
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1-2002

Java at Middle Age: Enabling Java for
Computational Science
George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2002 George K. Thiruvathukal

Recommended Citation
George K. Thiruvathukal, "Java at Middle Age: Enabling Java for Computational Science," Computing in Science and Engineering, vol.
4, no. 1, pp. 74-84, Jan./Feb. 2002, doi:10.1109/5992.976439

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

there were many Java Day events. I still
have my t-shirts as proof of having
been there.

Java’s early success owed much to
the Netscape browser, which was de-
signed to run Java applets directly (al-
though I remain convinced that Java’s
unique approach would have earned it
a place in language history indepen-
dent of Netscape). You could store Java
code on your server and download it to
a browser; a Java Virtual Machine (the
so-called JVM) could then load and ex-
ecute it, in principle, anywhere. It is
this ubiquity that has everyone still
talking in terms of Java.

Java’s early history explains its lure to
this day. Java is alive and well, running
on just about every computing plat-
form, from handhelds to high-end
servers such as multiprocessors. Im-
plementations of Java for Windows,
Macintosh (including OS X), and
Linux have all reached sufficient matu-
rity and are in widespread use. Perfor-
mance and resource usage remain a
problem in most Java implementa-
tions, but the language is improving all
the time.

In this article, I examine the lure of
Java for computational science, discuss
the Java Grande effort to work with
Sun, and identify areas for improve-

ment. I won’t rehash the stories that
abound of bad Java performance but
will instead focus on language and im-
plementation issues that must be solved
for Java to be taken seriously for com-
putationally focused codes. As a moti-
vational tool, I include a number of re-
flections on the C# language from
Microsoft, which many claim is noth-
ing more than Java with a new syntax. I
excise a number of sections from the
specification documentation to demon-
strate that specific Java Grande Forum
(JGF) recommendations are imple-
mented in the current version of Mi-
crosoft’s C#. What is particularly inter-
esting (but not necessarily verifiable) is
that language appearing in the Mi-
crosoft C# specification proper often
appears to paraphrase similar points
raised in the JGF documents available
at www.javagrande.org.

Java takes the world by storm
In a nutshell, Java enjoys a great deal

of popularity for several reasons:

• Documentation. It is one of the few
languages (besides Python) that sup-
ports documenting comments, which
makes documenting your code a snap.

• Write once, run everywhere. This is
Sun’s famous marketing jargon, and

it’s mostly true but not always with
good results. This slogan empha-
sizes reproducible results, which is
often at odds with achieving good
performance.

• Code mobility. Long considered an
important tenet of distributed sys-
tems, Java has a well-developed no-
tion of code packaging (code ship-
ping). You can migrate and execute a
Java program’s compiled representa-
tion anywhere Java runs. This is not
possible under normal circumstances
in other compiled languages—such
as C or Fortran—especially between
different architectures and operating
systems.

• Compiled. Java is a compiled language.
True, the JVM is a hybrid of inter-
preter and compiler, but with most
current JVMs, performance-critical
code is adaptively compiled and exe-
cuted with native CPU instructions.

• Memory management. Unlike C,
C++, and Fortran, where memory
management issues are left entirely
to the programmer, Java supports
automatic garbage collection. It
manages memory entirely at run-
time, automatically freeing memory
that is no longer needed. This de-
termination of how and when mem-
ory is no longer needed is a long-
standing research area in computer
science, and it is still not perfect.
Nevertheless, techniques exist for
pooling memory to minimize unex-
pected interactions with the memory
manager.

• Graphical interfaces. Java is one of the
only environments where you can

74 COMPUTING IN SCIENCE & ENGINEERING

JAVA AT MIDDLE AGE: ENABLING JAVA
FOR COMPUTATIONAL SCIENCE

By George K. Thiruvathukal

NOT LONG AFTER THE MOSAIC WEB BROWSER APPEARED

AND NETSCAPE COMMUNICATIONS FORMED, SUN MI-

CROSYSTEMS LAUNCHED JAVA IN A WAY THAT WILL BE FOREVER

KNOWN AS A MARKETING SUCCESS STORY. ALL ACROSS THE US,

Editor: Paul F. Dubois, paul@pfdubois.com

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

JANUARY/FEBRUARY 2002 75

develop an application using its Ab-
stract Windowing Toolkit (the bows
and arrows) or Swing (the heavy ar-
tillery) and be virtually guaranteed
that the code will run on any signif-
icant platform. (I can attest to this
being true for Windows, Macintosh
OS X, Linux, and Solaris.)

• Enterprise networking. Java is com-
pletely enabled for the Internet. It can
do everything from sockets program-
ming to high-level remote procedure
calls (Remote Method Invocation,
Common Object Request Broker Ar-
chitecture, and XML/RPC), and it
just plain works.

Java is best described as a story in
good (albeit conservative at times) lan-
guage design and excellent integration
through its class libraries. It has practi-
cally every capability needed in pro-
gramming and, unlike C or Fortran, its
source and executable forms of code
can be distributed and executed with
little or no modification to the source
code, resulting in a nearly seamless en-
vironment for executing code.

About Java Grande
Against this backdrop, a number of

us in the computational science com-
munity saw (and continue to see) Java’s
potential for scientific and technical
computing. How many times have you
written an application in C only to
move it somewhere else just to make
that one change to get it working due
to a missing library function? Having
worked on several Fortran and C ap-
plications myself, the potential was ob-
vious: I could develop code on my per-
sonal computer or notebook and run it
on a different machine simply by mov-
ing the binary code itself. To go one
step further, I could develop, compile,
and package the code (into a Java
archive, a so-called .jar file) and then

ship it to the target environment for
execution without change.

