Metadata, citation and similar papers at core.ac.uk

Provided by Loyola eCommons

LOYOLA

E é Loyola University Chicago
R Loyola eCommons

Computer Science: Faculty Publications and Other Faculty Publications

Works

3-2011

RestFS: The Filesystem as a Connector Abstraction
for Flexible Resource and Service Composition

Joseph P. Kaylor

Konstantin Laufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Recommended Citation

Joseph P. Kaylor, Konstantin Laufer, and George K. Thiruvathukal. RestFS: The Filesystem as a Connector Abstraction for Flexible
Resource and Service Composition. In Cloud Computing: Methodology, System, and Applications (edited by Lizhe Wang, Rajiv
Ranjan, Jinjun Chen, Boualem Benatallah), CRC Press, Boca Raton, Florida, USA, September 2011.

This Book Chapter is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact

ecommons@luc.edu.
@080

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright © 2011 Joseph P. Kaylor, Konstantin Laufer, and George K. Thiruvathukal

https://core.ac.uk/display/48606752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Author Name

Book title goes here

Foreward

I am delighted to introduce the first book on Multimedia Data Mining. When
I came to know about this book project undertaken by two of the most active
young researchers in the field, I was pleased that this book is coming in early
stage of a field that will need it more than most fields do. In most emerging
research fields, a book can play a significant role in bringing some maturity to
the field. Research fields advance through research papers. In research papers,
however, only a limited perspective could be provided about the field, its
application potential, and the techniques required and already developed in
the field. A book gives such a chance. I liked the idea that there will be a book
that will try to unify the field by bringing in disparate topics already available
in several papers that are not easy to find and understand. I was supportive
of this book project even before I had seen any material on it. The project
was a brilliant and a bold idea by two active researchers. Now that I have it
on my screen, it appears to be even a better idea.

Multimedia started gaining recognition in 1990s as a field. Processing,
storage, communication, and capture and display technologies had advanced
enough that researchers and technologists started building approaches to com-
bine information in multiple types of signals such as audio, images, video, and
text. Multimedia computing and communication techniques recognize corre-
lated information in multiple sources as well as insufficiency of information in
any individual source. By properly selecting sources to provide complemen-
tary information, such systems aspire, much like human perception system,
to create a holistic picture of a situation using only partial information from
separate sources.

Data mining is a direct outgrowth of progress in data storage and process-
ing speeds. When it became possible to store large volume of data and run
different statistical computations to explore all possible and even unlikely cor-
relations among data, the field of data mining was born. Data mining allowed
people to hypothesize relationships among data entities and explore support
for those. This field has been put to applications in many diverse domains and
keeps getting more applications. In fact many new fields are direct outgrowth
of data mining and it is likely to become a powerful computational tool.

Contributors

Michael Aftosmis
NASA Ames Research Center
Moffett Field, California

Pratul K. Agarwal
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Sadaf R. Alam
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Gabrielle Allen
Louisiana State University
Baton Rouge, Louisiana

Martin Sandve Alnaes
Simula Research Laboratory and
University of Oslo, Norway

Norway

Steven F. Ashby

Lawrence Livermore National
Laboratory

Livermore, California

David A. Bader
Georgia Institute of Technology
Atlanta, Georgia

Benjamin Bergen
Los Alamos National Laboratory
Los Alamos, New Mexico

Jonathan W. Berry
Sandia National Laboratories
Albuquerque, New Mexico

Martin Berzins
University of Utah
Salt Lake City, Utah

Abhinav Bhatele
University of Illinois
Urbana-Champaign, Illinois

Christian Bischof
RWTH Aachen University
Germany

Rupak Biswas
NASA Ames Research Center
Moffett Field, California

Eric Bohm
University of Illinois
Urbana-Champaign, Illinois

James Bordner
University of California, San Diego
San Diego, California

George Bosilca
University of Tennessee
Knoxville, Tennessee

Greg L. Bryan

Columbia University
New York, New York

Marian Bubak
AGH University of Science and
Technology

iii

iv
Krakow, Poland

Andrew Canning

Lawrence Berkeley National
Laboratory

Berkeley, California

Jonathan Carter

Lawrence Berkeley National
Laboratory

Berkeley, California

Zizhong Chen
Jacksonville State University
Jacksonville, Alabama

Joseph R. Crobak

Rutgers, The State University of
New Jersey

Piscataway, New Jersey

Roxana E. Diaconescu
Yahoo! Inc.
Burbank, California

Peter Diener
Louisiana State University
Baton Rouge, Louisiana

Jack J. Dongarra

University of Tennessee, Knoxville,
Oak Ridge National Laboratory,
and

University of Manchester

John B. Drake
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Kelvin K. Droegemeier
University of Oklahoma
Norman, Oklahoma

Stéphane Ethier
Princeton University
Princeton, New Jersey

Christoph Freundl
Friedrich—Alexander—Universitét
Erlangen, Germany

Karl Fiirlinger
University of Tennessee
Knoxville, Tennessee

Al Geist
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Michael Gerndt
Technische Universitdt Miinchen
Munich, Germany

