
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1995

Finding Connected Components on a Scan Line
Array Processor
Ronald Greenberg
Rgreen@luc.edu

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for
inclusion in Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information,
please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© ACM, 1995.

Recommended Citation
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, Pages 195--202.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Finding Connected Components on a Scan Line Array Processor

Ronald I. Greenberg

�

Department of Electrical Engineering

and Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742

rig@eng.umd.edu

(Preliminary Version)

Abstract

This paper provides a new approach to labeling the con-

nected components of an n � n image on a scan line ar-

ray processor (comprised of n processing elements). Vari-

ations of this approach yield an algorithm guaranteed to

complete in o(n lg n) time as well as algorithms likely to ap-

proach O(n) time for all or most images. The best previous

solutions require using a more complicated architecture or

require
(n lg n) time. We also show that on a restricted

version of the architecture, any algorithm requires
(n lg n)

time in the worst case.

1 Introduction

The scan line array processor (SLAP) (also referred to as the

Princeton Engine or Sarno� Engine) has been proposed by

several authors as an e�cient SIMD machine for low-level or

intermediate-level image processing tasks [4, 9, 10, 13]. The

basic structure of the SLAP for computations on an image of

size up to n�n pixels is a linear array of n processors. The

rows of the image are input to the SLAP one after another

in the direction perpendicular to the array connections (as

in Figure 1). Thus, each image row is input to the SLAP in

constant time, one pixel per processor. For some low-level

image processing tasks, such as median �ltering with a small

window size or convolution of an image with a small kernel

(e.g., [12]), only a constant amount of memory per processor

is required. But for intermediate-level tasks, it may be nec-

essary to input the entire image to the SLAP before output

is produced, so the SLAP is designed to have �(n) mem-

ory per processor. Thus, in O(n) time, an entire image can

be input to the SLAP, with each processor holding one col-

umn of the image. Communication can also be performed

using the linear-array connections between the processors.

On any given time step, one data item (i.e., O(lg n) bits)

can be transferred on the link between each pair of adjacent

processors.

�

Supported in part by NSF grant CCR-9321388.

To appear in Proceedings of the 7th Annual ACM Sympo-

sium on Parallel Algorithms and Architectures, July 1995,

Santa Barbara, California.

A fundamental intermediate-level image processing task

is labeling of the connected components in a binary image.

That is, each pixel is 0 or 1, two pixels are connected if

there is a path of adjacent (horizontally or vertically) 1-

valued pixels from one to the other, and the problem is to

label each pixel so that any two 1-valued pixels are assigned

the same label if and only if they are connected.

This paper gives a SLAP algorithm that labels connected

components of an n � n image in O(n lg n= lg lg n) time. In

addition, this algorithm or variants of it are likely to run in

close to O(n) time (which is a clear lower bound) on all or

most images. Previous SLAP algorithms required
(n lg n)

time [2, 12], even with an unnatural \shu�ed row-major"

input ordering [2]. Various algorithms have been proposed

to solve the problem in O(n) time on a two-dimensional

mesh of n

2

processors [6, 16, 18], but the drawbacks of such

an approach are great. Even with n = 128, n

2

processors

would greatly exceed the available resources on most ex-

isting parallel machines, whereas much larger images can

easily be handled using a linear array con�guration of pro-

cessors. Other algorithms can yield even better than O(n)

time [5, 15, 17], but only with interconnection networks that

are more complicated and, therefore, more costly. Related

work has also been done by Schwartz, Sharir, and Siegel [19]

and Dillencourt, Samet, and Tamminen [7]. They show that

component labeling of a rectangular image can be performed

in time linear in the number of pixels (O(n

2

) time for an n�n

image) when the pixels of the image are read in scan line or-

der. But they do not consider any type of multiprocessing

solution.

