
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

5-2012

Simplifying Domain Modeling and Memory
Management in User-Mode Filesystems with the
NOFS Framework
Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.
Copyright 2012 IEEE - All rights reserved.

Recommended Citation
J. P. Kaylor, K. Läufer, and G. K. Thiruvathukal, Simplifying domain modeling and memory management in user-mode filesystems
with the NOFS framework. In Proc. 2010 IEEE Intl. Conf. on Electro/Information Technology (EIT), Indianapolis, Indiana, May
2012, doi:10.1109/EIT.2012.6220733.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu


Simplifying Domain Modeling and Memory
Management in User-Mode Filesystems with the

NOFS Framework
Joseph P. Kaylor, Konstantin Läufer and George K. Thiruvathukal

Emerging Technologies Laboratory
Department of Computer Science

Loyola University Chicago
Chicago, IL 60640

{jkaylor,laufer,gkt}@etl.luc.edu

Abstract—Transparent access to remote data sets and data
arising from web services is a non-trivial challenge to application
developers. This early stage work addresses this challenge with
NOFS, an object-oriented framework for creating filesystems
to support domain specific functionality. While an early stage
work, we present a solution to solve the access problem. Our
solution greatly simplifies the task of filesystems development
by providing the glue code needed between a domain model
and the filesystem contract. We demonstrate support for domain
models that are larger than physical memory and demonstrate
how the concerns of caching can be removed from user-mode
filesystem implementations. Future work will addresses more
robust solutions to caching and other performance strategies.

I. INTRODUCTION

In this paper, we discuss the need for user-mode filesystems
in scientific computing to solve the problem of transparent
data access. We explain how to simplify data access with
user-mode filesystems. We explain how to simplify the task
of building user-mode filesystems with our extensions to the
NOFS framework.

Specifically, in this paper we discuss how existing storage-
based user-mode filesystems must be designed with domain
object size and physical memory usage in mind. We then point
out why caching is important for these user-mode filesystems
and illustrate how this concern contributes to a significant
portion of the code in a user-mode filesystem. We show how
the weak reference pattern can be leveraged in a filesystem
framework and, specifically, how to apply it to an example
file-and-folder domain model. Finally, we demonstrate how the
naked objects architecture effectively supports storage-based
user-mode filesystems and how a naked objects framework can
manage concerns such as caching and domain object lifetime.

II. RELATED WORK

A. The Importance of Inter-Process Communication Through
the Filesystem

In modern operating systems, most methods of inter-process
communication (IPC) can be represented through the filesys-
tem. Among these are pipes, domain sockets, memory mapped
files, and regular files. These methods of IPC allow for separate

programs to communicate and coordinate with each other. This
communication and coordination allows software programs
to be broken down into separate and reusable components.
Without the ability to communicate across process boundaries,
many components would have to be present in the address
spaces of many programs, mostly through shared libraries.
With IPC, software programs and components can be com-
posed and reused in several different ways.

B. The Role of Application Filesystems in Software Composi-
tion

Application filesystems further enhance and expand the tra-
ditional filesystem based methods of IPC by representing com-
plex file structures, offering advanced filesystem semantics, or
through representing or composing one or more external ser-
vices through the filesystem contract. IPC through application
filesystems allow local abstractions and local compositions to
work without opening a network socket or needing to write
code to comply with a network protocol.

Some filesystems promote composition by presenting a
network protocol through a filesystem contract. An excellent
example of this is Plan 9’s filesystem service: 9P [1]. Through
9P, Plan 9 is able to abstract many network protocols and
external resources. Among these resources are: HTTP and FTP
protocols, managing network sockets, and a filesystem based
abstraction for Plan 9’s window manager.

It is possible to achieve inter-machine IPC through the use
of network filesystems. In network filesystems that support file
locking mechanisms and have adequate solutions to the cache
coherency problem, it is possible to perform inter-machine IPC
through filesystem operations.

In the past several years, many FUSE [2] based application
filesystems have been built to act as clients for popular
web services such as Flickr, IMAP email services, Amazon
S3, and several others. In our own research, we leveraged
our existing NOFS framework to implement RestFS [3], a
dynamically reconfigurable filesystem for exposing remote
restful resources as a local filesystem. With RestFS, we were
able to demonstrate an architecture that could map several



different restful web services such as Yahoo! Placefinder,
Flickr, and Twitter into local filesystem representations. We
were able to further demonstrate how these web services and
local software components could be composed locally and re-
exposed as restful web services.

C. The Role of User-Mode Filesystems in Software Composi-
tion for Large Datasets

In our exploration of user-mode filesystems development,
we have worked with three categories of user-mode filesys-
tems. First is the storage filesystem. Storage filesystems are
primarily concerned with the traditional role of filesystems
used as a means to store regular files and folders. A good
example of a storage oriented user-mode filesystem would
be NTFS-3G. NTFS-3G is a FUSE filesystem that allows
UNIX-like operating systems to mount NTFS volumes in read-
write mode. The second category is the connector filesystem.
Connector filesystems provide mappings between a resource
and a local filesystem. RestFS is an example of a connector
filesystem. RestFS provides a way to create files and folders
that can be configured to map filesystem calls to a remote
restful web service. The third category is the application
filesystem. Application filesystems provide behavior in addi-
tion to the resources that are represented by the filesystem.

To encourage reuse and dissemination of information, scien-
tists often publish datasets using a format standard to their field
and provide one or more libraries for popular programming
languages to read from and write to these datasets. To create a
new library for a new language, an entirely new library must be
constructed for the new language, or where possible, bindings
from the new language to an existing library in another
language can be constructed. Where datasets are published in
formats such as XML or CSV and where good documentation
exists, the challenge of writing new libraries for scientific
datasets is greatly lessened.

User-mode file systems of all types can play an important
role with large datasets. Datasets in formats such as XML
or CSV have several performance disadvantages due to their
human readability. Among the sources of these issues are:
greater amounts of whitespace characters, representation of
numeric values as text instead of binary, and challenges
determining seek offsets for random file access. So, in part
due to performance and data size concerns, many datasets are
published in a binary format. User-mode filesystems can help
to bridge this divide. By constructing a user mode-files system
on top of a binary formatted data set, it is possible to represent
a filesystem as human readable files such as XML or CSV.
With these types of files, it is simpler to implement software
to consume them in other programming languages.

D. The Challenges of Building User-Mode Filesystems With
FUSE

In both user-mode filesystems built with FUSE and filesys-
tems built as kernel-mode components there are common
components that must be considered and constructed. Each
filesystem implementation has some concept of an in-memory

structural representation of a file, folder, symbolic link, and
other basic filesystem components. Each filesystem imple-
mentation must dedicate some of its code base to interacting
with its storage medium. This code can be a kernel block
cache, another filesystem, or a network library. Also, each
filesystem implementation must dedicate some of its code
base to fulfilling the contract required by a filesystem. In
FUSE filesystems, there are about 30 methods that can be
implemented. Some are required and some have reasonable
default behaviors.

In our first research filesystem, OLFS [4], we found a large
portion of our code base was dedicated to the glue code
between our in-memory structures and the filesystem con-
tract, and between our in-memory structures and our storage
medium. In our latest implementation of OLFS, our caching
layer was 1363 lines of code, our FUSE glue code was 2535
lines of code, our domain model was 1469 lines of code.
Overall, 72.6% of the OLFS implementation was dedicated to
implementing an efficient cache and implementing the FUSE
filesystem contract. 27.4% of the OLFS implementation was
dedicated to the actual domain model. While reflecting on
this work, we noticed the high percentage of effort and code
needed to work with the details of FUSE compared to our
domain model.

Any project to construct a user-mode filesystem to expose
a binary dataset in a human readable format will have to write
a large amount of code fulfilling the filesystem contract. The
work and understanding required to write this type of code
can be a disincentive to invest time in a user-mode filesystem
project.

E. Naked Objects

Naked Objects [5] is the architectural approach of using
plain object-oriented domain models to build entire applica-
tions. In the realm of desktop applications, Naked Objects
frameworks remove the concerns of providing user-interface
code or persistence layers. These are left to the framework. An
important aspect of Naked Objects frameworks is the object-
oriented user interface. The object oriented user interface fa-
vors applications where the user is treated as a problem solver
rather than a process follower. Where process is important,
object oriented user interfaces aren’t a good fit.

We discovered that the problems of the user interface and
persistence layers in desktop and web applications is similar
to the problem of the filesystem contract and backend storage
in user-mode filesystems.

We believe that the filesystem is an excellent example of
an object oriented user interface. In a filesystem, processes
for copying, moving, reading, writing, or deleting files isn’t
exposed by the filesystem. These processes are managed
externally by the operating system’s other programs. The
interaction with filesystems is noun-verb style of interaction
and not a verb-noun interaction, which is more common with
non-object oriented user interfaces. Like Naked Object user
interfaces, filesystems “provide the user with a set of tools



which to operate and does not dictate .. the users sequence of
actions” [5].

F. Naked Object Filesystem: NOFS

After our experiences with OLFS, we felt that user-mode
filesystems could benefit from another abstraction. To that end,
we implemented the NOFS framework. The NOFS framework
allows a developer to implement only the domain model and
not be concerned with the details of persistence or the filesys-
tem glue code. The NOFS framework manages fulfilling the
filesystem contract required by FUSE or Dokan and provides
a library for managing the serialization and deserialization of
domain objects.

Files and folders are implemented using regular .NET
classes. Folders are recognized as lists of other objects returned
from public methods or classes that implement list interfaces
and are marked with attributes provided by the NOFS frame-
work. Files are implemented as regular .NET classes and
marked with attributes provided by the NOFS framework. It
is possible for an application filesystem implemented with
the NOFS framework to be concerned with no details of file
structure or filesystem metadata or to implement all of the
details. By implementing additional interfaces and providing
additional metadata, domain models can take the level of
responsibility for the filesystem details that the developer cares
to implement. Where these details are not implemented, the
NOFS framework provides reasonable default implementa-
tions.

In our past work, we have been able to demonstrate how
complete filesystems can be implemented with the NOFS
framework with as few as two classes and less than 200 lines
of code.

