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ABSTRACT 

Leukemia Stem Cells (LSCs) from Acute Myeloid Leukemia (AML) require the 

activity of the transcription factor NF-κB to maintain stemness and drive tumor 

formation. Blocking NF-κB can preferentially eliminate LSCs in vitro with minimal 

effects on healthy Hematopoietic Stem and Progenitor Cells (HSPCs), making NF-κB a 

compelling target for anti-leukemia therapies. However, blocking NF-κB in vivo can only 

extend survival for a short period of time before transplanted mice succumb to the 

disease. I propose this is due to components of the in vivo niche supporting LSC survival 

and compensating for the inhibition of NF-κB. 

I observed patients with partially differentiated blast-like AML (subtypes M3, 

M4, and M5) have significantly elevated levels of pro-inflammatory cytokines TNFα and 

IL-1α/β (TNF and IL1) circulating in their peripheral blood. Further study revealed these 

cytokines are primarily produced by LSCs because such cells express several times more 

of TNF and IL1 than their healthy tissue counterparts. I found that TNF and IL1 stimulate 

the growth and expansion of LSCs while inducing cell death in HSPCs. Also, LSC-

conditioned media alone is sufficient to drive apoptosis/necroptosis in HSPCs that can be 

prevented by blocking TNF and IL1, suggesting a mechanism for hematopoietic 

repression commonly observed in AML cases. 

TNF and IL1 drive their pro-inflammatory effects on target cells through 

activation of cellular signaling networks. Both TNF and IL1 are potent activators of NF-
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κB in almost all cells studied, connecting the ability of these cytokines to drive LSC 

growth with the need of NF-κB for survival. In addition, TNF and IL1 also stimulate 

activation of JNK signaling which operates in parallel to NF-κB in LSCs and HSPCs. I 

found that JNK stimulation results in cell death in HSPCs by subsequent inactivation of 

pro-survival Bcl-2 family proteins by phosphorylation. However, LSCs convert JNK-

mediated cell death signals into proliferation/survival signals by both limiting the signal 

duration to <60 min through dephosphorylation by Map Kinase Phosphatase 5, and also 

by upregulating JNK’s nuclear target c-Jun. Such short duration of JNK activation 

correlates to activation of JNK’s nuclear targets without activating the death signal. 

I determined that concurrent inhibition of NF-κB and JNK has two major effects: 

(1) combined inhibition specifically targets LSCs in vitro and in vivo, and (2) the toxicity 

in healthy HSPCs due to loss of NF-κB signaling is mediated by JNK, making the 

combined treatment protective. I can substantially increase survival in AML-transplanted 

mice if they are treated with combination of NF-κB and JNK inhibition in vivo. I can 

further extend survival in leukemic mice when I treat with blockers to upstream pro-

inflammatory cytokines: anti-TNF, anti-IL1, and NF-κB inhibitor. These data provide a 

strong rationale to treat AML patients by combined inhibition of both TNF/IL1- JNK and 

NF-κB signaling. 
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CHAPTER 1 

INTRODUCTION 

Leukemia Stem Cells (LSCs), like their healthy tissue counterparts, are a subset of 

Leukemia Cells (LCs) capable of maintaining tumor homeostasis, are contextually 

undifferentiated, and can remain in a relatively slow-cycling state until signaled to 

proliferate. LSCs possess the ability to regenerate the leukemia tumor.1,2 While the 

leukemic burden can be almost entirely eliminated (clinically: complete remission) in 

most patients when treated with chemotherapeutic drugs, some LSCs remain due to their 

intrinsic apoptosis resistance and niche-based protection. This renders these cells immune 

to traditional chemotherapies, making these LSCs the population of cells widely 

considered to be responsible for minimal residual disease (MRD) following therapy.3 

Cells expanded from the LSCs retained in the MRD population are essentially pre-

selected for chemotherapeutic resistance. Therefore, in order to eliminate MRD and 

prevent relapse, we need to develop therapies that will target LSCs at the very core of 

what makes a LSC a stem cell, not just reducing blast percentage by killing differentiated 

progenitor and blast cells.4,5 If we could block the stem cell maintenance machinery 

components from LSCs, then we should be able to more effectively reduce the risk of 

disease relapse. My studies suggest I can accomplish this through manipulating pro-

inflammatory signaling in the leukemic stem cell niche.  



2	  
	  

 
	  

All stem cells have a home, which is a specialized microenvironment called the 

“niche.” The niche provides all the extrinsic support stem cells require to block 

differentiation, ensure cell survival, and maintain self-renewal.6,7 LSCs also reside in a 

niche, and although the LSC niche is located in the bone marrow along with the HSPC 

niche, its microenvironment is fundamentally altered.8 Unlike the hematopoietic stem cell 

(HSC) niche, the LSC niche is pro-inflammatory and does not sustain normal 

hematopoiesis. This alteration is critical for sheltering LSCs from chemotherapy and 

retaining the necessary stem cell maintenance processes.9 Identifying these and other key 

differences between the healthy HSC niche microenvironment and the LSC niche 

microenvironment will provide us with the necessary tools to block LSC functions while 

protecting HSPCs.  

A primary function of normal HSC niches is to protect the HSCs from excessive 

inflammatory stimuli. By working with collaborators, we determined LSCs produce large 

amounts of inflammatory cytokines, Tumor Necrosis Factor alpha (TNF) and Interleukin-

1 (IL-1), which they secrete into their niche. Normally, these inflammatory cytokines 

induce differentiation, apoptosis and necroptosis in normal tissue cells.10,11 In AML 

patients, elevated levels of TNF are associated with higher leukocyte counts, lower 

complete remission rates, and poorer prognoses.12 I found that some patients with AML 

have high levels of circulating TNF in their blood serum when compared to healthy 

donors. While normal levels of TNF in healthy individuals with no major immune 

activity should be approximately 12 pg/mL, I found some patients had circulating TNF as 

high as 65 pg/mL. This indicates an acute induction of inflammatory reactions in the 



3	  
	  

 
	  

body. I measured serum of patients from the M2, M3, M4, and M5 subgroups of AML 

and found the increase in circulating TNF was primarily in patients from M3 (APL), and 

M4/5 (monocytic) AMLs (Figure 1A). Many cancer patients can exhibit inflammation 

(elevated TNF, IL1, IL6, TGF-B) due to the massive amounts of cell death caused by 

tumor formation and immune response or the effects of chemotherapy. Therefore I sought 

to determine if the observed TNF levels were being produced by the tumor cells 

themselves, or by macrophages/immune cells/stromal cells. To do this, I isolated AML 

blasts (CD34+) from the peripheral blood of these patients and performed qRT-PCR 

analysis to determine if TNF mRNA was being produced. I found that tumor cells from 

these patients had a 5-6 fold increase in TNF production (Figure 1B). Large scale 

analysis of samples from AML patients from collaborator at University of Chicago 

corroborated this data, showing an increase in TNF and receptors in M3, M4, and MLL-

Rearranged M5 AMLs (Figure 1C). This validates my selection of MLL-AF9 as a fusion 

gene to transform my mouse leukemia cells because MLL-AF9 AMLs are characterized 

as M4 and M5.  

  However, while we observed elevated TNF levels in these patients, we did not 

understand the role TNF played in affecting LSC survival. To test this, I stimulated LCs 

with an increasing gradient of exogenous recombinant Tnf, from levels resembling 

normal physiological state (0.01 ng/mL) to acute inflammatory disease (50 ng/mL) and 

measured colony formation. I found that this stimulation increased the colony formation 

rate of LCs in a dose-dependent manner, while increasing doses of Tnf reduced the  
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Figure 1. Several subtypes of AML produce TNF 

 

 

 

 

A) TNF concentrations in peripheral blood of AML patients as shown by ELISA from 
individual patient samples. B) TNF expression in LC isolated from individual AML 
patient samples as shown by qRT-PCR assay. Horizontal bars in A and B indicate mean 
levels. * indiciates p<0.05 as determined by students T test when compared to healthy 
donor control. C) cDNA microarray analysis of TNF and TNF receptors (R1 and R2) in 
AML patient samples. t(8:21), t(15:17), and inv(16) are AML subtypes M2, M3, and M4, 
respectively. MLL leukemias include MLL-AF4 (B-ALL) and MLL-AF9 (AML-M5). 
CD34+ HSPCs, CD33+ myeloid progenitors, and/or MNCs from healthy donors were 
used as controls. 
 
A and B were acquired by collaborators Drs. Jing Li and Xingyu Li at Shanghai Normal 
University, while C was acquired from collaborator Dr. Jianjun Chen at University of 
Chicago  
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colony formation capacity of hematopoietic stem and progenitor cells (HSPCs, mixture of 

HSC and progenitors). Tnfr-/- LCs deficient for both Tnf receptors (Tnfr1a/1b, Tnfr-/- 

hereafter) were used as negative controls because they lack the Tnf receptors and should 

not respond to Tnf stimulation (Figure 2A). Tnf receptor deletion was confirmed 

genetically by PCR of tail cell DNA. Wild type and knockout alleles are denoted.  

 I then asked if the increase in colonies upon Tnf stimulation was directly Tnf-

dependent. To answer this, I grew LCs in suspension culture and treated with exogenous 

Tnf every day for four days. I found that this treatment was able to significantly increase 

the growth rate of LCs when compared to vehicle treated control cells as control. Tnfr-/- 

LCs were also used as controls, and showed a reduced growth rate when compared to 

their Tnfr+/+ (WT hereafter) counterparts (Figure 2B).  

 I determined LCs produce their own endogenous Tnf, and this endogenous Tnf 

could affect the growth rate of WT LCs. To account for this, I treated LCs in suspension 

culture with an anti-TNF monoclonal antibody (mAB) to neutralize soluble Tnf. This 

treatment slowed the growth of the LCs to the rate of Tnfr-/- LCs, suggesting that the 

higher rate of cell growth in WT LCs versus Tnfr-/- LCs is due to TNF (Figure 2C). 

Vehicle treated LCs ,WT and Tnfr-/-, were used as controls. These TNF-expressing AMLs 

were later found to be highly sensitive to NF-κB and JNK inhibition treatment (Figure 

39). However, I found that some patient samples were sensitive to co-inhibition of NF-κB 

and JNK, but did not express TNF (Figure 42). Therefore, I looked at other pro-

inflammatory cytokine expression in AMLs using a large-scale microarray analysis of  
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Figure 2: TNF promotes LC growth 

 

 

 
A) CFU from LCs and HSPCs were treated with indicated doses of Tnf in 
methylcellulose. The numbers of CFU in each cell type in Tnf-treated groups were 
normalized to CFU number in vehicle treated group. Genotype results are shown for WT 
and Tnfr-/- LCs. B and C) LCs and Tnfr-/- LCs were treated with Tnf (B) or anti-TNF 
mAB (C) in suspension culture daily for four days. Daily live cell counts were measured 
by trypan blue exclusion assay. Values shown are mean ± SD from three independent 
trials. * indicates p<0.05 when compared to vehicle treated control 
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Figure 3: Many different types of AML produce IL1 and TNF 

 

 

A) 580 different human AML samples were analyzed by cDNA array for up and 
downregulation of various factors compared to internal controls. Green indicates low 
expression, red indicates high expression. Different AML subtypes are indicated. Genes 
listed to the right of the vertical red bar are upregulated along with TNF in M4/5 AML. 
B) Serum samples taken from newly diagnosed AML patients analyzed for TNF, IL1a, 
and IL1B by ELSIA. HSPCs from healthy donors were used as negative controls.  
C) Relative expression of mRNA levels compared to HSPC expression of TNF as 
control. cDNA levels were normalized to GAPDH. * indicates p<0.05 when compared to 
HSPC control as determined by one-way ANOVA with Bonferonni post-hoc test. 
 
 
cDNA array data in A was generated by Dr. Jianjun Chen at University of Chicago. 
Patient data from B and C was generated by Dr. Jing Li at Shanghai Normal University, 
Shanghai, China. 
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581 patients from a collaborator. I found that in addition to TNF, the same AML subtypes 

that express TNF also expressed an additional pro-inflammatory cytokine, IL1α and IL1β 

(IL1 hereafter) (Figure 3A). These patients expressed both cytokines in their peripheral 

blood (Figure 3B), and the cytokine was determined to be coming from the leukemia 

tumors (Figure 3C). To study the pro-survival effects of IL1 signaling in LCs and 

HSPCs, I treated LCs and HSPCs in parallel with increasing doses of exogenous IL1, and 

measured colony formation. I found that even with treatments at 1 ng/mL, colony 

formation was significantly enhanced in both WT LCs and Tnfr-/- LCs. Further increases 

in IL1 treatment concentration drove a dose-dependent CFU increase in both cell types. 

This suggests that IL1 is operating as a Tnf-independent survival signal (Figure 4A). 

Vehicle treated cells were used as controls. HSPC colony formation increased with the 

dose of IL1 in a dose-dependent manner (Figure 4B). I thought this might be due to 

enhanced colony formation of progenitor cells following IL1 stimulation, but that the 

stem cells may be negatively affected. 

 To test this, I stimulated HSPCs ex vivo with two doses of IL1. If this treatment 

affected HSPCs, then the treated cells would have impaired engraftment and 

reconstitution of hematopoiesis in vivo. This turned out to be correct. HSPCs treated with 

the low dose of IL1 had repressed ability to reconstitute lethally-irradiated mice when 

compared to vehicle-treated control. High dose-treated HSPCs showed the lowest 

reconstitution ability (Figure 4C). Vehicle-treated HSPCs were used as controls, and 

exhibited stable reconstitution during the competitive transplantation assay. 
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I determined that TNF drives a powerful survival signal that is augmented by IL1 

signaling, operating in parallel. that functions parallel to NF-κB through activation of 

JNK signaling. These pro-inflammatory cytokines function in an autocrine manner to 

support LSC survival and self-renewal while also functioning in a paracrine manner to 

induce apoptosis/necroptosis in neighboring HSPCs. This effectively clears HSPCs from 

the LSC niche and may account for hematopoietic repression observed in AML patients.  

 I found that, conversely, blocking IL1 in LCs can repress colony formation. 

Blocking IL1 and Tnf together was able to accomplish the largest amount of CFU 

repression in LCs. This further confirms my hypothesis that LSCs use TNF and IL1 as 

critical survival signals. They accomplished this by first treating LCs with an IL1 

receptor antagonist to block IL1 in combination with a monoclonal antibody against Tnf. 

They saw a dose-dependent decrease in CFUs with increasing doses of IL1 receptor 

antagonist (IL-1Ra, Figure 5A). They confirmed this by performing similar experiments 

in Tnfr1a-/-1b-/- (Tnfr-/- hereafter) LCs treated with an increasing dose of IL-1Ra and 

found similar results, suggesting that these effects are specific (Figure 5B). Finally, they 

confirmed the specificity of the IL-1Ra by knocking down the IL1 receptor by shRNA 

(Figure 5C) and treating with anti-Tnf antibody, measuring CFUs. Vehicle treated cells 

expressing a control shRNA were used as control (Figure 5D).  

Based on these observations, I proposed that LSCs produce pro-inflammatory 

cytokines in order to both promote their own survival and proliferation as well as repress 

normal stem cell function. 
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Figure 4. Exogenous IL1 enhances CFUs of LCs, promotes HSPC repression 

 

 

A) WT and Tnfr-/- LCs were treated with indicated doses of exogenous IL1 in 
methylcellulose, and colonies were counted seven days later. Vehicle-treated LCs of each 
genotype were used as negative controls. Results shown are mean ± SD from three 
independent trials. B) WT HSPCs were treated with indicated doses of IL1 in 
methylcellulose, and colonies were counted ten days later. Vehicle-treated HSPCs were 
used as negative controls. Results shown are mean ± SD from three independent trials.  
C) CD45.1 HSPCs were treated ex vivo with indicated doses of IL1 and competitively 
transplanted 1:1 with vehicle-treated CD45.2 HSPCs in lethally-irradiated recipient mice. 
Chimerism was measured monthly. Results shown are mean ± SD from n=5 recipient 
mice for each condition. * indicates p<0.05 as determined by one-way ANOVA with 
Bonferonni post-hoc test. 
 

These results were obtained by Dr. Jing Li at Shanghai Normal University, Shanghai, 
China. 
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LSCs are dependent on NF-κB, a transcription factor, for maintaining survival and self-

renewal.13,14 Blocking NF-κB in vitro can preferentially eliminate LSCs while having 

minimal effects on HSPCs. This creates a promising target for anti-leukemia therapies. 

However, in vivo NF-κB inhibition in leukemia-transplanted mice only minimally 

extends their survival, suggesting that some component of the in vivo leukemic niche is 

stimulating a compensatory survival signal to NF-κB. I determined that LSCs secrete 

pro-inflammatory cytokines TNF and IL-1 into the niche microenvironment, reorganizing 

the niche to support LSC survival and self-renewal. These cytokines are responsible for 

stimulating NF-κB-independent survival signals mediated through the JNK-AP1 survival 

pathway in LSCs and cell death in HSPCs through activation of the JNK-Bid/Bad/Bax 

apoptosis pathway. By blocking TNF/IL-1-mediated JNK signaling, I can re-sensitize 

LSCs to NF-κB inhibition in vivo, driving the disease into complete remission. The goal 

of this project is to determine how to improve elimination of LSCs by adding to the 

effects of NF-κB inhibition. In vivo experiments show NF-κB inhibition alone is 

insufficient to clear LSCs. In fact, NF-κB inhibition in vivo can only extend the lifespan 

of transplanted mice by <1 week. This is in stark contrast to the complete elimination of 

LSCs in vitro with a similar treatment. I propose that LSCs can escape NF-κB inhibition 

in vivo by utilizing TNF/IL1-dependent, NF-κB-independent survival signaling. I will 

accomplish this goal by examining two aims (Figure 6). 

In the first aim of this dissertation, I explored how LSCs escape the effects of NF-

κB inhibition in vivo through endogenously secreted TNF. In LCs, I found TNF acts as an  
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Figure 5. Co-inhibition of Tnf and IL1 represses LC CFU ability 
 

 

 

A) WT and Tnfr-/- LCs were treated in parallel with indicated doses of IL1 receptor 
antagonist (IL-1Ra) in methylcellulose. Colonies were read seven days following 
treatment. B) WT LCs were treated with anti-TNF and IL-1Ra alone or in combination in 
methylcellulose. Colonies were read seven days following treatment. C) LCs were 
transduced with shRNA-expressing retroviral vectors targeted to IL1 receptor. 
Knockdown was confirmed by qRT-PCR analysis. D) IL-1 knockdown LCs were treated 
with vehicle of anti-TNF and seeded for CFU assay in methylcellulose. * indicates 
p<0.05 as determined by one-way ANOVA with Bonferonni post-hoc test. Results shown 
are mean ± SD, and are indicative of three independent trials of experimental replicates. 
 
These results were obtained by Dr. Jing Li at Shanghai Normal University, Shanghai, 
China. 
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autocrine survival signal by activation of JNK as a survival signal. They accomplish this 

by strict regulation of JNK through TNF receptor endocytosis, MKP5-mediated 

dephosphorylation of JNK, and upregulation of nuclear substrate c-Jun. All of these 

factors contribute to allow LCs to escape TNF-mediated cell death and instead use the 

cytokine as an autocrine survival and proliferation signal.  

In the second aim of this dissertation, I explored how other pro-inflammatory 

cytokines contribute to NF-κB-independent survival of LCs. I determined that TNF alone 

did not explain the pro-inflammatory survival phenotype observed. Therefore I concluded 

that there were additional pro-inflammatory cytokines secreted by LCs and used as 

autocrine survival signals. I determined that LCs also secrete pro-inflammatory IL1, and 

that IL1 signaling augments the TNF-mediated survival signal through weak activation of 

similar pro-survival signaling molecules JNK, NF-κB, ERK, and c-JUN. 

I conclude that by blocking both TNF and IL1 together in LSCs can I maximally 

eliminate NF-κB-independent survival signaling. The inhibition of these pro-

inflammatory cytokines might also assist in re-organizing the LSC niche in vivo to a state 

that is more similar to the normal healthy homeostatic hematopoietic niche. Mice 

xenografted with AML and treated with TNF and IL1 blockers are highly sensitive to 

NF-κB inhibition, with complete disease remission in some mice.
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Figure 6. Flow chart diagram of dissertation specific aims. 
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CHAPTER 2 

LITERATURE REVIEW 

Stem Cell Overview 

Complex organisms are made up of many different tissues, all cooperating with 

each other to carry out the everyday tissue demands of life. Each tissue, in turn, is made 

up of many different cell types, all cooperating with each other to carry out the function 

of the tissue. Each cell within the tissue originates from a common ancestor cell called a 

“stem cell.” Stem cells are a special subset of cells found within each tissue that are 

responsible for maintaining homeostasis and function of their tissue by (1) remaining 

dormant until signaled to divide, and (2) differentiating into the appropriate types of cells. 

These stimuli can include acute signals such as inflammation released during physical 

trauma, which will stimulate stem cells residing in the bulge of the hair follicle in the 

epidermis to differentiate into new melanocytes and keratinocytes to heal the wound, as 

well as more long-term homeostasis signals such as the blood stem cells reacting to low 

oxygen at high altitude by differentiating into large numbers of oxygen-carrying red 

blood cells.15-18 

Stem cells were first characterized in the early 1960’s as specialized cells called 

“Hematopoietic Stem Cells,” that were located somewhere in the bone marrow, and were 

capable of dividing and regenerating blood cells.19 Since then, scientists have found 

similar types of cells in almost every major tissue in the body.20-23 These stem cells all 
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share common features: they are undifferentiated, they remain quiescent until activated, 

and they can differentiate into any cell type from their tissue upon proper stimulation.24,25 

These cells are so powerful at tissue regeneration that, such as the case of hematopoietic 

tissue, a small number of stem cells (< 30) are sufficient to completely repopulate the 

tissue in mice.26 Stem cells process along a one-way path from a single undifferentiated 

cell to a completely differentiated tissue effector cell in stages, from stem cell, to 

progenitor cell, to committed progenitor (Figure 7). With each division, the progenitor 

cells become slightly more differentiated. A fertilized oocyte called the zygote and their 

early daughter cells (morulas stage) can generate, with enough divisions, every cell in the 

body and the extraembryonic tissues (including the placenta). This type of cell is called 

“totipotent.” The early embryonic (blastocyst stage) cells produced by totipotent stem 

cells will form all somatic cells (ectoderm, endoderm and mesoderm) and germline cells 

of the developing embryo. These cells care called pluripotent stem cells. Pluripotent cells 

can form any cell of the embryo, but are not capable of creating the placenta. As the 

pluripotent cells divide, they eventually create each tissue layer, and within it, each 

individual tissue.27 While most cells will become mature differentiated effector cells, a 

small subset of cells will retain some stemness and will maintain tissue homeostasis 

throughout the life of the organism. These are called somatic stem cells or multi-potent 

stem cells. With each division, these somatic stem cells will become partially more 

differentiated, progressing from stem cell to multipotent progenitor cell, to common 

progenitor cell, and finally to completely differentiated effector cell (Figure 7).  
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Figure 7: Stem cell differentiation paradigm 

 
 

 
 
Hierarchy of stem cells (SCs) and their progeny: Multipotent progenitors (MPPs), 
committed progenitors (CPs), and mature (M) cells.  
 