Section 2 of this paper gives the high-level algorithm for

the new approach to component labeling on the SLAP and

proves it correct. Section 3 discusses �nal implementation

details and resulting time bounds. Section 4 gives two addi-

tional results: (1) an extension to computing for each com-

ponent a function of initial labels assigned to the compo-

nent's pixels and (2) a lower bound for a restricted version

of the SLAP. Section 5 provides concluding remarks.

2 The high-level algorithm

This section gives the high-level algorithm for labeling the

connected components of an n � n image on the SLAP. It

is assumed that the image has been input so that each pro-

cessor holds one column of the image, as is natural on the

SLAP. Also, the rows and columns are numbered from 0 to

n� 1, from top to bottom and left to right, respectively.

1

� -

per step

one word

(lgn bits)

� -

per step

one word

(lgn bits)

1 0 0 1

0 0 1 1

?

� -

image input

row by row

n processors

0 1 0 1

1 1 1 1

1 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

O(n)

memory

...

Figure 1: The SLAP architecture.

The top-level procedure involves computing what may

be referred to as a left-connected component labeling and a

right-connected component labeling. In a left-connected com-

ponent labeling, two pixels in columns i and i

0

> i receive

the same label if they are in the same component of the

subimage comprised of columns 0 through i

0

. In a right-

connected component labeling, these pixels have the same

label if they are in the same component of the subimage

comprised of columns i through n�1. Once a left-connected

component labeling and a right-connected component label-

ing (using di�erent labels) have been found, it is easy to

determine an overall connected component labeling as spec-

i�ed in Algorithm CC in Figure 2. Correctness follows from

an observation also used in previous SLAP algorithms. That

is, given a cut through the image and correct component la-

belings of the two subimages determined by the cut, the

pixels bordering on the cut can be correctly labeled by per-

forming component labeling on just the pixels bordering on

the cut. The approach of Algorithm CC can be viewed

as �tting into the same framework by doubling each column

and considering cuts running between the two copies of each

column. We can maintain consistency of the various \bor-

der labelings" produced in the last step of Algorithm CC

by imposing the rule that each component gets labeled with

the least label seen on its pixels at this stage. A convenient

initial labeling for each pixel is the position in column-major

order (i.e., in+ j for the pixel in column i and row j). With

this initial labeling, the overall algorithm described in this

section labels each component with the least initial label of

its pixels.

The di�cult part of performing component labeling is

the implementation of steps 1 and 2 in Algorithm CC. The

two steps are completely analogous, so the remaining discus-

sion will consider only the left-component labeling of step 1.

Intuitively, we would like to do left-component labeling

by performing some local work within processors while also

performing a left to right sweep of information from proces-

sor to processor. A couple sample images should suggest the

di�culty of performing the labeling correctly and e�ciently.

In Figure 3(a), processors seem to require a complicated or-

ganization of information about connections between com-

ponents that occur in columns to the left. Figure 3(b) illus-

trates a pattern that if repeated over and over would cause

excessive delay for a naive approach of passing labels to the

right in a top to bottom fashion; it may be necessary to pass

labels before they are �nal and then to patch up later.

The high-level structure of the left-component labeling

procedure is speci�ed in Algorithm Left-Components in

Figure 4.

The most di�cult part of the left-component labeling

algorithm is step 1, which groups the pixels in each column

into sets, with one set for each left-component intersecting

the column. It uses the operations that de�ne the familiar

union-�nd problem [1]. The basic union-�nd operations may

be expressed as follows:

1. Make-Set(x) creates a new set containing the single

element x.

2. Find(x) �nds the set that contains the element x.

3. Union(S; T) combines the sets S and T .

Tarjan [20] showed that any sequence of union-�nd opera-

tions can be performed with only slightly more than constant

amortized time per operation, and we will take up further

details of these operations in Section 3. In this section, we

will analyze the connected components algorithm under the

assumption that each union-�nd operation can be performed

in constant time.

