
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

12-1995

Packet Routing in Networks with Long Wires
Ronald Greenberg
Rgreen@luc.edu

Hyeong-Cheol Oh

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© Elsevier, 1995.

Recommended Citation
Journal of Parallel and Distributed Computing, Volume 31, Issue 2, December 1995, Pages 153–158.

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Packet Routing in Networks with Long Wires

�

Ronald I. Greenberg

Department of Electrical Engineering

University of Maryland

College Park, MD 20742

rig@eng.umd.edu

H.-C. Oh

Department of Information Engineering

Korea University

Chochiwon, Korea

hyeong@kusccgx.korea.ac.kr

May 17, 1996

�

Work supported in part by NSF grants CCR-9109550 and CCR-9321388.

1

Running head: Packet Routing in Networks with Long Wires

Corresponding author:

Ronald Greenberg

Electrical Engineering Department

University of Maryland

College Park, MD 20742

(301)405-3649

rig@eng.umd.edu

Abstract

In this paper, we examine the packet routing problem for networks with wires of

di�ering length. We consider this problem in a network independent context, in which

routing time is expressed in terms of \congestion" and \dilation" measures for a set

of packet paths. We give, for any constant � > 0, a randomized on-line algorithm

for routing any set of N packets in O((C lg

�

(Nd) +D lg(Nd))= lg lg(Nd)) time, where

C is the maximum congestion and D is the length of the longest path, both taking

wire delays into account, and d is the longest path in terms of number of wires. We

also show that for edge-simple paths, there exists a schedule (which could be found

o�-line) of length O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

, where d

max

is the maximum wire delay in

the network. These results improve upon previous routing results which assume that

unit time su�ces to traverse a wire of any length. They also yield improved results for

job-shop scheduling as long as we incorporate a technical restriction on the job-shop

problem.

2

1 Introduction

An e�cient packet routing algorithm is critical to the design of most large-scale general-

purpose parallel computers. One must move data between di�erent locations in an appro-

priate routing network as quickly as possible and with as little queuing hardware as possible.

The packet routing problem has been extensively studied in the past, mostly in the context

of speci�c networks and speci�c message patterns. Recent works by Leighton, Maggs, Rao,

and Ranade have provided very general packet routing results (based on summary measures

of the message tra�c), which even yield many improvements upon prior analyses of spe-

ci�c networks and message patterns [6, 7, 8]. But these works have made the simplifying

assumption that unit time su�ces for any transmission of a packet from one network node

to another regardless of the actual length of wire connecting the nodes. This assumption

becomes less and less tenable as we build larger and larger parallel machines. Hence this

paper considers the situation in which an arbitrary delay is associated with each wire.

Except for the introduction of nonunit wire delay, we follow the commonly used store-and-

forward routing model and the usual graph-based terminology. Packets are atomic objects,

which at each time step, either wait in a queue or are in transit on some edge of the network

connecting two nodes. Associated with each edge e is an edge delay of d

e

> 0 time steps

required for a packet to traverse that edge, and at any given time, at most one packet can be

present on each edge. (There are other interesting routing models, for example allowing the

use of transmission lines on which packets can be pipelined, circuit-switching, or wormhole

routing, which are not considered in this paper.)

In the model of Leighton, et. al., packets wait in three types of queues. Before routing

begins, packets are stored at initial queues in the nodes where they are generated. Each

time a packet traverses an edge, it enters the edge queue at the end of that edge; a packet

can begin to traverse an edge only if the queue at the end of that edge is not full. Finally,

when a packet reaches its destination, it is placed into a �nal queue at that node. The sizes

3

of the initial and �nal queues are determined solely by the packet routing problem to be

solved, but we seek routing schedules that bound the maximum queue size for edge queues.

It is convenient in this paper to also use a second type of edge queue at the beginning of

each edge. The ability of a node to distribute incoming packets among the queues at the

beginnings of the outgoing edges enables simple mechanisms for limiting queue size.

