
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1994

A Generic Software Modeling Framework for
Building Heterogeneous Distributed and Parallel
Software Systems
William T. O'Connell

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Thomas W. Christopher

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for
inclusion in Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information,
please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1994 William T. O'Connell, George K. Thiruvathukal, and Thomas W. Christopher

Recommended Citation
William T. O'Connell, George K. Thiruvathukal, and Thomas W. Christopher. A generic modeling environment for heterogeneous
parallel and distributed computing. In International Conference on Advanced Science and Technology 1994 (ICAST 1994), AT&T
Bell Laboratories, 1994.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1

Abstract
Heterogeneous distributed and parallel computing
environments are highly dependent on hardware and
communication protocols. The result is significant difficulty
in software reuse, portability across platforms,
interoperability, and an increased overall development
effort. A new systems engineering approach is needed for
parallel processing systems in heterogeneous environments.
The generic modeling framework de-emphasizes platform-
specific development while exploiting software reuse (and
platform-specific capabilities) with a simple, well defined,
and easily integrated set of abstractions providing a high
level of heterogeneous interoperability.

Index Terms - Heterogeneous computing. Parallel and
distributed environments. Generic modeling framework.
Lossless domain mapping. Reusability. Portability.
Extensibility. Interoperability. Systems Engineering.

1 Introduction

Heterogeneous distributed and parallel systems are widely
gaining popularity in a broad variety of applications
[11][19][20][22]. The cooperation and coordination between
computers, at distinct locations, greatly enhances the
usefulness of each individual computer. It provides the
ability to orchestrate and coordinate a wide range of diverse
high-performance machines (including parallel machines)
for computationally demanding tasks that have different
CPU needs [15]. However, distributed control leads to
systems that have complex designs. We propose that basic
foundations, general techniques, and clear methods are
essential to improve our understanding and to deal efficiently
with high-performance distributed and parallel systems.

Our focal point is on integrating conventional distributed
programming over heterogeneous high-performance systems
with parallel processing. We use Object-Oriented Design and
Programming (OOD and OOP) to define and implement a
distributed computing environment. To show the utility of
our approach, we implementedDistributed Memo (D-
Memo) to provide a shared directory of queues over
heterogeneous machines [1]. These virtual shared queues are
for user level processes, similar to the approach taken by
Linda [2][8][12]. The scope of our approach is limited to
systems engineering. D-Memo itself is not an object-
oriented environment. Object-oriented languages (such as
Message Driven Computing and Macrodataflow Array

Processing Language) are available as alternative interfaces
to our distributed computing environment [1]. D-Memo has
been chosen, because it contains a sufficient number of
elements to illustrate the problems of heterogeneous
computing (HC).

In this paper, we will place greatest emphasis on the
definition of a general modelling framework on which we
believe HC software systems should be defined. To properly
motivate this discussion, we will first discuss themajor
issues that impact heterogeneity. We will take this set of
issues and use it to establishfoundations for constructing
high-performance heterogeneous distributed software
systems. These foundations will be integrated with the help
of object-orientation (without which we believe the
implementation of the system would be difficult, if not
impossible, to achieve). Finally, we will survey related work
and present conclusions.

2 Heterogeneous Computing Issues

The issues faced by heterogeneity are obviously hardware
platforms, communication protocols, operating system
interface differences, and other distinguishing characteristics
(e.g. processor speeds, number of processors, etc...) [15][20].
But, the main problem facing HC is data modeling and
interconnection. There are threeimportant issues on which
we will focus:

• Languages Data Type Inconsistencies

• Networking Protocols

• Incompatible Domains Representations

A serious problem facing HC is that most languages take a
liberal view of concrete data types1 (or scalar types) across
heterogeneous platforms. Certainly, such a view facilitates
language implementation for a given machine, but this view
causes menace for practitioners of heterogeneous
computing. Consider integers and floating point number
representations. Integers are typically defined to be the word
size of an architectural platform. Today, architectures are
available with word sizes of 16, 32, 64, and 128 bits (as well
as arbitrary bit-vectors). Floating point numbers present an
analogous problem. In fact, the problem is slightly more
serious, since different precision representations are

1. A concrete data type is the device used by language designers
to support scalar data and operations efficiently. This efficiency
can usually be obtained under the assumption that the data type
can be easily mapped onto a given architecture.

A Generic Software Modelling Framework for Building
Heterogeneous Distributed and Parallel Software Systems

George K. Thiruvathukal
R.R. Donnelley and Sons Company

Technical Center
750 Warrenville Road

Lisle, IL 60532
gkt@disney.donnelley.com

William T. O’Connell
AT&T Bell Laboratories
Building IX, Rm. 1B-422
1200 E. Warrenville Rd.

