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Abstract: In this position paper, we provide a preliminary assessment of hardware and software solution stack choices
available to developers of resource-oriented web services on commodity embedded devices. As part of an
ongoing interdisciplinary research project on air and water quality in a major urban ecosystem, we are de-
veloping an information infrastructure amounting to a role-based hierarchy of individually addressable, in-
terconnected resources, ranging from sensors, analyzers, and other monitoring devices to aggregators and
publishers. This infrastructure follows the Representational State Transfer (REST) architectural pattern and
integrates non-networked or non-RESTful monitoring devices through RESTful proxy resources running on
low-cost, low-energy, possibly wireless, always-on embedded servers. Commodity wireless routers running
a suitable embedded Linux distribution are a good choice for this purpose, and we have started to survey
the landscape of supported solution stacks, including programming languages and RESTful frameworks: Not
only were our preferred, familiar choices unavailable for medium-end routers, but we had to develop our own
lightweight REST layer for lower-end routers. Given the growing popularity of embedded Linux devices,
however, we argue that programming language designers and framework architects should support them to a
much greater extent than they do now. In addition, as the demand for green computing grows, we argue that
memory- and processor-efficient languages and frameworks become increasingly important.

1 INTRODUCTION

The purpose of this position paper is to provide a pre-
liminary assessment of hardware and software solu-
tion stack choices available to developers of resource-
oriented web services on low-power equipment. The
context for this discussion is an ongoing interdisci-
plinary research project on air and water quality in a
major urban ecosystem.

The information infrastructure we are develop-
ing for this project amounts to a role-based hierar-
chy of individually addressable, interconnected re-
sources, ranging from a large number of sensors, an-
alyzers, and other monitoring devices to aggregators
and publishers. In developing this infrastructure, we
follow the Representational State Transfer (REST) ar-
chitectural pattern (Fielding, 2000); accordingly, we
incorporate non-networked or non-RESTful monitor-
ing devices through RESTful proxy resources running
on low-cost, low-energy, possibly wireless, always-on
embedded servers.

Given that such devices are readily available in the
form of commodity wireless routers running a suit-
able embedded Linux distribution, we have started to
survey the landscape of supported solution stacks, in-
cluding programming languages and RESTful frame-
works: Not only were our preferred, familiar choices
unavailable for medium-end routers, but we had to de-
velop our own lightweight REST layer for lower-end
routers. Because embedded Linux devices are becom-
ing increasingly common for a wide range of uses,
however, we argue that language designers and soft-
ware framework architects should support them to a
much greater extent than they do now. In addition,
as the demand for green computing grows, memory-
and processor-efficient languages and frameworks be-
come increasingly important.



2 THE NEED FOR RESTFUL
THINKING

The Representational State Transfer (REST) architec-
tural pattern (Fielding, 2000) is centered around ad-
dressable resources with a uniform interface and hy-
permedia representations. In RESTful web services,
URIs are used as addresses, HTTP verbs (request
methods) as the uniform interface, and XML or JSON
(JavaScript Object Notation) as representations.

By exposing our hierarchical information infras-
tructure as a collection of interconnected RESTful
web services, we allow the available information to
be consumed in flexible ways by user interface pre-
sentation layers, data analysis tools, web application
mashups, and other planned or unforeseen program-
matic clients.

Addressable resources Our information infrastruc-
ture can be conceived naturally as a RESTful resource
set (Pisupati and Brown, 2006; Taherkordi et al.,
2010).

• The singleton root resource corresponds to the in-
formation infrastructure itself.

• Locations can be grouped at multiple levels cor-
responding to places, organizations, or organiza-
tional units.

• Each location can be configured to house one or
more devices.

• Each device is responsible for measurements,
such as nitrogen monoxide (NO), nitrogen diox-
ide (NO2), or ozone (O3).

• For any measurement, the device can provide the
current reading or historical values such as the
minimum, maximum, or average over a given
time period. A unit of measurement is associated
with each reading.

A topic for further investigation is the federation of
disjoint resource sets (across physical servers) into a
single, seamlessly browsable distributed resource.

