rafts as 

Virus Entry Factors 

 I used a biochemical fractionation approach to evaluate localization of ACE2 

receptor and TMPRSS2 protease in lipid rafts or detergent resistant membranes (DRMs).  

The tight packing organization of lipid rafts confers their resistance to some detergents, 

such as Triton X-100 (TX-100) at cold temperature, and allows their purification from 

low density fractions after floatation in a sucrose gradient (Chazal and Gerlier, 2003).  In 

my experiments, I used 0.2 % TX-100, a detergent concentration often used to prepare 

DRMs from several cell lines (Giurisato et al., 2003).  Evaluation of proteins in each 

fraction by silver staining indicated that most proteins were solubilized by TX-100 and 

present in fractions 8 and 9 (Fig. 32).  However, a very small subset of proteins was 

enriched in fraction 3, which should contain low density DRMs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. Protein Profile in Each Gradient Fraction Evaluated by Silver Staining. 25 
µl from each fraction was loaded in a 10% SDS gel. Following electrophoresis, the gel 
was fixed and silver stained. As expected, the majority of proteins are in fractions 8 and 
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9, while only a few proteins are present in fraction 3, which is where the low density 
membranes (lipid rafts) should float.  Molecular weights are shown in kilodaltons.  
 

 

 

 

 To confirm that fraction 3 contained DRMs, I incubated 293T cells with cholera 

toxin subunit B peroxidase conjugate (CTB-HRP) prior to lysis in cold detergent and 

subsequent fractionation.  CTB-HRP binds to ganglioside GM1, which is enriched in 

DRMs (Brown, 2006).  A small portion of each fraction was spotted into nitrocellulose 

and the results revealed that GM1 was concentrated in fraction 3 (Fig. 33).  

 

 

 
 
Fig. 33. Cholera Toxin B-HRP as a Marker of Lipid Rafts. 3 µl from each fraction (1-
9) containing cholera toxin B-HRP was spotted onto nitrocellulose membrane and 
subsequently visualized on film using chemiluminescence reagents.  
  

 

 To determine whether cell surface ACE2 and TMPRSS2 were localized in lipid 

raft fractions, I biotinylated cell surface proteins prior to lysis in cold TX-100.  The biotin 

reagent that was used, Sulfo-NHS-LC-Biotin, is a membrane impermeable reagent that 

reacts efficiently with primary amine-containing molecules.  Following fractionation of 

the gradients, the biotinylated proteins present in fractions 3, 4, 8 and 9 were pulled down 

with streptavidin beads and eluted proteins were analyzed by western blotting.  The data 

(Fig. 34A) revealed that ACE2 was present exclusively in lipid raft containing fraction 3, 

1 2 3 4 5 6 7 8 9 

CTB-HRP 
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consistent with an earlier report that suggested ACE2 was a lipid raft-associated protein 

(Lu, Liu, and Tam, 2008).  On the contrary, the majority of cell-surface TMPRSS2 

proteins were associated with non-raft fractions 8 and 9 and only a small subset were 

associated with raft-containing fraction 3 (Fig. 34B). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 34. ACE2 and TMPRSS2 Association with Detergent Resistant Membranes 

(DRMs).  Surface proteins of 293T cells transfected with ACE2 (A.) or TMPRSS2 (B.) 
were biotinylated and subsequently subjected to lysis in cold-detergent. Following 
precipitation with streptavidin beads, the biotinylated proteins present in fractions 3, 4, 8 
and 9 were separated by gel electrophoresis and detected with anti-C9 tag antibody 
(ACE2) and anti-FLAG tag antibody (TMPRSS2).  A portion (2/1000) of each cell lysate 
(CL), which was not subjected to streptavidin pull-down, was electrophoresed alongside 
the other samples. Molecular weights are shown in kilodaltons.    
  

  

 The previous experiments were informative in terms of ACE2 and TMPRSS2 

localization in plasma membrane lipid microdomains; however, these experiments were 

not performed in the context of virus binding and internalization.  To this end, I incubated 
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293T cells with HIV-bald and HIV-SARS S pseudoparticles prior to biotinylation and 

subsequent lysis in cold TX-100.  The data (Fig. 35) indicated that a large proportion of 

TMPRSS2 was localized to lipid raft-containing fraction 3 following virus binding and 

internalization. 
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Fig. 35. TMPRSS2 association with lipid rafts during virus entry.  293T cells co-
transfected with ACE2 and TMPRSS2 were incubated with the indicated HIV particles 
for 1 hour at 37oC and subsequently surface biotinylated and lysed in cold detergent as 
described above.  The biotinylated proteins were captured using streptavidin beads and 
further subjected to SDS-PAGE and immunoblotting using anti-FLAG antibody.  A 
portion (2/1000) of each cell lysate (CL), which was not subjected to streptavidin pull-
down, was electrophoresed alongside the other samples. Molecular weights are shown in 
kilodaltons.    
 
 
 

ββββ1 Integrin: A Putative Coreceptor For HCOV-NL63 S-Mediated Entry 

 Integrins are cell surface heterodimers composed of α and β glycoprotein 

subunits.  Besides operating in cell adhesion, migration and differentiation (Hynes, 

2002), they are also used by a variety of viruses for cell entry (Stewart and Nemerow, 



 

 

100 
 

 

2007). Integrins may directly bind to viruses and they may also direct viruses to the 

endosomal proteases needed for viral protein cleavage and activation of cell entry 

potentials, as was recently demonstrated for Ebola virus (Schornberg et al., 2009).  Of 

note, HCoV-NL63 contains the well-defined integrin binding motif Asn-Gly-Arg (NGR) 

(Koivunen, Gay, and Ruoslahti, 1993) in its S sequence.  Furthermore, NL63 S proteins 

are not cleaved in virus producer cells and rely on target cell proteases, perhaps 

endosomal cathepsins for activation.  These facts led us to hypothesize that integrins 

might be involved in HCoV-NL63 S-mediated entry.  