Naperville, IL 60566
 wto@ihlpx.att.com

Thomas W. Christopher
Illinois Institute of Technology

Department of Computer Science
10 West Federal Street

Chicago, IL 60616
tc@iitmax.acc.iit.edu

2

common: single-, double-, and extra-precision, for example.
The availability of different word sizes and precisions leads
further to the problem of handling exceptional conditions1.
The problems are well-known by virtually all who do
numerical processing. In the context of HC, the number of
exceptional conditions explodes combinatorially to render
exception handling difficult, if not impossible, to achieve.

Networking adds to the complications of heterogeneity. The
compelling issue is the availability of different protocols
(and implementations of the same protocol). The typical
protocol stack used is TCP/IP because of reliability. But with
this reliability, comes an overhead cost. It may be more
appropriate to use the UDP protocol with or without
reliability built on top of it, especially on a local area
network with low bit error rate. Another problem is that not
all machines support a connection-oriented transport layer.
Such a layer must augment the capabilities of the network
layer. Take, for example, the INMOS transputer. The
transputer provides up to four communication channels per
transputer, which allows networks of transputers to be
connected by direct point-to-point connections. The network
layer has low bit error rate but must be completely managed
by user programs. No connection-oriented transport layer
exists.

When considering the goal of HC, applications differentiate
between code, algorithms, and data to optimize the matching
of the computational tasks to the appropriate machine type
(e.g. parallel, pipelined, and special purpose architectures)
[11]. This ability allows the application to execute the right
code on the most optimal machine. But this choice can lead
to different protocols between different machines. This
presents serious problems for an application using many
different protocols when maintaining a level of
interoperability.

Figure 1 - Integer Representations.

Incompatibility of domain representations, encompassing a
superset of the problems associated with the languages
mentioned above. Figure 1 illustrates the hardware
differences between four selected processors. Not only are
the sizes different, but the least and most significant bits are
not the same. This results in an incompatible domain
representation for the application software. Mapping data
types from one machine to another is not transparent.

Typically, networking protocols use what is called the
network-byte order when sending information over a
network [4]. This still does not resolve the basic issue of

1. Such conditions include inconsistent type conversions and het-
erogeneity data coercion.

l
m

m

l

l

I80x86

MC680x0

Cray Y-MP

Nat’l 32x32

l - Least Significant Bit
m - Most Significant Bit

- Byte

lm

m

transparent data type mapping across machines. The
problem is such that it leads to one-way domain
compatibility. The domain maps properly to one machine,
but not vice versa.

Figure 2 - Lossy Domain Mapping

Figure 2 illustrates the mapping between two distinct
architectural implementations of an integer. It is showing the
mapping of a 32-bit integer on a machine (A) to a 64-bit
integer on machine (B). This will be a lossless mapping from
A to B, since we will not lose any data (through precision).
But, when mapping from machineB to A, there is a
possibility of lost data. This is classified as a lossy mapping
[9]. A more concrete example of a lossy mapping is:
Mapping aninteger data value from an Alpha processor (64
bit) to an i860 Processor (32 bit), where the integer value
requires more than 32 bits. Thus, representation across
heterogeneous machines does not facilitate transparent scalar
data mapping.

The above three issues expose the major challenges of HC.
Another entirely different set of issues pertaining mainly to
parallel processing are operating system interfaces (e.g.
locking and synchronization methods, shared memory
capabilities, etc..). The previous examples were dealing
more with information exchange, while these issues are
dealing more with software reuse and porting issues for the
application code. Yet there are even more general issues,
such as seamlessness, routing, performance considerations,
network bandwidth, propagation delays, and efficiency.
Therefore, it is not surprising that code reuse is difficult for
applications performing tasks over multiple heterogeneous
machines.

Using one issue mentioned earlier, synchronization, we will
compare the Encore Multimax (with eight processors) with
the Sun Sparc 4 workstation (with one processor). In both
cases, synchronization primitives are furnished. The Sun
utilizes the standard System V operating system primitives.
The semaphores must be created in the operating system
kernel before a process may use them. Once they exist in the
kernel, any process may attach to them. The good news is
that the Encore also supports System V semaphores resulting
in total synchronization code reuse. The bad news is that the
Encore provides more efficient synchronization primitives
which are more attractive for performance reasons. Encore
offers primitives for semaphores, spin locks, and barriers:
Each with different system interfaces, including spin locking
or process blocking. These Encore interfaces can be
emulated with System V primitives but, will not result in
optimal performance. The differences between just two
machines are so radical, that when you start considering
many platforms, the reuse becomes difficult.

