
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

3-2011

RestFS: The Filesystem as a Connector Abstraction
for Flexible Resource and Service Composition
Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

This Book Chapter is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2011 Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal

Recommended Citation
Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal. RestFS: The Filesystem as a Connector Abstraction for Flexible
Resource and Service Composition. In Cloud Computing: Methodology, System, and Applications (edited by Lizhe Wang, Rajiv
Ranjan, Jinjun Chen, Boualem Benatallah), CRC Press, Boca Raton, Florida, USA, September 2011.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loyola eCommons

https://core.ac.uk/display/48606752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Author Name
Book title goes here

2

Foreward
I am delighted to introdu
e the �rst book on Multimedia Data Mining. WhenI
ame to know about this book proje
t undertaken by two of the most a
tiveyoung resear
hers in the �eld, I was pleased that this book is
oming in earlystage of a �eld that will need it more than most �elds do. In most emergingresear
h �elds, a book
an play a signi�
ant role in bringing some maturity tothe �eld. Resear
h �elds advan
e through resear
h papers. In resear
h papers,however, only a limited perspe
tive
ould be provided about the �eld, itsappli
ation potential, and the te
hniques required and already developed inthe �eld. A book gives su
h a
han
e. I liked the idea that there will be a bookthat will try to unify the �eld by bringing in disparate topi
s already availablein several papers that are not easy to �nd and understand. I was supportiveof this book proje
t even before I had seen any material on it. The proje
twas a brilliant and a bold idea by two a
tive resear
hers. Now that I have iton my s
reen, it appears to be even a better idea.Multimedia started gaining re
ognition in 1990s as a �eld. Pro
essing,storage,
ommuni
ation, and
apture and display te
hnologies had advan
edenough that resear
hers and te
hnologists started building approa
hes to
om-bine information in multiple types of signals su
h as audio, images, video, andtext. Multimedia
omputing and
ommuni
ation te
hniques re
ognize
orre-lated information in multiple sour
es as well as insu�
ien
y of information inany individual sour
e. By properly sele
ting sour
es to provide
omplemen-tary information, su
h systems aspire, mu
h like human per
eption system,to
reate a holisti
 pi
ture of a situation using only partial information fromseparate sour
es.Data mining is a dire
t outgrowth of progress in data storage and pro
ess-ing speeds. When it be
ame possible to store large volume of data and rundi�erent statisti
al
omputations to explore all possible and even unlikely
or-relations among data, the �eld of data mining was born. Data mining allowedpeople to hypothesize relationships among data entities and explore supportfor those. This �eld has been put to appli
ations in many diverse domains andkeeps getting more appli
ations. In fa
t many new �elds are dire
t outgrowthof data mining and it is likely to be
ome a powerful
omputational tool.

i

Contributors
Mi
hael AftosmisNASA Ames Resear
h CenterMo�ett Field, CaliforniaPratul K. AgarwalOak Ridge National LaboratoryOak Ridge, TennesseeSadaf R. AlamOak Ridge National LaboratoryOak Ridge, TennesseeGabrielle AllenLouisiana State UniversityBaton Rouge, LouisianaMartin Sandve AlnæsSimula Resear
h Laboratory andUniversity of Oslo, NorwayNorwaySteven F. AshbyLawren
e Livermore NationalLaboratoryLivermore, CaliforniaDavid A. BaderGeorgia Institute of Te
hnologyAtlanta, GeorgiaBenjamin BergenLos Alamos National LaboratoryLos Alamos, New Mexi
oJonathan W. BerrySandia National LaboratoriesAlbuquerque, New Mexi
o

Martin BerzinsUniversity of UtahSalt Lake City, UtahAbhinav BhateleUniversity of IllinoisUrbana-Champaign, IllinoisChristian Bis
hofRWTH Aa
hen UniversityGermanyRupak BiswasNASA Ames Resear
h CenterMo�ett Field, CaliforniaEri
 BohmUniversity of IllinoisUrbana-Champaign, IllinoisJames BordnerUniversity of California, San DiegoSan Diego, CaliforniaGeorge Bosil
aUniversity of TennesseeKnoxville, TennesseeGreg L. BryanColumbia UniversityNew York, New YorkMarian BubakAGH University of S
ien
e andTe
hnology iii

ivKraków, PolandAndrew CanningLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaJonathan CarterLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaZizhong ChenJa
ksonville State UniversityJa
ksonville, AlabamaJoseph R. CrobakRutgers, The State University ofNew JerseyPis
ataway, New JerseyRoxana E. Dia
ones
uYahoo! In
.Burbank, CaliforniaPeter DienerLouisiana State UniversityBaton Rouge, LouisianaJa
k J. DongarraUniversity of Tennessee, Knoxville,Oak Ridge National Laboratory,andUniversity of Man
hesterJohn B. DrakeOak Ridge National LaboratoryOak Ridge, TennesseeKelvin K. DroegemeierUniversity of OklahomaNorman, OklahomaStéphane EthierPrin
eton UniversityPrin
eton, New Jersey

Christoph FreundlFriedri
h�Alexander�UniversitätErlangen, GermanyKarl FürlingerUniversity of TennesseeKnoxville, TennesseeAl GeistOak Ridge National LaboratoryOak Ridge, TennesseeMi
hael GerndtTe
hnis
he Universität Mün
henMuni
h, GermanyTom GoodaleLouisiana State UniversityBaton Rouge, LouisianaTobias GradlFriedri
h�Alexander�UniversitätErlangen, GermanyWilliam D. GroppArgonne National LaboratoryArgonne, IllinoisRobert HarknessUniversity of California, San DiegoSan Diego, CaliforniaAlbert HartonoOhio State UniversityColumbus, OhioThomas C. HendersonUniversity of UtahSalt Lake City, UtahBru
e A. Hendri
ksonSandia National LaboratoriesAlbuquerque, New Mexi
oAlfons G. HoekstraUniversity of AmsterdamAmsterdam, The Netherlands

vPhilip W. JonesLos Alamos National LaboratoryLos Alamos, New Mexi
oLaxmikant KaléUniversity of IllinoisUrbana-Champaign, IllinoisShoaib KamilLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaCetin KirisNASA Ames Resear
h CenterMo�ett Field, CaliforniaUwe KüsterUniversity of StuttgartStuttgart, GermanyJulien LangouUniversity of ColoradoDenver, ColoradoHans Petter LangtangenSimula Resear
h Laboratory andUniversity of Oslo, NorwayMi
hael LijewskiLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaAnders LoggSimula Resear
h Laboratory andUniversity of Oslo, NorwayJustin LuitjensUniversity of UtahSalt Lake City, UtahKamesh MadduriGeorgia Institute of Te
hnologyAtlanta, GeorgiaKent-Andre MardalSimula Resear
h Laboratory and

University of Oslo, NorwaySatoshi MatsuokaTokyo Institute of Te
hnologyTokyo, JapanJohn M. MayLawren
e Livermore NationalLaboratoryLivermore, CaliforniaCelso L. MendesUniversity of IllinoisUrbana-Champaign, IllinoisDieter an MeyRWTH Aa
hen UniversityGermanyTetsu NarumiKeio UniversityJapanMi
hael L. NormanUniversity of California, San DiegoSan Diego, CaliforniaBoyana NorrisArgonne National LaboratoryArgonne, IllinoisYousuke OhnoInstitute of Physi
al and Chemi
alResear
h (RIKEN)Kanagawa, JapanLeonid OlikerLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaBrian O'SheaLos Alamos National LaboratoryLos Alamos, New Mexi
oChristian D. OttUniversity of ArizonaTu
son, Arizona

viJames C. PhillipsUniversity of IllinoisUrbana-Champaign, IllinoisSimon Portegies ZwartUniversity of Amsterdam,Amsterdam, The NetherlandsThomas RadkeAlbert-Einstein-InstitutGolm, GermanyMi
hael Res
hUniversity of StuttgartStuttgart, GermanyDaniel ReynoldsUniversity of California, San DiegoSan Diego, CaliforniaUlri
h RüdeFriedri
h�Alexander�UniversitätErlangen, GermanySamuel SarholzRWTH Aa
hen UniversityGermanyErik S
hnetterLouisiana State UniversityBaton Rouge, LouisianaKlaus S
hultenUniversity of IllinoisUrbana-Champaign, IllinoisEdward SeidelLouisiana State UniversityBaton Rouge, LouisianaJohn ShalfLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaBo-Wen Shen

NASA Goddard Spa
e Flight CenterGreenbelt, MarylandOla SkavhaugSimula Resear
h Laboratory andUniversity of Oslo, NorwayPeter M.A. SlootUniversity of AmsterdamAmsterdam, The NetherlandsEri
h StrohmaierLawren
e Berkeley NationalLaboratoryBerkeley, CaliforniaMakoto TaijiInstitute of Physi
al and Chemi
alResear
h (RIKEN)Kanagawa, JapanChristian TerbovenRWTH Aa
hen University,GermanyMariana VertensteinNational Center for Atmospheri
Resear
hBoulder, ColoradoRi
k WagnerUniversity of California, San DiegoSan Diego, CaliforniaDaniel WeberUniversity of OklahomaNorman, OklahomaJames B. White, IIIOak Ridge National LaboratoryOak Ridge, TennesseeTerry WilmarthUniversity of IllinoisUrbana-Champaign, Illinois