 We used the HIV based-pseudotype system to determine whether β1 integrins are 

involved in coronavirus entry.  In essence, HIV cores can be decorated with different 

glycoproteins and past literature has shown that these pseudotypes are good mimics of 

authentic viral entry (Moore et al., 2004).  Relative extents of pseudovirus transduction 

are measured by the accumulation of a luciferase reporter gene product that is encoded in 

the HIV transducing vector (He et al., 1995). 

 Pseudovirus transduction into HEK293 cells stably expressing the ACE2 receptor 

(hACE2-293) was performed in the presence or absence of a monoclonal anti-β1 integrin 

antibody (MAb1965, Millipore) at the indicated dilutions (Fig. 36).   The results revealed 

significant blockade (p< 0.05) of NL63 S, but not SARS S or VSV G-mediated entry, 

indicating that β1 integrins did not interfere with HIV replication events.  The effect of 

antibody blockade on NL63 S-mediated transduction was dose-dependent, with the 

greatest effect of ~ 40 fold decrease in transduction at the highest antibody concentration.  

Interestingly, Ebola GP-mediated transduction was only slightly inhibited by the addition 
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of integrin β1 blocking antibody.  I expected a much bigger inhibitory effect of the 

integrin β1 blocking antibody on Ebola virus entry, which would be consistent with 

previously published findings (Schornberg et al., 2009).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 36.  Inhibition of NL63 S-mediated virus entry by ββββ1 integrin antibody.  293T-
ACE2 cells were incubated with or without anti-β1 integrin antibody (MAb 1965, 
Millipore) at the indicated dilutions in serum free media for 30 min at 37oC.  The 
indicated HIV transducing particles were then spinoculated onto cells.  Cell lysates were 
evaluated for firefly luciferase (FL) reporter product accumulations at 24 hours post-
transduction. The dashed bar indicates the assay lower limit of detection.  Note the log10 
FL scale; similar results were obtained in three independent experiments. * p<0.05 
Student’s t-test for unpaired samples. 
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 To determine whether β1 integrins were specifically involved in HCoV-NL63 S-

mediated entry, I used a siRNA approach to knock-down the β1 integrin levels in 

hACE2-293 cells.  As shown in Fig. 37A, transfection of the integrin β1 (ITGB1) 

specific siRNA, but not the negative control non-target siRNA, resulted in diminution of 

integrin β1 levels in hACE2-293 cells.  Notably, reducing the levels of β1 integrins in 

hACE2-293 cells significantly (p<0.05) lowered the susceptibility to NL63 S-mediated 

transduction by ~ 5 fold, while susceptibility to SARS S-mediated transduction actually 

increased by ~ 3 fold, as compared to transductions in cells transfected with the non-

target control siRNA (Fig. 37B). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 37. Relative resistance to NL63 S-mediated transduction after ββββ1-integrin 
knockdown.  A. 293T-ACE2 cells were transfected with non-target negative control 
(NT) or β1-integrin specific (ITGB1) siRNAs. 2 days later, cells were transduced with 
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the indicated pseudoviruses and FL reporter accumulations were measured after 40 h. 
The dashed bar indicates the lower limit of assay detection. B. 293T-ACE2 cells were 
lysed 48h after introducing the indicated siRNAs, and β1-integrin levels (arrow) were 
compared to β-actin control levels by immunoblotting. * p<0.05 Student’s t-test for 
unpaired samples.  
  

 

 To determine whether the effect of β1 integrins on NL63 S-mediated entry was 

related to the requirement for proteolytic cleavage of NL63 S proteins, I generated a 

NL63 S protein that contained multibasic furin enzyme recognition sites at two positions 

(Fig. 38), in analogy to the cleavage sites in SARS S proteins (Belouzard, Chu, and 

Whittaker, 2009).  I hypothesized that this form of NL63 S would be cleaved by furin 

proteases in virus producer cells; such that it would not require endosomal protease 

cleavage and/or β1 integrins in virus target cells.   

 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 38. Engineering furin cleavage sites in HCoV-NL63 S.  The NL63 S protein is 
depicted in linear fashion.  The ACE2 receptor binding domain (RBD) is shown in red, 
fusion peptide (FP) is shown in black, heptad repeats (HR) 1 and 2 are shown in blue and 
the transmembrane (TM) region is shown in green.  The first furin cleavage site was 
engineered at position 748-751 by changing the wild-type sequence from RNSS to 
RRSR.  The second furin cleavage site was engineered at position 866-870 by changing 
the wild-type sequence from RIAGR to RRARR.   
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 The cleaved (cl) forms of NL63 S proteins were efficiently incorporated into 

budding HIV pseudoparticles (Fig. 39A).  The NL63 S (cl) contains an expected ~65 kDa 

C-terminal fragment, generated by proteolysis at the engineered site positioned 

immediately N-terminal to the fusion peptide.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 39. ββββ1-integrin independent entry by cleaved NL63 S proteins.  A.  Pseudotyped 
HIV particles were produced in 293T cells by co-transfection of plasmid DNAs encoding 
the indicated spikes together with the HIV vector (pNL4.3-Luc R-E-).  Released particles 
were harvested from culture media and concentrated by pelleting through 30% sucrose.  
Proteins present in pseudovirus particles were detected by immunoblotting using S- and 
HIV Gag p24-specific MAbs.  B. 293T-ACE2 cells were transfected with non-target 
negative control (NT) or β1-integrin specific (ITGB1) siRNAs.  50 h later, the cells were 
transduced with the indicated HIV-particles and luciferase accumulated in cells was 
evaluated after 40 h. The data are depicted as % change in infection of ITGB1 siRNA 
treated cells compared to NT siRNA treated cells which were set at 100%.   
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 The HIV particles bearing NL63 S (wt) or NL63 S (cl) (Fig. 39A) as well as HIV 

particles bearing VSV G, Ebola GP and SARS S, were used to transduce hACE2-293 

cells that were pre-transfected with β1 integrin or non-target siRNAs (Fig. 39B).   