A B
Session
Layer

Session
Layer

Int (32 bits) Int (64 bits)

Lossy domain mapping
Lossless domain mapping

3

Engineering high quality software on a network of
heterogeneous platforms in a general manner is complex and
difficult. On one hand, the above discussion suggests that
HC is fraught with excessive, not easily managed
differences. On the other hand, we have a paradigm, object-
orientation, which can be instrumental in managing
differences. Discovering commonality is a central tenet of
object-oriented design. This commonality is the basis for the
foundation building blocks, the subject to which we now
turn our attention.

3 Basic Foundation Building Blocks

Because of the complexity in HC, we are proposing a set of
generic software modeling techniques through the utilization
of frameworks. Each framework is a basic structure (object)
which encapsulates a common abstraction for providing a
generic interface. A common abstraction (framework) will
actually consist of one or more layers, similar to the OSI
model.

The generic methodologies of Conway [7] and Kritzinger
[16] are among the few published works appearing in
literature on generic modeling and performance evaluation
of networked systems. Both papers concentrate on the
multilayered protocol of the OSI communication
architecture. Their methodologies can be combined to
generically model the distributed architecture. Combined
with object-orientation, we will abstract a generic modeling
framework to satisfy the objectives presented in the
introductory section.

There has been little interaction between researchers in the
areas of HC and object-oriented computing, despite the same
terminology being used by both sets of people (most notably,
the use ofobjects). Some recent papers suggest that the two
areas may benefit from closer interaction
[10][17][19][20][22]. Distributed and parallel systems have
evolved in response to usable concurrent CPU cycles over
one or more machines. Object-oriented computing has
evolved for engineering large software systems. We contend
that HC systems present a grand software engineering
challenge, a challenge which is much better approached with
object-oriented methodology than other methods (e.g.
functional decomposition or structured analysis). Empirical
studies on the relationship between the use of the object-
oriented (OO) paradigm and software reuse have shown that
the OO paradigm substantially improves productivity and
reusability over procedural approaches. [17].

3.1 Analysis of Decomposition

Before decomposing the frameworks (abstractions), we will
describe the criteria used in analyzing the components. To
provide a combined framework model, the components that
make up the model must meet the following requirements:

• Each decomposition is an abstraction that provides
services to it’s clients1. The requests must be generic;
which are architectural and protocol independent.

• The model must provide a set of internally consistent

1. This is one definition of client-server model.

abstractions in the context of the larger design. This
design is intended to provide a consistent model for high-
performance distributed and parallel computing.

• Each framework will consist of one or more abstractions
forming acluster, each providing a unified abstraction2.

• Each abstraction must be well defined and of high
quality. The model should be characterized by a set of
easy to integrate and efficient abstractions.

By analyzing thebasic issues associated with HC, we can
classify the issues in one of four areas: distributed
communication, locking/synchronization methods, shared
memory capabilities, and dynamic data migration. With this
in mind, we devised a set of generic frameworks. Each of
these frameworks contain related issues within its scope.
Using these basic abstractions, we can build any system that
is transparent to the underlying platforms and protocols.

3.2 Generic Modeling Framework.

The generic model provides a framework for developing
parallel HC environments. This environment is characterized
by four major clusters of abstractions: communication,
transferable, shared memory, and locking (see figure 3).

Figure 3 - Generic Modeling Framework

To support a new computer in a heterogeneous network, one
must consider each of these four pieces of the pie. Our view
is that a new computer can be supported by learning the
differences from the base definition (called a base class in
object-oriented terminology) and either extending or
overriding the services provided in the base definition. An
application that uses the services of these core abstractions
can reap the benefits of transparency, reuse, portability, and
interoperability.

We now turn to a discussion of each of the four frameworks
of heterogeneous computing.

2. The cluster, or class category, is available in many of the
object-oriented methodologies and is a useful analysis technique
when the relationship between the classes in the cluster is not
completely understood.

Application Code

Communication

LockingTransferable

Shared Memory

4

3.2.1 Transferable Framework

The transferable framework is the most complicated of the
four frameworks. To facilitate understanding of
transferrables, we will first motivate the problem of domain
incompatibility. Second, we will discuss how to support
robust concrete types with object-orientation. Finally, the
actual framework for transferrables will be presented.