HTTP verbs as the uniform interface Our re-
sources support the main verbs of the uniform inter-
face of HTTP, that is, the request methods GET, PUT,
POST, and DELETE. These are similar to the familiar
CRUD (Create, Read, Update, Delete) operations for
manipulating resources but do not correspond one-to-
one. Specifically, PUT is idempotent and corresponds
to creating or fully updating a specific resource, while
POST corresponds to adding a child resource, par-
tially updating a resource (in absence of widespread

support for the PATCH request method), or other non-
idempotent operations. While most interaction with
environmental sensors is read-only, some sensors do
provide mutable resource state for configuration set-
tings such as the unit of measurement, calibration set-
tings, and the like. Our resources naturally support
the uniform interface as follows:

• Obtaining a measurement reading or device set-
ting from the sensor maps to the GET method.

• Providing a specific new value for a device setting
is idempotent and, thus, maps to the PUT method.

• Toggling or cycling among several options is not
idempotent and, thus, maps to the POST method.

• Some nodes in our infrastructure cache histori-
cal data as their resource state; explicitly deleting
some of those data maps to the DELETE method.

Hypermedia representations The resources in our
information infrastructure are naturally intercon-
nected, and hypermedia representation formats ex-
pose these connections as links. For example, the rep-
resentation of an aggregator node includes a link to its
list of (statically known and/or dynamically discov-
ered) children. In addition, in following the Hyperme-
dia as the Engine of Application State (HATEOAS)
principle (Fielding, 2008), the representations include
links that represent the next actions, corresponding to
state transitions, currently available to the consumer.
For example, the representation of a reading includes
a link to the device that produced the reading, and the
representation of a device includes links to the various
device settings, which can be modified with sufficient
authorization.

Implementation Using the Restlet framework for
Java, to which the second author contributed ex-
ample code and documentation, we have imple-
mented a RESTful proxy for monitoring devices
that are network-capable but not RESTful on their
own. Our implementation runs on a conventional
Linux server and includes an adapter component
for a class of devices that support the widely used
TCP-based Modbus protocol. It is currently serves
as a RESTful proxy for several Thermo Scien-
tific air quality analyzers available at our institu-
tion. For example, our proxy maps routes of
the form /{location}/{device}/{measurement}
/{reading} to a resource that obtains a reading from
a device. The fragment of the externalized configura-
tion metadata (for the Spring Framework dependency
injection container) in Figure 1 shows a specific loca-
tion with a nitrogen oxide analyzer. The measurement
register settings specify which Modbus data registers



<entry key="baumhart">
<bean class="DefaultLocation">
<property name="devices"><map>
<entry key="42i">
<bean class="ModbusDevice">
<property name="hostname"
value="147.126.68.251" />

<property
name="readableSettings"> ...

</property>
<property
name="measurementRegisters"><map>
<entry key="no2"><map>
<entry key="current"
value="0"/>

<entry key="min" value="10"/>

Figure 1: Resource configuration in Spring

correspond to which readings from the analyzer. The
complete code for this example is available online.

3 GREEN PERVASIVE
COMPUTING

As pervasive computing becomes increasingly preva-
lent, more and more attention is given to green tech-
nology in the form of low-power, embedded devices.
Indeed, such devices are increasingly common as part
of the Internet of Things (Guinard et al., 2010) and
the emerging Web of Things and serve a variety of
needs, including home automation, home and small
office security, home entertainment, weather and en-
vironmental monitoring, RFID and identity manage-
ment, and near-field communication for presence and
proximity applications.

Accordingly, one of the key nonfunctional re-
quirements for our information infrastructure and its
constituent devices is minimal power consumption.
Other requirements include low cost, always-on op-
eration, and, in some cases, wireless network connec-
tivity. To this end, we examine the lower end of the
server hardware spectrum, starting from the top.
Conventional x86-based servers, including low-

energy versions such as Atom, Via C7, etc.,
typically include several gigabytes of RAM.
These systems support the full spectrum of
available software solution stacks, but at the
expense of power consumption and memory
use. Idle power consumption ranges from 30
watts for low-power fanless systems to several
hundred watts for conventional systems. Cost
starts around US$200.