Tom Goodale
Louisiana State University
Baton Rouge, Louisiana

Tobias Gradl

Friedrich—Alexander—Universitét
Erlangen, Germany

William D. Gropp
Argonne National Laboratory
Argonne, Illinois

Robert Harkness
University of California, San Diego
San Diego, California

Albert Hartono

Ohio State University
Columbus, Ohio

Thomas C. Henderson
University of Utah
Salt Lake City, Utah

Bruce A. Hendrickson
Sandia National Laboratories
Albuquerque, New Mexico

Alfons G. Hoekstra
University of Amsterdam
Amsterdam, The Netherlands

Philip W. Jones
Los Alamos National Laboratory
Los Alamos, New Mexico

Laxmikant Kalé
University of Illinois
Urbana-Champaign, Illinois

Shoaib Kamil

Lawrence Berkeley National
Laboratory

Berkeley, California

Cetin Kiris
NASA Ames Research Center
Moffett Field, California

Uwe Kiister
University of Stuttgart
Stuttgart, Germany

Julien Langou
University of Colorado
Denver, Colorado

Hans Petter Langtangen
Simula Research Laboratory and
University of Oslo, Norway

Michael Lijewski

Lawrence Berkeley National
Laboratory

Berkeley, California

Anders Logg
Simula Research Laboratory and
University of Oslo, Norway

Justin Luitjens

University of Utah
Salt Lake City, Utah

Kamesh Madduri
Georgia Institute of Technology
Atlanta, Georgia

Kent-Andre Mardal
Simula Research Laboratory and

University of Oslo, Norway

Satoshi Matsuoka
Tokyo Institute of Technology
Tokyo, Japan

John M. May
Lawrence Livermore National

Laboratory
Livermore, California

Celso L. Mendes
University of Illinois
Urbana-Champaign, Illinois

Dieter an Mey
RWTH Aachen University
Germany

Tetsu Narumi
Keio University
Japan

Michael L. Norman
University of California, San Diego
San Diego, California

Boyana Norris
Argonne National Laboratory
Argonne, Illinois

Yousuke Ohno

Institute of Physical and Chemical
Research (RIKEN)

Kanagawa, Japan

Leonid Oliker

Lawrence Berkeley National
Laboratory

Berkeley, California

Brian O’Shea
Los Alamos National Laboratory
Los Alamos, New Mexico

Christian D. Ott
University of Arizona
Tucson, Arizona

vi

James C. Phillips
University of Illinois
Urbana-Champaign, Illinois

Simon Portegies Zwart
University of Amsterdam,
Amsterdam, The Netherlands

Thomas Radke
Albert-Einstein-Institut
Golm, Germany

Michael Resch
University of Stuttgart
Stuttgart, Germany

Daniel Reynolds
University of California, San Diego
San Diego, California

Ulrich Riide
Friedrich—Alexander—Universitat
Erlangen, Germany

Samuel Sarholz
RWTH Aachen University
Germany

Erik Schnetter

Louisiana State University
Baton Rouge, Louisiana

Klaus Schulten
University of Illinois
Urbana-Champaign, Illinois

Edward Seidel
Louisiana State University
Baton Rouge, Louisiana

John Shalf

Lawrence Berkeley National
Laboratory

Berkeley, California

Bo-Wen Shen

NASA Goddard Space Flight Center
Greenbelt, Maryland

Ola Skavhaug
Simula Research Laboratory and
University of Oslo, Norway

Peter M.A. Sloot
University of Amsterdam
Amsterdam, The Netherlands

Erich Strohmaier

Lawrence Berkeley National
Laboratory

Berkeley, California

Makoto Taiji

Institute of Physical and Chemical
Research (RIKEN)

Kanagawa, Japan

Christian Terboven
RWTH Aachen University,
Germany

Mariana Vertenstein
National Center for Atmospheric

Research
Boulder, Colorado

Rick Wagner
University of California, San Diego
San Diego, California

Daniel Weber
University of Oklahoma
Norman, Oklahoma

James B. White, II1
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Terry Wilmarth
University of Illinois
Urbana-Champaign, Illinois

List

of Figures

1.1
1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26

The timeline of a RestFS web service call
The flexible internal and external composition possible with
RestFS o
A sample composition of a blog, news sources, and Twitter
The FlickrPhoto domain object from FlickrFS
The FlickrUser domain object from FlicktFS
The Portfolio class for the stock ticker filesystem
The Stock class for the stock ticker filesystem
FlickrFS with both RestFS and NOFS
A photo filesystem composed of multiple photo services

The Contact NOFS Domain Object
Representation on the filesystem of the Contact domain object
The Category NOFS Domain Object
The relationship between NOFS, FUSE, and the Linux kernel
The NOFS path translation algorithm
The NOFS root discovery algorithm
The communication path for executable scripts in NOFS . . .
The NOFS argument translation algorithm
The NOFS XML serialization algorithm
The NOFS cache and serialization relationship
An example RestFS configuration file for a Google Search . .
The RestfulSetting NOFS domain object
RestFS resource file triggering algorithm
An example of an OAuth configuration in RestFS
An example OAuth configuration file for Twitter
An example OAuth Token file
The RestFS authentication process