3.2.1.1 Domain Compatibility and Incompatibility

There are two major problems to be solved: byte order and
lossless domain mapping. The byte order issue can be
resolved simply by defining a network byte order for all
inter-machine traffic as specified by Abstract Syntax
Notation (ASN.1) [4] and Remote Procedure Call (RPC) [3].
The lossless domain mapping problem, however, is more
complicated and requires more extensive analysis. We turn
briefly to a discussion of the theory underlying the problem
and the desired results.

In the following equation,D is defined to be the set of all
concrete data types over the networked application.S is
defined to be the set of all distinct data types for machine S
andR is the set for machine R.

By defining a “bijectional1” function f1, all data types from
machine S map to one and only one compatible data type on
machine R. This domain mapping is onto2 and 1-to-13.

This mapping only guarantees a lossless mapping in one
direction, such that the mapping from domainS to R will
result in no lost precision. This is not true in the reverse
direction as stated by the following equation. Which shows
that the mapping ofx to y is lossless from machine S to R,
because the physical size of datatype x is smaller than or
equal toy (thus, no lost precision).

But, if the physical size of datatypex is smaller thany, the
reverse mapping ofy to x may possibly be lossy (possible
lost precision).

1. A functionF1: S->R is bijectional if it is both one-to-one and
onto. This is needed in order to define it’s inverse.
2. If and only if each datatype in S maps to a data type in R, will
the mapping be onto.
3. Each datatype in S maps to one and only one datatype in R.

Let D d1 d2 … dn },,,{=
Let S x D x Dx∈() };∈{=

R y D y Dy∈() };∈{=Let
(1)

Domain S Domain R
x1
x2

xn

y1

y2

yn...

function f1 :S R→
onto

1-to-1

(2)

f1 M Sx Ry
(,)→ (3)xi yi≤{ }:

To define a purely lossless mapping in both directions, the
datatypesx and y must map to each other. The following
equation modifies Eq. (3) to provide symmetry between the
mappings. It specifies that for each datatype, there exists a
symmetrical mapping between machines S and R.

This shows that for each data typed in domainD, there
exists a proper mapping from machine S to R; and vice
versa, R to S. The equivalence of all appropriate data types
will result in closure onD.

Eq. (5) illustrates that for every datatype inD, the mappings
between any two machines are equivalent (in either
direction).

3.2.1.2 Supporting Concrete Data Types

Now, to acquire this closure on all data types, we will need
an equivalent logical mapping for each data type on all
heterogeneous machines being used in the computation.
What we are saying is that the softwaremust learn to think
in concrete domains. Instead of using the typical built-in data
types like int, float , etc.., the application must utilize
absolute domains (e.g.int16 , uint16, int128 ,
float32 , etc..). These absolute domains take on the same
behavior as the built-in language data types (e.g. unsigned
objects contain only positive values, similar conditions occur
for overflow/underflow, etc..). The difference is that the
applications are forced to specify the data types sizes, versus
relying on the architectural representation. To accomplish
this, each absolute data type is treated as an object. Each
object has two levels of representations, one is the logical
representation (as viewed by the application) and the other is
the physical representation (as viewed by internal physical
storage). Only the physical representation is stored. When
using the object, the logical representation will be used4.

Figure 4 - Object Encapsulations:int16

As illustrated in figure 4, two inter-machine processes can
communicate using theint16 object. Since objects use
encapsulation, the physical representation of each object is
hidden. For both architectures, the physical representation
happens to be each machine’sown integer representation. In
the case of the Encore, the logical representation can not
exceed 16 bits. Now, if an application wanted a 32-bit
integer on an Intel 80486 (e.g. an int32 object), the

4. The physical representation will always be greater or equal to
the size of the logical representation.

(4)di∀ d M Si Ri
(,) M Ri Si

(,)∨[]∃⇒

D d() xi yi≡{ };∀ (5)

Application
Software

Application
Software

int16 int16

int (16-bit) int (32-bit)

Multimax EncoreIntel 80486

Object

5

physical representation would be along integer. But, if
using the int64 object, it would have to accommodate for
the additional storage required for that instance.

The concrete data types will be linked to the application
during compiling1. These data types will not introduce run-
time efficiency considerations. In the general case, the
physical representation is typically a built-in data type. Cost
factors can arise when a built-in data type is not available for
a requested size (e.g.int128 on an Intel 80486).

Now that we defined data types that have an absolute
domain, the next question is ”How do you transfer them
between machineS andR?”.

3.2.1.3 Transferrables

The transferable framework defines a protocol to encode and
decode data structures in a language independent manner. In
object-oriented languages and databases this term is known
as persistence. We believe the support for persistent data
structures is essential to develop serious distributed and
parallel software applications, especially for non-numerical
algorithms. The protocol supported by the transferable
classes permits arbitrary data structures and scalars to be
encoded for transfer between compatible and incompatible
domains.