The Java Grande concept began in
1998 as a result of the First Interna-
tional ACM Workshop on Java for Sci-
entific Computing, which Geoffrey C.
Fox founded. I served as the first (and
only) secretary general for the JGF and
was responsible for editing the first
version of the Java Grande Report,
which you could construe as a report
card for Java and its support for high-
end computing applications.

Members of the JGF, when appear-
ing in public, are often asked, “How
did you come up with the name
grande?” The Spanish word grande is
used in much the same way as the Eng-
lish word grand, to denote something
that is either great or large. Our inten-
tion was to capture the essence of
large-scale Java applications that take
Java above and beyond its intended use
(applets running on the desktop) to
support the kinds of applications that
many of us in the scientific community
are developing in C and Fortran. The
intention was not to replace any of
these legitimate activities but to pro-
vide a viable alternative or supplement
using a state-of-the-art programming
language that provides a glimpse into
the future.

A grande application is any applica-
tion that requires extensive processing
power (and thus wall-clock time) to ex-
ecute. The Human Genome Project,
astrophysics, fluid dynamics, aeronau-
tical engineering, and other large-scale
simulations are all application areas
within the purview of Java Grande.
Grande applications, in addition to
having extensive processing power, also
need extensive I/O support as well.

Java is not completely new
Although Java has several innovative

aspects, emphasizing that Java and its

approach are not completely new is im-
portant. In particular, let’s focus on the
byte-code concept, which is the ma-
chine code that Java compilers produce
and that the JVM executes. Java is not
the first language to attempt to use
platform-independent byte codes.
There are three documented success
stories with this approach, including
the Pascal environment (UC San
Diego), Icon (University of Arizona),
and Smalltalk (Xerox and Digitalk).
Even one of my favorite programming
languages, Python, used a byte-code
approach for program execution.

There is a widespread misconception
about Java that the byte-code concept
implies inefficiency. This is because
code tends to inhabit two worlds: “fast”
and “slow,” for lack of better terminol-
ogy. To a large extent, this implication
is only a reality because of today’s JVM
implementations and economic consid-
erations. The JVM design itself could
help create innovative coprocessors
that would only run Java’s byte-codes
in lieu of a virtual machine. Obviously,
economics don’t favor bundling a co-
processor with every system, and it is
unlikely that everyone would go out
and purchase a computer system with
a dedicated Java processor. I should
point out for the sake of completeness

For Further Reading

Java Grande Report JGF-TR-1: Mak-
ing Java Work for High-End Technical
Computing, www.javagrande.org

ACM Java Grande Conference Se-
ries, www.acm.org/pubs/contents/
proceedings/series/java

Java Numerics Effort, http://math.
nist.gov/javanumerics

“Java and Numerical Comput-
ing,” R.F. Boisvert et al., Computing
in Science & Eng., vol. 3, no. 2,
2001, pp. 18–24.

HotSpot link, http://java.sun.com/
products/hotspot

C# link, http://msdn.microsoft.
com/vstudio/nextgen/technology/
Csharp_Language_Specification.doc

76 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

Café Dubois

Video tutorials
You will have noticed that some

people can’t read your fine manual.
There are people who, if shown some-
thing, can do it much more easily than
if they read about how to do it, so you
feel that there is no substitute for visit-
ing people and showing them. But
with travel now even more miserable
than it used to be, and the seats on
airplanes now 20 percent smaller than
the average person, this doesn’t sound
like a good way to spend your time.

Video sounds tempting, but it’s
harder than it seems. You have to have
a good camera, decent lighting, and
that guy named Joey from the AV de-
partment who knows how to run it. It
doesn’t show your computer screen
very well unless you have even more
special equipment or Joey gets smarter.

Solution: realize that the thing that
doesn’t have to appear on the screen
is, well, ahem, you. You can make a tu-
torial by capturing your screen and
recording your voice using a micro-
phone. After you sync the two to-
gether, you can deliver by download,
CD, or streaming server.

ScreenWatch (www.optx.com) is a
neat product. To use it, you need a Win-
dows 2000 machine to record on. If
your software only runs on Unix, you
can still record it by running X on the
Windows machine. ScreenWatch is a
commercial product, but the cost is
modest—about $3,000 for a basic
setup.

Here’s how you can try it. Get an
evaluation license for ScreenWatch,
and then download RealProducer Ba-
sic from Real Networks (www.realnet-
works.com). Your consumers will need
RealPlayer (to which they install a
component that can handle Screen-
Watch files by downloading the com-
ponent from the Real Web site). You’ll
need a basic microphone or better.

The RealProducer records your
voice, and ScreenWatch records the

screen while you run your software.
ScreenWatch works by swapping in a
virtual video driver that records your
screen. It records a full frame and then
only records changes for a period. By
repeating this cycle, the file sizes it
produces are kept modest. Therefore,
the best situation is one in which the
screen is relatively slowly varying.
ScreenWatch does have a mode for
high-rate capture, however. You can
record voice while you record video or
later while you are watching playback.
I do both, because I find that speaking
while demonstrating the software puts
the right amount of space into it for a
later voiceover.

Once you have the two files
recorded, you create a file called a
“smil” file that the RealPlayer recog-
nizes. This is a text file written in an
HTML-like syntax. The file tells the
player what clips to play and at what
point in their files to begin and end. By
finding a point in each file to start from
that represents the same point, you can
sync voice to video. (ScreenWatch 4.0,
which should be out by the time you
read this, automates the process.) You
can make a presentation out of a set of

pieces from one or more recording ses-
sions.