To facilitate the operation of the Left-Components

procedure, we slightly augment the Make-Set and Union

operations to maintain two additional pieces of information

for each set S, which we refer to as adjnext[S] and adjprev[S].

2

Algorithm CC

1 Find a left-connected component labeling of the image, placing the results for processor i in a local

array leftlabel, such that leftlabel[j] is the label for the pixel in column i and row j.

2 Do the same for right-connected component labeling, with results going into the array rightlabel.

3 Within each processor, in parallel, perform component labeling on the graph with nodes

f leftlabel[j] 8j g [f rightlabel[j] 8j g and edges f (leftlabel[j]; rightlabel[j]) 8j g.

Figure 2: The top-level procedure for the O(n) component labeling algorithm.

1 1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

(a) (b)

Figure 3: Images illustrating the di�culty of of left-component labeling. Empty boxes are 0-pixels.

Algorithm Left-Components

1 Perform union-�nd operations on the pixels within each processor (column) to place all pixels

belonging to the same left-component into the same set.

2 For each pixel, �nd which set it belongs to.

3 Assign the appropriate left-component label to each set.

4 Assign the appropriate left-component label to each pixel.

Figure 4: The high-level structure of the left-connected component labeling algorithm.

3

The value of adjnext[S] is some row index for which a 1-pixel

of S is adjacent to a 1-pixel in the next column to the right; if

no such index exists, adjnext[S] = nil. Similarly, adjprev[S]

is a row index for which a 1-pixel of S is adjacent to a 1-pixel

in the previous column if such an index exists. It is easy to

see that only a constant amount of local computation and

a constant number of nearest neighbor communications are

required to maintain the adjnext and adjprev information

during any union-�nd operation.

We can now use the procedure Union-Find-Pass of Fig-

ure 5 to express step 1 of Algorithm Left-Components.

The basic idea for the correctness and e�ciency of procedure

Union-Find-Pass is embodied in the following lemma:

Lemma 1 Union-Find-Pass produces the correct grouping

of rows in each column, and completes in O(n) time under

the assumption that unions and �nds are constant time.

Proof. The basic idea of the procedure is as follows. In the

�rst phase, it groups together the pixels that comprise verti-

cal runs of 1's within the column (lines 1{7). That is, as we

march down the column, whenever we �nd a continuation of

a vertical run, we union the new pixel with the existing ver-

tical run. In the second phase, we perform unions based on

information about unions performed in the previous column.

In both of these phases, we record in a queue for eventual

transmission to the next column information about unions

performed in the current column. The only unions for which

information must be passed from one column to the next is

what we may refer to as a relevant union. A union between

two sets of pixels S

1

and S

2

in column i is relevant to column

i+ 1 if S

1

and S

2

each contain at least one 1-pixel adjacent

to a 1-pixel in column i + 1.

We can prove the procedure yields the correct result by

induction on the number of executions of line 12. To assist

in the formalization, let us refer to the k-th such execution

in processor i as E

i;k

and the grouping into components in

column i produced by that call as C

i;k

. The statement to be

proved inductively is that C

i;k

is correct based on C

i�1;f(k)

,

where E

i�1;f(k)

is the latest execution in processor i � 1

that does not enqueue data generating an execution later

than E

i;k

in processor i. (This is su�cient to establish that

column n� 1 ends up with a correct grouping based on the

�nal grouping in column n � 2, which is correct based on

the �nal grouping in column n � 3, etc., so that the overall

result is correct for grouping according to left-components.)

The base case for the induction is established by arguing

that the �rst phase of Union-Find-Pass (lines 1{7) pro-

duces the correct local grouping into components in column

i given that no relevant unions have occurred in column i�1.