List of Figures
1.1 The timeline of a RestFS web servi
e
all 101.2 The �exible internal and external
omposition possible withRestFS . 111.3 A sample
omposition of a blog, news sour
es, and Twitter . 121.4 The Fli
krPhoto domain obje
t from Fli
krFS 141.5 The Fli
krUser domain obje
t from Fli
krFS 151.6 The Portfolio
lass for the sto
k ti
ker �lesystem 161.7 The Sto
k
lass for the sto
k ti
ker �lesystem 171.8 Fli
krFS with both RestFS and NOFS 181.9 A photo �lesystem
omposed of multiple photo servi
es . . . 191.10 The Conta
t NOFS Domain Obje
t 221.11 Representation on the �lesystem of the Conta
t domain obje
t 221.12 The Category NOFS Domain Obje
t 231.13 The relationship between NOFS, FUSE, and the Linux kernel 241.14 The NOFS path translation algorithm 251.15 The NOFS root dis
overy algorithm 251.16 The
ommuni
ation path for exe
utable s
ripts in NOFS . . . 261.17 The NOFS argument translation algorithm 261.18 The NOFS XML serialization algorithm 271.19 The NOFS
a
he and serialization relationship 271.20 An example RestFS
on�guration �le for a Google Sear
h . . 301.21 The RestfulSetting NOFS domain obje
t 311.22 RestFS resour
e �le triggering algorithm 311.23 An example of an OAuth
on�guration in RestFS 321.24 An example OAuth
on�guration �le for Twitter 321.25 An example OAuth Token �le 331.26 The RestFS authenti
ation pro
ess 33

vii

viii

List of Tables

ix

x

Contents
I This is a Part 11 RestFS: The Filesystem as a Conne
tor Abstra
tion for Flex-ible Resour
e and Servi
e Composition 3Joseph Kaylor, Konstantin Läufer, and George K. Thiruvathukal1.1 Related Work . 51.1.1 Representational State Transfer (ReST) 51.1.2 Inter-Pro
ess Communi
ation Through the Filesystem 51.1.3 Re
ent Developments in File-Based IPC 61.1.4 The Shift from Kernel Mode to User Mode FilesystemDevelopment . 71.2 Composition of Web Servi
es Through the Filesystem 81.2.1 Commonalities BetweenWeb Resour
es and the Filesys-tem . 81.2.2 The Filesystem as a Conne
tor Layer 91.2.3 The Filesystem as an Appli
ation and Abstra
tion . . 121.2.4 Combining the Approa
hes: Using the RestFS Conne
-tor Layer in a NOFS Appli
ation Filesystem 181.3 Building Appli
ation Filesystems with the Naked Obje
tFilesystem (NOFS) . 191.3.1 An Explanation of Naked Obje
ts 201.3.2 The Naked Obje
t Filesystem (NOFS) 201.3.3 Implementing a Domain Model with NOFS 211.3.3.1 Implementing Files and Folders in NOFS . . 211.3.4 Ar
hite
ture of NOFS 231.4 Ar
hite
ture and Details of RestFS 281.4.1 RestFS's approa
h . 291.4.1.1 Con�guration Files in RestFS 291.4.1.2 Implementation of Con�guration Files inRestFS . 301.4.1.3 Resour
e Files in RestFS 301.4.1.4 Authenti
ation in RestFS 321.4.1.5 Putting it All Together 341.5 Summary . 34Bibliography 35xi

xii

Symbol Des
ription
α To solve the generator main-tenan
e s
heduling, in thepast, several mathemati
alte
hniques have been ap-plied.
σ2 These in
lude integer pro-gramming, integer linearprogramming, dynami
 pro-gramming, bran
h andbound et
.∑ Several heuristi
 sear
h algo-rithms have also been devel-oped. In re
ent years expertsystems,
abc fuzzy approa
hes, simulated

annealing and geneti
 algo-rithms have also been tested.
θ
√

abc This paper presents a surveyof the literature
ζ over the past �fteen years inthe generator
∂ maintenan
e s
heduling.The obje
tive is tosdf present a
lear pi
ture of theavailable re
ent literatureewq of the problem, the
on-straints and the other as-pe
ts ofbv
n the generator maintenan
es
hedule.

Part IThis is a Part

1

1RestFS: The Filesystem as a Conne
torAbstra
tion for Flexible Resour
e and Servi
eCompositionJoseph KaylorDepartment of Computer S
ien
e, Loyola University Chi
agoKonstantin LäuferDepartment of Computer S
ien
e, Loyola University Chi
agoGeorge K. ThiruvathukalDepartment of Computer S
ien
e, Loyola University Chi
agoCONTENTS1.1 Related Work . 41.1.1 Representational State Transfer (ReST) . 51.1.2 Inter-Pro
ess Communi
ation Through the Filesystem 51.1.3 Re
ent Developments in File-Based IPC . 61.1.4 The Shift from Kernel Mode to User Mode Filesystem Develop-ment . 61.2 Composition of Web Servi
es Through the Filesystem 81.2.1 Commonalities Between Web Resour
es and the Filesystem 81.2.2 The Filesystem as a Conne
tor Layer . 91.2.3 The Filesystem as an Appli
ation and Abstra
tion 121.2.4 Combining the Approa
hes: Using the RestFS Conne
tor Layer ina NOFS Appli
ation Filesystem . 131.3 Building Appli
ation Filesystems with the Naked Obje
t Filesystem(NOFS) . 191.3.1 An Explanation of Naked Obje
ts . 201.3.2 The Naked Obje
t Filesystem (NOFS) . 201.3.3 Implementing a Domain Model with NOFS . 211.3.3.1 Implementing Files and Folders in NOFS 211.3.4 Ar
hite
ture of NOFS . 231.4 Ar
hite
ture and Details of RestFS . 281.4.1 RestFS's approa
h . 291.4.1.1 Con�guration Files in RestFS . 291.4.1.2 Implementation of Con�guration Files in RestFS 301.4.1.3 Resour
e Files in RestFS . 301.4.1.4 Authenti
ation in RestFS . 321.4.1.5 Putting it All Together . 331.5 Summary . 343

4 Book title goes hereThe broader
ontext for this
hapter
omprises business s
enarios requiringresour
e and/or servi
e
omposition, su
h as (intra-
ompany) enterprise ap-pli
ation integration (EAI) and (inter-
ompany) web servi
e or
hestration.The resour
es and servi
es involved vary widely in terms of the proto
ols theysupport, whi
h typi
ally fall into remote pro
edure
all (RPC) [1℄, resour
e-oriented (HTTP [6℄ and WEBDAV [22℄) and message-oriented proto
ols.By re
ognizing the similarity between web-based resour
es and the kindof resour
es exposed in the form of �lesystems in operating systems, we havefound it feasible to map the former to the latter using a uniform,
on�gurable
onne
tor layer. On
e a remote resour
e has been exposed in the form of a lo
al�lesystem, one
an a

ess the resour
e programmati
ally using the operatingsystem's standard �lesystem appli
ation programming interfa
e (API). Takingthis idea one step further, one
an then aggregate or otherwise or
hestrate twoor more remote resour
es using the same standard API. Filesystem APIs areavailable in all major operating systems. Some of those, most notably, all�avors of UNIX in
luding GNU/Linux, have a ri
h
olle
tion of small, �exible
ommand-line utilities, as well as various inter-pro
ess
ommuni
ation (IPC)me
hanisms. These tools
an be used in s
ripts and programs that
omposethe various underlying resour
es in powerful ways.Further explorations of the role of a �lesystem-based
onne
tor layer in theenterprise appli
ation ar
hite
ture have lead us to the question whether one
an a
hieve a fully
ompositional, arbitrarily deep hierar
hi
al ar
hite
ture byre-exposing the aggregated resour
es as a single,
omposite resour
e that, inturn,
an be a

essed in the same form as the original resour
es. This is indeedpossible in two �avors: 1) the
omposite resour
e
an be exposed internally asa �lesystem for further lo
al
omposition; 2) the
omposite resour
e is exposedexternally as a restful resour
e for further external
omposition. We expe
tthe ability hierar
hi
ally to
ompose resour
es to fa
ilitate the
onstru
tion of
omplex, robust resour
e- and servi
e-oriented software systems, and we hopethat
on
rete
ase studies will further substantiate our position.Leveraging our prior work on the Naked Obje
ts Filesystem (NOFS) [12℄,whi
h exposes obje
t-oriented domain model fun
tionality as a Linux �lesys-tem in user spa
e (FUSE) [20℄, we have implemented RestFS [11℄, a (dynam-i
ally re)
on�gurable me
hanism for exposing remote restful resour
es and aslo
al �lesystems. Several sample adapters spe
i�
 to well-known servi
es su
has Yahoo! Pla
e�nder and Twitter are already available. Authenti
ation posesa
hallenge in that it
annot always be automated; in pra
ti
e, when systemssu
h as OAuth are used, it is often only the initial granting of authenti
a-tion that must be manual, and the resulting authenti
ation token
an then bein
luded in the
onne
tor
on�guration. As future work, we plan to developplugins to support resour
es a
ross a broader range of proto
ols, su
h as FTP,SFTP, or SMTP.

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 51.1 Related WorkThere are various lines of related work, whi
h we will dis
uss in this se
tion.1.1.1 Representational State Transfer (ReST)Partly in response to the
omplexity of the W3C's WS-* web servi
e spe
i-�
ations [3℄, resour
e-oriented approa
hes su
h as the representational statetransfer (ReST) ar
hite
tural style [7℄ have re
eived growing attention dur-ing the se
ond half of this de
ade. In ReST, addressable, inter
onne
ted re-sour
es, ea
h with one or more possible representations, are usually exposedthrough the HTTP proto
ol, whi
h is itself stateless, so that all state is lo
atedwithin the resour
es themselves. These resour
es share a uniform interfa
e,where resour
e-spe
i�
 fun
tionality is mapped to the standard HTTP requestmethods GET, PUT, POST, DELETE, and several others. Clients of theseresour
es
an a

ess them dire
tly through HTTP, use a language-spe
i�
framework with ReST
lient support, or rely on resour
e- and language-spe
i�

lient-side bindings.1.1.2 Inter-Pro
ess Communi
ation Through the FilesystemMost methods of IPC
an be represented in the �lesystem namespa
e in manyoperating systems. Pipes, domain so
kets and memory-mapped �les
an existin the �lesystem in UNIX [13℄. While pipes are uni-dire
tional, allowing oneprogram to
onne
t at ea
h end point, other IPC methods su
h as UNIXdomain so
kets allow for multiple
lient
onne
tions and permit data to bewritten in both dire
tions. With this
apability, it is possible for output fromseveral programs to be aggregated by one program instead of a 1:1 model as isallowed by pipes. Other methods of IPC, su
h as memory-mapped and regular�les, allow several programs to
ollaborate through a
ommon, named storeof data.Composition of the �les in �lesystems is also possible through layered orsta
kable �lesystems. Me
hanisms for this di�er amongst operating systems.In 4.4BSD-Lite, Union Mounts [17℄ allowed for �lesystems to be mounted ina linear hierar
hy. Changes to �les lower in the hierar
hy would override �lesin the higher part of the hierar
hy. The Plan 9 distributed operating systemallowed for the �lesystem namespa
e to be manipulated through the mount,unmount, and bind system
alls [18, 19℄. In our own resear
h, we have imple-mented a layered �lesystem, OLFS, whi
h allowed for a �exible layering andinheritan
e s
heme through folder manipulation [10℄. Ea
h of these approa
hesmanipulates the �lesystem namespa
e and
onsequently allows for
hanges in
on�guration and how IPC resour
es are lo
ated. This
apability
an helpprovide for new and interesting ways to share data between programs.