Each transferable will have the knowledge to encode and
decode itself. A transferable is defined as a persistence
descriptor followed by data. When encoding an object (e.g.
int16), it will write the encoded data to a stream2. The
receive end of the connection will read from the stream and
decode the object. Each encoded object will consist of
persistence descriptor followed by one or more bytes of
actual data. The descriptor will indicate the concrete data
type. It is important to note that for anint16 object, exactly
16 bits of data (plus the descriptor) will be sent over the
stream. This is true for 16, 32, 64, or 128 bit machines. This
will allow the stream to be decoded properly at the receive
end of the connection. The encoded data bytes will be in
network byte-order as specified by the XDR3 protocol [3].
For the case of anint16 , three bytes of data will be
transmitted over the network as shown with the encoded data
in figure 6. This is an improvement over the ASN.1 transfer
syntax [4]. Figure 5 shows that anint16 object may be
internally stored as a 32-bit integer on an i860. After
encoding the object, the data is put in network byte order and
is appended to theint16 persistence type descriptor.

The major point is that even arbitrary data structures, with
self-referential structures, can be moved with ease via the
transferable classes. Without going into great detail here the
fundamental observation is that all data structures have a
spanning tree. A spanning tree can be constructed in time
proportional to the number of vertices in the graph. Thus, it
is possible to encode (linearize) an arbitrary structure in
linear time and to decode (de-linearize) it in linear time. The
OSI and RPC systems both require significant programmer
intervention to manage the details of encoding and decoding

1. Via the normal library linking process.
2. A stream is either a connection over a network or a contiguous
array of memory that will eventually be sent over the network.
3. External Data Representation.

data structures. This can make applications expensive and
time consuming to develop. Another problem faced by both
models is the inability to cope with different domains of
architecture (as stated above in lossless domain mapping).
The result is that the transferable objects support HC
transparency by providing adequate scalar capabilities.

Figure 5 - Integer Representations.

To summarize, the transferable framework deals with the
following issues:

• Encode arbitrary data structures efficiently and
transparently with little or no user code required.

• Dynamically define data at run-time.

• Manage concrete types efficiently and cope with
exceptions.

3.2.2 Network Communication Framework

Current research in networking protocols, such as DQRAP
(Distributed Queuing Random Access Protocol), has shown
that M/D/1 performance numbers can be achieved over a
broadcast channel [21]. Such efficiency reinforces the idea of
network connectivity utilization for any heterogeneous
distributed computation. The idea of this framework is to
provide a basic abstraction that provides network services
through generic requests. In many respects, this is not
completely new. The OSI model lays the foundation for one
application interfacing with another application through a
layered architecture. Each layer abstracting the details of the
lower one through specific interfaces [7].

Figure 6 - Network Object Cluster

We are stating that a network connection should be treated as
an object, where network services are handled through
public methods. Using the ideas of the OSI model, this
object is actually a cluster of objects. Each object being
responsible for a certain aspect of the connection. Figure 6
illustrates a general cluster, allowing the application to
interface the cluster through theNetwork object. The

int16 object, i860 (32-bits)

Encoded data, 24-bits

One byte of Data

Type Descriptor

m

l

l

m

l - Least Significant Bit
m - Most Significant Bit

. . .

Network

Communication

TCP UDP TLI

Pure
Virtual
Object

Transputer

6

Network object is similar to the presentation/session layer
of the OSI model. It uses an object called
Communication as a collaborator. This object is an
interface to the transport layer. The methods of this object,
are for the most part, purely virtual. Therefore, through
polymorphism, this object can be used to interface any
transport layer.

A Communication object provides an interface to the
transport protocol supported by the host. For many systems,
this is merely a wrapper for the library of transport functions
(e.g. Sockets and TLI). Providing a wrapper for a particular
interface, is nothing more than deriving an object for it (e.g.
an object that provides a TCP protocol by using sockets)1.
However, many systems do not provide a transport layer, in
which case a transport layer must be derived. For example,
transputers have no transport layer. When a message needs
to be sent, a channel is opened and the message is sent to it.
This, however, results in performance degradation.
Compute-bound processes that are ready to use the CPU are
blocked until the long-winded communication is ended. A
derived transport layer object that supports packet
fragmentation and virtual connections would allow the
communication cost to be amortized over time and allow
other Processes to use the CPU in the process.

