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A Simulation of DemandODriven Dataflow: 
Translation from Lucid into MDC Language 

George K. Thiruvathukal 
Thomas W. Christopher 

Illinois Institute of Technology 
Department of Computer Science 

Abstract 

Message Driven Computation (MIX)  is a model of 
computation with which we haw been eqerimenting 
at the Illinois Institute of Technology. It is our 
h i r e  to prove the viability of MDC in practice for 
the expression of parallel algorithms and the 
implementation of ficnctional and datajlbw 
programming hguuges. In the following pages we 
&cuss our implementation of the Lucid 
programming language in ME. The discussion will 
present a subset of Lucid which illustrates the 
principles ofLuci4 Message Driven Computing, and 
the translation into and the interpretation of 
ahtaflow graphs. 

1.0 Message Driven Computing 

Message Driven Computing (MDC) is a model of 
parallel and distributed computation developed at the 
Illinois Institute of Technology by Thomas 
Christopher [Christopher 19891. Central to MDC is 
the notion of a computational event. Computational 
events are executions of functions which map input 
messages into output messages. All message passing 
between locations in MDC is achieved 
unidirectionally and asynchronously. A 
computational event occurs at a location when a 
pattern of messages accumulates at the location. 
Locations are named by computable tuples of 
information. When two or more computational 
events OCCUT at a location, mutual exclusion between 
the computational events is guaranteed. MDC has 
been implemented on a variety of machines: the 
Encore Multimax, the BBN Butterfly, and the 
NCUBE. 

2.0 Lucid 

Lucid is a family of functional dataflow languages 
defined and designed by Wadge and Ashcroft 
Wadge and Ashcroft 19851. Inherent to the 
definition of any particular Lucid language are 
sequences, Lucid operators, pointwise infix and 
prefix numeric operatow user functions (filters), and 
list operators (optional). 

2.1 Terminology of Lucid 

A sequence in Lucid is def ied to be an infinite 
series of values ordered (or tagged) by time. The 
sequence is the basic tenet of Lucid programming. 
Some examples of sequences are constants, 
definitions, and the results of function calls. A 
constant sequence is a sequence whose value at 
every time is the same. A definition of a sequence 
provides a programmer the facility to have variables 
which change over time but not to have variables 
whme history of updates is destroyed. A definition 
implies that Lucid is a single-assignment language (a 
tenet of pure dataflow and functional languages). A 
function maps one or more input sequences into an 
output sequence. In the literature, functions are 
often alluded to as filters. Sequenoes are operated 
on by Lucid operators, pointwise operators, and 
functions. A Lucid operator is a function which 
maps one or two input streams onto an output stream 
whose values are usually values in the history of the 
input streams. 

2.2 Selected Lucid Operators Defmed 

first 

The first operator is applied to a sequence x to 
produce a constant sequence whose value throughout 
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is the first value of sequence x. Formally, the value 
of first x at time t is the value of x at time 0. 

UNIX cc and linked with the MDC run time system 
to produce an executable, parallel program which 
simulates dataflow on a parallel machine. 

next 
3.1 Construction of Datailow Graphs 

The next operator is applied to a sequence x to 
produce a sequence in which the value of next x at 
time t is the value of x at time t+l. 

fbY 

The fby operator is applied to sequences x and y to 
produce a sequence which is literally the first value 
of x followed by the sequence y. 

2 3  Pointwise Operators 

Pointwise operators are operators which are applied 
to every element of a sequence in much the same 
manner we are accustomed to in imperative 
programming languages. Arithmetic operators are all 
pointwise operators. The operation x + y, applied to 
sequences x and y, produces a sequence in which 
each element at a time t is the sum of the value of 
x at time t and the value of y at time t. 

2.4 Language Characteristics 

A Lucid program is an expression. Expressions 
include constants, variables, prefix expressions, infix 
expressions, list expressions, conditional expressions 
(if, case, and cond), function calls, and the where 
clause. A where clause is the mechanism provided 
for definitions of variables which are bound to 
expressions. If a variable in an expression cannot be 
resolved to one of the definitions in its where clause, 
the variable is a global variable whose history is 
defined at run time by the user. 