For the induction step, consider E

i�1;k

0

, where this is the

execution that unions sets S and T and enqueues the data

that generates E

i;k

. By the induction hypothesis, we know

that C

i;k�1

is correct based on C

i�1;k

0

�1

. Since S and T

were already sets in C

i�1;k

0

�1

, we know that C

i;k�1

already

groups together within a set S

0

all pixels in column i that

are adjacent to S and also groups together within a set T

0

all pixels in column i that are adjacent to T . Thus, to obtain

a grouping in column i that is correct based on C

i�1;k

0

we

need only union S

0

and T

0

; this is achieved by E

i;k

, which

unions the sets containing a pixel adjacent to S and a pixel

adjacent to T . Therefore, C

i;k

is correct based on C

i�1;k

0

.

Finally, C

i;k

is also correct based on C

i�1;f(k)

, since there

are no unions strictly between E

i�1;k

0

and E

i�1;f(k)+1

that

are relevant to column i, and unions that are not relevant

as de�ned above do not a�ect the grouping in column i.

For the bound on running time, note �rst that phase

one of Union-Find-Pass (lines 1{7) is certainly O(n) time.

Some items may be enqueued during phase one, but this can

only improve the speed relative to the situation in which all

enqueues are viewed as occurring during phase two. Then we

can argue inductively that the time for phase two is O(n+ i)

in processor i. For the base case, we note that processor 0

has a trivial phase two, and the time for phase two is O(n)

even counting the time for enqueues that really occur in

phase one. For the induction step, we note that with the

enqueues counted as occurring in phase two, only a con-

stant amount of time must pass after each enqueue until the

corresponding dequeue in the next processor.

So far we have assumed without justi�cation that each

union-�nd operation can be completed in constant time,

a matter to be revisited in Section 3. No such assump-

tion is necessary to show that the remainder of procedure

Left-Components (steps 2{4) can be completed in O(n)

time. Steps 2 and 4 just involve a sequence of n �nds in each

processor independently in parallel. We will see in Section 3

that it is easy to ensure that these sequences can be com-

pleted in O(n) time. In fact, by doing a �nd on every pixel

in step 2, we can ensure that every later �nd is constant

time, because no unions occur after step 1.

All that remains is to analyze step 3 of Left-Components

using the fact that we can make each �nd execute in constant

time. It can be implemented with the procedure Label-Pass

in Figure 6, that is somewhat similar to Union-Find-Pass.

The basic idea here is to pass the label of each set to the right

exactly once. A processor cannot wait for all incoming infor-

mation to be received before sending information out, but

it must wait to send out the label of a given set until it has

received any incoming information for that particular set.

The adjprev values of the sets are used to determine when

to wait for incoming information. As in Union-Find-Pass,

processor i receives all necessary information by the time of

its n + i-th dequeue so that the total time for the pass is

O(n).

Incorporating the analysis of Left-Components into

the overall analysis of Algorithm CC yields:

Lemma 2 Algorithm CC computes the component labeling

in O(n) time under the assumption that unions and �nds

are constant time.

Proof. Putting together the analyses of all steps of Algo-

rithm Left-Components, we obtain correct operation in

time O(n) if all unions and �nds are constant time. We

can then �nd right components by an analogous right to

left sweep. Finally, we put together these two labelings as

speci�ed by the last step of Algorithm CC in each processor

independently; this step is also O(n) time by the familiar se-

quential algorithm to �nd connected components on a graph

of n edges.

3 The implementation details

The remaining algorithmic detail that we must consider is

the implementation of the union-�nd operations, which we

4

Algorithm Union-Find-Pass

1 for j 0 to n � 1 do Make-Set(j) endfor

2 Set outgoing[i] to an empty queue.

3 for j 1 to n � 1 do

4 if image[i; j � 1] = image[i; j] = 1

5 then Call Apply on the pair of rows (j � 1; j)

6 endif

7 endfor

8 if i = 0 then incoming eos else incoming nil endif

9 while incoming 6= eos do

10 incoming Dequeue(outgoing[i � 1]) hreturns nil if empty queuei

11 if incoming does not equal nil or eos

12 then Call Apply on incoming

13 endif

14 endwhile

15 Enqueue eos onto outgoing[i].

Algorithm Apply(rowpair)

1 Set topset to Find-Set of the top row in rowpair.

2 Set botset to Find-Set of the bottom row in rowpair.

3 if topset 6= botset then

4 if adjnext is non-nil for topset and botset

5 then Enqueue the pair of rows (adjnext[topset]; adjnext[botset]) onto outgoing[i].