When establishing a network connection, we may not be
physically connected to the destination machine. For this
case, the assistance of a helper class (known as a
collaborator), could be used (Routing object). This object
can be used to abstract the routing policies of the application.
We have found it useful to include this object in to the
Network object’s cluster, using it as a collaborator. This
eases the burden on the application, it just passes a logical
name to theNetwork object. The routing to the appropriate
machine, via intermediate nodes, will be handled in the
encapsulation of theNetwork object (via the routing
collaboration).

The advantage of this approach is that the network object is
easy to integrate into any application, along with being easy
to port to new platforms through inheritance.

3.2.3 Locking Framework

Although there have been attempts to standardize locking
mechanisms (e.g., POSIX), there will undoubtedly always be
systems that expand on the capabilities provided by the
standardized mechanism. Similarly, when the same types of
mechanisms are provided, they tend to vary across
platforms. Examples of mechanisms are semaphores, spin
locks, and barriers. In contrasting the same two systems that
were compared earlier, the Encore Multimax and Sparc 4
(see “Heterogeneous Computing Issues” on page 1), both
system support semaphores; though their system interfaces
are different. However, spin locks and barriers are only
supported by the Multimax. To expand on the differences,
the Multimax supports both process spin locking and process
blocking. The fact is that there is no consistency between
heterogeneous machines. This makes software reuse and
portability difficult.

1. This is accomplished through inheritance. Polymorphism is
used to access the derived class transparently.

The locking framework provides a machine independent
object that is used by the application to perform locking
mechanisms via generic requests. The object will use the
most efficient means for the machine that it exists on. Here
again polymorphism will be used, where the locking object
uses virtual member functions to execute the proper
machine’s locking code (see figure 7). If certain generic
interfaces need to be provided to the application (e.g.
barriers) and a platform does not support them, then the
platform specific code must provide that functionality from
existing interfaces (e.g. integrating counting semaphores
with a wrapper to create a barrier).

Figure 7 - Locking Object Cluster

The advantage of this framework is that it maximizes
flexibility through framework reuse across machines and
provides portability to the application code (as far as locking
mechanisms are concerned). Adding a new machine to the
network is as much as reviewing the current derived objects,
if none of them meet the machine’s interface, derive just the
platform specific code into a new object.

3.2.4 Shared Memory Framework

Similarly to the locking mechanisms, shared memory
interface provisions for one machine are rarely consistent
with another heterogeneous machine (if provided at all). The
main issue, is having a uniform interface that allows
information sharing between one or more processes on the
same machine. This will provide a transparent and reusable
platform for upper lying software. The ideal medium is the
host machine’s shared memory, though if not present,
message queues can be used. The Sparc provides a System V
shared memory interface, while the Multimax provides an
entirely different interface2.

Both interfaces are different in nature. For example, the
System V interface requires a shared memory segment to be
created in the kernel. Once created, any process that knows
the shared memory identification number, can attach to or
de-attach from it. The segment must be explicitly removed.
If not, it will remain in the kernel indefinitely. However, with
the Multimax, a process creates the shared memory segment
allowing only the processes that know the segment address
to access it. If the segment is not removed explicitly by the
process, it will be released when the process terminates. In
order to provide an abstraction for the shared memory
interface and usage differences, which are radically different
between implementations, this framework must provide a

2. The Multimax does support the System V shared memory
interface, but is not as efficient as it’s own style shared memory
interface.

. . .

Locking

SysV Multimax Cray Y-MP

Pure
Virtual
Object

7

uniform interface (see figure 8).

Figure 8 - SharedMemory Object Cluster

This framework increases shared memory code reuse
between heterogeneous machines along with providing a
more portable interface to the application code.

4 Heterogeneous Environments

High-performance heterogeneous distributed and parallel
computing is emerging as a new paradigm [10]. For this type
of research to have wide spread commercial use, there are
certain aspects that itmust have: portability, integrability,
extensibility, interoperability, and reusability. These must be
integrated in to simple systems engineering techniques to be
useful in today’s changing market place.

Each of the frameworks use a strict interface definition that
relies on generic requests. The model stresses the importance
of creating objects not to meet mythical future needs, but
only under the present demand where the requirements are
known. This ensures that a design contains only as much
information as needed and avoids excessive complexity.
Since the design is concrete and the logical relationship
between objects is explicit, it is easier to understand,
evaluate, and modify the design. Extending the design is
typically deriving one or more objects.

The major objectives of increased software extensibility and
reusability must control the complexity without effecting
performance adversely. Many examples of the OO trend
exist today, most commonly in operating system
development (e.g. Microsoft’s Cairo and IBM’s Taligent
object-oriented operating systems).

