
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1991

A Simulation of Demand-Driven Dataflow:
Translation from Lucid into MDC Language
George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Thomas W. Christopher

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for
inclusion in Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information,
please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1991 George K. Thiruvathukal and Thomas W. Christopher

Recommended Citation
George K. Thiruvathukal and Thomas W. Christopher, "A simulation of demand-driven dataflow: translation from Lucid into MDC
language,", pp. 634-637, Fifth International Parallel Processing Symposium, 1991.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

A Simulation of DemandODriven Dataflow:
Translation from Lucid into MDC Language

George K. Thiruvathukal
Thomas W. Christopher

Illinois Institute of Technology
Department of Computer Science

Abstract

Message Driven Computation (MIX) is a model of
computation with which we haw been eqerimenting
at the Illinois Institute of Technology. It is our
h i r e to prove the viability of MDC in practice for
the expression of parallel algorithms and the
implementation of ficnctional and datajlbw
programming hguuges. In the following pages we
&cuss our implementation of the Lucid
programming language in ME. The discussion will
present a subset of Lucid which illustrates the
principles ofLuci4 Message Driven Computing, and
the translation into and the interpretation of
ahtaflow graphs.

1.0 Message Driven Computing

Message Driven Computing (MDC) is a model of
parallel and distributed computation developed at the
Illinois Institute of Technology by Thomas
Christopher [Christopher 19891. Central to MDC is
the notion of a computational event. Computational
events are executions of functions which map input
messages into output messages. All message passing
between locations in MDC is achieved
unidirectionally and asynchronously. A
computational event occurs at a location when a
pattern of messages accumulates at the location.
Locations are named by computable tuples of
information. When two or more computational
events OCCUT at a location, mutual exclusion between
the computational events is guaranteed. MDC has
been implemented on a variety of machines: the
Encore Multimax, the BBN Butterfly, and the
NCUBE.

2.0 Lucid

Lucid is a family of functional dataflow languages
defined and designed by Wadge and Ashcroft
Wadge and Ashcroft 19851. Inherent to the
definition of any particular Lucid language are
sequences, Lucid operators, pointwise infix and
prefix numeric operatow user functions (filters), and
list operators (optional).

2.1 Terminology of Lucid

A sequence in Lucid is def ied to be an infinite
series of values ordered (or tagged) by time. The
sequence is the basic tenet of Lucid programming.
Some examples of sequences are constants,
definitions, and the results of function calls. A
constant sequence is a sequence whose value at
every time is the same. A definition of a sequence
provides a programmer the facility to have variables
which change over time but not to have variables
whme history of updates is destroyed. A definition
implies that Lucid is a single-assignment language (a
tenet of pure dataflow and functional languages). A
function maps one or more input sequences into an
output sequence. In the literature, functions are
often alluded to as filters. Sequenoes are operated
on by Lucid operators, pointwise operators, and
functions. A Lucid operator is a function which
maps one or two input streams onto an output stream
whose values are usually values in the history of the
input streams.

2.2 Selected Lucid Operators Defmed

first

The first operator is applied to a sequence x to
produce a constant sequence whose value throughout

TH0363-2/91/0000/0634$01 .OO (Q 1991 IEEE
634

is the first value of sequence x. Formally, the value
of first x at time t is the value of x at time 0.

UNIX cc and linked with the MDC run time system
to produce an executable, parallel program which
simulates dataflow on a parallel machine.

next
3.1 Construction of Datailow Graphs

The next operator is applied to a sequence x to
produce a sequence in which the value of next x at
time t is the value of x at time t+l.

fbY

The fby operator is applied to sequences x and y to
produce a sequence which is literally the first value
of x followed by the sequence y.

2 3 Pointwise Operators

Pointwise operators are operators which are applied
to every element of a sequence in much the same
manner we are accustomed to in imperative
programming languages. Arithmetic operators are all
pointwise operators. The operation x + y, applied to
sequences x and y, produces a sequence in which
each element at a time t is the sum of the value of
x at time t and the value of y at time t.

2.4 Language Characteristics

A Lucid program is an expression. Expressions
include constants, variables, prefix expressions, infix
expressions, list expressions, conditional expressions
(if, case, and cond), function calls, and the where
clause. A where clause is the mechanism provided
for definitions of variables which are bound to
expressions. If a variable in an expression cannot be
resolved to one of the definitions in its where clause,
the variable is a global variable whose history is
defined at run time by the user.