We may view the packet routing problem as being comprised of two tasks, selecting a

path through the network for each packet and setting a schedule for when packets move and

wait. The second task has traditionally been the more di�cult one, and it is the focus of

this paper. Of course, the selection of paths a�ects the time and queue size required by a

legitimate schedule. For example, the maximum distance d, in number of edges, traveled

by any packet is a lower bound on the routing time; this distance is often referred to as

the dilation in the literature. In fact, the routing time is lower bounded by the maximum

over all packet paths of the sum of edge delays along the path. We refer to this measure

as the generalized dilation D, which di�ers from d when the unit wire delay assumption is

discarded. Similarly, the routing time is lower bounded by the congestion c, the maximum

over all edges of the number of packets that must traverse the edge over the entire course of

the routing, and by the generalized congestion C, the maximum over all edges of the number

of packets traversing the edge multiplied by the delay of the edge. We also use the notation

d

max

for the maximum over edges e of the edge delay d

e

.

Leighton, Maggs, and Rao have given a randomized on-line algorithm for the unit wire

delay case, which (with high probability) produces a schedule of length O(c+ d lg(Nd))

with queues of size O(lg(Nd)), where N is the number of packets [7]. This naturally im-

plies that in the problem with general edge delays, we could obtain a schedule of length

O(d

max

(c+ d lg(Nd))) by simply using d

max

time steps to simulate each step of the unit

delay algorithm. In Section 2, we give, for any � > 0, an on-line algorithm that produces

a schedule of length O((C lg

�

(Nd) +D lg(Nd))= lg lg(Nd)) with queues of size O

�

lg(Nd)

lg lg(Nd)

�

.

This is a signi�cant improvement, since cd

max

and dd

max

may be much larger than C and

4

D. It should also be noted that the constants hidden in the O-notation are of modest size

at least for � = 1, so the algorithm is practical.

Our on-line algorithm is also an improvement upon the result obtained from the (o�-line

but polynomial time) algorithm of Shmoys, Stein, and Wein [9] for job-shop scheduling. In

job-shop scheduling, the problem input consists of a set of jobs and a set of machines. Each

job consists of a sequence of operations, each of which has a speci�ed duration and must be

processed on a speci�ed machine. The operations of a job must be processed in order, and

each machine can handle at most one operation at a time. We can draw a correspondence

between job-shop scheduling and packet routing by thinking of jobs as packets and machines

as network edges. The schedule length of Shmoys, Stein, and Wein translated into our

notation for packet routing is O

�

(C +D)

lg

2

(Nd)

lg lg(Nd)

�

. Our superior result for packet routing

can be applied to job-shop scheduling as long as we impose the restriction that on any given

machine, all operations are of the same duration.

Leighton, Maggs, and Rao have also shown, for unit wire delay, that when the paths

traversed by the packets are edge-simple, there exists some schedule of length O(c+ d)

requiring only constant size queues. This immediately implies existence of a schedule

of length O(d

max

(c+ d)). In Section 3, we show that there exists a schedule of length

O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

with queues of size O(d

max

), a potential improvement when d > c.

This result also applies to the restricted form of job-shop scheduling with the additional

restriction that no job has more than one operation on a single machine.

2 On-Line Algorithm

Our basic approach to produce a schedule on-line is, as in [7, 9], to �rst produce an \uncon-

strained" schedule in which several packets may travel on the same edge at the same time and

then \atten" it into a legitimate schedule. We begin by showing how to produce a schedule

of length O

�

(C +D)

lg(Nd)

lg lg(Nd)

�

with queues of size O

�

lg(Nd)

lg lg(Nd)

�

when d

max

is bounded above

5

by a polynomial in N and d; later we re�ne the result to obtain, for any constant � > 0, a

schedule of length O((C lg

�

(Nd) +D lg(Nd))= lg lg(Nd)) with queues of size O

�

lg(Nd)

lg lg(Nd)

�

and

no restriction on d

max

.