Unlike the wild-type NL63 S, the transductions mediated by NL63 S (cl) were not 

affected by the β1-integrin knockdown.  This finding that pre-cleaved NL63 S proteins 

had no need for β1-integrins reinforced the hypothesis that integrins might not be used as 

coreceptors per se, but rather as conduits to the appropriate protease-rich endosomal 

compartments (Caswell, Vadrevu, and Norman, 2009; Schornberg et al., 2009).  

 The NL63 S protein sequence contains an NGR motif at positions 197-199 that 

could interact with β1 integrins.  The NGR sequence is found in the extracellular matrix 

protein fibronectin and is important to the interaction of fibronectin with the α5β1 

integrin receptor (Koivunen, Gay, and Ruoslahti, 1993; Koivunen, Wang, and Ruoslahti, 

1994).  To reveal the potential role of this NGR motif in NL63-S mediated entry, I used 

site-directed mutagenesis to mutate the arginine at position 199 to a lysine (R199K).  The 

mutant NL63 S proteins displaying NGK rather than NGR motifs were less efficient (~ 

16 fold) than wild-type proteins in mediating entry into hACE2-293 cells (Fig. 40).  The 

decrease in NL63 S (R199K) –mediated entry was not due to inefficient incorporation of 

the mutant proteins into HIV particles, since both NL63 S (wt) and NL63 S (R199K) 

were equally incorporated into HIV particles (data not shown).  We do not rule out that 

the R199K mutation in NL63 S might affect protein folding and intrinsic activity.  More 

importantly, we are not certain whether the NL63 S NGR motif is displayed on a surface 

and available for interaction with β1 integrins, since structural data are not available yet 
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for any coronavirus spike ectodomain.  It would be interesting to determine whether 

NL63 spike interacts with soluble β1 integrin heterodimers via the NGR motif.     

 

 

Fig. 40.  Transduction Potentials of NL63 S proteins. HIV particles harboring no 
glycoproteins (core), NL63 S (wt), or NL63 S (R199K) were used to transduce target 
hACE2-293 cells.  Luciferase accumulated in these cells was evaluated 40 h post-
transduction and the raw values are plotted.
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CHAPTER IV 

DISCUSSION 

Spike Protein Palmitoylations as Virus Entry and Assembly Factors 

 Viral fusion proteins have distinctive, sequence-specific TM and ENDO domains.  

Deleting or replacing these regions with similar hydrophobic sequences can eliminate 

fusion function (Bissonnette et al., 2009; Broer et al., 2006; Helseth et al., 1990; 

Melikyan et al., 1999; Shang, Yue, and Hunter, 2008).  This sequence specificity 

indicates that the TM and ENDO domains have functions beyond mere anchoring of their 

respective ECTO domains.  In addition to amino acid sequence specificities, the 

transmembrane spans of viral fusion proteins appear to have unusual length requirements 

as well.  While a 20-residue alpha helix can vertically span a lipid bilayer, viral fusion 

proteins have hydrophobic, putative TM spans ranging from ~25 to ~50 residues.  There 

are several proposed operating mechanisms for these lengthy hydrophobic helices.  One 

view is that the long hydrophobic stretches, if positioned during pre-fusion states at 

oblique angles relative to the viral membrane plane, might create local membrane 

deformations or “dimples” pointing toward the target membrane.  Such membrane 

deformations help bring the two membranes into close contact (Chernomordik and 

Kozlov, 2003; Cohen and Melikyan, 2004).  Another viewpoint is that long hydrophobic 
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anchoring helices are required so that they can be accommodated at various orientations 

within the curved membrane architectures arising during bilayer fusions (Langosch, 

Hofmann, and Ungermann, 2007) (see Fig. 1).    

 Coronavirus S proteins have distinctive TM-ENDO domain features that might 

further reveal fusion operating mechanisms.  The portion of the coronavirus S 

transmembrane-cytoplasmic region that is highly hydrophobic and likely alpha helical 

includes ~ 42 amino acids, from K1263 to D1305 in MHV A59 (see Fig. 4).  The C-

terminal part of this region comprises the cysteine-rich motif, and if all cysteines are 

palmitoylated as is strongly suggested by 3H palmitate labeling (Bos et al., 1995; Petit et 

al., 2007), then this region would be extraordinarily lipophilic.  Indeed, each S trimer 

would add twenty seven 16-carbon chain lipids to the inner virion membrane leaflet. 

Several reports evaluating truncated coronavirus S proteins missing part or all of these 

acylated tails have provided valuable data on the minimal tail lengths required to preserve 

biological function (Bos et al., 1995; Bosch et al., 2005; Petit et al., 2007; Ye, Montalto-

Morrison, and Masters, 2004).  We used a more subtle approach to evaluate tail activities 

by substituting one or more of the nine cysteines in the palmitoylation motif with 

alanines.  We expected that the reduced palmitoylation in the C-A mutants would have 

deleterious effects on membrane fusion, in accordance with earlier reports (Bos et al., 

1995), but would not entirely eliminate fusion activities in the way that the truncation 

mutants do, making it so that we could get some insights into the specific points in the 

fusion reaction where the palmitates might be operating.   
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 One of our findings was that the distal cysteine-to-alanine substitutions in the 

endodomain reduced spike protein incorporation into virions.  Hydrophobic palmitates 

may determine assembly of spike into virus particles by helping position the ENDO 

domain along the cytoplasmic face of lipid bilayers, thereby facilitating interaction with 

the assembly-orchestrating M protein.  It has already been established that the S-M 

interaction is generally dependent on S protein palmitoylation, since addition of a 

pharmacologic inhibitor of palmitoylation (2-bromopalmitate) inhibits efficient S-M 

complex formation (Thorp et al., 2006).  In fact, palmitoylation is known to regulate 

protein-protein interactions (Shmueli et al., 2010).  Our data indicate that the most distal 

carboxy-terminal cysteines / palmitates are crucial elements for S incorporation.  