 
Figure adapted from Breslin and Volk, et al. 2014. 
The final type of stem cell is called the germ-line stem cell, and is responsible for  
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When a stem cell is signaled to divide, there are three possible outcomes: 

symmetric expansion (self-renewal expansion), asymmetric division (also known as self-

renewal maintenance), and symmetric differentiation. Each outcome is determined by 

factors related to tissue homeostasis. Symmetric expansion is a situation in which a single 

stem cell divides into two undifferentiated stem cells. This process is commonly seen in 

situations calling for an increase in stem cell number and will continue until a sufficient 

number of stem cells is reached, such as observed in the rapidly growing tissues of post-

natal mammals, or in post-irradiated immune-depleted mice.28,29 Asymmetric division is a 

process where one stem cell will divide and create a copy of itself and a multipotent 

progenitor cell. The stem cell re-enters quiescence and the multipotent progenitor cell 

goes on to divide into tissue-specific effector cells. This occurs in tissue homeostasis 

where cell numbers are stable, and is widely considered the default program for stem cell 

division.30-35 Symmetric differentiation is a process in which one stem cell divides and 

differentiates into two multipotent progenitor cells without replenishing the lost stem cell. 

This is useful if there are proportionally too many stem cells or if the demand for tissue 

effector cells is especially high. However, this situation can also occur to the detriment of 

the organism if the normal machinery for maintaining stem cells is somehow broken 

(Figure 8).   

Stem Cell Self-Renewal 

Self-renewal is a cell-division process unique to stem cells, where one stem cell divides 

to create a multipotent progenitor cell and another stem cell. Self-renewal allows for 

tissue regeneration without exhausting the stem cell pool. There are three general  
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Figure 8. Stem cell division and fate paradigms 
 

 

 

 

Undifferentiated stem cells (black filled circles) can divide through three different 
programs. Symmetric differentiation produces two partially differentiated MPPs (white 
circles, far left), asymmetric division produces one SC and one MPP (middle), and 
symmetric expansion produces two SCs (far right). 
 
The fate a stem cell undergoes upon stimulation is determined by a balance of cell 
autonomous machinery, and is highly regulated (bottom). 
 
Figure adapted from Breslin and Volk, et al. 2014. 
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processes common to all self-renewing stem cells: (1) mechanisms that block 

differentiation in order to maintain the undifferentiated state, (2) mechanisms that ensure  

cell survival by blocking apoptosis and senescence, and (3) mechanisms to promote 

proliferation during expansion and quiescence during maintenance (Figure 9). 

There is a key core transcriptional network responsible for self-renewal in 

pluripotent stem cells, such as embryonic stem (ES) cells and induced pluripotent stem 

(iPS) cells. These factors are Oct4, Nanog, Klf2 and Sox2，which normally function as a 

complex. These factors promote self-renewal by up-regulating proliferation/survival 

genes and down-regulating a collection of genes involved in apoptosis, senescence, and 

differentiation. In addition, these pluripotent factors also maintain their own levels by 

binding to their regulatory region in an auto-regulatory manner. Furthermore, these 

pluripotent factors can reset the epigenetic landscape in differentiated mature tissue cells, 

play an indirect role in opening the regulatory region of self-renewal related genes 

including themselves. Adding these factors in any mature effector cells can actually 

reprogram and dedifferentiate those cells back to a pluripotent stem cell state. Such 

reprogramed stem cells are called iPS cells.36-39  

There is also a key core transcriptional network responsible for self-renewal in 

each type of somatic multipotent stem cell. Such a core transcriptional network is formed 

by tissue specific transcriptional factors， which ensure self-renewal by promoting 

proliferation and blocking differentiation at same time preventing stress-related apoptosis 

or senescence. Differentiation blockage has been determined to be one of the key 
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Figure 9. Factors that drive stem cell self-renewal. 

 
 

 
 
In order to self-renew, stem cells need to block differentiation, ensure cell survival, and 
promote proliferation/keep quiescent. 
 
Figure adapted from Breslin and Volk, et al. 2014. 
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mechanisms for stem cell self-renewal and such mechanism seems tissue specific. In 

some tissues, comprised of only one cell type, blocking stem cell differentiation can be 

achieved with few factors. For examples, BMP-Bam signal in Drosophila germline stem 

cells and Notch-CSL signal in satellite muscle stem cells, are sufficient to block 

differentiation and ensure self-renewal.40-47 However, some somatic stem cells reside in 

tissues with diverse lineages of effector cells need (such as hematopoietic and nervous 

systems), and the machinery to maintain the undifferentiated state is significantly more 

complicated. Blocking differentiation appears to be the most important factor, though, in 

maintaining adult tissue stem cell self-renewal.48-58 Multiple signals and factors are 

normally involved in maintaining the undifferentiated state in stem cells. This might 

explain why it is so difficult to expand hematopoietic and nerve stem cells in vitro; it 

might also explain why so many self-renewal factors have been identified in these tissue 

stem cells. However, there are many self-renewal factors are required for the self-renewal 

of almost all types of tissue stem cells. For example, 1) Polycomb proteins Bmi1, EZH1 

and EZH2 regulate self-renewal of stem cells by repressing P15-P16/P19/P21 -mediated 

apoptosis and senescence; 59-69 2) HIF1α and the FoxO family of transcription factors 

regulate self-renewal by preventing ROS-stress –induced cell cycle arrest and 

apoptosis;70,71 3) many different tissue stem cells block intrinsic apoptosis through 

upregulation of Bcl-2 and Bcl-xL, and c-FLIP to prevent extrinsic apoptosis 

(Overexpression of such anti-apoptosis genes has been shown to actually increase the 

stem cell pool in most tissues studied);72-76 4) Tissue stem cells also upregulate DNA-

repair proteins to prevent the accumulation of DNA damage;71,77,78 5) Many stem cells 
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also express telomerase, a protein responsible for maintaining telomere length. With each 

trip through the cell cycle, chromatid telomeres are shortened by 20-50 bp due to end-

replication deficiency generated through subsequent divisions.79-84  

Quiescence is a defining characteristic of adult tissue stem cells. They spend the 

majority of their lives being quiescent, which is essentially a dormant state where they 

are not actively dividing, and have a very low level of protein production. Both in vitro 

and in vivo studies have shown stimulation of stem cells into rapid proliferation will 

compromise self-renewal and ultimately exhaust the stem cell pool. This is likely due to 

an inability to complete all tasks of the self-renewal machinery (DNA damage repair, 

telomere lengthening, replacing chromatin modifications), and driving either 

apoptosis/death of the stem cell or differentiation into an effector cell. In support of this, 

almost all tissue stem cells are slow-cycling when they replicate.72,85-88 Some studies even 

suggest slow cycling is one of the most important mechanisms utilized by adult stem cells 

to retain multipotency and maintain self-renewal.89-92 The slow-dividing nature of stem 

cells also allows for ample time between divisions to repair any accumulated DNA 

damage before it can trigger the apoptosis machinery. Although these are all cell-intrinsic 

mechanisms for maintaining self-renewal, stem cells grown outside of ideal environments 

will still differentiate and eventually die. Stem cells require a special microenvironment 

called a niche to properly maintain themselves and tissues. 

Stem Cell Niche Overview 

The stem cell niche is the home of the stem cell, and is composed of two major 

components: stationary/cellular (support cells, extracellular matrix, contact-dependent 
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signals), and secreted/extracellular (soluble cytokines, oxygen concentration, Figure 10). 

This microenvironment is responsible for enriching the stem cell, and maintaining it in an 

undifferentiated, multipotent state by promoting self-renewal, blocking differentiation 

and preventing apoptosis/senescence.6,7 In fact, many tissues have two identified niches:  

one a quiescent niche, and the other an active niche. Stem cells residing in the quiescent 

niche tend to be dormant, but stem cells in the active niche tend to proliferate and readily 

differentiate into mature effector cells upon induction. The dynamic state of stem cells 

(quiescent vs. active) can be regulated by movement of the stem cells between the two 

niches (Figure 11).93-95 

The stationary components of the stem cell niche are specialized cells that anchor 

stem cells through cadherins and integrins, and communicate self-renewal signals 

through contact-dependent signaling molecules. Some of the best studied contact-

dependent niche signals include development-related factors such as Notch ligands, 

Wnts, BMPs, membrane-bound Kit, and Hedgehog.96-102 Many of these factors are cell 

surface mediated signals that can only operate in trans, suggesting that the stem cell must 

be in direct contact with the niche cell to maintain undifferentiated state and promote 

self-renewal. These contact-dependent signals also provide spatial context for mitotic 

spindle alignment during replication. When the stem cell divides during self-renewal, one 

cell will remain in contact with the niche and the other cell, not in contact with the niche, 

will differentiate into a multipotent progenitor. In the Drosophila ovary, germ line stem 

cells interact with cap cells (niche cells) via E-cadherins.103,104 The self-renewal signal is 

augmented by a gradient of self-renewal mediating factors (produced by the cap cells)  



25	  
	  

 
	  

Figure 10. Proposed model for the cellular and non-cellular components of the stem 
cell niche 
 

 

 
 
 

The stem cell niche is formed by stationary components which provide a stable physical 
residence for the stem cells, together with other support cells, and extracellular 
components. Based on the type of stationary component, cellular or noncellular, two 
types of stem cell niche have been proposed. (a) The stationary components of the 
cellular niche are specialized niche cells, and (b) the stationary component of the 
noncellular niche is a specialized ECM called the basement membrane. 
 
Figure adapted from Breslin and Volk et al. 2014. 
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such as Unpaired and BMP. Disruption of E-cadherins in the germ line stem cells causes 

detachment and chemotaxis away from the cap cell and cytokine gradient, and results in 

differentiation due to loss of the self-renewal signal leading to eventual depletion of the 

stem cell pool. SNO cells (Spindle shaped N-cadherin+ Osteoblastic) in the hematopoietic 

niche express cell-membrane bound SCF, Jagged, and Angiopoietin-1, which work 

together to restrict proliferation and maintain stemness.105-109 Studies in rat mammary 

epithelial stem cells show deletion of integrin signaling between the stem cell and the 

basement membrane (a specialized component of the extracellular matrix) causes 

disorientation of the mitotic spindle resulting in loss of self-renewal during replication 

and eventual depletion of the stem cell pool.110,111  

In addition to stationary components of the stem cell niche, there are also support 

cells that accompany the stem cell and provide support by augmenting the existing niche 

signals. The support cells also play a role in effecting the migration and trafficking of 

stem cells between quiescent and active niches. An example of such a cells is the CAR 

cell (CXCL-12 Abundant Reticular) in the HSPC niche. These CAR cells secrete SDF 

and IL6, which act as chemotractants for the HSPCs, drawing them strongly to the bone 

marrow and increasing their affinity for the vascular niche. This cell is hypothesized to 

chaperone HSPCs from the quiescent osteoblastic bone marrow niche to the active 

vascular niche.105 In addition to CAR cells, two additional types of support cells have 

been identified in the bone marrow niche: CD146+ osteoprogenitors and Nestin+ 

mesenchymal stem cells.112,113 HSPCs in the vascular niche are thought to be actively 

cycling and producing progenitor  
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Figure 11. Active and quiescent niches regulate stem cell self-renewal 
 
 

 
 
 
 

Figure adapted from Breslin and Volk, et al. 2014. 
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cells. In the Drosophila ovary, the somatic stem cell is a support cell component of the 

germline stem cell niche that produces progeny, migrates away from the cap cell (niche) 

during development, and is always in contact with the germline stem cell. The somatic 

stem cell produces progeny (some of which become more niche cells), and its direct 

contact with the germline stem cell and progenitor cells is required for complete 

differentiation and formation of functioning follicles.114-117  

Some non-neural stem cell niches have been identified that have requisite 

sympathetic nervous stimulation. In the HSPC niche, nonmyelinating schwann cells (part 

of the nervous system) innervate the osteoblasts and stimulate them to provide critical 

growth factors such as TGF-β and CXCL-12 which support the niche and promote stem 

cell dormancy and self-renewal. Denervation of the hematopoietic niche causes a sharp 

reduction in osteoblastic tendrils and mobilization of HSCs.118 

The extracellular components of the stem cell niche are all the soluble factors 

contained in the microenvironment, as well as some of the extracellular matrix 

components responsible for orientation and location signaling during replication and self-

renewal. These components are frequently secreted by classic niche cells, but some are 

long-distance paracrine signals produced from cells that are far away from the stem cell 

niche or even delivered from the peripheral circulation.  

The extracellular matrix (ECM) consists of a complex network of interlocking 

molecules including glycosaminoglycans and hyaluronic acids, as well as proteins 

including collagens, fibronectins, and laminins. These proteins are produced both by stem 

cells and niche cells and immerse the stem cell in niche ECM-mediated signaling through 
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surface receptors such as integrins and CD44.119-126 Focal adhesion signaling is critical 

for directing stem cell migration and anchoring, while integrins are implicated in 

correctly aligning the mitotic spindle during cell division, which is responsible for proper 

cell polarity driving asymmetric self-renewal division.31,33,35 

In addition to the extracellular matrix, there is a broad array of soluble cytokines 

in the niche microenvironment. These cytokines are responsible for induction of 

quiescence or proliferation, and self-renewal or differentiation. The HSPC niche is one of 

the best studied models for soluble cytokine-mediated stem cell maintenance. Some 

identified soluble factors responsible for maintaining quiescence and self-renewal are 

thrombopoietin (TPO), SCF, and SDF1 in the bone marrow niche. Mice deficient in these 

cytokines have stem cell activation and depletion as well as mobilization of stem cells 

away from the niche microenvironment. Other cytokines are responsible for driving 

differentiation in response to some tissue need, including IL6, IL3 and G-CSF. Most of 

these niche factors drive critical survival machinery that prevents senescence or 

apoptosis/necroptosis in response to inflammatory stimuli such as TNFα, IL1α/β, and 

interferons.127-133  

The role of oxygen is also well-understood in the stem cell niche. High oxygen 

content, as seen near the vasculature, induces cell stress-driven stem cell proliferation and 

differentiation. Low oxygen content supports low cell stress and quiescence.134-138 The 

HSPC niche is thought to be composed of two separate niches (quiescent osteoblastic 

niche, and active vascular niche), each with a different stem cell activity and ambient 

oxygen level. The vascular niche is near the blood vessels, is highly perfused with fresh 
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oxygen, and is the hypothesized location of actively dividing stem cells. The osteoblastic 

niche is further away from the vasculature and has a lower oxygen content. Here, HSPCs 

are not stressed by oxygen levels and remain quiescent. However, some studies also show 

that the space between the vascular niche and the osteoblastic niche is only one cell-width 

in distance, suggesting that these two may share the factors which regulating the dynamic 

of quiescence and proliferation of stem cells.139 

A dynamic balance of these cytokines exists in the stem cell niche, forcing any 

external stimuli to overcome the quiescence and survival signals provided by the niche 

before the stem cell exits and divides. This is how the niche can both promote stem cell 

quiescence and self-renewal, yet at the same time provide the tissue with a steady source 

of appropriate numbers of progenitor cells to maintain tissue homeostasis. Deviation from 

these signals causes stem cells to either expand and become exhausted or divide 

uncontrollably. If a mutation occurs during this cellular expansion that represses cell 

death or further promotes cycling and accumulates more mutations (Figure 12).  

Acute Myeloid Leukemia Overview 

Acute myeloid leukemia (AML) is a diffuse tumor of malignantly transformed 

blood stem and progenitor cells from the myeloid lineage. This tumor is composed of 

partially differentiated non-functioning blast cells. There are many known transforming 

events in AML, including point mutations and genetic deletions. While most AMLs are 

karyotypically normal, some AMLs can have two chromosomes fused together, creating 

a fusion gene. Fusion genes are formed when double strand break repair results in two 

genes from different chromosomes being fused together, though deletions/inactive 
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mutation of tumor suppressors and chromosome amplifications /active mutation of 

oncogenes are also common. These types of leukemia are characterized by the cell type 

in which the mutations occur. Acute Promyelocytic Leukemia (APL) is caused by a 

fusion between PML-RARα. Other common fusion genes and their associated subtypes 

are: RUNX1-ETO (M2 subtype of AML), and CBFb-MYH11 (M4 subtype of AML). 

Other genetic abnormalities are also common in AMLs, including deletions on 

chromosomes 5, 9, and 13, as well as trisomy of chromosomes 8 and 21. Overexpression 

of fusion genes and deletions/triplications of these portions on chromosomes generates a 

pro-survival bias for these cells, and promotes self-renewal and uncontrolled 

proliferation. However, roughly half of AMLs are cytogenetically normal, meaning they 

do not express any detectable fusion genes.140 

AML has a distinct disease progression. The disease is diagnosed by bone marrow 

samples containing > 30% leukemic blasts (FAB morphologic diagnosis and 

classification), and characterized by flow cytometric analysis of cell surface proteins as 

well as cytogenic techniques (molecular diagnosis and classification). AML prognosis is 

highly dependent on age of onset, with 60-85% of patients <65 y.o.a. achieving complete 

remission (as determined by <5% blasts in bone marrow) and 30% achieving long-term 

survival (> 5 years following treatment). However, if the patient is >65 y.o.a., their 

chance of achieving complete remission is 40-55% and only 10-20% achieve long-term  
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Figure 12. Niche factors that regulate stem cell self-renewal.  
 
 

 
 
 
 

Figure adapted from Breslin and Volk, et al. 2014. 
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survival. Clinical treatment of AML is often composed of a “7+3” regimen of seven days 

of cytarabine plus three days of anthracycline treatments. This treatment protocol 

eliminates blasts from the bone marrow and peripheral blood. Some patients also receive 

a stem cell transplantation consolidation therapy following induction chemotherapy, 

depending on the disease karyotype, prognosis, and age of onset. In late-stage AML, the 

blast percentage is so high that the blood can no longer carry sufficient oxygen for proper 

tissue function or platelets for hemostasis, rendering these patients hypoxemic and 

coagulopathic.  

AMLs are diagnosed and characterized within eight different subgroups, 

according to the French-American-British (FAB) subtyping system, with increasing 

integers indicating the level of relative maturation of the predominating blasts or the 

predominating cytogenetic abnormality. M0 is observed as undifferentiated AML, M1 is 

an AML with minimal maturation, M2 has evidence of maturation (40% of such AML 

are caused by translocation of the RUNX1 and ETO genes). M3 is also known as Acute 

Promyelocytic Leukemia (APL), >95% of M3 AML is caused by translocation and fusion 

of the PML and RARα genes, and will be discussed in this review later. M4 is an acute 

myelomonocytic leukemia. >30% is caused by fusion of CBFβ and MYH11 genes due to 

inv(16). M5 is an acute monocytic leukemia and includes AMLs caused by fusion of the 

MLL gene to partner genes (such as AF9 and ENL, although MLL fusions are also 

detected in other AML subtypes as well as Acute Lymphoblastic Leukemias and Mixed 

Lineage Leukemias), and M6 is a relatively rare occurrence of acute erythroid leukemia. 
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M7 is an AML formed of predominantly transformed megakaryocytes (acute 

megakaryocytic leukemia), and is also relatively rare.  

Successful treatment options are limited for AML. There is currently only one 

subtype of AML that can be reliably put into long-term remission: Acute Promyelocytic 

Leukemia (APL), which is caused by chromosomal translocations between chromosomes 

15 and 17 in myeloid progenitor cells, resulting in the fusion of two genes: PML and 

RARα. This type of leukemia is successfully treated by a combination of All-Trans 

Retinoic Acid (ATRA) and Arsenic Tri-oxide (AsO3). APL patients treated with ATRA 

and AsO3 have a 95% long-term remission rate.141 Current consensus mechanism of such 

treatment is AsO3 induces apoptosis and ATRA degrades the fusion gene protein product 

and induces differentiation to functioning granulocytes. 

However, there is always a small population of leukemic cells that can evade 

induction/remission chemotherapy.142,143 Because these treatments cause selective 

pressure on the AML cells, they will remove all the sensitive cells and leave behind any 

cells that have some kind of mutation or dysregulated gene that allows them to survive. 

As a result, any future treatment with similar drugs will be ineffective at removing this 

disease. This phenomenon is the basis of resistance, and in cancer is called Minimal 

Residual Disease (MRD). Cells from the MRD population are the primary reason for 

relapse and the eventual death of the AML patient. Because leukemic MRD cells are 

capable of repopulating the tumor after chemotherapy, it was commonly believed that 

MRD cells are enriched “Leukemia Stem Cells” (LSCs).144  
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Leukemia Stem Cells 

An increasing body of evidence suggests that neoplastic cells found in many 

tumor types are functionally heterogeneous in their ability to initiate tumor growth as 

determined by in vivo transplantation in mouse models.1,2 This suggests that tumors, like 

normal tissues, are composed of a heterogeneous hierarchy of different cell types, with 

some cells able to produce more tumor cells (stem cells), and partial differentiated 

progenitor and blast cells. These cancer stem cells share some characteristics of normal 

tissue stem cells: they are slow dividing, relatively resistant to cell death, and can 

maintain tumor homeostasis through differentiation into tumor progenitor cells. These 

characteristics make cancer stem cells very difficult to treat because almost all 

conventional chemotherapy drugs target actively dividing cells and induce cell death via 

DNA damage. In addition, cancer stem cells might have powerful machinery in place to 

prevent cell death and repair DNA damage.145-150 

It is generally believed that cancer stem cells (CSCs) are initiated from tissue 

stem cells which have self-renewal capacity. However, CSCs could also arise from 

mutated versions of progenitor cells in any stage of differentiation if self-renewal ability 

can be obtained.151-153 Genetic deletion of the APC gene in intestinal crypt stem cells 

ultimately leads to expansion of the cell population into a malignant tumor and a variety 

of intestinal cancers.154 These studies suggest a stem cell origin of CSCs. Committed 

myeloid progenitors or granulocyte-macrophage progenitors from Bcr-Abl+ chronic 

myeloid leukemia patients in blast crisis phase of the disease commonly express high 

levels of active β-catenin and have self-renewal capability.155,156 Many leukemic fusion 
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genes such as MLL-AF9 and MOZ-TIF2 can induce leukemia development from myeloid 

progenitors.  These studies suggest progenitor origin of CSCs.  In certain cancers, genetic 

mutations and niche signaling collaborate to induce the development of CSCs by 

dedifferentiation. For example, chronic inflammation in the liver (due to viral infection or 

cirrhosis) and colon induces a perpetual state of wound-healing and can lead to mutations 

and activations of genes that can impart self-renewal and dedifferentiation in previously 

terminally-differentiated hepatocytes and intestinal epithelia through genetic instability 

and downregulation of tumor suppressor p53 (Figure 13).157-161  

LSCs, like any other stem cell population, are a specialized set of cells that are 

capable of regenerating a similar type of leukemia upon transplantation. They are able to 

repopulate leukemia tumor in leukemia remission patients after withdrawing 

chemotherapeutic drugs. LSCs are a fascinating cell type to study because they arise from 

healthy blood stem and progenitor cells, and reside in the HSPC niche, but they hijack the 

niche and secrete inflammatory factors that repress the healthy blood stem cells. LSCs 

were first identified as lin-CD34+CD38- AML cells that could regenerate leukemias in 

xenograft animal models.1,2,162,163  

LSCs, like all other stem cells, require factors to promote self-renewal, block 

differentiation, and prevent apoptosis/senescence. One of a well-studied self-renewal 

factor in LSCs is the polycomb repressor complex component BMI-1, which is 

responsible for repressing senescence and cell cycle inhibition genes p16Ink4a and P19Arf.  

