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CHAPTER I 

INTRODUCTION 

The Factor Structure of Jobs ---
Tests, whether in education or in business, are 

used for a variety of purposes. One purpose is to predict 

the success of individuals in particular endeavors. For 

example, college entrance examinations are used to predict 

success in college. A test used in business to screen a 

job applicant is a measure of the applicant's probable 

success in that job. 

Most jobs call for a variety of traits or abilities 

which individuals have not only in different degrees ab­

solutely, but also in different degrees propor~ionally. 

A secretary may be required, among other things, to com-

pose routine letters and to type them. While some indi­

viduals may be highly qualified in both of these skills 

and others in neither, there are those who are better qual-

ified in one but not the other. In psychological jargon, 

the ability to perform a particular job consists of several 

factors. 

The effectiveness of a selection process is limited 

to the degree to which it is sensitive to all of the fac­

tors that affect job performance and that exist in the 
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applicant population in varying amounts. Assu~ing that 

the effects of these factors are additive and that there 

is a linear relation between the effect of a factor and 

its measure, the selection process must weight each of 

these factors in proportion to its relative contribution 

to job success. 

Test Validity 

Ideally, the selection process consists of giving 

to the job applicant a test which yields a single score. 

That score is monotonically if not linearly related to 

the likelihood that the applicant will perform his job 

at acceptable levels. That is, applicants who receive 

higher scores on the test should be better workers. Tests 

devised up to now do not fit this criterion. Sometimes 

an individual with a certain score may become a better 

worker than another individual with a higher score. The 

frequency and magnitude of such reversals is indicated by 

the validity of the test; the more frequent and greater 

the reversals, the less valid the test. 

In general, the validity of a selective test is 

defined as a correlation coefficient of the test score 

with some criterion of job success, such as a supervisory 

rating. 

2 



Test Construction 

There are many procedures for constructing tests. 

Many follow the pattern of selecting a set of questions 

or items, trying them on a sample, and subjecting the items 

to an analysis to determine which are effectively discri­

minating in the desired way. Items found to be deficient 

are eliminated or altered. 

Appropriate discrimlnlition may be determined by 

comparing item statistics with the whole set of items or 

with some external criterion. For job applicant tests', 

the obvious criteria are supervisory ratings of persons 

hired. However, supervisory ratings are not generally 

regarded as adequately reliable crlteria.l Problems with 

supervisory ratings as criteria for validating tests pro­

duced the invention of synthetic validity. 

Synthetic Validity 

Synthetic validity estimates the validity 01· a test 

with respect to job success by measuring the validity of 

the test with respect to each of the factors or "job ele-

lEd.win E. Ghiselli, "The Generalization of Validi­
ty," Personnel Psychologz, XII (Autumn, 1959), p. 3'::19; 
Wayne K. Kironner and Donald J. Reisberg, "Differences 
between Better and Less-Effective Supervisors in Appraisal 
of Subordinates," Personnel Pszchology, XV (Autumn, 1962), 
p. 302; Bernard M. Bass, 11Further Evidence on tbe Dynamic 
Character of Criteria," Personnel Psychologz, XV (Spring, 
1962) , p • 93 ff. 
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ments" and by estimating the relative importance of these 

factors; the synthetic validity is a function of the test-

factor validities and the relative importance of the fac-

tors. 

An advantage of synthetic validity is that the pro-

cess of validating a test against a population different 

from the sample initially used is simplified. If the same 

factors are involved, the relative importance of these 

factors must be estimated, but the test need not be tried 

4 

again to determine the test-factor validity. Ernest Primoff 

suggests that the estimation of relative importance of these 

factors may be more reliable than the usual criteria, su­

pervisory ratings.2 

Synthetic Item Analysis 

The technique of synthetic validity can be applied 

to item analysis. If a test is designed to measure poten­

tial in a certain job and more than one measurable factor 

contributing to that potential can be identified, then each 

of these factors can be treated as an external criterion 

against which to correlate tne item. A simple process 

would be to assign an index of discrimination to each item 

based on the weighted average of its criterion correlations. 

2Ernest S. Primoff, 11 The J·-coefficient Approach to 
Jobs and Tests,n Personnel Administration, XX (May-June, 
1957 ) , p • 36 • 



If this technique were as effective as item analysis based 

on item-whole test correlations or based on a single ex­

ternal criterion, it would eliminate the tendency to pro­

duce homogeneous tests and the necessity of trying items 

on different groups of workers and obtaining supervisory 

ratings for these workers. The quality of the criterion, 

supervisory judgment, would be improved. 

Objective of This §tudy 

The objective of this study is to show that, under 

certain realistic circumstances, a test constructed by 

using-synthetic item analysis is at least as valid as 

one constructed by correlating item scores with whole 

test scores. The demonstration will use hypothetical 

data. 

5 



CHAPTER II 

REVIEW OF THE LITERATURE 

This paper proposes to apply the principle of syn­

thetic validity to item analysis. Relevant development 

of item analysis and of synthetic validity will be dis­

cussed separately. 

6 



ITEM ANALYSIS 

A concept central to item analysis is that of dis­

crimination. Frequently, the purpose of testing is to 

discriminate between two kinds of people. For example, 

Binet 1 s intelligence test was developed for the purpose 

of discriminating between children who would profit from 

schooling and those who would not. 

The idea of discrimination need not be limited to 

two categories. Tests which report results in terms of 

stanines place subjects in nine categories. Theoretical­

ly, categories which are ordinal can be subdivided ~ in­

finitum, yielding an infinite number of infinitesimal 

categories. This suggests that measurement, even on a 

continuous scale, is a process of discrimination. 

Two statistics are pertinent to the discriminating 

power of test items: the index of difficulty and the 

index of discrimination. 

The index of difficulty of an item is the propor­

tion of individuals in the sample that answer the item 

correctly. Various measurement theorists have shown that, 

where guessing is not an important factor and certain other 

assumptions are met, a test will discriminate best if the 

level of difficulty for all items is 0.5o.3 That is, the 

number of ordinal categories into which a very large sam-

7 



ple can be sorted will be maximized if the item difficulty 

is 0.50. 

One assumption critical to the argument favoring 

a 0.50 level of difficulty is that the inter-item corre­

lations are low. If the items are such that, if a person 

can do one, he can do them all, the number of possible 

categories would be increased by spreading the level of 

difficulty. Sten Henrysson has presented an illustrative 

example: 

Consider a group of 10 items to be used with 

8 

100 examinees. If all items were perfectly correlated 
(and thus perfectly reliable), the number of discrimi­
nations made by 10 items at 50 percent difficulty lev­
el would be identical with the number of discrimina­
tions between persons made by 1 item of 50 percent 
difficulty. This number of discriminations between 
persons is 2,500, since all the best 50 students are 
discriminated from the other 50 students (50•50 = 2,500). 
But if the 10 items are spread at difficulty intervals 
of 9.09 percent from 9.09 percent to 90.90 percent, 
4,562 discriminations could be made. The latter 
arrangement would be optimal for 10 items under the 
circumstances specified.4 

3M. W. Richardson, "Notes on the Rationale of Item 
Analysis," Psychometrika, I (1936), p. '74; Lee J. Cronbach 
and Willard G. Warrington; "Efficiency or Multiple-Choice 
Tests as a Function of Spread of Item Difficulties,'' Psy­
chometrika, XVII (June, 1952), p. 147; Frederic M. Lord, 
11 The Relation of the Reliability or Multiple-Choice Testa 
to the Distribution of Item Difficulties," Psychometrika, 
XVII (June, 1952), p. 181 ff. 

· 4sten Henrysson, "Gathering, Analyzing, and Using 
Data on Test Items," in Educational Measurement, ed. by 
Robert L. Thorndike (Washington, D. C.: American Council 
on Education, 1971), pp. 151-52. 



Richardson has shown that, if the purpose of a test 

is to dichotomize a population, the test will be most ef­

fective if the level of difficulty corresponds to the pro­

portion of the population in the lower category.5 For ex­

ample, if a selection instrument is to select the best fif­

teen percent of a population, the items in the instrument 

should be at a level of difficulty of 0.85. 

In practical situations, it is generally recommended 

that the item difficulties be greater than 0.20 and less 

than 0.80 and center about 0.50.6 For true-false and mul-

tiple-choice tests, these figures are adjusted upward to 

compensate for the ttguessingu effect. 

The index of discrimination is some measure of as-

sociation which compares the pattern of discrimination of 

an item with some criterion: either the whole test score 

or some external criterion. The most obvious measure of 

association is a correlation of item response to the cri-

terion. If item responses are scored either right or 

wrong, the correlation will logically be a biserial or a 

point-biserial. If the criterion is dichotomous, a tetra­

choric or phi-coefficient is indicated. 

5M. W. Richardson, "The Relation between the Diffi­
culty and the Differential Validity of a Test,n Psychome­
trika, I (June, 1936), p. 47 ff. 

6Jum C. Nunnally, F.ducational Measurement and Evalu­
ation (New York: McGraw-Hill Book Company, 1972),--p:- 188; 
Henrysson, "Gathering, Analyzing, and Using Data, 11 p. 144. 
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Frequently, it is recommended that the criterion 

be used to divide the sample into three parts: a lower, 

a middle, and an upper group. Given certain assumptions, 

Kelley has shown that item discrimination can be most ef­

ficiently estimated if the upper and lower groups each con­

tain twenty-seven percent of the sample scores.7 A simple 

discrimination statistic using upper and lower groups con-

sists simply of the differences of the number of correct 

responses made to an item by members of the upper group 

less correct responses to the item by members of the lower 

group.8 

Some of the procedures mentioned above are favored 

over others on the grounds that they tend to select items 

which have a level of difficulty near 0.50. The index of 

discrimination which results from subtracting the number 

of correct responses of a lower group from those of an up-

per group, for example, is clearly biased against very 

easy and very difficult items. 

7Robert L. Ebel, Essentials of Educational Measure­
ment {Englewood Cliffs: Prentice-Ha!!', Inc., 1972) p. 386, 
c"iting Truman L. Kelley, 11 The Selection of Upper and Lower 
Groups for the Validation of Test Items," Journal of Edu-
cational Psychology, XXX: (1939), pp. 17-24. --- ~-

8Robert L. Ebel, Essentials of Educational Measure­
ment (Englewood Cliffs: Prentice-HalI, Inc., 1972) p. 388, 
citing A. Pemberton Johnson, 11 Notes on Suggested Index 
of' Item Validity: The U-L Index," Journal of Educational 
Psychology, LXII (1951), pp. 499-504. -.-



An empirical comparison of a variety of indices of 

discrimination suggests that they yield essentially the 

same information.9 

Procedures which use the whole test scores as a 

criterion are justified by the assumption that the test 

constructor has selected valid items on the whole, even 

though some items may be defective. Defective items are 

identified through their inconsistency with the test con­

structor's overall good judgment. Further justification 

of this procedure is based on the interrelationship of 

reliability and validity. 

A test is said to be reliable if it measures some-

11 

thing consistently. The measure of reliability is general­

ly a correlation coefficient. The correlation may be be­

tween sets of scores obtained by giving the same test to 

a group of individuals on different occasions, by giving 

alternate forms of a test to the group, or by splitting a 

test into two equivalent halves and comparing the scores 

on the two halves. In the latter case, the resulting cor­

relation is corrected for the decreased number of items. 