To deliver the tutorial, you now
need a way to deliver the three files
(video, audio, and smil) to your user.
You can do this as a download, on a
CD, or you can get a free RealServer
Basic to stream video off your Web site
if you only need to serve a couple of
dozen simultaneous users. You can get
pretty fancy; see the ScreenWatch
demos to get an idea. You can buy an
extra component to produce Windows
Media versions, too.

The tow truck
Like most Americans, I have suffered

a lot of grief and a lot of anger in the
last month. (I’m writing this in mid-
October.) One of the things I’ve
thought about is a conversation I had
with Dr. P when I was in my last year
of graduate school. Dr. P knew some-
thing about freedom. He had escaped
from an Iron Curtain country and
earned a second PhD once he reached
America because he couldn’t prove he
had received the first one.

Dr. P had an interesting grading sys-
tem: each exam had five questions

JANUARY/FEBRUARY 2002 77

that Sun actually tried. It designed a
Java chip and built some Java worksta-
tions, which (not surprisingly) were
powered by a JavaOS and Java. It didn’t
go far.

The idea of building Java chips was
not entirely a misguided one. There
were real performance issues with re-
spect to Java, and many of them could
be resolved without building dedicated
hardware. The Java Grande effort,
aimed at the world of high-perfor-
mance scientific and technical comput-
ing, was in reality an effort to make Java
work better for computing in general.
In short, Java’s performance problems
not only hurt scientific and technical
computing codes, they hurt all codes.
You don’t need to look far to be con-
vinced. Corel’s early attempt to port its
office suite to Java was a disaster due
entirely to performance. (In fact, no
one has since made a credible attempt
to make general office-style applica-
tions work in Java.) Many of the per-
formance problems of Swing (Java’s
GUI framework, which relies on bit-
mapped graphics) would improve were
array performance issues addressed.
Based on the needs of the many, it
would appear Java Grande and its rec-
ommendations are for everyone.

Java + Java Grande = A tough sell
Java’s state in 1998 was one of any-

thing but performance. Implementa-
tions in many cases reported perfor-
mance roughly equal to 1/100th the
speed of C, especially for any code us-
ing arrays or floating point. The JVM
operated to a large extent in interpreted
mode. Then a number of just-in-time
compilers emerged. A JIT can turn Java
byte-code into native code on the fly,
but it often imposes an additional run-
time cost because it runs just about
every time your program does. (JIT
compilers have no memory and typi-

cally forget their results.) For long-run-
ning scientific codes, however, the JIT
approach can work quite effectively be-
cause actual cost as a percentage of
overall runtime is arguably negligible.
For completeness, JIT compilers work
incrementally. They can kick in when a
module (class) is loaded for the first
time and according to any criteria
where compilation into native code
would help performance.

The lack of compiled Java was defi-
nitely an initial turn-off for using Java
in compute-bound applications. The
good news is that compilers have im-
proved. The HotSpot effort from Sun
and the Ninja project at IBM have
shown that it is possible to significantly
improve performance by developing
state-of-the-art compilation techniques
(or in the case of HotSpot, putting
many old tricks to use again).

However, compiler techniques alone
do not lead to better performance.
Language and virtual machine changes
(often difficult to distinguish but an im-
portant distinction from Sun’s point of
view) are needed to support higher
performance. In addition to perfor-
mance considerations, many language
changes could spruce up Java for those
who grew up on other science-friendly
languages such as Fortran, C, and C++.
I will now address these changes.

Complex arithmetic
Complex numbers are used just

about everywhere in mathematical
problems in science and engineering
applications. (I am not one to insult my
audience. I believe everyone reading
this magazine knows that complex
numbers are of the form a + bi, where a
and b are real and i = .) One spe-
cific JGF recommendation was to in-
troduce a complex data type that stands
on equal footing with float, double, int,
and other scalar types.

−1

worth 20 points each. There was no par-
tial credit ... ever. Dr. P explained that
your answer was either complete and
completely right, or it was wrong. The
result was then translated into the stan-
dard 90–100: A, 80–90: B, and so on.
Some of us tried to point out that you
couldn’t possibly get a 90, but Dr. P
wasn’t interested.

Having passed Dr. P’s class by some
miracle, I was teaching my first calculus
class and realizing that the poor devils to
whom I was giving a C were, in fact, to-
tally incompetent. I worried about my
moral responsibility: If I gave them a
passing grade, and they became engi-
neers and killed somebody, that would
be my fault, right? Maybe Dr. P had a
point. I asked Dr. P about my concern.
He said that in his homeland there was a
totally different attitude about bad engi-
neering. If you built something in Amer-
ica and it fell down, well, they might sue
your company. In his homeland, you
would go to jail. He said it made you
study harder.

So, underneath my horror on Septem-
ber 11th, as I watched those pictures of
the plane hitting the World Trade Cen-
ter, was some wonder, too. The guys
who engineered that building surely did
not get a C in my calculus class. It was
simply amazing to me that the building
hadn’t fallen over immediately. Some
good engineering saved a lot of lives.

Shortly thereafter, I needed to have
my car towed. The truck that showed up
was as beautiful as a cheetah. Like a
cheetah, its form fitted its function so
perfectly that a single man, without any
substantial physical effort, was able to
scoop up my car onto the truck’s back
and take it to the repair shop. The fee
for this miracle was a mere $65. Over-
come by recent events, tears came to
my eyes, honestly. I said to the driver,
“This truck makes me proud to be an
American.” He knew just what I meant.
He smiled broadly and replied, “Yes it
does, doesn’t it. And it is so simple, just
so simple.”