BMI-1 has been regulated by many different mechanisms, including 

transcriptional, translational and post-translational. For example, a recent study suggests 
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that BMI1 activity is negatively regulated by AKT phosphorylation at serine residues 

251, 253, and 255. Such phosphorylation of BMI1 is linked to proliferation and 

differentiation of LSCs, leading to reduction of the stem cell pool and regression of the 

tumor.164 

Activated β-catenin, through the Wnt signaling pathway, travels to the DNA and 

forms trimeric complexes at the regulatory regions of proliferation and survival genes 

with the AP1 family transcription factors Jun and Fos. Together, the expression of these 

genes block senescence and maintain the undifferentiated status of LSCs.165 NF-kB is 

another critical transcription factor required for maintaining LSC survival through the 

upregulation of antiapoptotic genes like c-FLIP, Bcl-2, Bcl-xL, and anti-necroptotic 

genes like cIAP1/2. Recent studies show that NF-κB is even required for function of 

oncoproteins involved in MLL-rearranged AMLs, contributing to the building evidence 

that NF-κB activity is critical for LSC function.13 

Integrins have been recently identified as critical mediators of LSC survival and 

self-renewal. LSCs deficient in integrin beta3 have defects in engraftment and survival 

due to reduction in intracellular kinase SYK activity. This results in loss of powerful 

antiapoptotic and dedifferentiation signals, and the exhaustion of the LSC pool.166 
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Figure 13. Model for cancer stem cell development.  
 
 

 
 
 
Model of cancer initiating cell (CIC) and incorporation of the cancer stem cell (CSC). 
CICs arise from SCs, MPPs, or CPs, and adopt malignant features that transform them 
with cancerous features. CICs give rise to CSCs, and CSCs within heterogeneous tumors 
give rise to differentiated cancer blasts (CBs). This process is similar to the 
differentiation hierarchy of normal tissue stem cells. 
 
 
Figure adapted from Breslin and Volk, et al. 2014. 
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NF-κB overview 

Nuclear Factor kappa B (NF-κB) is a major mediator of immunity, inflammation, 

tissue regeneration, and cancer signaling.167-169 It is a member of a transcription factor 

family composed of many different subunits that form dimers and translocate to the 

nucleus to drive target gene expression (Figure 14). Canonical NF-κB is comprised of 

p65-RelA, c-Rel and P105/50-NF-κB1, while non-canonical NF-κB is comprised of 

precursor p100/p52-NF-κB2 and Rel-B. Most studies identify canonical NF-κB for being 

critical in maintaining LSC function in AML, while non-canonical NF-κB functions in 

many types of B lymphocytic malignancies. In AML, NF-κB is primarily stimulated by 

inflammatory cytokines like TNF and IL1, as well as by the toll-like receptor (TLR) 

family responsible for detecting pathogen-associated molecular patterns (called PAMPs) 

and tissue damage-associated molecular patterns (named DAMPs). The standard 

paradigm for NF-κB activation begins with surface receptor activation (TNFr1/2, IL1r, 

TLRs), and recruitment of scaffolding proteins (such as TRAF2/5) to the intracellular 

portion of the receptor. These scaffolding proteins are poly-ubiquinated by E3 ubiquitin 

ligases in the cIAP family to form K63 type of poly-ubiquitin chains. Both TAB2/TAK1 

and IKK (containing IKKα/β/γ) complexes are recruited to these chains, where TAK1 is 

activated by an auto-phosphorylation mechanism which in turn activates the IKK 

complex by phosphorylating IKKβ. IκBα’s function is to bind NF-κB and obscure the 

nuclear localization signal, effectively sequestering NF-κB in the cytoplasm. After 

phosphorylation, IκBα is polyubiquinated (K48 type) and targeted for destruction by the 

proteasome.170 This interaction is so strong that NF-κB can be artificially blocked by 
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overexpression of a super repressor mutation of IκBα (IκBαSR), which has both IKK 

phosphorylation serine sites mutated to alanine.  

NF-κB, once freed from the IκBα suppressor protein, translocates to the nucleus 

to activate target genes. The transactivation domain of the NF-κB protein binds to other 

NF-κB subunits, and travels to specific sequences in the promoter regions of target genes, 

where the DNA-binding domain of the two subunits interacts with regulatory regions of 

target genes, most of which happen to be Bcl-2 family proteins, c-FLIP antiapoptotic 

proteins, or TNF family inflammatory proteins. The cellular signaling results of NF-κB-

activated gene products are complex, because NF-κB can activate both pro-apoptotic 

inflammatory cytokines and anti-apoptotic proteins. Pro-inflammatory cytokines induce 

NF-κB activity, and NF-κB induces pro-inflammatory cytokine production, resulting in a 

feed-forward loop or induces expression of negative regulator of NF-κB (such as IκBα 

and A20) to turn off signal in a feed-back loop. This results in a cycle of NF-κB activity 

upon stimulation with Tnf, as observed in mouse embryonic fibroblasts, of peaks every 

30-60 minutes. This is attributed to the degradation and replenishment of IκBα repressor 

subunits.171  

Healthy HSPCs have a low level of NF-κB activity, making them prone to 

destruction by inflammatory cytokine stimulation. Although these pro-inflammatory 

cytokines can induce a low-level of NF-κB, it is not enough to overcome the pro-

apoptotic/necroptotic signals imparted by these cytokines. LSCs, on the other hand, have 

a very high basal level of NF-κB activity, rendering them mostly immune to  
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Figure 14. Activation paradigm of NF-κB. 
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any cell death mediated by inflammatory cytokine stimulation, while capitalizing on the 

pro-survival and proliferative effects of NF-κB.172  

These characteristics of NF-κB make it an attractive target for many different 

types of cancers with elevated NF-κB activity. In fact, several in vitro studies show that 

NF-κB activity is critical for maintaining LSCs. Inhibition of NF-κB activity can 

completely eliminate LSCs in vitro before toxicity is seen in healthy HSPCs.14 However, 

because NF-κB mediates a powerful anti-apoptotic signal in most tissues studied through 

upregulation of several different families of survival genes, generating a clinically-

effective inhibitor is challenging.4,5,173 The best molecules available for clinical inhibition 

focus on either blocking IKK activity or preventing degradation of the IκBα repressor 

subunit through proteasome inhibitors.3,5,174 These treatments have been approved and are 

standard of care for some cancers like Multiple Myeloma. In AML, the observed effects 

of NF-κB inhibition in vitro appear to vanish in vivo, suggesting that there are additional 

signaling pathways activated in vivo that can compensate for NF-κB inhibition in LSCs. I 

propose that these signals are provided by the LSC niche. 

 Leukemia Stem Cell Niche 

AML patients often have repressed hematopoiesis. In my studies, I found that 

patients with AML have significantly elevated serum levels of inflammatory cytokines 

circulating in their peripheral blood, and that these inflammatory cytokines are being 

produced by the leukemia cells. These inflammatory cytokines act in a paracrine manner 

to induce cell death in neighboring HSPCs, and act in an autocrine manner to drive 

survival and proliferation in the LSCs.172 Additionally, many of the standard-of-care 
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chemotherapies are designed to induce apoptosis and necroptosis in rapidly dividing 

leukemic blast cells. Ours and other’s studies suggest the LSCs are resistant to these 

therapies because they change the healthy HSPC niche into a leukemia promoting 

environment.  

  The dependence of a niche for the growth of disease stem cells is well 

demonstrated in a pre-leukemic neoplasm called Myelodysplastic Syndrome (MDS). 

MDS cells are a myeloid neoplasm that reconfigure the bone marrow niche, ultimately 

displacing and rendering ineffective the resident HSPCs. MDS is characterized by 

refractory anemia due to insufficient bone marrow hematopoiesis. Approximately 10% of 

MDS patients progress to leukemia due to the expansion of mutant blasts. In in vivo 

murine studies, MDS cells isolated from patients cannot be xenografted into mice without 

concurrent transplantation of mesenchymal stromal stem cells from the same patient. 

These studies suggest that the disease mesenchymal stem cells promote MDS stem cell 

self-renewal through activated secretion of niche factors such as N-cadherin, IGFBP2, 

VEGFA, and LIF. Without MDS mesenchymal stromal cells, MDS stem cells are unable 

to engraft in recipients, suggesting these stromal cells are a critical component of the 

CSC niche.175 

LSCs reorganize the hematopoietic stem cell niche 

LSCs utilize a complex signaling network to integrate various survival and self-

renewal signals from the niche in order to promote their own survival, self- renewal, and 

block differentiation. Many of these self-renewal factors are similar to common stem cell 

self-renewal factors (i.e. Bmi1, Wnt/B-catenin, SCF, and Bcl-xL). In fact, LSCs can 
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secrete the chemotractant SCF that can attract both LSCs and healthy HSPCs to the 

malignant LSC niche. This causes death and repression of the HSPC population in 

patients, which can be reversed by inhibition of LSC-secreted SCF.176 Osteopontin 

(OPN), a cytokine secreted by osteoblasts in the bone marrow, also acts as a 

chemotractant to anchor blood stem cells in the niche. While this is advantageous for 

maintaining HSPCs, LSCs also utilize OPN as a pro-survival/self-renewal signal. 

Following cytotoxic chemotherapy, LSCs retreat to the OPN-rich HSPC niche, where 

OPN induces quiescence and apoptosis-resistance. Blocking OPN in this system induces 

proliferation and detachment from the niche, and can synergize with cytotoxic 

chemotherapies.177 Additionally, LSCs have the ability to change the HSPC niche 

microenvironment through secretion of pro-inflammatory cytokines and conversion of 

vascular endothelia into vascular tissue-associated AML cells and mesenchymal stromal 

cells (MSCs) into Cancer-Associated Fibroblasts (CAFs). This pro-inflammatory 

microenvironment is toxic to healthy HSCs.  

MSCs and vascular endothelia support LSCs in the reorganized niche 

LSCs also have been shown to localize to the vascular hematopoietic niche, due to 

their innate ability to survive in an oxygen-reactive environment.178 They accomplish this 

by converting neighboring vascular endothelia cells into vascular tissue-associated AML 

cells through the upregulation of V-CAM and CD105. Through this mechanism, LSCs 

recreate the vascular niche into a supportive microenvironment. It should be noted that 

LSCs have also been identified outside of the bone marrow niche and in the peripheral 
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blood and spleen, suggesting that LSCs have the ability to survive and self-renew outside 

of the niche. 

Following therapies, LSCs can also induce local MSCs to form Nestin+ CAFs. 

CAFs are characterized as large, spindle-shaped mesenchymal cells that are 

characteristically similar to fibroblasts.179,180 In leukemias, studies suggest that LSCs 

secrete pro-inflammatory cytokines which recruit Nestin+ MSCs to the leukemic niche 

and differentiate them into CAFs. These CAFs then support the LSCs by 

secretion/surface expression of additional pro-inflammatory and LSC-supportive 

molecules such as TGF-β, Wnt, and Notch.180,181 

By inducing local MSCs to become CAFs cells, LSCs convert the low-

oxygen/non-inflammatory healthy hematopoietic niche into a malignant/high-

oxygen/pro-inflammatory leukemic niche. This leukemic niche promotes the survival of 

LSCs in the presence of cytotoxic chemotherapies. Therefore, treatments are needed that 

can evict LSCs from the niche and restore the niche to its original healthy form. Some 

studies in mice suggest that displacing the LSCs from their niche can accomplish such a 

task, and allow for repopulation with healthy HSPCs and long term remission from the 

disease.182 Making the leukemic niche inhospitable to LSCs is the focus of our studies in 

this dissertation, and represents the leading solutions for removing LSCs, MRD, and 

providing AML patients with true long-term remission. 
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Pro-inflammatory cytokines support LSCs in the reorganized niche 

Pro-inflammatory cytokines act in a paracrine manner to induce cell death and 

differentiation in healthy HSPCs, effectively clearing the niche for expansion and 

colonization by LSCs. The LSCs also have mechanisms in place to convert the usual 

death signals from the pro-inflammatory cytokines into survival signals. This way, the 

pro-inflammatory cytokines can act in an autocrine manner to drive survival and self-

renewal of the LSC. Some of these critical factors in leukemogenesis are IL6, IL3, TNF, 

and IL1.  

IL6 is one of the major pro-inflammatory cytokines secreted by immune cells in 

the body. IL6 stimulation normally drives multipotent progenitor cell differentiation into 

the granulocyte lineage. In Bcr-Abl chronic myeloid leukemia (CML), the blast cells 

secrete pro-inflammatory IL6 to reorganize the niche in order to promote survival and 

proliferation of CML stem cells. CML stem cells are different from the differentiated 

CML blasts in that they are tyrosine kinase inhibitor resistant.183,184 Although seemingly 

independent of tyrosine kinase activity, these CML stem cells appear to be dependent on 

a positive feed-forward loop revolving around IL6 secreted by granulocytes for survival 

and proliferation. CML blasts secrete IL6, which drives multipotent progenitor cells 

towards the granulocyte/macrophage lineage and inhibits other lineage differentiation. 

IL6 drives the proliferation of CML progenitors into leukemic granulocytes, which in 

turn, produce more IL6, thus continuing the process. This process has been implicated as 

a critical component for driving Bcr-Abl fusion leukemias.185  
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IL3 is another pro-inflammatory cytokine secreted by activated T and mast cells, 

and is implicated in LSC self-renewal. IL3 receptor, CD123 (IL3 α-subunit), is 

overexpressed on LSCs and progenitors, and clinically correlates with lower survival and 

poor prognosis in AML patients.186,187 Inhibition of the IL3 signal has been shown to 

block survival/proliferation and homing of LSCs to their niche, as well as induces an 

immune reaction against the LSCs, making targeting the IL3 receptor an interesting 

therapeutic strategy for LSC-specific treatments. Several groups are currently working on 

IL3-mediated therapies by develop anti-CD123 antibody or chimeric antigen receptor T 

cells specific for CD123.188-190 

TNF is a pleiotropic cytokine that induces a variety of cellular responses, 

including cell survival, proliferation, and inflammatory cytokine production. TNF can 

also stimulate both survival and death signals within the same cell, depending on the 

context. TNF-stimulated survival is mainly mediated by formation of a complex that 

consists of TRADD, TRAF2/5, cIAP1/2 and RIP1 (Complex I). TNF induces activation 

of its receptors, TNFR1 and/or R2, stimulating Complex I formation. Complex I induces 

the activation of TAK1 (a member of the MAP3K family of enzymes) through a K63-

linked polyubiquitin-dependent mechanism.191-202 TAK1 then induces the activation of 

downstream signaling pathways, including IKK-IκB-NF-κB, MKK4/7-JNK-AP1 and 

MKK3/6-p38.192,203-209 Activation of IKK-IκB-NF-κB signaling pathway protects the cell 

from apoptosis/necroptosis by inducing expression of survival genes (Bcl2, Bcl-xl, Mcl1, 

Survivin, cIAP1/2, and cFLIP).192,203-206,210-214 MKK3/6-p38 signaling will not be 

discussed here because I found that inactive p38 promotes the colony-forming ability of 
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both normal hematopoietic stem/progenitor cells (HSPCs) and MLL-AF9-transduced 

murine LCs. 

The TNF-induced death signal is mediated by the apoptotic complex (Complex II), 

a necroptotic complex (necrosome) or a ROS production-related complex.215-230 

Apoptotic Complex-II consists of RIP1/FADD/Caspase-8/cFLIP.215,216,220-230 FADD is a 

scaffolding protein required for efficient TNF-induced caspase-8 activation, while cFLIP 

is a caspase-8 homologue that negatively regulates caspase-8 activity by forming a 

catalytically inactive heterodimer with caspase-8.215,216,231-235 The necroptotic complex 

contains RIP1/RIP3 and induces cellular necroptosis through a mechanism that is 

currently not understood.227-229,236-238 Recent studies suggest that the apoptotic and 

necroptotic signals are dependent on each other: they form another complex called the 

Ripoptosome which contains both Complex II and the Necrosome 

(RIP1/RIP3/MLKL).236 Activated caspase-8 (Complex II) inhibits necroptosis by 

inducing the cleavage of RIP1/RIP3. Thus upon ripoptosome formation, whether the cell 

undergoes apoptosis or necroptosis is determined by the level of enzymatic activity of 

Caspase-8.215,216,220,231,239 TNF can also induce the formation of a 

TRADD/RIP1/NOX1/RAC1 complex which leads to an increase in ROS production and 

JNK signal-mediated cell death.240 The role of JNK in caspase-8-mediated apoptosis and 

RIP3-mediated necroptosis is still a mystery.  

Our lab found that TNF stimulates distinct signals in HSPCs and LCs. In HSPCs, in 

addition to NF-κB-mediated survival signaling, TNF induces two parallel death signals: 

JNK/RIP1/RIP3-dependent necroptosis and JNK1/Caspase-8-dependent type-II 
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apoptosis.241 TNF-induced necroptosis can be prevented by treatment with Necrostatin-1 

(Nec1, a RIP1 inhibitor) or RIP3 deletion, whereas TNF-stimulated apoptosis can be 

repressed by JNK1 inactivation or Bcl2 over-expression and can be converted to 

necroptosis by caspase-8 inhibition. The remaining HSPCs seem resistant to TNF 

treatment. In LCs, JNK signal promotes survival/proliferation.  

TNF and Acute Myeloid Leukemia 

TNF is significantly increased in most tumor tissues, being produced by both 

tumor cells and tumor-infiltrating hematopoietic cells.242-245 Early studies suggested that 

TNF suppresses tumor activity by inducing apoptosis and/or necroptosis in tumor 

cells.246-249 However, most cancer cells are resistant to TNF-induced death 

signaling.246,247,250 Animal model studies suggested a tumor-promoting activity for 

TNF.251-255 JNK-AP1 signaling induced by TNF plays an essential role in carcinogen-

induced skin, liver and colon cancers.256-264 Inhibition of TNF signaling using soluble 

receptors and neutralizing antibodies has become a potential treatment for some 

malignancies. In fact, TNF blockers are currently standard of care for multiple 

myeloma.265 

In hematopoietic tissues, TNF-represses normal hematopoiesis by inducing death 

signals in HSPCs. Increased TNF levels were detected in patients with bone marrow 

failure, including aplastic anemia and myelodysplastic syndromes (MDS), suggests that 

such hematopoietic repressive activity of TNF might contribute to the cytopenic 

phenotype of these patients.143,266-275 The further increase in TNF levels during disease 

progression in MDS patients implies that TNF might be involved in leukemic 
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transformation of the mutant HSPCs and disease progression.271,276-278 In support of this 

notion, TNF promotes the clonal evolution of leukemic cells in FancC-mutant HSPCs.279 

Increased levels of TNF are detected in the PB and BM of most human leukemia patients 

and are correlated to higher WBC counts and poorer prognosis.12 Our studies suggest that 

TNF promotes LC growth in vitro and leukemogenesis in vivo. Inactivation of TNF can 

inhibit the colonigenic growth of TNF-expressing LCs in vitro and repress leukemia 

development in transplanted mice.172  

IL1α/β (IL1) is another pleiotropic pro-inflammatory cytokine that has similar 

pro-survival/pro-death activity as TNF. IL1, like TNF, is initially produced as a pro-

enzyme in most leukocytes and endothelial cells, and is responsible for initiating 

canonical inflammatory response pathways in most cells studied. IL1 pro-enzyme is 

cleaved by catalytically active Caspase-1, which is only rendered functional after 

stimulation of the NLRP1 inflammasome. This protein complex is normally activated by 

interferon stimulation, IL1/TNF receptor activation, or toll-like receptor activation.  

These inflammatory factors (and others from different cancers: IL-23, VEGF-A, CSF-1, 

S100A8/9, TGF-B, and lysyl oxidase) are produced by LSCs and surrounding 

stromal/epithelial/immune cells and act not just as chemotractants for cancer stem cells, 

but also for formation of myeloid derived suppressor cells (MDSCs) that can 

downregulate immune surveillance.242,280-284 MDSCs accomplish this by inhibiting both 

adaptive and innate anti-tumor immunity. In the tumor stem cell niche microenvironment, 
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Figure 15. Pleiotropic effects of TNF stimulation on target cells. 
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hypoxia alters the MDSC function and drives differentiation towards Tumor-Associated 

Macrophages (TAMs) through activation of Hif1-α. TAMs can also differentiate from 

normal healthy monocytes, and have a higher immuno-suppressive capability than 

MDSCs by blocking T and NK-cell mediated tumor surveillance. TAMs also secrete 

large amounts of pro-inflammatory cytokines IL-1β, TNF, IL4, and IL6, all of which 

promote the expansion of LSCs while repressing normal healthy HSPC survival and self-

renewal.144 

LSC self-renewal 

LSCs employ many of the same components of the self-renewal machinery that 

normal tissue stem cells utilize, and use them in a similar manner. This includes cell 

cycle regulation and anti-senescence machinery like Bmi1, differentiation and lineage 

control proteins like Wnt/β-catenin, and survival machinery like Bcl-xL and c-FLIP. 

LSCs from MLL-rearranged leukemias also require other genes from the homeobox 

group (Hox genes) to maintain self-renewal. In fact, simple over-expression of Hoxa9 in 

hematopoietic progenitor cells from mice is sufficient to generate leukemia.285 

Jun N-terminal Kinase (JNK) is one of the major mediators of leukemogenesis in 

several models studied. In Fancc-knockout mice, TNF and JNK are required for clonal 

evolution of the disease, and these animals develop leukemia in a JNK-dependent 

manner.279 In Bcr-Abl-induced CML, TNF-induced JNK1 signaling is required for 

activation of critical survival genes.286 This is in contrast to its most well-known role of 

activating cell death via the intrinsic/mitochondrial apoptosis pathway. Other known 

pathways requiring JNK activity for survival and proliferation is the complimentary 
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proliferation response in hepatocytes following resection of a portion or 

chemical/inflammation induced damage of the liver.287-289 Under this condition, 

TNF/JNK signaling causes the death of a large number of hepatocytes, but stimulates 

others to reform the tissue, while NF-κB acts as a tumor suppressor by repressing TNF-

JNK activity.290 TNF/JNK also promotes a proliferative signal in epidermal cells by 

upregulating the positive regulator of cell cycle CDK4 and downregulating negative cell 

cycle regulators like P16Ink4a.289,291 These signals are required for epidermal neoplasias 

following NF-κB inhibition. 