6 endif

7 Union(topset,botset)

8 endif

Figure 5: Pseudocode for processor i in the union-�nd pass of the left-component labeling algorithm. The dequeue on

outgoing[i� 1] represents a constant number of communications with the processor to the left; other variables are local. The

two-dimensional array image contains the pixel values.

Algorithm Label-Pass

1 for j 0 to n� 1 do

2 S Find(j)

3 if adjprev[S] = nil and label[S] is not set then

4 label[S] in+ j

5 Enqueue (label[S]; adjnext[S]) onto outgoing[i].

6 endif

7 endfor

8 if i = 0 then incoming eos else incoming nil endif

9 while incoming 6= eos do

10 incoming Dequeue(outgoing[i � 1]) hreturns nil if empty queuei

11 if incoming does not equal nil or eos then

12 S Find(the row speci�ed by incoming)

13 label[S] the label speci�ed by incoming

14 Enqueue (label[S]; adjnext[S]) onto outgoing[i].

15 endif

16 endwhile

17 Enqueue eos onto outgoing[i].

Figure 6: Pseudocode for processor i in the labeling pass corresponding to line 3 of Algorithm Left-Components.

5

treated as constant time in the previous section; in actual-

ity, the situation is more complicated. We will show that

a simple implementation yields an O(n lg n) running time

for Algorithm CC, that we can also obtain O(n lg n= lg lg n)

running time, and that simple implementations are likely to

do much better than the worst-case bound of O(n lg n).

Let us �rst consider the union-�nd approach that is prob-

ably most widely recognized as an e�cient implementation.

In this implementation, each set is represented by a tree,

with each element other than the root having a pointer to its

parent. The Make-Set operation creates a representation

of an element as a lone tree node. A Find involves walks up

a path in the tree and returning the root, which serves as the

name of the set. For a Union, we are given the roots of two

trees (generally obtained by executing two �nds), and we

make one root the parent of the other by creating one new

parent pointer. Tarjan showed that by incorporating the

two heuristics of path compression and weighted union, any

sequence of union-�nd operations can be executed in very

nearly constant amortized time per operation [20]. Path

compression is applied during �nds; after we walk up a path

to �nd the root for some node, we make all nodes that were

encountered on the �nd path point directly to that root.

Weighted union a�ects the choice as to which of the two

given roots becomes the root of the combined tree; we point

the root of the smaller set to the root of the larger set.

Tarjan's analysis [20] shows that any sequence of n union-

�nd operations on a set of n elements can be executed in

timeO(n�(n)), where �(n) is a function that grows so slowly

that it may be considered to have a value of at most 4 for all

practical purposes. Thus, the average time of the operations

is nearly constant.

Unfortunately, (nearly) constant average time per union-

�nd operation is not enough to obtain an O(n) SLAP algo-

rithm for component labeling based on Lemma 1; individual

operations could require more than constant time. Two ob-

servations, however, immediately follow from the union-�nd

implementation analyzed by Tarjan. First, Algorithm CC

can be implemented to run in O(n lg n) time. This follows

from the fact that as long as we use weighted union, no

node in any tree ever has depth greater than lg n, so each

individual union-�nd operation is O(lgn) time. Second, all

parts of the algorithm other than Union-Find-Pass can be

completed in O(n) time. Based on the arguments in Sec-

tion 2, we just need to show that the n �nds in step 2 of

Left-Components can be executed in time O(n). This

is true as long as we use path compression, because each

pointer beyond one that is followed in a �nd leads to reduc-

tion of a node's depth to 1.