Thanks, professors.

78 COMPUTING IN SCIENCE & ENGINEERING

Adding a complex type to Java pre-
sents a couple of design opportunities.
Either add support for it in the JVM
instruction set or create a user-defined
Complex class. Clearly, having a na-
tive type is the most desirable strategy
and is the one science-friendly For-
tran employs, but there is a significant
problem to overcome to make this
fully viable in Java. The JVM instruc-
tion set uses 8-bit operation codes
(opcodes). If we were to add any new
data type, as innocuous as it seems,
this could easily exhaust the remain-
ing opcodes (of which there are only a
few—see the “Opcode Summary for
Java” sidebar). Using extended in-
structions is possible, but the amount
of work is the same to add the type
thereafter.

Another possibility is to use Java’s
support for defining your own types.
For those who are completely new to
object-oriented programming, Java lets
you define your own types using a lan-
guage mechanism called a class. The
following code shows a user-defined
floating-point complex type, where the
real and imaginary parts are single-pre-
cision floating-point numbers:

class FloatComplex {

public float rpart, ipart;

public Complex(float rpart,

float ipart) {

this.ipart = ipart;

this.rpart = rpart;

}

// then the complex

operations

public add(FloatComplex

another) {

this.rpart = this.rpart +

another.rpart;

this.ipart = this.ipart +

another.ipart;

}

public mpy(FloatComplex

another) {

float result_ipart,

result_rpart;

result_rpart = this.rpart

* another.rpart –

this.ipart * another.

ipart;

result_ipart = this.ipart

* another.rpart –

this.rpart * another.

ipart;

}

// details omitted but

easy to code

public sub(FloatComplex

another)

public conjugate(FloatComplex

another)

public divide(FloatComplex

another)

}

Classes are useful for creating your
own types, but the storage overhead in-
troduced to create class instances is
much greater than the storage required
for complex numbers in other lan-
guages. In Fortran, a complex is stored
as a pair of floating-point (or double)
values. When an operation is per-
formed on complex numbers, the op-
eration is always performed on the real
and imaginary parts separately, entirely
relying on the algebraic identities. Sup-
pose you have complex numbers x and
y, where x = a + bi, and y = c + di, and
you want to multiply them. A Fortran
compiler is smart enough to compute
the real and imaginary parts merely by
applying the algebra (a + bi) × (c + di) =
ac + (bc + ad) × i – bd = (ac – bd) + (bc +
ad) × i.

Of course, a good compiler writer
can easily write a Java language front
end or a preprocessor (something no
longer present in Java) that features a
complex type (or macros for generat-

ing one) and then compile it into two
floating-point storage locations. Gen-
erating code for the multiplication
code is then a matter of generating it
for the real and imaginary parts of the
result separately. Roughly

complex x, y, result

result = x * y

is compiled as

result_real = real(x) * real(y)

– imag(x) * imag(y)

result_imag = imag(x) * real(y)

+ real(x) * imag(y)

result = result_real +

result_imag * i

where real(var) refers to the real
floating-point part of the complex vari-
able; imag(var), the imaging floating
point part.

Floating-point numbers
Floating-point numbers are a source

of contention between Java Grande
and the Java effort. On one hand, Java
promises write once, run everywhere.
On the other, Java Grande wants and
needs the ability to exploit the floating-
point capabilities present on conven-
tional, commodity hardware, such as
the Intel Pentium and Itanium chips.
Java’s write once, run everywhere
proposition is not just good marketing,
it is in many respects a business com-
mitment that Sun has made with its
partners that it must honor. Allowing
floating-point results to differ on dif-
ferent architectures is akin to breaking
a sacred covenant.

The Java Grande argument centers
on a proposition that enforcing bitwise
reproducibility and floating-point se-
mantics is a daunting task. We can
write floating-point computations that
will produce different results on differ-

S C I E N T I F I C P R O G R A M M I N G

JANUARY/FEBRUARY 2002 79

ent processors, even with the current
approach Java uses.

Let’s examine this a bit more closely.
Consider the Intel 80x86 processors.
They operate naturally on 80-bit dou-
ble extended floating-point values (so-
called extended precision, which goes
beyond double-precision arithmetic).
Java implementations on the Intel
processor must reduce any floating-
point operation’s precision to that of
double (11 bits) or float (8 bits). Intel
hardware can do this but not in a
strictly correct sense. The x86 actually
performs the computation in extended
precision and then truncates the result
to the number of required bits of pre-
cision. There are other problems as
well, such as having to emulate just
about everything that would happen in
a lower-precision setting. The details
are in the Java Grande Report and in-
clude issues such as narrowing the re-
sult’s exponent, preserving all excep-
tions, and so on. The end result is that
float and double require many twist-
ings and contortions, resulting in a ten-
fold increase in execution time for
most floating-point codes.

Within the JGF, many of us have
long argued that the floating-point is-
sue represents one of the most signifi-
cant obstacles for Java to overcome as
a scientific programming language.
There is some good news to report on
this front. The latest Java specification
incorporates many of the JGF’s ideas;
Java implementations can now exploit
the extended floating-point capabilities
of processors, and those who want
strictly reproducible results must now
use a keyword qualifier strictfp (for
strict floating point) to indicate that a
particular context requires repro-
ducible results. We’re pleased that it
will be optional to have reproducible
results for floating point and not the
default case.