10

11
12
14
15
16
17
18
19
22
22
23
24
25
25
26
26
27
27
30
31
31
32
32
33
33

vii

viii

List of Tables

ix

Contents

I This is a Part

1 RestFS: The Filesystem as a Connector Abstraction for Flex-
ible Resource and Service Composition
Joseph Kaylor, Konstantin Ldiufer, and George K. Thiruvathukal
1.1 Related Work
1.1.1 Representational State Transfer (ReST)
1.1.2 Inter-Process Communication Through the Filesystem
1.1.3 Recent Developments in File-Based IPC
1.1.4 The Shift from Kernel Mode to User Mode Filesystem
Development
1.2 Composition of Web Services Through the Filesystem
1.2.1 Commonalities Between Web Resources and the Filesys-
tem ...
1.2.2 The Filesystem as a Connector Layer
1.2.3 The Filesystem as an Application and Abstraction . .
1.2.4 Combining the Approaches: Using the RestF'S Connec-
tor Layer in a NOFS Application Filesystem
1.3 Building Application Filesystems with the Naked Object
Filesystem (NOFS)
1.3.1 An Explanation of Naked Objects
1.3.2 The Naked Object Filesystem (NOFS)
1.3.3 Implementing a Domain Model with NOFS
1.3.3.1 Implementing Files and Folders in NOFS . .
1.3.4 Architecture of NOFS
1.4 Architecture and Details of RestFS
141 RestFS’sapproach
1.4.1.1 Configuration Files in RestFS
1.4.1.2 TImplementation of Configuration Files in
RestFS
1.4.1.3 Resource Files in RestFS
1.4.1.4 Authentication in RestFS
1.4.1.5 Putting it All Together
1.5 Summary

Bibliography

~ O Ut Ot Ot

oo

Nej

18

19
20
20
21
21
23
28
29
29

30
30
32
34
34

35

xi

xii

Symbol Description

(0%

abc

To solve the generator main-
tenance scheduling, in the
past, several mathematical
techniques have been ap-

plied.

These include integer pro-
gramming, integer linear
programming, dynamic pro-
gramming, branch and
bound etc.

Several heuristic search algo-
rithms have also been devel-
oped. In recent years expert
systems,

fuzzy approaches, simulated

0+ abc

sdf

ewq

bven

annealing and genetic algo-
rithms have also been tested.
This paper presents a survey
of the literature

over the past fifteen years in
the generator

maintenance scheduling.
The objective is to

present a clear picture of the
available recent literature
of the problem, the con-
straints and the other as-
pects of

the generator maintenance
schedule.

Part 1

This 1s a Part

1

RestE'S: The Filesystem as a Connector
Abstraction for Flexible Resource and Service
Composition

Joseph Kaylor

Department of Computer Science, Loyola University Chicago

Konstantin Liufer

Department of Computer Science, Loyola University Chicago

George K. Thiruvathukal
Department of Computer Science, Loyola University Chicago

CONTENTS

1.1 Related Work ...
1.1.1 Representational State Transfer (ReST)ccocoiiiinn....
1.1.2 Inter-Process Communication Through the Filesystem
1.1.3 Recent Developments in File-Based IPC

1.1.4t The Shift from Kernel Mode to User Mode Filesystem Develop-
T3 1Y

1.2 Composition of Web Services Through the Filesystem
1.2.1 Commonalities Between Web Resources and the Filesystem
1.2.2 The Filesystem as a Connector Layercooonen.
1.2.3 The Filesystem as an Application and Abstraction

1.2.4 _ Combining the Approaches: Using the RestF'S Connector Layer in
a NOFS Application Filesystem

%.30 Eg;ilding Application Filesystems with the Naked Object Filesystem
NOE S) o

1.3.1 An Explanation of Naked Objectscc.ccoviiiiiiin....
1.3.2 The Naked Object Filesystem (NOFS)coooiii....
1.3.3 Implementing a Domain Model with NOFS
1.3.3.1 Implementing Files and Folders in NOFS

1.3.4 Architecture of NOFS
1.4 Architecture and Details of RestF'S o i
1.4.1 RestFS’s approach
1.4.1.1 Configuration Files in RestFS

1.4.1.2 Implementation of Configuration Files in RestFS

1.4.1.3 Resource Files in RestFS

1.4.1.4 Authentication in RestFS ...,

1.4.1.,5 Putting it All Togetherci...

1.5 SUIMINALY ettt ettt ettt e e

N © 00 00O S U U

—_

4 Book title goes here

The broader context for this chapter comprises business scenarios requiring
resource and/or service composition, such as (intra-company) enterprise ap-
plication integration (EAI) and (inter-company) web service orchestration.
The resources and services involved vary widely in terms of the protocols they
support, which typically fall into remote procedure call (RPC) [1], resource-
oriented (HTTP [6] and WEBDAV [22]) and message-oriented protocols.

By recognizing the similarity between web-based resources and the kind
of resources exposed in the form of filesystems in operating systems, we have
found it feasible to map the former to the latter using a uniform, configurable
connector layer. Once a remote resource has been exposed in the form of a local
filesystem, one can access the resource programmatically using the operating
system’s standard filesystem application programming interface (API). Taking
this idea one step further, one can then aggregate or otherwise orchestrate two
or more remote resources using the same standard API. Filesystem APIs are
available in all major operating systems. Some of those, most notably, all
flavors of UNIX including GNU/Linux, have a rich collection of small, flexible
command-line utilities, as well as various inter-process communication (IPC)
mechanisms. These tools can be used in scripts and programs that compose
the various underlying resources in powerful ways.

Further explorations of the role of a filesystem-based connector layer in the
enterprise application architecture have lead us to the question whether one
can achieve a fully compositional, arbitrarily deep hierarchical architecture by
re-exposing the aggregated resources as a single, composite resource that, in
turn, can be accessed in the same form as the original resources. This is indeed
possible in two flavors: 1) the composite resource can be exposed internally as
a filesystem for further local composition; 2) the composite resource is exposed
externally as a restful resource for further external composition. We expect
the ability hierarchically to compose resources to facilitate the construction of
complex, robust resource- and service-oriented software systems, and we hope
that concrete case studies will further substantiate our position.