For our initial result, the method of constructing the unconstrained schedule is essentially

the same as in the job-shop scheduling approach of Shmoys, Stein, and Wein [9]. (Our

advantage is gained through a superior method of attening to a legitimate schedule that is

not applicable to the general form of job-shop scheduling.) Each packet chooses an integral

delay randomly and uniformly from the interval [1; C]. A packet that is assigned delay

x waits in its initial queue for x time steps and then proceeds to its destination without

stopping. Though this may cause more than one packet to traverse a single edge at the same

time, it is unlikely that too many will do so, as is shown by the following lemma, adapted

from [9]. We include the proof here, because we will use similar arguments in proving later

results.

Lemma 1 (Shmoys, et. al.) When d

max

is bounded above by a polynomial in N and d,

the strategy of delaying each packet in its initial queue an integral amount chosen randomly

and uniformly from [1; C] yields an unconstrained schedule that is of length at most C +D

and, with high probability, has no more than O

�

lg(Nd)

lg lg(Nd)

�

packets traversing any edge at any

time.

Proof. We begin by considering the probability p that more than � packets are present on

a particular edge e during a particular time step t. Though packets may spend many time

steps traversing e, there are at most C total time units of routing on edge e. Thus, there

are at most

�

C

�

�

ways to choose � units of packet routing to occur on edge e at time t. The

probability that an individual one of these � units is scheduled on edge e at time t is at most

1=C since each packet chose a delay uniformly at random from C possibilities. If these �

units of routing are all from di�erent packets, the probability that they all occur on edge

e at time t is at most

�

1

C

�

�

, since packet delays are chosen independently; otherwise the

6

probability is 0. Thus, we have

p �

C

�

!

�

1

C

�

�

�

�

eC

�

�

�

�

1

C

�

�

=

�

e

�

�

�

;

where the bound on

�

C

�

�

can be obtained by using Stirling's approximation to the factorial.

For su�ciently large Nd, if � = k

lg(Nd)

lg lg(Nd)

, then, p � (Nd)

�(k�1)

. To bound the probability

that there exists any edge and time with more than k

lg(Nd)

lg lg(Nd)

packets, we multiply p by the

Nd bound on the number of edges used by some packet and by the C + D time steps in

the unconstrained schedule. The latter factor is also polynomial in N and d, since we have

assumed d

max

is. Thus, choosing k large enough yields the desired result.

We must now explain how to atten the unconstrained schedule into a legitimate schedule.

The attening procedure is trivial when each wire delay is just one unit of time. In that

case, an unconstrained schedule S of length L with at most packets on an edge at one

time can be attened to a legitimate schedule of length L by replacing each unit of S's

time with units of time in which the packets on any given edge are routed in turn. The

work of Shmoys, Stein, and Wein [9] on job-shop scheduling shows how to obtain a attened

schedule of length L lg d

max

in the general context of arbitrary durations for each operation

(edge traversal) of each job (packet). We show how to obtain a shorter attened schedule of

length L by taking advantage of a fact that applies to packet routing but not the general

form of job-shop scheduling, namely that the time required to traverse a given edge is the

same for all packets. We further show that we can atten schedules produced as in Lemma 1

on-line, whereas Shmoys, Stein, and Wein consider only an o�-line context. Also, we bound

the queue size, an issue not considered by Shmoys, et. al.

Lemma 2 Consider any unconstrained schedule of length L with at most packets on an

edge during any time step. The unconstrained schedule can be simulated by L steps of

7

a legitimate schedule, and the simulation can be performed on-line if all the delays in the

unconstrained schedule are in the initial queues. Furthermore, the queue size required by the

legitimate schedule is at most .

Proof. The basic idea is that each packet is routed as soon as possible in the legitimate

schedule (given the constraint of one packet per edge at any time), except that a packet that

begins traversing edge e at time t in the unconstrained schedule does not do so before time

t in the legitimate schedule. (Ties between di�erent packets needing to traverse the same

edge are broken arbitrarily.) Figure 1 shows an example of an unconstrained schedule and

its attened version. A more precise speci�cation indicating how the queues are managed

is that a packet that traverses edge e and then begins traversing edge e

0

at time t in the

unconstrained schedule is handled as follows: The packet is held in the queue at the end of

e until time t, when it is moved to the queue at the beginning of e

0

; as soon as it reaches

the head of the latter queue and no other packet is traversing e

0

, it begins to traverse e

0

.