III. CONSIDERATIONS FOR DOMAIN MODELING STORAGE
FILESYSTEMS

A. Domain Modeling in Linux Filesystems

The basic data structure in UNIX or Linux filesystems is the
inode. For regular files, inodes contain information about the
size of a file, user and group ownership, the file’s mode bits,
create, last access, and modification timestamps, and pointers
to blocks on disk. An important aspect of the inode is that a
single inode does not contain all of the pointers for all of the
blocks in a file except for the smallest of files.

In the ext2 filesystem, the inode structure has 15 block
pointers [6]. The first 12 pointers are to the first 12 blocks
of the file. Pointer 13 points to an indirect block, 14 points
to a double indirect block, and 15 points to a triple indirect
block. Having the first 12 pointers available in the inode
allows for sequential reads to begin performing immediately
while locating later blocks through the double indirect and
triple indirect blocks. The structure of double and triple
indirect blocks gives reasonable random access performance
by guaranteeing that finding the location of any one block in
a file will require at most two reads.

Having only a few block pointers present in the inode
structure is necessary to manage the memory utilization of

the ext2 filesystem. For example, to map the blocks of a
10GB file with 512 byte blocks would require 20,971,520
pointers. Using 64-bit pointers, this would require 160MB
of memory to hold the pointers for this file. This memory
requirement can be reduced if larger block sizes are used or if
a filesystem implementation can make use of contiguous block
ranges instead of addressing each individual block.

B. Memory Management and Domain Modeling User-Mode
Filesystems

An advantage of kernel mode filesystems in Linux and other
modern operating systems is that the decision of what data is
kept in memory is managed by the virtual memory manager.
Managing what data is kept in memory is also an important
concern for user-mode filesystems. User mode filesystems
have a performance challenge related to the number of context
switches each filesystem call requires [7]. For example, a
call to read a file will context switch from the application
to the kernel, context switch from the kernel to the user-mode
filesystem, the response to the kernel will require an additional
context switch back to the kernel, and the kernel will have to
context switch back to the application that originated the read
request. In this example there were four context switches. If
the user-mode filesystem needs an operating system service
such as communicating over the network, reading from a disc
or the use of some other system resource, the number of
context switches will increase. A user-mode filesystem can
reduce the number of total context switches by keeping more
of its domain model in physical memory. If there are several
requests for a single resource, if that resource is cached in
memory by the user-mode filesystem, then responses will be
faster.

The simplest approach in a user-mode filesystem is to keep
the entire domain model in memory for the duration of the
filesystem service. For simple filesystems that require a few
hundred kilobytes or a few megabytes of memory at most, this
approach makes sense.

For user-mode filesystems that manage larger datasets, an
important concern is balancing the amount of data that is kept
resident in physical memory. This complexity is in addition
to the responsibility of developing code to conform to the
filesystem contract and managing the underlying data storage
for the filesystem.

C. The NOFS approach to User-Mode Filesystems That Man-
age Large Data Sets

To simplify the development of application filesystems that
manage large data sets, the NOFS framework has added the
concept of domain object identity and the weak reference
pattern into its library. The weak reference pattern allows
for object references to be addressable without being directly
referenced so that the garbage collector can collect these
objects [8] [9]. The introduction of these components allow for
an application filesystem developed with the NOFS framework
to have the details of when objects are loaded, persisted,
and which objects remain in physical memory managed by



FSFolder

IWeakReference - FSFile

DomainObjectContainer

Domain Cache

Storage Cache

Host Filesystem

Load by ID

Check Cache

Serialize

Read From FS

Fig. 1. Weak References with NOFS Cache

the NOFS framework and not by the implementation of the
filesystem itself. By moving these responsibilities to the NOFS
framework, the design complexity of user-mode filesystems
can be reduced more closely to the complexity necessary in the
simple case of loading the entire domain model into memory.

To enable this external memory management, the
NOFS framework introduces three interfaces: IObjectWithID,
IWeakReference, and IWeakReferenceList. In addition to these
three interfaces, NOFS implements a caching component to
reduce the number of times domain objects need to be loaded.

interface IObjectWithID {
string Id { get; }

}

interface IWeakReference {
IObjectWithID Get();
string Id { get; }
Type UnderlyingType { get; }
void SetParent(IWeakReference parent);

}

interface IWeakReferenceList : IEnumerable
int Count { get; }
void Add(IWeakReference item);
void Add(object item);
void Remove(IWeakReference item);
void Remove(object item);

}

interface IWeakReferenceList<T>
: IEnumerable<IWeakReference>, WeakReferenceList
where T : IObjectWithID

{
void Add(T item);
void Remove(T item);
IEnumerable<T> GetAll();

}

For filesystems that want to make use of the weak ref-

erence pattern, NOFS requires that all domain objects that
an IWeakReference can point to need to implement the IOb-
jectWithID interface. This interface requires that the object
return some unique identity for each unique domain instance.
This identity helps establish which instances are the equivalent
to other instances and acts as a pointer for the IWeakReference
implementor to use to load the domain object when requested.
NOFS doesn’t make any guarantee that two subsequent calls
to IWeakReference.Get() will return the same instance, so all
comparisons must be based off of the identity value. The
string type is used as the type for the identity rather than
an integer or Guid to keep the requirements for the identity
flexible. Aside from integers and Guids, it may be desirable
to use URLs or other objects with string representations as
the identity. The IWeakReferenceList and its sub-interface that
adds methods with generic type constraints help the filesystem
developer implement folders with the weak reference pattern.
NOFS offers a default implementation of WeakReferenceList
that can be used. NOFS also provides factories for creating
IWeakReference instances given an identity value and provides
the implementation for the Get() call.

In addition to the weak reference pattern which is important
in determining which file and folder objects are kept in mem-
ory, there is an additional pattern that manages the data blocks
of regular files. By default, NOFS regular file domain objects
are translated to and from XML using the .NET serializer.
If the domain object implements IProvidesUnstructuredData,
then the file contents can be of a custom structure that is
managed by the domain object. With this interface, the user
can choose to either make use of an externally managed
data source or one managed by NOFS. For the latter case, a
new interface IDomainObjectRawDataStore provides methods
for reading, writing, and truncating a binary file. With these
two interfaces, it is possible for a NOFS filesystem to be
unconcerned with the details of file reading or writing by
implementing neither interface, or to be concerned with those
details by implementing one or both interfaces.

interface IDomainObjectRawDataStore {
long DataSize();
int Read(byte[] buffer,long offset,long len);
int Write(byte[] buffer,long offset,long len);
void Truncate(long length);

}

interface IProvidesUnstructuredData
: IDomainObjectRawDataStore {
bool Cacheable();

}

With these two interfaces and the weak reference pattern,
we were able to implement a simple storage based filesystem
that uses the host’s filesystem as the backing store with the
NOFS framework in less than 300 lines of C# code.

The root of our reference implementation is expressed as
the following class.

[RootFolder]
class FsRoot : FsFolder
{



Object Databases

DB4O

Storage Backends FS Frameworks

FUSE - Linux

Dokan - 
Windows

NOFS

StorageFS

Host File System

NTFS EXT4

Storage Cache

Domain Cache

FSRoot

FSFile

FSFolder FSFile

FSFile

Weak Ref

Weak Ref Weak Ref

Weak Ref

Fig. 2. Architecture of filesystem implementation as it relates to NOFS

public FsRoot()
: base("", Guid.NewGuid().ToString()){}
public FsRoot(string name, string id)
: base(name,id){}

}

This class is the instance from which the NOFS framework
translates all paths. It represents the ‘/’ part of any path passed
to NOFS. The FsRoot class subclasses the FsFolder class.

[FolderObject]
class FsFolder : FsFolderOrFile,

IWeakReferenceList<FsFolderOrFile>
{

}

The FsFolder class subclasses FsFolderOrFile and imple-
ments the IWeakReferenceList interface. When NOFS en-
counters instances of IEnumerable that have that attribute
FolderObjectAttribute, it recognizes them as folders in the
filesystem. Because FSFolder implements IWeakReference, all
of the files and folders that are contained are weakly connected
and do not need to be in physical memory for NOFS to load
and examine the folder.

class FsFile : FsFolderOrFile,
IProvidesUnstructuredData

{
IDomainObjectRawDataStore _data;
[NeedsRawDataStore]
void SetDataStore(
IDomainObjectRawDataStore data){
_data = data;

}

long DataSize(){
return _data.DataSize();

}

bool Cacheable(){
return false;

}

int Read(byte[] buff,long off,long len){
return _data.Read(buff,off,len);

}

int Write(byte[] buff,long off,long len){
return _data.Write(buff,off,len);

}

void Truncate(long length){
_data.Truncate(length);

}
}

FsFile is our class to represent regular files. This class im-
plements IProvidesUnstructuredData. When NOFS sees a class
implement the IProvidesUnstructuredData interface, it allows
that class manage the Read, Write, and Truncate filesystem
calls. FsFile also accepts an instance of IDomainObjectRaw-
DataStore from NOFS after it is constructed. This helper inter-
face provides access to the host filesystem file that contains the
data for the file represented by this FsFile instance. Although
in this example, the call is a simple pass through, it is possible
to construct more complex implementations that translate the
underlying data or provide other additional value.
[DomainObject]
class FsFolderOrFile : IObjectWithID
{

private string _name;
[NeedsContainer]
IDomainObjectContainer Container {get;set;}
string Id {get;set;}

[ProvidesName]
string Name {
get { return _name; }
set {
_name = value;
if (Container != null) {

Container.ObjectChanged(this);
}

}
}

}

FsFolderOrFile is the base class for folders and regular
files in our reference implementation. This class is the type
used in the IWeakReferenceList by the FsFolder class. This
base class allows for both the regular files and folders to
have a common type. This class is recognized as a regular
file by NOFS because of the DomainObjectAttribute attribute.
In the case of the FsFolder subclass, it is recognized as a
folder because of the FolderObjectAttribute attribute. NOFS is
able to determine that the Name property manages the file or
folder name because of the ProvidesNameAttribute attribute.
NOFS injects the IDomainObjectContainer in the Container
property after the construction of a FsFile or FsFolder instance.
The IDomainObjectContainer class manages serializing and
deserializing of domain objects in the NOFS framework.