Another desire in floating point (ex-
pressed in the Java Grande Report) is to
have the ability to use an FMA instruc-
tion, which is available on many popu-
lar microprocessors. FMA stands for
fused multiply and add and is considered
to be as important to floating point as an
increment in place instruction is for
scalar integer data. This is not just
something we want for recreational pur-
poses. The FMA instruction lets float-
ing point operate much faster, because
it allows an extra load operation to be
suppressed. Loading floating-point val-
ues, as opposed to loading integral val-
ues, comes at a much higher overhead,
because the size of a floating-point value
(in bits) is typically larger than the data
bus width and thus requires more than
one phase to be loaded.

Lightweight (value) objects
Classes represent the only current

Java mechanism to extend the pro-
gramming language with user-defined
types. Consider again the complex class
shown earlier. Java would let you create
an instance of the class (an object) as

Complex c = new Complex

(1.2, 3.4);

What exactly happens when you do
this? The answer is somewhat involved
but essentially,

1. An allocation request is issued to
Java’s memory manager. The stor-
age required is the space to store
the object’s header and the class’s
variables.

2. Memory might or might not be
available. If there is no suitable
memory available, the memory
might have to be compacted to free
up space to perform the allocation.

3. A pointer is returned to store the
new complex object.

Step 3 shows a key difference between
Java and its predecessor, C++. In Java,
storage must always be allocated on the
heap, and heap allocation generally takes
longer than allocation on the stack or in
global storage. This led to another Java
Grande recommendation: lightweight
objects. A lightweight object differs from
its heavyweight counterpart in its mem-
ory usage requirements and is primarily
intended to define values that would
never need to be extended using the
concept of subclassing or inheritance.
(The concept of an integer is such an ex-
ample. It represents values and provides
well-defined operations that never
change. The concepts of complex num-
bers and, to a large extent, character
strings, are similar.)

Value objects have been a part of the
C++ language design from day one.
They were explicitly removed in Java,
primarily because having different
kinds of objects leads to confusion at
times. (Questions such as, “When do I
use a value object versus a heap-allo-
cated object?” always come up in the
C++ community.) There are several im-
plications but one thing is clear: value
objects are faster and generally result in
much more efficient code generation
from a compiler’s point of view. Value
objects, much like other scalar data
types (such as int and float) make it pos-
sible to use techniques such as inlining
effectively, not to mention eliminating
certain object-oriented overheads such
as the v-table, which supports dynamic
method dispatch. They also operate
typically at approximately half the
speed of subroutine or function calls in
Fortran and C.

The notion of value objects has im-
plications beyond the storage of simple
values. It makes a significant difference
when using collections of values such
as arrays. In scientific codes, for exam-
ple, arrays of complex numbers are fre-

80 COMPUTING IN SCIENCE & ENGINEERING

quently used, and we gain a significant
storage and performance advantage by
not allocating a heavyweight object for
each complex number in the array.

Array layout and
multidimensional array support

Array processing is another aspect of
Java that detractors often point to as a
weakness. There are two aspects of ar-
ray processing in Java that are less than
optimal from an implementation
standpoint: layout and multidimen-
sional array handling.

Let’s first focus on the notion of lay-
out. C and Fortran programmers have
grown accustomed to the notion of
contiguous layout for array structures.
The notion of contiguity is expressed
simply as storage where adjacent, or
nearly adjacent, elements of the array
are stored nearly adjacent to one an-
other in actual memory. The same is
not true of Java. It uses tree structures
to store the array’s elements, even in the
case of one-dimensional arrays. Being a
systems person first and a languages
person second, I know from my earliest
studies of operating systems the impor-
tance of locality. Java arrays, because
they are all over the place, can exhibit
quite poor locality, resulting in gener-
ally lower performance than equivalent
code written in C or Fortran.

Multidimensional array processing is
also absent from the current Java. You
can define multidimensional arrays, but
when it comes to the underlying repre-
sentation and implementation, such ar-
rays are maintained as one-dimensional
arrays of one-dimensional arrays. The
end result is extra work to find the ele-
ment (an additional indexing operation
per dimension).

Through the Java Community
Process, there is an active proposal to
change this and an apparent interest in
doing so.

Generic Java: Still not numerics
friendly

One of the features needed in Java is
support for generic classes. The con-
cept of genericity originally arose in
Ada and Eiffel programming languages
and was supported through the tem-
plate mechanism in C++. A generic
class is one that is defined in terms of
other classes. Let’s take a look at where
these are needed.

Suppose you wanted to define a mul-
tidimensional array class in Java. You
might go about it as

class Int_2D {

private int [] data;

private int d1, d2;

public Int_2D(int d1,

int d2) {

data = new int [d1 * d2];

}

public int getElementAt

(int i, int j) {

return data[i * d2 + j];

}

}

public int setElementAt(int i,

int j,int value)

data[i * d2 + j] =

value;

}

Here’s where it starts to get a bit
messy. Suppose you wanted to define a
multidimensional array class in Java
that can be defined in terms of other
types besides integer (int). Let’s take a
look at how C++ would have done this:

template <class T, const int

dim1, const int dim2> {

private:

T data[dim1][dim2];

public:

T getElementAt

(int i, int j) {

...

}

}

C++ templates are much maligned (and
rightly so) for sloppy implementations and
an almost total lack of portability. How-
ever, there was a concern about making
genericity work for scientific program-
ming needs. These needs are very real, as
exhibited by Linpack’s design, which has
a clever naming scheme for handling all
the different methods and combinations
of integer, floating-point, and double-pre-
cision cases. Of course, Linpack had to
work with Fortran and, when written,
even had to deal with complexities such as
limited identifiers. Modern programming
languages can do a great deal to help in
the engineering of such codes, but Java
does absolutely nothing to help in the en-
gineering of such libraries except to allow
the existing library to be wrapped using a
framework called JNI. This is good for
reuse but not necessarily a good use of the
object paradigm. (As an aside, there are ac-
tive projects ongoing with respect to sci-
entific libraries and Java.)