The dynamic binding and inheritance of object-oriented
technology can be exploited to increase software reuse and
hide architectural/protocol specifics [5]. Thus, providing a
solid layering effect to provide higher transparency. To
illustrate this, figure 9 shows an application with seven
processes executing over three different platforms. The
Communication object provides the same interface to all
processes, eventhough different transport layers are being
used. In addition, theSharedMemory object provides
transparency, eventhough the underlying specific code is
different1.

Though we contest that systems can be built well with
procedural programming languages, these approaches tend

1. Note that distributed-memory MIMD machines do not support
shared memory. The shared memory framework must provide a
virtual shared memory segment using message-passing.

. . .

sharedMemory

SysV Multimax Cray Y-MP

Pure
Virtual
Object

to lead to novice designs that lack modularity and are littered
with regressions to global thinking (e.g. gratuitous global
variables, unnecessary pointers, and an inappropriate
reliance to other code modules). This leads to great difficulty
in achieving a high level of software reuse over
heterogeneous machines.

Figure 9 - Platform Specific Run-time Binding

Often these abstractions are not apparent because of our
focus on designing algorithms to perform the desired
computations rather than designing levels of abstractions. In
addition, procedural abstractions are too small and not
generalized in nature. The extent is that software reuse
suffers effecting user productivity [17]. This results in
increased development times when porting to newly
enhanced hardware platforms and adding functionality to
base code over all platforms.

5 Relation to Other Research

Both parallel processing and heterogeneous distributed
computing has been an area of research for some time
[12][23]. Recently there have been attempts in combining
the two [6], known asmetacomputing. When surveying the
state of the art, several basic categories emerge. Each of the
systems are not mutually exclusive; some fall into more than
one category. The categories are: Remote execution
[3][20][23][25], heterogeneity [6][12][18][19][20][22], and
portable parallel processing [6][12][13][22][24].

Several programming models and distributed environments
have been developed in the past for HC [6][12][13][22].
Each of these systems provide a distributed and parallel
environment to the application code.

Excluding Mentat [13][22], each of the systems are focusing
on procedural implementations (of the system itself). The
general techniques and methods of implementing a
procedural system are difficult when dealing with efficiency
and understandability in HC environments. Another issue
with all the current systems is the lack of consistent domain
representations across heterogeneous machines.

Recently the OMG2 has been defining the CORBA3

standard. This standard supports the distribution of objects

2. Object Management Group (an alliance of companies).
3. Common Object Request Broker Architecture.

c

s
- Communication object
- Shared memory object

PN - Application process

TCP/IP

Connection
Transputer

Encore Multimax

s
c
c

P2

P1

INMOS Transputer

c P3

P4

P5

P6

P7

c

s

Sparc 4

8

over heterogeneous networks. Through ORBs1 located on
each machine, the standard allows object methods to be
invoked from anywhere on the network. Eventhough our
model focuses on heterogeneous parallel processing, the
communication framework can easily be used to provide the
ORB to object connections. In addition, the transferables can
be used to provide lossless datatype domain mappings for
applications.

Our approach relies on portability, reusability, and
extensibility while providing a high level of interoperability.
What distinguishes our work is that metacomputing is
simplified using the fourbasic frameworks. Not only does
our model relieve the application of complex coding issues,
but dynamic data migration, with lossless data domain
mappings, is transparent to the application during run-time
execution. This eliminates data type precision side-effects
when using heterogeneity.

6 Conclusions

HC provides a wide range of new opportunities for
distributed and parallel computing applications [15]. We
must provide a common framework that provides for a set of
fundamental components that are well defined, easy to
integrate, and efficient for parallel processing in hetero-
geneous environments.

The generic modeling framework offers maximum software
reuse and platform transparency. New platforms are easily
integrated in to HC environments by deriving the appropriate
super classes, allowing run-time binding, and providing total
transparency to upper layer software. This increases
reusability and time to market. The result is that the model
allows a wide range of diverse high-performance machines
to work together using a system built of basic foundations,
general techniques, and clear methods.

7 Acknowledgments

We would like to thank Mohinder Chabbra and Jeffery Steele
of AT&T Bell Labs and George Kutty of UCSB for their
countless hours of proof reading and useful suggestions.

8 References

[1] W. O’Connell, G. Thiruvathukal, T. Christopher,
“Distributed Memo: A heterogeneous Parallel and
Distributed Software Programming Environment”,
Tech. Rep. TR-HDPP-1, Dept. of CS., IIT, Dec., 1993.

[2] S.R. Ahuja, N.J. Carriero, D. Gelernter, V.
Krishnaswamy. “The Linda Machine: Concurrent
Computation”, Chapter 36. Plenum Press. 1988

[3] J. Bloomer, “Power Programming with RPC”,
O’Reilly and Associates. 1991.