One way to achieve a better bound on the running time of

Algorithm CC is to use a union-�nd implementation with

a better worst-case time for each individual operation. A

union-�nd implementation with O(lg n= lg lg n) time per op-

eration is provided by Blum [3], which immediately yields

the following result:

Theorem 3 Algorithm CC can be implemented to run in

time O(n lg n= lg lg n).

Though the union-�nd implementation analyzed by Tar-

jan leads to a slightly poorer worst-case bound of O(n lg n)

for component labeling on the SLAP, this implementation

is likely to achieve better than worst-case performance in

practice. We have noted that the bottleneck in the analy-

sis is entirely in the Union-Find-Pass procedure. In fact,

phase one of the procedure (lines 1{7) constitutes a very re-

stricted sequence of union-�nd operations that can clearly

be executed in O(n) time in parallel in each processor. We

need only worry about a sequence of much longer than av-

erage operations as we move across the processors tracing

out the e�ect of an operation in one processor on succeed-

ing processors in phase two. Several factors suggest that

the �(n lg n) worst-case behavior would be rare in practice.

First, the bound of at most n executions of the procedure

Apply (containing two �nds and a union) per processor in

phase two is conservative; the number may be much less,

depending on the image. Second, only certain sequences of

n unions and �nds will generate operations requiring �(lg n)

time. It may also be noted that the sequence of unions and

�nds in each processor is substantially restricted. Denote the

sequence of row pairs on which the �nds and unions (when-

ever the corresponding sets are unequal) occur in processor

i based on the dequeues of information from the previous

column as (t

1

; b

1

), then (t

2

; b

2

), etc with t

k

� b

k

. This se-

quence has the property that we never have t

k

or b

k

strictly

between t

k�1

and b

k�1

. That is viewing the row pairs as

intervals, the intervals do not intersect in more than one

row, or the interval (t

k

; b

k

) contains the interval (t

k�1

; b

k�1

).

Some encouragement is provided by various results on the

complexity of a sequence of n operations given some ad-

vance knowledge about the structure of unions or a suitable

probability distribution on the operations (though we must

still have a concern regarding the complexity of individual

operations) [8, 11, 14, 22].

It is also possible that improved performance can be ob-

tained by having processors perform some path compression

when they would otherwise just be waiting for union-�nd

operations to be generated by the previous processor. If a

processor can reduce the depth of its deepest nodes while

waiting for a long operation in the previous processor, it

will be able to execute the operation generated by the pre-

vious processor more quickly when it �nally arrives. One

possible approach is to have each processor execute the two

�nds speci�ed by dequeued information in parallel and to

enqueue a pair of �nds for the next processor as soon as two

pixels are found that are adjacent to 1-pixels in the next

column. If the former processor later discovers that it was

executing a pair of �nds on two pixels that already belong to

the same set, it could then quash the pair of �nds it had pre-

viously passed to the next processor. In connection with the

idea of replacing idle time with compression, it may be use-

ful to apply a \one-pass" compression scheme such as the

\halving" scheme shown by Tarjan and Van Leeuwen [21]

to yield comparable performance to ordinary compression.

With such a scheme progress is made on compression even

if a �nd is aborted before reaching the root. (The \union

by rank" variation on weighted union is also shown to be a

good choice [21].)

The �nal version of this paper will report on experimen-

tal results of actual implementation of Algorithm CC.

4 An Extension and a Lower Bound for a Restricted Ar-

chitecture

In this section, we extend the previous results to a more gen-

eral type of component labeling, and we show that
(n lg n)

6

time is required on a weaker version of the SLAP architec-

ture.