Plug computers, usually ARM-based, have recently
emerged as an alternative to conventional sys-

tems and typically offer half a gigabyte of RAM
or more. These systems also support standard
available solution stacks. Idle power consump-
tion ranges from 5 to 15 watts. Cost starts around
US$100 but can reach two or three times that
amount for fanless systems with diverse I/O ports,
such as eSATA and USB.

Wireless routers, network-attached storage (NAS)
devices, and similar devices are typically based
on ARM or embedded MIPS CPUs and feature
0-32MB on-board flash memory and 2-64MB
RAM. Although these are sold as special-purpose
consumer devices, numerous models can be con-
verted to general-purpose embedded servers by
installing a suitable embedded Linux distribution
that supports a subset of the standard solution
stacks (discussed in more detail below). Virtu-
ally all of these devices are fanless, and idle power
consumption is around 1 to 3 watts. Cost ranges
from US$40 to US$120 for routers depending on
memory, wireless radio chipset, and presence of
USB ports. The differences in power consump-
tion and cost when compared to plug computers
seem to be minor but quickly scale up when tens
or hundreds of devices are involved.

Single-board embedded computers and microcon-
trollers, often ARM- or Atmel-based, are de-
signed to perform device control tasks and are of-
ten limited to flash memory and RAM well be-
low one megabyte. Some of these systems run
embedded Linux distributions with very limited
software and operating system stacks. Idle power
consumption is well below 1 watt. Cost starts
around US$20 for a bare board without case, not
including the cable required to connect the chip
to a host computer and program it. These devices
are generally not suitable as stand-alone servers
but could be useful when attached to, say, an em-
bedded host computer.

Wireless routers and related devices in the second-last
category appear to be the most economical devices in
terms of cost, availability, power consumption, and
physical footprint that can be used as general-purpose
embedded Linux servers. Based on our evaluation,
wireless routers and related devices offer the sweet
spot in terms of these requirements:

Reliability: These devices are based on mature
chipsets with a common architecture, such as
ARM or MIPS. They are fanless and have no other
moving parts, yet they are not so small as to im-
pede good air flow for cooling.

Ease of software development: There are several
choices of embedded Linux distributions for these



devices. Software development for these targets
is well supported. Development typically takes
place using an integrated development environ-
ment or other tools on a development host; the
resulting code is then either cross-compiled for or
directly interpreted on the embedded target.

Active community support: There are active,
knowledgeable communities for both hardware
and operating system.

Specific device choices include

• low end: ASUS WL520gU with a 200MHz
Broadcom CPU, 4MB flash, and 16MB RAM for
US$40

• mid-range: ASUS WL500gP v2 with a 240MHz
Broadcom CPU, 8MB flash, and 32MB RAM for
US$65

• high end: Buffalo WZR-HP-G300NH with a
400MHz Atheros CPU, 32MB flash and 64MB
RAM for US$90

The remaining step is to choose an embedded Linux
distribution. Some of the available choices, such as
Tomato and DD-WRT, focus primarily on router func-
tionality, while others, such as Embedded Debian,
have too large a footprint for our target devices. We
have chosen OpenWrt (OpenWrt, 2010) for the fol-
lowing reasons: support for a wide range of devices,
including the three mentioned above; open and flexi-
ble with excellent build system; extensive documen-
tation; mature code base under active development,
and a competent and helpful community. Various em-
bedded distros, including OpenWrt, replace the C li-
brary (usually glibc) with uClibc, which provides es-
sentially the same functionality with a much smaller
memory footprint.

We typically configure our devices to run as wire-
less clients (in so-called station mode) on an existing
wireless network infrastructure. We have confirmed
that the low-end WL520gU can run for four hours on
four rechargeable NiMH AA batteries. In the near
future, we plan to add a small solar panel to charge
the battery pack continually. The advantage of such a
configuration is that it can be deployed where desired
but without the need for any wired connections.

4 RESTFUL SERVICES FOR
EMBEDDED DEVICES

In practice, we have found it challenging to apply
RESTful thinking to green computing on embedded
devices. We cannot simply deploy a service devel-
oped for a conventional platform to an embedded

one. For example, the RESTful sensor proxy example
shown above, implemented in Java using the Restlet
and Spring frameworks, will not run on the limited
Java ME (Micro Edition) virtual machines available
on embedded Linux platforms.