Notably, for other class I fusion proteins such as HIV-1 Env and influenza HA, 

palmitoylation of ENDO domain cysteines is also required for assembly (Chen, Takeda, 

and Lamb, 2005; Rousso, 2000), although these requirements vary with influenza virus 

strains.   For HIV and influenza, assembly and budding take place at or near the plasma 

membrane in lipid raft microdomains (Ono and Freed, 2001; Takeda et al., 2003; Zhang, 

Pekosz, and Lamb, 2000), and the requirements for glycoprotein incorporation into 

virions might be explained by the biophysical partitioning of palmitoylated proteins into 

lipid rafts (Melkonian et al., 1999).  Coronaviruses bud into the endoplasmic reticulum 

Golgi intermediate complex (ERGIC) (Krijnse-Locker et al., 1994; Tooze, Tooze, and 

Warren, 1984), where raft-defining lipids are relatively rare (van Meer, Voelker, and 

Feigenson, 2008).  Thus, the palmitate requirements for S assembly are less clear, but it is 
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possible that the extraordinary degree of S palmitoylation might organize adjacent ER 

lipids into rigid arrays that are similar to plasma membrane raft-like environments. 

 The efficiency of the S-M interaction in MHV appears to be more sensitive to 

changes in palmitoylation than in SARS-CoV.  A recent report showed that a 

palmitoylation-null SARS S protein, in which all 9 ENDO domain cysteines were 

mutated to alanines, was fully capable of interacting with SARS M protein (McBride and 

Machamer, 2010).  In contrast to MHV S protein, SARS spike contains an ER retrieval 

signal in its cytoplasmic tails that helps it localize to the virus assembly site (McBride, 

Li, and Machamer, 2007).  Thus, SARS spikes might not rely on palmitoylation for 

interacting with the assembly orchestrator M proteins, as much as MHV spikes do.  

 In our experiments, there were direct relationships between S assembly and S-

mediated membrane fusion competence.  For example, relative to wild-type S, the 2C-A 

mutant was poorly incorporated into virions (Fig. 12B) and was compromised in its 

membrane fusing potential (Figs. 16B and 17).  These relationships argue for a sorting 

process at the budding sites, with inclusion of S proteins into virions according to 

palmitoylation status.  This sorting process may insure that only the most palmitoylated 

and most fast-fusing S proteins are integrated into secreted virions.  S proteins with less 

palmitoylation sort to cell surfaces as free proteins and perform related cell-cell fusions.  

This cell-cell fusion activity appears to be far less dependent on quick fusion reactions, as 

the wild type and nC-A mutants were indistinguishable in our assays of syncytial 

formation (Fig. 15).   
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 On cell surfaces, the wild type and nC-A mutant S proteins likely occupy similar 

raft-like environments because all S forms were equally incorporated into the HIV-based 

pseudoviruses that are known to bud from lipid raft microdomains (Nguyen and Hildreth, 

2000) (Fig. 16A).  Using these HIV-S pseudoviruses, we found that the stepwise 

substitution of one, two and then three C-terminal cysteines caused progressively 

declining transduction.  This result could not be explained by any obvious defects in S 

protein structure or density on pseudoviruses, as uncleaved and cleaved S forms were 

equally abundant in all viruses (Fig. 16A).   Therefore we sought out more subtle effects 

of the endodomain mutations on the virus entry process by using HR2 peptides, potent 

inhibitors of virus entry, as probes for the intermediate folded S protein conformations 

(Fig. 17).  By adding HR2 peptides into media at various times before and after initiating 

the S refolding reaction, we could assess the time required for S proteins to enter into and 

out of the intermediate prehairpin state (see Fig. 1).  These experiments yielded 

enlightening results, allowing us to conclude that the endodomain mutants remained 

HR2-sensitive for prolonged periods, in essence slowing the kinetics of refolding relative 

to wild type S proteins.   

 Endodomain mutant S proteins transition from native- to unfolded prehairpin 

states at the same rate as wild type spikes, because HR2 peptides added 0-2 min after 

initiating S refolding resulted in a ~10-fold reduction for all S-mediated transductions 

(Fig. 17A).  Similarly, equivalent inhibitions were observed when HR2 peptides were 

added 0-4 min after initiation.  In contrast, when HR2s were introduced at various times 

after initiating S refoldings, the nC-A mutants were preferentially blocked (Fig. 17B).  
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These data support a view in which the duration of the prehairpin state is regulated by the 

palmitoylated endodomains.  The timely completion of hairpin closure appears to 

correlate with virus infectivity.   