6 Book title goes hereAlthough not as widespread, some operating systems implement more ad-van
ed IPC su
h as network
onne
tions, spe
i�
 proto
ols su
h as HTTP orFTP, and other servi
es through the �lesystem namespa
e. An ex
ellent ex-ample of this is the Plan9 operating system. Plan9's �lesystem layer, the 9Pproto
ol, is used to represent user interfa
e windows, pro
esses, storage �les,and network
onne
tions. In Plan9, it is possible through �lesystem
alls toengage in IPC in a more uniform way on a lo
al ma
hine and a
ross separatema
hines.In terms of inter-ma
hine �le-based IPC, it has been possible for manyyears to
oordinate and share data among pro
esses by writing to �les onnetwork �lesystems. As long as the network �lesystem has adequate lo
kingme
hanisms and an adequate solution to the
a
he
oheren
y problem, itis possible to perform IPC through �le-based system
alls over a network�lesystem.Other than
oordination through network �lesystems or spe
ialized oper-ating system me
hanisms like 9P, mu
h inter-ma
hine IPC has been throughabstra
tions on top of the network so
ket. Remote pro
edure
all approa
hessu
h as RPC or RMI have provided a standard way for pro
esses to share dataand
oordinate with ea
h other. Other so
ket-based approa
hes in
lude theHTTP proto
ol and abstra
tions on top of HTTP, su
h as SOAP and REST.1.1.3 Re
ent Developments in File-Based IPCSome more re
ent advan
es have been made in terms of inter-ma
hine IPCover the �lesystem. Appli
ation �lesystems are being built on top of FUSE toa
t as
lients for web servi
es su
h as Fli
kr, IMAP email servi
es, AmazonS3, and others. Instead of using the so
ket as the basis for IPC with theseservi
es, it has be
ome possible to be able to intera
t with them through�lesystem
alls.IPC through the �lesystem o�ers some advantages. Although in UNIX-like operating systems, it is possible to redire
t output to a so
ket through aprogram like so
at, net
at, or n
, there are many network options and issueslike datagram versus streaming to
onsider. File-based IPC often presents asimpler interfa
e to work with and leaves many of the networking and proto
olquestions to the implementing �lesystem. Another important advantage thatit o�ers is that pro
esses that intera
t with these appli
ation �lesystems istransparen
y. The pro
esses that intera
t with these appli
ation �lesystemsdo not need to be aware of whi
h servi
e they are intera
ting with, whi
h URLit is lo
ated at or what types of SOAP messages it requires to
ommuni
atewith. With a Fli
kr �lesystem, it is possible to use programs that simplyintera
t with images aside from a web browser to intera
t with the Fli
krphoto servi
e.

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 71.1.4 The Shift from Kernel Mode to User Mode FilesystemDevelopmentIn very early systems, development of new �lesystem
ode was a
hallengebe
ause of high
oupling with storage devi
e ar
hite
ture and kernel
ode.In the 1970s, with the introdu
tion of MULTICS, UNIX, and other systemsof the time, more stru
tured systems with separated layers be
ame more
om-mon. UNIX used a
on
ept of i-nodes, whi
h were a
ommon data stru
turethat des
ribed stru
tures on the �lesystem [21℄. Di�erent �lesystem imple-mentations within the same operating system kernel
ould share the i-nodestru
ture; this in
luded on-disk and network �lesystems. Early UNIX operat-ing systems shared a
ommon dis
 and �lesystem
a
he and other stru
turesrelated to making
alls to the I/O layer that managed the dis
s and networkinterfa
es.Newer UNIX-like systems su
h as 4.2 BSD and SunOS in
luded an up-dated ar
hite
ture
alled v-nodes [15℄. The goal was to split the �lesystem'simplementation-independent fun
tionality in the kernel form the �lesystem'simplementation-dependent fun
tionality. Me
hanisms like path parsing, bu�er
a
he, i-node tables, and other stru
tures be
ame more shareable. Also, op-erations based on v-nodes be
ame reentrant, thereby allowing new behaviorto be sta
ked on top of other �lesystem
ode or to modify existing behav-ior. V-nodes also helped to simplify systems design and to make �lesystemsimplementations more portable to other UNIX-like systems. Many modernUNIX-like systems have a v-nodes-like layer in their �lesystems
ode.With the advent of mi
ro-kernel ar
hite
tures, �lesystems being built asuser-mode appli
ations be
ame more
ommon and popular even in operatingsystems with monolithi
 kernel ar
hite
tures. Several systems with di�erentdesign philosophies have been built. We des
ribe three of these systems thatare most
losely related to NOFS: FUSE [20℄, ELFS [9℄, and Frigate [14℄.The Extensible File System (ELFS hereafter) is an obje
t-oriented frame-work built on top of the �lesystem that is used to simplify and enhan
e theperforman
e of the intera
tion between appli
ations and the �lesystem. ELFSuses
lass de�nitions to generate
ode that takes advantage of pre-fet
hing and
a
hing te
hniques.ELFS also allows developers to automati
ally take advan-tage of parallel storage systems by using multiple worker threads to performreads and writes. Also, sin
e ELFS has the de�nition of the data stru
tures,it
an build e�
ient read and write plans. The novelty of ELFS is that thedeveloper
an use an obje
t-oriented ar
hite
ture and allow ELFS to take
areof the details.Frigate is a framework that allows developers to inje
t behavioral
hangesinto the �lesystem
ode of an operating system. Modules built in Frigateare run as user-mode servers that are
alled to by a module that exists in theoperating system's kernel. Frigate takes advantage of the reentrant stru
ture ofvnodes in UNIX-like operating systems to allow the Frigate module developerto layer behavior on top of existing �lesystem
ode. Frigate also allows the

8 Book title goes heredeveloper to tag
ertain �les with additional metadata so that di�erent Frigatemodules
an automati
ally work with di�erent types of �les. The noveltyof Frigate is that developers do not need to understand operating-systemsdevelopment to modify the
apabilities of �lesystem
ode, and they
an testand debug their modules as user-mode appli
ations. But they still need to beaware of the UNIX �lesystem stru
tures and fun
tions.File Systems in Userspa
e (FUSE hereafter) is a user mode �lesystemsframework. FUSE is supported by many UNIX-like operating systems su
has Linux, FreeBSD, NetBSD, OpenSolaris, and Ma
 OSX. The interfa
e sup-ported by FUSE is very similar to the set of UNIX system
alls that areavailable for �le and folder operations. Aside from the ability to make
allsinto the host operating system, there is less sharing with the operating systemthan with v-nodes su
h as path parsing. FUSE has helped many �lesystemimplementations su
h as NTFS and ZFS to be portable to many operatingsystems. Sin
e FUSE �lesystems are built as user-land programs, they
anbe easier to develop in languages other than C or C++, easier to unit test,and easier to debug. A

ordingly, FUSE has be
ome a popular platform forimplementing appli
ation-spe
i�
 �lesystems.
1.2 Composition of Web Servi
es Through the Filesys-temFilesystems
an play di�erent roles in the
omposition of web-based resour
esand servi
es. We will now study these in more detail.1.2.1 Commonalities Between Web Resour
es and theFilesystemWe believe that there are
lear
ommonalities between web servi
es and the�lesystem. Both systems have a
on
ept of a URI. In web servi
es, this
anbe an HTTP URL. In the �lesystem this
an be a �le or folder path. In bothsystems there are proto
ol a
tions that
an be used to send and retrieve data.In web servi
es this
an be a

omplished through HTTP GET and POST.In �lesystems, this
an be a

omplished through read() and write() system
alls. In both systems it is possible to invoke exe
utable elements. In webservi
es this
an be performed with GET and POST
alls and the use of SOAPmessages to web servi
e URLs. On a lo
al �lesystem, exe
utable servi
es
anbe invoked by loading and exe
uting programs from the lo
al �lesystem.In our exploration we believe that there are three
andidates for how tobuild the �lesystem layer to expose resour
es from the web. The �rst wayis through appli
ation �lesystems built with the Naked Obje
t Filesystem(NOFS) framework. The se
ond way is to use the �lesystem as a
onne
tor