Richardson has shown that the reliability of a test is a 

function of the 1ntercorrelations of the items in the test 

and that item analysis increases the reliability of the 

9Ma.x r:;. Englehart, "A Comparison of Several Item 
Discrimination Indices,n Journal of Educational Measure­
ment, II (June, 1965), p. 69 ff. 



test by eliminating the items which have lowest intercor­

relations with the other items.10 In this sense, the test 

is made more homogeneous. 

A test is said to be valid if it measures what it 

purports to measure and does not measure things incongru-

ent with what it purports to measure. Logically, if a 

test is not a consistent measure of itself, it cannot be 

a consistent measure of anything else. The square root 

of the reliability of a test is an upper limit of its 

validity; if a test is not reliable, it cannot be valid. 

Procedures which use the whole test score as a 

criterion, then, are also justified by the fact that they 

do increase reliability. While this does not necessarily 

raise the validity of the test, it at least raises the 

upper limit of the validity. The test is given the oppor­

tunity to be more valid. 

Charles Mosler has presented a model for tests and 

12 

factors which illustrates one of the problems for item-whole 

test item analysis. If a test measures more than one psy-

chological factor, which it almost certainly must, these 

factors may be thought of as vectors. To simplify the 

argument, suppose that only two factors are involved, 

as illustrated in fig;ure 1: 

lORichardson, "Notes on the Rationale of Item Anal­
ysis," p. 74. 



factor1 ,,, _,,.//vector s11m 

~-·/ __ fa_ct_o~r 1 

figure l 
Suppose that these factors are chosen in such a way that 

factor 1 is congruent with the purpose 01' the test and 

that factor 2 is orgho~onal to factor l and inconsistent 

with the purpose of the test. With respect to the pv_rpose 

of the test, factor 2 represents systematic error. Item 

analysis will select items whose factor structure resem-

bles that of the whole test. That is, it will select 

i terns whose vectors are aligned with the vector sum. · 

Items with some systematic error are preferred to those 

parallel to the true purpose of the test. If factor 2 

were large relative to factor 1, item analysis ·might ac­

tually make the test less valid, though more reliable.11 

Henrysson comments that if a test is intended to 

measure a variety of factors, item analysis may make the 

test less valid by making it too narrow to have content 

validity.12 

llcharles I. Mosier, 11 A Note on Item Analysis and 
the Criterion of Internal Consistency," Psychomet~ika, 
I (December, 1936), p. 275 ff. 

12Henrysson, "Gathering, Analyzing, and tr sing Data 
on Test Items, 11 p. 154. 

13 



Most of the procedures which have emerged over the 

years have been developed primarily with computational 

convenience rather than statistical theory in mind.13 

Robert Ebel has pointed out that the advantages of using 

internal criteria are those of convenience: relevant 

external criteria may be difficult to find and whole test 

scores are always available.14 The following study illus-

trates this point. 

David Ryans developed two tests from a common set 

of items using internal criteria for one and external cri-

teria for the other. The test ostensibly measured teach-

ers' professional knowledge. The external criterion was 

supervisory (princip~l's} ratings for job performance. 

:Ryans noted that the external criterion probably included 

various factors other than teachers' professional 1mow-

ledge. That is, the external criterion was not altogether 

pertinent. He found that the test resulting from the use 

of internal criteria was more homogeneous than that re­

sulting from the use of an external criterion.15 This 

l3rbid., p. 145. 

14Robert L. Ebel, Measuring Educational Achievement 
(Englewood Cliffs: Prentice-HaII, Inc., I965J, p. 357. 

14 

15navid G. Ryans, 11 The Results of Internal Consist­
ency and External Validation Procedures Applied in the 
Analysis of Test Items Measuring Professional Information,n 
Filucational and Psychological Measurement (1951), p. 558. 



means that the use of external criteria in item analysis 

cannot be expected to produce as homogeneous (reliable) 

a test as the use of internal criteria. 

In some circumstances, the use of external criteria 

does not significantl,y improve validity, either. David 

Hasson selected items from the Otis-Lennon Mental Ability 

Test on the basis of the total test score and on the basis 

of a criterion measure, the Metropolitan Achievement Test. 

He found no significant difference in the predictive abil­

ity of the resulting tests.16 

Henrysson has suggested that the increased availa-

bility of computers will allow more statistically sophis­

ticated and theoretically justifiable procedures to take 

precedence over computational convenience.17 The follow­

ing study seems to support this prediction. 

John Fossum developed two tests from a common set 

of items using external criteria in both cases. In one 

case, he used a regression procedure, selecting items "so 

that at each iteration the item selected is the one lead­

ing to the largest increase in correlation.nlB He called 

16David J. Hasson, 11 An Evaluation of Two Eethods 
of Test Item Selection, n Dissertation Abstracts, Vol. 32A 
6200-A. . 

17Henrysson, "Gathering, Analyzing, and Using Data 
on Test Items, 11 pp. 155-56. 

18John A. Fossum, "An Application of Techniques to 

15 
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this procedure the "sequential nominator method." The 

other test was constructed by selecting items in descend-

ing order of their correlations with the criteria. An 

equal number of items were selected by both methods so 

that the size of the resulting tests would not influence 

their relative validities. The former method produced 

the more valid test. He concluded that 11 If the item inter-

correlation matrix is stable across samples, then the 

sequential method is superior to one which does not con­

sider intercorrelations. 11 19 This conclusion is qualified: 

uif the intercorrelations are low, there is little advan­

tage in using the more complex sequential nominator me­

thod. u20 

Shorten Tests and Increase Validity," Journal of Applied 
Psycholo8l' LVII (February, 1973), p. 90. 

19rbid., p. 92. 

20rbid. 



SYNTHETIC VALIDITY 

The term "synthetic validity" was introduced by 

C. H. Lawshe 

to denote the inferring of validity ln a speci­
fic situation. The concept is similar to that involved 
when the time study engineer establishes standard times 
for new operations, purely on an a priori basis through 
the use of "synthetic times" for the various elements 
constituting the operation.21 

The concept is more specifically related to jobs by Michael 

Balma, who defines synthetic validity as 

the inferring of validity in a specific situa­
tion from a logical analysis of the jobs into their 
elements, a determination of test validity for these 
elements, and a combination of elemental validities 
into a whole .22 

Edwin Ghiselli presents as the genesis of synthetic 

validity the fact that validities for the same test/job 

in different locations show little or no agreement. He 

reports that the variance of validity coefficients is 

greater than could be accounted for by random variation 

alone. Two reasons are offered for this phenomenon: 

(1) the criteria used to establish the validity correla­

tions are not stable and (2) the 11 fact that the same job 

2lc. H. Lawshe and Martin D. Steinberg, "An Explora­
tory Investigation of Clerical J6bs," Personnel Psychology, 
VIII (1955), p. 291. 

22r1!icha.e l J. Balma, "The Concept of Synthetic Valid­
ity," Personnel Psychology, XII (Autum:a, 1959), p. 399. 

17 



in two different establishments is not in fact the same 

job," i.e., jobs of the same title vary in their requisite 

duties and abilities from one location to another.23 

Ernest Primoff points out that the use of synthetic 

validity allows the estimation of validity, and therefore 

the selection of tests, for jobs in which there are too 

few individuals to permit validation in the usual way and 

for new jobs for which no incumbent workers are available 

for traditional validation studies.24 

The process of synthetic validity may be divided 

18 

into three parts: (1) the identification of the knowledges, 

skills, and personality traits which contribute to the per-

formance of a job and the determination of their relative 

importance, (2) the determination of the relationship of 

test scores to the skills and so forth that are identified, 

and (3) the combination of these two types of information 

into a single estimator of an individual's job potential. 

To show the feasibility of the first two parts of 

this procedure, Lawshe and Steinberg investigated the re­

lationship of parts of clerical workers' jobs and the wor­

kers 1 scores on related parts of the Pur•due Clerical Adapt-

ability Test. They found that workers who were frequently 

23Ficlwin E. Ghiselli, 11 The Generalization of Valid­
ity, n Personnel Psycho logy, XII (Autumn, 1959), p. 399. 

24Ernest S. Primoff, "The J-Coefficient Approach 
to Jobs and Tests, 11 Personnel Administration, XX (May­
June, 1957), p. 39. 



called upon to perform a test-related task scored higher 

on relevant parts of the test. For example, workers fre­

quently called upon .to perform arithmetic computations 

scored above the median on those parts of the test calling 

for arithmetic computation.25 

Robert Guion, in order to demonstrate the feasibi-

lity of synthetic validity, used synthetic validity pro-

cedures and regression procedures to select tests for 

personnel hiring.26 The data indicated that the synthe-

19 

tic validity procedures selected tests which more accurate-

ly predicted job success. The procedure of his study is 

as follows: 

Job elements were culled from detailed descriptions 

of various jobs in a small company. Extensive lists of 

elemental tasks and abilities were prepared and grouped 

into seven categories or factors, such as "salesmanship," 

"creative business judgment," "routine judgment, 11 and 

so forth. The development of these seven categories was 

based on the subjective judgment of Guion and of the com-

pany executives. 

Two executives ranked employees with respect to 

each of the factors. Only employees with whom the execu-

25Lawshe and Steinbert, "An Exploratory Investiga­
tion," pp. 291-97. 

26Robert M. Guion, "Synthetic Validity in a Small 
Company: A Demonstration,n Personnel Psychology, XVIII 



.. 

tives were familiar and whose job called for the factor 

in question were ranked on any particular factor. The 

ranks were converted to normalized scaie values for the 

purpose of determining interrater reliabilities and in-

terfactor correlations. 

A battery of tests, producing nineteen scores was 

given to all of the employees. These scores were corre­

lated to the rankings on the seven factors. It was arbi­

trarily decided that the two tests which best correlated 

witn each factor be used as the predictor of that factor. 

Expectancy charts, such as the one shown below, were de-

veloped for each category and its related subtests. 
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TEST SCORES 
Chances in 100 of being rated superior 

on Creative Business Judgment 

Design Adapt­
Judgmen t ability 

47 - 72 
37 - 46 
47 - 72 
37 - 46 
13 - 36 

16 - 29 
lo - 29 
7 - 15 
7 - 15 

any 0 

f'igure 2 

25 50 75 100 

The synthetic 11 validitiestt were applied to hiring 

by giving applicants tests relevant to the factors required 

by the position for which they were applying. For each 

category, the probability that the applicant would be 

(Spring, 1965), pp. 59-63. 



judged superior was determined and this probability was 

converted to an integer index. An applicant's 11 score" 

21 

was the sum of the indices of the factors relevant to his 

prospective position. Applicants' scores were used to rank 

them in order of their most probable superiority in their 

position. 

Guion compared the success of this procedure in 

hiring thirteen new employees to that which would have 

resulted from the selection of tests by multiple regres­

sion using a single job performance rating as a criterion. 

He found that the synthetic validity technique picked 

"superior" workers 76% of the time, while the multiple 

regression technique picked "superior" workers only 46% 

of the time. Because of the small number involved, this 

difference is not statistically significant. 

Ernest Primoff has proposed a different approach 

to synthetic validity, which he calls the J-coefficient. 

It differs from Guion's treatment in two aspects: (1) the 

estimation of the relative importance of job factors and 

(2) the estimation of test-job validity. 