Generic classes have great potential
to change the landscape for scientific
computing libraries, because generic
classes can be written to anticipate
changes that inevitably come about in
computer architecture, such as higher-
order floating-point types.

Java 1.4 and beyond implement
generic classes, but early evidence sup-
ports that it won’t be a numerics-friendly
design. Generic classes in Java will only
support template parameters that are
class types. This means that building
collection classes (lists, stacks, and arrays)
of scalar data or fixed size will be infea-
sible. Those who really want such fea-
tures will have to resort to ad hoc pre-
processors that can process Java class
templates and generate specific versions.

S C I E N T I F I C P R O G R A M M I N G

JANUARY/FEBRUARY 2002 81

A look at C#: All vaporware
or HPC-friendly?

C# addresses many issues covered in
the Java Grande Report. It is almost as if
they read our minds. I’ll provide a quick
tour of the C# features that closely relate
to issues raised in our report.

Floating point
This perhaps best summarizes the

progress on floating point, at least
when observing C#. It comes from the
C# specification, section 4.1.5:

Floating-point operations may be per-
formed with higher precision than the re-
sult type of the operation. For example,
some hardware architectures support
an“extended” or “long double” floating-
point type with greater range and preci-
sion than the double type, and implicitly
perform all floating-point operations us-
ing this higher precision type. Only at ex-
cessive cost in performance can such hard-
ware architectures be made to perform
floating-point operations with less preci-
sion, and rather than require an imple-
mentation to forfeit both performance and
precision, C# allows a higher precision
type to be used for all floating-point oper-
ations. Other than delivering more precise
results, this rarely has any measurable ef-
fects. However, in expressions of the form
x * y / z, where the multiplication
produces a result that is outside the dou-
ble range, but the subsequent division
brings the temporary result back into the
double range, the fact that the expression
is evaluated in a higher range format may
cause a finite result to be produced instead
of an infinity.

In other words, see the Java Grande
Report. We called specifically for this
change, as I pointed out earlier. The
C# specification’s wording makes it
abundantly clear that C# intends to
provide the implementation with great

latitude to give the best possible im-
plementation of floating point. More
importantly, we can expect to see
proper working floating point in the
reference (Microsoft) implementation.

Box–unbox concept
Java programmers frequently must

use wrapper classes when working with
numeric data in a collection. Collec-
tions are higher-level data structures
than arrays, such as growable lists,
mapping structures, and queues. In-
creasingly, computational scientists use
data structures beyond basic arrays. I
have worked with colleagues on some
astrophysics applications that use tree-
like data structures.

Java’s Hashtable data structure is a
so-called associative mapping structure.
It can associate any object with any ob-
ject (sometimes called a one-to-one as-
sociation). Hashtables can maintain
properties, which are used in computa-
tional science applications to configure
an experiment:

Hashtable myParameters = new

Hashtable();

myParameters.put(“dataset_

name”, “xyz.dat”);

myParameters.put(“dimensions”,

new Integer(2));

myParameters.put(“dim1”, new

Integer(100));

myParameters.put(“dim2”, new

Integer(200));

This snippet indicates one of Java’s
problems: It goes a bit overboard when
it comes to object orientation. To use the
Hashtable, the values being placed in the
table must be objects (meaning no scalar
data can directly be used where an object
is required). Here the call to create a new
instance of the integer class results in an
object that wraps the value 100. When
we want the value of the dim1 property,

we must write code such as

int dim1 = ((Integer)myParameters.

get(“dim1”)).intValue();

Even advanced programmers with
strong computer science backgrounds
find this kind of code to be extremely
tedious to write.

C# has introduced the notion of box-
ing and unboxing, which other re-
search programming languages have
used for some time. In C#, the concept
is worked out to a sophisticated degree.
The details are related to the discus-
sion of value objects. The concept of
boxing is best understood as follows:
When there is a need to store a value
and an object is required, an implicit
conversion will take place to put the
value in an object box. Thus an object
is created implicitly in this case. (C++
had the ability to approximate this con-
cept with conversion operators; C#
uses a more general mechanism that
does not require any programmer in-
tervention and is less error-prone.)

The example could then be written
(just focusing on the lines where inte-
ger objects are explicitly constructed):

myParameters.put(“dimensions”, 2);

myParameters.put(“dim1”, 100);

myParameters.put(“dim2”, 200);

The unboxing concept is clever, but
it does not perform the unboxing im-
plicitly—a casting operation is still re-
quired. Even in this case, the amount
of coding (and performance) is better
and more comprehensible to boot:

int dim1 = (int) myParameters.

get(“dim1”);

It is perfectly valid to claim that this
is merely syntactic sugar, but the code
bloat factor nevertheless decreases sig-

82 COMPUTING IN SCIENCE & ENGINEERING

nificantly. Java’s detractors in compu-
tational science often point to issues
such as the wrapper classes as a defi-
ciency in need of a remedy. One of the
JGF recommendations, value classes,
addresses the issue of wrapper classes,
which are a special case.

Array layouts
C# supports both rectangular and

sparse (jagged) array data structures
(see the related sidebar). I have ad-
dressed the problem of Java array pro-
cessing earlier in this article. In C#,
rectangular arrays of dimension 2 and
higher can be defined:

float [,] f2d = new float[d1,

d2];

The jagged array syntax is patterned
after Java’s current array syntax and will

not be discussed further. The seman-
tics are the same. C# supports Java-
style arrays for those who want them.