Leveraging our prior work on the Naked Objects Filesystem (NOFS) [12],
which exposes object-oriented domain model functionality as a Linux filesys-
tem in user space (FUSE) [20], we have implemented RestFS [11], a (dynam-
ically re)configurable mechanism for exposing remote restful resources and as
local filesystems. Several sample adapters specific to well-known services such
as Yahoo! Placefinder and Twitter are already available. Authentication poses
a challenge in that it cannot always be automated; in practice, when systems
such as OAuth are used, it is often only the initial granting of authentica-
tion that must be manual, and the resulting authentication token can then be
included in the connector configuration. As future work, we plan to develop

plugins to support resources across a broader range of protocols, such as FTP,
SFTP, or SMTP.

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 5

1.1 Related Work

There are various lines of related work, which we will discuss in this section.

1.1.1 Representational State Transfer (ReST)

Partly in response to the complexity of the W3(’s WS-* web service speci-
fications [3], resource-oriented approaches such as the representational state
transfer (ReST) architectural style [7] have received growing attention dur-
ing the second half of this decade. In ReST, addressable, interconnected re-
sources, each with one or more possible representations, are usually exposed
through the HTTP protocol, which is itself stateless, so that all state is located
within the resources themselves. These resources share a uniform interface,
where resource-specific functionality is mapped to the standard HTTP request
methods GET, PUT, POST, DELETE, and several others. Clients of these
resources can access them directly through HTTP, use a language-specific
framework with ReST client support, or rely on resource- and language-specific
client-side bindings.

1.1.2 Inter-Process Communication Through the Filesystem

Most methods of IPC can be represented in the filesystem namespace in many
operating systems. Pipes, domain sockets and memory-mapped files can exist
in the filesystem in UNIX [13]. While pipes are uni-directional, allowing one
program to connect at each end point, other IPC methods such as UNIX
domain sockets allow for multiple client connections and permit data to be
written in both directions. With this capability, it is possible for output from
several programs to be aggregated by one program instead of a 1:1 model as is
allowed by pipes. Other methods of IPC, such as memory-mapped and regular
files, allow several programs to collaborate through a common, named store
of data.

Composition of the files in filesystems is also possible through layered or
stackable filesystems. Mechanisms for this differ amongst operating systems.
In 4.4BSD-Lite, Union Mounts [17] allowed for filesystems to be mounted in
a linear hierarchy. Changes to files lower in the hierarchy would override files
in the higher part of the hierarchy. The Plan 9 distributed operating system
allowed for the filesystem namespace to be manipulated through the mount,
unmount, and bind system calls [18, 19]. In our own research, we have imple-
mented a layered filesystem, OLFS, which allowed for a flexible layering and
inheritance scheme through folder manipulation [10]. Each of these approaches
manipulates the filesystem namespace and consequently allows for changes in
configuration and how IPC resources are located. This capability can help
provide for new and interesting ways to share data between programs.

6 Book title goes here

Although not as widespread, some operating systems implement more ad-
vanced IPC such as network connections, specific protocols such as HTTP or
FTP, and other services through the filesystem namespace. An excellent ex-
ample of this is the Plan9 operating system. Plan9’s filesystem layer, the 9P
protocol, is used to represent user interface windows, processes, storage files,
and network connections. In Plan9, it is possible through filesystem calls to
engage in IPC in a more uniform way on a local machine and across separate
machines.

In terms of inter-machine file-based IPC, it has been possible for many
years to coordinate and share data among processes by writing to files on
network filesystems. As long as the network filesystem has adequate locking
mechanisms and an adequate solution to the cache coherency problem, it
is possible to perform IPC through file-based system calls over a network
filesystem.

Other than coordination through network filesystems or specialized oper-
ating system mechanisms like 9P, much inter-machine IPC has been through
abstractions on top of the network socket. Remote procedure call approaches
such as RPC or RMI have provided a standard way for processes to share data
and coordinate with each other. Other socket-based approaches include the
HTTP protocol and abstractions on top of HT'TP, such as SOAP and REST.

1.1.3 Recent Developments in File-Based IPC

Some more recent advances have been made in terms of inter-machine IPC
over the filesystem. Application filesystems are being built on top of FUSE to
act as clients for web services such as Flickr, IMAP email services, Amazon
S3, and others. Instead of using the socket as the basis for IPC with these
services, it has become possible to be able to interact with them through
filesystem calls.

IPC through the filesystem offers some advantages. Although in UNIX-
like operating systems, it is possible to redirect output to a socket through a
program like socat, netcat, or nc, there are many network options and issues
like datagram versus streaming to consider. File-based IPC often presents a
simpler interface to work with and leaves many of the networking and protocol
questions to the implementing filesystem. Another important advantage that
it offers is that processes that interact with these application filesystems is
transparency. The processes that interact with these application filesystems
do not need to be aware of which service they are interacting with, which URL
it is located at or what types of SOAP messages it requires to communicate
with. With a Flickr filesystem, it is possible to use programs that simply
interact with images aside from a web browser to interact with the Flickr
photo service.

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 7

1.1.4 The Shift from Kernel Mode to User Mode Filesystem
Development

In very early systems, development of new filesystem code was a challenge
because of high coupling with storage device architecture and kernel code.

In the 1970s, with the introduction of MULTICS, UNIX, and other systems
of the time, more structured systems with separated layers became more com-
mon. UNIX used a concept of i-nodes, which were a common data structure
that described structures on the filesystem [21]. Different filesystem imple-
mentations within the same operating system kernel could share the i-node
structure; this included on-disk and network filesystems. Early UNIX operat-
ing systems shared a common disc and filesystem cache and other structures
related to making calls to the I/O layer that managed the discs and network
interfaces.