 As we expected, the kinetics of S protein refolding was also reflected by the 

relative abundances of proteinase K-resistant 6-HB hairpin forms in the various virus 

preparations.  Our experiments here were modeled after Taguchi et al., who found that 

coronavirus S proteins can be triggered to refold into 6-HBs by exposure to soluble 

receptors (Matsuyama and Taguchi, 2002).  Indeed, soluble receptors created increasing 

6-HB levels with increasing incubation time (Fig. 18A) and the endodomain mutations 

impeded this 6-HB formation in accordance with the number of endodomain mutations 

(Fig. 18B).  All of these findings solicit speculations on the way in which the ENDO 

domains, specifically the cysteines and / or their palmitate adducts, change the rate-

limiting step of the membrane fusion reaction.  Given that the ENDO domain nC-A 

mutations progressively extend the HR2-sensitive stage, we suggest that the absence of 

these cysteines-palmitates raises an activation energy barrier between the HR2-sensitive 

and 6-HB stage.  It is known that the SARS-CoV HR2 regions exist in monomer-trimer 

equilibrium (McReynolds et al., 2008).  The idea is that the equilibrium has to be shifted 

toward monomers, so that separated HR2 helices can each invert relative to HR1 and 

attach in antiparallel fashion onto the HR1 trimers (see Fig. 1).  Given that the HR2 

regions in isolation can stick together into trimers (McReynolds et al., 2008), the role of 

the endodomain cysteines-palmitates could be to anchor the transmembrane spans such 

that a separation of HR2 monomers is maintained in the native S structure.  This 
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prevention of HR2 trimerization in the native structure would then allow membrane 

fusion to occur in a timely fashion.  We take our cues here from the cryo-EM 

reconstructions of HIV that reveal a tripod-like arrangement for virus spikes coming out 

of the virion membrane (Zhou et al., 2007; Zhu et al., 2006).  Class I protein – mediated 

membrane fusion may depend on pre-fusion spikes with separated HR2 domains.  

Palmitoylation of juxtamembranous cysteines may induce the transmembrane domain to 

tilt relative to the lipid bilayer plane, as suggested by Abrami et al. (Abrami et al., 2008), 

who found that unusually long transmembrane spans could be accommodated within 

membrane interiors if palmitoylated endodomain cysteines were nearby to presumably 

keep the spans from adopting a perpendicular orientation relative to the membrane.  If 

this concept applies to the S proteins, then extracellular extension from the membrane 

bilayer might be progressively more oblique with increasing endodomain palmitoylation, 

and in turn, the degree to which HR2 regions remain separated and poised for the 

membrane fusion reaction would relate to the extent of endodomain palmitoylation.   

 One final and obvious point about our study is that the workings of viral fusion 

proteins can only be partially understood by analyzing the structure and function of 

soluble protein ECTO domains.  The way that viral fusion proteins are embedded into 

virion and infected-cell membranes is crucial to our understanding.  For the 

coronaviruses, extensive palmitoylation of fusion protein endodomains may set up a 

metastable membrane embedment that is both preferentially selected for assembly into 

virions and is set up for rapid membrane fusion – related refolding.   
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Proteolytic Activation of Coronavirus Entry by Type II Transmembrane Proteases 

Surface glycoproteins facilitating virus-cell membrane fusions are synthesized 

and maintained in precursor intermediate folding states, and proteolysis permits refolding 

and energy release required to create stable virus-cell linkages and membrane 

coalescence.  In my dissertation research, I evaluated the proteolytic priming of SARS-

CoV S proteins and identified TMPRSS2 as a novel activating protease.  This finding 

was relevant to the field, as revealed by the publication of two other reports with similar 

findings (Glowacka et al., 2011; Matsuyama et al., 2010), which were put forward after 

our manuscript was submitted for review (Shulla et al., 2011). 

We began by evaluating several TTSPs for activation of S protein entry functions 

and found that TMPRSS2, a member of the Hepsin/TMPRSS subfamily (Bugge, Antalis, 

and Wu, 2009), was potent in enhancing S-mediated entry, more so than TMPR11a or 

11d (HAT).  The TMPRSS2 levels providing ~10 fold augmentation of SARS S-

mediated entry in 293T human embryonic kidney cells were similar to those found 

endogenously in Calu3 human airway epithelial cells (Taylor Heald-Sargent’s 

unpublished data).  Notably, TMPRSS2 is expressed in epithelial cells lining the nose, 

trachea and distal airways, including alveoli and type II pneumocytes as determined by in 

situ hybridization studies (Donaldson et al., 2002).  As such, TMPRSS2 may be a 

relevant protease for lower-airway SARS-CoV infections. 

TMPRSS2 expressed in virus target 293T cells was potent in augmenting SARS 

S-mediated entry.  This augmentation of cell entry was specific to SARS S, since VSV 

G-and Ebola GP-mediated entry was not affected by TMPRSS2 (Fig. 20B).  Furthermore, 
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the augmentation was most likely due to activating cleavage of SARS S, as evidenced by 

the presence of SARS S cleavage fragments in 293T target cells expressing TMPRSS2 

(Fig. 23).  At present we do not know the exact SARS S sequence motifs that are 

recognized and cleaved by TMPRSS2.  A recent report by Kam et al. (Kam et al., 2009) 

indicated that the related TMPRSS11a cleaved a purified recombinant form of SARS S 

protein at two sites: R667 and R797, which correspond to the activating cleavage sites 

determined by Belouzard et al. (Belouzard, Chu, and Whittaker, 2009).  TMPRSS2 could 

potentially cleave SARS S at positions R667 (SLLR/STSQ) and R797 (PTKR/SFIE), 

since both of these sites are similar to the plasminogen activated receptor 2 (PAR2) motif 

(SKGR/SLIG), which is a known substrate for TMPRSS2 (Wilson et al., 2005). 

TMPRSS2-mediated cleavage of SARS S at position R797 is particularly 

interesting.  This scission occurs immediately N-terminal to the putative fusion peptide 

(Madu et al., 2009) and as such it could liberate the fusion peptide from intervening 

sequences and allow for the membrane fusion event to occur.  We view this activating 

TMPRSS2-mediated proteolysis occurring after SARS spikes have unfolded into the 

prehairpin intermediates and fusion peptide have inserted into the target membrane, 

which is analogous to the proteolytic activation of MHV2 proposed by Matsuyama et al.  