[4] E. Blossom, “Decoding ASN.1 Transfer Syntax”,The
C Users journal, Sept. 1991, vol. 9, num. 9, pp 57-63

[5] G. Booch, “Object-Oriented Design with
Applications”, Benjamin-Cummings, 1990.

[6] V. Sunderam, “PVM: A Framework for Parallel

1. Object Request Brokers.

Distributed Computing”,Concurrency: Practice and
experience, vol. 2, no. 4, Dec. 1990, pp. 315-339.

[7] A.E. Conway, “Performance Modeling of
Multilayered OSI Communication Architectures”,
Proc. of the IEEE Int’l Conf. on Commun., Boston,
MA, vol 2, sess. 21, paper 1, pp. 651-657, June 1989

[8] N.J. Carriero, D. Gelernter, J. Leichter “Distributed
data structures in Linda“,Proc. ACM Symp. Princ. of
Prog. Languages, January 1986.

[9] C.J. Date, “Introduction to Database Systems”, vol. 1,
ed. 4, pp. 371

[10] A. Deogirikar, Keynote Speaker,TOOLS USA ‘93
Conference on Object-Oriented Technology. Santa
Barbara, CA. Summer 1993.

[11] R.F. Freund, H.J. Siegel, “Heterogeneous Processing”,
IEEE Computer, June 1993, vol. 26, no. 6, pp. 13-17

[12] D. Gelernter “Generative Communication in Linda”,
ACM Transactions on Parallel Languages and
Systems, Vol. 7, No 1, Jan. 1985, Pages 80-112.

[13] A. Grimshaw “Easy-to-Use Object-Oriented Parallel
Processing with Mentat”,IEEE Computer, May 1993

[14] A. Grimshaw, W. Strayer, P. Narayan “Dynamic,
Object-Oriented Parallel Processing”,IEEE Parallel
and Distributed Tech., Sys. & Apps., May 1993

[15] A. Khokhar, et al., “Heterogeneous Computing:
Challenges and Opportunities”,IEEE Computer, June
1993, vol. 26, no. 6, pp. 18-27

[16] P.S. Kritzinger, “A Performance Model of the OSI
Communication architecture”,IEEE Trans. on
Commun., vol. COM-34, no. 6, pp. 554-563, Jun. 1986

[17] J.A. Lewis, et al, “On the Relationship between the
Object-Oriented Paradigm and Software Reuse: An
Empirical Investigation”, Journal of OO
programming, july/aug 1992, vol. 5, no. 4, pp. 35-41.

[18] A. Ghafoor, J. Yang, “A Distributed Heterogeneous
Supercomputing Management System”,IEEE
Computer, June 1993, vol. 26, no. 6, pp. 78-86

[19] J.R. Nicol, et al., “Object Orientation in
Heterogeneous Distributed Computing Systems”,
IEEE Computer, June 1993, vol. 26, no. 6, pp. 57-67

[20] D. Presotto, R. Pike, K. Thompson, H. Trickey, “Plan
9, A Distributed System”, AT&T Bell Laboratories,
Murray Kill, NJ.,Computing Resources Archives.

[21] W. Xu, G. Campbell, “A Distributed Queueing
Random Access Protocol for a Broadcast Channel.”
Comp. Comm. Review, ACM SIGCOMM, Oct., 1993.

[22] A. Grimshaw, “Meta-Systems: An Approach
Combining Parallel Processing and Heterogeneous
Distributed Computing Systems”,Proceedings of Int’l
Parallel Processing Symp., Workshop on
Heterogeneous Parallel Processing, 1992.

[23] D. Notkin, et al., “Heterogeneous Computing
Environments: Report on the ACM SIGOPS
Workshop on Accommodating Heterogeneity”,
Comm. of the ACM, vol. 30, no. 2, pp. 132(8), Feb. ‘87.

[24] J. Boyle, et al.,Portable Programs for Parallel
Processors, Holt, Rinehart and Winston, NY, 1987.

[25] B.N. Bershad, et al., “A Remote Computation in a
Heterogeneous Environment”, Tech. Rep. 87-06-04,
Dept. of CS, Univ. of washington, Seattle, June, 1987.

	Loyola University Chicago
	Loyola eCommons
	1994

	A Generic Software Modeling Framework for Building Heterogeneous Distributed and Parallel Software Systems
	William T. O'Connell
	George K. Thiruvathukal
	Thomas W. Christopher
	Recommended Citation

	tmp.1322104626.pdf.4_fqy