The process just described can be accomplished on-line by having each packet carry a �eld

that holds the time that the packet begins traversing the upcoming edge in the unconstrained

schedule. Initially, each packet holds the delay assigned in its source processor; each time a

packet is dispatched on an edge, it adds in the delay of that edge.

It remains to be shown that all packets are routed by time L. Let us refer to the

traversal by a particular packet of a particular edge as an operation. Also, let t

!

UB

and t

!

UE

represent the begin and end times for operation ! in the unconstrained schedule, and let

t

!

LB

and t

!

LE

represent the times in the legitimate schedule. Our attening process, clearly

enforces t

!

LB

� t

!

UB

, and we now show that t

!

LE

� t

!

UE

.

We proceed by induction on time. Under the assumption that t

!

LE

� t

!

UE

whenever

t

!

UE

� t, we can show that the same is true whenever t

!

UE

� t + 1. (The base case with

t = 0 is trivial.) Consider any operation ! with t

!

UE

= t+1, and denote the packet and edge

involved as m and e, respectively. (If there is no such operation, we are done.) We know that

8

1

3

2e1

4

6

5e2

5 7

6

2 8

9

e3

e3

e4

e2

e1 1 3 2

4 5 6

5 2 6 7 8 9

3 7 6 8 12 2 9 5 10 11 1314

3

6

7

2

8 9

10

11

12 5 13

e4

14

-

..

.

-

0 2 3 4 5

time

time

(a) (b)

0 L

Figure 1: An example of the attening process for four edges, e

1

, e

2

, e

3

, and e

4

and messages

numbered 1 to 14. (a) The initial unconstrained schedule of L = 7 and = 3. (b) The

attened version of the schedule in (a).

t

!

UB

= t+1� d

e

and that there are at most packets that begin traversing e at t+1� d

e

in

the unconstrained schedule. By the induction hypothesis, each of those packets is ready

to begin traversing e by time (t+1�d

e

) in the legitimate schedule. Even if m is the last of

these packets to be sent over e, it completes its traversal by time (t+1�d

e

)+d

e

= (t+1).

The bound on the queue size can be obtained by using the already established relationship

of t

!

UB

� t

!

LB

� t

!

LE

� t

!

UE

and the fact that packets do not wait at intermediate nodes in

the unconstrained schedule. It follows that the set of packets in any edge queue at a given

time must have begun traversing the corresponding edge within a �xed period of d

e

time

steps in the unconstrained schedule; there are at most such packets.

By putting together Lemmas 1 and 2, we obtain the following result:

Theorem 3 When d

max

is bounded above by a polynomial in N and d, any set of packets

can be routed on-line in O

�

(C +D)

lg(Nd)

lg lg(Nd)

�

steps using queues of size O

�

lg(Nd)

lg lg(Nd)

�

, with high

9

probability.

We can remove the restriction on d

max

by using a technique similar to [9], but again we

must show how to perform the task on-line:

Theorem 4 Any set of packets can be routed on-line in O

�

(C +D)

lg(Nd)

lg lg(Nd)

�

steps using

queues of size O

�

lg(Nd)

lg lg(Nd)

�

, with high probability.

Proof. We can begin by thinking of each d

i

as being rounded down to the nearest multiple of

d

max

Nd

, denoted d

0

i

. In the resultant network, N

0

, edges have at most Nd distinct lengths which

are multiples of

d

max

Nd

. By working with a routing clock period of

d

max

Nd

, we can use Lemma 1

to produce the unconstrained schedule we used above, since C and D are polynomial in N

and d when expressed in units of

d

max

Nd

. The only problem is that in the real network N ,

each d

0

i

must be adjusted upward to d

i

. But each adjustment is at most

d

max

Nd

, which we can

handle by simply doubling the clock period to

2d

max

Nd

, i.e., giving packets twice as much time

at each step to travel or wait on the same edge as before. This adjustment does not change

the number of packets using any edge during any time step, so we can proceed with the

attening process just as before.