Newer UNIX-like systems such as 4.2 BSD and SunOS included an up-
dated architecture called v-nodes [15]. The goal was to split the filesystem’s
implementation-independent functionality in the kernel form the filesystem’s
implementation-dependent functionality. Mechanisms like path parsing, buffer
cache, i-node tables, and other structures became more shareable. Also, op-
erations based on v-nodes became reentrant, thereby allowing new behavior
to be stacked on top of other filesystem code or to modify existing behav-
ior. V-nodes also helped to simplify systems design and to make filesystems
implementations more portable to other UNIX-like systems. Many modern
UNIX-like systems have a v-nodes-like layer in their filesystems code.

With the advent of micro-kernel architectures, filesystems being built as
user-mode applications became more common and popular even in operating
systems with monolithic kernel architectures. Several systems with different
design philosophies have been built. We describe three of these systems that
are most closely related to NOFS: FUSE [20], ELFS [9], and Frigate [14].

The Extensible File System (ELFS hereafter) is an object-oriented frame-
work built on top of the filesystem that is used to simplify and enhance the
performance of the interaction between applications and the filesystem. ELFS
uses class definitions to generate code that takes advantage of pre-fetching and
caching techniques.ELFS also allows developers to automatically take advan-
tage of parallel storage systems by using multiple worker threads to perform
reads and writes. Also, since ELFS has the definition of the data structures,
it can build efficient read and write plans. The novelty of ELFS is that the
developer can use an object-oriented architecture and allow ELFS to take care
of the details.

Frigate is a framework that allows developers to inject behavioral changes
into the filesystem code of an operating system. Modules built in Frigate
are run as user-mode servers that are called to by a module that exists in the
operating system’s kernel. Frigate takes advantage of the reentrant structure of
vnodes in UNIX-like operating systems to allow the Frigate module developer
to layer behavior on top of existing filesystem code. Frigate also allows the

8 Book title goes here

developer to tag certain files with additional metadata so that different Frigate
modules can automatically work with different types of files. The novelty
of Frigate is that developers do not need to understand operating-systems
development to modify the capabilities of filesystem code, and they can test
and debug their modules as user-mode applications. But they still need to be
aware of the UNIX filesystem structures and functions.

File Systems in Userspace (FUSE hereafter) is a user mode filesystems
framework. FUSE is supported by many UNIX-like operating systems such
as Linux, FreeBSD, NetBSD, OpenSolaris, and Mac OSX. The interface sup-
ported by FUSE is very similar to the set of UNIX system calls that are
available for file and folder operations. Aside from the ability to make calls
into the host operating system, there is less sharing with the operating system
than with v-nodes such as path parsing. FUSE has helped many filesystem
implementations such as NTFS and ZFS to be portable to many operating
systems. Since FUSE filesystems are built as user-land programs, they can
be easier to develop in languages other than C or C++, easier to unit test,
and easier to debug. Accordingly, FUSE has become a popular platform for
implementing application-specific filesystems.

1.2 Composition of Web Services Through the Filesys-
tem

Filesystems can play different roles in the composition of web-based resources
and services. We will now study these in more detail.

1.2.1 Commonalities Between Web Resources and the
Filesystem

We believe that there are clear commonalities between web services and the
filesystem. Both systems have a concept of a URI. In web services, this can
be an HTTP URL. In the filesystem this can be a file or folder path. In both
systems there are protocol actions that can be used to send and retrieve data.
In web services this can be accomplished through HTTP GET and POST.
In filesystems, this can be accomplished through read() and write() system
calls. In both systems it is possible to invoke executable elements. In web
services this can be performed with GET and POST calls and the use of SOAP
messages to web service URLs. On a local filesystem, executable services can
be invoked by loading and executing programs from the local filesystem.

In our exploration we believe that there are three candidates for how to
build the filesystem layer to expose resources from the web. The first way
is through application filesystems built with the Naked Object Filesystem
(NOFS) framework. The second way is to use the filesystem as a connector

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 9

layer to abstract and re-expose web resources to the local system. The third
way is to use a combination of the filesystem as a connector layer and the
filesystem as an application. We have explored this second route with RestFS,
which has been implemented using the NOFS framework. In each of these
methodologies we demonstrate how to map concepts from web services onto
the filesystem. We will also explain the advantages and disadvantages to each
approach.

1.2.2 The Filesystem as a Connector Layer

In our exploration of filesystems, we questioned whether a filesystem could
be used as a connector layer for web services. We also questioned whether
that connector layer could be used to compose web services with local and
other web services and then expose those web services externally as a new
web service. RestFS is our attempt to implement such a filesystem.

RestFS is an application filesystem implemented with the NOFS frame-
work. RestF'S uses files to model interaction with web services. When a file
is created in RestFS, two files are created: a configuration file and a resource
file. The configuration file contains an XML document that can be updated
to contain a web service URI, web method, authentication information, and a
triggering filesystem method. Once configured, the resource file can be inter-
acted with on the local machine to interact with a web service.

One example of the usage of RestFS is to create a file that can perform a
Google Search. In this example, the file is configured with the Google APIs
server and the web search service. Web requests are sent with the GET HTTP
method and are triggered by the utime filesystem call. When a user of the
filesystem issues a ‘touch’ command on the resource file, a GET request is
issued by RestFS to the Google API server and the response from that server
is written back to the resource file, which will be available for subsequent
reads. In this example, the task of configuring the resource, triggering the
request, and parsing the results are left to a Bash shell script.