REFERENCES

Abstract—Transparent access to remote data sets and data
arising from web services is a non-trivial challenge to application



developers. This early stage work addresses this challenge with
NOFS, an object-oriented framework for creating filesystems
to support domain specific functionality. While an early stage
work, we present a solution to solve the access problem. Our
solution greatly simplifies the task of filesystems development
by providing the glue code needed between a domain model
and the filesystem contract. We demonstrate support for domain
models that are larger than physical memory and demonstrate
how the concerns of caching can be removed from user-mode
filesystem implementations. Future work will addresses more
robust solutions to caching and other performance strategies.

IV. INTRODUCTION

In this paper, we discuss the need for user-mode filesystems
in scientific computing to solve the problem of transparent
data access. We explain how to simplify data access with
user-mode filesystems. We explain how to simplify the task
of building user-mode filesystems with our extensions to the
NOFS framework.

Specifically, in this paper we discuss how existing storage-
based user-mode filesystems must be designed with domain
object size and physical memory usage in mind. We then point
out why caching is important for these user-mode filesystems
and illustrate how this concern contributes to a significant
portion of the code in a user-mode filesystem. We show how
the weak reference pattern can be leveraged in a filesystem
framework and, specifically, how to apply it to an example
file-and-folder domain model. Finally, we demonstrate how the
naked objects architecture effectively supports storage-based
user-mode filesystems and how a naked objects framework can
manage concerns such as caching and domain object lifetime.

V. RELATED WORK

A. The Importance of Inter-Process Communication Through
the Filesystem

In modern operating systems, most methods of inter-process
communication (IPC) can be represented through the filesys-
tem. Among these are pipes, domain sockets, memory mapped
files, and regular files. These methods of IPC allow for separate
programs to communicate and coordinate with each other. This
communication and coordination allows software programs
to be broken down into separate and reusable components.
Without the ability to communicate across process boundaries,
many components would have to be present in the address
spaces of many programs, mostly through shared libraries.
With IPC, software programs and components can be com-
posed and reused in several different ways.

B. The Role of Application Filesystems in Software Composi-
tion

Application filesystems further enhance and expand the tra-
ditional filesystem based methods of IPC by representing com-
plex file structures, offering advanced filesystem semantics, or
through representing or composing one or more external ser-
vices through the filesystem contract. IPC through application
filesystems allow local abstractions and local compositions to
work without opening a network socket or needing to write
code to comply with a network protocol.

Some filesystems promote composition by presenting a
network protocol through a filesystem contract. An excellent
example of this is Plan 9’s filesystem service: 9P [1]. Through
9P, Plan 9 is able to abstract many network protocols and
external resources. Among these resources are: HTTP and FTP
protocols, managing network sockets, and a filesystem based
abstraction for Plan 9’s window manager.

It is possible to achieve inter-machine IPC through the use
of network filesystems. In network filesystems that support file
locking mechanisms and have adequate solutions to the cache
coherency problem, it is possible to perform inter-machine IPC
through filesystem operations.

In the past several years, many FUSE [2] based application
filesystems have been built to act as clients for popular
web services such as Flickr, IMAP email services, Amazon
S3, and several others. In our own research, we leveraged
our existing NOFS framework to implement RestFS [3], a
dynamically reconfigurable filesystem for exposing remote
restful resources as a local filesystem. With RestFS, we were
able to demonstrate an architecture that could map several
different restful web services such as Yahoo! Placefinder,
Flickr, and Twitter into local filesystem representations. We
were able to further demonstrate how these web services and
local software components could be composed locally and re-
exposed as restful web services.

C. The Role of User-Mode Filesystems in Software Composi-
tion for Large Datasets

In our exploration of user-mode filesystems development,
we have worked with three categories of user-mode filesys-
tems. First is the storage filesystem. Storage filesystems are
primarily concerned with the traditional role of filesystems
used as a means to store regular files and folders. A good
example of a storage oriented user-mode filesystem would
be NTFS-3G. NTFS-3G is a FUSE filesystem that allows
UNIX-like operating systems to mount NTFS volumes in read-
write mode. The second category is the connector filesystem.
Connector filesystems provide mappings between a resource
and a local filesystem. RestFS is an example of a connector
filesystem. RestFS provides a way to create files and folders
that can be configured to map filesystem calls to a remote
restful web service. The third category is the application
filesystem. Application filesystems provide behavior in addi-
tion to the resources that are represented by the filesystem.

To encourage reuse and dissemination of information, scien-
tists often publish datasets using a format standard to their field
and provide one or more libraries for popular programming
languages to read from and write to these datasets. To create a
new library for a new language, an entirely new library must be
constructed for the new language, or where possible, bindings
from the new language to an existing library in another
language can be constructed. Where datasets are published in
formats such as XML or CSV and where good documentation
exists, the challenge of writing new libraries for scientific
datasets is greatly lessened.



User-mode file systems of all types can play an important
role with large datasets. Datasets in formats such as XML
or CSV have several performance disadvantages due to their
human readability. Among the sources of these issues are:
greater amounts of whitespace characters, representation of
numeric values as text instead of binary, and challenges
determining seek offsets for random file access. So, in part
due to performance and data size concerns, many datasets are
published in a binary format. User-mode filesystems can help
to bridge this divide. By constructing a user mode-files system
on top of a binary formatted data set, it is possible to represent
a filesystem as human readable files such as XML or CSV.
With these types of files, it is simpler to implement software
to consume them in other programming languages.

D. The Challenges of Building User-Mode Filesystems With
FUSE

In both user-mode filesystems built with FUSE and filesys-
tems built as kernel-mode components there are common
components that must be considered and constructed. Each
filesystem implementation has some concept of an in-memory
structural representation of a file, folder, symbolic link, and
other basic filesystem components. Each filesystem imple-
mentation must dedicate some of its code base to interacting
with its storage medium. This code can be a kernel block
cache, another filesystem, or a network library. Also, each
filesystem implementation must dedicate some of its code
base to fulfilling the contract required by a filesystem. In
FUSE filesystems, there are about 30 methods that can be
implemented. Some are required and some have reasonable
default behaviors.

In our first research filesystem, OLFS [4], we found a large
portion of our code base was dedicated to the glue code
between our in-memory structures and the filesystem con-
tract, and between our in-memory structures and our storage
medium. In our latest implementation of OLFS, our caching
layer was 1363 lines of code, our FUSE glue code was 2535
lines of code, our domain model was 1469 lines of code.
Overall, 72.6% of the OLFS implementation was dedicated to
implementing an efficient cache and implementing the FUSE
filesystem contract. 27.4% of the OLFS implementation was
dedicated to the actual domain model. While reflecting on
this work, we noticed the high percentage of effort and code
needed to work with the details of FUSE compared to our
domain model.

Any project to construct a user-mode filesystem to expose
a binary dataset in a human readable format will have to write
a large amount of code fulfilling the filesystem contract. The
work and understanding required to write this type of code
can be a disincentive to invest time in a user-mode filesystem
project.

E. Naked Objects

Naked Objects [5] is the architectural approach of using
plain object-oriented domain models to build entire applica-
tions. In the realm of desktop applications, Naked Objects

frameworks remove the concerns of providing user-interface
code or persistence layers. These are left to the framework. An
important aspect of Naked Objects frameworks is the object-
oriented user interface. The object oriented user interface fa-
vors applications where the user is treated as a problem solver
rather than a process follower. Where process is important,
object oriented user interfaces aren’t a good fit.

We discovered that the problems of the user interface and
persistence layers in desktop and web applications is similar
to the problem of the filesystem contract and backend storage
in user-mode filesystems.

We believe that the filesystem is an excellent example of
an object oriented user interface. In a filesystem, processes
for copying, moving, reading, writing, or deleting files isn’t
exposed by the filesystem. These processes are managed
externally by the operating system’s other programs. The
interaction with filesystems is noun-verb style of interaction
and not a verb-noun interaction, which is more common with
non-object oriented user interfaces. Like Naked Object user
interfaces, filesystems “provide the user with a set of tools
which to operate and does not dictate .. the users sequence of
actions” [5].

F. Naked Object Filesystem: NOFS

After our experiences with OLFS, we felt that user-mode
filesystems could benefit from another abstraction. To that end,
we implemented the NOFS framework. The NOFS framework
allows a developer to implement only the domain model and
not be concerned with the details of persistence or the filesys-
tem glue code. The NOFS framework manages fulfilling the
filesystem contract required by FUSE or Dokan and provides
a library for managing the serialization and deserialization of
domain objects.

Files and folders are implemented using regular .NET
classes. Folders are recognized as lists of other objects returned
from public methods or classes that implement list interfaces
and are marked with attributes provided by the NOFS frame-
work. Files are implemented as regular .NET classes and
marked with attributes provided by the NOFS framework. It
is possible for an application filesystem implemented with
the NOFS framework to be concerned with no details of file
structure or filesystem metadata or to implement all of the
details. By implementing additional interfaces and providing
additional metadata, domain models can take the level of
responsibility for the filesystem details that the developer cares
to implement. Where these details are not implemented, the
NOFS framework provides reasonable default implementa-
tions.

In our past work, we have been able to demonstrate how
complete filesystems can be implemented with the NOFS
framework with as few as two classes and less than 200 lines
of code.



VI. CONSIDERATIONS FOR DOMAIN MODELING STORAGE
FILESYSTEMS

A. Domain Modeling in Linux Filesystems

The basic data structure in UNIX or Linux filesystems is the
inode. For regular files, inodes contain information about the
size of a file, user and group ownership, the file’s mode bits,
create, last access, and modification timestamps, and pointers
to blocks on disk. An important aspect of the inode is that a
single inode does not contain all of the pointers for all of the
blocks in a file except for the smallest of files.