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 9layer to abstra
t and re-expose web resour
es to the lo
al system. The thirdway is to use a
ombination of the �lesystem as a
onne
tor layer and the�lesystem as an appli
ation. We have explored this se
ond route with RestFS,whi
h has been implemented using the NOFS framework. In ea
h of thesemethodologies we demonstrate how to map
on
epts from web servi
es ontothe �lesystem. We will also explain the advantages and disadvantages to ea
happroa
h.1.2.2 The Filesystem as a Conne
tor LayerIn our exploration of �lesystems, we questioned whether a �lesystem
ouldbe used as a
onne
tor layer for web servi
es. We also questioned whetherthat
onne
tor layer
ould be used to
ompose web servi
es with lo
al andother web servi
es and then expose those web servi
es externally as a newweb servi
e. RestFS is our attempt to implement su
h a �lesystem.RestFS is an appli
ation �lesystem implemented with the NOFS frame-work. RestFS uses �les to model intera
tion with web servi
es. When a �leis
reated in RestFS, two �les are
reated: a
on�guration �le and a resour
e�le. The
on�guration �le
ontains an XML do
ument that
an be updatedto
ontain a web servi
e URI, web method, authenti
ation information, and atriggering �lesystem method. On
e
on�gured, the resour
e �le
an be inter-a
ted with on the lo
al ma
hine to intera
t with a web servi
e.One example of the usage of RestFS is to
reate a �le that
an perform aGoogle Sear
h. In this example, the �le is
on�gured with the Google APIsserver and the web sear
h servi
e. Web requests are sent with the GET HTTPmethod and are triggered by the utime �lesystem
all. When a user of the�lesystem issues a `tou
h'
ommand on the resour
e �le, a GET request isissued by RestFS to the Google API server and the response from that serveris written ba
k to the resour
e �le, whi
h will be available for subsequentreads. In this example, the task of
on�guring the resour
e, triggering therequest, and parsing the results are left to a Bash shell s
ript.Another example usage of RestFS is with the Yahoo! Pla
eFinder servi
e.This example is similar to the Google sear
h example. The
on�guration �leis setup with the URI for the web servi
e, and the utime system
all is usedto trigger the web request. Also, in this example, a shell s
ript is used to
on�gure the RestFS �le, trigger the web servi
e
all, and to parse the results.With our implementation of resour
e �les in RestFS, remote web resour
es
an be intera
ted with in a similar way as other lo
al �le based IPC. The lo
alnature of the resour
e �les allows for programs that read from and write to theresour
e �les to be unaware of the web servi
e that RestFS is
ommuni
atingwith. For example, it is possible to use programs su
h as grep, sed, or perlto sear
h, transform, and manipulate the data in the resour
e �le. In ea
h ofthese
ases, these programs do not need to be aware that the data they areworking with has been transparently read from or written to a remote webservi
e.

10 Book title goes here

FIGURE 1.1The timeline of a RestFS web servi
e
allBe
ause RestFS a
ts as only a
onne
tor layer and provides no additionalinterpretation or �ltering of requests or responses, external programs are re-quired to read and write the stru
tured data that is ne
essary for intera
twith
on�gured web servi
es. In the Google Sear
h and Yahoo! Pla
eFinderexamples, the task of writing a stru
tured request and parsing the responsewas left to a shell s
ript that took advantage of UNIX
ommand line tools likesed, grep, and others. These s
ripts had to be aware of the stru
ture of boththe requests and response needed by the web servi
e. It is possible to �lter,translate, and load data from the resour
e �les with any lo
al program that
an a

ept data from a �le or a UNIX pipe. As a
onsequen
e, it is possibleto augment the value added of the web servi
e with lo
al programs in severalpossible
ombinations.The
onne
tor model presented by RestFS in
ombination with other IPCme
hanisms on the lo
al operating system makes it possible to
ompose thedata from several web servi
es with ea
h other in a �exible and re
on�gurableway. One possible example of this would be to setup several resour
e �lesfor RSS news feeds a
ross the internet. A s
ript
ould be implemented toparse ea
h of those news sour
es for spe
i�
 topi
s, aggregate them, and thenwrite them to another resour
e �le that
ould represent a submission formand servi
e for
reating arti
les on a blog. The same system then
ould haveseveral resour
e �les setup to wat
h Twitter a

ounts for
omments on thearti
le and post responses on Twitter to the blog site. If new news sour
es

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 11

FIGURE 1.2The �exible internal and external
omposition possible with RestFSbe
ome important or new Twitter a

ounts are ne
essary, new resour
e �lesand alterations to s
ripts
an be made to expand and re
on�gure the system.It is possible to do all of this with a series of s
ripts and small programs on aUNIX operating system that use RestFS as a
onne
tor layer.There are some instan
es where the
onne
tion layer
on
ept has somedi�
ulties in our exploration. When trying to
ompose some web servi
esthat are built around human intera
tion through ri
h user interfa
es, it
anbe di�
ult to
reate a program that
an intera
t with these servi
es in asimple way.One example of this is the CAPTCHA human test. To redu
e �spam� inthe form of email and as entries on blogs, many websites in
orporate a formthat requests the user perform a small test su
h as re
ognizing a sound orinterpreting letters on an image to prove to the system that the user of theweb servi
e is in fa
t a human. Often, after these initial intera
tions, it ispossible for simple intera
tion with RestFS, but be
ause of them it is notalways straightforward to automate the entire intera
tion with a web servi
e.Other forms of non ma
hine readable intera
tions su
h as the use of images,sounds, or video
an present
ompli
ations for
omposing web servi
es withRestFS.Another example would be web servi
es that make use of the user interfa
efor
omplex validation or additional business rules. While not an ideal design,su
h web servi
es still exist on the internet. Be
ause lo
al programs will in-

12 Book title goes here

FIGURE 1.3A sample
omposition of a blog, news sour
es, and Twittertera
t with the appli
ation tier and not the presentation tier of a web servi
e,any logi
 that exists in that presentation tier that is ne
essary for proper
ommuni
ation with the appli
ation tier must be dupli
ated in whatever lo
al
omposition is made of the web servi
e.1.2.3 The Filesystem as an Appli
ation and Abstra
tionWhile exploring the possibilities for using �lesystems to intera
t with web ser-vi
es, we observed the emergen
e of appli
ation oriented �lesystems su
h asWikipediaFS, IMAPFS, and Fli
krFS. Ea
h of these �lesystems demonstratedi�erent web servi
es represented as di�erent
omponents on �lesystems. Inseveral email oriented �lesystems, folders available in IMAP a

ounts are rep-resented as folders on the lo
al �lesystem and individual email messages as�les. In photo-sharing-oriented �lesystems su
h as Fli
krFS, photos are
at-egorized into folders and exposed as standard image �les. In ea
h of theseappli
ation �lesystems, normal �le operations work as expe
ted. Copying anddeleting �les in Fli
krFS
ompletes the expe
ted operation of downloadingand uploading photos with a user's Fli
kr a

ount.After our own experien
es with implementing storage oriented �lesystemsin FUSE, we felt that appli
ation �lesystems would bene�t from a di�erentabstra
tion than what is presented by FUSE. To that end, we implementedthe Naked Obje
ts Filesystem (NOFS). NOFS allows a developer to imple-ment an appli
ation �lesystem by annotating Java
lasses in an appli
ation

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 13domain model. Through inspe
tion of these domain obje
ts and asso
iatedannotations, NOFS presents a �lesystem
omposed of �les, folders, and exe-
utable s
ripts to the user through FUSE to intera
t with the domain model.We will explore in detail the ar
hite
ture and internal workings of NOFS in alater se
tion.With the NOFS framework, we were able to implement appli
ation �lesys-tems in a more rapid fashion with less �lesystem glue
ode needed. This helpedredu
e the ne
essary
omponents to expose a web servi
e su
h as the Fli
krphoto servi
e as a �lesystem (Figures 1.4, 1.5) to the intera
tion with theREST-ful web servi
e and the
onstru
tion of an adequate domain model torepresent the stru
ture of the servi
e and �lesystem. Our implementation ofa simple Fli
kr �lesystem took 484 lines of Java
ode. An existing Pythonimplementation of the Fli
kr �lesystem that uses FUSE dire
tly took 2144lines of
ode. About half of the Python implementation was
ode used to glueFUSE to the Fli
kr photo servi
e. The remainder of the
ode was related tohandling the Fli
kr photo servi
e.Another example of an appli
ation �lesystem built with NOFS is the Ya-hoo! Finan
e sto
k ti
ker �lesystem. We were able to implement the entire�lesystem with just 155 lines of
ode in two Java
lasses (see Figures 1.6, 1.7)Appli
ation �lesystems like those that
an be built with NOFS are veryuseful for user intera
tion. A
tions that make sense in a photo library servi
ehave ex
ellent mappings to �lesystem a
tions. The fundamental unit in theservi
e, the photo, maps well to a �le. Colle
tions and
ategories of photosmap well to folder stru
tures. In this parti
ular
ase, for the sake of userintera
tion, the stru
ture of the web servi
e
alls and their mapping intoa
onne
tor layer like RestFS would not be a
onvenient stru
ture for userintera
tion. The appli
ation �lesystem allows for a better mapping of thebusiness unit / domain model that is presented by the web servi
e.Appli
ation �lesystems built through NOFS also are able to handle a
tionvalidation and intera
tion in a simpler way than is possible with RestFS likesystems. If an a
tion on the domain model for an NOFS �lesystem is in someway invalid, an ex
eption
an be raised so that the �lesystem
all that triggeredthe a
tion
an return an error
ode. In this way, NOFS domain models
anrestri
t
opy, delete, read, write or other �lesystem operations to those thatare
onsidered valid by the domain model. Resour
e �les in RestFS expe
tthat data written to and read from the resour
e �les is in a valid format.Appli
ation �lesystems are not as well suited for simple re-
on�guration or
hanges in
omposition as RestFS is. To introdu
e
hanges in an appli
ation�lesystem, either fa
ilities for dynami
ally adding plugins must be introdu
ed,or the system must be unmounted, modi�ed and mounted as a �lesystemagain.