For the estimation of relative job factor importance, 

Primoff 's method relies on the subjective judgment of a 

panel of experts who are familiar with the job being ana­

lyzed. These experts are likely to be persons who have 

experience working at the job itself or who have experience 

supervising the job. Each expert is asked to rate each 



job element or factor on a three point scale. An item 

is rated 0 if it is not important, 1 if it is moderate­

ly important, and 2 if it is of the utmost importance. 

For each item, the ratings of all of the raters in the 

panel are added. Thus, if ten raters are used, the rating 

for a particular element could have any integral value 

from O to 20. These totals are used to determine the 

relative importance of each element rated; the absolute 

value of the totals do not enter into subsequent calcula­

tions. Because only relative values are used, the size 

of the rating group and any tendencies of the group to 

rate toward one end o.t' the scale do not af'fect subsequent 

calculations .27 
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·Primoff argues that the use of several raters yields 

precise and reliable ratings. Furthermore, this approach 

to analyzing job requirements has advantages over approaches 

which incorporate the rating of actual workers: (1) if 

a rater rates an ability with respect to a job rather than 

a worker, he is not so likely to be affected by personal 

bias; (2) the rating of job elements is not dependent upon 

variance in the ability among workers present; (3) since 

workers can be used as raters, it is easier to find a. 

large number of raters who are intimately familiar with 

the job.28 

27primoff, 11 The J-Coefficient Approach,n p. 36. 



The J-coefficient is an estimate of the criterion 

validity of a test with respect to a job. The usual pro­

cedure to establish the criterion validity of a test which 

is intended to select workers is to compute the product-

moment correlation of the test scores with supervisory 

ratings of job performance. The mathematical formula 

for this correlation is 

B3 

r= { l) 

where xi is the 1th person's deviation test score, Yi is 

his deviation criterion score, and N is the number of per-

sons in the validation sample. The criterion score might 

be a supervisory rating, such as the normalized ratings 

describ.ed in Guion's study, mentioned above. Generally, 

the statistical treatment of this type of correlation 

assumes that both variables are normally distributed and 

homoscedastic and that one variable is a linear function 

of the other. 

If a test measures more than one job factor and 

if z 1k denotes a standardized supervisory rating of the 

1th worker on the kth job element, regression equations 

may be written which estimate the test score in terms of 

job element ratings: 

28fbid., pp. 36-39. 

(2) 
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Similarly, a regression equation could be written which 
A 

would predict Yi; call the estimate y1 . The estimated 

validity coefficient could be computed as 
~A /\ 

L X,- 'JI& J == (3) 

Using matrix algebra, Primoff shows that this equation 

is equivalent to 

where j3k is the regression coe.fficient in equation (2) 

and ryk is the product-moment correlation of the kth job 

element rating with the overall supervisory rating. The 

dissappearance of the denominator assumes that the list 

of job elements is virtually complete and that multiple 

correlations of the job elements to the test and to the 

supervisory ratings are near unity.29 

(4) 

In practice, ryk is derived from intercorrelations 

of the job element ratings and relative i~portance nweights" 

of the job elements assigned by job experts. If wj denotes 

the weight assigned by the job experts to the jth element 

and rjk is the correlation of the jth element and the kth 

element as determined by the ratings, the derived corre-

29Ernest s. Primoff, Basic Formulae for the J-coef­
ficient to Select Tests ~ Job Analysis Requ:Trements ~ 
(Washington, D. c.:-Tes~Development Section, United 
States Civil Service Commission, 1955) 
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lation is given 

= {5) 

Primoff indicates that the J-coefficient has been 

used successfully in the development of selection batter­

ies .31 Dane Selby found it feasible in "public jurisdic­

tions which have large applicant populations." He did 

not find it "quick and inexpensive when compared to tra­

ditional validation studies.n32 

30Ib1d. 

3lprimoff, 11The J-Coefficient Approach, 11 p. 34. 

32Dane Selby, The Validation of Tests Usin~ J-Coef-
ficient: A FeasibilitY9Study, (Illinois: Researc an_d __ 
Test Development, Illinois Department of Personnel, 1975), 
p. 3. 



CHAPTER III 

PROCEDURE 

The procedure of this study consists of: 

l) developing a hypothetical situation involving job 

factors and test items described in terms of vectors, 

2) translating these vectors to the kind of numbers 

typically used as test item statistics, 

3) selecting a set of those items according to an 

internal criterion, 

4) selecting another set of items according to a 

technique which applies the principles of synthetic vali­

dity to item statistics, 

5) constructing a criterion for validation from the 

job factor-vectors, and 

6) validating the sets of items resulting from the 

different selection techniques against the validation 

criterion and comparing the results. 

Each of these steps will be discussed in more de­

tail in the following sections. 
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THE REPRESENTATION OF' FACTORS & ITEMS BY VECTORS·~-

Job elements or factors have two salient mathema-

tical features, their relative importance and their inter­

correlation. Both of these can be represented by vectors. 

The relative importance of a factor is analogous to the 

length of the vector. The intercorrelations of factors 

is represented by the angle between the vectors. The pro­

duct-moment correlation is equal to the cosine of the an­

gle between the vectors. 

The items also can be represented by vectors; their 

direction will indicate their correlation with the factors. 

The length of the item-vectors could be used to represent 

their relative weights. In this study, all of the items 

will be assumed to be equally weighted; the lengths of the 

item-vectors will be equal and therefore of no consequence. 

As with inter·factor correlation, the correlation of an 

item and a factor is the cosine of the angle between them. 

The procedure may best be explained by presenting 

a simple example. Suppose that there is a job which in­

volves two orthogonal factors, one of which is twice as 

*In this paper, vectors are not intended as mathe­
matical proof of the hypotheses presented. They ,,;tre used 
to facilitate understanding of the procedures that involve 
conventional item statistics and to aid in the construc­
tion of hypothetical statistics. 

27 
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in.fluential as the other. These are represented by the 

solid lines in figure 3 (p. 29). Suppose also that there 

is a set of items which measures these factors exclusive-

ly. That is, all of the variance in response to the items 

can be accounted for by the variance of the factors. Geo-

metrically, this simply implies that the item-vectors are 

in the same plane as the factor-vectors. 

This example will also suppose that the direction 

of item-vectors is normally distributed with the direction 

of factor l as the mean direction of the item-vectors. 

Let 800 be taken as a "typical" angle between an item-vec-

tor and the vector representing factor 1. That is, the 

standard deviation of the angles of the item~vectors with 

factor 1 will be arbitrarily set at soo. 

An approximation of a normal distrj_bution may be 

obtained by finding z-scores equivalent to various percen-

tile ranks at eqt:.ivalent intervals. In this demonstration, 

an array.of fifteen z-scores is used. These are equivalent 

to percentile ranks running from :5.33 to 96.67 by inter­

vals o:f 1/15. These values, multiplied by a rrtypicaln 

angle, 80°, will yield rrnormally0 distributed item-vec­

tors .{*" This procedure is illustrated in the following 

table. 

~!-Technically, this distribution cannot be normal; 
its distrib11tion function is a step function, not a con­
tinuous curve. 
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PERCEN- z- ANGLE 
TILE SCORE IN 

RANK DEGREES 

3 -1.83 -146 .4 
10 -l.28 -102 .4 
17 -0.97 - 77.6 
23 -0.73 - 58.4 
30 -0.52 - 41.6 
37 -0.34 - 27.2 
43 -0.17 - 13.6 
50 o.oo o.o 
57 0.17 13.6 
63 0.34 27.2 
70 0.52. 41.6 
77 0.73 58.4 
83 0.97 77.6 
90 1.28 102.4 
97 l.83 146.4 

table 1 

The position of these item-vectors relative to the factor-

vectors is illustrated below. 

~ .. 
\ I I 
\ I / ;r 

"'It \ I I / 
', \ I I // ...-:: 
', \ I I / .& 

', \ I/ __ :r 

' // -.... -

figure 3 

Due to the small number of points used, this approximation 

to a normal distribution with mean 0 and a standard devia-

tion of 80° is not perfect. The standard deviation of 



the angles is 75.08°. Considering the arbitrariness of 

the selection of a n typica ln angle, this discrepancy is 

not important. 

The item-vectors are distributed not only in the 

plane of the two job factors but also along an error di-

mension. This can be imagined as having fifteen pages, 

each with an item-vector distribution such as that shown 

in figure 3, fanned out according to the ane;les given in 

table l. That is, if the pages were bound along the line 

of factor 2 and their angle with factor l were given by 

table 1, the distribution of the item-vectors on those 

pages would be the distribution of item-vectors in the 

present example. Figure 4 attempts to illustrate this. 

~faciorZ 

factor 1 
J 

figure 4 
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This picture fails in that it doesn't provide for the item­

vectors whose angle with factor l (or the horizontal) on 

each page exceeds 900. Such is life. 



The value of each item-vector can be represented 

by an ordered pair of ncoordinates;" the first specifies 

the angle in the factor-vector pl&ne; the second speci­

fies the angle to the factor-vector plane. 

The entire set of hypothetical items contains 225 

items. From these, about 100 items will be selected. 

These figures are not untypical of test construction pro­

cedures. One hundred items would represent a reasonably 

large test, but not an uncommonly large test. Developing 

twice as many items as are to be eventually selected is 

not unusual. 

There are several parameters which control the ar­

rangement of item-vectors and factor-vectors. This paper 

treats four of these: 

l) the spread of item-vectors, 

2) the overall direction of the item-vectors, 

3) the relative size of the factor-vectors, and 

4) the angle between the factor-vectors. 
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The spread of the item-vectors is controlled by 

controlling the ntypicaln angle multiplied by various z­

scores as illustrated by table 1 (p. 29). As the spread 

of items can be identified with reliability, the selection 

of a n typica 111 angle is identified with the selection of 

a realistic reliability. In this experiment, several va­

lues are positEd as whole-test reliabilities. Consequent 

item reliabilities and angles are derived as follows: 
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According to the Spearman-Brown prophecy formula, 

R ;; or (6) 
/T{n-/)r 

where R is the reliability of the whole test, n is the 

number of items, and r is the reliability of each item.33 

While this f'ormula assumes that all items are equally re­

liable and the items in this experiment are clearly not 

equally reliable, it still serves the purpose of selecting 

a reasonable value for a Tltypicaln item; lack of rigor on 

this point does not affect the conclusions of the study. 

For a test of one hundred items, equation (6) be-

comes 

/OOY' 
I + 'l'I r (7) 

It follows that 

r 
100 - '!Cf fl. 

(8} 

Table ~ gives the values of R used in this experi-

ment as well as the consequent values of r and of the "ty­

pica in angle used to define the distribution of the item­

vectors. The "typical11 angle given is simply the inverse 

cosine of r. 

33Julian C. Stanley, "Reliability,tt in Educational 
Measurement, ed. by Robert L. Thorndike (Washington, D. C.: 
American Council on Education, 1971), p. 395. 



33 

R r angle 

.99375 .f.:514 52 .10 

.9875 .441 63.8 

.975 .281 73.7 

.95 .160 80.8 

.90 .083 85.2 

.80 .038 87.8 

.60 .015 89.l 

.40 .007 89.6 

table 2 

The overall direction of the item-vectors is con-

trolled simply by adding some constant to the first coor­

dinate (mentioned on p. 31) of each item-vector. The val­

ues used in this experiment are: -450, -300, -150, oo, 

15°, 30°, and 45°. These angles are measured from fac-

tor l and rotation toward factor 2 is considered positive. 