In the ext2 filesystem, the inode structure has 15 block
pointers [6]. The first 12 pointers are to the first 12 blocks
of the file. Pointer 13 points to an indirect block, 14 points
to a double indirect block, and 15 points to a triple indirect
block. Having the first 12 pointers available in the inode
allows for sequential reads to begin performing immediately
while locating later blocks through the double indirect and
triple indirect blocks. The structure of double and triple
indirect blocks gives reasonable random access performance
by guaranteeing that finding the location of any one block in
a file will require at most two reads.

Having only a few block pointers present in the inode
structure is necessary to manage the memory utilization of
the ext2 filesystem. For example, to map the blocks of a
10GB file with 512 byte blocks would require 20,971,520
pointers. Using 64-bit pointers, this would require 160MB
of memory to hold the pointers for this file. This memory
requirement can be reduced if larger block sizes are used or if
a filesystem implementation can make use of contiguous block
ranges instead of addressing each individual block.

B. Memory Management and Domain Modeling User-Mode
Filesystems

An advantage of kernel mode filesystems in Linux and other
modern operating systems is that the decision of what data is
kept in memory is managed by the virtual memory manager.
Managing what data is kept in memory is also an important
concern for user-mode filesystems. User mode filesystems
have a performance challenge related to the number of context
switches each filesystem call requires [7]. For example, a
call to read a file will context switch from the application
to the kernel, context switch from the kernel to the user-mode
filesystem, the response to the kernel will require an additional
context switch back to the kernel, and the kernel will have to
context switch back to the application that originated the read
request. In this example there were four context switches. If
the user-mode filesystem needs an operating system service
such as communicating over the network, reading from a disc
or the use of some other system resource, the number of
context switches will increase. A user-mode filesystem can
reduce the number of total context switches by keeping more
of its domain model in physical memory. If there are several
requests for a single resource, if that resource is cached in
memory by the user-mode filesystem, then responses will be
faster.

The simplest approach in a user-mode filesystem is to keep
the entire domain model in memory for the duration of the
filesystem service. For simple filesystems that require a few
hundred kilobytes or a few megabytes of memory at most, this
approach makes sense.

For user-mode filesystems that manage larger datasets, an
important concern is balancing the amount of data that is kept
resident in physical memory. This complexity is in addition
to the responsibility of developing code to conform to the
filesystem contract and managing the underlying data storage
for the filesystem.

C. The NOFS approach to User-Mode Filesystems That Man-
age Large Data Sets

FSFolder

IWeakReference - FSFile

DomainObjectContainer

Domain Cache

Storage Cache

Host Filesystem

Load by ID

Check Cache

Serialize

Read From FS

Fig. 3. Weak References with NOFS Cache

To simplify the development of application filesystems that
manage large data sets, the NOFS framework has added the
concept of domain object identity and the weak reference
pattern into its library. The weak reference pattern allows
for object references to be addressable without being directly
referenced so that the garbage collector can collect these
objects [8] [9]. The introduction of these components allow for
an application filesystem developed with the NOFS framework
to have the details of when objects are loaded, persisted,
and which objects remain in physical memory managed by
the NOFS framework and not by the implementation of the
filesystem itself. By moving these responsibilities to the NOFS
framework, the design complexity of user-mode filesystems
can be reduced more closely to the complexity necessary in the
simple case of loading the entire domain model into memory.

To enable this external memory management, the
NOFS framework introduces three interfaces: IObjectWithID,
IWeakReference, and IWeakReferenceList. In addition to these



three interfaces, NOFS implements a caching component to
reduce the number of times domain objects need to be loaded.
interface IObjectWithID {
string Id { get; }

}

interface IWeakReference {
IObjectWithID Get();
string Id { get; }
Type UnderlyingType { get; }
void SetParent(IWeakReference parent);

}

interface IWeakReferenceList : IEnumerable
int Count { get; }
void Add(IWeakReference item);
void Add(object item);
void Remove(IWeakReference item);
void Remove(object item);

}

interface IWeakReferenceList<T>
: IEnumerable<IWeakReference>, WeakReferenceList
where T : IObjectWithID

{
void Add(T item);
void Remove(T item);
IEnumerable<T> GetAll();

}

For filesystems that want to make use of the weak ref-
erence pattern, NOFS requires that all domain objects that
an IWeakReference can point to need to implement the IOb-
jectWithID interface. This interface requires that the object
return some unique identity for each unique domain instance.
This identity helps establish which instances are the equivalent
to other instances and acts as a pointer for the IWeakReference
implementor to use to load the domain object when requested.
NOFS doesn’t make any guarantee that two subsequent calls
to IWeakReference.Get() will return the same instance, so all
comparisons must be based off of the identity value. The
string type is used as the type for the identity rather than
an integer or Guid to keep the requirements for the identity
flexible. Aside from integers and Guids, it may be desirable
to use URLs or other objects with string representations as
the identity. The IWeakReferenceList and its sub-interface that
adds methods with generic type constraints help the filesystem
developer implement folders with the weak reference pattern.
NOFS offers a default implementation of WeakReferenceList
that can be used. NOFS also provides factories for creating
IWeakReference instances given an identity value and provides
the implementation for the Get() call.

In addition to the weak reference pattern which is important
in determining which file and folder objects are kept in mem-
ory, there is an additional pattern that manages the data blocks
of regular files. By default, NOFS regular file domain objects
are translated to and from XML using the .NET serializer.
If the domain object implements IProvidesUnstructuredData,
then the file contents can be of a custom structure that is
managed by the domain object. With this interface, the user
can choose to either make use of an externally managed
data source or one managed by NOFS. For the latter case, a
new interface IDomainObjectRawDataStore provides methods

for reading, writing, and truncating a binary file. With these
two interfaces, it is possible for a NOFS filesystem to be
unconcerned with the details of file reading or writing by
implementing neither interface, or to be concerned with those
details by implementing one or both interfaces.

interface IDomainObjectRawDataStore {
long DataSize();
int Read(byte[] buffer,long offset,long len);
int Write(byte[] buffer,long offset,long len);
void Truncate(long length);

}

interface IProvidesUnstructuredData
: IDomainObjectRawDataStore {
bool Cacheable();

}

With these two interfaces and the weak reference pattern,
we were able to implement a simple storage based filesystem
that uses the host’s filesystem as the backing store with the
NOFS framework in less than 300 lines of C# code.

Object Databases

DB4O

Storage Backends FS Frameworks

FUSE - Linux

Dokan - 
Windows

NOFS

StorageFS

Host File System

NTFS EXT4

Storage Cache

Domain Cache

FSRoot

FSFile

FSFolder FSFile

FSFile

Weak Ref

Weak Ref Weak Ref

Weak Ref

Fig. 4. Architecture of filesystem implementation as it relates to NOFS

The root of our reference implementation is expressed as
the following class.

[RootFolder]
class FsRoot : FsFolder
{
public FsRoot()
: base("", Guid.NewGuid().ToString()){}

public FsRoot(string name, string id)
: base(name,id){}

}

This class is the instance from which the NOFS framework
translates all paths. It represents the ‘/’ part of any path passed
to NOFS. The FsRoot class subclasses the FsFolder class.



[FolderObject]
class FsFolder : FsFolderOrFile,

IWeakReferenceList<FsFolderOrFile>
{

}

The FsFolder class subclasses FsFolderOrFile and imple-
ments the IWeakReferenceList interface. When NOFS en-
counters instances of IEnumerable that have that attribute
FolderObjectAttribute, it recognizes them as folders in the
filesystem. Because FSFolder implements IWeakReference, all
of the files and folders that are contained are weakly connected
and do not need to be in physical memory for NOFS to load
and examine the folder.

class FsFile : FsFolderOrFile,
IProvidesUnstructuredData

{
IDomainObjectRawDataStore _data;
[NeedsRawDataStore]
void SetDataStore(
IDomainObjectRawDataStore data){
_data = data;

}

long DataSize(){
return _data.DataSize();

}

bool Cacheable(){
return false;

}

int Read(byte[] buff,long off,long len){
return _data.Read(buff,off,len);

}

int Write(byte[] buff,long off,long len){
return _data.Write(buff,off,len);

}

void Truncate(long length){
_data.Truncate(length);

}
}

FsFile is our class to represent regular files. This class im-
plements IProvidesUnstructuredData. When NOFS sees a class
implement the IProvidesUnstructuredData interface, it allows
that class manage the Read, Write, and Truncate filesystem
calls. FsFile also accepts an instance of IDomainObjectRaw-
DataStore from NOFS after it is constructed. This helper inter-
face provides access to the host filesystem file that contains the
data for the file represented by this FsFile instance. Although
in this example, the call is a simple pass through, it is possible
to construct more complex implementations that translate the
underlying data or provide other additional value.

[DomainObject]
class FsFolderOrFile : IObjectWithID
{
private string _name;
[NeedsContainer]
IDomainObjectContainer Container {get;set;}
string Id {get;set;}

[ProvidesName]
string Name {

get { return _name; }
set {
_name = value;
if (Container != null) {
Container.ObjectChanged(this);

}
}

}
}

FsFolderOrFile is the base class for folders and regular
files in our reference implementation. This class is the type
used in the IWeakReferenceList by the FsFolder class. This
base class allows for both the regular files and folders to
have a common type. This class is recognized as a regular
file by NOFS because of the DomainObjectAttribute attribute.
In the case of the FsFolder subclass, it is recognized as a
folder because of the FolderObjectAttribute attribute. NOFS is
able to determine that the Name property manages the file or
folder name because of the ProvidesNameAttribute attribute.
NOFS injects the IDomainObjectContainer in the Container
property after the construction of a FsFile or FsFolder instance.
The IDomainObjectContainer class manages serializing and
deserializing of domain objects in the NOFS framework.

REFERENCES

Abstract—Transparent access to remote data sets and data
arising from web services is a non-trivial challenge to application
developers. This early stage work addresses this challenge with
NOFS, an object-oriented framework for creating filesystems
to support domain specific functionality. While an early stage
work, we present a solution to solve the access problem. Our
solution greatly simplifies the task of filesystems development
by providing the glue code needed between a domain model
and the filesystem contract. We demonstrate support for domain
models that are larger than physical memory and demonstrate
how the concerns of caching can be removed from user-mode
filesystem implementations. Future work will addresses more
robust solutions to caching and other performance strategies.