14 Book title goes here
�DomainObje
t(CanWrite=false)publi

lass Fli
krPhoto implements IProvidesUnstru
turedData {private byte[℄ _data;publi
 void setData(byte[℄ data) {_data = data;}publi
 Fli
krPhoto() {}private String _name;�ProvidesNamepubli
 String getName() { return _name; }�ProvidesNamepubli
 void setName(String name) { _name = name; }publi
 boolean Ca
heable() { return false; }publi
 long DataSize() { return _data.length; }publi
 void Read(ByteBuffer buffer, long offset, long length) {for(long i = offset; i < offset + length && i < _data.length;i++) {buffer.put(_data[(int)i℄);}}publi
 void Trun
ate(long length) { }publi
 void Write(ByteBuffer buffer, long offset,long length) { }}FIGURE 1.4The Fli
krPhoto domain obje
t from Fli
krFS

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 15�FolderObje
t(CanAdd=false, CanRemove=false)�DomainObje
tpubli

lass Fli
krUser {private List<Fli
krPhoto> _photos =new LinkedList<Fli
krPhoto>();publi
 Fli
krUser() {}private String _name;�ProvidesNamepubli
 String getName() { return _name; }�ProvidesNamepubli
 void setName(String name) { _name = name; }private IDomainObje
tContainerManager _manager;�NeedsContainerManagerpubli
 void setContainerManager(IDomainObje
tContainerManagermanager) {_manager = manager;}private long _lastGet = 0;�FolderObje
t(CanAdd=false, CanRemove=false)publi
 List<Fli
krPhoto> getPhotos() throws Ex
eption {if(_lastGet == 0 || System.
urrentTimeMillis() - 10000 >_lastGet) {UpdatePhotos();_lastGet = System.
urrentTimeMillis();}return _photos;}private void UpdatePhotos() throws Ex
eption {_photos = new LinkedList<Fli
krPhoto>();Fli
krFa
ade fa
ade = new Fli
krFa
ade();for(PhotoSet set : fa
ade.getPhotoSets(_name)) {for(Photo photo : fa
ade.getPhotosInASet(set, 100)) {Fli
krPhoto newPhoto = _manager.GetContainer(Fli
krPhoto.
lass).NewPersistentInstan
e();newPhoto.setName(photo.getTitle() +".jpg");newPhoto.setData(fa
ade.getDataForPhoto(photo));_photos.add(newPhoto);_manager.GetContainer(Fli
krPhoto.
lass).Obje
tChanged(newPhoto);}}_manager.GetContainer(Fli
krUser.
lass).Obje
tChanged(this);}}FIGURE 1.5The Fli
krUser domain obje
t from Fli
krFS

16 Book title goes here�RootFolderObje
t�DomainObje
t�FolderObje
t(CanAdd=false, CanRemove=false)publi

lass Portfolio {private IDomainObje
tContainerManager _manager;private List<Sto
k> _sto
ks = new LinkedList<Sto
k>();�NeedsContainerManagerpubli
 void setContainerManager(IDomainObje
tContainerManagermanager) {_manager = manager;}�FolderObje
t(CanAdd=true, CanRemove=true)publi
 List<Sto
k> getSto
ks() throws Ex
eption {UpdateSto
kData();return _sto
ks;}private void UpdateSto
kData() throws Ex
eption {String url = BuildURL();List<String> dataLines = getDataFromURL(url);for(Sto
k sto
k : _sto
ks) {String dataLine = null;for(String line : dataLines) {if(line.startsWith("\"" + sto
k.getTi
ker())) {dataLine = line;break;}}if(dataLine != null) {sto
k.UpdateData(dataLine);}}}private String BuildURL() { }private List<String> getDataFromURL(String url) { }�Exe
utablepubli
 void AddASto
k(String ti
ker) throws Ex
eption {Sto
k sto
k = _manager.GetContainer(Sto
k.
lass).NewPersistentInstan
e();sto
k.setTi
ker(to
ker);_sto
ks.add(sto
k);_manager.GetContainer(Sto
k.
lass).Obje
tChanged(sto
k);_manager.GetContainer(Portfolio.
lass).Obje
tChanged(this);}}FIGURE 1.6The Portfolio
lass for the sto
k ti
ker �lesystem

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 17
�DomainObje
t(CanWrite=false)publi

lass Sto
k {private String _ti
ker;private string _data;publi
 Sto
k(String ti
ker) {_ti
ker = ti
ker;}�ProvidesNamepubli
 String getTi
ker() { return _ti
ker; }publi
 void UpdateData(String data) { _data = data; }publi
 String getPri
e() {return _data.split(",")[1℄;}publi
 String getDate() {return _data.split(",")[2℄;}publi
 String getTime() {return _data.split(",")[3℄;}}FIGURE 1.7The Sto
k
lass for the sto
k ti
ker �lesystem

18 Book title goes here

FIGURE 1.8Fli
krFS with both RestFS and NOFS1.2.4 Combining the Approa
hes: Using the RestFS Conne
-tor Layer in a NOFS Appli
ation FilesystemIt is also possible to use the �lesystem as an appli
ation and the �lesystem asa
onne
tor layer to form servi
e
ompositions. The positive aspe
ts of bothapproa
hes
an be
ombined to derive the advantages of ea
h system.One of the important disadvantages of a �lesystem as an appli
ation is thatextra
ode must be added to the implementation to a

ommodate
hanging
on�gurations and
ompositions of external resour
es. If this extra
ode is notpresent, then to realize
hanges, a �lesystem must be unmounted, modi�edand then mounted again. With the �lesystem as a
onne
tor layer, adding
omplex validation and advan
ed user intera
tion semanti
s is di�
ult. Whenboth approa
hes are
ombined, these disadvantages are no longer present.To demonstrate a possible use of both te
hnologies,
onsider a photo ser-vi
e su
h as Fli
kr that you wish to represent as a �lesystem. One possible wayto
onstru
t a �lesystem is to use both RestFS and an appli
ation �lesystembuilt with NOFS. A domain model similar to the one in the Fli
krFS exampledis
ussed earlier
an be
onstru
ted. In this
ase, instead of using a library tointera
t with Fli
kr in the appli
ation �lesystem, the appli
ation �lesystem
ould use a RestFS resour
e �le and a small s
ript that translates requestsand replies from the Fli
kr photo servi
e into representations that
onform tothe domain model of the appli
ation �lesystem.This
omposition is more �exible to
hange than it would be implementedonly as an appli
ation �lesystem. For example, if an additional photo servi
e

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 19

FIGURE 1.9A photo �lesystem
omposed of multiple photo servi
eswere added, it would involve
reating a se
ond resour
e �le in RestFS that theNOFS appli
ation �lesystem would intera
t with. All that would be neededis to implement a small s
ript that
ould translate requests and replies fromthe new web servi
e into a form that
ould be
onsumed by the appli
ation�lesystem's domain model.
1.3 Building Appli
ation Filesystems with the NakedObje
t Filesystem (NOFS)The
apabilities, role and development pro
ess of the �lesystem have evolvedthroughout the years. Early on, �lesystems were developed as tightly inte-grated operating system kernel
omponents. Kernel mode �lesystems requirea
omplex understanding of systems programming, systems programming lan-guages, and the underlying operating system. There are fewer people who havethis skill set as obje
t-oriented frameworks and languages are be
oming moreand more popular. As user mode programs are more suited for loading andlaun
hing programs dynami
ally, a kernel mode
omponent often has to takeadditional steps to support being unloadable or
on�gurable at run time.Also be
ause operating system kernels
annot easily depend upon user modelibraries, it is di�
ult to reuse software
omponents within the operating sys-tem and by extension in �lesystem implementations. Be
ause of this, there is

20 Book title goes heremu
h
ode that has already been developed using the patterns available and
ommon to enterprise appli
ation frameworks that either
annot be used orare di�
ult to reuse in systems development. Two important advan
ementsneeded over kernel mode �lesystems development are the ability to implement�lesystems as user-mode programs and frameworks that allow enterprise de-velopment te
hniques and patterns to be applied to �lesystems development.The answer to the user mode problem has been user-mode �lesystem frame-works su
h as FUSE for UNIX-like operating systems and Dokan for the Win-dows operating systems. Our answer to provide an enterprise-patterns-friendlyframework is the NOFS framework.1.3.1 An Explanation of Naked Obje
tsNaked Obje
ts [16℄ is the term used to des
ribe the design philosophy of usingplain obje
t-oriented domain models to build entire appli
ations. In the realmof desktop appli
ations, Naked Obje
t frameworks remove the
on
ern of thedeveloper in implementing user interfa
es, model-view-
ontroller patterns, andpersisten
e layers. These
omponents are generated for the domain modelby the Naked Obje
ts framework automati
ally either through the use ofre�e
tion or through additional metadata supplied with the domain model.A
hara
teristi
 feature of Naked Obje
t frameworks is that they presentan obje
t-oriented user interfa
e. Appli
ations where the user is treated moreas a problem solver than as a pro
ess follower bene�t from an obje
t orienteduser interfa
e [16, p41℄. For many appli
ations, pro
esses are very importantand an obje
t-oriented user interfa
e is not the best �t. We believe that theinterfa
e presented to the programmer and to the user of a �lesystem is alsoobje
t-oriented. In a �lesystem, the
omponents are not exposed to the userto fa
ilitate the moving, reading, writing,
reation, or deletion of �les andfolders. These a
tions are a

omplished with external programs and referen
esto the a
tual obje
ts as
ommand line parameters. The user intera
tion with�lesystems is a noun-verb style of intera
tion and not a verb-noun intera
tion,whi
h is more
ommon with typi
al desktop appli
ations. Like the NakedObje
t user interfa
es, �lesystems �provide the user with a set of tools whi
hto operate and does not di
tate . . . the users sequen
e of a
tions� [16, p41℄.1.3.2 The Naked Obje
t Filesystem (NOFS)There are three important
ontributions made by the NOFS framework. The�rst is that NOFS demonstrates the �lesystem
an be used as an obje
t-oriented user interfa
e in a Naked Obje
ts framework and that the NakedObje
ts design prin
iple
an be applied su

essfully to �lesystems develop-ment. The se
ond
ontribution is that NOFS inverts and simpli�es the nor-mal �lesystem development
ontra
t. In FUSE and operating system kernels,there are a series of fun
tions to implement and data stru
tures to work with.With the NOFS framework, a domain model is inspe
ted to produ
e a �lesys-