3.0 Translation and Interpretation 

The system we have developed is a translator for 
Lucid which produces MDC as target code. The 
translator accepts as input a program expressed in 
Lucid and produces an MDC initial behavior which 
constructs a run time dataflow graph whose vertices 
are MDC locations and edges are messages. A 
collation program links the MDC encoded initial 
behavior with a source file which contains a number 
of MDC behaviors to interpret the dataflow graph to 
produce an object MDC program. The MDC 
program is passed through the MDC translator to 
produce C code which is finally Compiled with 
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We now tum to a concrete example of how our 
Lucid system constructs dataflow graphs h m  a 
simple Lucid source program and the run time 
behaviors requited to completely interpret the 
dataflow graph. As an aside, we have implemented 
much more than just a handful of trivial cases, but 
we believe a simple example best illustrates the 
principles of translation into and the interpretation of 
datailow graphs. 

Below is a simple Lucid program which computes 
the value of x+y+z, given a sequence of natural 
numbers x, a constant sequence y, and a 
user-supplied sequence z. 

x + y + z  
where 

x = 1 my x + 1; 
y = 1; 

end 

An initial behavior is produced by the Lucid 
translator which performs a number of send message 
operations. Below is MDC pseudocode for the 
initial behavior which is produced by the Lucid 
translator. Section A indicates the group of send 
operations which constructs the dataflow graph for 
the Lucid program in Figure 1, while -ion B 
indicates the group of send operations which 
establishes a demand pattern at the start vertex (of 
location) of the dataflow graph for the values of the 
expression x+y+z. All locations are generated by 
the translator as needed. 

initial behavior 
{ Section A } 
send a var(x-1) message to location L1. 
send a var(y-1) message to location L2. 
send a plus(L1,U) message to location L3. 
send a var(z-0) message to location LA. 
send a plus(L3,LA) message to location U. 
send a const(1) message to location L6. 
send a var(x-1) message to location L7. 
send a const(1) message to location L8. 
send a plus(L7,L8) message to location L9. 
send a tby(Ld,L9) message to location x-1. 
send a const(1) message to location y-1. 



{section B} 
send a demand(globa1 environment, time, 
destination) mesfage for the f i i  n values of the 
Lucid program rooted at location I5. 
end initial behaviar 

3.2 Interpretatkm of Dataflow Graphs 

A run time system is q u i r e d  to interpret the MDC 
dataflow graphs which were produced from the 
Lucid source program. The run time system is 
comprised of MDC behaviors. As mentioned earlier 
in the discussion of MDC, a behavior (computational 
event) is specified by a pattern of messages and a 
body of code. The MDC behaviols must be 
carefully designed to ensure that appropriate message 
patterns exist for eveq conceivable dataflow graph 
produced by the Lucid translator. 

We now present a subset of the run time system 
behaviors. Though it would be interesting to the 
reader to examine the entire run time system, dozens 
of pages would be required (merely to present 
pseudocode). The subset of run time system 
behaviors which we unveil in the following sections 
is sufficient to completely interpret the dataflow 
graph which was constructed by the initial behavior 
above. 

3.2.1 Interpretation of Infix Operators 

behaviorlmessage pattern 
plus(e1, e2) and demand(env, t, dest) 
actwns 
Create a new location, s, to perform addition. 
Send a doglus(dest) message to location s. 
Let L be the left operand portal at location s. 
Send a demand(env,t,L) message to el. 
Let R be the right operand portal at location s. 
Send a demand(env,t,R) message to e2. 
end behavior 

behaviorlmessage pattern 
doglus(dest), lopnd(vl), and ropd(v2) 
actwns 
Send value(v1 + v2) message to dest. 
end behavior 