The most well-studied target of JNK is the transcription factor c-Jun. JNK 

phosphorylates c-Jun at the N-terminus (hence its name: Jun N-terminal Kinase). 

Phosphorylation by JNK causes c-Jun to form a dimer with either a member of the Fos 

family (c-Fos, FosB, and splice variants Fra-1 and Fra-2), or another member of the Jun 

family (JunB, Jun D). Together, this dimer is called AP1, and translocates to the nucleus 

to act as an activator of target genes along with other transcription factors from the LEF 

and β-Catenin family. Many genes are regulated by c-Jun including Myc/Myb, NF-κB 

family proteins, and CD42, to name a few (Figure 16). 

JNKs are members of the MAPK family variant called SAPK (stress-activated 

protein kinases). Three isoforms are known: JNK1, 2 and 3. JNK1 and JNK2 are 

ubiquitously expressed while JNK3 is primarily expressed in neuronal and heart tissues. 

Like other MAPK family members, JNK is activated by a MAP3K-MAP2K-MAPK 

three-component complex signal cascade. So far, More than 14 MAP3Ks for the JNK 

signal have been identified (Figure 16).208,292-295 Although the physiological relevance of 
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MAP3Ks in JNK activation has yet to be determined, some studies suggest that different 

MAP3Ks might stimulate different levels and duration of JNK, generating different 

biologic functions.296-298 

Both pro-apoptotic and pro-survival/proliferative activities for JNK signal have 

been reported. In many types of cells, upon TNF stimulation, JNK promotes a 

mitochondrion-dependent cell apoptosis by phosphorylation-dependent inactivation of 

several pro-survival Bcl-2 family members, or phosphorylation-dependent activation of 

the pro-apoptotic BH3-only subgroup of the Bcl2 family of proteins.11,299-305 JNK also 

induces the cleavage of Bid to a specific fragment termed “jBid”, and up-regulates pro-

apoptotic genes such as Puma and Bax (Figure 2). The relationship between JNK and 

Caspase-8 in apoptosis as well as the relationship of JNK and RIP1/3 to necroptosis 

remain to be determined. Some studies suggested that Caspase-8 can function upstream 

of JNK. However, in many types of cells, JNK induces apoptosis through stimulating 

Caspase-8 activity by inducing the degradation of cFLIP, the key negative regulator of 

Caspase-8, through the proteosomal degradation pathway. This is accomplished by 

phosphorylating the E3 ubiquitin ligase responsible for marking cFLIP for degradation by 

polyubiquitination, ITCH.306  

The pro-survival and proliferative activities of the JNK signal are mediated by 

transcriptional mechanisms. Several transcription factors, including AP-1 (cJun, ATF2, 

JunD, JunB, cFos), Elk-1, c-Myc, NFAT4, HSF-1, androgen receptor, RXRα and RARα, 

have been identified as nuclear substrates of JNK. AP-1 is the key transcriptional 

regulator of JNK signaling, regulating the expression of survival and proliferation-related 
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genes including c-Jun, cyclin D, c-Myc, ATF2, JunD and JunB.307,308 Despite intensive 

study, the molecular mechanism by which JNK determines which pathway to activate 

(apoptosis or survival/proliferation) is still largely unknown. 

JNK Signaling and Leukemia Development 

Sustained JNK activation has been reported in many types of AML.309 It was found 

that JNK-AP1 signaling coordinates with AKT/FOXO signaling in maintaining AML 

cells in an undifferentiated state.309 In a Bcr-Abl-induced leukemia/lymphoma model, 

JNK1-AP1 signaling is activated by the fusion enzyme, and is required for leukemia 

development by mediating a key survival signal.310 In Fanconi’s anemia, JNK is required 

for TNF-induced leukemic clone evolution of FancC-mutant HSPCs.279,311 These studies 

suggested that the JNK signal promotes leukemia development and progression by 

inducing proliferation and survival activities. Thus, this signal could be a potential target 

for anti-leukemia therapy. However, several previous studies suggested that JNK might 

mediate cell death signaling induced by chemotherapeutic drugs such as arsenic trioxide 

and some other agents in certain leukemic cells. These studies suggested that inhibition of 

JNK might result in drug-resistance.312-315 However, these studies are mainly based on 

evaluating the ratio of dead cells after short-term treatment. I found that inhibition of 

JNK can significantly sensitize TNF-expressing LCs to the toxicity of several 

chemotherapeutic drugs and NF-κB inhibitors with fewer effects on non-TNF-expressing 

LCs, as shown by colonigenic assays.172 I propose that JNK inhibition might attenuate the 

acute cytotoxicity of chemotherapeutic drugs and NF-κB inhibitors on partially 
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differentiated non-colonigenic LCs but promote the elimination of undifferentiated 

colonigenic LCs (enriched with leukemic progenitors and LSCs). 
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Figure 16. JNK is stimulated by upstream factors to drive downstream responses. 
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CHAPTER 3 

METHODS 

Mice and genotyping 

 All experiments using mice were performed according to the guidelines of Loyola 

University Medical Center and were approved by the Loyola University Institutional 

Animal Care and Use Committee. Tnfr1-/-2-/- mice (B6.129S-Tnfrsf1aTnfrsf1b) were 

purchased from the Jackson Laboratory. BM hematopoietic cells from Rip3-/- (Rip3-

knockout) mice were provided by Dr. Vishva M. Dixit of the Department of 

Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. 

Genotypes of all mice were determined by PCR assay using primers listed below (5’-3’): 

Tnfr1-1 GGATTGTCACGGTGCCGTTGAAG  WT = 120 bp 

Tnfr1-2 TGACAAGGACACGGTGTGTGGC  Mut = 155 bp 

Tnfr1-3 TGCTGATGGGGATACATCCATC  

Tnfr1-4 CCGGTGGATGTGGAATGTGTG  

   

Tnfr2-1 CCGGTGGATGTGGAATGTGTG   WT = 257 bp 

Tnfr2-2 AGAGCTCCAGGCACAAGGGC   Mut = 160 bp 

Tnfr2-3 AACGGGCCAGACCTCGGGT  

   

Rip3-1  GGCTTTCATTGTGGAGGTAAGCTGAGA WT = 280 bp 

Rip3-2  GAACCCGTGGATAAGTGCACTTGAAT  Mut = 320 bp 
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Generation of murine leukemia cell lines: 

CD117+ HSPCs were isolated from wild-type (WT), Tnfr-/- (knockout of both Tnfr 

1 and 2), and Rip3-/- mice and infected with MA9-neo-expressing retrovirus. Infected 

cells were selected with G418 for 2 weeks in 4-cytokine medium (10ng/ml IL-3, 25ng/ml 

IL6, 100ng/ml SCF and 20ng/ml GM-SCF) to generate MA9-immortalized cells (pre-

leukemic cells or PLC in the text) with different genetic mutations. Such PLC were 

transplanted into lethally- irradiated recipient mice together support bone marrow cells to 

generate leukemic mice. WT, Tnfr-/-, and Rip3-/- LCs isolated from spleens and BM of the 

corresponding leukemic mice were used in our studies.  

To generate NF-κB signal-inactivated MA9-LC, WT-LC or Tnfr-/-, LC generated 

from the above experiments were infected with IκBαSR-GFP-expressing virus and 

selected by FACS; these were used in our inhibitor treatment studies. IκBαSR is a mutant 

form of IκBα with S32A/S36A substitutions. The protein product of IκBαSR is stable and 

has more effective NF-κB inhibitory ability than does WT IκBα. To generate AP1-

repressed MA9-LC, WT-LC generated from the above experiments were infected with 

DN-AP1-GFP-expressing virus. Infected LC were purified by FACS and subsequently 

used in our studies.  

Reagents 

 Rip-1 inhibitor Necrostatin (Nec1) was purchased from Santa Cruz 

Biotechnology. Recombinant murine-IL-3 (rm-IL-3), rm-IL-6, rm-SCF and rm-GM-CSF 

were purchased from eBioscience (San Diego). TNFα was purchased from BD 

Biosciences. BAY11-7085 and SP600125 small molecule inhibitors were purchased from 
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Millipore. LY294002 was purchased from LC Laboratories. JNKi I peptide and negative 

control were obtained from Millipore/Calbiochem. Cell lysis buffer (10x) was obtained 

from Cell Signaling, and supplemented with proteinase inhibitors and phosphatase 

inhibitors (Roche Diagnostics). Anti-TNF monoclonal antibody used for blocking TNF 

signaling in culture was obtained from Amgen Inc. Anti-β-Actin, GAPDH, Bcl-2, and 

Bcl-xL antibodies were obtained from Santa Cruz Biotechnology. Anti-IκBα, p-IκBα, 

P65, p-P65, Jnk, p-Jnk, Erk, p-Erk, p38, p-p38, Akt, p-AktS473, p-AktT308, Mcl-1, 

xIAP1, Cyclin D, Il-1β primary and requisite secondary antibodies were also obtained 

from Cell Signaling. c-FLIP antibody was obtained from Assay Gate. Tri-reagent used 

for RNA extraction was purchased from Sigma Aldrich. TNF antibody was purchased 

from Novus biologicals.  

Cell culture 

 All cells were incubated at 37oC., 100% humidity, and 5% CO2. c-Kit+ HSPC 

from indicated genotypes of mice were enriched by EasySep mouse CD117 Positive 

Selection Kit (StemCell Technologies). HSPC were cultured in 6-well plates in RPMI-

1640 medium supplemented with 10% FBS, 1% penicillin/streptomycin, 100 ng/mL 

rmSCF, 50 ng/mL rmIL-6, 20 ng/mL rmIL-3, and 20 ng/mL rmGM-CSF. All murine LC 

generated in this study were cultured in such medium. Human leukemic cell lines were 

cultured following instructions from ATCC.  

Cell counting 

  Cell number was determined by trypan blue exclusion using 0.4% trypan blue 

(Gibco). At each 24-hour interval, all cells were harvested from the plate, centrifuged, re-
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suspended in 1 mL of complete medium, and a sample was taken for counting. All cell 

counting was performed using trypan blue exclusion as visualized in a hemocytometer 

under 40× magnification. After counting, cells were re-suspended in a total of 3 mL 

medium and re-plated. This was repeated every 24 hours for 4 repetitions. 

Colony-Forming Unit assay 

 Indicated genotypes of murine LC or BM cells were seeded into MethoCult GF 

M3434® (StemCell) at 1000 cells/mL (LC) or 20,000 cells/mL (BM HSPC), incubated at 

37oC, 100% humidity, and 5% CO2 for 7 days (LC) or 10 days (HSPC cells). Numbers of 

colonies were counted according to the manufacturer’s instructions. Clusters of cells 

containing >50 cells were counted as colonies. Triplicated experiments were performed 

in all of our studies. All data were verified by three individual experiments. 

 Human AML cell lines were seeded into MethoCult base medium without 

cytokines at 1000 cells/mL and incubated and read as murine LC. Primary AML patient 

samples were seeded into MethoCult 4035 Optimum without EPO and incubated at 37oC, 

100% humidity, and 5% CO2. Colonies were read 14 days following seeding. Clusters of 

cells containing >50 cells were counted as colonies. Triplicated experiments were 

performed in all of our studies. All data were verified by three individual experiments. 

Cell death assay 

 HSPC or LC were incubated in medium with or without inhibitors for 24 hours. 

Cells were then stained with alloyphycocyanin-conjugated Annexin V in Annexin 

binding buffer following the manufacturer’s instructions (BD Biosciences). Cell death 

was determined by the percentages of Annexin V+ cells. 
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Detection of nuclear localization of NF-κB by Amnis Imagestream-X 

 Cells were fixed and permeabilized using BD Fix/Perm kit as described by the 

manufacturer. Intracellular staining was performed using p65 antibodies (Cell Signaling), 

Alex-647 secondary (e-Biosciences) and DAPI. Nuclear localization of p65 was 

determined using a similarity dilate algorithm determined by Imagestream Ideas software 

and analyzed per 5000 cells. Significant differences were determined by mean and 

standard deviation values provided by Imagestream Ideas and compared student’s t-test.  

Retroviral infection 

 High titer retrovirus was produced by co-transfecting Phoenix cells with a 

retroviral vector containing the indicated genes together with packaging vectors using 

Calphos Mammalian Transfection Kit (Clontech). Retroviral supernatants were harvested 

24 and 48 hours after transfection. Retroviral plasmids MSCV-GFP and MSCV-Cre-GFP 

were kindly provided by Dr. Chao Niu of the University of Southern California, MSCV-

MLL-AF9-neo was kindly provided by Nancy Zeleznik-Le of Loyola University 

Chicago, MSCV-IκBαaa-GFP was generated by sub-cloning the IκBαaa gene from 

pBabe-IκBαaa-puro plasmids (kindly provided by Dr. Mitchel Denning, Loyola 

University Chicago) into the MSCV-IRES-GFP vector. pMieg-DN-AP1 was obtained 

through Addgene. Viruses were generated using these retroviral vectors. LC or c-kit+ 

HSPC were transduced with such virus-expressing genes of interest by spinoculation at 

32oC., 2000 rpm for 4 hours. Cells were then incubated using standard culture conditions 

as described above, and GFP% of representative samples were read by flow cytometry 

every 24 hours. This assay allowed us to evaluate the functions of genes on cell growth 
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with both internal control (GFP- non-transduced cells) and external control (MSCV-GFP 

infection). Transduced cells were also purified by FACS for CFU assay. 

Western Blot analysis 

 LC/HSPC (106) were plated in 6-well plates for 5 hours in RPMI-1640 medium 

supplemented with 10% FBS. FBS was present at all times during experiments, and did 

not show any effect on the measured signals. Growth factors were removed during this 

phase to reset the cell signaling to an unstimulated, basal rate. After 5 hours of growth 

factor withdrawal, inhibitors were added if required for 1.5 hrs. Following inhibition, 

cells were stimulated if required for 10 minutes and removed from the plates then lysed 

using cell lysis buffer (Cell Signaling) supplemented with protease and phosphatase 

inhibitor cocktails (Roche). Contents were resolved on 10% SDS-PAGE and visualized 

following transfer to nitrocellulose membranes. 

Ex vivo transplantation 

 104 LC (CD45.2+) were plated in each well in a suspension culture and treated 

with indicated doses of BAY11-7085, SP600125, anti-TNF antibody (Amgen) in 

indicated combinations for 12 hours. All cells in each well were harvested and mixed 

with 106 support BM cells (CD45.1+) then equally transplanted into 5 lethally-irradiated 

recipient mice (CD45.1+). Mice were monitored for leukemia development by observing 

for symptoms: hunched body, significant weight loss, or hind-limb paralysis. Leukemia 

was confirmed by examining CD45.2+ LC in PB, spleen and BM, as well as liver and 

kidney infiltration. 
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In vivo transplantation and treatment 

 2x104 LC were transplanted into sub-lethally irradiated C57BL6/J mice with 

2x105 support BM cells via tail vein injection. Twenty days after transplantation, mice 

were treated with 10mg/kg InVivoMAb anti m-TNFα or IL-1 receptor antagonist 

(BioXcell) and 10 mg/kg BAY11-7085 individually or in combinations every other day 

for 10 days. Mice were monitored for leukemia development by lethargy, paralysis, 

significant weight loss and/or enlarged abdomen. Leukemia was verified after the mice 

were sacrificed by examining infiltration of LC in livers, lungs and spleens.  

shRNA knockdown 

 LC were transduced with retrovirus-expressing shRNAs (Origene) specifically 

targeted to c-Jun (TG501139), Mkps (1:TG514083; 3:TG514782; 5:TG513100), or IL-1 

receptor (TG501076). The transduced cells were selected for one week using puromycin 

to obtain stably transduced cells. Knockdown efficiency was examined by Western blot 

(c-Jun), or RT-PCR (Mkps). Scrambled shRNAs were transduced and studied in parallel 

as controls.  

Primary human samples 

Peripheral blood samples from AML patients were obtained from the clinic at 

Loyola University Medical Center in accordance with the IRB protocol. Leukemic blasts 

in PB of all patients were 30-90% when samples were collected. Samples were processed 

for mono-nuclear cells (MNC) by Ficoll-paque gradient centrifugation. A portion of 

MNC was used for RNA extraction and TNF expression analysis; another fraction of 

MNC was plated in StemSpan serum-free medium (StemCell) supplemented with 
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recombinant human SCF (100 ng/mL), Flt-3L (100 ng/mL), TPO (20 ng/mL), IL-6 (20 

ng/mL), and IL-3 (20 ng/mL). Cytokines were obtained from Humanzyme. Following 

overnight culture, 3×105 cells from each sample were harvested and treated with the 

indicated doses of BAY11-7085, SP600125, TNF, Enbrel®, or Anakinra® and plated in 

methylcellulose (StemCell) for CFU assay. Colonies were read after 14 days. In addition, 

serum was collected from the same patients for examination of TNF and IL-1β levels.  

Statistical analysis 

 Significant differences were determined by student’s t test or one-way ANOVA 

with Bonferonni post-hoc test, where appropriate, unless otherwise noted. Log-rank test 

was used to determine statistical significance in Kaplan-meier survival curves using in 

vivo murine experiments or human AML patient data from UCSC Cancer Genome 

Browser analysis. * or # indicates p<0.05, ** indicates p<0.01 when compared to 

vehicle-treated control or indicated groups. Other p values are indicated.  
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CHAPTER 4 

RESULTS 

Rationale and experiment design 

 The goal of this project is to determine TNF/IL1-mediated, NF-κB independent 

survival signals that allow LCs to escape NF-κB inhibition in vivo, and understand how 

LSCs use pro-inflammatory cytokines to further their own survival by reorganizing the 

niche. My studies are based on a comparative model where I treat malignant cells (LCs, 

AML cell lines, primary human patient samples) in parallel with normal/healthy cells 

(HSPCs, Peripheral Blood Stem Cells from healthy donors, Bone marrow aspirates from 

healthy donors). Each of these cells were collected, cultured, and treated according to the 

needs of the experiment and read by one of several assays: hematopoietic functional 

assay (colony forming units in methylcellulose), cell death assay (Annexin V/PI stain 

read by flow cytometry), and biochemical assays to determine the functions of specific 

proteins (western blot analysis). 

 Once I determined the mechanisms of TNF/IL1-mediated, NF-κB independent 

survival through the above-mentioned methods, I confirmed my findings by 

transplantation of LCs in to irradiated recipient mice. The mice were treated with various 

inhibitors/drugs to confirm what I found in vitro is similar in vivo (Figure 17). 
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Figure 17. General experiment design 

 
 

 
 
 
Most experiments in this dissertation will follow the same basic experiment design: 
HSPCs and LCs will be treated in parallel with some sort of stimulation/inhibition, and 
effects will be measured in vitro by biochemical assay, CFU assay, or cell death assay. 
All mechanistic findings will be confirmed by in vivo transplantation and treatment, and 
confirmation in human AML cell lines or primary patient samples. 
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Aim1: Determine if TNF-JNK acts as an NF-κB-independent survival signal in 
LSCs and contributes to chemoresistance to NF-κB inhibition in vivo 

 
Cell concentration determines NF-κB inhibitor efficacy in vitro 

 NF-κB, a key transcriptional regulator of inflammatory cytokine stimulated 

signaling, plays a central role in the development and progression of inflammation-

associated cancer. In AML, TNF and NF-κB promotes LSC function in a feed forward 

manner. Basal NF-κB activity is undetectable in unstimulated normal CD34+ 

hematopoietic stem/progenitor cells (HSPCs), but is constitutively activated in 

CD34+CD38- LSCs isolated from almost all AML patients. Inactivation of NF-κB 

signaling selectively eradicates LSCs in vitro especially when combined with 

chemotherapy drugs without significant influence on the survival and growth of normal 

HSPCs. These studies, however, use relatively purified LSCs cultured in low density 

(<3x103 cells/mL), suggesting that NF-κB signaling might be an optimal target of anti-

AML therapy.4,14,316,317 However, when I cultured high density AML cells in in vitro 

culture (5x105 cells/mL), the therapeutic effects of NF-κB inhibitor on clonogenic 

leukemic progenitors and LSCs was significantly attenuated, suggesting factors secreted 

by AML cells might provide protection to LSCs. The inhibitor we used (BAY11-7085, 

BAY hereafter) is a small molecule that recognizes the phosphorylation sites on NF-κB 

inhibitory protein, IκBα. This was observed both in vitro in methylcellulose on leukemic 

progenitors (Figure 18A), and during ex vivo transplantation assaying effects on LSCs 

(Figure 18B).  By analyzing the expression of genes encoding inflammatory factors in 

microarray data of 90 human AML samples, I initially predicted that TNF might be one 

of these secreted factors. In Aim 1, I confirmed this by demonstrating that TNF prevents 
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LCs from NF-kB inhibitor treatment through stimulating JNK signaling. At the end of 

Aim 1, I concluded that there are additional pro-inflammatory cytokines involved beyond 

Tnf providing anti-apoptotic protection to LSCs in the presence of NF-κB inhibition. In 

Aim 2, I determined IL1 is another factor which is normally expressed in TNF-expressing 

AML samples, and functions in parallel to TNF. I concluded that inhibition of both 

TNF/IL1-JNK and NF-kB signaling might be a better treatment for AML patients whose 

cancer cells express inflammatory cytokines. 

Development of experimental models: murine and human AML models 

 TNF stimulation in most healthy tissues induces apoptosis and necroptosis via the 

Caspase 8 extrinsic apoptosis pathway and the RIP1/RIP3 necroptosis pathway. 

However, tumors from AML patients appear to be producing TNF and not undergoing 

cell death. In order to study this phenomenon, I used a mouse model and a collection of 

human AML cell lines. I also developed murine leukemia cells (LCs) by sequential 

transplantation. First I isolated c-Kit+ HSPCs from bone marrow and immortalized them 

through spinoculation with MLL-AF9-expressing MSCV retrovirus (I also used Runx1-

Eto and CbfB-Myh11 fusion genes as TNF non-expressing and expressing LCs172). These 

MLL-AF9-expressing cells are now considered pre-leukemia cells (PLCs), and are 

virtually indistinguishable from their fully transformed counterparts (LCs) in vitro. These 

cells were transplanted 2-5x106 cells into lethally-irradiated recipient mice and collected 

the spleen and bone marrow after leukemia disease development 3-4 months following 

transplantation. These collected cells are fully transformed leukemia cells (LCs), and  
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Figure 18. Cell concentration determines NF-κB inhibitor efficacy in vitro 
 

 

 

 

A) LCs were cultured and treated overnight at the indicated concentration with an 
increasing dose of BAY. 1x103 live cells per condition were plated in methylcellulose 
and read for CFUs. Results shown are mean ± SD and representative of three independent 
trials. B) Indicated concentrations of LCs were cultured for 12 hours in suspension 
culture and treated with vehicle or BAY, then 2x103 live LCs were transplanted into 
lethally-irradiated mice. 
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have the ability to generate leukemias in transplant mi development 3-5 weeks following 

transplantation. We used these cells (LCs) for all studies in this dissertation (Figure 

19A).  