VII. INTRODUCTION

In this paper, we discuss the need for user-mode filesystems
in scientific computing to solve the problem of transparent
data access. We explain how to simplify data access with
user-mode filesystems. We explain how to simplify the task
of building user-mode filesystems with our extensions to the
NOFS framework.

Specifically, in this paper we discuss how existing storage-
based user-mode filesystems must be designed with domain
object size and physical memory usage in mind. We then point
out why caching is important for these user-mode filesystems
and illustrate how this concern contributes to a significant
portion of the code in a user-mode filesystem. We show how
the weak reference pattern can be leveraged in a filesystem
framework and, specifically, how to apply it to an example
file-and-folder domain model. Finally, we demonstrate how the
naked objects architecture effectively supports storage-based
user-mode filesystems and how a naked objects framework can
manage concerns such as caching and domain object lifetime.



VIII. RELATED WORK

A. The Importance of Inter-Process Communication Through
the Filesystem

In modern operating systems, most methods of inter-process
communication (IPC) can be represented through the filesys-
tem. Among these are pipes, domain sockets, memory mapped
files, and regular files. These methods of IPC allow for separate
programs to communicate and coordinate with each other. This
communication and coordination allows software programs
to be broken down into separate and reusable components.
Without the ability to communicate across process boundaries,
many components would have to be present in the address
spaces of many programs, mostly through shared libraries.
With IPC, software programs and components can be com-
posed and reused in several different ways.

B. The Role of Application Filesystems in Software Composi-
tion

Application filesystems further enhance and expand the tra-
ditional filesystem based methods of IPC by representing com-
plex file structures, offering advanced filesystem semantics, or
through representing or composing one or more external ser-
vices through the filesystem contract. IPC through application
filesystems allow local abstractions and local compositions to
work without opening a network socket or needing to write
code to comply with a network protocol.

Some filesystems promote composition by presenting a
network protocol through a filesystem contract. An excellent
example of this is Plan 9’s filesystem service: 9P [1]. Through
9P, Plan 9 is able to abstract many network protocols and
external resources. Among these resources are: HTTP and FTP
protocols, managing network sockets, and a filesystem based
abstraction for Plan 9’s window manager.

It is possible to achieve inter-machine IPC through the use
of network filesystems. In network filesystems that support file
locking mechanisms and have adequate solutions to the cache
coherency problem, it is possible to perform inter-machine IPC
through filesystem operations.

In the past several years, many FUSE [2] based application
filesystems have been built to act as clients for popular
web services such as Flickr, IMAP email services, Amazon
S3, and several others. In our own research, we leveraged
our existing NOFS framework to implement RestFS [3], a
dynamically reconfigurable filesystem for exposing remote
restful resources as a local filesystem. With RestFS, we were
able to demonstrate an architecture that could map several
different restful web services such as Yahoo! Placefinder,
Flickr, and Twitter into local filesystem representations. We
were able to further demonstrate how these web services and
local software components could be composed locally and re-
exposed as restful web services.

C. The Role of User-Mode Filesystems in Software Composi-
tion for Large Datasets

In our exploration of user-mode filesystems development,
we have worked with three categories of user-mode filesys-

tems. First is the storage filesystem. Storage filesystems are
primarily concerned with the traditional role of filesystems
used as a means to store regular files and folders. A good
example of a storage oriented user-mode filesystem would
be NTFS-3G. NTFS-3G is a FUSE filesystem that allows
UNIX-like operating systems to mount NTFS volumes in read-
write mode. The second category is the connector filesystem.
Connector filesystems provide mappings between a resource
and a local filesystem. RestFS is an example of a connector
filesystem. RestFS provides a way to create files and folders
that can be configured to map filesystem calls to a remote
restful web service. The third category is the application
filesystem. Application filesystems provide behavior in addi-
tion to the resources that are represented by the filesystem.

To encourage reuse and dissemination of information, scien-
tists often publish datasets using a format standard to their field
and provide one or more libraries for popular programming
languages to read from and write to these datasets. To create a
new library for a new language, an entirely new library must be
constructed for the new language, or where possible, bindings
from the new language to an existing library in another
language can be constructed. Where datasets are published in
formats such as XML or CSV and where good documentation
exists, the challenge of writing new libraries for scientific
datasets is greatly lessened.

User-mode file systems of all types can play an important
role with large datasets. Datasets in formats such as XML
or CSV have several performance disadvantages due to their
human readability. Among the sources of these issues are:
greater amounts of whitespace characters, representation of
numeric values as text instead of binary, and challenges
determining seek offsets for random file access. So, in part
due to performance and data size concerns, many datasets are
published in a binary format. User-mode filesystems can help
to bridge this divide. By constructing a user mode-files system
on top of a binary formatted data set, it is possible to represent
a filesystem as human readable files such as XML or CSV.
With these types of files, it is simpler to implement software
to consume them in other programming languages.

D. The Challenges of Building User-Mode Filesystems With
FUSE

In both user-mode filesystems built with FUSE and filesys-
tems built as kernel-mode components there are common
components that must be considered and constructed. Each
filesystem implementation has some concept of an in-memory
structural representation of a file, folder, symbolic link, and
other basic filesystem components. Each filesystem imple-
mentation must dedicate some of its code base to interacting
with its storage medium. This code can be a kernel block
cache, another filesystem, or a network library. Also, each
filesystem implementation must dedicate some of its code
base to fulfilling the contract required by a filesystem. In
FUSE filesystems, there are about 30 methods that can be
implemented. Some are required and some have reasonable
default behaviors.



In our first research filesystem, OLFS [4], we found a large
portion of our code base was dedicated to the glue code
between our in-memory structures and the filesystem con-
tract, and between our in-memory structures and our storage
medium. In our latest implementation of OLFS, our caching
layer was 1363 lines of code, our FUSE glue code was 2535
lines of code, our domain model was 1469 lines of code.
Overall, 72.6% of the OLFS implementation was dedicated to
implementing an efficient cache and implementing the FUSE
filesystem contract. 27.4% of the OLFS implementation was
dedicated to the actual domain model. While reflecting on
this work, we noticed the high percentage of effort and code
needed to work with the details of FUSE compared to our
domain model.

Any project to construct a user-mode filesystem to expose
a binary dataset in a human readable format will have to write
a large amount of code fulfilling the filesystem contract. The
work and understanding required to write this type of code
can be a disincentive to invest time in a user-mode filesystem
project.

E. Naked Objects

Naked Objects [5] is the architectural approach of using
plain object-oriented domain models to build entire applica-
tions. In the realm of desktop applications, Naked Objects
frameworks remove the concerns of providing user-interface
code or persistence layers. These are left to the framework. An
important aspect of Naked Objects frameworks is the object-
oriented user interface. The object oriented user interface fa-
vors applications where the user is treated as a problem solver
rather than a process follower. Where process is important,
object oriented user interfaces aren’t a good fit.

We discovered that the problems of the user interface and
persistence layers in desktop and web applications is similar
to the problem of the filesystem contract and backend storage
in user-mode filesystems.

We believe that the filesystem is an excellent example of
an object oriented user interface. In a filesystem, processes
for copying, moving, reading, writing, or deleting files isn’t
exposed by the filesystem. These processes are managed
externally by the operating system’s other programs. The
interaction with filesystems is noun-verb style of interaction
and not a verb-noun interaction, which is more common with
non-object oriented user interfaces. Like Naked Object user
interfaces, filesystems “provide the user with a set of tools
which to operate and does not dictate .. the users sequence of
actions” [5].

F. Naked Object Filesystem: NOFS

After our experiences with OLFS, we felt that user-mode
filesystems could benefit from another abstraction. To that end,
we implemented the NOFS framework. The NOFS framework
allows a developer to implement only the domain model and
not be concerned with the details of persistence or the filesys-
tem glue code. The NOFS framework manages fulfilling the
filesystem contract required by FUSE or Dokan and provides

a library for managing the serialization and deserialization of
domain objects.

Files and folders are implemented using regular .NET
classes. Folders are recognized as lists of other objects returned
from public methods or classes that implement list interfaces
and are marked with attributes provided by the NOFS frame-
work. Files are implemented as regular .NET classes and
marked with attributes provided by the NOFS framework. It
is possible for an application filesystem implemented with
the NOFS framework to be concerned with no details of file
structure or filesystem metadata or to implement all of the
details. By implementing additional interfaces and providing
additional metadata, domain models can take the level of
responsibility for the filesystem details that the developer cares
to implement. Where these details are not implemented, the
NOFS framework provides reasonable default implementa-
tions.

In our past work, we have been able to demonstrate how
complete filesystems can be implemented with the NOFS
framework with as few as two classes and less than 200 lines
of code.

IX. CONSIDERATIONS FOR DOMAIN MODELING STORAGE
FILESYSTEMS

A. Domain Modeling in Linux Filesystems

The basic data structure in UNIX or Linux filesystems is the
inode. For regular files, inodes contain information about the
size of a file, user and group ownership, the file’s mode bits,
create, last access, and modification timestamps, and pointers
to blocks on disk. An important aspect of the inode is that a
single inode does not contain all of the pointers for all of the
blocks in a file except for the smallest of files.

In the ext2 filesystem, the inode structure has 15 block
pointers [6]. The first 12 pointers are to the first 12 blocks
of the file. Pointer 13 points to an indirect block, 14 points
to a double indirect block, and 15 points to a triple indirect
block. Having the first 12 pointers available in the inode
allows for sequential reads to begin performing immediately
while locating later blocks through the double indirect and
triple indirect blocks. The structure of double and triple
indirect blocks gives reasonable random access performance
by guaranteeing that finding the location of any one block in
a file will require at most two reads.

Having only a few block pointers present in the inode
structure is necessary to manage the memory utilization of
the ext2 filesystem. For example, to map the blocks of a
10GB file with 512 byte blocks would require 20,971,520
pointers. Using 64-bit pointers, this would require 160MB
of memory to hold the pointers for this file. This memory
requirement can be reduced if larger block sizes are used or if
a filesystem implementation can make use of contiguous block
ranges instead of addressing each individual block.