3.0 Translation and Interpretation

The system we have developed is a translator for
Lucid which produces MDC as target code. The
translator accepts as input a program expressed in
Lucid and produces an MDC initial behavior which
constructs a run time dataflow graph whose vertices
are MDC locations and edges are messages. A
collation program links the MDC encoded initial
behavior with a source file which contains a number
of MDC behaviors to interpret the dataflow graph to
produce an object MDC program. The MDC
program is passed through the MDC translator to
produce C code which is finally Compiled with

635

We now tum to a concrete example of how our
Lucid system constructs dataflow graphs h m a
simple Lucid source program and the run time
behaviors requited to completely interpret the
dataflow graph. As an aside, we have implemented
much more than just a handful of trivial cases, but
we believe a simple example best illustrates the
principles of translation into and the interpretation of
datailow graphs.

Below is a simple Lucid program which computes
the value of x+y+z, given a sequence of natural
numbers x, a constant sequence y, and a
user-supplied sequence z.

x + y + z
where

x = 1 my x + 1;
y = 1;

end

An initial behavior is produced by the Lucid
translator which performs a number of send message
operations. Below is MDC pseudocode for the
initial behavior which is produced by the Lucid
translator. Section A indicates the group of send
operations which constructs the dataflow graph for
the Lucid program in Figure 1, while -ion B
indicates the group of send operations which
establishes a demand pattern at the start vertex (of
location) of the dataflow graph for the values of the
expression x+y+z. All locations are generated by
the translator as needed.

initial behavior
{ Section A }
send a var(x-1) message to location L1.
send a var(y-1) message to location L2.
send a plus(L1,U) message to location L3.
send a var(z-0) message to location LA.
send a plus(L3,LA) message to location U.
send a const(1) message to location L6.
send a var(x-1) message to location L7.
send a const(1) message to location L8.
send a plus(L7,L8) message to location L9.
send a tby(Ld,L9) message to location x-1.
send a const(1) message to location y-1.

{section B}
send a demand(globa1 environment, time,
destination) mesfage for the f i i n values of the
Lucid program rooted at location I5.
end initial behaviar

3.2 Interpretatkm of Dataflow Graphs

A run time system is q u i r e d to interpret the MDC
dataflow graphs which were produced from the
Lucid source program. The run time system is
comprised of MDC behaviors. As mentioned earlier
in the discussion of MDC, a behavior (computational
event) is specified by a pattern of messages and a
body of code. The MDC behaviols must be
carefully designed to ensure that appropriate message
patterns exist for eveq conceivable dataflow graph
produced by the Lucid translator.

We now present a subset of the run time system
behaviors. Though it would be interesting to the
reader to examine the entire run time system, dozens
of pages would be required (merely to present
pseudocode). The subset of run time system
behaviors which we unveil in the following sections
is sufficient to completely interpret the dataflow
graph which was constructed by the initial behavior
above.

3.2.1 Interpretation of Infix Operators

behaviorlmessage pattern
plus(e1, e2) and demand(env, t, dest)
actwns
Create a new location, s, to perform addition.
Send a doglus(dest) message to location s.
Let L be the left operand portal at location s.
Send a demand(env,t,L) message to el.
Let R be the right operand portal at location s.
Send a demand(env,t,R) message to e2.
end behavior

behaviorlmessage pattern
doglus(dest), lopnd(vl), and ropd(v2)
actwns
Send value(v1 + v2) message to dest.
end behavior

3.2.2 Interpretation of Constants

behaviorlmessage pattern
const(v) and demand(env, time, dest)
actwns

636

send value(v) message to dest.
end behavior

3.23 Interpretation of Variables

behaviorlmessage pattern
var(name) and demand(env, time, dest)
actwns
Send demand-var(dest) message to location named
<em, name, time>.
end behavior

one time behaviorlmessage pattern
demand-var(dest)
actwns
Send a demand(env, time, here) message to a
location whose name is extracted from the present
location name. The name of the location to where
the demand is sent contains message information
pertinent to the definition of the variable name.