These LCs produce mature Tnf, making them ideal for studying the mechanisms 

of survival in TNF-producing AMLs (M3, M4, and M5). I confirmed Tnf production by 

western blot of lysed cells, using an antibody that recognizes mature, cleaved Tnf (app 17 

kDa). Protein levels were normalized to actin. Murine HSPCs do not produce mature Tnf 

and were used as negative controls. (Figure 19B). I further confirmed the presence of 

mature Tnf in LCs by intracellular labeling analyzed by flow cytometry. LCs were either 

unstimulated or treated with PMA (phorbol 12-myristate 13-acetate) to stimulate protein 

production, and staining gates were set to LCs stained with an antibody isotype as a 

control (Figure 19C). 

Any data determined from a murine model must be confirmed in a human (or 

humanized) disease model before I can derive any clinically relevant meaning. Therefore, 

I also utilized several human AML cell lines with a wide range of TNF expression to 

confirm anything found in the murine model in human AML cells. TNF levels were 

normalized to CML blast crisis cell line K562 (Bcr-Abl+), which showed the lowest 

levels of endogenous TNF production. Therefore I concluded that all of our human AML 

cell lines are producing at least some level of TNF higher than HSPCs, with some 

producing more than others. I found the highest levels of TNF production in the APL  
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Figure 19: Development of TNF-expressing murine and human AML models 

 

 

 
A) HSPCs were isolated from WT and Tnfr-/- mice and transduced with a leukemia 
fusion-MSCV retrovirus to produce PLC. PLCs were transplanted into recipient mice to 
generate LC. LC were isolated from spleens and bone marrow of leukemic mice and used 
for most studies in this dissertation. B) LCs produce TNF as shown by western blot 
analysis of four separate transplantations of LCs into recipient mice, and were compared 
to HSPCs from two non-transplanted mice. C) Intracellular TNF was measured in LC by 
intracellular staining and read by flow cytometry with and without PMA stimulation. 
Gating was set by comparison to isotype control. D) Relative mRNA levels of TNF 
produced in established human AML cell lines. Values shown are mean ± SD based on 
three independent trials. * indicates p<0.05 as determined by students T test, compared to 
K562. 
  



73	  
	  

 
	  

(PML-RARα) cell line, NB4. This supports observations in APL patients, and our 

observations in cDNA data from AML patient databases that APL tumors produce very 

large amounts of endogenous TNF (Figure 19D).  

Tnf receptor deletion drives growth defects in LCs 

 The previous data showed addition of exogenous Tnf stimulated the growth of 

LCs, and removal of TNF repressed the growth. To further study this, I serially 

transplanted WT and Tnfr-/- PLCs and LCs into lethally-irradiated recipient mice and 

found a distinct defect in leukemogenesis of Tnfr-/- PLCs/LCs when compared to their 

WT counterparts, with time to disease doubled in both cases. This effect was seen 

following transplantation of both PLCs and LCs (Figure 20A).  

 Further comparison of Tnfr-/- and WT LCs revealed that although Tnfr-/- LCs do 

not show any replating defects, they do have a reduced total ability to form colonies 

during a serial replating assay when compared to WT LCs. The total colony numbers of 

Tnfr-/- LCs were compared to WT LCs for control (Figure 20B). A similar effect was not 

observed in HSPCs, suggesting that Tnf stimulation does not play as important a survival 

role in these cells as in LCs. Tnfr-/- HSPCs were compared to WT HSPCs as control 

(Figure 20C). These data suggest that Tnf plays an important survival role, and that 

elimination of Tnf-dependent signaling can significantly prolong the duration until 

disease occurrence in xenografted mice. This in combination with the reduction in 

colony-formation in vitro would suggest blocking Tnf could be a possible anti-leukemia 

therapeutic. 
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Figure 20: Tnf receptor deletion drives growth defects in LCs 

 
 
A) Leukemogenic capacity of WT LCs/PLCs and Tnfr-/- LCs/PLCs as compared with in 
vivo transplantation. Numbers of recipient mice are indicated. B) Serial colony forming 
ability was compared between WT and Tnfr-/- LCs. WT LCs were used as control. C) 
CFU/10,000 cells shown for WT and Tnfr-/- HSPCs. Colony formation of WT HSPCs was 
used as controls. Values shown (B and C) are mean ± SD from three independent trials. * 
indicates p<0.05 when compared to vehicle treated/WT control. 
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Tnf promotes LC survival and proliferation 

 Stimulation of LCs with exogenous Tnf promotes colony formation and increase 

in cell number, while blocking Tnf through genetic deletion of its receptors or 

neutralization with a monoclonal antibody slows their growth and limits colony 

formation. To understand this mechanism, I measured the proliferation rates of WT and 

Tnfr-/- LCs through PI stain assay, and measured the percentage of cells in G0/G1 vs 

S/G2/M via DNA content. When cells proliferate, they need to replicate the DNA. 

Propidium Iodide (PI) is a stoichiometric DNA dye that binds to DNA and fluoresces. 

The fluorescent signal is directly related to the amount of DNA present. I found that in 

addition to the colony defect observed in Figure 20, Tnfr-/- LCs also have lower 

proliferation than their WT counterparts as noted by a decrease in the percentage of cells 

in S/G2/M phase as determined by Propidium Iodide staining (Figure 21A).  

 If Tnf drives an important survival signal, then removal of the Tnf signal should 

also remove the survival signal and induce some degree of cell death. I tested this by 

neutralizing soluble Tnf or genetic deletion of Tnf receptors. Either of these actions 

increased cell death by a slight but significant value. Cell death was measured by 

Annexin V stain and compared to vehicle treated WT LCs as control (Figure 21B).  

 I also found that stimulation with exogenous Tnf also drives necroptotic cell death 

in a small population of LCs, because this cell death can be completely reversed by co-

treatment with a Rip1k inhibitor (Necrostatin-1, Nec1), or by genetic deletion of Rip1k’s 

necroptosome binding partner Rip3 (Figure 21C). WT LCs treated with vehicle were 

used as controls.   
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Figure 21: Tnf promotes LC survival and proliferation 

 

 

 
A) 1x106 LC of indicated genotype were grown in suspension in 6-well plates, fixed and 
permeabilized, then stained with saturating levels of PI. DNA content was measured by 
flow cytometry, and gates were set with G0/G1 indicating all values ≤2n DNA, and 
S/G2/M indicating all values ≥2n DNA. Results shown are indicative of three 
independent trials. B) LC of indicated genotypes were treated overnight with 20 ng/mL 
Tnf mAB and assayed for cell death by Annexin V stain. Tnfr-/- LC were used as 
controls. C) Indicated genotypes of LCs were treated overnight with exogenous Tnf (50 
ng/mL) and/or Necrostatin-1 (Nec1, 30 mM). Cell death was measured by Annexin V 
stain by flow cytometry. Results shown are mean ± SD. * indicates p<0.05 when 
compared to vehicle treated WT LC control as analyzed by students t test. # indicates 
p<0.05 of WT LCs treated with Tnf mAB when compared to WT LCs treated with 
vehicle.   
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Tnf produced by LCs induces apoptotic and necroptotic cell death in HSPCs 

Tnf’s normal role in most tissues studied is to induce apoptosis and necroptosis 

through the extrinsic (complex 2) apoptosis pathway. I confirmed this in HSPCs by 

treating HSPCs with a combination of exogenous Tnf and Nec1, and measured cell death 

by Annexin V stain. HSPCs showed a significant increase in cell death when treated 

overnight with Tnf that was partially rescued by Nec1 treatment, suggesting that the cell 

death induced by Tnf was primarily necroptotic (can be rescued by Nec1), with some 

apoptosis (cannot be rescued by Nec1) (Figure 22A). WT HSPCs treated with vehicle 

and Tnfr-/- HSPCs were used as negative controls. 

To measure the direct activation of Caspase-8-mediated apoptosis following Tnf 

stimulation, I treated WT and Rip3-/- HSPCs in parallel with Tnf and a Caspase-8-specific 

inhibitor Z-IETD-FMK. Rip3-/- HSPCs are unable to undergo necroptosis upon 

stimulation, and co-treatment with Caspase-8 inhibitor in these cells was able to 

completely prevent any Tnf-mediated cell death. This suggests that Tnf induces a 

combination of apoptotic and necroptotic cell death in HSPCs. Without Caspase-8’s 

catalytic inhibition of Rip1/Rip3-mediated necroptosis, the WT HSPCs underwent a 

significant increase in cell death (Figure 22B). WT HSPCs treated with vehicle were used 

as controls. 

AML patients commonly show significant hematopoietic repression in later stages 

of the disease. I propose that this is due to LCs secreting pro-inflammatory cytokines, 
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Figure 22: Tnf produced by LCs induces apoptosis and necroptosis in HSPCs 

 

 
 

A) WT HSPCs and Tnfr-/- HSPCs were cultured in medium with or without exogenous 
Tnf. Nec1 was used to block necroptosis. B) HSPCs from WT (Rip3 WT) and Rip3-/- mice 
were cultured with or without Tnf. Z-IETD-FMK was used to inhibit Caspase 8 activity. 
Cell death was examined 24 h after Tnf treatment. C) Tnf secreted by LCs is sufficient to 
induce cell death in HSPC. WT and Tnfr-/- HSPCs were incubated in fresh medium or 1:5 
conditioned/fresh medium from LC culture and treated with or without anti-TNF mAb. * 
indicates P < 0.05 when compared with vehicle treated control (A–C and G–M) or WT 
control (D–F) as determined by Student’s t test analysis. # indicates P < 0.05 significant 
difference when compared with indicated conditions. Values shown are mean ± SD 
analysisfrom three independent trials, unless otherwise notated. 

  



79	  
	  

 
	  

thereby inducing cell death and depleting the healthy stem cell population. To test this, I 

conditioned media with LCs, diluted 1:5 in fresh media, and grew HSPCs overnight. 

Annexin V was measured the following day. I found that cytokines secreted by LCs were 

sufficient to induce cell death in HSPCs. The effect was mostly removed by neutralizing 

soluble Tnf, or by use in Tnfr-/- HSPCs, suggesting this effect is directly due to Tnf 

(Figure 22C). Because this effect could not be completely neutralized, I proposed that 

there may be additional pro-inflammatory cytokines secreted by LCs in addition to Tnf. 

Such a cytokine would promote LC proliferation and induce cell death in HSPCs. I 

identified that this cytokine is IL-1, and will be discussed later. 

Tnf stimulates NF-κB activity in HSPCs and LCs 

NF-κB is the best-studied effector of Tnf-mediated survival signaling in most 

tissues studied. LSCs require NF-κB activity for survival and self-renewal. The standard 

method of measuring NF-κB activity is nuclear localization of subunits and activation of 

target genes. I measured nuclear localization of NF-κB subunit p65 following stimulation 

with Tnf by Imagestream Analysis and found that Tnf does induce nuclear localization in 

both HSPCs and LCs, suggesting Tnf can induce NF-κB activity (Figure 23A). Results 

were compared to vehicle treated cells as negative controls. Phosphorylation of p65 

subunits by IKKβ occurs following release and degradation of the IκBα repressor 

subunits, and can also be used as a marker for NF-κB activity (Figure 23B). Untreated 

HSPCs and LCs were used as controls. 
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Figure 23: Tnf induces NF-κB activity in HSPCs and LCs  
 

 

 
A) Tnf stimulation of NF-κB activity in both LC and HSPC as shown by p65 (NF-κB1) 
nuclear localization (values in parenthesis are mean similarity dilate peak, sample size = 
5,000 cells) as determined by ImageStreamX. Horizontal scale bars indicate 10 µm. B) 
Tnf stimulation of p65 phosphorylation in HSPCs and LCs. C) HSPC and LC stimulated 
with individual hematopoietic cytokines show different patterns of p65 phosphorylation. 
* indicates p<0.05 when compared to vehicle treated controls as determined by Student’s 
t test two-tailed analysis. All results shown are indicative of three independent trials. 
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NF-κB is highly upregulated in LCs when compared to HSPCs. I observed that a 

main reason for this is that HSPCs appear to only be able to activate NF-κB when 

stimulated by Tnf (and slight activity when stimulated with SCF). However, LCs are able  

to translate stimulation by all hematopoietic cytokines into NF-κB activity, suggesting a 

mechanism for elevated NF-κB activity in these cells (Figure 23C). 

LCs are more sensitive to NF-κB inhibitor in vitro than HSPCs 

 A 2001 study by Guzman et al. found that NF-κB is constitutively expressed in 

LSCs, and that NF-κB activity is critical for maintaining LSC properties. This activity 

appears confined to LSCs, as HSPCs do not express high levels of NF-κB. Therefore this 

is a therapeutic window where, in vitro, one can kill LSCs before having an adverse 

effect on HSPCs. These observations were made in lin-CD34+CD38- human AML cells. 

Although our murine AML model (MLL-AF9 LCs) fits the human disease model by 

expressing pro-inflammatory cytokines TNF and IL1, I needed to confirm that these cells 

would also be sensitive to NF-κB inhibition. To accomplish this, I utilized a small 

molecule BAY11-7085 (BAY hereafter). BAY is a membrane-permeable ATP analogue 

that can bind to the IκBα repressor subunit of NF-κB, preventing its phosphorylation and 

subsequent degradation by the proteosome. 

 I tested BAY inhibitor treatment in HSPCs and LCs in parallel in both 

methylcellulose culture and suspension culture. I found that LCs reduced their CFUs in a 

dose dependent manner in response to increasing BAY concentrations (Figure 24A). 

90% of LC colonies were removed when treated with 200 nM BAY, with no effects on 

HSPCs. Vehicle-treated cells from each type were used as negative controls. 
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Figure 24. LCs are more sensitive than HSPCs to NF-κB inhibition in vitro 

 
 
 
 

 
 

 
 
 
 
A and B) HSPCs and LCs were treated in parallel with increasing doses of BAY11-7085 
(BAY) inhibitor in methylcellulose or suspension culture, respectively. A) CFUs were 
read seven days following seeding. B) Cell death was measured by Annexin V staining 
after overnight treatment with BAY, and read by flow cytometry. * indicates p < 0.05 
when compared with vehicle treated control, ** indicates p < 0.01 as determined by 
Student’s t test analysis. Values shown are mean ± SD analysis from three independent 
trials. 
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I confirmed that the drop in colony number was due to an increase in cell death by 

treating HSPCs and LCs in parallel in suspension culture overnight with increasing doses 

of BAY inhibitor. There was an eight-fold increase in cell death in LCs without any 

significant change in HSPCs (Figure 24B). 

Tnf receptor deletion protects HSPCs from NF-κB inhibitor effects 

In most tissues studied, NF-κB promotes a strong survival signal that can 

counteract cell death caused by pro-inflammatory cytokine stimulation by upregulation of 

anti-apoptotic genes. HSPCs behave in a similar fashion. I tested this by treating WT and 

Tnfr-/- HSPCs in parallel with a gradient of BAY NF-κB inhibitor. If HSPCs underwent 

TNF-mediated cell death in the presence of the inhibitor, then there would be a drop in 

colonies and an increase in Annexin V staining that could be reversed by inhibition of the 

Tnf signal. In this case, I deleted both Tnf receptor genes (Tnfr1-/-Tnfr2-/-, Tnfr-/- for 

simplicity). As expected, I found that Tnfr-/- HSPCs are more resistant to CFU reduction 

driven by high-dose treatment with BAY (Figure 25A).  

In order to confirm the specific of the BAY inhibitor, I spinoculated HSPCs (and 

LCs in the future) with an MSCV retrovirus constitutively over-expressing a super-

repressor mutant of the NF-κB repressor subunit IκBα, IκBαSR. IκBαSR binds all the 

free NF-κB subunits in the cytoplasm, but cannot be degraded due to mutation of the IKK 

phosphorylation sites (Serine to Alanine). This construct is able to completely block NF-

κB activity and has been used experimentally in cells from several tissues including skin, 

liver, and intestine. I found HSPCs expressing IκBαSR showed a reduction in CFU that 

was rescued by Tnf receptor deletion (Figure 25B). This confirmed that the activity   
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Figure 25. Tnf receptor deletion protects HSPCs from NF-κB inhibitor effects 
 
 
 

 
 

 
 
 
 
 
 
WT and Tnfr-/- HSPCs were treated in parallel with increasing doses of BAY (A), or 
expressing IκBαSR (B) in methylcellulose culture. Results shown are mean ± SD. * 
indicates p<0.05, ** indicates p<0.01 when compared to vehicle treated cells by 
Student’s t test. # indicates p<0.05 when compared to indicated conditions by Student’s t 
test.   
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of the BAY inhibitor was due to specific inhibition of NF-κB. Vehicle-treated/vector-

expressing cells were used as the negative control. 

Tnf receptor deletion sensitizes LCs to NF-κB inhibitor effects 

 I attempted to confirm our results from BAY and IκBαSR experiments in HSPCs 

by performing similar experiments in LCs. However, I found that while Tnf receptor 

deletion protected HSPCs from NF-κB inhibition, the opposite was the case with LCs. By 

blocking the Tnf signal, I actually sensitized LCs to NF-κB inhibition by treatment with 

BAY (Figure 26A). Vehicle treated cells were used as negative controls. 

 I confirmed the specificity of BAY in LCs by overexpressing IκBαSR on a 

retrovirus and measuring similar results. I found that, like BAY, IκBαSR also affected the 

Tnfr-/- LCs more than the WT LCs. It should be noted that WT LCs have a greater 

reduction in CFUs when overexpressing the IκBαSR than WT HSPCs. Overexpression of 

IκBαSR reduced CFU by 90% in Tnfr-/- LC (Figure 26B). 

 These results suggest that Tnf may be an NF-κB-independent death signal in 

HSPCs and an NF-κB-independent survival signal in LCs. If Tnf drives an NF-κB-

independent survival signal, then treatment with additional exogenous Tnf should rescue 

some of the CFU reduction due to NF-κB inhibition. I found this to be the case, with a 

slight but significant rescue of colonies in WT LCs (Figure 26C). 

 This led us to question what this signal could be. The previous two experiments 

suggest that there is a common signal between the two cell types that is independent of 

NF-κB, stimulated by Tnf, and acting differently between the two cell types. Such a  
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Figure 26. Tnf receptor deletion sensitizes LCs to NF-κB inhibitor effects 
 
 
 

 
 
 
A) WT LCs and Tnfr-/- LCs were treated in parallel with increasing doses of BAY in 
methylcellulose for CFU assay. Vehicle treated cells were used as negative control. B) 
WT LCs and Tnfr-/- LCs were spinoculated with IκBαSR-expressing retrovirus and plated 
in methylcellulose. Cells transduced with empty vector are used as negative controls. C) 
WT LCs were treated with indicated doses of BAY, or exogenous Tnf and plated in 
methylcellulose. Values shown are mean ± SD from three independent trials. * indicates 
p<0.05, ** indicates p<0.01 when compared to vehicle/vector control as determined by 
Student’s t test. # indicates p<0.05, ## indicates p<0.01 when compared to indicated 
condition as determined by Student’s t test. 
 

Figure 26 Model: 

 
 
Common signal between HSPCs and LCs drives cell death in HSPCs and cell 
survival/proliferation in LCs. 	  
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signal would be a survival mediator in LCs and a death mediator in LCs  

(Figure 26 Model).  

JNK is stimulated by Tnf in LCs 

 I next determined which Tnf-mediated signal is responsible for driving NF-κB-

independent cell survival/proliferation in LCs, and cell death in HSPCs. To do this, I 

treated HSPCs and LCs in suspension culture with each of the various hematopoietic 

cytokines used in culture: IL3, IL6, Granulocyte/Macrophage-Colony Stimulating Factor 

(G-CSF), Stem Cell Factor (SCF), and Tnf. Following 15 minutes of stimulation, cells 

were lysed and contents analyzed by western blot analysis for activation of several 

known survival signals in hematopoietic cells, involved in the SAPK, MAPK, and AKT 

pathways. I tested the activity of p-Jnk, p-Erk, p-p38, p-AktS473, and p-AktT308. Vehicle 

treated cells were used as negative controls, and total protein levels were normalized to 

GAPDH, a metabolic protein. 

 I found Tnf stimulation activated Jnk, Erk, p38, and AktS473 (PI3k activation 

pathway) in both HSPCs and LCs. It should be noted that while Erk, p38, and Akt can be 

stimulated by multiple cytokines, only Jnk appears to be Tnf-mediated. IL3 and SCF 

appear to be able to repress Jnk phosphorylation, but this mechanism was not pursued 

further. IL6 and G-CSF are known activators of Jnk in many tissues, and also activated 

Jnk in our experiments. p38, a Mapk, was also activated in a similar pattern to Jnk in both 

HSPCs and LCs. However, p38 was more strongly activated by GM-CSF and SCF than 

Jnk. p38’s role in Tnf-mediated leukemogenesis will be measured later. Erk and Akt were  
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Figure 27: Jnk is primarily stimulated by Tnf in HSPCs and LCs 

 

 

 

HSPCs and LCs were treated in suspension for 15 minutes with indicated hematopoietic 
cytokines. Cells were lysed and contents resolved by SDS-PAGE and assayed by western 
blot analysis. Protein levels were normalized to β-Actin for loading control. Vehicle 
treated HSPCs and LCs were used as negative control. 
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both activated by multiple cytokines, and were not particularly strongly activated by Tnf 

stimulation. Erk and Akt were activated by IL3 and GM-CSF (Figure 27). 

Jnk is activated by Tnf, independently of NF-κB, promotes LC colony formation 

 Our previous studies showed that there is a Tnf-mediated and NF-κB independent 

signal that is a survival mediator in LCs but a cell death mediator in HSPCs. When 

studying the effects of different hematopoietic cytokine stimulation, I determined Jnk and 

p-38 were primarily activated by Tnf, making these two proteins possible contenders. To 

test which of these survival signals fit the criteria, I treated HSPCs and LCs in parallel in 

suspension culture first with BAY for two hours, and then added Tnf for 15 minutes. Any 

NF-κB-independent/Tnf-dependent signals would be activated upon Tnf stimulation and 

remain activated or increase in activation in the presence of BAY.  

I found Erk and AKt were repressed by BAY in LCs, suggesting these signals 

require NF-κB for activity. These were different in HSPCs and LCs, with BAY treatment 

enhancing their respective activities, suggesting a possible compensantory mechanism in 

HSPCs. Jnk and p-38 were active in the presence of Tnf and BAY (Figure 28A). 