The relative size of the two job factor-vectors 

is controlled by assigning factor 2 a unit length and 

varying the size of factor 1. The values of factor 1 1 s 

length used in this demonstration are: 0.25, 0.5, 1, 2, 

and 4. 

The angle between the two factor-vectors is assigned 

the values of goo, 80°, 700, 500, 500, and 400. 

Generally, three of the parameters mentioned are 

held constant while the fourth assumes all of the values 

indicated above. The values used for 

meters as they are held constant are: 
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test "reliabilitv"· •. • • ••• 
" 

. 0.90 

overall direction of item-vectors • . . . • 0.00° 

relative size of factor-vectors 
(factor l/factor 2) .. 

angle between factor vectors •• 

• 2.00 

. . 90.0° 
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The various values of the angle betwem1 the factor-vectors 

are examined with a test rrreliability" of 0.99 as well 

as 0.90. 



TRANSLATING THE VECTOR TiiODEL TO Fk\ULLti.R TEST STATISTICS 

In order for any personality trait to be considered 

a factor in job success, it must exist in varying degrees 

in the worker (or applicant) population. Thus, it is rea­

sonable to represent the job factors by random variables. 

In order to mimic a normal distribution, the factors will 

be assigned z-scores or multiples of z-scores which corre­

spond to equal-intervaled percentile ranks~ This is the 

same procedure used in distributing angles of item-vectors 

described on p. 28, above. The values of the variables 

associated with the job factors represent degrees of the 

trait involved, e.g., degrees of intelligence, degrees 

of conscientiousness, etc. 

It is also reasonable to expect that persons will 

differ in their expected score on any item or combination 

of items. If a correct response is given a score of one, 

and an incorrect response is given a score of zero, the 

expected score is simply the probability that a person 

makes a correct response to an item. 

Since the items are correlated with the job factors, 

as indicated by the vector model, the variable assigned 

to the item must be correlated to the variables assigned 

to the job factors. Moreover, the angles between the 

item-vectors and the job factor-vectors indicate specific 
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values for these correlations. The immediate problem, 

then, is to generate a random variable, S, which has spe-

cific correlations with other random variables, X and Y. 

The variables X and Y represent the factors. 

Let X be a random variable representing factor 1, 

with a mean of zero and a standard deviation of a;. Let 

Y be a random variable representing factor 2, with a mean 

of zero and a standard deviation of O'y. Let Z be a random 

variable representing error, the dimension perpendicular 

to the job factor plane. Let Z have a mean of zero and 

a standard deviation of a;.. Let ~r, /x;, and /ys denote 

the correlations of X with Y, X with S, and Y with S, re­

spectively. As Z is always taken to be orthogonal to the 

job factors, the correlations of X with Z, ;°xz , and of 

Y with Z, /rz, are zero. 

Let S ::. X + Y + Z. Then, by definition, 
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{ 9) 

= -Ji L ( x +- Y + z -x -r -z )' c io) 

&*L.(x+r+z)
2

. c11> 

& Ji L ( x2 
t r 2 

t z2 + z x r +- z x z t z Y z J c i2 > 

where n represents the number of elements of S. Sin.ce 

jxz "/'rz :: 0 , 

(T/= ~ [(x 2 
+Y 2 tZ2 +zxy) c13> 



2 2 2 

= CTx + 0-y + CT; + 2 o; Ur /xr 

By definition, 

fxs = -fr L XS / CTx ~ 

~AL X(X+Y-1-Z J/ O'x tTs 

.. ·~ L ( x2 +xv + x z) /ax rrs 
:: ( o;2 + GOV (X,Y) + 0 J/ o; o; 

= r ax'+ o; or;;,r JI o;as 

= ( o; + or ,Ar ) I ff, 
Similarly, 

r.rherefore, 

A0z = ( rTx + 0-y?xr)/ «i = OX + 0-r Ar 
71.s (oy + CTXj1.t:rY o; (Ty + OJ/Xr 

/xs (Uy -/- o/fr ) : /rs ( o; + cr14r ) 
(Tyt7.u + o/xf41 = OX/y1 + u00f 
DY 0s ;Aviu) = o; Vrs /xV',o) 
oy = o; (A ;Arfirj 

tfX1~vrJ 
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( 14} 

(15) 

(16) 

{ 17) 

( 18) 

( 19) 

(20) 

(21) 

(22) 

(23) 

{24) 

(25) 

(26) 

(27) 



Let 

and 

~2. :: x 

And from 

A = /rs -;ixr /Jxs 
;:in -_Arfh 

ar = crx A 

(1+2Aj1-r +A)i;J -;4~(1+zA;4r+A 2J 
(29), 

er./= a;, 2A 2. 

Z is assigned the fifteen "normally" distributed 

values given in table l. The variance of these values 

is 0.9168. X is assigned these values multiplied by 

U'x/OZ where oX=tf?' and O/is given by (35), provided 
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(28) 

{29) 

(35) 

(36) 

jh is positive. If j°xs is negative, the sign of these 

values is changed. Y is assigned the values of Z multi-
,,,.,. I _.,. r.::::i. . i 

plied by Ur Vz Where {Jy= v(Ty and oy iS given by (36), 



provided ~5 is positive. If jJvs is negative, the sign 

of these values is changed. 

The procedure described, obtaining the desired in-

tercorrelations by setting appropriate relative standard 

deviations, fails when O/or 0/ is zero. The former case 

arises when the item-vector is in the same plane as the 

job factor-vectors.. If the item-vector is in that plane, 

the denominator of {35) wi 11 be zero. That is, o/ = 0 

if and only if 
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(1 +2Af?r + AA:J = hs (1 + z'14r +Al) (37) 
2 

The variance of X, o; , 
In the instance 

is assigned a value of 

is zero if and only if fh. = 0 • 
.t l. 2 

that both o; and ~ a.re zero, 0:,, 
2 2 

one. If ~ is zero, and oX is 

not zero, o; is assigned a value of one (or negative one) 
l 2 

and o; is determined by equation (36). If Cfx were zero 
z 

and o; were not, equations (15) and (26) CQuld be used 
i z 

to solve for Uy in terms of o;. The latter circumstance 

does not arise in this particular demonstration. 

In all cases described, values are assigned to the 

variables X, Y, and Z by multiplying the z-soores given 
/ 

in table l by appropriate scaling factors. 

The variable S has 153 values, these being the sums 

of all possible combinations of the values of X, Y, and 

Z. It represents placement of an individual with respect 

to an item. In order to give it the appearance of a pro-

bability, as indicated on p. 35, it must have values be-



tween 0 and l. It is arbitrarily decided to make S have 

a mean value of 0.5 and a standard deviation of 0.1. The 

value of 0.5 is suggested by test theorists as ideal, as 

noted and qualified on p. 8. The value of 0.1 as a stan-

dard deviation makes it highly unlikely that any person 

on any item will have an expected score less than 0 or 

greater than 1. These parameters are imposed upon S by 

a linear transformation: 
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S I 0./ s = as -+ 0.5 (38} 

where S is the value which is the sum of X, Y, and Z and 

S' is the 11 correctedn value of S. No correction for the 

initial mean of S is indicated in this formula, as this 

is 0. The linear transformation does not affect the cor-

relations of S (or S') with X or Y. 

The entire process described so far might be made 

clearer by an example. Suppose there is an item whose 

elevation above factor l is 30° and whose angle with the 

factor plane is 40°. Suppose also that the angle between 

the job factor-vectors is goo. Thus, 

/xr = cos Cf 0° = 0.0 

J°xs = cos30° "cos"/0° = 0. 66 

J°rs = cos('!0-30)
0

• co.sL/0°:: 0.38 

(39) 

(40) 

(41) 

The purpose of the illustration can be just as well 

served using five values for the factors rather than fif-



teen. These are chosen as the z-scores corresponding to 

the ioth, 30th, 5oth, 7oth, and goth percentiles. These 

values are given in table 3. The variance of these z-

scores is 0.764. 

PERCEN- z-
TILE SCORE x y 

RANK 

10 -1.28 -l.30 -0.75 
30 -0.52 -0.53 -0.30 
50 o.oo o.oo o.oo 
70 0.52 0.53 0.30 
90 1.28 1.30 0.'75 

table 3 
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l 

According to equation (26), Ox = 0. 79 and o; = O .89. 
. 2 

According to equation (27), 0:, ,, 0.26 and <Ty : 0.51. Mul-

tiplying the standard deviation of X and Y by the z-scores 

and dividing by the standard deviation of the z-scores 

yields the values given for X and Y in table 3. These 

are also the marginal values of table 4. 

y 
--~-- - . - • . . • 0 75 0 30 0 00 0 30 0 75 x 

l.30 -2.05 -l.60 -l.30 -1.00 -0.55 
i 

i 

0.53 -1.28 -0.83 -0.53 -0.23 0.22 

o.oo -0.75 -0.30 o.oo 0.30 0.75 

0.53 -0.22 0.23 0.53 0.83 l.28 

l.30 0.55 1.00 1.30 1.60 2.05 

table 4 

The figures in the cells of table 4 are simply the sums 

of the marginal values. These figures do not represent 
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all of the values of S. The values of S could be obtained 

by addinf< the values of Z (z-scores) to the figures in 

the cells. If this were done, the first cell, for exam-

ple, would contain the values 

-3.33 : -2.05 + -1.28, 

-2.57 ::- -2.05 + -0. 52' 

-2.05 " -2.05 + o.oo, 

-1.53 " -2.05 + 0.52, 

-0.77 ::: -2.05 -t l.~8. 

However, the figures in table 4 do suffice to establish 

correlations and define expected scores for individuals 

of characteristics defined by X and Y. 

The covariance of X with S could be computed as 

cov ( x s) : [_A.:~ xi ( ~·~ ~~~:i(l 
I ZS" (42) 

where i denotes the row, j denotes the column, and k de-

notes the individual value of S vd.thin each cell. However, 

since the sum of Z is 0, L k~ ~jk is simply five times the 

value in the corresponding cell of table 4. Thus 

cov( XS)= L,,~ X,(. (~.~ s S~.) /zs- {43) 

- s- { s-; -~ .. , X,. Li,, S.y·.) s (44) 

where Sij. re pre sen ts the value in the i th row and jth 

column of table 4. 

The variance of the values in the cells of table 

4 is 1.05. This figure can be computed directly from the 



cells of table 4 or by adding the variances of X and Y 

given on p. 40. Were all of the values of Sijk used to 

calculate the variance of S, the result would be 
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2 2 2 2 a; = o; + ffv +a; = 0.77+- 0.26 + 0.76 =I.Bl (45) 

The correlation of X and S, ~XS' is cov(X,S)/D;·o; and is, 

in this case, 0.66, the expected value. Thus, the infor-, 

mation in table 4 suffices to determine the correlations 

provided the variance due to Z can be determined. 

The values in table 4 also suffice to represent 

expected scores, as the mean of the individual values of 

sijk in a cell is s 1 j." 

A linear transformation applied to the cells of 

table 4 gives them the appearance of expected scores for 

an item scored as either 0 (incorrect) or l (correct). 