Recall that the algorithm of Section 2 labels each com-

ponent with the position of its �rst pixel in a column-major

ordering of all the pixels. Let us refer to this component

labeling as the column-major labeling. The algorithm of

Section 2 can be extended so that instead of producing the

column-major labeling it will accept as input any initial la-

beling of the pixels and will then label each component with

the minimum initial label of its pixels. In fact, we can gen-

eralize further to replace \minimum" with any binary oper-

ator that is associative and commutative, but we work with

\minimum" here for simplicity:

Corollary 4 There is a SLAP algorithm to solve the fol-

lowing problem in the same asymptotic time as to produce

any component labeling: Given any set of initial labels of

pixels, label the pixels of each component with the minimum

initial label of its pixels.

Sketch of proof. Begin by producing any component label-

ing, e.g., as speci�ed in Section 2. Then computing lo-

cally within each processor, relabel each component with

the minimum initial label of its pixels in the corresponding

column of the image. Then use a process similar to Proce-

dure Label-Pass to record for each component in processor

i the minimum initial label of its pixels in the subimage com-

posed of columns 0 through i; in the modi�ed procedure, we

have existing labels as speci�ed above, and new labels are

generated by taking the minimum of incoming and exist-

ing labels. Next, perform the same process in a right-to-left

pass to record for each component in processor i the mini-

mum initial label of its pixels in the subimage composed of

columns i through n� 1. Finally, within each processor, we

just take the minimum of the two recorded labels for each

component to obtain the overall minimum of initial labels

of its pixels in the entire image.

For the result that
(n lg n) time is required on a re-

stricted SLAP, we consider a SLAP in which the amount of

data that can be communicated between adjacent proces-

sors in one time step is just 1 bit instead of a word of lg n

bits. We show that on such an architecture,
(n lg n) time

is required. We concentrate here on the problem of produc-

ing the column-major labeling as de�ned at the beginning of

this section. The lower bound should hold even if we require

only that pixels in the same component get the same label;

this argument is deferred to the �nal paper.

Theorem 5 A SLAP in which each pair of adjacent pro-

cessors can exchange just one bit at any time step requires

(n lg n) time to perform component labeling.

Proof. As indicated above, we prove the result here for

column-major labeling. Consider an image in which only

the even-indexed rows contain 1-valued pixels. Then, to de-

termine the labeling of pixels in the rightmost column, the

rightmost processor must know the extent of the rightmost

run of 1's in each row. That is, there are n possibilities for

the correct label to assign to each 1-pixel in the rightmost

column. Thus, there are
((n=2)

n

) possible labelings of the

rightmost column, implying that
(n lg n) bits are required

to describe the labeling. Since the rightmost processor be-

gins with n bits of information and receives at most one

additional bit of information on each time step,
(n lg n)

time is required before it can produce the correct labeling

of the rightmost column.

5 Conclusion

This paper has shown that component labeling on an n� n

image can be performed in O(n lg n= lg lg n) time on a SLAP

of n processors, and also proposes an algorithm likely to

perform better in practice. This paper has also shown that

a SLAP allowing just one bit of communication between

each pair of adjacent processors at a given time step requires

(n lg n) time for the component labeling problem.

The most obvious open question is to narrow the gap

between the upper bound of O(n lg n= lg lg n) and the lower

bound of
(n) for the worst-case time of component labeling

on the SLAP.

Acknowledgements

Thanks to David Helman and Joseph J�aJ�a of the University

of Maryland and Amihood Amir of Georgia Tech for helpful

discussions.

References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D.

The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, MA, 1974.

[2] Alnuweiri, H. M., and Prasanna, V. K. Optimal

geometric algorithms for digitized images on �xed-size

linear arrays and scan-line arrays. Distributed Comput-

ing 5 (1991), 55{65.

[3] Blum, N. On the single-operation worst-case time com-

plexity of the disjoint set union problem. SIAM Journal

on Computing 15, 4 (Nov. 1986), 1021{1024.

[4] Chin, D., et al. The Princeton engine: A real-time

video system simulator. IEEE Trans. Consumer Elec-

tronics 34, 2 (May 1988), 285{297.