The semantics of C# array process-
ing are much closer to Fortran’s style
than C or C++. I say this because there
is no absolute requirement to access
the first dimension before the second
dimension in the case of a 2D array.
There are two ways to subscript arrays
in C#. For the rectangular array,

float f2d_00 = f2d[0, 0];

If the array is not rectangular, which
is possible if the Java-style array alloca-
tion is used, we would write the access
to the first element:

float f2d_00 = f2d[0][0];

There is a clear difference in these

two accesses from a performance point
of view. The second case requires two
array references (and is the way Java
currently works). The first case results
in a single array reference with code to
compute the offset from the base mem-
ory address associated with f2d.

Value objects (structs): A retro
flashback

C# also supports value objects or so-
called struct types. I call this a retro
flashback because it’s one of those rare
cases where a feature that every object-
oriented language designer thought
was obsolete is back from the dead. I
cite the C# specification again:

Structs are similar to classes in that they
represent data structures that can contain
data members and function members.
Unlike classes, structs are value types and

S C I E N T I F I C P R O G R A M M I N G

Opcode Summary for Java

Adding operation codes (opcodes) to Java is problematic.
Many of the desired changes to Java as a language (Java
Grande’s wish list and others) require several opcodes to be
added. Table A shows most of the current opcodes in the
present Java Virtual Machine.

This table alone is not sufficient to understand the problem,
which is due to opcode size (8 bits, or 256 are available—not all
of which are actually available because they’re reserved). There
are well over 200 instructions in the current JVM instruction set.

I won’t provide a detailed analysis here but will shed some
light on what it takes to add a new type to the JVM. Most in-
structions are typed—for example, integer instructions for

arithmetic and logical operations always begin with i (iadd,
isub, imul, iand, ior). The same applies to most other
scalar types. To add complex as a type requires a significant
number of opcodes to be added. Although it is likely that
adding complex alone would not exhaust the available op-
codes, it is likely that there wouldn’t be many left. There are
other similar requests under review through the Java Commu-
nity Process. It is unclear whether such requests can be accom-
modated without substantial JVM changes (and controversy).

There is support for extended opcodes, which brings me
back to the comment about some standard opcodes being
reserved. However, this represents a major language change;
and (as mentioned in the main text) JVM changes tend to
come slowly, if at all, except for major language revisions.

Table A. Current opcodes in the present Java Virtual Machine.

Category Number of instructions Examples

Arithmetic operations 24 iadd, lsub, frem

Logical operations 12 iand, lor, ishl

Numeric conversions 15 int2short, f2l, d2I

Pushing constants 20 bipush, sipush, ldc, iconst_0, fconst_0

Stack manipulation 9 pop, pop2, dup, dup2

Flow control instructions 28 goto, ifne, ifge, if_null, jsr, ret

Managing local variables 52 astore, istore, aload, iload, aload_0

Manipulating arrays 17 aastore, bastore, aaload, baload

Creating objects and arrays 4 new, newarray, anewarray, multianewarray

Object manipulation 6 getfield, putfield, getstatic, putstatic

Method call and return 10 invokevirtual, invokestatic, areturn

Miscellaneous 5 throw, monitorenter, breakpoint, nop

JANUARY/FEBRUARY 2002 83

Aliased and Jagged Array Structures

Java is not particularly well suited to multidimensional ar-
ray processing. In fact, multidimensional array processing in
Java is reminiscent of the same concept implemented in C
using pointers, which is fascinating considering that Java
does not have a pointer concept—only a reference concept.

Java arrays are also particularly difficult to deal with at
compile time because they are not declared statically. Every
dimension of an array is allocated with the new operator
and the argument to new can in fact be a variable (and not
a constant), so implementing most of the traditional com-
piler optimizations used in Fortran and other language com-
pilers is next to impossible.

There are two problems with Java arrays—aliasing and
jaggedness—that the following code illustrates:

public class Jagged {

public static void main(String args[]) {
int i, j;
int jaggedArray[][] = new int[2][];

/* The following line creates an
ALIASED array. */

jaggedArray[0] = jaggedArray[1] =
new int[10];

for (i=0; i < jaggedArray[0].length;
i++)

jaggedArray[0][i] = i;

System.out.println(“Printing the
aliased array.”);

for (i=0; i < jaggedArray.length; i++) {
for (j=0; j < jaggedArray[i].length; j++)

System.out.println(“[“ + i + “][“
+ j + “] = “ + jaggedArray[i][j]);

System.out.println(“\n”);
}

/* The following line turns the array
into a JAGGED array. */

jaggedArray[1] = new int[5];
for (i=0; i < jaggedArray[1].length;

i++)
jaggedArray[1][i] = i;

System.out.println(“Printing the jagged
array.”);

for (i=0; i < jaggedArray.length; i++) {
for (j=0; j < jaggedArray[i].length;

j++)
System.out.println(“[“ + i + “][“ +

j + “] = “ + jaggedArray[i][j]);
System.out.println(“\n”);

}

}
}

In this example, we see the construction of an aliased ar-
ray and subsequently a jagged array—all by modifying the
same array. Creating an aliased array is fairly straightfor-
ward. We first allocate the outer dimension and then initial-
ize each of the rows to refer to another allocated array—the
same array, in fact—of dimension 10. The output makes it
clear that each row contains the same data.