3.2.2 Interpretation of Constants 

behaviorlmessage pattern 
const(v) and demand(env, time, dest) 
actwns 
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send value(v) message to dest. 
end behavior 

3.23 Interpretation of Variables 

behaviorlmessage pattern 
var(name) and demand(env, time, dest) 
actwns 
Send demand-var(dest) message to location named 
<em, name, time>. 
end behavior 

one time behaviorlmessage pattern 
demand-var(dest) 
actwns 
Send a demand(env, time, here) message to a 
location whose name is extracted from the present 
location name. The name of the location to where 
the demand is sent contains message information 
pertinent to the definition of the variable name. 

Leave the demand-var(dest) message at this location 
(so this behavior cannot be executed again). 
end behavior 

behaviorlmessage pattern 
demand-var(dest) and value(v) 
actwns 
Send a value(v) message to dest. 
Leave the value(v) message at this location, so a 
subsequent demand will not result in recomputation 
a variable at the same time in the same environment. 
end behavior 

3.2.4 Interpretation of a Lucid Operator 

behaviorlmessage pattern 
send demand(env, time, dest) and fby(e1, e2) 
actwns 
If time is zero, send a demand(env, 0, dest) message 
to location e 1. 
Otherwise, send a demand(env, time-1, dest) 
message to location e2. 
end behavior 

3 3  A Wave of Computation 

As mentioned earlier, the above behaviors comprise 
only a fraction of the Lucid run time system 
implemented in MDC. In effed, these behaviors 
work together to implement the method of eduction 
proposed in madge and Ashcroft 19853. The 
interpretation of the dataflow graphs by the MDC 



system can be viewed as a traveling wave of 
messages which commences at the initial behavior 
with demand messages. Demand messages which 
arrive at a location trigger behaviors which, also, 
send demand messages. Ultimately, demand 
messages lead to the computation of actual values 
which can be returned to the location from where the 
original demand was made. 

4.0 Other Lucid Implementations 

An eductive interpreter for the language pLucid was 
implemented under UNIX in the C programming 
language at Arizona State University Faustini and 
Wadge 1987j. This interpreter is perhaps the 
greatest of the success stories about Lucid 
implementation. It implements all of the features of 
the pLucid language described in [wadge and 
Ashcroft 198Sl. The eduction method implemented 
in the Arizona State pLucid system is exactly the 
one outlined in [Wadge and Ashcmft 1985J. 

A translator is desaibed by Pilgram Wlgram 19831 
Wadge and Ashcroft1985l which translates Lucid 
into messagepassing actors. The method works for 
a large number of programs; however, it fails to 
work for a large number of programs. The programs 
which have failed to be interpreted a s  those which 
involve Lucid operators in function calls. 

5.0 Sisnificance 

We believe our research is significantly different in 
its focus from the research described above. The 
pattern matching capabilities of MDC, which are 
absent in actors languages, are much better suited to 
the interpretation of graphs. The notion of a location 
is particularly well-suited for the storage of variable 
histories. 

Another significant aspect of OUT research is that our 
work is portable. The MDC system is written in the 
C programming language. Parallel versions of the 
system are available for many machines, while 
sequential vetsions of the system are available for 
practically every machine which has a C compiler. 

6.0 Future Research with Lucid 

We have a least two goals with respect to OUT Lucid 
research. Our foremost goal is to implement the 
entire Arizona pLucid language with some 
extensions to support arrays. We are exploring the 
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idea of an ApLlike array package for MDC into 
which our Lucid extensions could be translated. 

Our dhet goal is to finish an implementation of 
Lucid which performs well on all parallel computer 
architectures, especially distributed architectures. To 
do so, optimizations will have to be done by the 
compiler. Our aurent implementation does limited 
optimizations, because it is a prototype. We also 
believe that the addition of arrays to the language 
will result in improved performance on such 
architectures, because of studies we have done on 
the effeds of grain size on speed-up and efficiency 
[Christopher 19901. 
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