We can also improve the schedule length by tightening the analysis in Lemma 1:

Theorem 5 For any constant � > 0, with high probability, on-line routing of any set of

packets can be achieved in O

�

1

�

(C lg

�

(Nd) +D lg(Nd))= lg lg(Nd)

�

steps using queues of size

O

�

lg(Nd)

lg lg(Nd)

�

.

Proof. We modify Lemma 1 to produce an unconstrained schedule of length D+ �C (for �

to be determined) by choosing delays from [1; �C]. Once � is determined, the �nal attened

schedule will be of length (D + �C)� . In Lemma 1, the upper bound on p becomes

�

e

��

�

�

.

Then for � = (lg(Nd))

��1

(with � > 0) and � =

k

�

lg(Nd)

lg lg(Nd)

, we obtain p � (Nd)

�(k�1)

for

su�ciently large Nd.

10

It should be noted that the constant k in the proof of Theorem 5 is of modest size,

so we certainly obtain a practical algorithm for � = 1, the case that leads to Theorem 4.

Even Theorem 4 specialized to unit edge delay improves upon the on-line result of Leighton,

Maggs, and Rao except when c is somewhat larger than d. But we can also handle this case

by obtaining an on-line algorithm with running time more closely parallel to that of Leighton,

et. al. We could then interleave di�erent routing algorithms to obtain an algorithm with

running time on the order of the minimum of the running times of the individual algorithms.

Theorem 6 Any set of packets can be routed on-line in O(C +D lg(Nd)) steps using queues

of size O(lg(Nd)), with high probability.

Proof. The proof is the same as for Theorem 5 except that we use � = 1= lg(Nd) and

� =
(lg(Nd)).

3 O�-Line Schedule

In this section, we show that for any set of packets with edge-simple paths, there exists

a schedule of length O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

using queues of size O(d

max

). Our proof is

nonconstructive, but it may still be helpful to know that such a schedule exists. For a

communication pattern that is to be used often enough, it may be worthwhile to spend

substantial o�-line computation time determining an improved schedule. (In particular, this

situation arises in network emulation problems as described in [5, 7].) That is, the basic

structure of the proof is to show that there is some way of choosing delays for packets from

speci�ed ranges so as to achieve the bounds on schedule length and queue size indicated

above. Given enough computation time, one could try every possible combination of delays

for the packets to see which set of choices yields the desired schedule. It actually may also

be possible to construct the schedule more e�ciently by using recent results on algorithmic

versions of the Lov�asz Local Lemma [1, 2]; success in the unit delay case has been reported

by Leighton, et. al. [7].

11

Since part of the o�-line proof parallels that of Leighton, et. al., we adopt a few of their

de�nitions. In particular, a set of T consecutive time steps is referred to as a T-frame or a

frame of size T . We also de�ne the congestion in a frame to be the largest number of packets

that traverse any edge during the frame. The relative congestion in a frame is the ratio of

the congestion in the frame to the size of the frame.

The high-level strategy for producing a schedule with the desired bounds is speci�ed in

Procedure Offline-Routing below.

procedure Offline-Routing

1 Produce an unconstrained schedule of length L = O(cd

max

+D) in which the

congestion is O(d

max

) in each every frame of size T or greater, where T is O(d

2

max

).

2 Convert the schedule to one of length O(L) in which at most = O

�

lg(d

max

)

lg lg(d

max

)

�

packets use an edge during any unit time step.