B. Memory Management and Domain Modeling User-Mode
Filesystems

An advantage of kernel mode filesystems in Linux and other
modern operating systems is that the decision of what data is
kept in memory is managed by the virtual memory manager.
Managing what data is kept in memory is also an important
concern for user-mode filesystems. User mode filesystems
have a performance challenge related to the number of context
switches each filesystem call requires [7]. For example, a
call to read a file will context switch from the application
to the kernel, context switch from the kernel to the user-mode
filesystem, the response to the kernel will require an additional
context switch back to the kernel, and the kernel will have to
context switch back to the application that originated the read
request. In this example there were four context switches. If
the user-mode filesystem needs an operating system service
such as communicating over the network, reading from a disc
or the use of some other system resource, the number of
context switches will increase. A user-mode filesystem can
reduce the number of total context switches by keeping more
of its domain model in physical memory. If there are several
requests for a single resource, if that resource is cached in
memory by the user-mode filesystem, then responses will be
faster.

The simplest approach in a user-mode filesystem is to keep
the entire domain model in memory for the duration of the
filesystem service. For simple filesystems that require a few
hundred kilobytes or a few megabytes of memory at most, this
approach makes sense.

For user-mode filesystems that manage larger datasets, an
important concern is balancing the amount of data that is kept
resident in physical memory. This complexity is in addition
to the responsibility of developing code to conform to the
filesystem contract and managing the underlying data storage
for the filesystem.

C. The NOFS approach to User-Mode Filesystems That Man-
age Large Data Sets

To simplify the development of application filesystems that
manage large data sets, the NOFS framework has added the
concept of domain object identity and the weak reference
pattern into its library. The weak reference pattern allows
for object references to be addressable without being directly
referenced so that the garbage collector can collect these
objects [8] [9]. The introduction of these components allow for
an application filesystem developed with the NOFS framework
to have the details of when objects are loaded, persisted,
and which objects remain in physical memory managed by
the NOFS framework and not by the implementation of the
filesystem itself. By moving these responsibilities to the NOFS
framework, the design complexity of user-mode filesystems
can be reduced more closely to the complexity necessary in the
simple case of loading the entire domain model into memory.

To enable this external memory management, the
NOFS framework introduces three interfaces: IObjectWithID,
IWeakReference, and IWeakReferenceList. In addition to these

FSFolder

IWeakReference - FSFile

DomainObjectContainer

Domain Cache

Storage Cache

Host Filesystem

Load by ID

Check Cache

Serialize

Read From FS

Fig. 5. Weak References with NOFS Cache

three interfaces, NOFS implements a caching component to
reduce the number of times domain objects need to be loaded.

interface IObjectWithID {
string Id { get; }

}

interface IWeakReference {
IObjectWithID Get();
string Id { get; }
Type UnderlyingType { get; }
void SetParent(IWeakReference parent);

}

interface IWeakReferenceList : IEnumerable
int Count { get; }
void Add(IWeakReference item);
void Add(object item);
void Remove(IWeakReference item);
void Remove(object item);

}

interface IWeakReferenceList<T>
: IEnumerable<IWeakReference>, WeakReferenceList
where T : IObjectWithID

{
void Add(T item);
void Remove(T item);
IEnumerable<T> GetAll();

}

For filesystems that want to make use of the weak ref-
erence pattern, NOFS requires that all domain objects that
an IWeakReference can point to need to implement the IOb-
jectWithID interface. This interface requires that the object
return some unique identity for each unique domain instance.
This identity helps establish which instances are the equivalent
to other instances and acts as a pointer for the IWeakReference
implementor to use to load the domain object when requested.
NOFS doesn’t make any guarantee that two subsequent calls



to IWeakReference.Get() will return the same instance, so all
comparisons must be based off of the identity value. The
string type is used as the type for the identity rather than
an integer or Guid to keep the requirements for the identity
flexible. Aside from integers and Guids, it may be desirable
to use URLs or other objects with string representations as
the identity. The IWeakReferenceList and its sub-interface that
adds methods with generic type constraints help the filesystem
developer implement folders with the weak reference pattern.
NOFS offers a default implementation of WeakReferenceList
that can be used. NOFS also provides factories for creating
IWeakReference instances given an identity value and provides
the implementation for the Get() call.

In addition to the weak reference pattern which is important
in determining which file and folder objects are kept in mem-
ory, there is an additional pattern that manages the data blocks
of regular files. By default, NOFS regular file domain objects
are translated to and from XML using the .NET serializer.
If the domain object implements IProvidesUnstructuredData,
then the file contents can be of a custom structure that is
managed by the domain object. With this interface, the user
can choose to either make use of an externally managed
data source or one managed by NOFS. For the latter case, a
new interface IDomainObjectRawDataStore provides methods
for reading, writing, and truncating a binary file. With these
two interfaces, it is possible for a NOFS filesystem to be
unconcerned with the details of file reading or writing by
implementing neither interface, or to be concerned with those
details by implementing one or both interfaces.

interface IDomainObjectRawDataStore {
long DataSize();
int Read(byte[] buffer,long offset,long len);
int Write(byte[] buffer,long offset,long len);
void Truncate(long length);

}

interface IProvidesUnstructuredData
: IDomainObjectRawDataStore {
bool Cacheable();

}

With these two interfaces and the weak reference pattern,
we were able to implement a simple storage based filesystem
that uses the host’s filesystem as the backing store with the
NOFS framework in less than 300 lines of C# code.

The root of our reference implementation is expressed as
the following class.
[RootFolder]
class FsRoot : FsFolder
{

public FsRoot()
: base("", Guid.NewGuid().ToString()){}
public FsRoot(string name, string id)
: base(name,id){}

}

This class is the instance from which the NOFS framework
translates all paths. It represents the ‘/’ part of any path passed
to NOFS. The FsRoot class subclasses the FsFolder class.
[FolderObject]

Object Databases

DB4O

Storage Backends FS Frameworks

FUSE - Linux

Dokan - 
Windows

NOFS

StorageFS

Host File System

NTFS EXT4

Storage Cache

Domain Cache

FSRoot

FSFile

FSFolder FSFile

FSFile

Weak Ref

Weak Ref Weak Ref

Weak Ref

Fig. 6. Architecture of filesystem implementation as it relates to NOFS

class FsFolder : FsFolderOrFile,
IWeakReferenceList<FsFolderOrFile>

{

}

The FsFolder class subclasses FsFolderOrFile and imple-
ments the IWeakReferenceList interface. When NOFS en-
counters instances of IEnumerable that have that attribute
FolderObjectAttribute, it recognizes them as folders in the
filesystem. Because FSFolder implements IWeakReference, all
of the files and folders that are contained are weakly connected
and do not need to be in physical memory for NOFS to load
and examine the folder.

class FsFile : FsFolderOrFile,
IProvidesUnstructuredData

{
IDomainObjectRawDataStore _data;
[NeedsRawDataStore]
void SetDataStore(

IDomainObjectRawDataStore data){
_data = data;

}

long DataSize(){
return _data.DataSize();

}

bool Cacheable(){
return false;

}

int Read(byte[] buff,long off,long len){
return _data.Read(buff,off,len);

}

int Write(byte[] buff,long off,long len){
return _data.Write(buff,off,len);

}



void Truncate(long length){
_data.Truncate(length);

}
}

FsFile is our class to represent regular files. This class im-
plements IProvidesUnstructuredData. When NOFS sees a class
implement the IProvidesUnstructuredData interface, it allows
that class manage the Read, Write, and Truncate filesystem
calls. FsFile also accepts an instance of IDomainObjectRaw-
DataStore from NOFS after it is constructed. This helper inter-
face provides access to the host filesystem file that contains the
data for the file represented by this FsFile instance. Although
in this example, the call is a simple pass through, it is possible
to construct more complex implementations that translate the
underlying data or provide other additional value.

[DomainObject]
class FsFolderOrFile : IObjectWithID
{
private string _name;
[NeedsContainer]
IDomainObjectContainer Container {get;set;}
string Id {get;set;}

[ProvidesName]
string Name {

get { return _name; }
set {

_name = value;
if (Container != null) {
Container.ObjectChanged(this);

}
}

}
}

FsFolderOrFile is the base class for folders and regular
files in our reference implementation. This class is the type
used in the IWeakReferenceList by the FsFolder class. This
base class allows for both the regular files and folders to
have a common type. This class is recognized as a regular
file by NOFS because of the DomainObjectAttribute attribute.
In the case of the FsFolder subclass, it is recognized as a
folder because of the FolderObjectAttribute attribute. NOFS is
able to determine that the Name property manages the file or
folder name because of the ProvidesNameAttribute attribute.
NOFS injects the IDomainObjectContainer in the Container
property after the construction of a FsFile or FsFolder instance.
The IDomainObjectContainer class manages serializing and
deserializing of domain objects in the NOFS framework.

REFERENCES

Abstract—Transparent access to remote data sets and data
arising from web services is a non-trivial challenge to application
developers. This early stage work addresses this challenge with
NOFS, an object-oriented framework for creating filesystems
to support domain specific functionality. While an early stage
work, we present a solution to solve the access problem. Our
solution greatly simplifies the task of filesystems development
by providing the glue code needed between a domain model
and the filesystem contract. We demonstrate support for domain
models that are larger than physical memory and demonstrate
how the concerns of caching can be removed from user-mode

filesystem implementations. Future work will addresses more
robust solutions to caching and other performance strategies.

X. INTRODUCTION

In this paper, we discuss the need for user-mode filesystems
in scientific computing to solve the problem of transparent
data access. We explain how to simplify data access with
user-mode filesystems. We explain how to simplify the task
of building user-mode filesystems with our extensions to the
NOFS framework.

Specifically, in this paper we discuss how existing storage-
based user-mode filesystems must be designed with domain
object size and physical memory usage in mind. We then point
out why caching is important for these user-mode filesystems
and illustrate how this concern contributes to a significant
portion of the code in a user-mode filesystem. We show how
the weak reference pattern can be leveraged in a filesystem
framework and, specifically, how to apply it to an example
file-and-folder domain model. Finally, we demonstrate how the
naked objects architecture effectively supports storage-based
user-mode filesystems and how a naked objects framework can
manage concerns such as caching and domain object lifetime.