Another example usage of RestFS is with the Yahoo! PlaceFinder service.
This example is similar to the Google search example. The configuration file
is setup with the URI for the web service, and the utime system call is used
to trigger the web request. Also, in this example, a shell script is used to
configure the RestFS file, trigger the web service call, and to parse the results.

With our implementation of resource files in RestF'S, remote web resources
can be interacted with in a similar way as other local file based TPC. The local
nature of the resource files allows for programs that read from and write to the
resource files to be unaware of the web service that RestFS is communicating
with. For example, it is possible to use programs such as grep, sed, or perl
to search, transform, and manipulate the data in the resource file. In each of
these cases, these programs do not need to be aware that the data they are
working with has been transparently read from or written to a remote web
service.

10 Book title goes here
service

RestFS Connect to URL D Listen for
intercepts call D send request requests

Accept request

o

Store response in :} Respond to
resource file request Process request

Triggering FS

call

Return from
triggering FS
call

FIGURE 1.1
The timeline of a RestFS web service call

Because RestFS acts as only a connector layer and provides no additional
interpretation or filtering of requests or responses, external programs are re-
quired to read and write the structured data that is necessary for interact
with configured web services. In the Google Search and Yahoo! PlaceFinder
examples, the task of writing a structured request and parsing the response
was left to a shell script that took advantage of UNIX command line tools like
sed, grep, and others. These scripts had to be aware of the structure of both
the requests and response needed by the web service. It is possible to filter,
translate, and load data from the resource files with any local program that
can accept data from a file or a UNIX pipe. As a consequence, it is possible
to augment the value added of the web service with local programs in several
possible combinations.

The connector model presented by RestFS in combination with other IPC
mechanisms on the local operating system makes it possible to compose the
data from several web services with each other in a flexible and reconfigurable
way. One possible example of this would be to setup several resource files
for RSS news feeds across the internet. A script could be implemented to
parse each of those news sources for specific topics, aggregate them, and then
write them to another resource file that could represent a submission form
and service for creating articles on a blog. The same system then could have
several resource files setup to watch Twitter accounts for comments on the
article and post responses on Twitter to the blog site. If new news sources

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 11

Further Internal I Further External

Composition Composition
REST-ful
Fs resource
NOFS REST-ful Service API
Domain
Model
FS API FS API
FS FS
RestFS RestFS
\ 4 A
REST-ful REST-ful
resource resource

FIGURE 1.2
The flexible internal and external composition possible with RestFS

become important or new Twitter accounts are necessary, new resource files
and alterations to scripts can be made to expand and reconfigure the system.
It is possible to do all of this with a series of scripts and small programs on a
UNIX operating system that use RestFS as a connector layer.

There are some instances where the connection layer concept has some
difficulties in our exploration. When trying to compose some web services
that are built around human interaction through rich user interfaces, it can
be difficult to create a program that can interact with these services in a
simple way.

One example of this is the CAPTCHA human test. To reduce “spam” in
the form of email and as entries on blogs, many websites incorporate a form
that requests the user perform a small test such as recognizing a sound or
interpreting letters on an image to prove to the system that the user of the
web service is in fact a human. Often, after these initial interactions, it is
possible for simple interaction with RestFS, but because of them it is not
always straightforward to automate the entire interaction with a web service.
Other forms of non machine readable interactions such as the use of images,
sounds, or video can present complications for composing web services with
RestFS.

Another example would be web services that make use of the user interface
for complex validation or additional business rules. While not an ideal design,
such web services still exist on the internet. Because local programs will in-

12 Book title goes here

Blog

1

RestFS

News RSS Twitter
Aggregator Filter
RestFS RestFS
News Source 1 News Source 2 News Source 3 Twitter

FIGURE 1.3
A sample composition of a blog, news sources, and Twitter

teract with the application tier and not the presentation tier of a web service,
any logic that exists in that presentation tier that is necessary for proper
communication with the application tier must be duplicated in whatever local
composition is made of the web service.

1.2.3 The Filesystem as an Application and Abstraction

While exploring the possibilities for using filesystems to interact with web ser-
vices, we observed the emergence of application oriented filesystems such as
WikipediaFS, IMAPFS, and FlickrFS. Each of these filesystems demonstrate
different web services represented as different components on filesystems. In
several email oriented filesystems, folders available in IMAP accounts are rep-
resented as folders on the local filesystem and individual email messages as
files. In photo-sharing-oriented filesystems such as FlickrFS, photos are cat-
egorized into folders and exposed as standard image files. In each of these
application filesystems, normal file operations work as expected. Copying and
deleting files in FlickrFS completes the expected operation of downloading
and uploading photos with a user’s Flickr account.

After our own experiences with implementing storage oriented filesystems
in FUSE, we felt that application filesystems would benefit from a different
abstraction than what is presented by FUSE. To that end, we implemented
the Naked Objects Filesystem (NOFS). NOFS allows a developer to imple-
ment an application filesystem by annotating Java classes in an application

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 13

domain model. Through inspection of these domain objects and associated
annotations, NOFS presents a filesystem composed of files, folders, and exe-
cutable scripts to the user through FUSE to interact with the domain model.
We will explore in detail the architecture and internal workings of NOFS in a
later section.

With the NOFS framework, we were able to implement application filesys-
tems in a more rapid fashion with less filesystem glue code needed. This helped
reduce the necessary components to expose a web service such as the Flickr
photo service as a filesystem (Figures 1.4, 1.5) to the interaction with the
REST-ful web service and the construction of an adequate domain model to
represent the structure of the service and filesystem. Our implementation of
a simple Flickr filesystem took 484 lines of Java code. An existing Python
implementation of the Flickr filesystem that uses FUSE directly took 2144
lines of code. About half of the Python implementation was code used to glue
FUSE to the Flickr photo service. The remainder of the code was related to
handling the Flickr photo service.