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 21tem user interfa
e. Domain models for NOFS do not implement �lesystem
ontra
ts or work with �lesystem stru
tures. Instead, they are des
ribed withmetadata that is used by NOFS to allow the domain model to intera
t withthe FUSE �lesystem framework. In this way, NOFS follows the dependen
yinversion prin
iple in that the higher level domain model does not dependupon the lower level �le system model. The third
ontribution made by theNOFS framework is that by providing an obje
t-oriented framework to de-velop �lesystems, we allow developers who are unfamiliar with systems orUNIX programming to more easily and rapidly implement experimental orlightweight �lesystems. With this obje
t-oriented framework, it be
omes eas-ier to unit test a �lesystem implementation be
ause details of the operatingsystem do not need to be stubbed or mo
ked out; only the domain modelneeds to be veri�ed.1.3.3 Implementing a Domain Model with NOFSHere we will explore developing a domain model with NOFS. We will explorethree domain models: an address book domain model that was developed forpresentation purposes, a Fli
kr domain model for manipulating photos on theFli
kr photo servi
e, and a sto
k ti
ker tra
king �lesystem for Yahoo! Finan
e.1.3.3.1 Implementing Files and Folders in NOFSIn NOFS, �les are modeled as plain
lasses that are des
ribed with metadata.The methods on the
lass are not
onstrained to any spe
i�
 interfa
e butare used to model the stru
ture of the data in a �le. There are two ways for
lasses to expose their data: through translation of the return values of publi
methods to stru
tured XML �les or by de�ning the stru
ture of these �les byimplementing an interfa
e with read and write methods.In the example in Figure 1.10, the
lass Conta
t marks itself as a �leobje
t by using the �DomainObje
t Java annotation. The
lass also tellsNOFS that it manages its own �le name with the �ProvidesName annotationon the getName a

essor and the setName mutator methods. The persisten
eme
hanism of NOS is inje
ted upon
onstru
tion of the Conta
t
lass throughthe setContainer method, whi
h is marked by the �NeedsContainer method.An example representation of the Conta
t
lass as a �le in the NOFS �lesystemis as follows in Figure 1.11.In this example the
lass Fli
krPhoto (Figure 1.4) marks itself as a �leobje
t by using the �DomainObje
t Java annotation. It tells NOFS that it isimmutable by setting the CanWrite member of the DomainObje
t annotationto false. IFli
krPhoto's responsibility is to model a graphi
al image from theFli
kr photo sharing website. Sin
e it is
onvenient to expose to the �lesystemthese photos as an image �le and not as an XML �le, Fli
krPhoto providesread and write methods as de�ned by the IProvidesUnstru
turedData NOFSinterfa
e.

22 Book title goes here�DomainObje
tpubli

lass Conta
t {private String _name;private String _phoneNumber;private IDomainObje
tContainer<Conta
t> _
ontainer;�ProvidesNamepubli
 String getName() { return _name; }�ProvidesNamepubli
 void setName(String name) { _name = name; }publi
 String getPhoneNumber() { return _phoneNumber; }publi
 void setPhoneNumber(String value) {_phoneNumber = value;}�NeedsContainerpubli
 void setContainer(IDomainObje
tContainer<Conta
t>
ontainer) {_
ontainer =
ontainer;}}FIGURE 1.10The Conta
t NOFS Domain Obje
t
<?xml version="1.0"?><Conta
t><PhoneNumber>555-5555</PhoneNumber><Conta
t>FIGURE 1.11Representation on the �lesystem of the Conta
t domain obje
t

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 23�DomainObje
t�FolderObje
t(CanAdd=true, CanRemove=true)publi

lass Category extends LinkedList<Conta
t> {private String _name;�ProvidesNamepubli
 void setName(String name) { _name = name; }�ProvidesNamepubli
 String getName() { return _name; }}FIGURE 1.12The Category NOFS Domain Obje
tIn the example in Figure 1.6, the
lass Portfolio marks itself as a folderobje
t by using the �DomainObje
t and the �FolderObje
t Java annota-tions. The FolderObje
t annotation sets CanAdd and CanRemove to false totell NOFS that the user of the �lesystem
annot add or remove �les from thefolder. The Portfolio
lass exposes two obje
ts to NOFS, a folder
alled Sto
ksthrough the getSto
ks() method and an exe
utable s
ript through the AddA-Sto
k method. NOFS
an tell that getSto
ks() is a folder be
ause its returntype is a
olle
tion and be
ause of the FolderObje
t annotation on the methodde
laration. NOFS
an tell that the AddASto
k method is to be exposed asan exe
utable s
ript be
ause of the Exe
utable annotation on the method de
-laration. The s
ript that will appear in the Portfolio obje
t's folder will be anautomati
ally generated Perl s
ript that will a

ept one argument and pass itba
k to NOFS, whi
h will in turn pass it to the
orre
t domain obje
t instan
ebased upon path. In this way, NOFS domain obje
ts
an expose additionalexe
utable behavior to the �lesystem interfa
e.Another way to implement a folder is through extending a
olle
tion typesu
h as LinkedList. The Category
lass in Figure 1.12, whi
h is a part of theaddress-book �lesystem, takes advantage of this approa
h. Instead of stati
allyde�ning the
omponents of a folder as was done in the Portfolio example,the Category folder's
omponents will be de�ned by what is present in the
olle
tion.1.3.4 Ar
hite
ture of NOFSThere are two important aspe
ts to the ar
hite
ture of NOFS. The �rst is itspla
e and role in the �lesystem ar
hite
ture and the se
ond is how domainobje
ts are mapped to FUSE
alls. Firstly, the overall ar
hite
ture of FUSEis not
hanged by NOFS. NOFS exists as an additional layer on top of FUSE.A diagram of this relationship is available in Figure 1.13.The existing
ontext swit
hes between user-mode programs with the kernel

24 Book title goes here

FIGURE 1.13The relationship between NOFS, FUSE, and the Linux kerneland between �lesystem implementations with FUSE still exist with NOFS.No new
ontext swit
hes are
reated by the NOFS framework. The readeris en
ouraged to
onsult literature and do
umentation on FUSE to exploreadditional details of FUSE and its implementations (see also 1.1.4 above).The way domain models are mapped to fuse
alls
an be split into twoimportant parts: how paths are translated to domain obje
ts and how domainobje
ts are translated to di�erent �le obje
t types.Domain obje
ts are translated to �les, folders, root-folders, and exe
utables
ripts through the use of Java annotations. Depending upon the annotation,
lasses or methods are s
anned to see if there are mat
hing annotations. Ifa
lass or method is marked as a �le, then that
lass instan
e or the returnvalue of that method is exposed as a �le on the �lesystem. The same is trueof folders. If a
lass is marked as a folder and if it is also a list, then the
lassis exposed as a folder and the
ontained obje
ts in the list are exposed as
hildren of that folder. If the
lass is marked as a folder and is not also a list,then the member methods of the
lass are exposed as
hildren of the folder. If aparti
ular method is en
ountered and marked as exe
utable, NOFS generatesa Perl s
ript that a

epts as arguments a list mat
hing the parameters of themethod. Exe
utable methods will be explored in more detail soon.Paths are translated with the algorithms in Figures 1.14 and 1.15. Thealgorithm basi
ally �nds the root of the �lesystem by sear
hing for an obje
tinstan
e of type root and then traverses the path from that instan
e untilit en
ounters a mismat
h or runs out of segments in the path and returns amat
hing obje
t.Additional path and type translation is involved in methods that are ex-posed as exe
utable s
ripts in NOFS. If an method has as parameters just

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 25translate_path(path) {
urrent = find_root();for-ea
h(segment in path) {if(
urrent IsA folder) {if(
urrent IsA list) {
urrent =
urrent[segment℄;} else if(
urrent HasA member whose name mat
hessegment) {
urrent =
urrent.members[segment℄;} else {raise ex
eption "invalid path";}} else {raise ex
eption "invalid path";}}return
urrent;}FIGURE 1.14The NOFS path translation algorithm
find_root() {List roots = new List();for-ea
h(instan
e in all_instan
es) {if(instan
e IsA root-folder) {roots.add(instan
e);}}if(roots.
ount() == 0) {raise ex
eption "no roots found";} else if(roots.
ount() > 1) {raise ex
eption "more than one root found";}return roots[0℄;}FIGURE 1.15The NOFS root dis
overy algorithm

26 Book title goes here
FIGURE 1.16The
ommuni
ation path for exe
utable s
ripts in NOFStranslate_arguments(arg_list, method) {for(int i = 0; i < arg_list.length; i++) {if(method.parameters[i℄ IsA NOFS-domain-obje
t) {args_list[i℄ = translate_path(arg_list[i℄);}}}FIGURE 1.17The NOFS argument translation algorithmprimitive or string types, then NOFS has no additional translation work toperform and just passes values as they are to a method from the s
ript. Ifa method parameter is of one of the domain model's types, then the s
riptwill a

ept a path as a valid argument and NOFS will translate the path toan obje
t referen
e that is then passed to the method (see Figure 1.17). Inthis way, it is possible to pass by value or by referen
e to methods on NOFSdomain
lasses.With path to obje
t translation, �lesystem
alls like getdir(), mkdir(),mknod(), unlink() and similar
alls map pretty well into path translation andobje
t
reation and deletion a
tions. Next, we will dis
uss how
alls su
h asread(), write(), open(), and
lose() work.In NOFS, there are three ways that a �le obje
t's data is managed. The�rst way is if the �le happens to be an exe
utable s
ript. If a method isdetermined to be an exe
utable s
ript, NOFS will generate Perl
ode to wrapa
all ba
k into NOFS and make �le that the Perl
ode is pla
ed in read-only.The se
ond way data is managed is through the IProvidesUnstru
turedDatainterfa
e. This interfa
e was mentioned earlier in the Fli
krPhoto example. IfNOFS en
ounters a �le obje
t that implements this interfa
e, it will pass readand write
alls dire
tly to the obje
t. The �nal way data is managed is if thedomain obje
t exposes publi
 members. In this
ase, NOFS will examine themembers and translate all primitive members into XML elements. If a non

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 27represent_as_xml(obje
t) {for-ea
h(member in obje
t.
lass_definition) {if(member IsA primitive) {emit element with value of primitive;} else {represent_as_xml(member);}}}FIGURE 1.18The NOFS XML serialization algorithm

FIGURE 1.19The NOFS
a
he and serialization relationshipprimitive type is en
ountered an element will be emitted and it will also beserialized into XML. The algorithm is available in Figure 1.18.In the
ase of XML �les being written ba
k to, all writes are
a
hed byNOFS until the �le handle is
losed. When the �le handle is
losed, NOFSwill perform a similar algorithm as represent_as_xml ex
ept to deserializethe XML ba
k into the domain obje
t. If there is a mismat
h in the XMLstru
ture with respe
t to the domain obje
t or if the deserialization pro
ess
auses the domain obje
t to throw an ex
eption, the
hange to the domain isrolled ba
k entirely and the
ontents of the XML �le are reverted to their statebefore any write o

urred. The
a
he management algorithm
an be found inFigure 1.19.