[5] Cypher, R., Sanz, J. L. C., and Snyder, L. Hyper-

cube and shu�e-exchange algorithms for image compo-

nent labeling. Journal of Algorithms 10 (1989), 140{

150.

[6] Cypher, R., Sanz, J. L. C., and Snyder, L. Algo-

rithms for image component labeling on SIMD mesh-

connected computers. IEEE Trans. Computers 39, 2

(Feb. 1990), 276{181.

[7] Dillencourt, M. B., Samet, H., and Tamminen,

M. A general approach to connected-component label-

ing for arbitrary image representations. Journal of the

ACM 39, 2 (Apr. 1992), 253{280.

[8] Doyle, J., and Rivest, R. L. Linear expected time of

a simple union-�nd algorithm. Information Processing

Letters 5, 5 (Nov. 1976), 146{148.

7

[9] Fisher, A. L. Scan line array processors for image

computation. In Proceedings of the 13th Annual Inter-

national Symposium on Computer Architecture (1986),

pp. 338{345.

[10] Fisher, A. L., and Highnam, P. T. Real-time image

processing on scan line array processors. In Proceedings

of the IEEE Computer Society Workshop on Computer

Architectures for Pattern Analysis and Image Database

Management (1985), pp. 484{489.

[11] Gabow, H. N., and Tarjan, R. E. A linear-time algo-

rithm for a special case of disjoint set union. Journal of

Computer and System Sciences 30, 2 (1985), 209{221.

[12] Helman, D., and J

�

aJ

�

a, J. E�cient image process-

ing algorithms on the scan line array processor. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence 17, 1 (Jan. 1995), 47{56. Earlier version in

Proceedings of the 1993 International Conference on

Parallel Processing.

[13] Knight, S., et al. The Sarno� engine: A massively

parallel computer for high de�nition system simulation.

In Proceedings of Application Speci�c Array Processors

(1992), pp. 342{357.

[14] Knuth, D. E., and Sch

�

onhage, A. The expected

linearity of a simple equivalence algorithm. Theoretical

Computer Science 6 (1978), 281{315.

[15] Kumar, V. K. P., and Eshaghian, M. M. Parallel

geometric algorithms for digitized pictures on mesh of

trees. In Proceedings of the 1986 International Confer-

ence on Parallel Processing (1986), pp. 270{273.

[16] Levialdi, S. On shrinking binary picture patterns.

Communications of the ACM 15, 1 (Jan. 1972), 7{10.

[17] Miller, R., and Stout, Q. Data movement tech-

niques for the pyramid computer. SIAM Journal on

Computing 16, 1 (1987), 38{60.

[18] Nassimi, D., and Sahni, S. Finding connected compo-

nents and connected ones on a mesh-connected parallel

computer. SIAM Journal on Computing 9, 4 (1980),

744{757.

[19] Schwartz, J. T., Sharir, M., and Siegel, A. An

e�cient algorithm for �nding connected components in

a binary image. Tech. Rep. 154, Department of Com-

puter Science, NYU, Feb. 1985. Revised July, 1985.

[20] Tarjan, R. E. E�ciency of a good but not linear set

union algorithm. Journal of the ACM 22, 2 (Apr. 1975),

215{225.

[21] Tarjan, R. E., and van Leeuwen, J. Worst-case

analysis of set union algorithms. Journal of the ACM

31, 2 (Apr. 1984), 245{281.

[22] Yao, A. C. On the average behavior of set merging

algorithms. In Proceedings of the 8th ACM Symposium

on Theory of Computing (1976), ACM Press, pp. 192{

195.

8

	Loyola University Chicago
	Loyola eCommons
	1995

	Finding Connected Components on a Scan Line Array Processor
	Ronald Greenberg
	Author Manuscript
	Recommended Citation

	root.dvi