3 Flatten the schedule into a legitimate schedule of length O(L).

The most complicated part of the procedure Offline-Routing, and the part that

parallels Leighton, et. al., is the �rst step. Due to the close parallels, we will only sketch

the proof that step 1 can be achieved; the interested reader may �nd details in [4]. We will

�rst prove that steps 2 and 3 can be achieved given a successful completion of step 1. Both

steps 1 and 2 depend on the Lov�asz Local Lemma [10]:

Lemma 7 (Lov�asz Local Lemma) Let A

1

; � � � ; A

m

be events each occurring with depen-

dence at most b, i.e., every one of the events is mutually independent of at least m� b other

events. If 8i Pr fA

i

g � p and 4pb < 1, then the probability that none of these events occurs

is greater than zero.

We now show that steps 2 and 3 of Offline-Routing can be achieved given an uncon-

strained schedule (allowing several packets on the same edge at the same time as in Section 2)

as speci�ed in step 1:

Lemma 8 Given an unconstrained schedule of length L = O(cd

max

+D) in which the con-

gestion is k = O(d

max

) in every frame of size T or greater, where T is O(d

2

max

), we can

produce a legitimate schedule of length O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

using queues of size O(d

max

).

12

Proof. We begin by achieving step 2 of the procedure Offline-Routing by independently

rescheduling frames of size �(d

2

max

). (We are able to make the frames independent by

extending each one by d

max

time steps so that each operation of routing a packet on an edge

occurs entirely within one frame.)

Within each frame, each packet chooses a delay x randomly and uniformly from [1; �d

2

max

],

where � is a constant to be determined. The resultant schedule is of length O(d

2

max

). We

claim that for � =
(

lg(d

max

)

lg lg(d

max

)

), there is a way of choosing x's such that at most � packets use

an edge during any unit time step. The claim is proved by using the Lov�asz Local Lemma.

For each edge e, we de�ne a bad event as the event that more than � packets use the edge

at some time step. For any packet, there are at most d

e

� d

max

delays that cause it to be

present on e at a particular time step, so the probability that it appears on e at a particular

time is at most

d

max

�d

2

max

. Then, since there are �(d

2

max

) time steps in the frame, the probability

p that a particular bad event occurs is O

�

d

2

max

�

k

�

� �

d

max

�d

2

max

�

�

�

. Also, since at most k packets

pass through any edge, and each of those packets passes through at most �(d

2

max

) other

edges in the frame, the dependence b is at most kd

2

max

= O(d

3

max

). Thus, for a su�ciently

large constant �, we have 4pb < 1 (by bounding the binomial coe�cient as in the proof of

Lemma 1), from which the claim follows.

Finally we achieve step 3 of the procedureOffline-Routing by simply applying Lemma 2.

For the queue size bound, notice that queues are of size O(d

max

) at the end of step 2, since

the congestion in each frame of size �(d

2

max

) is O(d

max

), and then the attening process does

not increase queue sizes by more than

lg(d

max

)

lg lg(d

max

)

.

All that remains is to sketch the proof that step 1 of the Offline-Routing procedure

can be achieved:

Lemma 9 Given any set of packets with edge-simple paths, we can produce an unconstrained

schedule of length O(cd

max

+D) in which the congestion is O(d

max

) in each every frame of

size T or greater, where T is O(d

2

max

).

13

Sketch of proof. Note �rst, that since our goal is to prove a bound of O(cd

max

+D) on

the length of the unconstrained schedule, it su�ces to assume that cd

max

= D and prove

a bound of O(cd

max

). Our strategy is to use an approach similar to Leighton, Maggs, and

Rao [7, 8] of making a succession of re�nements to the \greedy" schedule, in which packets

never wait. In this succession of re�nements, we bound the congestion in smaller and smaller

intervals of time until the number of packets using an edge is at most O(d

max

) during any

set of �(d

2

max

) consecutive time steps.