28 Book title goes hereThe �nal set of
alls mapped to FUSE by NOFS are metadata
alls su
h asgetxattr, getattr,
hown,
hmod, and other related
alls. There are two waysthat these are managed. The �rst way is if a method has any of the Provides-GID, ProvidesUID, ProvidesMode, ProvidesLastA

essTime, ProvidesLast-Modi�edTime, or ProvidesCreateTime annotations. For any
lass that hasmethods with these annotation, NOFS assumes that the domain obje
t main-tains this metadata. For ea
h
ase where one of these annotations is not en-
ountered, NOFS will provide a default implementation and store appropriatemetadata in a small db4o database for ea
h instan
e of a domain obje
t.It is sometimes useful for domain models to manage this additional meta-data in a non-default way. One important reason is if the data is a legitimatepart of the domain model. One good example would be a web servi
e thatprovides online do
ument editing. The domain obje
t that models a do
u-ment should also retrieve attributes like
reation, modi�
ation, and a

esstimes from the server. For other domain models, su
h as the sto
k ti
ker do-main model presented earlier, this information is less important to the domainmodel and
an be adequately handled by the NOFS default implementation.These two possibilities allow the
reator of the domain model to model onlyattributes that they are
on
erned with and nothing more.The domain obje
t persisten
e me
hanism used in NOFS is straightforwardand natural in the way it maps annotated
lass de�nitions to XML elementsat run time. A thorough evaluation of this approa
h and its alternatives isstill needed. One alternative is our earlier work on simple XML data bindingsand linearized external representations of XML data [2℄. Other
hoi
es in
ludemore
omplex, s
hema-based XML data binding frameworks su
h as JAXB [5℄and XStream [23℄, as well as non-XML formats su
h as JSON [4℄. In addition,we plan to allow domain
lasses in future versions of NOFS to
hoose alternaterepresentations through their own serializers or XSLT transformations.
1.4 Ar
hite
ture and Details of RestFSOur work on RestFS was inspired by two other bodies of work: Plan 9's9P proto
ol and netfs [18℄, and Representational State Transfer or REST [7℄.While exploring REST, we realized that the GET, PUT, POST, and DELETEHTTP methods mapped well into �lesystem operations and that there were afew ways that we might map REST-ful servi
es onto the �lesystem. Anotherimportant observation that we made at the time is how other forms of interpro-
ess
ommuni
ation and espe
ially so
kets have been the basis for
omposingprograms and servi
es. We felt after our exploration of layered �lesystemsresear
h with the OLFS �lesystem that the �lesystem held the possibility tomediate the
omposition of web servi
es. With these observations in hand and

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 29with the NOFS �lesystem framework we set about developing a �lesystem tosupport
ommuni
ation with and
omposition of web servi
es.In Plan9, network
ommuni
ation is not performed through the use of sys-tem
alls like a

ept,
onne
t, listen, send or re
v. Network
ommuni
ationsare performed through �le operations in netfs under a spe
ial folder `/net'in the Plan 9 �lesystem. In addition to folders separating types of network
onne
tions into UDP and TCP, there are two types of folders in netfs:
on-ne
tion /
on�guration �les and stream �les. Conne
tion /
on�guration �les
ontained details about IP addresses, port numbers, and so
ket options. On
efully
on�gured it is possible to read from and write to the spe
ial stream �lesin netfs to send and re
eive data from a remote
omputer.1.4.1 RestFS's approa
hThe use of �les for networking and the separation of �les into
on�gurationand streams o�er very important advantages over the family of
alls used inUNIX and other operating systems for networking. The �rst advantage is thatno additional system
alls other than the ones ne
essary for �lesystem inter-a
tion are needed to work with the network. Calls like
onne
t, listen, send,re
v, a

ept, and others are not ne
essary when the network
an be managedthrough the �lesystem. The other important advantage is in the separationof responsibility between the �les. With the separation, it is possible for onepro
ess to manage
on�guration of the network
onne
tion while another pro-
ess is responsible for reading and writing to the
onne
tion as if it were anormal �le. In this way, software that is
apable of working with just �le I/O
alls does not need to be extended to support networking
ode; it need onlybe supplemented with some prior
on�guration. Another important advantageof using the �lesystem for network
ommuni
ation is that it allows for net-work
onne
tions to be named in a namespa
e that has a longer lifetime thanprograms that may take advantage of a network
onne
tion. For example, aprogram may read from and write to a network �le and work
orre
tly forsome time. If that program
rashes, it
an be re-laun
hed and resume work-ing with the network �le without having to re-establish any
onne
tions. This
apability also allows the programs on either end point of the
onne
tion to
hange over time without resetting the
onne
tion.1.4.1.1 Con�guration Files in RestFSIn RestFS, when a �le is
reated, it is
reated as a pair
onsisting of a resour
eand a
on�guration �le that are bound to ea
h other. For example, if a �le
alled �GoogleSear
h� is
reated, then a
ompanion
on�guration �le
alled�.GoogleSear
h� will also be
reated in skeleton form.Next, this skeleton is populated manually to
onta
t a spe
i�
 web servi
e.In the example shown in 1.20, the resour
e �le has been
on�gured to
onta
tthe Google sear
h servi
e and perform a GET HTTP request when the utime

30 Book title goes here<?xml version="1.0" en
oding="UTF-8"?><RestfulSetting><FsMethod>utime</FsMethod><WebMethod>get</WebMethod><FormName></FormName><Resour
e>ajax/servi
es/sear
h/web?v=1.0&q=Brett%Favre</Resour
e><Host>ajax.googleapis.
om</Host><Port>80</Port><OAuthTokenPath></OAuthTokenPath></RestfulSetting>FIGURE 1.20An example RestFS
on�guration �le for a Google Sear
h�lesystem
all is performed on the GoogleSear
h �le. When this o

urs, RestFSwill make a
all to the web servi
e and pla
e the results in the resour
e �le.The Web Appli
ation Des
ription Language (WADL) [8℄ has been pro-posed as a REST-ful
ounterpart to the Web Servi
e De�nition Language(WSDL) [3℄. We are
urrently investigating ways to use WADL in
onjun
-tion with RestFS, in parti
ular, to populate RestFS
on�guration �les fromWADL servi
e des
riptions.1.4.1.2 Implementation of Con�guration Files in RestFSSin
e RestFS is implemented as a NOFS appli
ation �lesystem, implementing�les that are represented as XML is straightforward. The individual elementsare implemented as a

essors and mutators in a Java
lass
alled RestfulSet-ting in Figure 1.21. These settings obje
ts are managed by the resour
e �lesthat we will dis
uss shortly.1.4.1.3 Resour
e Files in RestFSAs stated before, resour
e �les in RestFS
ontain the state of a
urrent requestor response with a web servi
e. Resour
e �les
an be
on�gured to be triggeredto respond to web servi
e
alls upon being opened, before deletion, when theresour
e �le's timestamp is updated, before the resour
e �le is read from, andafter the resour
e �le has been written to. This triggering
apability is a

om-plished through the implementation of the NOFS IListensToEvents interfa
e.With this interfa
e, the RestFS resour
e �le is noti�ed by NOFS when a
-tual
alls to FUSE are en
ountered. On
e a triggering
all is en
ountered, thealgorithm in Figure 1.22 is run.When the triggering
all is made on the resour
e �le, RestFS will
he
k the
urrent
ontents of the �le. If the �le
ontains a JSONobje
t, the obje
t will be parsed and passed as arguments to theweb servi
e
all. For example, the JSON obje
t {"des
ription" : "stu-

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 31�DomainObje
tpubli

lass RestfulSetting extends BaseFileObje
t {private String _method;publi
 String getMethod() { return _method; }publi
 void setMethod(String value) { _method = value; }private String _formName;publi
 String getFormName() { return _formName; }publi
 void setFormName(String value) { _formName = value; }private String _port = "";publi
 String getPort() { return _port; }publi
 void setPort(String value) { _port = value; }private String _host = "";publi
 String getHost() { return _host; }publi
 void setHost(String value) { _host = value; }private String _resour
e = "";publi
 String getResour
e() { return _resour
e; }publi
 void setResour
e(String value) { _resour
e = value; }private String _oauthTokenPath = "";publi
 String getOAuthTokenPath() { return _oauthTokenPath; }publi
 void setOAuthTokenPath(String value) {_oauthTokenPath = value;}}FIGURE 1.21The RestfulSetting NOFS domain obje
tRespondToEvent(event_type, settings,
urrent_file_data) {if(settings.triggering_
all == event_type) {response = IssueWebRequest(settings.URI,settings.WebMethod,
urrent_file_data);SetCurrentFileData(response);}}FIGURE 1.22RestFS resour
e �le triggering algorithm