Applying equation (38) to the cells of table 4 yields 

table 5. The marginal values of table 4 are divided by 

their respective standard deviations to give z-scores. 

y 

x - • - . l 46 0 60 0 00 . 0 60 • . -
-l.46 0.35 0.38 0.40 0.43 0.46 

-0.60 0.40 0.44 0.46 0.48 0.52 

o.oo 0.44 0.48 0.50 0.52 0.56 

0.60 0.48 0.52 0.54 0.56 0.60 

1.46 0.54 0.57 0.60 0.62 0.65 

table 5 
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Table 5 can be interpreted as follows: the mar-

ginal values, labeled X and Y represent an individual's 

standing with respect to these two traits; the numbers 

given are z-scores. The values in the cells of the table 

represent levels of difficulty for persons as they are 

classified by the variables X and Y. For example, per-

sons who are 0.60 standard deviations above the mean with 

respect to trait X and 1.46 standard deviations below 

the mean with respect to trait Y have a probability of 
c 

0.48 of giving a "correcttt response to the item in ques-

tion. 

Table 5 completes the purpose of this section: 

it demonstrates that item characteristics defined by a 

vector model can be translated to statistics commonly 

used to describe test items. 



ITEI.T SELECTION: INTERNAL CRITERION 

A person's expected score on a test composed of 

all 225 items is simply the sum of his expected scores 

on the individual items. The sum of the 225 expected 

score matrices for the items is an expected score matrix 

for the whole test. The covariance of an individual item 

with the whole test can be found by multiplying the values 

in the cell of the item matrix by the corresponding cell 

of the whole-test matrix, adding these values, dividing by 

225 and subtracting the product of the respective mean 

scores. That is, 

cov(item, whole test) = 

i .. X .. 
-where xij represents the expected score on an item and 

Xij represents the expected score on the whole test for 

persons of the same characteristic. 

(46) 

The usual procedure of item analysis using an in­

ternal criterion is to select those items whose correla-

tion coefficient with the whole test is greatest. The 

procedure in this demonstration is to select those items 

for which the covariance of the expected scores is greatest. 

Two differences are evident: (1) the present procedure 

uses covariances rather than correlations and (2) the 
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covariance is co~puted in terms of expected scores rather 

than actual scores. That these changes do not affect the 

selection procedure is easily demonstrated. 

The correlation of two variables, say X and Y, is 

simply the covariance divided by the product of the stan­

dard deviations of X and Y. That is 
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(47) 

In the present case, CiX , the standard deviation for the 

item, is the same for all items being compared because 

all item matrices have been "standardized" to have a mean 

of 0.5 and a standard deviation of O.l (p. 40). The stan­

dard deviation of the whole test, Uy, is the same in all 

cases because the same whole-test matrix was used in all 

cases. Thus, the correlation is directly proportional to 

the covariance; the order of the items is the same in terms 

of correlation or covariance. 

The relationship of the covariance of expected 

scores and the covariance of the actual scores is more 

easily treated if each observed score, X0 or Y0 , is con­

sidered to be the sum of two components: an expected score 

(or true score), Xt or Yt, and an error term, ex or ey• 

Thus 

Xo:: Xt + ex, 

Y0 = Yt t- ey. 

(48} 

(49} 
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No generality is lost if X and Y are chosen so that 

x ~ y = 0 (50) 

The covariance of the observed scores is given by 

(51) 

= * r: ( xt +ex} ( yt + ey) (52) 

:; * L ( x t ~ + xt ey + ex Yt. + ex e y ) (53) 

Generally, it might be assumed that ex and ey are normal­

ly distributed with means of 0 and that they are indepen-

dent of one another and of the true scores. In that case, 

the last three terms of (53) dissappear. In the present 

case, ex and ey are not random variables, but are rigidly 

symmetric with means of O. Implicit in the summation sign 

of (53) is the summing over all values of ey for each 

value of Xt in the second term. As Ley= 0 (LZ :: O, 

p. 29) the second term of (53) dissappears. Similarly, 

the third and fourth terms dissappear. Thus 

That is, the covariances obtained using expected scores 

are the same as the covariances that would have been ob-

tained using actual scores. 

The hundred items having the greatest covariance 

with the whole test are selected. In cases where the 

covariance of the looth and the io1st items have equal 

covariances, the 10l8 t item is also selected. No case 
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is encountered in this study where the iooth io1st and , , 
io2nd items have equal covariance. 



ITEM SELECTION: EXTERNAL CHITERIA 

Items are also ranked in terms of a weighted sum 

of their covariance with the job elements. The covariance 

of each item matrix with each of the two elements is cal­

culated from the expected score matrix of the item (like 

table 5). The covariances are weighted according to the 

relative importance of the elements. For example, if 

factor l is deemed twice as important as factor 2, the 

covariance of the item with factor l is multiplied by 

two-thirds and the covariance with factor 2 by one-third. 

The weighted covariances are added to provide a Hsynthe­

tic covariance." About 100 items are selected on the 

basis of the synthetic covariance just as they are for 

covariance with the whole test. As with the whole test 

covariance, if the tooth and lOlst items have equal values, 

the io1st item is included. 

This procedure will be referred to as "synthetic 

item analysis" or simply nsynthetic analysis" in the re­

mainder of this paper. 
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CONSTRUCTION OF A VALIDATION CRITERION 

The construction of a matrix to use as a criterion 

for validation uses earlier assumptions regarding the 

factor structure of job performance: that job performance 

depends upon factors 1 and ~, that the relationship of 

these factors is as specified by the vector model regard­

ing their correlation and relative importance and that 

there are no systematic sources of error. 

The validation matrix is constructed to represent 

the vector sum of the factor-vectors. The correlation 

of the vector sum to factor l,/h, is simply the cosine 

of the angle between these vectors. A second correlation, 

J°rv, is taken to be the sine of this angle. A matrix of 

nexpected scoresn is constructed by precisely the same 

procedure that was described on pp. 36-40, above. The 

value of f,s in that procedure is replaced by /xv, ;°rs 
is replaced by ;q.v, and ~r is taken to be O. In the 

demonstration, the identical Fortran subroutine that is 

used to create item matrices is used to create the vali-

dation matrix. 
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VALIDATION 

An expected score matrix for each set of one hun-

dred (or 101) items is constructed by adding their respec-

tive item matrices. This process is identical to the pro-

cedure used to develop an expected score matrix for all 

225 items. 

The covariance of each of these matrices with the 

validation matrix is calculated as 

(55) 
. 

where XTij represents an expected score on the test, Xcij 

represents a corresponding value from the validation ma­

trix, and n is the number of items on the test. The last 

term, 0.25n, is the product of the means of the elements 

of both matrices. Each item matrix has a mean of 0.5, 

as does the validation matrix. The test expected score 

matrix is the sum of n item matrices and therefore has 

a mean of 0.5n. The product of this and the mean of the 

validation matrix is 0.25n. 

The standard deviation of the test expected score 

matrix can be readily calculated using the values in that 

matrix. However, this value is not the standard deviation 

of actual scores; variance due to error (Z) is omitted. 

To correct this, that part of the total variance of each 
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item matrix is deter~ined according to the following 

are;ument. 

The item matrices were initially constructed by 

determining three variables, X, Y, and Z, such that the 

correlations of X and Y with the sum, S, and the corre-

lation of X with Y had certain proscribed values. The 
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correlations of X and Y with Z were to be O. The variance 

of S is given by 

2 2 2 2 

us = DA- + o;, + ~ + 2 a; o; /°xr ( 15 ) 

2 2 
That part of the variance due to Z, then, is O'zl<7s. As 

the matrix is transformed to have a total standard devia-

tion of 0.1, the variance of the transformed matrix, in-

eluding any variance due to Z, becomes O.Ol and the 
2 2 

variance of each item matrix due to Z is O.Ol a; IC7s. 
It is assumed that the errors for different items 

are independent. Therefore, the variance of the sum of 
\ n 2 / '2. 

n i terns due to error is O. Ol · L ,;,.,,., DZ.A. I CTs; • The variance 

of the actual scores is given by 

2 2 [" 2 / 2 GA -: C7e + 0.0 I ;~, CTz:. I a;,.: . (56) 
i 

where GA is the variance of the actual rather than expected 
1 

scores and C7e- is the variance of expected scores as cal-

culated from the values in the expected score matrix. 

As the standard deviation of the criterion matrix 

is 0.1, the validity coefficient of either test is given 

by 
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{Jrc ~ cov ( X,, X) /o.t U,, (57) 

where cov(Xir,Xc) is given by equation (55) and DA is the 
2 

square root of CJA given in ( 56) • 

In order for the validity coefficients to be com-

parable, they have to be based on tests of the same size. 

Thus, f'rc must be corrected if it is based on a test of 

101 items rather than 100 items. This is done by the 

Spearman-Brown prophecy formula (6) where n • l/l.01. 

That is 

/ 

frc :: I+ (f!.o,'- /I tJ. 
I TC 

( Y,01 },o,} 
(fi8) 

where f;c is the corrected value of ;4c· 
I 

For both tests, ;°re (or ;Ore where n = 101) is cal-

culated for the values of the parameters as indicated on 

pp. 33-34. 

The Fortran program used to perform this procedure 

is included as an appendix. 



CHAPTER IV 

RESUL'rs 

The values of the 11 whole-test reliability," the 

consequent "typical angle,n and the resulting validity 

coefficients for a test of one hundred items chosen by 

an internal criterion and by synthetic analysis are given 

in table o. 

Reli­
ability 

.99375 

.9875 

.975 

.95 

.90 

.80 

.60 

Angle. 

52 .1° 
63.8 
73.7 
80.8 
S5.2 
87.8 
89.l 

table 6 

Validity: Validity: 
internal synthetic 
criterion analysis 

.852 .940 

.851 .946 

.849 .948 

.847 .948 

.846 .944 

.846 .940 

.846 .940 

All of the measures indicated in table 6 are made with 

the mean of the item-vectors aligned with factor-vector l, 

with an angle of 90° between the factor-vectors, and with 

factor-vector l twice as long as factor-vector 2. 

The validities of table 6_are presented graphically 

in figure 5. It should be noted that equal distances on 

the horizontal scale of figure 5 -do not represent equal 

intervals in terms of reliability or angle. The reader 
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O.SI 

validity 

O.B5 o-------0-- -- - --<>- - - - - -o-- - - - -0-- --- - -t>-- - - - -o 

-- synthetic analysis 
-- -- internal criterion 

-.po . {';,- •,P 
;;.>.s' 

"re liability" 

should also note that the vertical scale does not start 

at zero. 

The relative effectiveness of the two methods can 
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also be evaluated by comparing resulting "signal-to-noise" 

ratios. Usually, a signal-to-noise ratio is the variance 

due to true score variance divided by variance due to er­

ror; it is usually a measure of reliability. The present 

case requires a modification of the definition to make 

it applicable to validity. For the present usage, the 

signal-to-noise ratio will be defined as O'./!CT/ where er/ 
is the variance of the observed scores due to variance 

of the trait(s) that the test is intended to measure and 



2 
~ is variance due to both systematic and unsystematic 

error. 

Applying this statistic to data from table 6, for 

a who le-test 11 re liabi li tyH of 0. 90, the s igna 1-to-noise 

ratio for the test created by an internal criterion is 

2.94. For the test created by synthetic analysis, it is 

8.19. 