Another example of an application filesystem built with NOFS is the Ya-
hoo! Finance stock ticker filesystem. We were able to implement the entire
filesystem with just 155 lines of code in two Java classes (see Figures 1.6, 1.7)

Application filesystems like those that can be built with NOFS are very
useful for user interaction. Actions that make sense in a photo library service
have excellent mappings to filesystem actions. The fundamental unit in the
service, the photo, maps well to a file. Collections and categories of photos
map well to folder structures. In this particular case, for the sake of user
interaction, the structure of the web service calls and their mapping into
a connector layer like RestFS would not be a convenient structure for user
interaction. The application filesystem allows for a better mapping of the
business unit / domain model that is presented by the web service.

Application filesystems built through NOFS also are able to handle action
validation and interaction in a simpler way than is possible with RestFS like
systems. If an action on the domain model for an NOFS filesystem is in some
way invalid, an exception can be raised so that the filesystem call that triggered
the action can return an error code. In this way, NOFS domain models can
restrict copy, delete, read, write or other filesystem operations to those that
are considered valid by the domain model. Resource files in RestFS expect
that data written to and read from the resource files is in a valid format.

Application filesystems are not as well suited for simple re-configuration or
changes in composition as RestFS is. To introduce changes in an application
filesystem, either facilities for dynamically adding plugins must be introduced,
or the system must be unmounted, modified and mounted as a filesystem
again.

14 Book title goes here

@DomainObject (CanWrite=false)
public class FlickrPhoto implements IProvidesUnstructuredData {
private byte[] _data;
public void setData(byte[] data) {
_data = data;
}

public FlickrPhoto() {}

private String _name;

@ProvidesName

public String getName() { return _name; }
@ProvidesName

public void setName(String name) { _name = name; }

public boolean Cacheable() { return false; }
public long DataSize() { return _data.length; }
public void Read(ByteBuffer buffer, long offset, long length) {
for(long i = offset; i < offset + length && i < _data.length;
i++) {
buffer.put(_datal[(int)il);

}

public void Truncate(long length) { }

public void Write(ByteBuffer buffer, long offset,
long length) { }

FIGURE 1.4
The FlickrPhoto domain object from FlickrF'S

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 15

Q@FolderObject (CanAdd=false, CanRemove=false)
@Domain0Object
public class FlickrUser {
private List<FlickrPhoto> _photos =
new LinkedList<FlickrPhoto>();
public FlickrUser() {}

private String _name;

@ProvidesName

public String getName() { return _name; }
@ProvidesName

public void setName(String name) { _name = name; }

private IDomainObjectContainerManager _manager;
ONeedsContainerManager
public void setContainerManager (IDomainObjectContainerManager
manager) {
_manager = manager;

private long _lastGet = 0;
Q@FolderObject (CanAdd=false, CanRemove=false)
public List<FlickrPhoto> getPhotos() throws Exception {
if (_lastGet == 0 || System.currentTimeMillis() - 10000 >
_lastGet) {
UpdatePhotos() ;
_lastGet = System.currentTimeMillis();
}

return _photos;

private void UpdatePhotos() throws Exception {
_photos = new LinkedList<FlickrPhoto>();
FlickrFacade facade = new FlickrFacade();
for (PhotoSet set : facade.getPhotoSets(_name)) {
for(Photo photo : facade.getPhotosInASet(set, 100)) {
FlickrPhoto newPhoto = _manager
.GetContainer (FlickrPhoto.class)
.NewPersistentInstance();
newPhoto.setName (photo.getTitle() +".jpg");
newPhoto.setData(facade.getDataForPhoto (photo)) ;
_photos.add(newPhoto) ;
_manager .GetContainer (FlickrPhoto.class)
.ObjectChanged (newPhoto) ;

}
}
_manager.GetContainer (FlickrUser.class) .ObjectChanged(this) ;
}
}
FIGURE 1.5

The FlickrUser domain object from FlickrFS

16 Book title goes here

QRootFolderObject

@Domain0Object

Q@FolderObject (CanAdd=false, CanRemove=false)

public class Portfolio {
private IDomainObjectContainerManager _manager;
private List<Stock> _stocks = new LinkedList<Stock>();

@NeedsContainerManager
public void setContainerManager (IDomainObjectContainerManager
manager) {
_manager = manager;

@FolderObject (CanAdd=true, CanRemove=true)

public List<Stock> getStocks() throws Exception {
UpdateStockDatal() ;
return _stocks;

private void UpdateStockData() throws Exception {
String url = BuildURL(Q);
List<String> datalines = getDataFromURL (url);
for(Stock stock : _stocks) {
String dataline = null;
for(String line : dataLines) {
if (line.startsWith("\"" + stock.getTicker())) {
dataLine = line;
break;

}
if (dataline != null) {
stock.UpdateData(dataLine) ;

}
}
}
private String BuildURL() { }
private List<String> getDataFromURL(String url) { }
@Executable
public void AddAStock(String ticker) throws Exception {
Stock stock = _manager.GetContainer(Stock.class)
.NewPersistentInstance();
stock.setTicker (tocker) ;
_stocks.add(stock) ;
_manager.GetContainer (Stock.class) .ObjectChanged(stock);
_manager.GetContainer (Portfolio.class).0bjectChanged (this);
}
}
FIGURE 1.6