(Matsuyama and Taguchi, 2009) (Fig. 41).  The concept of activating proteolysis 

occurring at a very specific stage during the viral fusion protein unfolding is novel among 

class I fusion proteins and certainly requires further mechanistic understanding.     
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Fig. 41. Model for TMPRSS2-Mediated Proteolysis of SARS S.  A SARS S protein 
trimer is depicted in its prehairpin conformation which is thought to be generated upon 
ACE2 receptor engagement.  TMPRSS2-mediated cleavage N-terminal to the fusion 
peptide might remove sterically interfering sequences, thus allowing for membrane 
fusion to occur.  

 

 

In contrast to the activating effect when expressed in virus target cells, TMPRSS2 

expression in virus producer cells led to premature proteolysis and inactivation of SARS 

S proteins (Fig. 24).  This is in sharp contrast to the TMPRSS2-mediated cleavage 

activation of influenza HA0 proteins during their transport in exocytic pathways 

(Bottcher et al., 2006) and to numerous furin-cleaved viral glycoproteins (Klenk and 

Garten, 1994).  It is possible that in vivo expression of TMPRSS2 may cause SARS-CoV 

reduced infectivities, in analogy to the pseudovirus context.  Interestingly, patients in late 

stage human SARS disease had very low levels of infectious virus but severe 

immunopathologies (Peiris et al., 2003), and there is evidence that non-infectious SARS 
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virus particles are pro-inflammatory and could elicit responses characteristic of late stage 

SARS immunopathologies (Tseng et al., 2005a).   

 SARS-CoV appears to have remarkable resourcefulness, as either endosomal 

acidophilic proteases or cell-surface TMPRSS2 could provide equivalent ~ 1,000-fold 

enhanced entry.  In contrast, only serine proteases target influenza HA (Chaipan et al., 

2009) and only cysteine proteases target Ebola GP (Chandran et al., 2005) during entry.  

Are these two divergent protease activities completely redundant or are there contexts in 

which TTSPs are specifically required?  Our hypothesis is that certain in vivo infections 

require the cell surface activities of TTSPs.  Indeed, very recent data by Huang et al. 

(Huang et al., 2011) showed that SARS-CoV, harboring spikes that were pre-cleaved 

with soluble trypsin protease, could bypass the inhibitory effects of interferon-inducible 

transmembrane (IFITM) proteins, which are present in endosomal compartments.  Thus, 

TMPRSS2 and other TTSPs providing cell surface proteolytic activation and possible 

immune evasion could determine SARS-CoV cell and tissue tropism.  The importance of 

TMPRSS2 during in vivo infections can be addressed pharmacologically by infecting 

human airway epithelial cultures (Sims et al., 2005) in the presence of type-specific 

protease inhibitors (Otlewski et al., 2005), or genetically by infecting mice lacking 

selected transmembrane proteases (Kim et al., 2006).  Taylor Heald-Sargent in the 

Gallagher lab is currently using short hairpin RNAs (shRNAs) to knock-down TMPRSS2 

levels in Calu-3 human airway epithelial cells and evaluate SARS S-mediated entry.     

The TMPRSS2 – mediated enhancement of SARS virus entry was accompanied 

by remarkable changes in ACE2.  At low doses, TMPRSS2 converted ACE2 from ~ 130 
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kDa to ~ 115 kDa forms, a change we believe comes either from ACE2 deglycosylation 

or from a failure to initially glycosylate the six predicted N-glycan sites in the ACE2 

ectodomain (Tipnis et al., 2000).  TMPRSS2 and the related hepsin protease are known to 

interfere with protein N-glycosylation by an unknown mechanism (Bertram et al., 2010), 

and so it is possible that under- or non-glycosylated membrane proteins are common to 

cells expressing various TTSPs.  Increasing amounts of TMPRSS2 converted the 

detectable portion of ACE2 to a ~ 20 kDa C-terminal fragment.  We did not identify the 

sister ectodomain fragment in culture media, but did readily detect soluble ACE2 

liberated from cells by TNF-alpha converting enzyme (TACE), an unrelated protease 

known to cleave ACE2 (Jia et al., 2009; Lambert et al., 2005).  It is possible that TTSPs 

cleave at multiple arginines and lysines throughout ACE2, leaving only short peptides 

(Hooper et al., 2001).  At any rate, this ACE2 diminution amounts to “shedding”, a well-

known phenomenon thus far attributed only to tumor necrosis factor-α converting 

enzyme (TACE).  On the basis of the ~20kDa fragment mobility in Fig. 25B, the 

TMPRSS2 cleaves more N-terminal than TACE (Iwata, Silva Enciso, and Greenberg, 

2009; Jia et al., 2009), and indeed we have found that a TACE-resistant ACE2 (Jia et al., 

2009) is subject to TMPRSS2 shedding (data not shown), indicating distinct protease 

targets.  That ACE2 shedding is achieved by at least two divergent proteases suggests 

multiple post-translational regulations of this enzyme, testifying to the importance of 

ACE2 regulation in SARS pathogenesis (Kuba et al., 2005) and lung homeostasis in 

general (Imai et al., 2005).   
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ACE2 diminution in response to TMPRSS2 was readily apparent by 

immunofluorescence microscopy as well.  Indeed, the inverse relationships between 

TMPRSS2 and ACE2 levels on cell surfaces (Fig. 26A) again suggested that TMPRSS2 

associates with ACE2 during or after exocytic transport, and that TMPRSS2 occludes, 

degrades, and / or sheds the vast majority of the ACE2 that is capable of binding to viral 

S proteins.  The findings also highlight the miniscule, virtually undetectable ACE2 levels 

that will support SARS virus entry as long as the TMPRSS2 protease is available.  In 

concert with this view, 293T cells, which are thought to have little if any ACE2 (Moore 

et al., 2004), were made susceptible to SARS S entry by TMPRSS2 alone (Fig. 28B).  

The readily detectable host susceptibility determinant here is the protease, not the 

primary virus receptor.   