We begin with a special re�nement that transforms the greedy schedule, S

0

, into a sched-

ule S

1

in which the relative congestion in each (d

max

lg c)-frame is O

�

1

d

max

�

. Each successive

re�nement transforms a schedule S

i

with relative congestion at most r

i

in any frame of size

(at least) d

max

I

i

(with I

i

=
(d

max

)) into a schedule S

i+1

with relative congestion at most

r

i+1

in any frame of size (at least) d

max

I

i+1

, where r

i+1

� r

i

and I

i+1

� I

i

. This overview is

exactly the same as for Leighton, et. al., except that in their analysis d

max

is replaced by 1.

For the initial re�nement that produces S

1

from the greedy schedule of length jS

0

j =

cd

max

, we assign each packet an integral delay x chosen randomly and uniformly from the

interval [1; �cd

max

] so that jS

1

j = (1+�)cd

max

. Then we proceed with the following iterative

re�nement process to transform S

i

into S

i+1

until the desired unconstrained schedule is

obtained.

Begin the ith re�nement by breaking S

i

into blocks of (2I

3

i

+ 2I

2

i

� I

i

)d

max

consecutive

time steps and rescheduling each block independently. Within each block, we assign each

packet an integral delay x chosen randomly and uniformly from [1; I

i

d

max

]. A packet assigned

delay x is actually delayed once every I

i

steps in the �rst xI

i

steps. In order to make the

packets end up in the same positions at the end of the rescheduled block as in the block

of S

i

(so that the blocks remain independent), we also insert a delay every I

i

steps in the

last (I

i

d

max

� x)I

i

steps, yielding rescheduled blocks of (2I

3

i

+ 2I

2

i

)d

max

steps. (Since we are

allowing nonunit edge delays, some of the delays we have inserted may occur in the midst of

an edge traversal rather than at a queue, but the delays can be moved to the nearest queue

14

after all the re�nements have been completed.)

It can be shown that each of the rescheduled blocks of (2I

3

i

+2I

2

i

)d

max

steps has appropri-

ately reduced frame size except in the �rst and last I

2

i

d

max

steps. So we shift the boundaries

of the rescheduled blocks so that each one contains a \fuzzy" region of size 2I

2

i

d

max

at its

center where the frame size needs to be reduced. Then we reduce the frame size in the

fuzzy region by inserting delays in the I

3

i

d

max

steps before it and the I

3

i

d

max

steps after it.

Each packet is assigned a delay from 1 to I

2

i

d

max

. A packet with delay x waits once every

I

3

i

d

max

=x steps before the fuzzy region and once every I

3

i

d

max

=(I

2

i

d

max

� x) steps after the

fuzzy region.

To prove that the initial re�nement and each of the iterative re�nements achieves the goals

speci�ed in the second paragraph of this proof sketch, we use the Lov�asz Local Lemmaas

in the proof of Lemma 8. The proofs are similar to those of Leighton, et. al., the main

di�erence being that we must recognize that T + d

max

delays to a given packet could cause

it to be on a given edge during a give T -frame. We also assume that c =
(d

max

) in order

to achieve the needed bound on dependence in the construction of the initial re�nement; if

c =
(d

max

) does not hold, we simply skip step 1 of the Offline-Routing procedure and

apply step 2 directly to the greedy schedule.

The result of the analysis of the iterative re�nement process may be summarized by the

following lemma, which corresponds to the result of Leighton, et. al. with d

max

= 1:

Lemma 10 As long as I

i

=
(d

max

), the ith re�nement step described above decreases the

frame size from I

i

d

max

to I

i+1

d

max

= (lg

5

I

i

)d

max

for the entire schedule, while the relative

congestion becomes r

i+1

= r

i

(1 + O(1) =

p

lg I

i

). Furthermore, we can arrange that every

packet waits at most once every I

i

steps in S

i+1

.

We perform re�nement steps until we obtain a schedule S

j

with I

j

= O(d

max

); note that

r

j

= O(r

1

) = O

�

1

d

max

�

. At this point, we move delays that fall in the midst of an edge

15

traversal to the edge queue for the corresponding edge, which has no e�ect on the congestion

in any frame and does not require queues larger than O(d

max

), since the congestion in frames

of size I

j

d

max

isO(I

j

) = O(d

max

). Since every packet waits at most once every I

j�1

=
(d

max

)

steps in S

j

, we end up with each packet waiting at most once in each edge queue. Thus, we

have obtained a schedule S

�

of length O(D) = O(cd

max

) and congestion O(I

j

) = O(d

max

) in

each I

j

d

max

-frame.