Leave the demand-var(dest) message at this location
(so this behavior cannot be executed again).
end behavior

behaviorlmessage pattern
demand-var(dest) and value(v)
actwns
Send a value(v) message to dest.
Leave the value(v) message at this location, so a
subsequent demand will not result in recomputation
a variable at the same time in the same environment.
end behavior

3.2.4 Interpretation of a Lucid Operator

behaviorlmessage pattern
send demand(env, time, dest) and fby(e1, e2)
actwns
If time is zero, send a demand(env, 0, dest) message
to location e 1.
Otherwise, send a demand(env, time-1, dest)
message to location e2.
end behavior

3 3 A Wave of Computation

As mentioned earlier, the above behaviors comprise
only a fraction of the Lucid run time system
implemented in MDC. In effed, these behaviors
work together to implement the method of eduction
proposed in madge and Ashcroft 19853. The
interpretation of the dataflow graphs by the MDC

system can be viewed as a traveling wave of
messages which commences at the initial behavior
with demand messages. Demand messages which
arrive at a location trigger behaviors which, also,
send demand messages. Ultimately, demand
messages lead to the computation of actual values
which can be returned to the location from where the
original demand was made.

4.0 Other Lucid Implementations

An eductive interpreter for the language pLucid was
implemented under UNIX in the C programming
language at Arizona State University Faustini and
Wadge 1987j. This interpreter is perhaps the
greatest of the success stories about Lucid
implementation. It implements all of the features of
the pLucid language described in [wadge and
Ashcroft 198Sl. The eduction method implemented
in the Arizona State pLucid system is exactly the
one outlined in [Wadge and Ashcmft 1985J.

A translator is desaibed by Pilgram Wlgram 19831
Wadge and Ashcroft1985l which translates Lucid
into messagepassing actors. The method works for
a large number of programs; however, it fails to
work for a large number of programs. The programs
which have failed to be interpreted a s those which
involve Lucid operators in function calls.

5.0 Sisnificance

We believe our research is significantly different in
its focus from the research described above. The
pattern matching capabilities of MDC, which are
absent in actors languages, are much better suited to
the interpretation of graphs. The notion of a location
is particularly well-suited for the storage of variable
histories.

Another significant aspect of OUT research is that our
work is portable. The MDC system is written in the
C programming language. Parallel versions of the
system are available for many machines, while
sequential vetsions of the system are available for
practically every machine which has a C compiler.

6.0 Future Research with Lucid

We have a least two goals with respect to OUT Lucid
research. Our foremost goal is to implement the
entire Arizona pLucid language with some
extensions to support arrays. We are exploring the

637

idea of an ApLlike array package for MDC into
which our Lucid extensions could be translated.

Our dhet goal is to finish an implementation of
Lucid which performs well on all parallel computer
architectures, especially distributed architectures. To
do so, optimizations will have to be done by the
compiler. Our aurent implementation does limited
optimizations, because it is a prototype. We also
believe that the addition of arrays to the language
will result in improved performance on such
architectures, because of studies we have done on
the effeds of grain size on speed-up and efficiency
[Christopher 19901.

7.0 References

[l] E. Ashaoft, Easyflow Architamre, Tedmical
Report, Computer Science Laboratory, SRI
Intemational 1985.

[2] T. W. Christopher, Early Experience with
Object-Oriented Message Driven Computing,
Frontiers of Massively Parallel Computing 1990,
October 1990.

[3] T. W. Christopher, Elqoloration of the Limits
that Grain Size Imposes on Speed-up and
Emieney of Two Transitive ClosureAlgorithms,
Fourth Annual Parallel Processing Symposium,
Orange County IEEE, April 44, 1990.

[4] A. Faustini and W. Wadge, An Eductive
Interpreter for the Language pLucid,
Proceedings of the SIGPLAN '87 Symposium
on Interpreters and Interpretive Techniques,
1987.

[5] P. Pilgram, Translating Lucid into Message
Pusshg Actors, Ph.D. Dissertation, University
of Warwick, England.

[6] W. W a g e and E. Asha-oft, Lucid. the Dataflow
Programming Language, Academic Press,
Orlando, Florida, 1985.

	Loyola University Chicago
	Loyola eCommons
	1991

	A Simulation of Demand-Driven Dataflow: Translation from Lucid into MDC Language
	George K. Thiruvathukal
	Thomas W. Christopher
	Recommended Citation

	A simulation of demand-driven dataflow: translation from Lucid into MDC language - Parallel Processing Symposium, 1991. Proceedings., Fifth International