The results of co-immunoprecipitation analyses supported the view that ACE2 

and TMPRSS2 associate together.  While catalytically-inactive TMPRSS2 (S441A) did 

not co-precipitate ACE2, the wild type TMPRSS2 did, and this ACE2:TMPRSS2 

connection was striking given that the overall ACE2 levels were low in the presence of 

the active TMPRSS2 protease.  These findings indicated an unusually stable tethering of 

the active enzyme, but not the inactive zymogen, with one of its substrates.  It is possible 

that most of the ACE2-TMPRSS2 interaction that was observed by immunoprecipitating 

whole cell lysates is a reflection of intracellular rather than cell surface association.  A 

future direction would be to restrict the analysis only to ACE2 and TMPRSS2 present at 

the cell surface.  Furthermore, it would be important to determine the interacting regions 

in ACE2 and TMPRSS2 proteins so that association of these two entry factors can be 
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correlated with efficiency of virus entry.  One possibility is that these two proteins 

interact by disulfide linkages, as recent experiments in the Gallagher lab do suggest.  

TTSPs are known to shed their enzyme-active domains into extracellular 

environments (Antalis et al., 2010).  For example, soluble TMPRSS2 is enriched in the 

seminal fluid of the prostate (Afar et al., 2001; Lucas et al., 2008)and soluble HAT is 

commonly found in the sputum of patients with chronic respiratory disease (Yasuoka et 

al., 1997).  This is interesting because soluble proteases, such as trypsin and elastase, are 

known to activate SARS S proteins that were already bound to ACE2 receptors 

(Matsuyama et al., 2005).  Thus we asked whether TMPRSS2 might operate in “trans” to 

activate SARS S-mediated entry into adjacent ACE2+ cells.  We found no evidence for 

this; adjacent TMPRSS2 did not influence SARS S-mediated entry.  Corroborating this 

finding, we further demonstrated that TMPRSS2 did not digest ACE2 when the two 

membrane proteins were expressed in adjacent cells.  Therefore we suggest that the cells 

most susceptible to SARS-CoV infection are those in which ACE2 and TTSPs are 

simultaneously present, and that at least the TMPRSS2 on ACE2-negative cells has 

limited paracrine activities on ACE2 or SARS-CoV infections. 

 Following publication of our findings, Glowacka et al. (Glowacka et al., 2011) 

showed once again that TMPRSS2 activates SARS-CoV S protein to mediate fusion. 

Furthermore, they showed that ACE2 and TMPRSS2 were co-expressed in type II 

pneumocytes, which are SARS-CoV target cells in vivo.  The latter finding implicates the 

relevance of TMPRSS2 in activating SARS-CoV S in the lungs of infected individuals.  
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Localization of Receptors and Proteases in Lipid Rafts: Roles for Lipid Rafts as 

Virus Entry Factors 

 Cell surface lipid rafts serve as platforms for entry of several viruses, including 

coronaviruses (Chazal and Gerlier, 2003).  The importance of membrane rafts and 

cholesterol for coronavirus cell entry has been extensively documented (Choi, Aizaki, 

and Lai, 2005; Glende et al., 2008; Lu, Liu, and Tam, 2008; Nomura et al., 2004; Thorp 

and Gallagher, 2004).  However, the evidence for localization of ACE2 receptor in lipid 

rafts was somewhat controversial, since it was shown that ACE2 associates with lipid raft 

containing fractions in African green monkey kidney (Vero) cells (Lu, Liu, and Tam, 

2008), but not Chinese hamster ovary (CHO) cells (Warner et al., 2005).  In our 

experiments we focused only at the relevant cell surface localized ACE2 and determined 

that ACE2 was entirely associated with lipid raft containing fractions in human 

embryonic kidney (293T) cells.  The discrepancy in the literature with respect to ACE2 

raft localization is most likely due to the methodologies used rather than the difference in 

cell types.  Indeed, in our own experiments we observed that evaluating total 

(intracellular + cell surface) ACE2 protein levels resulted in complete ACE2 association 

with non-raft fractions (data not shown).  Only when the analysis was restricted to the 

small amount of ACE2 protein present on the cell surface and not the pool of protein 

accumulated intracellularly, we were able to detect complete association of ACE2 with 

TX-100 resistant membrane fractions (Fig. 34A).  

We expected TMPRSS2 to partition into lipid microdomains together with ACE2, 

since our data argued that infecting viruses depended simultaneously on these two 
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proteins.  The fact that TMPRSS2 degraded ACE2 made it challenging to 

microscopically identify cells in which both these proteins were present.  However, when 

rare ACE2+-TMPRSS2+ cells were found, clear co-localizations were immediately 

evident (Fig. 26).  Notably, TMPRSS2 is set apart from other TTSPs by its longer, 

potentially palmitoylated 84-residue cytoplasmic tail (Bugge, Antalis, and Wu, 2009), 

which may confer positioning into lipid rafts.  Our data indicated that only ~30% of cell 

surface TMPRSS2 proteins were associated with TX-100 resistant membranes, while the 

rest were present in non-raft fractions.  However, the ratio of TMPRSS2 present in raft 

vs. non-raft fractions changed upon binding and entry of SARS-S bearing HIV 

pseudoparticles.  We view that the SARS-CoV susceptible cell may be defined by 

tendencies for the ACE2 and TMPRSS2 to congregate together in lipid raft 

microdomains.   