Putting together Lemmas 9 and 8 gives us our �nal result:

Theorem 11 For any set of packets with edge-simple paths, there exists a legitimate schedule

of length O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

using queues of size O(d

max

).

4 Conclusion

We have shown that for any constant � > 0, we can route a set of N packets on-line with high

probability in O((C lg

�

(Nd) +D lg(Nd))= lg lg(Nd)) time. Also, for edge-simple paths, there

exists a schedule of length O

�

(cd

max

+D)

lg(d

max

)

lg lg(d

max

)

�

. An important open question is whether

there exists a schedule of length closer to the lower bound of C + D. Also, it would be

desirable to obtain improved on-line results and to construct universal networks for parallel

computation, as in [3], based on these routing capabilities.

References

[1] N. Alon. A parallel algorithmic version of the local lemma. In 32nd Annual Symposium

on Foundations of Computer Science, pages 586{593. IEEE Computer Society Press,

1991.

[2] J. Beck. An algorithmic approach to the lov�asz local lemma I. Technical Report 91-21,

DIMACS, 1991. To appear in Random Structures and Algorithms.

16

[3] R. I. Greenberg. The fat-pyramid and universal parallel computation independent of

wire delay. IEEE Trans. Computers, 43(12):1358{1364, Dec. 1994.

[4] R. I. Greenberg and H.-C. Oh. Packet routing in networks with long wires. Technical

Report UMIACS-TR-93-22, University of Maryland Institute for Advanced Computer

Studies, 1993.

[5] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg. Work-preserving emulations

of �xed-connection networks. In Proceedings of the 21st ACM Symposium on Theory of

Computing, pages 227{240. ACM Press, 1989.

[6] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and

sorting on �xed-connection networks. Journal of Algorithms, 17(1):157{205, July 1994.

[7] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling

in O(congestion + dilation) steps. Combinatorica, 14(2):167{180, 1994.

[8] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. In 29th An-

nual Symposium on Foundations of Computer Science, pages 256{269. IEEE Computer

Society Press, 1988.

[9] D. B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop

scheduling problems. In Proceedings of the 2nd Annual SIAM Symposium on Discrete

Algorithms, pages 148{157, 1991.

[10] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, 1987.

17

Ronald Greenberg received the A.B. degree in Mathematics, the B.S. degree in Com-

puter Science and the B.S. and M.S. degrees in Systems Science and Mathematics all from

Washington University, St. Louis, MO in 1983. He received the Ph.D. degree in Electrical

Engineering and Computer Science from the Massachusetts Institute of Technology in 1989.

He is currently an Assistant Professor in the Electrical Engineering Department and

the Institute for Advanced Computer Studies at the University of Maryland. His research

interests include parallel computation and algorithms for computer-aided design of integrated

circuits.

Hyeong-Cheol Oh received the B.S. degree in Electronics Engineering from Seoul National

University, Seoul, Korea, and the M.S. degree in Electrical and Electronic Engineering from

Korea Advanced Institute of Science and Technology, Seoul, Korea. He received the Ph.D.

degree in Electrical Engineering at the University of Maryland, College Park in 1993.

He is currently an Assistant Professor in the Department of Information Engineering,

Korea University, Chochiwon, Korea. He also worked for three years at Goldstar Semicon-

ductor Ltd, Korea, where he designed NMOS full-custom and CMOS Gate-Array ICs. His

research interests include parallel computation and VLSI design.

18

	Loyola University Chicago
	Loyola eCommons
	12-1995

	Packet Routing in Networks with Long Wires
	Ronald Greenberg
	Hyeong-Cheol Oh
	Author Manuscript
	Recommended Citation

	root.dvi