To determine which of these mediate survival signals, I treated HSPCs and LCs in 

parallel with small molecule inhibitors specific for each protein: (SB253580, p38; 

SP600125, Jnk; PD98059, Erk). Erk inhibitor had no observed effect on LC CFUs. p38 

inhibition actually increased the CFUs of LCs while decreasing CFUs in HSPCs, 

suggesting p38 represses cell death in LCs and promotes cell death in HSPCs, which 

would make it a poor choice for anti-leukemia therapies. Jnk inhibition increased HSPC 

CFUs and decreased LC CFUs, making this a survival signal in LCs and a death signal in  
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Figure 28. Jnk is a Tnf-dependent, NF-κB-independent survival signal 
 
 
 

 
 
 
 
 
A) HSPCs and LCs were pre-treated with BAY for two hours, followed by stimulation 
with Tnf for 15 minutes. Cells were lysed, contents resolved by SDS-PAGE, and 
analyzed by western blot. Protein levels were normalized to GAPDH for loading control. 
Vehicle treated cells were used as negative controls. B) HSPCs and LCs were treated in 
parallel with p38 inhibitor (SB253580), Jnk inhibitor (SP600125), and Erk inhibitor 
(PD98059). Total number of colonies is shown. Values shown are mean ± SD. * indicates 
p<0.05 when compared to vehicle treated control by Student’s t test. 
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HSPCs, suggesting Jnk is the Tnf-mediated, NF-κB survival signal in LCs, and death 

signal in HSPCs (Figure 28B). 

Jnk inhibition drives cell death in LCs 

 The previous study suggested Jnk functioned as a survival signal in LCs. To test 

this, I used two different Jnk inhibitors: a small molecule inhibitor (SP600125, SP6 

hereafter), and a Jnk binding domain peptide (aa sequence: 

GRKKRRQRRRPPRPKRPTTLNLFPQVPRSQDT) that interferes with upstream 

SAPKK activation of Jnk. Both of these inhibitors were able to completely block Tnf-

mediated Jnk phosphorylation and subsequent c-Jun phosphorylation (Figure 29A). Cells 

treated with a control peptide (aa sequence: GRKKRRQRRRPP) were used as negative 

control. 

 Treatment with SP6 in HSPCs and LCs showed that Jnk inhibition promotes cell 

death in LCs at a much lower concentration than in HSPCs in a dose dependent manner 

(Figure 29B). I noted that at high concentrations, SP6 can cause cell death in HSPCs. 

However, SP6 has complete Jnk inhibition at 10 µM. Any effects observed at 

concentrations above 10 µM could be attributed to non-specific toxicities. Cells treated 

with vehicle were used as negative controls.  

 I confirmed the effects of SP6 in HSPCs and LCs by treating both cell types in 

parallel with another Jnk inhibitor, which was a peptide mimetic of Jnk-binding domain, 

JNKi-I(L). This peptide also showed a dose-dependent effect on LCs, suggesting a 

specific activity is due to blocking Jnk. At high concentrations (10 µM), I observed a 

large decrease in CFUs of LCs without any decrease in HSPC CFUs (Figure 26C). Cells   
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Figure 29: Jnk inhibition promotes cell death in LCs 
 
 

 
 
 
 
A) LCs were treated in suspension culture with indicated JNKi-I(L) or SP6 for 2 hours 
before stimulation with Tnf for 15 minutes. Cells were lysed and contents resolved by 
SDS-PAGE and Jnk/c-Jun activity was determined by western blot. Negative control 
(n.c.) peptide was used as negative control. B) HSPCs and LCs were treated in parallel 
with increasing doses of SP6 inhibitor in methylcellulose. Vehicle treated cells were used 
as negative controls. C) HSPCs and LCs were treated in parallel with increasing doses of 
JNKi-I(L) peptide in methylcellulose. Negative control-peptide treated cells were used as 
negative control. D) HSPCs and LCs were treated in suspension culture with increasing 
doses of SP6 overnight. Cell death was measured the following day by Annexin V 
staining and read by flow cytometry. Vehicle treated cells were used as negative control. 
A is representative of three independent trials. Values shown are mean ± SD. * indicates 
p<0.05, ** indicates p<0.01 by Student’s t test. 
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treated with a control peptide that has key JNK binding domain interaction amino acids 

mutated were used as negative controls. 

Finally, I attributed the reduction in CFUs to an induction of cell death by treating 

HSPCs and LCs in parallel in suspension culture with increasing doses of SP6.At 10 µM, 

70% of LCs were Annexin V positive, while no significant increase in HSPC cell death 

was observed (Figure 29D). Vehicle treated cells were used as controls. 

Jnk is a Tnf-mediated survival signal in LCs, death signal in HSPCs 

 I identified that Jnk functions as a survival signal in LCs by treating LCs with a 

Jnk inhibitor and reducing the colony formation. Next, I needed to determine if Jnk was 

acting as a Tnf-mediated (to be specific) survival signal in LCs, and a Tnf-mediated death 

signal in HSPCs. To accomplish this I treated HSPCs and LCs in parallel with SP6 or 

exogenous Tnf individually or in combination. If Jnk acted as a Tnf-mediated survival 

signal, then CFUs gained by Tnf stimulation could be prevented by treatment with SP6. 

On the other hand, if Jnk acted as a Tnf-mediated death signal, then loss of CFUs due to 

Tnf stimulation could be rescued by co-treatment with SP6. I found that Tnf treatment of 

HSPCs, in agreement with our earlier data, caused a 50% drop in CFUs that was partially 

rescued by co-treatment with SP6, suggesting that Jnk functions as a Tnf-mediated death 

signal. However, in LCs, co-treatment of SP6 and Tnf reduced CFUs by as much as 50%, 

suggesting Jnk functions as a Tnf-mediated survival signal (Figure 30A). Vehicle treated 

cells were used as control. 
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Figure 30: Jnk is a Tnf-mediated survival signal in LCs, death signal in HSPCs 
 

 

 

 
A)	  HSPCs and LCs were treated in parallel with SP6 and Tnf individually or in 
combination in methylcellulose culture and plated for CFU assay. Numbers of CFUs 
were normalized to vehicle-treated HSPCs and LCs, respectively. B) HSPCs were treated 
overnight with Tnf or SP6 individually or in combination in suspension culture. The 
following day, cell death was measured by Annexin V assay and read by flow cytometry. 
Vehicle treated cells were used as negative controls. Values shown are mean ± SD from 
three independent trials. * indicates p<0.05 when compared to vehicle control as 
measured by Student’s t test. # indicates p<0.05 when compared to indicated groups as 
measured by Student’s t test. 
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The reduction in HSPC CFUs following Tnf stimulation appeared to be almost entirely 

due to induction of cell death, and more specifically Jnk-mediated cell death. This is 

because co-treatment of Tnf and SP6 in HSPCs almost completely prevented all  

Tnf-mediated cell death in these cells (Figure 30B). Vehicle treated HSPCs were used as 

control.  

Tnf-mediated Jnk activation is attenuated in LCs 

 Jnk activation can play opposing roles in tissues depending on the nature of its 

activity. For example, the pro-survival function of Jnk is related both to its duration of 

activity (< 2 hrs) as well as its nuclear substrates in the Jun/Fos AP-1 family of 

transcription factors. This results in activation of survival and proliferative genes through 

the AP1 transcription factors binding to appropriate target genes. In opposition, the pro-

apoptosis function of Jnk is, in turn, related to its duration of activity (> 2 hrs) as well as 

its cytoplasmic substrates. When phosphorylated by Jnk, pro-apoptotic Bim, Bad, Bax, 

Bak, and Bid increase in affinity for the puncturing the mitochondrial membrane and also 

prevent Bcl-2 family antiapoptotic genes from protecting the mitochondria. This results 

in release of cytochrome C leading to activation of executor caspases and apoptosis. 

 I hypothesized that because Tnf-stimulated Jnk is acting as a survival signal in 

LCs and death signal in HSPCs, that there would be stringent regulation of Jnk 

phosphorylation in LCs (<2 hrs). To test this I treated cytokine-starved HSPCs and LCs 

in suspension culture with exogenous Tnf for a time course experiment extending from 

15 minutes to 240 minutes (4 hours). I found that both HSPCs and LCs have the most 

activity of Jnk 15 minutes after stimulation. But when LCs are able to return to a basal,  
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Figure 31: Tnf-mediated Jnk activity is attenuated in LCs 
 
 
 
 

 
 
 
 
 
 
A) HSPCs and LCs were stimulated with exogenous Tnf for indicated time (in minutes). 
Jnk activity was determined by western blot analysis for phosphorylated Jnk. Protein 
levels were normalized to GAPDH for loading control. Vehicle treated cells were used as 
control. B) Pixel analysis was performed using p-Jnk blots and normalizing the arbitrary 
units to GAPDH for each. Fold change in p-Jnk levels were compared to vehicle (0 min) 
treated cells. Results shown are representative of three independent trials.  
 
 

  



97	  
	  

 
	  

unstimulated level of Jnk phosphorylation after 60 minutes, HSPCs have Jnk activity that 

persists up to 4 hours following stimulation (Figure 31A). Total signal was analyzed  

using pixel analysis and normalized to GAPDH strength as internal loading controls 

(Figure 31B). Vehicle treated cells were used as negative control. 

LCs attenuate Jnk signal strength through Tnf receptor endocytosis 

 There are two possible mechanisms for attenuating the Jnk signal duration: LCs 

can either endocytose the Tnf receptor thereby removing the stimulus, or LCs can directly 

dephosphorylate Jnk with a Map Kinase Phosphatase (Mkp). I tested the first possibility 

by treating HSPCs and LCs with Tnf for a timecourse and measured surface expression 

of Tnf receptor. If Tnf stimulation drove endocytosis of the receptor, then the mean 

fluorescence intensity should decrease, and the curve should shift to the left (this 

antibody recognizes a different sequence on the extracellular portion of the receptor than 

binds the ligand, so I can be confident that ligand binding does not displace the antibody, 

or vice versa). I found that LCs do endocytose the receptor in response to ligand binding 

when compared to HSPCs (Figure 32A). HSPCs and LCs lacking the Tnf receptor were 

used as negative control. 

 Tnf receptors are endocytosed via the classic clathrin-mediated pit mechanism. 

The final step of clathrin-dependent endocytosis is the cinching and sealing of the 

internalized vesicle by an ATP-dependent protein called dynamin, which can be inhibited 

by a small molecule called Dynasore. I expected to be able to prolong the Jnk signal in 

LCs by blocking endocytosis, but I found that the signal was only slightly prolonged (still 

active at 60 minutes). However, I did note that the signal of phosphorylated Jnk was  
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Figure 32: LCs attenuate Jnk signal strength through Tnf receptor endocytosis 
 
 
 
 

 
 
 
 
A) HSPCs and LCs were treated with exogenous Tnf (20 ng/mL) for indicated times, 
then stained for Tnfr1a expression and read by flow cytometry. Tnfr-/- HSPCs and LCs 
were used as negative controls. Results shown are indicative of three independent trials. 
B) HSPCs and LCs were treated with exogenous Tnf (for indicated time in minutes) and 
Dynasore individually or in combination. Phosphorylated Jnk was measured by western 
blot analysis. Results shown are indicative of three independent trials. C) LCs were 
treated with Dynasore or Tnf alone or in combination overnight in suspension culture. 
Cell death was measured the following day by Annexin V staining and read by flow 
cytometry. Results shown are mean ± SD. * indicates p<0.05 when compared to vehicle 
control as determined by Student’s t test. # indicates p<0.05 between indicated groups. 
Other p values are noted. 
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significantly strengthened (Figure 32B). I then found blocking endocytosis did enhance 

overall cell death in LCs, but addition of exogenous Tnf did not further enhance cell 

death (Figure 32C). I concluded from these results that LCs are utilizing receptor 

endocytosis to regulate the Jnk signal, but only by controlling the signal strength. 

Mkps are stably expressed in LCs in response to Tnf 

 The previous figure showed how LCs can endocytose the Tnf receptor in order to 

limit the signal strength of Jnk. This mechanism did not have a major effect on the Jnk 

signal duration though, and LCs were still able to return Jnk phosphorylation to an 

unstimulated level after one hour. Therefore, there must be additional mechanisms in 

place to limit Jnk activity. These are the Map Kinase Phosphatases (Mkp). Mkps are 

poorly understood dual-specificity proteins that can dephosphorylate and inactivate the 

map kinases. Mkps 1, 3, 5, and 7 were shown to have some interactions with Jnk, 

therefore I hypothesized that one of these Mkps were responsible for regulating Jnk in 

LCs. Mkps are regulated at the level of transcription, so I first assayed for total transcripts 

of each Mkp (1, 3, 5, and 7). Results displayed are normalized to each condition in 

HSPCs. I found that only Mkp1 is upregulated in LCs (Figure 33A).  

Mkp transcription changed in response to Tnf stimulation. I hypothesized that Tnf 

would stimulate necessary regulation mechanisms for Tnf targets, and I found that Tnf 

stimulation did increase Mkp1 and 7 transcription in both HSPCs and LCs. Tnf drove a 

repression of Mkp3 and 5 transcription in HSPCs (Figure 33B). Even though Tnf drove 

changes in Mkp7 transcription levels, Mkp7 was not significantly changed between   
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Figure 33: Mkps are stably expressed in LCs during Tnf stimulation  
 
 

 
 
 
 
A) HSPCs and LCs were analyzed by qRT-PCR to determine relative transcription of 
Mkps. Results shown are normalized to levels in HSPCs for each type of Mkp. Results 
shown are mean ± SD from three independent trials. * indicates p<0.05 when compared 
to HSPC transcription level, as determined by Student’s t test. B) HSPCs and LCs were 
treated with Tnf for indicated times, and Mkp transcription at each time was assayed by 
qRT-PCR. Values shown are mean ± SD from three independent trials, and are 
normalized to vehicle treated cells as control. * indicates p<0.05 when compared to 
vehicle treated cells, # indicates p<0.05 when compared to indicated groups, both 
determined by Student’s t test (n.s. = non significant). 
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HSPCs and LCs, and was not further studied. HSPCs displayed a significant drop in 

Mkp3 and 5 levels during the course of Tnf treatment, suggesting that Tnf can repress 

expression of these genes. However, Mkp3 and 5 levels were not changed in LCs during 

the course of Tnf stimulation. 

Mkp5 regulates Jnk activity in LCs 

I determined that several Mkps are either upregulated or maintained differentially 

in LCs than in HSPCs in response to Tnf stimulation (Mkp1/3/5). In order to determine 

which of these is responsible for Jnk regulation in response to Tnf in LCs, I knocked 

down Mkp1, 3, and 5 in LCs using shRNA constructs, and measured knockdown by 

qRT-PCR (Figure 34A). Scrambled shRNA was used as negative control, and the best 

knockdown was used for future experiments.  

I were expecting that knockdown of Mkp1 would prolong p-Jnk because it is 

upregulated in LCs compared to HSPCs, and it also increases during Tnf stimulation. 

However, I found that Mkp1 knockdown only slightly prolonged Jnk activation duration. 

Mkp5 knockdown, however, completely eliminated LCs ability to regulated p-Jnk. In 

these cells, Tnf stimulation perpetually activated Jnk (Figure 34B). Quantification of the 

p-Jnk signal was performed by pixel analysis and normalized to GAPDH loading control. 

Arbitrary units shown are relative to p-Jnk signal from vehicle-treated cells (Figure 

34C). 

Next I asked if prolonging Jnk activity in LCs would convert Jnk from a Tnf-

mediated survival signal to a death signal. I tested the knockdowns of Mkp1, 3, and 5 and  
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Figure 34: Mkp5 regulates Tnf-mediated Jnk activity in LCs 
 

 
 

A) shRNA knockdown of indicated Mkps in LCs. Values are normalized to scrambled 
shRNA transduced control. B) LCs expressing each Mkp knockdown shRNA construct 
were treated with Tnf for indicated time periods, lysed, and contents resolved by SDS-
PAGE and analyzed by western blot. Results shown are representative of three 
independent trials. C) Quantification of western blot results in B by pixel analysis. 
Arbitrary units are set for each shRNA by vehicle treated cells and normalized to 
GAPDH. D) LCs expressing indicated shRNAs were treated with Tnf in methylcellulose 
for colony forming unit assay. Total number of colonies is shown. Values shown are 
mean ± SD from three independent trials. * indicates p<0.05 when compared to vehicle 
treated cells, unless otherwise noted, by Student’s t test. 
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found that Mkp5 knockdown was able to both prolong the Jnk signal in the presence of 

Tnf as well as cause reduction in CFUs. Mkp1 also slightly prolonged the Jnk signal, but 

apparently not enough to convert it to a death signal. These cells increased CFUs upon 

Tnf stimulation (Figure 34D). 

Jnk promotes Tnf-mediated LC survival by promoting Mcl-1 and c-Flip expression 

 I determined that Jnk is acting as an NF-κB independent, Tnf-dependent survival 

signal regulated by Mkp5 in LCs. As a SAPK protein, Jnk drives target gene expression 

indirectly through phosphorylation of nuclear substrate transcription factors in the AP1 

(Jun/Fos) family. In order to determine which survival genes were Jnk mediated, Tnf-

dependent, and NF-κB independent, I grew WT and Tnfr-/- LCs in culture media without 

cytokine stimulation for four hours to reset the internal protein machinery of the cell to a 

basal rate. Then I pre-treated cells with either BAY or SP6 to block NF-κB or Jnk, 

respectively, then added back all four hematopoietic cytokines (IL3, IL6, GM-CSF, SCF) 

plus Tnf. I called this condition “5 growth factors” (5GF). Any signals that were Tnf-

mediated would be downregulated in Tnfr-/- LCs grown with 5GF, and any signals that 

were Jnk mediated would remain downregulated in the presence of SP6 once 5GF were 

added back. 

 I found that Tnf-mediated survival genes were from the Jun family (c-Jun, JunB, 

positive controls), Mcl-1, c-Flip, and Cyclin D1. Bcl-2 and Bcl-xL were upregulated in 

Tnfr-/- LCs, suggesting a compensatory mechanism for maintaining cell survival without 

Tnf. Cyclin D1 levels returned following SP6 and BAY treatment, suggesting that it is a  
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Figure 35: Jnk promotes Tnf-mediated LC survival by reinforcing Mcl-1 and c-Flip 
expression 

 

WT and Tnfr-/- LCs were grown in cytokine-free medium for four hours to reset the 
internal protein machinery of the cell to a basal rate. Then I pre-treated cells with either 
BAY or SP6 to block NF-κB or Jnk, respectively, then added back all four hematopoietic 
cytokines (IL3, IL6, GM-CSF, SCF) plus Tnf. Results shown are representative of three 
independent trials. * indicates specific binding of Bcl-2/Bcl-xL antibody, other bands are 
non-specific. 
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Tnf-mediated, NF-κB and JNK-independent cell cycle genes. Mcl-1 and c-Flip levels 

returned to normal in the presence of BAY with the addition of 5GF  

media condition, but were repressed with SP6 treatment, suggesting these are Jnk-

mediated survival genes. xIAP1 was also repressed following Jnk treatment but was not  

downregulated in Tnfr-/- LCs, suggesting this protein is Jnk-mediated but Tnf-

independent (Figure 35). LCs grown in 5GF culture medium were used as controls. 

Jnk mediates its pro-survival signal through c-Jun 

 Jnk’s primary nuclear substrate for driving survival and proliferation signaling is 

c-Jun. I compared c-Jun expression between HSPCs and LCs and found LCs express a 

much higher level of c-Jun protein than HSPCs. Also, Tnf drives Jnk-mediated c-Jun 

phosphorylation in an NF-κB-independent manner because treatment with BAY did not 

repress either Tnf-mediated Jnk phosphorylation or c-Jun phosphorylation (Figure 36A). 

Vehicle treated cells were used as controls. 

 In order to determine c-Jun’s function in driving Tnf-mediated LC survival, I 

performed a shRNA knockdown experiment. LCs were spinoculated with c-Jun shRNA 

expressing retrovirus, selected, and contents resolved by SDS-PAGE and western blot 

analysis. I found that c-Jun shRNA1 provided us with the best knockdown. Non-specific 

binding was used as loading control (Figure 36B).  

 If c-Jun functioned as a Tnf-mediated survival signal, then removing it via 

shRNA knockdown should also eliminate Jnk’s nuclear target and convert it to a death 

signal. I found this to be the case as c-Jun knockdown cells had a significant reduction in  
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Figure 36. Jnk mediates its pro-survival signal through c-Jun 

 
 

 
 
 
A) HSPCs and LCs were treated in parallel with exogenous Tnf and BAY individually or 
in combination. Cells were lysed and contents resolved by SDS-PAGE and analyzed by 
western blot. Vehicle treated cells were used as negative controls. Results shown are 
representative of three independent trials. B) LCs were spinoculated with c-Jun shRNA-
expressing constructs and selected by puromycin for one week. Knockdown efficiency 
was measured by western blot. Scrambled shRNA-expressing retrovirus was used as 
negative control. Results shown are indicative of three independent trials. C) shSCR and 
c-Jun shRNA1 expressing LCs were treated with exogenous Tnf in methylcellulose and 
CFUs measured. Results shown are mean ± SD from three independent trials. D) shSCR 
and c-Jun shRNA1 expressing LCs were treated with exogenous Tnf in suspension 
culture overnight and measured for cell death by Annexin V stain and read by flow 
cytometry. Results shown are mean ± SD from three independent trials. * indicates 
p<0.05 when compared to vehicle treated cells as measured by Student’s t test. # 
indicates p<0.05 when compared to indicated groups as measured by Student’s t test. 
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CFUs when treated with exogenous Tnf in methylcellulose (Figure 36C), as well as a 

significant induction of apoptosis as measured by Annexin V stain following overnight 

stimulation with exogenous Tnf (Figure 36D). In both cases, LCs expressing a scrambled 

shRNA and treated with vehicle were used as negative controls. The amount of cell death 

induced was slight but significant, though I noted that it did not seem large enough to 

explain the significant drop in CFUs following Tnf stimulation. I propose that this is due 

to additional members of the Jun family compensating for loss of c-Jun. To account for 

this, I turned to a dominant negative form of c-Jun (TAM67). 

Dominant negative AP-1 abrogated Tnf-mediated survival in LCs 

  I spinoculated LCs with a dominant negative AP-1 (TAM67), which contains the 

necessary structures to interact with and be phosphorylated by SAPKs (Jnk1/2), then bind 

other AP-1 family members. TAM67 (DN-AP1, hereafter) lacks a DNA-binding domain, 

preventing the transcription factors from binding to target genes. This molecule can block 

the activity of all Jun family members (c-Jun, JunB, and JunD). Overexpression of this 

molecule resulted in significant defects in overall cell growth compared to non-

transduced cells as determined by change in GFP% over time (Figure 37A). Addition of 

Tnf enhanced this effect. It should be noted that DN-AP1 had an effect in Tnfr-/- cells, 

which do not express high levels of c-Jun or JunB. I expect that this is due to JunD 

compensating, but did not perform any experiments to this end. Non-transduced cells 

were used as internal control.  

 The slight reduction in CFUs and increase in Annexin V observed by treating c-

Jun knockdown LCs with Tnf was significantly enhanced by blocking the entire  
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Figure 37. Dominant negative AP-1 abrogated Tnf-mediated survival in LCs 
 
 

 
 
 
A) WT and Tnfr-/- LCs were spinoculated with DN-AP1 expressing GFP retrovirus in 
suspension culture and were observed daily by flow cytometry for reduction in % of 
GFP-expressing cells. Tnf was also added to the culture media in test groups. Vehicle 
treated cells were used as negative control, non-transduced cells were used as internal 
control. Results shown are representative of three independent trials. B) WT and Tnfr-/- 
LCs were spinoculated with DN-AP1 expressing retrovirus and treated with exogenous 
Tnf in methylcellulose for CFU assay. Results shown are normalized to vehicle treated 
cells expressing empty vector. C) LCs were spinoculated with DN-AP1 expressing 
retrovirus and treated with Tnf in suspension culture overnight. The following day, cell 
death was measured by Annexin V staining as read by flow cytometry. Vehicle treated 
cells expressing empty vector were used as negative control. * indicates p<0.05 compared 
to vehicle treated cells by Student’s t test. # indicates p<0.05 compared to indicated test 
group as determined by Student’s t test. 
 