In the remainder of this section, we will discuss
preliminary results from our ongoing effort to eval-
uate programming languages and REST frameworks.
This effort is quite similar to the implementing-rest
project (Amundsen et al., 2011), but with the added
constraint of embedded Linux devices as deployment
targets. As we will discuss below in more detail, this
added constraint requires us to shift focus from Java
and .NET to cross-compilation, scripting, and other
lightweight approaches.

Java As mentioned above, Java on OpenWrt is lim-
ited to the Java ME platform with the Connected De-
vice Configuration (CDC, JSR 218). The CDC Foun-
dation Profile is a set of APIs designed for headless
servers and other devices without a GUI. Java ME,
still based on Java 1.4.2, is missing important re-
cent additions to the language, most notably, anno-
tations and complete support for reflection, as well
as java.util.concurrent. Because most modern REST
frameworks, dependency injection containers, and
other commonly used frameworks and tools rely on
these language features, they cannot be used on our
target devices out of the box. Even the NetKernel
resource-oriented platform, which explicitly supports
Java 1.4.2, will not work out of the box on Java ME
because it uses the String.replaceAll method instead
of String.replace; we are currently investigating how
much effort it would take to port NetKernel to this
platform. Furthermore, many frameworks rely heav-
ily on XML, which can be memory-intensive and for
which Java ME support is limited (JSR 280); we pro-
pose to rely more on JSON than XML for lightweight
externalized configuration and data exchange. Con-
sequently, if one wants to develop Java services for
embedded Linux devices, one is limited to a solution
stack of older versions of the relevant layers, such as
the Jetty 6.1.x: web server, db4o 7.x object database,
beanshell 2.0b4 scripting environment, and PicoCon-
tainer 1.3 dependency injection container. Instead, we
hope that there will at some point be a Java “Micro
Enterprise Edition” that is more up-to-date language-
wise and offers better support for RESTful service de-
velopment for embedded devices.

.NET/Mono We hope that .NET on the Mono run-
time will eventually be a viable alternative. Mono
is known to run on ARM, but the pertinent docu-
mentation refers to Mono 1.x, while the current ver-



sion is 2.8.x. We successfully cross-compiled the
Mono 2.8.1 runtime for OpenWrt and installed it on
x86, ARM, and MIPS. While the x86 installation
passed all tests included with the Mono runtime, only
very simple programs worked on ARM and MIPS.
This confirms that the problem is not using Mono on
a uClibc-based system but possibly the just-in-time
compilation for these non-x86 processors. We hope
that this problem will be addressed eventually be-
cause of the wealth of REST and other frameworks
available for .NET.

Cross-compilation In contrast with the byte-code-
based Java and .NET platforms, using cross-
compilation to generate binaries for the target devices
is well supported. Languages such as C and C++
work well. In particular, C++ along with the Boost
libraries is a promising choice for interfacing with
external sensors or microcontrollers. By adding the
POCO C++ libraries for building network-based ap-
plications, C++ could be an overall winner. We have
not evaluated these libraries yet, but they appear to
be well documented and under active development.
Although Objective-C works as a language, the asso-
ciated GNUstep framework is too resource-intensive
for embedded targets. We were also interested in the
Embedded ML project, which translates ML code to
C code, which can then be cross-compiled. Unfortu-
nately, the resulting binaries crashed immediately on
x86, ARM, and MIPS, so we suspect that the gener-
ated code is not compatible with uClibc.

Other interpreted and scripting languages We
have also experimented with various interpreted and
scripting languages, which can very conveniently be
developed on a host and interpreted on target at source
or byte-code level. While all of these languages work
more or less well on conventional hardware, the ques-
tion is how well they scale down to embedded hard-
ware, and this is where differences become apparent.
Our preliminary experience is as follows:

Erlang is well supported on OpenWrt. There is a
package for the Mnesia database, and one can
manually install the RESTful Webmachine frame-
work. We have already confirmed that this solu-
tion stack runs well on a mid-range router. Given
how interesting Erlang is as a functional language,
we are eager to evaluate this stack further.

Lua is directly supported in the form of a module for
the extremely lightweight uhttpd server. We im-
plemented a very minimal Lua script service that
exposes data from a USB input device as a REST-
ful resource (see Figure 2) in a similar way as

sensors = {
baumhart = {
ts42i = {
nitrogen = {
no = {
current = function()
return read_sensor(device, 7)

end,
...