All of the item-vectors are symmetrically arranged 

about some central vector, referred to in this paper as 

the 11 overall direction." As defined on p. 33, this vec­

tor is always in the same plane as the factor-vectors. 
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Its measure indicates the degrees of rotation from factor l 

toward factor 2. The values used in this demonstration, 

and the consequent validJ.ties, are given in table 7. 

Overall 
direction 

-45° 
-30 
-15 

0 
15 
30 
45 

Validity: 
internal 
criterion 

.328 

.547 

.70? 

.846 
• 928 
.948 
.909 

table 7 

Validity: 
synthetic 
analysis 

.936 

.930 

.941 

.944 

.949 

.948 

.945 

All of the measures in table 7 are made with a "whole-test 

reliability" of 0.00, with the factor-vectors perpendicu-

lar to one another, and with factor-vector l twice as long 

as factor-vector 2. 



The validitie3 of table 7 are presented graphical­

ly in.figure 6. In addition to the angle of the overall 

direction to factor-vector 1, the absolute value of the 

angle between the overall direction and the vector sum 

of the factor-vectors is given. The latter figures are 

in parentheses. 

validity 

·' 
.I 

.1 

.6 

.s 

·" 
.'3 

.2 

.I 

,, 
ti 

·Ifs 
(12) 

, 
,, ,, 

,, ,, ,, 

• 0 ,,,.;h ___ _ - ---~ 

, ,, 
/ 

,,(/ 

,, ,, 
.; 

p" 
, .. , 

,,t;'' 
, .. " 

- synthetic analysis 
--- internal criterion 

tJ 15 
(38) (12) 

angle in degrees 
(see text above) 

30 
(3) 

f'igure 6 

'f 5 
(19) 

Table 8 gives the values assigned to the length 

of factor-vector l, with consequent validities. As 

factor-vector 2 has a length of one throughout the demon-

stration, the length of factor-vector l is in fact the 

ratio of the len~th of factor-vector 1 to that of factor-
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vector 2 or, equivalently, the relative importance of fac­

tor l to factor 2. 



Relative 
importance 

l to 2 

0.25 
0.50 
1.00 
2.00 
4.00 

Validity: 
internal 
crlterion 

.227 

.421 

.668 

.846 

.919 

table 8 

Validity: 
synthetic 
analysis 

.929 
• 914 
.935 
.944 
.947 

All of the measures indicated in table 8 are made with 

a 11 reliabillty" of 0.90, the overall direction of the 

item-vectors aligned with factor-vector l, and-with the 

factor-vectors perpendicular to one another. 

The data in table 8 are presented graphically in 

figure 7. It should be noted that equal distances along 

the horizontal axis do not represent equal intervals in 

the independent variable • 

validity 

• '1 

.B 

.1 

.6 

.s 

. '( 

.3 

.2 

.I 

0.25 

___ -o 

,.o-----

0.50 

, , 

synthetic analysis 
internal criterion 

1.00 2.00 
relative importance 

figure 7 

'l.oo 
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The effect of changing the angle between the fac-

tor-vectors is examined under two conditions: 

1) with the size of factor-vector 1 twice that of 

factor-vector 2, the overall direction of the item-vectors 

aligned with factor l, and a trreliability!' of 0.90, and 

~) with the size of factor-vector 1 twice that of 

factor-vector 2, the overall direction of the item-vectors 

aligned with factor 1, and a 0 re liabi li ty'1 of 0. 993'75. 

Table 9 gives the angles between the two factor-vectors 

and the consequent validities for the first set of con-

ditions. Table 10 gives the angles and consequent vali­

dities for the second. 

Inter­
fac tor 
angle 

900 
80 
'70 
60 
50 
40 

Inter 
factor 
angle 

90° 
80 
'70 
60 
50 
40 

Validity: 
internal 
criterion 

.846 

.836 

.917 

.949 

.946 

.854 

table 9 

Validity: 
internal 
criterion 

.852 

.865 

.919 

.953 

.931 

.900 

table 10 

Validity: . 
synthetic 
analysis 

.944 

.942 
• 94'7 
.936 
.922 
.875 

Validity: 
synthetic 
analysis 

.940 

.950 
• 953 
.937 
.931 
.911 



• <f 

.8 

validity 

,7 

.6 

1./0 

----. synthetic analysis, 1st condition 
,,__,,synthetic analysis, 2nd condition 
<>---o internal criterion, 1st condition 
u----rr internal criterion, 2nd condition 

50 60 70 80 '/O 
angle between factor-vectors 

figure 8 

The data from tables 9 and 10 are presented graph-

ically in figure 8. 
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CHAPTER V 

DISCUSSION 

INTERPRETATION OF RESULTS 

Generally, data from experiments does not exactly 

match predicted or expected values. Deviations from an 

expected or mean value are attributed to "random error," 

the effect of uncontrolled variables. Deviations from 

expected values in the present data cannot be so excused, 

as there is no "random" error. The computer hardware, 

software, and program completely determine the outcome. 

There are, however, some effects that are peculiar 

to a particular configuration of hardware, software, and 

program which have no general significance. A particular 

validity coefftcient for a set of a hundred items, for ex­

ample, depends upon the exact angle between the criterion 

vector and the item-vectors. A shift of 2° in the rela­

tive location of the criterion and item-vectors would 

change the validity coefficient slightly (by a factor of 

about 0.999). This large a shift would probably not be 

great enough to affect the set of items selected, nor 

would it have any practical significance. These effects, 

peculiar to the immediate situation and of no general 
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interest, may be thout::ht of as "error" even though they 

are not random in the usual sense. 

An inspection of validity coefficients for the 

tests selected by synthetic analysis in tables 6 and 7 

suggest that this 11 error" can be as large as 0.01 when 

measured from an average value. Tables 8, 9, and 10 sug­

gest a somewhat larger value. 
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The effect of changing the average reliability or 

spread of the items is shown in table 6 (figure 5). This 

table indicates that over the range of item spread which 

might reasonably be expected and under the circumstances 

given, the validity of a test selected by synthetic analy­

sis is appreciably greater than that of a test selected 

by an internal criterion. It also indicates that there 

are only minor drops in validity for a test selected by 

an internal criterion with large drops in reliability. 

For a test selected by synthetic analysis, these data do 

not indicate any relationship between validity and item 

spread. 

Logically, changing the arrangement of the items 

affects tests selected by synthetic analysis only by 

limiting the.number and symmetry:of items grouped around 

the criterion. That is, a test produced by synthetic 

analysis will have optimal validity (1) if there are an 

ample number of items which are highly correlated with 
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the criterion and (2) if these items are symmetrically 

arranged about the criterion so that their individual 

biases will add to zero. Inspection of figure 3 (p. 29) 

suggests that rotating the items clockwise moves away from 

this optimum. Rotating toward the factor-vector sum (the 

validation criterion) should produce optimal validity. 

The validities for synthetic analysis in table 7 are con­

sistent with this argument, but indicate that its effect 

is slight under the conditions given. 

Because the set of items selected by an internal 

criterion is not responsive to the. location of job fac­

tors, the validity of such a test decreases as the angle 

between the overall direction and the vector representing 

the sum of the factor-vectors increases. Table 11 shows 

the overall direction, as indicated in table 7, the angle 

in degrees between the ·overall direction and the validation 

criterion, ¢, the cosine of this angle, and the ratio of 

the validity of a test selected by an internal criterion 

to its maximum value . These figures suggest that the 

overall ~ COS{¢) Ratio 
direction V/Vmax 

_450 72° 0.31 0.35 
-30 57 0.54 0.58 
-15 42 0.74 0.75 

0 2'7 0.89 0.89 
15 12 0.98 0.98 
30 3 LOO LOO 
45 18 0.95 o.9o 

table 11 



validity of a test is proportional to the cosine of an 

angle between the vector sum of its items and the vector 

sum of the job factors. These data also suggest that, 

while the validity of a test selected by an internal cri­

terion is limited by its reliability, the validity of the 

initial set of items, taken as a whole, can be a much more 

important consideration. 

Changing the relative importance of the factors 

o4 

bas no apparent effect upon the validity of a test selected 

by synthetic analysis, as indicated by table 8 (figure 7). 

For a test selected by an internal criterion, how­

ever, the validity increases as the ratio of factor l to 

factor 2 increases. It is important to recall that the 

overall direction of the items (the internal criterion) 

is aligned with factor 1. It is noted above that the va­

lidity of a test selected by an internal criterion is pro­

portional to the cosine of the angle between the internal 

criterion and the validation criterion. Changing the rel­

ative size of the factor-vectors changes the angle of their 

sum (the validation criterion) with factor-vector 1 (the 

internal criterion). Table 12 gives the ratio of factor 1 

to factor 2, as indicated in table 8, the consequent angle 

of the validation criterion to the internal criterion, ¢, 

and the corresponding validity divided by 0.948, the maxi­

mum validity in table 7. A comparison of the data in table 



Factor 1/ 
Factor 2 

·0.25 
0.50 
1.00 
2.00 
4.00 

76° 
63 
45 
27 
14 

table 12 

cos(~) 

0.24 
0.45 
0.71 
0.89 
0.97 

Ratio: 
V/Vmax 

0.24 
0.44 
0.70 
0.89 
0.97 

12 with that in table 11 supports the hypothesis that the 
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validity of a test chosen by an internal criterion is pro­

portional to the angle between the overall direction and 

the validation criterion. 

Tables 9 and 10 indicate that the validity of a 

test selected by synthetic analysis declines slightly as 

the angle between the factor-vectors decreases. This 

phenomenon is not justified on a theoretical basis. In 

terms of the vector model, the function used to select 

items is 

(59) 

where e is the angle between the item-vector and factor­

vector 1 and ~ is the angle between the item-vector and 

factor-vector 2. It is easy to demonstrate with a few 

hypothetical values that this function has a maximum for 

values of e and ¢ which correspond to the sum of the fac­

tor-vectors (the validation criterion). Moreover, this 

function is symetric about its maximum. These are pre-

cisely the characteristics desired in a selector function: 
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it has a maximum at the appropriate point and its value 

decreases with increased distance from the maximum, regard-

less of direction. 

Apart from any failure of synthetic analysis to 

select an optimal set of items, there is reason to expect 

validity to decrease with the angle between the factor-

vectors. This model is constructed by adding three ran-

dom variables, X, Y, and Z, where X represents the effect 

of factor 1, Y the effect of factor 2, and Z, error. As 

the X and Y addends become more highly correlated, their 

effects 11 overlap 11 and the sum of their effects contributes 

proportionally less to the total variance. As the variance 

of each item is arbitrarily set at 0.01, this means that 

the role of error is increased on an absolute as well as 

a relative basis. Increasing the role of error lowers 

reliability and therefore lowers optimum validity. 

The mechanics of lowering the relative contribution 

of X and Y can perhaps be better seen in equation (35): 

a;~" f>x; ~1(1 tA,Pxr +A /Jx~) - fx; (I+ 2 Afxv +A:1.) (35} 

The value of D;2decreases as the denominator of (35) in­

creases. That denominator increases as (Jxr increases, for 

all values of A and fx; applicable to the items selected. 
2 2 

As Of is a linear function of C'x, its mapnitude also de-
2 

creases as ~v increases. Since ~is constant for items 

not in the factor-vector plane, its relative magnitude 
2 i 

increases as the magnitude of oX and oy decreases. Though 



the mathematical proof of these comments is strair,htfor­

ward, it is lengthy. 
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Thus, the decline in the validity of a test selected 

by synthetic analysis as the angle between the job factors 

decreases appears to be an artifact of this particular 

model. In practical applications, it does not seem like­

ly that the magnitude of random error would be a function 

of the intercorrelation of job factors identified. If it 

were, of course, the model would be most appropriate. 