 
Figure 37 model. LC conversion of Tnf-mediated Jnk signaling to a survival signal 
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transcription factor family with DN-AP1. I found that overexpression of DN-AP1 

combined with exogenous Tnf treatment reduced CFUs in LCs by 80% (Figure 37B, 

compared to 40-50% with c-Jun only knockdown), and increased Annexin V staining by 

20% (Figure 37C, compared to 11% with c-Jun only knockdown). These suggest that  

there are additional AP1 family transcription factors activated in addition to c-Jun that 

need to be accounted for when trying to block Tnf-mediated survival signaling in LCs 

and LSCs.  

Co-inhibition of NF-κB and Jnk is protective in HSPCs, synergistic in LCs 

 I identified Jnk as a critical Tnf-driven pro-survival signal in LCs, but a pro-death 

signal in HSPCs. This presents an interesting option for an anti-cancer therapeutic target: 

blocking Jnk would induce cell death in LCs while protecting HSPCs against cell death, 

and I may be able to further sensitize LCs to NF-κB inhibitor effects in vivo by blocking 

the compensatory pathway. I started by measuring the effects of co-inhibition of NF-κB 

and Jnk in vitro by combination treatment in methylcellulose and measuring change in 

CFUs. I found co-treatment of HSPCs with BAY and SP6 at therapeutic doses had no 

effect on the cells. In fact, the toxicity of over-dosing HSPCs with BAY was partially 

rescued by co-treatment with SP6 (Figure 38A). Vehicle treated HSPCs were used as 

negative control. 

 I then tested the combination therapy in WT and Tnfr-/- LCs. I found that treatment 

with an even lower dose of BAY (100 nM vs 200 nM) than originally determined was 

sufficient to induce >90% reduction in CFUs, as long as co-treated with SP6 (Figure 

38B). As expected, both genotypes of LCs were equally sensitive to SP6 treatment, and  
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Figure 38. Co-inhibition of NF-κB and Jnk is protective in HSPCs, synergistic in 
LCs  
 
 
 

 
 
 
 
A) HSPCs were treated with indicated concentrations of BAY and SP6 alone or in 
combination in methylcellulose. Vehicle treated HSPCs were used as negative controls. 
B) LCs were treated with indicated concentrations of BAY and SP6 alone or in 
combination in methylcellulose. Vehicle treated LCs were used as negative controls. 
Values shown are mean ± SD from three independent experiments. * indicates p<0.05 
when compared to vehicle treated controls as determined by Student’s t test. # indicates 
p<0.05 when compared to indicated groups by Student’s t test. 
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the Tnfr-/- LCs were more sensitive to the low-dose BAY treatment. By inhibiting Jnk 

using SP6, I were able to reduce colonies by >90% in both cell types.  

Interestingly, combination treatment of Tnfr-/- LCs also reduced CFUs further than 

BAY inhibitor alone, suggesting that there may be additional Jnk-mediated, Tnf-

independent survival signaling. This could be due to x-IAP, as determined in Figure 35. 

Vehicle treated LCs from each genotype were used as negative controls in this 

experiment. 

Co-inhibition of NF-κB and Jnk is most effective in Tnf-expressing LCs 

 Our murine model of AML that I have been using up to this point is based on 

expression of the MLL-AF9 fusion gene, which only accounts for a small percentage of 

diagnosed AMLs. I also generated LCs from other leukemia fusions: AML-ETO (M2 

subtype) and CBFβ-MYH11 (M4 subtype) LCs. Just as observed in human AMLs, the 

AML-ETO LCs did not express mature Tnf, while the CBFβ-MYH11 LCs did. 

Additionally, treatment with exogenous Tnf drove an increase in CFUs in the Tnf-

expressing LCs, but reduced the CFUs in the non-Tnf-expressing LCs (Figure 39A). 

Vehicle treated cells were used as negative control. I confirmed Tnf and Tnf receptor 

expression in both types of leukemia cells by western blot analysis. 

 I then tested the two additional murine leukemia cell types with the combination 

treatment, BAY and SP6. The combined inhibition of NF-κB and Jnk only had a minimal 

effect on AML-ETO LCs (non-Tnf-expressing LCs), while the combined inhibition had a 

major effect on CBFβ-MYH11 LCs (Figure 39B). These data suggest that although the  
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Figure 39. Co-inhibition of NF-κB and Jnk is most effective in Tnf-expressing LCs 

 

 

 

 

A) AML-ETO and CBFβ-MYH11 LCs were treated with Tnf in methylcellulose for CFU 
assay. Tnf and receptor expression was measured by western blot analysis of lysed cells. 
B) AML-ETO and CBFβ-MYH11 LCs were treated with BAY or SP6 alone or in 
combination at indicated doses in methylcellulose for CFU assay. Results are normalized 
to vehicle treated cells. All results shown are mean ± SD. * indicates p<0.05, ** indicates 
p<0.01 when compared to vehicle treated cells as determined by Student’s t test. # 
indicates p<0.05 when compared to indicated experiment groups as determined by 
Student’s t test.  
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inhibition of NF-κB and Jnk can have an effect on most AMLs, it is most effective in 

AMLs that express Tnf. Vehicle treated cells were used as controls. 

Confirmation of inhibitor specificity in LCs 

 A major concern when working with small molecule inhibitors in live cells is the 

possibility of non-specific or off-target effects of the drug. This can be tested for by co-

treatment with a genetic inhibition of the same target. For example, the specificity of the 

BAY inhibitor can be measured by co-treatment with DN-AP1 to block Jnk/c-Jun or c-

Jun shRNA, or SP6 can be co-treated in IκBαSR-expressing cells. If the end result of the 

inhibitor and genetic inhibition is the same as two inhibitors, then I can conclude that the 

effects I observe are due to direct interactions. I performed these experiments in WT and 

Tnfr-/- LCs expressing IκBαSR treated with or without SP6 (Figure 40A), WT LCs 

expressing DN-AP1 treated with or without BAY (Figure 40B), and WT LCs expressing 

c-Jun shRNA treated with or without BAY (Figure 40C). In each case, the genetic 

modification augmented the inhibitor’s effects. This suggests that the effects I observe 

with the combination drug therapies are specific, and not due to off-target effects. Cells 

expressing empty vector or scrambled shRNA (where appropriate) and treated with 

vehicle were used as negative controls. 
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Figure 40. Confirmation of inhibitor specificity in LCs  
 
 
 

 
 
 
 
 
 
 
A) WT LC and Tnfr-/- LC were transduced with IκBαSR-GFP. GFP+ cells were sorted and 
plated in methylcellulose with or without SP6 treatment. Values are normalized to vector-
only transduced control cells. B) LCs were transduced with DN-AP1-GFP. GFP+ cells 
were sorted and plated in methylcellulose with or without BAY treatment. C) LCs were 
transduced with c-Jun-shRNA1; GFP+ cells were sorted and plated in methylcellulose 
with or without BAY treatment. shSCR transduction was used as control. Values shown 
are mean ± SD from three independent experiments. * indicates p<0.05 as determined by 
Student’s t test when compared to vehicle treated vector-expressing control cells. # 
indicates p<0.05 when compared to indicated experiment groups as determined by 
Student’s t test. 
  



115	  
	  

 
	  

Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML 

 To study whether combination treatment using both NF-κB and JNK signaling 

inhibitors is also additive in eliminating human LC, I compared the responses of human 

AML cell lines to the treatments. By incubating the LC with NF-κB and JNK inhibitors 

individually or in combination for 12 hours, and then seeding for CFU to examine the 

reduction of clonogenic LC, I observed additive inhibition effects of the two inhibitors in 

almost all AML cell lines (Figure 41A). I noted that the sensitivity of AML cell lines to 

such additive inhibition effects are correlated to levels of TNF expression (Figure 19D). 

Cell lines RS4:11 (B-ALL), K562 erythroid LC and ML-2 that had a reduced response 

also express lower levels of TNF, whereas the TNF-expressing cell lines, including HL-

60 (M2/3), ML-2 (M5), Molm-13 (M5), U937 (M5), NB4 (M3), and THP-1 (M5), 

showed exceptional sensitivity to the combined inhibitor treatment. Results shown are 

normalized to colonies formed by vehicle-treated cells. 

The most sensitive human AML cell lines to the combination therapy showed 

constitutive NF-κB activity, as determined by p65 localization to the nucleus, while the 

least sensitive cell lines did not have constitutive NF-κB activation (Figure 41B). In 

addition, I found that, although all the sensitive cell lines showed TNF-stimulated NF-

κB-independent JNK-c-JUN activation (Figure 41C), the most sensitive AML cell lines 

(U937, NB4 and THP1) had increased basal levels of NF-κB and JNK-c-JUN activities as 

shown by elevated nuclear p65 and total p-JNK/p-c-JUN. Vehicle-treated cells were used  
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Figure 41. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human 
AML cell lines 
 

 
 
 
A) CFU from human leukemic cell lines treated with indicated doses of SP, BAY or 
combination. Results shown are mean ± SD from three independent experiments. * 
indicates p<0.05 when compared to vehicle treated control, as determined by Student’s t 
test. # indicates p<0.05 when compared to indicated experiment groups as determined by 
Student’s t test. B) Nuclear fractionation analysis showing NF-κB activity in AML cell 
lines. Results shown are representative of three independent trials. C) Several TNF-high 
expressing AML cell lines were treated with TNF and BAY individually or in 
combination. Levels of p-JNK and p-cJUN were examined by Western blotting. Results 
shown are representative of three independent trials.  
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as negative controls, and protein levels were normalized to α-Tubulin/Lamin (Figure 

41B) or GAPDH (Figure 41C) as loading control. 

Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing primary  
AML patient samples  

The gold-standard of testing novel drug efficacy is to use tumor samples excised 

directly from newly-diagnosed patients. I collaborated with the clinicians at the 

hematology oncology department at Loyola University Medical Center to collect 

peripheral blood and bone marrow aspirate samples from newly diagnosed AML patients. 

Upon receipt of these samples, nucleated cells were purified using Ficoll-paque 

centrifugation and cultured as stated in the methods section. In healthy patients, colony-

forming cells are rarely found in the peripheral blood, so I used Peripheral Blood Stem 

Cells (PBSCs) isolated from donors following G-CSF therapy to mobilize HSCs from the 

niche for collection. 

I found that while all but one sample were somewhat sensitive to combined NF-

κB and JNK inhibition, 3/6 were highly sensitive with CFU reductions of >80%. Two of 

these samples expressed high levels of Tnf, while the third did not. At the time I proposed 

that this sample (patient #6) may express high levels of IL1. This has since been 

confirmed (Figure 42).  

These data, taken together suggest that some AMLs use TNF as an autocrine 

survival signal by activation of JNK as a pro-survival/proliferation marker. AMLs also 

use secreted TNF as a paracrine signal to reorganize the niche and eliminate HSPCs, 

which use JNK as a pro-death signal (Figure 42 model).   
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Figure 42. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing 
primary AML patient samples  
 
 

 
 
 
 
Mononuclear cells from AML patient samples isolated from the peripheral blood were 
isolated and cultured overnight in patient sample medium. 1x104 live cells were plated in 
methylcellulose along with indicated treatments and read for CFU assay. Remaining cells 
were lysed and RNA isolated for qRT-PCR. Results shown are normalized to vehicle 
treated cells, and are mean ± SD from three independent trials. * indicates p<0.05 when 
compared to vehicle treated cells, # indicates p<0.05 when compared to indicated 
experiment groups, and ~ indicates p<0.05 when compared to TNF mRNA levels of 
PBSCs, all determined by Student’s t test. 
 
Figure 42 model. 
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Aim 2. Determine IL1 contribution to TNF-independent, NF-κB independent 
survival and chemoresistance of LSCs to NF-κB inhibition. 
 

IL1 stimulates Jnk and Jun family members’ activation in LCs 

When I saw that some patient samples that do not express TNF were sensitive to 

NF-κB and JNK inhibition treatments, I suggested there might be additional pro-

inflammatory cytokines operating similarly to TNF, but in a parallel fashion. This would 

account for some of the AML patient samples that responded to NF-κB and JNK 

inhibition, but did not express TNF. To find out which pro-inflammatory cytokines could 

be producing such an effect, I turned to the resources available by my collaborators. They 

determined that the same patients that express high levels of TNF also express high levels 

of IL1 (Figure 3). My collaborators also found that LSCs, in addition to producing 

endogenous IL1, respond to exogenous IL1 stimulation by promoting survival and 

proliferation (Figure 4). I confirmed that the mouse MLL-AF9 LCs produced both Tnf 

and IL1 by western blot analysis by looking at tumors isolated from three separate 

xenograft transplants of LCs into mice (Figure 43A). If IL1 was operating in parallel to 

TNF, then I would expect to see activation of JNK and subsequent Jun family members. 

To test this, I stimulated LCs with exogenous IL1 and Tnf and measured the 

phosphorylation events on Jnk, c-Jun, and JunB. I found that while Tnf is a strong 

inducer of Jnk and c-Jun, IL1 is a weak inducer of Jnk and c-Jun. JunB was equally 

activated by both Tnf and IL1 (Figure 43B). This suggests that without Tnf, LCs are able 

to secrete IL1 to activate similar signaling pathways. Therefore, blocking Tnf alone in 

LCs will not be enough to inhibit NF-κB-independent survival.     
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Figure 43. LCs produce IL1, which weakly activates Jnk, c-Jun, and JunB 
 
 

 
 
 
 
 
A) LCs from three separate xenografts were isolated from mice, lysed, and analyzed for 
Tnf and IL1 expression by western blot anaylsis. GAPDH was used as loading control. 
Mature IL1 is the lower (strongest) band resolved, the upper band is non-specific. B) LCs 
were stimulated with either Tnf of IL1 and contents were resolved for western blot 
analysis. c-Jun phosphorylation can be determined by upward shift, and respective bands 
are notated. GAPDH was used as loading control. 
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c-Jun, JunB, and JunD contribute to LC resistance to NF-κB inhibition 
 

 When I screened through pro-inflammatory genes that were upregulated in AML 

patient tumors, I found that the Jun family of proteins (c-Jun, JunB, JunD) were highly 

expressed. While c-Jun is a well-described tumor promoter in most tissues studied, JunB 

is widely considered to be a tumor suppressor.308 In order to understand the functions of 

these proteins further, I did shRNA knockdown experiments and measured effects on 

colony formation in LCs. I were able to stably knockdown each individual Jun family 

member in LCs (Figure 44A). Total knockdown was compared to scrambled shRNA-

transduced control, and protein loading was normalized to GAPDH, except for c-Jun 

knockdown which was normalized to a non-specific band. 

 I found that knockdown of c-Jun resulted in a decrease in LC CFUs, but that JunB 

knockdown resulted in a further decrease in CFUs, suggesting that JunB may be acting as 

a tumor promoter parallel to c-Jun in these cells. JunD knockdown did not have a 

significant effect on the CFU ability of LCs. However, blocking the entire family of 

transcription factors with a c-Jun dominant negative (DN-AP1) had the most profound 

effect on CFU reduction (Figure 44B). CFUs were normalized to vector/scrambled 

shRNA controls. 

 When treated with NF-κB inhibitor (BAY), LCs expressing knockdown of any 

Jun family member showed a significant decrease in CFUs when compared to vehicle 

treatment. LCs expressing c-Jun shRNA were most susceptible to BAY treatment, but 

both JunB and JunD knockdown had a significant decrease in colonies as well. The most  
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Figure 44. Jun subunits c-Jun, JunB, and JunD contribute to LC survival and 
resistance to NF-κB inhibition 

 
 
 
LCs were transduced with indicated shRNAs. Knockdown was measured by western blot. 
B) LCs expressing indicated shRNAs were plated in methylcellulose for CFU assay. 
Results shown are relative to vector-expressing control. C)  LCs expressing indicated 
shRNAs were treated with BAY in methylcellulose for CFU assay. Results shown are 
relative to vehicle-treated cells expressing each shRNA. * indicates p<0.05 when 
compared to control (Vector in B, Vehicle in C), # indicates p<0.05 when compared to 
indicated test groups, as determined by one-way ANOVA with Bonferonni post-hoc test. 
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effective transgene was DN-AP1, suggesting that the different Jun family members might 

contribute to certain degree of LC growth and are able to compensate for loss of another 

(Figure 44D).  

Jun family subunits cooperate to prevent differentiation in LCs 

 While knocking down each of the Jun family proteins, I observed that functional 

repression of all family proteins of the AP1 family transcription factors (through 

transduction with DN-AP1) resulted in a more significant effect and nearly complete 

differentiation of LCs into granulocytes. 

 Because functional repression of all AP1 family of transcription factors resulted 

in differentiation, I wanted to know which family member was responsible for blocking 

differentiation. To study this in detail, I assayed the differentiation status of LCs with 

each individual Jun family member knocked down. DN-AP1 drove complete 

differentiation into granulocytes, as evidenced by mulit-nuclear morphology, stain 

resistance, and cytoplasmic granule formation. Knockdown of each individual Jun family 

member only induced partial differentiation the LCs, and failed to induce cytoplasmic 

granule formation when compared to vector-transduced LCs (Figure 45, top row). I did 

notice a proliferation defect in JunB-deficient cells, but did not investigate further. 

Vector-transduced LCs were used as negative control. 

I then found that knockdown of each Jun family member only resulted in a slight 

decrease in cd117 surface expression (common stem cell marker for murine 

hematopoietic cells, SCF receptor). However, functional repression of the entire family 

resulted in complete loss of cd117 surface receptor, suggesting a more complete   
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Figure 45. Jun family subunits cooperate to prevent differentiation in LCs  
 
 
 

 
 
 
 
LCs were spinoculated with indicated constructs via retroviral transduction and plated in 
suspension culture for 7 days. After this time, LCs were assayed for morphology by 
cytospin followed by Wright-Giemsa stain. Differentiation is characterized by increase in 
cytoplasm:nucleus ratio, change in counter-stain affinity (light purple vs. dark purple), 
and presence of granules in the cytoplasm. Red scale bars indicate 20 µm. Additionally, 
LCs were assayed for cd117 surface marker stain. Results shown are representative of 
three independent trials. 
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differentiation (Figure 45, bottom row). Surface receptor expression was compared to 

vector control-expressing cells. Addition of vector did not change the cd117 levels 

compared to untransduced cells. Taken together, these data suggest that multiple 

members of the Jun family of transcription factors can compensate for each other.  

TNF/IL1 inhibition sensitizes AML M4/5 to NF-κB inhibition 

 I determined, in murine AML models, that co-inhibition of pro-inflammatory 

cytokines Tnf and IL1 can resensitize LSCs to NF-κB inhibition in vitro and in vivo.  

 I collected tumor samples from newly-diagnosed AML patients’ peripheral blood 

or bone marrow at Loyola University Medical Center and isolated mononuclear cells by 

Ficoll-Paque gradient centrifugation, and treated in methylcellulose culture with either 

NF-κB inhibitor (BAY), combination of anti-TNF and anti-IL1 (Etanercept® and 

Kinaret®), or all three together. I found that M0/1/2 (non-pro-inflammatory cytokine-

expressing) were least susceptible, and combined treatment was not any more effective  

than BAY alone. However, M4/5 AMLs (pro-inflammatory cytokine-expressing) and 

non-classified AMLs generated secondary to therapy for other cancers were more 

sensitive to the combination treatment (Figure 46). Results shown are normalized to 

number of colonies grown in vehicle-treated patient samples. Further study is necessary 

to determine the correlation of the effects of combined treated to TNF and IL1 expression. 
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Figure 46. TNF/IL1 inhibition sensitizes AML M4/5 to NF-κB inhibition 

 

 

 

BAY (100 nM)  

anti-TNF (Etanercept® 25 ug/mL) + anti-IL1 (Kinaret®, 100 ng/mL) 

BAY + anti-TNF + anti-IL1 

 

Primary patient samples were collected and mononuclear cells isolated by Ficoll-Paque 
gradient centrifugation, then cultured overnight in suspension culture. 1x104 live cells 
were plated in methylcellulose containing the indicated treatments and colonies read 14 
days later. Values shown are the % CFU normalized to vehicle treatment for each sample. 
Horizontal bars represent mean ± SD. * indicates p<0.05 when compared to vehicle 
treatment, # indicates p<0.05 when compared to indicated groups, both determined by 
one-way ANOVA with Bonferonni post-hoc test. 
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CHAPTER 5 

DISCUSSION 

Increased NF-κB activity has been detected in a variety of types of human cancers 

including nearly all types of hematopoietic malignancies.	   However, mutations of the key 

regulators of NF-κB signaling have been detected only in some B cell lymphomas and 

multiple myeloma. In these B lymphocytic malignancies, abnormal activation of NF-κB 

signaling is the result of active mutations of upstream regulatory components which are 

less dependent on cytokine stimulation. Inhibition of NF-κB signaling in these 

malignancies has been demonstrated to be an effective treatment option, inducing disease 

remission and significant improvement in patient survival.318,319 In AML, there is 

generally a lack of identified mutations in the components of NF-κB signaling, 

suggesting enhanced NF-κB activity might be induced by micro-environmental factors. 

Our studies suggest that TNF, produced by LC, promotes growth of these cells through 

autocrine stimulation of NF-κB and JNK-AP1 as parallel proliferation/survival signals. 

Therefore, the anti-leukemic effects of NF-κB inhibition in AML in vivo are likely 

compensated by TNF activating anti-apoptotic genes operating through JNK. 

Additionally, I showed that paracrine TNF released from LC represses the growth of 

normal HSPC, suggesting a link to the hematopoietic repression observed in AML 

patients. Therefore, I speculate that co-inhibition of both TNF-JNK and NF-κB signals 
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might be a more comprehensive treatment for TNF-expressing AML by synergistically 

repressing the growth of LC and simultaneously protecting HSPC. If this is the case, then 

we would be able to eliminate LSCs in vitro by inhibiting NF-κB and TNF/JNK. To test 

this, our collaborators performed an ex vivo treatment experiment where they treated LCs 

with NF-κB inhibitor (BAY), JNK inhibitor (SP6), or Tnf mAB alone or in combination 

before transplanting the surviving cell into mice. This kind of experiment allows us to 

know if our treatment is toxic to leukemia initiating stem cells (LSCs). They determined 

that indeed, blocking NF-κB and Jnk together was able to eliminate stem cells because 

the tumors xenografted into mice were significantly delayed in forming diseases (Figure 

47A). Additionally, they xenografted untreated LCs into mice and treated the mice 

following engraftment. Blocking Tnf alone in vivo was able to extend survival of 

xenograft mice, but not for a profoundly longer period of time (Figure 47B). This was 

most likely due to IL1 acting in parallel, and unaffected by the Tnf blocking antibody 

treatment. Therefore, we needed to block all downstream signaling by directly inhibiting 

both NF-κB and Jnk together. To test this, our collaborators treated MLL-AF9 LC-

xenografted mice with either BAY or SP6 alone or in combination and found that the 

combination treatment was very successful in prolonging survival in mice (Figure 47C). 