We do not know the exact role of lipid rafts in SARS-CoV entry yet.  It is 

possible that membrane rafts act as a lipid planar milieu favoring interactions between 

ACE2 and TMPRSS2 that have some intrinsic affinity for each other.  Also membrane 

rafts may dictate a particular route of entry into cells, such as the one involving lipid raft 

resident caveolin proteins.  It has been suggested that the human coronavirus 229E uses 

lipid rafts and caveolae to enter cells (Nomura et al., 2004).  Further studies are necessary 

to identify the route of SARS-CoV entry and to determine whether caveolae are involved 

in the process.   
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ββββ1 Integrin: A Putative Coreceptor for HCoV-NL63 S-Mediated Entry 

 The hypothesis that integrins were involved in human NL63-coronavirus entry 

was supported by the fact that integrins serve as primary or secondary receptors for both 

enveloped and nonenveloped viruses (Stewart and Nemerow, 2007).  In addition, the 

primary HCoV-NL63 receptor ACE2 resides in lipid raft microdomains (Lu, Liu, and 

Tam, 2008), as do integrins (Resh, 2006; van Zanten et al., 2009), and one report 

documents close association of ACE2 with β1 integrins (Lin et al., 2004). 

 In our experiments using 293T cells we showed that blocking β1 integrins with 

specific monoclonal antibodies led to significant reduction in NL63 S-mediated entry, but 

not SARS S- or VSV G-mediated entry.  Furthermore, knock-down of β1 integrin protein 

levels also led to a reduction in NL63 S-, but not SARS S-mediated entry.  We view the 

effect of β1 integrins on NL63 S-mediated entry linked to the activity of cellular 

proteases that may be required for cleaving and activating NL63-S proteins.  Indeed, HIV 

particles harboring pre-cleaved NL63 S (cl) proteins were not dependent on β1 integrins 

for entry as much as HIV particles harboring NL63 S (wt) proteins.  We do not know the 

identity of cellular proteases that might be cleaving NL63 S proteins; however we view 

endosomal cathepsins as likely candidates, in analogy to SARS S- and Ebola GP-

mediated entry (Chandran et al., 2005; Simmons et al., 2005).   

 Reoviruses, which are nonenveloped viruses, also depend on endosomal 

cathepsins B and L cleavage for productive entry into cells (Ebert et al., 2002).  In 

addition, reoviruses require β1-integrins for efficient infection (Maginnis et al., 2006).  

Interestingly, pre-treating reoviruses with exogenous chymotrypsin protease relieves the 
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need for β1 integrins (Maginnis et al., 2006), similar to our findings with NL63 S (cl).  

 Beta-1 integrins might be important for shuttling virions into appropriate 

protease-rich endocytic compartments.  The endocytosis of integrin heterodimers occurs 

by both clathrin-dependent and clathrin-independent endocytic mechanisms (Caswell, 

Vadrevu, and Norman, 2009).  The cytoplasmic tails of β1 integrins contain NPXY (X is 

any aminoacid) motifs, which are known to interact with endocytic adaptor proteins and 

be recruited in clathrin coated pits (Pellinen et al., 2008).  Notably, β1 integrins 

containing mutations in the NPXY motifs did not support productive reovirus entry into 

cells due to the trafficking of viruses into lysosome-like organelles (Maginnis et al., 

2008).  It would be interesting to determine whether the same β1 integrin cytoplasmic 

motifs are involved in HCoV-NL63 S-mediated entry into the endocytic organelles that 

provide the milieu for productive infection.  

 We don’t know yet which β1 integrin heterodimer is involved in HCoV-NL63 

entry.  As shown in Fig. 42, β1 integrins can pair with at least 10 different α- subunits, 

thus forming the largest integrin subfamily.  It is known that HEK293 cells, which we 

have used in our studies of virus entry, express αv and α5 integrins (Li et al., 2001) that 

could pair with β1 integrins.  We view α5β1 integrin heterodimer as a likely candidate, 

mainly because NL63 S proteins contain the well-known α5β1 integrin binding motif 

NGR in their sequences (Koivunen, Gay, and Ruoslahti, 1993).  Mutation of this motif in 

NL63 S (R199K) resulted in reduction of virus entry, suggesting that there might be a 

possible interaction between NL63 S and α5β1 integrin via the NGR motif. 
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Fig. 42. Major Integrin Pairings. β integrins are shown in blue and alpha integrins in 
red.  8 β-subunits and 16 α-subunits are depicted. Lines connecting α and β integrins 
indicate the known pairings of the two subunits.  
 
 
 

 The entry of several human coronaviruses in differentiated airway epithelial cell 

cultures has been evaluated and infection appears ta take place preferentially from the 

apical rather than the basolateral surface of these cells (Jia et al., 2005; Tseng et al., 

2005b).  Almost all integrins expressed in airway epithelia are concentrated in the 

basement membranes; however they can be rapidly induced around the lateral and apical 

surfaces upon injury (Sheppard, 2003).  Other viruses, such as adenoviruses access 

basoletaral integrins for their entry by disrupting tight junctions (Walters et al., 2002). It 

is not known whether HCoV-NL63 uses similar aggressive methods for entry, or instead 

relies on coinfections with other viral pathogens.  Of note, respiratory infections do cause 

epithelial lung injury, and very often HCoV-229E and HCoV-NL63 are accompanied by 

ββββ1

αααα1 αααα2

αααα3

αααα4

αααα5

αααα6αααα7

αααα8

αααα9

ααααv

ββββ7 ααααE

ββββ4

ββββ3

ββββ5

ββββ6 ββββ8

ααααIIb

ααααD

ααααX

ααααM

ααααL
ββββ2ββββ1

αααα1 αααα2

αααα3

αααα4

αααα5

αααα6αααα7

αααα8

αααα9

ααααv

ββββ7 ααααE

ββββ4

ββββ3

ββββ5

ββββ6 ββββ8

ααααIIb
ββββ1

αααα1 αααα2

αααα3

αααα4

αααα5

αααα6αααα7

αααα8

αααα9

ααααv

ββββ7 ααααE

ββββ4

ββββ3

ββββ5

ββββ6 ββββ8

ααααIIb

ααααD

ααααX

ααααM

ααααL
ββββ2

ααααD

ααααX

ααααM

ααααL
ββββ2



 

 

126 
 

 

a second respiratory virus infection (van der Hoek et al., 2005). 
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