32 Book title goes here
/

auth

twi t ter

config

status

verif ier

tokenFIGURE 1.23An example of an OAuth
on�guration in RestFS<?xml version="1.0" en
oding="UTF-8"?><OAuthConfigFile><Key>asdf3244dsf</Key><A

essTokenURL>https://api.twitter.
om/oauth/a

ess_token</A

essTokenURL><UserAuthURL>https://api.twitter.
om/auth/authorize</UserAuthURL><RequestTokenURL>https://api.twitter.
om/oauth/request_token</RequestTokenURL><Se
ret>147sdfkek</Se
ret></OAuthConfigFile>FIGURE 1.24An example OAuth
on�guration �le for Twitterdent", "name": "Joe"} would translate to the URI http://host/servi
e?des
ription=student&name=joe.1.4.1.4 Authenti
ation in RestFSAs many REST-ful web servi
es support the OAuth authenti
ation model, wede
ided to add spe
ial OAuth �le and folder types to assist in establishingauthorization for web servi
es. In RestFS, there is one spe
ial folder `/auth'in the root of every mounted RestFS �lesystem. When a folder is
reated inthe `/auth' folder, a
on�g, status, veri�er, and token �le are
reated. The
on�g �le takes the OAuth API-Key, se
ret, and set of URLs to
ommuni
atewith to establish an authorization token. These �elds are typi
ally providedby the servi
e provider for a REST-ful web servi
e.

RestFS: The Filesystem as a Conne
tor Abstra
tion for Flexible Resour
e and Servi
e Composition 33<OAuthTokenFile><A

essToken>2534534asdf2348</A

essToken><RequestToken>aql2343</RequestToken><TokenSe
ret>adfjdsl24522</TokenSe
ret></OAuthTokenFile>FIGURE 1.25An example OAuth Token �le

FIGURE 1.26The RestFS authenti
ation pro
essOn
e all of the appropriate �elds are written to the
on�guration �le,RestFS will
onta
t the web servi
e to obtain authorization. Depending uponthe implementation there are a few possibilities. If the servi
e requires humanintera
tion to a

ept a PIN or pass a CAPTCHA test, the URL for that stepwill be written to the `status' �le. If the servi
e provides a PIN, it should bewritten to the `veri�er' �le. On
e this pro
ess is
omplete, the `token' �le willbe populated with the OAuth a

ess and request tokens for use in further
ommuni
ations. An example of this token �le
an be seen in Figure 1.25.On
e authorization is su

essful, the token �le
an be referred to in any
on�guration �le by path referen
e in the OAuthTokenPath element. If the
on�guration �le
ontains a valid token �le, RestFS will handle any
all to theresour
e �le using the appropriate OAuth token. The user of the resour
e �lethen, does not need to worry about authenti
ation any further. This pro
essis summarized by �gure 1.26.

34 Book title goes here1.4.1.5 Putting it All TogetherWith these three types of �les: authenti
ation,
on�guration, and resour
e, itis possible to
onne
t to and work with a web servi
e through �lesystem
alls.If several resour
e �les are
reated, it is possible to work with several webservi
es and to send multiple requests and
ompose multiple responses lo
allyusing UNIX
ommand line tools or through small programs.
1.5 SummaryWith RestFS and NOFS, we have demonstrated how web servi
es
an beabstra
ted and
omposed in an arbitrarily deep hierar
hy through the imple-mentation and use of �lesystems. We have shown how the �lesystem
an beused as a
onne
tor layer to translate �lesystem
alls into web servi
e
alls andhow this
an allow for lo
al and external
omposition of web servi
es. We havealso shown how appli
ation �lesystems
an be used to provide a user-friendlyinterfa
e for web servi
es to provide validation and more
omplex stru
ture.Finally, we have shown how the two approa
hes
an be
ombined to providee�e
tive representations of web servi
es through the �lesystem interfa
e.In our deeper exploration of NOFS, we dis
ussed how the Naked Obje
tsdesign prin
iples
an be used to build �lesystems and how the dependen
yinversion approa
h simpli�es �lesystem design. We also explored several ex-ample �lesystems and explained how NOFS handles translating requests fromFUSE to operations on a domain model.While exploring RestFS, we dis
ussed the
hallenges of translating webservi
e authenti
ation to the �lesystem interfa
e, how
on�guration and re-sour
e �les are separated, and how best to use RestFS to expose web servi
esthrough external programs or s
ripts.

Bibliography
[1℄ Andrew D. Birrell and Bru
e Jay Nelson. Implementing remote pro
edure
alls. ACM Transa
tions on Computer Systems, 2:39�59, 1984.[2℄ Matt Bone, Peter F. Nabi
ht, Konstantin Läufer, and George K. Thiru-vathukal. Taming XML: Obje
ts �rst, then markup. In Pro
. IEEE Intl.Conf. on Ele
tro/Information Te
hnology (EIT), May 2008.[3℄ R Chinni
i, J-J Moreau, A Ryman, and S Weerawarana. Webservi
es des
ription language (WSDL) version 2.0 part 1: Corelanguage. W3C Re
ommendation, June 2007. Available fromhttp://www.w3.org/TR/wsdl20.[4℄ D. Cro
kford. The appli
ation/json Media Type for JavaS
ript Obje
tNotation (JSON). RFC 4627 (Informational), July 2006.[5℄ Joe Fialli and Sekhar Vajjhala. Java ar
hite
ture for XML binding(JAXB) 2.0. Java Spe
i�
ation Request (JSR) 222, O
tober 2005.[6℄ R. Fielding, H. Frystyk, Tim Berners-Lee, J. Gettys, and J. C. Mogul.Hypertext transfer proto
ol - HTTP/1.1, 1996.[7℄ Roy T. Fielding. Ar
hite
tural Styles and the Design of Network-basedSoftware Ar
hite
tures. PhD thesis, University of California, Irvine, 2000.[8℄ Mar
 J. Hadley. Web appli
ation des
ription language (WADL). Te
h-ni
al report, Sun Mi
rosystems, In
., Mountain View, CA, USA, 2006.[9℄ John F. Karpovi
h, Andrew S. Grimshaw, and James C. Fren
h. Extensi-ble �le system (ELFS): an obje
t-oriented approa
h to high performan
e�le I/O. In OOPSLA '94: Pro
eedings of the ninth annual
onferen
e onObje
t-oriented programming systems, language, and appli
ations, pages191�204, New York, NY, USA, 1994. ACM.[10℄ Joe Kaylor, Konstantin Läufer, and George K. Thiruvathukal. Onlinelayered �le system (OLFS): A layered and versioned �lesystem and per-forman
e analysis. In Pro
. IEEE Intl. Conf. on Ele
tro/InformationTe
hnology (EIT), May 2010.[11℄ Joe Kaylor, Konstantin Läufer, and George K. Thiruvathukal.RestFS: A FUSE �lesystem to expose REST-ful servi
es.http://restfs.google
ode.
om/, 2010�2011. 35

36 Book title goes here[12℄ Joe Kaylor, George K. Thiruvathukal, and Konstantin Läufer. Naked ob-je
t �le system (NOFS): A framework to expose an obje
t-oriented do-main model as a �lesystem. Te
hni
al report, Loyola University Chi
ago,May 2010.[13℄ Brian W. Kernighan and Rob Pike. The UNIX Programming Environ-ment. Prenti
e Hall Professional Te
hni
al Referen
e, 1983.[14℄ Ted H. Kim and Gerald J. Popek. Frigate: an obje
t-oriented �le systemfor ordinary users. In COOTS'97: Pro
eedings of the 3rd
onferen
e onUSENIX Conferen
e on Obje
t-Oriented Te
hnologies (COOTS), pages9�9, Berkeley, CA, USA, 1997. USENIX Asso
iation.[15℄ S. R. Kleiman. Vnodes: An ar
hite
ture for multiple �le system types inSun UNIX. In Pro
. Summer USENIX Te
hni
al Conf., pages 238�247,1986.[16℄ R. Pawson. Naked Obje
ts. PhD thesis, Trinity College, Dublin, Ireland,2004.[17℄ Jan-Simon Pendry and Marshall Kirk M
Kusi
k. Union mounts in4.4BSD-lite. In TCON'95: Pro
. of the USENIX 1995 Te
hni
al Conf.,pages 3�3, Berkeley, CA, USA, 1995. USENIX Asso
iation.[18℄ Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-son, Howard Tri
key, and Phil Winterbottom. Plan 9 from Bell Labs.Computing Systems, 8(3):221�254, Summer 1995.[19℄ Rob Pike, Dave Presotto, Ken Thompson, Howard Tri
key, and Phil Win-terbottom. The use of name spa
es in Plan 9. SIGOPS Oper. Syst. Rev.,27(2):72�76, 1993.[20℄ M. Szeredi. Filesystem in userspa
e. http://fuse.sour
eforge.net, Febru-ary 2005.[21℄ K Thompson. UNIX implementation, pages 26�41. Prenti
e-Hall, In
.,Upper Saddle River, NJ, USA, 1986.[22℄ J. Whitehead and Y. A. Goland. WebDAV: A network proto
ol for remote
ollaborative authoring on the web. In ECSCW 1999, 1999.[23℄ Eugene Y. C. Wong, Alvin T. S. Chan, and Hong Va Leong. Xstream:A middleware for streaming XML
ontents over wireless environments.IEEE Trans. Softw. Eng., 30:918�935, De
ember 2004.

	Loyola University Chicago
	Loyola eCommons
	3-2011

	RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition
	Joseph P. Kaylor
	Konstantin Läufer
	George K. Thiruvathukal
	Recommended Citation

	tmp.1322166644.pdf.LKSyl