These results prompted our investigation into Tnf-independent pro-inflammatory 

signaling in LCs, and ultimately led us to IL1. 

Our studies show that IL1 stimulation appears to functionally similar and parallel 

to Tnf stimulation in LCs. This suggests that these two pathways can be activated and 

compensate for NF-κB inhibition in LCs. To test this hypothesis, I inactivated both Tnf  
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Figure 47. Co-inhibition of NF-κB and Jnk eliminates LSCs in vitro and in vivo  
 

 
 
 
A) LCs purified from mice were plated in suspension culture, and treated for 12 hours. 
Following treatment, 2x103 live cells were isolated and transplanted back into lethally-
irradiated transplant mice. 5 mice were used for each group. B) 2x104 LCs were engrafted 
for 20 days in sub-lethally irradiated mice. After engraftment, mice were treated with 
indicated treatments every other day for 10 days. C) 2x104 LCs were engrafted for 20 
days in sub-lethally irradiated mice. After engraftment, mice were treated with indicated 
treatments every other day for 10 days. Mice received BAY (10 mg/kg IP), SP6 (30 
mg/kg IP), alone or in combination. Single treatment survival was significantly enhanced 
when compared to vehicle-treated mice, and combination treatment survival was also 
significantly enhanced. * indicates p<0.05 when compared to vehicle survival by Log-
Rank test, ~ indicates p<0.05 when compared to BAY treated mice by Log-Rank test. 

 
These experiments were performed by collaborators Drs. Jing Li and Xinyu Li at 
Shanghai Normal University, Shanghai, China 
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and IL1 signaling through either pharmacologic inhibition of the ligand or genetic 

inactivation of the receptors through knockout or knockdown, followed by treatment with 

NF-κB inhibitor (BAY). 

 Inhibition of Tnf or IL1 using anti-TNF and IL-1Ra in combination with BAY 

was significantly better at reducing CFUs in LCs than single treatment of any one 

compound (Figure 48A). Vehicle-treated LCs were used as negative controls. I 

confirmed the specificity of the treatments by treating WT and Tnfr-/- LCs in parallel with 

IL-1Ra and BAY. The Tnfr-/- LCs treated with IL-1Ra and BAY reduced CFUs at a 

similar rate as WT LCs treated with anti-TNF, IL-1Ra, and BAY. This suggested that the 

inhibition and effects of IL-1Ra were specific for IL1, and that anti-TNF was specific for 

Tnf receptors (Figure 48B). Vehicle-treated cells from each genotype were used as 

negative controls. Finally, I inactivated the IL1 signaling pathway by using an shRNA 

specific for IL1 receptor. In these cells, inactivation of IL1 receptor via shRNA 

synergized with anti-TNF and BAY in methylcellulose and significantly reduced the 

CFU ability of LCs (Figure 48C). Vehicle-treated cells expressing scrambled shRNA on 

a retrovirus were used as negative controls. 

I proposed that LSCs secrete pro-inflammatory cytokines in order to promote 

their own survival (autocrine effect) and to reorganize the niche to support themselves 

(paracrine effect). This allows LSCs to protect themselves from NF-κB inhibition in vivo. 

If this is indeed the case, then co-inhibition of both pro-inflammatory cytokines Tnf and 

IL1 can re-sensitize transplanted mice to NF-κB inhibition in vivo. To test this my 

collaborators performed two experiments: an ex vivo treatment and transplantation to  
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Figure 48. IL1 receptor inactivation sensitizes LCs to NF-κB inhibition 

 
 

 
 
 
 
 
A) WT LCs were treated with either IL-1Ra, anti-TNF, or BAY alone or in combination 
as indicated in methylcellulose. Colonies were read seven days after treatment. B)  WT 
and Tnfr-/- LCs were treated with IL-1Ra or BAY alone or in combination, as indicated. 
Colonies were read seven days after treatment. C)  LCs expressing scrambled shRNA or 
IL-1 shRNA were treated with anti-TNF or IL-1Ra alone or in combination in 
methylcellulose. Colonies were read seven days following treatment. Results shown are 
mean ± SD from three independent trials. * indicates p<0.05 when compared to vehicle 
treated controls as determined by one-way ANOVA with Bonferonni’s post-hoc test. 
 
 
These results were generated Dr. Jing Li at Shanghai Normal University, Shanghai, 
China.  
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determine if the treatment would eliminate LSCs, and in vivo engraftment and treatment 

to determine if I could return the niche to its original anti-inflammatory state and 

resensitize LSCs to NF-κB inhibition. 

 Ex vivo treatment of WT LCs with anti-TNF, IL-1Ra, or BAY alone or in all 

combinations revealed that blocking one of any signal eliminated some LSCs in the in 

vitro stage. Combination of any two treatments was better, and almost complete 

elimination of LSCs was observed when all three signals (Tnf, IL1, and NF-κB) were 

blocked ex vivo (Figure 49A). Vehicle treatment studies were used in parallel as negative 

controls. 

 In vivo engraftment of leukemia followed by ten days of treatments with indicated 

inhibitors showed similar results. However, in this model, single inhibition of Tnf, IL1, 

and BAY was not nearly as effective as in the ex vivo experiment, suggesting LSCs use 

both pro-inflammatory cytokines in parallel to reorganize the in vivo niche and promote 

their own survival. However, combination therapy of all three factors (Tnf, IL1, and 

BAY) was able to triple survival time of transplanted mice, and even induce complete 

remission in some (Figure 49B).	  

The in vivo engraftment and ex vivo treat-and-transplant studies suggest that 

pharmacological inhibition of pro-inflammatory cytokines can resensitize LSCs to NF-κB 

inhibitor treatment in vivo. I confirmed our inhibitor specificity by repeating the 

experiments in Figure 49 using Tnfr-/- LCs instead of WT LCs and treating with 

combinations of IL-1Ra and BAY. I confirmed that the Tnfr-/- LCs exhibit a significant 

delay in leukemia formation when compared to WT LCs. Interestingly, ex vivo treatment  
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Figure 49. Inhibition of IL1, Tnf, and NF-κB eliminates LSCs in vivo 

 

A) WT LCs were treated ex vivo with indicated compounds (IL-1Ra: 500 ng/mL, anti-
TNF: 20 ug/mL, BAY: 150 nM) and live cells were transplanted into recipient mice. B) 
LCs were transplanted into sub-lethally irradiated mice and allowed to engraft for. Mice 
were treated every other day (IP injection) with indicated drugs (IL-1Ra: 100mg/kg, ant-
TNF: 10 mg/kg, BAY: 10 mg/kg). Results are shown as % survival over time. * indicates 
p<0.05 compared to vehicle treated control, ~ indicates p<0.05 compared to BAY-treated 
group as determined by log-rank test.  

Results obtained by Dr. Jing Li at Shanghai Normal University, Shanghai, China. 
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of Tnfr-/- LCs with BAY + IL-1Ra prevented disease development in 6/8 transplant mice 

(Figure 50A), which was better than 2/7 ex vivo-transplanted mice with WT LCs treated 

with anti-TNF, IL-1Ra, and BAY (Figure 50A). This suggests that LSCs may have a 

way to utilize Tnf-mediated signaling internally, or in a manner that cannot be blocked by 

anti-TNF treatment during in vitro assays, but could also be due to the efficiency of 

inhibition of the anti-Tnf antibody. Vehicle treated Tnfr-/- LCs were used as controls. 

 In vivo engraftment of Tnfr-/- LCs in sub-lethally irradiated mice treated 

with IL-1Ra and BAY showed similar rates of survival to mice transplanted with WT LCs 

and treated with anti-TNF/IL-1Ra/BAY (Figure 50B). This suggests that combined 

inhibition of both pro-inflammatory cytokine signaling (Tnf and IL1) can remove the NF-

κB independent parallel survival signals and resensitize LSCs to NF-κB inhibition. Most 

of these mice survived for approximately 100 days, which was comparable to mice 

transplanted with WT LCs receiving the triple-inhibition treatment. Vehicle treated mice 

transplanted with Tnfr-/- LCs were used as negative control.  

In skin and liver tissues, TNF-induced tissue damage is primarily mediated by 

JNK signals inducing apoptosis/necroptosis. Normally, TNF-induced damage in these 

tissues is prevented by NF-κB. NF-κB signal inactivation results in severe inflammation-

related tissue damage due to the excessive sensitivity of signal-inactivated cells to TNF-

JNK-induced death signaling.287,289,290,320-324 The tumor-promoting effects of TNF in 

these tissues are also mediated by JNK signaling through a “complementary 

proliferation” and/or senescence repressing mechanisms.287,289,290,320-324 NF-κB functions  
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Figure 50. Genetic elimination of Tnf receptors further sensitizes LSCs to IL1 and 
NF-κB inhibition in vivo  

 

A Tnfr-/- LCs were treated ex vivo with indicated compounds (IL-1Ra: 500 ng/mL, BAY: 
150 nM) and 2x103 live cells were transplanted into lethally irradiated mice. B) Tnfr-/- 
LCs were transplanted into sub-lethally irradiated mice and allowed to engraft for 20 
days. Mice were treated every other day (IP injection) with indicated drugs (IL-1Ra: 
100mg/kg, BAY: 10 mg/kg). Results are shown as % survival over time. * indicates 
p<0.05 compared to vehicle treated control, ~ indicates p<0.05 compared to BAY-treated 
group as determined by log-rank test.  
 
 
Results were obtained Dr. Jing Li at Shanghai Normal University, Shanghai, China. 



136	  
	  

	  
	  

as a tumor suppressor in these tissues by repressing TNF-JNK activity. Therefore, 

blocking the TNF-JNK signal can largely repress both tissue damage and tumor 

generation in NF-κB signal-inactivated animals. These studies provide a strong empirical 

basis for our combination treatment approach consisting of inhibition of both signals 

simultaneously. Doing so should not only enhance the anti-leukemic effects but may also 

reduce the side-effects in other tissues usually induced by NF-κB inhibitors. 

The two contradictory activities of TNF-JNK signaling, pro-death and pro-

survival/proliferation, in normal/benign tissue cells and malignant cells have been 

reported in other systems. In Fanconi’s anemia, JNK is required for TNF-induced 

leukemic clonal evolution of Fancc-mutant HSPC by inducing apoptosis in mutant cells 

and stimulating proliferation/survival activities in LC 279. In Drosophila, TNF represses 

tumor growth of scribble (a tumor suppressor)-mutant cells by stimulating a JNK-

mediated death signal. However, via JNK, TNF promotes tumor progression and 

metastasis in scribble-mutant cells when either oncoprotein RAS or Notch is 

expressed.325 In skin epidermis, via the Tnfr1-Jnk2-Ap1 signaling pathway, TNF 

promotes epidermal cell proliferation by up-regulating the cell cycle positive regulator 

CDK4 and down-regulating cell cycle negative regulators such as P16Ink4a. Such signals 

which prevent growth restraint and the induction of senescence are required for epidermal 

neoplasia induced by NF-κB-inactivation, chemicals, UV irradiation or oncogenic 

Ras.289,320,321 In hepatocytes, TNF-JNK induces apoptosis in large numbers of cells and 

stimulates compensatory proliferation in remaining cells, which are required for chemical 

or genetic lesion (such as Nemo deletion)-induced hepatocellular carcinoma.290,322-324 
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These studies suggest that a combination of NF-κB and JNK inhibitors might also be 

useful in the treatment of these cancers. However, in certain types of cancer cells, the 

pro-survival activities of JNK might be dependent upon NF-κB signaling activity. In such 

cells, inactivation of the NF-κB signal will convert the pro-survival activity of JNK 

signaling to pro-death activity.326 Therefore, to best use such combination treatment in 

cancer therapy, it is important to distinguish whether or not the pro-survival/proliferative 

activity of JNK is NF-κB signal dependent.  

Evidence also suggests that whether a cell undergoes death or 

proliferation/survival fate in response to TNF-JNK signaling is determined by the 

duration of JNK activity. Elongated JNK activity (>2 hours) induces cell death (as shown 

in HSPC), whereas limited JNK activity (<2 hours) promotes cell proliferation/survival 

(as shown in LC). I found that the duration of JNK in murine LC is primarily limited by 

MPK5 which is independent of NF-κB signal. Thus experiments to determine whether 

expression of MKP5 is elevated in primary human LC will be necessary in future studies. 

Such studies will allow us to evaluate if inactivation of MKP5 could be a treatment for 

AML patients. 

The inflammatory reaction has been described as a very important component of 

the tumor environment in many solid tumors. In these tumor tissues, chemokine(s) 

secreted by malignant cells induce(s) the infiltration of many types of 

hematopoietic/immune cells (such as macrophages, myeloid-derived suppressor cells, NK 

cells and T/B-lymphocytes) to the tumor tissues. Most of the tumor-infiltrating 

hematopoietic/immune cells stimulate a persistent cycle of damage and repair in tumor 
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tissue to generate a tumor-promoting inflammation by producing tumor supporting 

cytokines including TNF, IL-1, and IL-6. Thus, such cells and the inflammatory 

cytokines and signals generated by them have been proposed to be critical targets for 

anti-tumor therapy.244,251,256,282,327-332 However, almost all of the previous studies evaluate 

the anti-tumor activity by targeting these cytokines and their signaling pathways 

individual. In fact, signals stimulated by these cytokines are not independent. Most of 

these cytokines share some common signaling pathways and function compensatory. 

Thus inactivation one cytokine stimulated signaling most case is not sufficient to repress 

tumor growth due to the compensation of signaling stimulated by other cytokines. Our 

studies suggest that removing all the tumor promoting cytokines might be necessary for 

maximally eliminating tumor cells especially for tumor stem cells.  

I found that the expression of TNF and IL1 are elevated in many M4/M5 subtypes 

of AML cells. Early studies suggested that IL1 is an autocrine survival factor in many 

types of AML cells. Also, significantly elevated IL1 levels in serum of many AML 

patients and are correlated to poor prognosis. IL1 promotes the colony forming ability of 

AML cells333,334 by stimulating the activation of downstream signaling and/or the 

secretion of hematopoietic cytokines such as GM-CSF in AML cells and stromal 

cells.330,331,335  By blocking these pro-inflammatory cytokines, IL1 antagonists, sIL-R or 

IL-1Ra repress the growth and CFU of AML cells in a dose-dependent fashion.336-338 

Recent studies demonstrated that IL1RAP, a well-known coreceptor of IL-1R1 is highly 

expressed in many AML patient samples339,340 and might be involved in LSC self-

renewal.336,337,338,339 In addition, elevated phospho-IRAK1, a hallmark of activated IL1 
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signaling, was detected in advanced MDS and AML patient samples, which has also been 

described as an anti-AML target. However, the role of IL-1 in AML development and 

progression in vivo have not been evaluated.  

This production of pro-inflammatory cytokines is most likely caused by the driver 

mutations (fusion genes, chromosomal deletions, or other point mutations) because non-

transduced/transformed HSPCs do not produce such cytokines. Once one of these driver 

mutations is introduced into the HSPCs do pro-inflammatory cytokine production and 

secretion begin. Additionally, one of the major functions of NF-κB is to drive pro-

inflammatory cytokine production. By relying on NF-κB, LSCs need to find a way to at 

least compensate for the pro-death signals generated by TNF and IL1. My studies show 

that LSCs not only compensate, but can capitalize on these pro-inflammatory cytokines 

due to activities of JNK and nuclear substrates from the AP-1 family.  

We found that treatment of LCs with a TNF blocker was not sufficient to sensitize 

these cells to NF-κB inhibition. This could be due to two different mechanisms: (1) there 

are additional pro-inflammatory cytokines being produced that can function parallel to 

TNF, and (2) TNF and its receptor are synthesized by the same cells, allowing for both 

receptor and ligand to be present inside the same sorting vesicle following synthesis by 

the Golgi. I was able to account for the first option in this dissertation by screening for 

additional pro-inflammatory cytokines. However, the second option is also possible. This 

may be why the anti-TNF mAB treatment did not work in vitro when the cells are 

sufficiently spread out enough to prevent paracrine signaling. By expressing both TNF 

and its receptor on sorting vesicles as they travel from Golgi to the cell surface, LSCs can 
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benefit from TNF signaling without having to utilize anything at the cell surface. This 

type of intracellular signaling was shown in 2005 using HEK 293 cells transduced with 

different mutant versions of TNF receptors.341  

Similar to TNF, IL-1 stimulates the activation of JNK and NF-κB signaling. A 

balance of JNK and NF-κB signaling is absolutely required for the proper response of 

normal tissue cells to pro-inflammatory cytokine-stimulated reactions. Inactivation of 

NB-κB signaling results in cell death-related damage and compensatory proliferation in 

most tissues due to the excessive response of tissue cells to inflammatory cytokine-

stimulated JNK signaling. JNK induces a pro-apoptotic activity in most normal tissues 

which can be converted into pro-survival/proliferation signaling by oncogenic 

mutation(s), thereby promoting tumor development and progression. I found that most 

tumors from all AML subtypes (M0-M7) express some degree of IL1, M4 and M5 sub-

types of AML are particularly highly pro-inflammatory as shown by increased IL1 and 

TNF expression. Here, I report that combined inhibition of JNK and NF-κB signaling 

might be a better treatment for TNF-expressing AML, but I further demonstrated that 

such therapy might also represent an useful therapeutic strategy for IL1 expressing AML. 

Although our in vitro study suggested that the TNF/IL1 low-expressing AML cells 

respond less to JNK and NF-kB inhibitor treatment, I predict that our combined inhibitor-

treatment might be also benefit to these AML patients when combined with canonical 

chemotherapies. I found many TNF/IL1 low-expressing AML samples express Toll-like 

receptors (TLRs) including TLR2, 4 and 5 (Cannova et al unpublished data). The TLRs 

in AML cells can be activated by pathogen-associated molecular patterns (PAMPs) 
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during bacterial/viral infections and damage-associated molecular patterns (DAMPs) 

released by the dead cells during chemotherapy. Activated TLRs can stimulate JNK/NF-

kB directly through MyD88-mediated pathway and/or indirectly by stimulating the 

production of inflammatory cytokines. Additionally, TNF and IL-1 can be produced by 

bone marrow niche cells and other tissue cells especially during chemotherapy or 

irradiation therapy or during AML LSC reorganization of the hematopoietic niche. This 

pro-inflammatory niche environment plays a critical role in leukemia drug-resistance by 

protecting LSCs from chemotherapy. Whether or not TNF/IL1 induced JNK/NF-kB 

signaling contribute to drug-resistance development need to be further verified.  

In this study, I also identify that multiple Jun family members can compensate for 

loss of others. This is in contrast to the classic belief that c-Jun functions primarily as a 

tumor promoter while JunB functions as a tumor suppressor. Knockdown of individual 

family members of the AP1 transcription factors (c-Jun, JunB, and JunD) can each induce 

a reduction in CFU ability in LCs and can sensitize such cells to NF-κB inhibitor 

treatment. However, the best response is observed when the entire family is blocked 

through transduction with DN-AP1, which can bind with Fos and other AP1 family 

members, be phosphorylated by Jnk, but cannot bind to DNA because it lacks the DNA-

binding domain. Only DN-AP1 can completely differentiate and sensitize LCs to NF-κB 

inhibitor, suggesting that multiple family members of Jun can compensate for loss of any 

other. This also suggests that JunB and JunD can function as tumor promoters in AML. 

Multiple NF-κB inhibitors such as proteasome inhibitor Bortezomib and natural 

compound Parthenolide have been successful used in clinical for Multiple Myeloma 



142	  
	  

	  
	  

therapy and currently under evaluation in clinical trials for AML treatment in 

combination with other canonical chemotherapy drugs.342,343 Unfortunately, clinical grade 

JNK inhibitors are not available. However, I found that in these TNF/IL-1 expressing 

AML, inactivation of JNK signaling can be achieved by co-inhibition of both IL1 and 

TNF. Our studies suggest this will have a dual role: (1) it will represses the growth of and 

significantly sensitize clonogenic leukemic progenitor cells and leukemogenic LSCs to 

NF-kB inhibitor treatment, and (2) protect healthy HSPCs from chemotherapeutic 

intervention and assist them in recreating a healthy niche microenvironment. Given that 

both TNF and IL-1 antagonists are commonly used in clinical for rheumatoid arthritis and 

autoimmune diseases and are confirmed safe, I speculate that I might able to use these 

FDA approved TNF/IL1 antagonists and NF-κB inhibitors to evaluate our novel 

treatment approach in AML patients.  

In addition, oral and intestinal mucositis are severe pathologic conditions 

afflicting most patients treated with standard chemotherapy or radiation therapy.344-348	  

TNF and IL1-stimulated inflammation has been determined as the perpetrators for such 

side effects. In addition, TNF/IL-1 might be also contribute to the leukemia-promoting 

pro-inflammatory microenvironment by inducing MRD survival and drug-resistance.349 

In AML patients, combined chemotherapy together with TNF/IL-1 antagonizes and NF-

κB inhibitor might be benefit leukemia patients by preventing the severe intestinal side 

effects and might be also help to eliminated MRD. 
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Future Directions 

 In this dissertation, I have provided evidence and support for treating AML with 

anti-inflammatory drugs (anti-TNF, anti-IL-1) in combination with NF-κB inhibition. 

The LSC niche is more critical for maintaining leukemia tumors during chemotherapies 

than for leukemia development, because LSCs have been isolated in niche-independent 

environments including the peripheral blood. For future studies, I would like to focus on 

how the LSC niche provides protection to LSCs by sheltering them during chemotherapy. 

To test this, I would label LCs and engraft these cells into sublethally-irradiated recipient 

mice, treat with chemotherapeutic agents, and perform experiments isolating factors of 

the LSC niche that support these cells. I know that a subset of cells will remain following 

therapy and reconstitute the tumor (MRD). These experiments will determine which 

factors are required for supporting MRD via the niche, and will focus on cellular 

components of reorganization like CAFs, TAMs, and vascular endothelia-supporting 

AML cells. 

 Intracellular signaling of pro-inflammatory cytokines is something I find very 

interesting. As a continuation of this project, I would propose to look at the ability for 

LCs from different FAB subtypes of AML to signal in this manner. By blocking 

intracellular signaling, we may find a new way of targeting LSCs. 

 Finally, all of the targets I identified as good anti-LSC therapies in this 

dissertation are currently drugable using FDA-approved medications. These drugs 

(Kinaret®, Etanercept®, and Velcade®) are available, well-tolerated by patients, and 

have approved dose levels and schedules. In the future, I would like to propose a clinical 
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trial and recruiting patients for treatment with TNF/IL1 blockers in combination with NF-

κB inhibition for M4/5 AML. 
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