Figure 2: Resource configuration in Lua

function map_path_to_resource(path, resource)
pos = resource
for word in
string.gfind(path or "", "[^/]+") do
pos = pos[word]

end
if type(pos) == "table" then
header_ok()
print("[\"" .. table.concat(keys(pos),
"\", \"") .. "\"]")

elseif type(pos) == "function" then
header_ok()
print(string.format("{ \"value\": %u }",
pos()))

else
header_notfound()

end
end

Figure 3: Mapping from URI path to resource

the previous Restlet/Spring example. The func-
tion shown in Figure 3 maps the request URI path
to this Lua resource set object and returns a rep-
resentation of the resource in the JavaScript Ob-
ject Notation (JSON). The two auxiliary functions
generate the HTTP response headers that precede
the response body with the representation. The
complete code is available online.
Notably, all packages required for this configura-
tion, together with our Lua code, fit within the
4MB flash memory of the low-end WL520gU
router. This is a key requirement for the follow-
ing reason: The external input device is plugged
into the single USB port of this router. Exceeding
the available flash memory would require a USB
memory stick and a USB hub. The additional re-
quired power would take us further away from the
goal of battery- or solar-powering the router.
On mid-range systems, there are additional
choices. Among many other packages, Lua pro-
vides the Orbit web framework, which supports
the main HTTP request methods. Portions of this
framework are written in C, but the luarocks pack-
age management system can be set up for cross-
compilation. We have gotten basic server func-
tionality to work on a mid-range router and plan



to evaluate Orbit during the next few months.

Perl is well supported with over 135 packages avail-
able, but we have not had an opportunity to eval-
uate it yet. Several RESTful frameworks for Perl
have been mentioned on stackoverflow.com.

PHP is well supported with over 30 packages avail-
able. It runs within the lighttpd web server
through FastCGI and appears to consume rel-
atively little memory and other processor re-
sources. Given that there are several RESTful
frameworks for PHP, this choice looks promising
and merits further evaluation.

Python also appears to be well supported with over
20 packages available. Based on our initial ex-
plorations, there appear to be some issues with
Python’s package management systems that must
be resolved before further evaluation is possible.

Ruby is well supported in terms of the availability
of packages and tools. Nevertheless, the gems
package management system runs out of memory,
sometimes requiring a reboot of the device. In ad-
dition, the WEBrick web server toolkit example
works but caused over 100 processes under rela-
tively light load, so this stack appears to be too
heavyweight overall for our target device classes.

5 CONCLUSION

Based on our ongoing investigations, we recommend
that developers of RESTful web services for embed-
ded Linux devices be open toward alternatives to the
mainstream Java and .NET platforms: several promis-
ing choices are available, including Erlang, Lua, and
PHP. By choosing an appropriate solution stack, it is
possible to use these devices as low-power servers
with nearly equivalent functionality as their conven-
tional x86-based counterparts. Conversely, language
designers should be more supportive of embedded tar-
get platforms, and framework architects should be
more aware of the limitations of current language sup-
port on these targets.

In the near term, we will conduct a broad-based
systematic evaluation of the various language and
framework combinations using web server perfor-
mance tools such as httperf and siege along with light-
weight memory profiling.

In the medium term, we plan to expand our ex-
plorations to devices in the next-lower device class of
single-board embedded system and microcontrollers.
Here, we expect C/C++ and possibly Lua to be the
most viable options.

In the long term, we intend to apply RESTful
thinking to novel hardware architectures. Although
not in the direct scope of this paper, general purpose
computing on graphics processing units (GPGPU)
and other novel architectures are in dire need of more
resource-oriented thinking to allow for better integra-
tion in various distributed systems scenarios. While
these architectures are not low in absolute power con-
sumption, they are very power-efficient when consid-
ering their computational performance. An example
is where a lower-power device, say, is taking sensor
readings and needs to offload the analysis to a more
powerful device for data analysis (e.g., time-series,
compression, etc.) Here, a GPU would be a power-
efficient way to support collective operations for large
numbers of data supplier devices.
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