XI. RELATED WORK

A. The Importance of Inter-Process Communication Through
the Filesystem

In modern operating systems, most methods of inter-process
communication (IPC) can be represented through the filesys-
tem. Among these are pipes, domain sockets, memory mapped
files, and regular files. These methods of IPC allow for separate
programs to communicate and coordinate with each other. This
communication and coordination allows software programs
to be broken down into separate and reusable components.
Without the ability to communicate across process boundaries,
many components would have to be present in the address
spaces of many programs, mostly through shared libraries.
With IPC, software programs and components can be com-
posed and reused in several different ways.

B. The Role of Application Filesystems in Software Composi-
tion

Application filesystems further enhance and expand the tra-
ditional filesystem based methods of IPC by representing com-
plex file structures, offering advanced filesystem semantics, or
through representing or composing one or more external ser-
vices through the filesystem contract. IPC through application
filesystems allow local abstractions and local compositions to
work without opening a network socket or needing to write
code to comply with a network protocol.

Some filesystems promote composition by presenting a
network protocol through a filesystem contract. An excellent
example of this is Plan 9’s filesystem service: 9P [1]. Through
9P, Plan 9 is able to abstract many network protocols and
external resources. Among these resources are: HTTP and FTP
protocols, managing network sockets, and a filesystem based
abstraction for Plan 9’s window manager.



It is possible to achieve inter-machine IPC through the use
of network filesystems. In network filesystems that support file
locking mechanisms and have adequate solutions to the cache
coherency problem, it is possible to perform inter-machine IPC
through filesystem operations.

In the past several years, many FUSE [2] based application
filesystems have been built to act as clients for popular
web services such as Flickr, IMAP email services, Amazon
S3, and several others. In our own research, we leveraged
our existing NOFS framework to implement RestFS [3], a
dynamically reconfigurable filesystem for exposing remote
restful resources as a local filesystem. With RestFS, we were
able to demonstrate an architecture that could map several
different restful web services such as Yahoo! Placefinder,
Flickr, and Twitter into local filesystem representations. We
were able to further demonstrate how these web services and
local software components could be composed locally and re-
exposed as restful web services.

C. The Role of User-Mode Filesystems in Software Composi-
tion for Large Datasets

In our exploration of user-mode filesystems development,
we have worked with three categories of user-mode filesys-
tems. First is the storage filesystem. Storage filesystems are
primarily concerned with the traditional role of filesystems
used as a means to store regular files and folders. A good
example of a storage oriented user-mode filesystem would
be NTFS-3G. NTFS-3G is a FUSE filesystem that allows
UNIX-like operating systems to mount NTFS volumes in read-
write mode. The second category is the connector filesystem.
Connector filesystems provide mappings between a resource
and a local filesystem. RestFS is an example of a connector
filesystem. RestFS provides a way to create files and folders
that can be configured to map filesystem calls to a remote
restful web service. The third category is the application
filesystem. Application filesystems provide behavior in addi-
tion to the resources that are represented by the filesystem.

To encourage reuse and dissemination of information, scien-
tists often publish datasets using a format standard to their field
and provide one or more libraries for popular programming
languages to read from and write to these datasets. To create a
new library for a new language, an entirely new library must be
constructed for the new language, or where possible, bindings
from the new language to an existing library in another
language can be constructed. Where datasets are published in
formats such as XML or CSV and where good documentation
exists, the challenge of writing new libraries for scientific
datasets is greatly lessened.

User-mode file systems of all types can play an important
role with large datasets. Datasets in formats such as XML
or CSV have several performance disadvantages due to their
human readability. Among the sources of these issues are:
greater amounts of whitespace characters, representation of
numeric values as text instead of binary, and challenges
determining seek offsets for random file access. So, in part
due to performance and data size concerns, many datasets are

published in a binary format. User-mode filesystems can help
to bridge this divide. By constructing a user mode-files system
on top of a binary formatted data set, it is possible to represent
a filesystem as human readable files such as XML or CSV.
With these types of files, it is simpler to implement software
to consume them in other programming languages.

D. The Challenges of Building User-Mode Filesystems With
FUSE

In both user-mode filesystems built with FUSE and filesys-
tems built as kernel-mode components there are common
components that must be considered and constructed. Each
filesystem implementation has some concept of an in-memory
structural representation of a file, folder, symbolic link, and
other basic filesystem components. Each filesystem imple-
mentation must dedicate some of its code base to interacting
with its storage medium. This code can be a kernel block
cache, another filesystem, or a network library. Also, each
filesystem implementation must dedicate some of its code
base to fulfilling the contract required by a filesystem. In
FUSE filesystems, there are about 30 methods that can be
implemented. Some are required and some have reasonable
default behaviors.

In our first research filesystem, OLFS [4], we found a large
portion of our code base was dedicated to the glue code
between our in-memory structures and the filesystem con-
tract, and between our in-memory structures and our storage
medium. In our latest implementation of OLFS, our caching
layer was 1363 lines of code, our FUSE glue code was 2535
lines of code, our domain model was 1469 lines of code.
Overall, 72.6% of the OLFS implementation was dedicated to
implementing an efficient cache and implementing the FUSE
filesystem contract. 27.4% of the OLFS implementation was
dedicated to the actual domain model. While reflecting on
this work, we noticed the high percentage of effort and code
needed to work with the details of FUSE compared to our
domain model.

Any project to construct a user-mode filesystem to expose
a binary dataset in a human readable format will have to write
a large amount of code fulfilling the filesystem contract. The
work and understanding required to write this type of code
can be a disincentive to invest time in a user-mode filesystem
project.

E. Naked Objects

Naked Objects [5] is the architectural approach of using
plain object-oriented domain models to build entire applica-
tions. In the realm of desktop applications, Naked Objects
frameworks remove the concerns of providing user-interface
code or persistence layers. These are left to the framework. An
important aspect of Naked Objects frameworks is the object-
oriented user interface. The object oriented user interface fa-
vors applications where the user is treated as a problem solver
rather than a process follower. Where process is important,
object oriented user interfaces aren’t a good fit.



We discovered that the problems of the user interface and
persistence layers in desktop and web applications is similar
to the problem of the filesystem contract and backend storage
in user-mode filesystems.

We believe that the filesystem is an excellent example of
an object oriented user interface. In a filesystem, processes
for copying, moving, reading, writing, or deleting files isn’t
exposed by the filesystem. These processes are managed
externally by the operating system’s other programs. The
interaction with filesystems is noun-verb style of interaction
and not a verb-noun interaction, which is more common with
non-object oriented user interfaces. Like Naked Object user
interfaces, filesystems “provide the user with a set of tools
which to operate and does not dictate .. the users sequence of
actions” [5].

F. Naked Object Filesystem: NOFS

After our experiences with OLFS, we felt that user-mode
filesystems could benefit from another abstraction. To that end,
we implemented the NOFS framework. The NOFS framework
allows a developer to implement only the domain model and
not be concerned with the details of persistence or the filesys-
tem glue code. The NOFS framework manages fulfilling the
filesystem contract required by FUSE or Dokan and provides
a library for managing the serialization and deserialization of
domain objects.

Files and folders are implemented using regular .NET
classes. Folders are recognized as lists of other objects returned
from public methods or classes that implement list interfaces
and are marked with attributes provided by the NOFS frame-
work. Files are implemented as regular .NET classes and
marked with attributes provided by the NOFS framework. It
is possible for an application filesystem implemented with
the NOFS framework to be concerned with no details of file
structure or filesystem metadata or to implement all of the
details. By implementing additional interfaces and providing
additional metadata, domain models can take the level of
responsibility for the filesystem details that the developer cares
to implement. Where these details are not implemented, the
NOFS framework provides reasonable default implementa-
tions.

In our past work, we have been able to demonstrate how
complete filesystems can be implemented with the NOFS
framework with as few as two classes and less than 200 lines
of code.

XII. CONSIDERATIONS FOR DOMAIN MODELING
STORAGE FILESYSTEMS

A. Domain Modeling in Linux Filesystems

The basic data structure in UNIX or Linux filesystems is the
inode. For regular files, inodes contain information about the
size of a file, user and group ownership, the file’s mode bits,
create, last access, and modification timestamps, and pointers
to blocks on disk. An important aspect of the inode is that a
single inode does not contain all of the pointers for all of the
blocks in a file except for the smallest of files.

In the ext2 filesystem, the inode structure has 15 block
pointers [6]. The first 12 pointers are to the first 12 blocks
of the file. Pointer 13 points to an indirect block, 14 points
to a double indirect block, and 15 points to a triple indirect
block. Having the first 12 pointers available in the inode
allows for sequential reads to begin performing immediately
while locating later blocks through the double indirect and
triple indirect blocks. The structure of double and triple
indirect blocks gives reasonable random access performance
by guaranteeing that finding the location of any one block in
a file will require at most two reads.

Having only a few block pointers present in the inode
structure is necessary to manage the memory utilization of
the ext2 filesystem. For example, to map the blocks of a
10GB file with 512 byte blocks would require 20,971,520
pointers. Using 64-bit pointers, this would require 160MB
of memory to hold the pointers for this file. This memory
requirement can be reduced if larger block sizes are used or if
a filesystem implementation can make use of contiguous block
ranges instead of addressing each individual block.

B. Memory Management and Domain Modeling User-Mode
Filesystems

An advantage of kernel mode filesystems in Linux and other
modern operating systems is that the decision of what data is
kept in memory is managed by the virtual memory manager.
Managing what data is kept in memory is also an important
concern for user-mode filesystems. User mode filesystems
have a performance challenge related to the number of context
switches each filesystem call requires [7]. For example, a
call to read a file will context switch from the application
to the kernel, context switch from the kernel to the user-mode
filesystem, the response to the kernel will require an additional
context switch back to the kernel, and the kernel will have to
context switch back to the application that originated the read
request. In this example there were four context switches. If
the user-mode filesystem needs an operating system service
such as communicating over the network, reading from a disc
or the use of some other system resource, the number of
context switches will increase. A user-mode filesystem can
reduce the number of total context switches by keeping more
of its domain model in physical memory. If there are several
requests for a single resource, if that resource is cached in
memory by the user-mode filesystem, then responses will be
faster.