There are two mechanisms which account for the re­

lationship of the validity of a test selected by an inter­

nal criterion and the angle between the job factors. First, 

rotating factor-vector 2 toward factor-vector 1 has the 

effect of rotating the sum of those vectors, the validation 

criterion,· toward the overall direction of the i terns. As 

noted above, the smaller the angle between the validation 

criterion and the overall direction of the items, the 

e.reater the validity. Second, increasinf the correlation 

of the factors has the effect of weighting the factors: 

if the angle of factor-vector 2 to factor-vector 1 is o0°, 

for example, a unit gain in the direction of factor-vector 2 

represents a half-unit gain in the direction of factor­

vector 1. Thus, for the angle mentioned, factor 2 is 

weighted half as much as factor 1. This is wholly consis­

tent with the hypothesis that factor 2 is half as impor­

tant as factor l. For angles other than ooo, selection 



by an internal criterion is less than optimal. The data 

presented on tables 9 ano 10 (figure 8) are consistent 

with both of these mechanisms. 

A problem inherent in the use of any external cri­

terion is that that criterion may have limited validity. 

This can be shown in terms of a Venn diagram (figure 9). 
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Job Performance 

Examination 

riterion 

rigure 9 

In this diagram, the overlap of the two circles represents 

the correlation of the corresponding measures. 

If there were a perfect measure of tr~e job per­

formance, the result of that measure should correlate 

positively with the criterion score. Unfortunately, no 

such measure exists and the magnitude of that correlation 

can only be estimated on the basis of content analysis. 

The correlation of the examination score and the criterion 

score is measured empirically but is of no interest in 

itself. What is actually wanted is the correlation of 

the examination score and true job performance. As seen 
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in figure 9, the correlation of the examination score with 

the true job performance is only partially determined by 

the correlation of the examination with the criterion. 

Having no way to determine the relationship of true job 

performance to the criterion or to the examination, one 

can only assume, optimistically, that the criterion is 

very nearly the same as true job performance. Estimates 

of the criterion validity of an examination reflect this 

optimism, as does the synthetic analysis procedure de­

scribed in this paper. 

Inherent in the synthetic analysis procedure is 

the development of multiple criteria. This procedure 

may require a more analytic consideration of job require­

ments than the selection of a single criterion and there­

by improve the quality of the criteria. Nonetheless, 

the quality of a test selected by synthetic analysis is 

dependent upon the quality of the criterion measures of 

the job factors. All conclusions drawn from this study 

must be tempered by this consideration. 



APPLICATION 

The mechanisms of applying synthetic analysis to 

a practical situation are straightforward: To develop 

a selection instrument for a job, it is first necessary 

to determine the factors or personal traits which charac­

terize successful workers. Some criteria must be devel­

oped to determine the degree to which a worker has these 

characteristics. This will generally consist of some sort 

of supervisory rating. Items are developed and tried on 

a sample of workers or prospective workers. The items 

are correlated against criterion scores, weighted according 

to the judged importance of the factors, and added to yield 

a synthetic correlation. Items are chosen to be included 

in a final version of the test according to their synthe­

tic c orre °la ti on. 

A problem with this procedure is that it seems un­

necessarily complicated. The same result could be achieved, 

theoretically, by determining one criterion for job suc­

cess, thus eliminating the need to determine and weight 

job factors and to correlate items against several criteria 

rather than one criterion. 

The advantage of using synthetic analysis and job 

factors is clearer in situations where selection devices 

need to be made for several jobs with overlapping factors. 
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If these examinations are developed sequentially, each 

subsequent effort can borrow from preceeding studies. 

If criteria and items have been developed to measure con­

scientiousness, for example, in the first examination, 

the same criteria and items can be adapted to later situ­

ations. 

It may be more advantageous, however, to develop 

selection devices concurrently rather than sequentially. 
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A group of jobs may be identified which are expected to 

overlap in terms of required worker characteristics. Cri­

teria developed to measure a factor will hopefully func­

tion for all of the jobs for which the factor is pertinent. 

Working with several jobs at once may help to make the 

factors and items less job specific. Furthermore, working 

with several jobs at once provides larger samples of work­

ers upon which to try items. These samples may provide 

a wider range of a factor, thus further increasing the 

precision of correlation procedures. 

Where several jobs are investigated at the same 

time, it may be feasible to develop one examination with 

several scoring keys. From a set of, say, 100 items given 

to all applicants, there may be 70 which synthetic analy­

sis identifies as a test for job A, a different but over­

lapping set of 65 items which are identified as a test 

for job B, and so forth. Any applicant could readily be 

given scores for all of the jobs covered by the basic set 



of 100 items. This procedure is similar in principle to 

criterion keying procedures used in various personality 

and interest inventories.34 

The preceeding discussion of applications can be 

made to fit educational problems by merely changing the 

terminology. Whether a person is applying for a job or 

is being considered for a readin~ program or graduate 

study, the statistical procedures involved in forecasting 

success are the same. In the area of graduate study, for 

example, different characteristics of successful students 

could be identified by experienced teachers, administra­

tors, and students. Undoubtedly, there are some charac-

teristics which are factors of success in any discipline. 

72 

Tenacity, for example, might be e major factor in deter­

mining the success of a doctoral candidate whether he stu-

dies astronomy or ancient history. It is equally certain 

that some factors are more i~portant to some disciplines 

than others. For example, the ability to read and remem-

ber large volumes of literature may be more important to 

a historian than to a physicist. 

A graduate school selecting doctoral candidates is 

in the position of an employer selecting workers. There 

are several programs into wh:i.ch a candidate may enter just 

34Anne Anastasi, Ps§chological Testing (New York: 
The Macmillan Company, 196 ), p. 440 ff. 



as an employer may have several kinds of, jobs to be done. 

For groups of programs requiring similar characteristics, 

givinp all of the candidates the same items and scoring 

the items shown to be measures of potential in a partic­

ular program seems a reasonable strategy. Having the 

capacity to differentially forecast success in various 

programs should be a great benefit to both the student 

and the educator. 
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APPENDIX 

The following is the Fortran program used to gener-

ate and evaluate hypothetical data as described in chapter 

III. 

Because up to 72 columns can be used on a Fortran 

card and only about 60 columns may be typed on these pages, 

the arrangement of continuation cards has been altered in 

some cases. A i
1& 11 in the sixth column indicates a continu-

ation of the previous line. 11 ¢ 11 represents the number 

zero. 

At the end of the program is a glossary of Fortran 

variables used in this program. 

DIMENSION Z (l5),ZITMFP(l5), XITMFl(l5),XITMF2(15), 
&RSX(l5,15),RSY(l5,l5),EXSCOR(l5,l5),COVEX(l5,15), 
&COVSYN( 15, 15), IM(225), JM(225) 

Z{ l) • -1.83 
Z(2) = -1.28 
Z(3) = -,0.97 
z ( 4) = -¢. 73 
Z(5) • -¢.52 
Z(6) = -¢.34 
Z(7) = -¢.17 
z (8) ,.. ¢.¢¢ 
Z(9) • ¢.17 
Z{l¢) • ¢ .34 
Z(ll) =- ¢.52 
z ( 12) » ¢. 73 
z ( 13) - ¢. 97 
Z(l4) = 1.28 
z ( 15 ) :a 1. 83 

vz .. ¢.9168 
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98 READ (5, 11¢) RTEST,TITMFl,ALF'lF'2,SIZFl 
11¢ FORMAT (5X,4F9.7) 

IF(RTEST) 99,99,97 
97 CONTTNUE 

SIZF'2 = 1.¢ 
RITEM = RTEST/(l~~-~ - 99.¢ * RTEST) 
TYPAL = ARCOS(RITEM) 

DO l I = l, 15 
1 ZITMFP(I) = TYPAL * Z(I) 

DO 2 I = 1, 15 
2 XITMFl (I) = ZITJ\~FP (I) + TITMF 1 (I) 

DO 3 I = 1, 15 
3 XITMF2(I) = ALF1F2 - XITMFl(I) 

DO 4 I = l, 15 
DO 5 J = l, 15 
RSX (I, J) = COS (ZITMFP ( J) )~<-COS (XITMFl (I)) 

5 RSY(I,J) = COS(ZITMFP(J))*COS(XITMF2(I)) 
4 CONTINUE 

RXY = COS{ALF1F2) 

DO o I ::. 1, 15 
DO 7 J = 1, 15 

7 EXSCOR(I,J) = ¢.¢ 
6 CONTit-nJE 

DO 1¢ I = l, 15 
DO ll J = l, 15 
RX = RSX(I,J) 
RY= RSY{I,J) 
CALL DEVIAT (RX,RY,RSY,VZ,DX,DY,SDS,PVZ) 
DO 18 K = l, 15 
DO 19 L = l, 15 
A .:: {DX~~Z(K) + DY*Z(L) )~:t-¢.1/SDS + ¢.5 
EXSCOR ( K, L) .:: EXSCOR ( K, L) + A 

19 CONTINUE 
18 CONTINUE 
11 CONTINUE 
1¢ CONTINUE 

DO 22 I = l, 15 
DO 23 J = l, 15 
RX = RSX(I,J) 
RY = RSY(I,J) . 
CALL DEVIAT (RX,RY,RXY,VZ,DX,DY,SDS;PVZ) 
COVEX{I,J) = .¢.¢ 
COVSYN(I,J) = ¢.¢ 
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DO 3¢ K = 1,15 
DO 31 L :: l, 15 
A = (DX-~-z { K) + DY~(·Z (L) )-;;.~. l/SDS + ¢ .5 
COVEX{I,J) = COVEX(I,J) + A*EXSCOR(K,L) 
COVSYN(I,J):: COVSYN(I,J) + SIZF'l/(S!ZFl -1- SIZF2)* 

&Z(K)*A + SIZF2/{SIZF1 + SIZF2)-r.·Z{L)~l-A 
31 CONTHnJE 
3¢ CONTINUE 

COVF..X:(I,J) = COVEX(I,J)/225.¢ - 56.25 
COVSYN(I,J) :: COVSYN{I,J)/225.¢ 

23 CONTINUE 
22 CONTINUE 

DO 4¢ M .::: l, 1¢¢ 
XMAX = 5¢~.¢ 
DO 35 I = l, 15 
DO 36 J = 1, 15 
IF(XMAX - COVEX(I,J)) 37,36,36 

37 XMAX : COVEX(I,J) 
XMOX = XMAX 
IM(M) = I 
.JM(M) = J 

36 CONTINUE 
35 CONTINUE 

I = IM(M) 
J = JM{M) 
COVEX{I,J) = -5~¢.~ 

4¢ CONTINUE 

M = 101 
DO 38 I = 1,15 
DO 39 J ;:;; l, 15 
IF(XMOX - COVEX(I,J)) 41,41,39 

41 IM{M) =- I 
JM(M) = J 
M = M + l 

39 CONTINUE 
38 CONTINUE 

M = M - l 
XM = M 

DO 42 K = l, 15 
DO 4 3 L :: l, 15 

43 EXSCOR(K,L) = ¢.¢ 
42 CONTINUE 

CPVZ = ¢.¢ 

DO 44 N = l,M 
I = IM(N) 
J -:: JM(N) 
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RX = RSX (I, J) 
RY = RSY(I,J) 
CALL DEVIAT (RX,RY,FXY,VZ,DX,DY,SDS,PVZ) 
DO 45 K = l, 15 
DO 46 L :. l 15 
A: (DX*Z(K) + DY*Z(L))*¢.l/SDS + ¢.5 
EXSCOR(K,L) = EXSCOR(K,L) + A 