The second comment marks the beginning of the jagged
array structure’s definition. In a jagged array, the number of
elements in each row differs. We achieve this by taking the
same array, allocating a smaller array, and then assigning
the reference to the second row of the array jaggedAr-
ray. For each construction, output is generated to make it
clear how Java can achieve these two unusual phenomena:

Printing the aliased array.

[0][0] = 0

[0][1] = 1

[0][2] = 2

[0][3] = 3

[0][4] = 4

[0][5] = 5

[0][6] = 6

[0][7] = 7

[0][8] = 8

[0][9] = 9

[1][0] = 0

[1][1] = 1

[1][2] = 2

[1][3] = 3

[1][4] = 4

[1][5] = 5

[1][6] = 6

[1][7] = 7

[1][8] = 8

[1][9] = 9

Printing the jagged array.

[0][0] = 0

[0][1] = 1

[0][2] = 2

[0][3] = 3

[0][4] = 4

[0][5] = 5

[0][6] = 6

[0][7] = 7

[0][8] = 8

[0][9] = 9

[1][0] = 0

[1][1] = 1

[1][2] = 2

[1][3] = 3

[1][4] = 4

84 COMPUTING IN SCIENCE & ENGINEERING

do not require heap allocation. A variable
of a struct type directly contains the data
of the struct, whereas a variable of a class
type contains a reference to the data, the
latter known as an object.
Structs are particularly useful for small
data structures that have value semantics.
Complex numbers, points in a coordi-
nate system, or key-value pairs in a dic-
tionary are all good examples of structs.
Key to these data structures is that they
have few data members, that they do not
require use of inheritance or referential
identity, and that they can be conve-
niently implemented using value seman-
tics where assignment copies the value
instead of the reference.
… the simple types provided by C#, such
as int, double, and bool, are in fact
all struct types. Just as these predefined
types are structs, so it is possible to use
structs and operator overloading to im-
plement new “primitive” types in the C#
language. Two examples of such types
are given in at the end of this chapter…

What is of particular interest in this
part of the specification is the keen
sense of awareness the C# designers
have when it comes to performance.
The struct concept is not the same as
C’s struct mechanism. It’s more like the
class concept defined in C++ with a dif-
ferent keyword to show that it is not on
the same standing as classes but not al-
together removed from the class con-
cept. The key difference: Structures are
used for objects that are value-oriented
only. They cannot be extended with
subclassing as classes can be extended;
they can actually be used in any situa-
tion where an object is required. (To
understand why this is necessary, take a
second look at the example of boxing
and unboxing.)

C#’s structure concept is exactly
what the Java Grande Report lists as a
specific recommendation to Sun.

The lowdown on C#
C#, the language, has a long way to

go before it will top my list of recom-
mended languages. I remain a believer
in Java. At the moment, C# is still a
one-platform show. Ultimately, lan-
guages are not chosen merely for fea-
tures but often just to have a choice—
the same reason we choose to be a free
society. At the same time, the C# de-
sign, which clearly drew inspiration
from the Java design, appears to play
effectively to Java’s obvious weaknesses.
It is important—urgent—for Sun Mi-
crosystems to take a closer look at what
is going on in C# and realize that Mi-
crosoft has less of a history than Sun
when it comes to high-performance
computing.

Having worked with many similar
languages from the early days of

programming—such as Smalltalk—and
having written compilers and inter-
preters for object-oriented languages, I
worry for Java’s future if performance
issues don’t come to the forefront soon.
As I see other language designs emerge
that have adopted the JGF recommen-
dations almost verbatim, I wonder why
JavaSoft has not embraced the propos-
als for which we worked painstakingly
to frame with solid arguments and mo-
tivational examples.

There is no question that Java as a
language design shows great sensitivity
by not endorsing every random feature
at the language level and by approach-
ing JVM changes even more cautiously
so as not to break existing codes. The
language evolution is happening crawl-
ing—almost at the pace of the C++ ef-
fort, which lasted almost 10 years—and
there is a great deal of concern about
what this means for those who want to
use Java for cutting-edge applications
in performance-critical settings.

High-performance scientific and
technical computing is no longer just a
niche area. It is abundantly clear that
the issues raised in the JGF Report are
of importance in a general context—
the context of general computing. The
demands being placed on computers
require performance at every level.
The issues of array processing and
value objects, for example, are impor-
tant for efficient implementation of
graphical interfaces and general-pur-
pose network computing. Java does a
good job in these areas but not a great
one. If the JGF recommendations are
adopted in full, there is no reason (ex-
cept dollars) that your codes cannot
run as fast as C, C++, or Fortran—if
not faster.

George K. Thiruvathukal

is a visiting associate pro-

fessor of computer science

at Loyola University in

Chicago, Illinois. He also

holds an adjunct professor-

ship in the ECE depart-

ment at Northwestern Uni-

versity. He teaches courses in computer science

and engineering, including programming lan-

guages, operating systems, object-oriented de-

sign and programming, and distributed sys-

tems. He has coauthored two books: High-

Performance Java Platform Computing: Threads

and Networking (Prentice Hall, 2000) and Web

Programming in Python: Techniques for Integrat-

ing Linux, Apache, and MySQL (Prentice Hall,

2001). Contact him at Loyola Univ., Dept. of

Computer Science, 6525 Sheridan Rd., Chicago,

IL 60626; gkt@toolsofcomputing.com.

S C I E N T I F I C P R O G R A M M I N G

	Loyola University Chicago
	Loyola eCommons
	1-2002

	Java at Middle Age: Enabling Java for Computational Science
	George K. Thiruvathukal
	Recommended Citation

	tmp.1322188670.pdf.hFxFJ