The simplest approach in a user-mode filesystem is to keep
the entire domain model in memory for the duration of the
filesystem service. For simple filesystems that require a few
hundred kilobytes or a few megabytes of memory at most, this
approach makes sense.

For user-mode filesystems that manage larger datasets, an
important concern is balancing the amount of data that is kept
resident in physical memory. This complexity is in addition
to the responsibility of developing code to conform to the
filesystem contract and managing the underlying data storage
for the filesystem.



C. The NOFS approach to User-Mode Filesystems That Man-
age Large Data Sets

FSFolder

IWeakReference - FSFile

DomainObjectContainer

Domain Cache

Storage Cache

Host Filesystem

Load by ID

Check Cache

Serialize

Read From FS

Fig. 7. Weak References with NOFS Cache

To simplify the development of application filesystems that
manage large data sets, the NOFS framework has added the
concept of domain object identity and the weak reference
pattern into its library. The weak reference pattern allows
for object references to be addressable without being directly
referenced so that the garbage collector can collect these
objects [8] [9]. The introduction of these components allow for
an application filesystem developed with the NOFS framework
to have the details of when objects are loaded, persisted,
and which objects remain in physical memory managed by
the NOFS framework and not by the implementation of the
filesystem itself. By moving these responsibilities to the NOFS
framework, the design complexity of user-mode filesystems
can be reduced more closely to the complexity necessary in the
simple case of loading the entire domain model into memory.

To enable this external memory management, the
NOFS framework introduces three interfaces: IObjectWithID,
IWeakReference, and IWeakReferenceList. In addition to these
three interfaces, NOFS implements a caching component to
reduce the number of times domain objects need to be loaded.
interface IObjectWithID {
string Id { get; }

}

interface IWeakReference {
IObjectWithID Get();
string Id { get; }
Type UnderlyingType { get; }
void SetParent(IWeakReference parent);

}

interface IWeakReferenceList : IEnumerable
int Count { get; }

void Add(IWeakReference item);
void Add(object item);
void Remove(IWeakReference item);
void Remove(object item);

}

interface IWeakReferenceList<T>
: IEnumerable<IWeakReference>, WeakReferenceList
where T : IObjectWithID

{
void Add(T item);
void Remove(T item);
IEnumerable<T> GetAll();

}

For filesystems that want to make use of the weak ref-
erence pattern, NOFS requires that all domain objects that
an IWeakReference can point to need to implement the IOb-
jectWithID interface. This interface requires that the object
return some unique identity for each unique domain instance.
This identity helps establish which instances are the equivalent
to other instances and acts as a pointer for the IWeakReference
implementor to use to load the domain object when requested.
NOFS doesn’t make any guarantee that two subsequent calls
to IWeakReference.Get() will return the same instance, so all
comparisons must be based off of the identity value. The
string type is used as the type for the identity rather than
an integer or Guid to keep the requirements for the identity
flexible. Aside from integers and Guids, it may be desirable
to use URLs or other objects with string representations as
the identity. The IWeakReferenceList and its sub-interface that
adds methods with generic type constraints help the filesystem
developer implement folders with the weak reference pattern.
NOFS offers a default implementation of WeakReferenceList
that can be used. NOFS also provides factories for creating
IWeakReference instances given an identity value and provides
the implementation for the Get() call.

In addition to the weak reference pattern which is important
in determining which file and folder objects are kept in mem-
ory, there is an additional pattern that manages the data blocks
of regular files. By default, NOFS regular file domain objects
are translated to and from XML using the .NET serializer.
If the domain object implements IProvidesUnstructuredData,
then the file contents can be of a custom structure that is
managed by the domain object. With this interface, the user
can choose to either make use of an externally managed
data source or one managed by NOFS. For the latter case, a
new interface IDomainObjectRawDataStore provides methods
for reading, writing, and truncating a binary file. With these
two interfaces, it is possible for a NOFS filesystem to be
unconcerned with the details of file reading or writing by
implementing neither interface, or to be concerned with those
details by implementing one or both interfaces.

interface IDomainObjectRawDataStore {
long DataSize();
int Read(byte[] buffer,long offset,long len);
int Write(byte[] buffer,long offset,long len);
void Truncate(long length);

}



interface IProvidesUnstructuredData
: IDomainObjectRawDataStore {
bool Cacheable();

}

With these two interfaces and the weak reference pattern,
we were able to implement a simple storage based filesystem
that uses the host’s filesystem as the backing store with the
NOFS framework in less than 300 lines of C# code.

Object Databases

DB4O

Storage Backends FS Frameworks

FUSE - Linux

Dokan - 
Windows

NOFS

StorageFS

Host File System

NTFS EXT4

Storage Cache

Domain Cache

FSRoot

FSFile

FSFolder FSFile

FSFile

Weak Ref

Weak Ref Weak Ref

Weak Ref

Fig. 8. Architecture of filesystem implementation as it relates to NOFS

The root of our reference implementation is expressed as
the following class.

[RootFolder]
class FsRoot : FsFolder
{

public FsRoot()
: base("", Guid.NewGuid().ToString()){}
public FsRoot(string name, string id)
: base(name,id){}

}

This class is the instance from which the NOFS framework
translates all paths. It represents the ‘/’ part of any path passed
to NOFS. The FsRoot class subclasses the FsFolder class.

[FolderObject]
class FsFolder : FsFolderOrFile,

IWeakReferenceList<FsFolderOrFile>
{

}

The FsFolder class subclasses FsFolderOrFile and imple-
ments the IWeakReferenceList interface. When NOFS en-
counters instances of IEnumerable that have that attribute
FolderObjectAttribute, it recognizes them as folders in the
filesystem. Because FSFolder implements IWeakReference, all
of the files and folders that are contained are weakly connected

and do not need to be in physical memory for NOFS to load
and examine the folder.

class FsFile : FsFolderOrFile,
IProvidesUnstructuredData

{
IDomainObjectRawDataStore _data;
[NeedsRawDataStore]
void SetDataStore(

IDomainObjectRawDataStore data){
_data = data;

}

long DataSize(){
return _data.DataSize();

}

bool Cacheable(){
return false;

}

int Read(byte[] buff,long off,long len){
return _data.Read(buff,off,len);

}

int Write(byte[] buff,long off,long len){
return _data.Write(buff,off,len);

}

void Truncate(long length){
_data.Truncate(length);

}
}

FsFile is our class to represent regular files. This class im-
plements IProvidesUnstructuredData. When NOFS sees a class
implement the IProvidesUnstructuredData interface, it allows
that class manage the Read, Write, and Truncate filesystem
calls. FsFile also accepts an instance of IDomainObjectRaw-
DataStore from NOFS after it is constructed. This helper inter-
face provides access to the host filesystem file that contains the
data for the file represented by this FsFile instance. Although
in this example, the call is a simple pass through, it is possible
to construct more complex implementations that translate the
underlying data or provide other additional value.

[DomainObject]
class FsFolderOrFile : IObjectWithID
{

private string _name;
[NeedsContainer]
IDomainObjectContainer Container {get;set;}
string Id {get;set;}

[ProvidesName]
string Name {
get { return _name; }
set {
_name = value;
if (Container != null) {

Container.ObjectChanged(this);
}

}
}

}

FsFolderOrFile is the base class for folders and regular
files in our reference implementation. This class is the type
used in the IWeakReferenceList by the FsFolder class. This
base class allows for both the regular files and folders to



have a common type. This class is recognized as a regular
file by NOFS because of the DomainObjectAttribute attribute.
In the case of the FsFolder subclass, it is recognized as a
folder because of the FolderObjectAttribute attribute. NOFS is
able to determine that the Name property manages the file or
folder name because of the ProvidesNameAttribute attribute.
NOFS injects the IDomainObjectContainer in the Container
property after the construction of a FsFile or FsFolder instance.
The IDomainObjectContainer class manages serializing and
deserializing of domain objects in the NOFS framework.

REFERENCES

[1] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K.
Thompson, H. Trickey, and P. Winterbottom, “Plan 9 from
Bell Labs,” Computing Systems, vol. 8, pp. 221–254, Summer
1995.

[2] M. Szeredi, “Filesystem in Userspace.” feb-2005.
[3] J. Kaylor, K. Laufer, and G. K. Thiruvathukal, “RestFS:

resources and services are filesystems, too,” in Proceedings of
the Second International Workshop on RESTful Design, 2011,
pp. 39–46.

[4] J. Kaylor, K. Laufer, and G. K. Thiruvathukal, “On-
line Layered File System (OLFS): A Layered and Versioned
Filesystem and Performance Analysis,” in Proc. IEEE Intl.
Conf. on Electro/Information Technology (EIT), 2010.

[5] R. Pawson, “Naked Objects,” 2004.
[6] R. Card, “ISBN 90-367-0385-9. Design and Implemen-

tation of the Second Extended Filesystem,” 1994.
[7] A. Rajgarhia and A. Gehani, “Performance and exten-

sion of user space file systems,” in Proceedings of the 2010
ACM Symposium on Applied Computing, 2010, pp. 206–213.

[8] K. Donnelly, J. J. Hallett, and A. Kfoury, “Formal
semantics of weak references,” in Proceedings of the 5th
international symposium on Memory management, 2006, pp.
126–137.

[9] S. L. Peyton Jones, S. Marlow, and C. Elliott, “Stretch-
ing the Storage Manager: Weak Pointers and Stable Names
in Haskell,” in Selected Papers from the 11th International
Workshop on Implementation of Functional Languages, 2000,
pp. 37–58.


	Loyola University Chicago
	Loyola eCommons
	5-2012

	Simplifying Domain Modeling and Memory Management in User-Mode Filesystems with the NOFS Framework
	Joseph P. Kaylor
	Konstantin Läufer
	George K. Thiruvathukal
	Recommended Citation


	tmp.1355172790.pdf.9JeiO