46 CONTINUE 
45 CONTINUE 

CPVZ = CPVZ + PVZ 
44 CONTINUE 

SUM :: ¢~¢ 
SS = Jl' .Jl' 
COVl = ¢.ft' 
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RX= COS{ATAN((SIN(ALFlF2)*SIZF2)/(SIZFl + COS(ALFlF2) 
&~-S IZF2 ) ) ) 

RY= SIN(ARCOS(RX)) 
RXYC = ¢.¢ . 
CALL DEVIAT (RX,RY,RXYC ,VZ,DX,DY,SDS,PVZ) 
DO 48 K = l, 15 
DO 4 9 L ;: l, 15 
A= (DX*Z(K) + DY*Z(L))*¢.l/SDS + ¢.5 
COVl = COVl + A*EXSCOR(K,L) 

49 CONTINUE 
48 CONTINUE 

COVl = COVl/225.~ - ¢.25*XM 
DO 5¢ K :: l, 15 
DO 51 L :: l, 15 
SFM = EXSCOR(K,L) + SUM 
SS = EXSCOR(K,L)**2 + SS 

51 CONTINUE 
5¢ CONTINUE 

VEX .: SS/225 .. ¢ - (SUM/225.¢)·:.'-)~2 + ¢..¢1-::-CPVZ 
SDEX = SQRT(VEX) 
Rl ~ COVl/(¢.l*SDEX) . 
R :: Rl/(XM -(XM - l.¢)*Rl) 
RlC:. (1¢¢.¢*R)/(l.¢ + 99.~·R) 

DO 55 M o: l., 1¢¢ 
XMAX • -5¢¢.¢ 
DO 56 I = 1, 15 
DO 57 J = l, 15 
IF(XMAX - COVSYN(I,J)) 58,57,57 

58 XMAX = COVSYN(I,J) 
XMOX :: XMAX 
IM(M) = I 
JM(M) = J 

57 CONTINUE 
56 CONTINUE 



I = IM(M) 
J = JM(M) 
COVSYN(I,J) =·-5¢¢.¢ 

55 CONTINUE 

M = 1¢1 
DO 59 I = 1, 15 
DO 6¢ J = 1, 15 
IF(XMOX - COVSYN(I,J)) 61,61,6¢ 

61 IM(M) = I 
JM(M} _. J 

6¢ CONTINUE 
59 CONTINUE 

M = M - l 
XM = M 

DO 65 K:: 1,15 
DO 66 L ::. l, 15 

66 EXSCOR(K,L) = ¢.¢ 
65 CONTINUE 

CPVZ = ¢.¢ 
DO 67 N ::. l,M 
I = IM{N) 
J = JM{N) 
RX = RSX(I,J) 
RY = RSY( I,J) 
CALL DEVIAT (RX,RY,RXY,VZ,DX,DY,SDS,PVZ) 
DO 68 K:: 1,15 
DO 69 L = 1, 15 
A : (DX*Z {K) + DY-~Z (L) )-:1-¢. l/SDS + ¢ .5 
EXSCOR(K,L) = EXSCOR(K,L) + A 

69 CONTINUE 
68 CONTINUE 

CPVZ = CPVZ + PVZ 
67 CONTINUE 

SUl'JI = ¢.¢ 
SS = ¢.¢ 
COV2 :: ¢.¢ 

RX = COS(ATAN( (SIN(ALFlF2)*SIZF2)/(SIZFl + 
&COS(ALFlF2)*SIZF2))) 

RY= SIN(ARCOS(RX)) 
RXYC = ¢.¢ 
CALL DEVIAT (RX,RY,RXYC,VZ,DX,DY,SDS,PVZ) 
DO 7¢ K = 1,15 
DO 71 L = l 15 
A= (DX*Z(K) + DY*Z(L))*¢.l/SDS + ¢.5 
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COV2 = COV2 + A*EXSCOR(K,L) 
71 cm!TINUE 
7¢ CONTINUE 

COV2 = COV2/225 .¢ - ¢.25~i-XM 
DO '72 K = l, 15 
DO 73 L = l,15 
SUM = EXSCOR (K, L) + SUM 
SS ~ EXSCOR(K,L)**2 + SS 

73 CONTINUE 
72 CONTINUE 

VEX : SS/225 .¢ - (SUM/225 .¢)-~--:i-2 + ¢.¢l~~CPVZ 
SDEX :;: SQRT(VEX) 
R2 = COV2/(¢.l*SDEX) 
R = R2/(XM - (XM - l.¢)*R2) 
R2C = (1¢¢.¢*R)/(l.¢ - 99.~*R) 

WRITE(6,1¢5)RTEST,RITEM,TITMFl,ALFlF2,SIZFl,SIZF2 
1¢5 FORMAT( 1 1 , 1RTEST : ',F6.3,2X, 1RITEM ::: ',F6.3,2X, 

&'TIT.MFl = 1 ,F6.3,2X, 'ALF1F2: 1 ,F7.3,2X, 'SIZFl = ', 
&F7.3,2X, 1SIZF2 = ',F7.3) 

WRITE(6,l¢1) Rl,RlC,R2,R2C 
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1¢1 FORMAT( r 1 , 1Rl = ',F6.3,2X, 'RlC = r ,F6.3,2X, 'R2 -= r, 
& F6.3,2X, 1R2C = 1 ,F6.3) 

GO TO 98 
99 CONTINUE 

STOP 
El\TD 

SUBROUTINE DEVIAT (RX, RY, FXY, VZ, DX ,DY, SDS ,PVZ) 

IF (RX) 1,2 ,2 
l SRX ::: -1.~ 

GO TO 3 
2 SRX = l.~ 
3 IF (RY) 4 , 5, 5 
4 SRY ;. -1.¢ 

GO TO 19 
5 SRY :;. 1.¢ 

19 XK = (RY - RXY-:i-RX)/(RX - RXY-:i-RY) 
XK2 = KX-~:i-2 
D = ( l. ¢ + XK~<-HXY) -~-~2 - RX·X-·~2-;-c- ( 1. ¢ + 2. ¢*XK~i-RXY + 

&XI\2)· 

IF(D - ¢.¢¢¢1) 2¢,2¢,6 
2¢ IF(D + ¢.¢¢¢1) 6,9,9 

9 IF(RX) 1¢,11,1¢ 
11 SDX = ¢.¢ 



SDY = 1.¢ 
vs = ¢.,¢ 
PVZ ;; ¢.¢ 
GO TO 12 

1¢ IF (RY) 13, 15, 13 
15 SDX = 1.¢ 

SDY = ¢.¢ 
vs = 1.¢ 
PVZ = ¢.¢ 
GO TO 12 

13 vx : 1.¢ 
VY::. XK2*VX 
SDX = SQRT(VX) 
SDY = SQRT (VY) 
VS ~ VX T VY+ 2.¢*SDX*SDY*RXY 
PVZ = ¢.¢ 
GO TO 12 

6 vx A ( RX~~2-:i-VZ) I ( ( 1.¢ + XK-:.~RXY)*{~2 .;... RX-f--*2-ii-( 1.¢ + 
&2 • ¢*XK-r.-RXY + XK2 ) ) 

VY : XK2*VX 
SDX = SQRT(VX) 
SDY = SQRT (VY) 
VX = VX + VY + 2 • ¢-;:-SDX-~SDY-:<-RXY 
PVZ = VZ/VS 

12 SDS = S~lRT (VS) 
DX = SRX-::-sbx 
DY = SRY-:<-SDY 
RETURN 
END 

data 
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GLOSSARY 

Each definition in this glossary is followed by the 
number of the page in chapter III on which the variable 
is discussed •. 

ALF'lF2 the angle between the vector representing factor 1 
and the vector representing factor 2 (31) 

COVEX(I,J) the covariance of an item with the whole 
test (45) 

COVSYN(I,J) the synthetic covariance of an item with 
the job factors (49) 

CPVZ the cumulative sum of PVZ for all items selected 
for a particular test {51) 

DX a scaling factor; multiplied by the z-scores, it gen­
erates a random variable X. It is used in the process 
of generating expected scores for a particular item (38) 

DY a scaling factor; the analogue to DX used to generate 
a random variable Y (38) 

EXSCOR(I,J) the expected score of a person whose standing 
with respect to factors l and 2 is indicated by the 
Ith and Jth z-scores, respectively (35). This Fortran 
variable is also used to construct a criterion matrix 
( 50) • 

PVZ the fraction of the variance of scores on a parti­
cular item which can be attributed to error; error 
variance/total variance (51) 

RITEM the reliability of a single item for a test of· 
one hundred equally re liable items whose overall re'li­
ability is given by RTEST. The value of this variable 
is determined by RTEST; the inverse cosine of this var­
iable is taken to be a "typical" item-vector angle (32) 

RSX(I,J) 

RSY(I,J) 

the correlation of an item with factor l (36) 

the correlation of an item with factor 2 (36) 
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RTEST the reliability of a hypothetical test consisting 
of one hundred items. This value is postulated in or­
der to generate a reasonable "typical" item spread (32) 

RX an equivalent of RSX(I,J) used in the subroutine 
DEVIAT 

RXY the correlation of the two job factors (36) 

RY an equivalent to RSY(I,J) used in the subroutine 
DEVIAT 

Rl the validity coefficient of the test selected by an 
internal criterion (52) 

RlC Rl corrected to represent a test of one hundred 
items (53) 

R2 the validity coefficient of the test selected by syn­
thetic analysis (52) 

R2C R2 corrected to represent a test of one hundred items 
(53) 

SDEX the standard deviation of an expected score matrix; 
the square root of VEX (52) 

SDS the standard deviation of a three-dimensional matrix 
of values representing scores of a large number of per­
sons on a particular item (52) 

SIZFl the lenfth of the vector representing factor l. 
This value is, in effect the relative importance of 
factor l to factor 2 

SIZF2 the length of the vector representing factor 2 

TITI\l!Fl the overall directlon of the item-vectors; the 
angle between the vector sum of the item-vectors and 
the vector representing factor 1 (31) 

TYPAL a utypicaln angle between an item-vector and the 
sum of the item-vectors (32) 

VEX the variance of an expected score matrix corrected 
to include error variance (52) 

VZ the variance of the z-scores (36) 



XITMFl(I) the angle between the projection of an item­
vector upon the plane of the factor-vectors and the 
vector representing factor 1 (31) 

XITMF2 (I) the angle between the projection of an item­
vector upon the plane of the factor-vectors and the 
vector representing factor 2 

XK represents the variable A defined by equation (29) 
(38) 

Z(I) one of fifteen z-scores equivalent to uniformly 
distributed percentile ranks {28) 
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ZITMFP{I) the angle between an item-vector and the plane 
Of the factor-vectors (31) 
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