The Portfolio class for the stock ticker filesystem

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 17

@DomainObject (CanWrite=false)
public class Stock {
private String _ticker;
private string _data;

public Stock(String ticker) {
_ticker = ticker;

}

@ProvidesName
public String getTicker() { return _ticker; }

public void UpdateData(String data) { _data = data; }

public String getPrice() {
return _data.split(",")[1];
}

public String getDate() {
return _data.split(",")[2];
}

public String getTime() {
return _data.split(",")[3];
}

FIGURE 1.7
The Stock class for the stock ticker filesystem

18 Book title goes here

NOFS
Application FS

A
Request /
Response
Translator

Flickr

FIGURE 1.8
FlickrF'S with both RestFS and NOFS

1.2.4 Combining the Approaches: Using the RestFS Connec-
tor Layer in a NOFS Application Filesystem

It is also possible to use the filesystem as an application and the filesystem as
a connector layer to form service compositions. The positive aspects of both
approaches can be combined to derive the advantages of each system.

One of the important disadvantages of a filesystem as an application is that
extra code must be added to the implementation to accommodate changing
configurations and compositions of external resources. If this extra code is not
present, then to realize changes, a filesystem must be unmounted, modified
and then mounted again. With the filesystem as a connector layer, adding
complex validation and advanced user interaction semantics is difficult. When
both approaches are combined, these disadvantages are no longer present.

To demonstrate a possible use of both technologies, consider a photo ser-
vice such as Flickr that you wish to represent as a filesystem. One possible way
to construct a filesystem is to use both RestFS and an application filesystem
built with NOFS. A domain model similar to the one in the FlickrF'S example
discussed earlier can be constructed. In this case, instead of using a library to
interact with Flickr in the application filesystem, the application filesystem
could use a RestFS resource file and a small script that translates requests
and replies from the Flickr photo service into representations that conform to
the domain model of the application filesystem.

This composition is more flexible to change than it would be implemented
only as an application filesystem. For example, if an additional photo service

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 19

NOFS
Application FS

Y
Request /
Response
Translator

\ 4

RestFS

Flickr Picassa

FIGURE 1.9
A photo filesystem composed of multiple photo services

were added, it would involve creating a second resource file in RestFS that the
NOFS application filesystem would interact with. All that would be needed
is to implement a small script that could translate requests and replies from
the new web service into a form that could be consumed by the application
filesystem’s domain model.

1.3 Building Application Filesystems with the Naked
Object Filesystem (NOFS)

The capabilities, role and development process of the filesystem have evolved
throughout the years. Early on, filesystems were developed as tightly inte-
grated operating system kernel components. Kernel mode filesystems require
a complex understanding of systems programming, systems programming lan-
guages, and the underlying operating system. There are fewer people who have
this skill set as object-oriented frameworks and languages are becoming more
and more popular. As user mode programs are more suited for loading and
launching programs dynamically, a kernel mode component often has to take
additional steps to support being unloadable or configurable at run time.
Also because operating system kernels cannot easily depend upon user mode
libraries, it is difficult to reuse software components within the operating sys-
tem and by extension in filesystem implementations. Because of this, there is

20 Book title goes here

much code that has already been developed using the patterns available and
common to enterprise application frameworks that either cannot be used or
are difficult to reuse in systems development. Two important advancements
needed over kernel mode filesystems development are the ability to implement
filesystems as user-mode programs and frameworks that allow enterprise de-
velopment techniques and patterns to be applied to filesystems development.
The answer to the user mode problem has been user-mode filesystem frame-
works such as FUSE for UNIX-like operating systems and Dokan for the Win-
dows operating systems. Our answer to provide an enterprise-patterns-friendly
framework is the NOFS framework.

1.3.1 An Explanation of Naked Objects

Naked Objects [16] is the term used to describe the design philosophy of using
plain object-oriented domain models to build entire applications. In the realm
of desktop applications, Naked Object frameworks remove the concern of the
developer in implementing user interfaces, model-view-controller patterns, and
persistence layers. These components are generated for the domain model
by the Naked Objects framework automatically either through the use of
reflection or through additional metadata supplied with the domain model.
A characteristic feature of Naked Object frameworks is that they present
an object-oriented user interface. Applications where the user is treated more
as a problem solver than as a process follower benefit from an object oriented
user interface [16, p41]. For many applications, processes are very important
and an object-oriented user interface is not the best fit. We believe that the
interface presented to the programmer and to the user of a filesystem is also
object-oriented. In a filesystem, the components are not exposed to the user
to facilitate the moving, reading, writing, creation, or deletion of files and
folders. These actions are accomplished with external programs and references
to the actual objects as command line parameters. The user interaction with
filesystems is a noun-verb style of interaction and not a verb-noun interaction,
which is more common with typical desktop applications. Like the Naked
Object user interfaces, filesystems “provide the user with a set of tools which
to operate and does not dictate ... the users sequence of actions” [16, p41].

1.3.2 The Naked Object Filesystem (NOFS)

There are three important contributions made by the NOFS framework. The
first is that NOFS demonstrates the filesystem can be used as an object-
oriented user interface in a Naked Objects framework and that the Naked
Objects design principle can be applied successfully to filesystems develop-
ment. The second contribution is that NOFS inverts and simplifies the nor-
mal filesystem development contract. In FUSE and operating system kernels,
there are a series of functions to implement and data structures to work with.
With the NOFS framework, a domain model is inspected to produce a filesys-

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 21

tem user interface. Domain models for NOFS do not implement filesystem
contracts or work with filesystem structures. Instead, they are described with
metadata that is used by NOFS to allow the domain model to interact with
the FUSE filesystem framework. In this way, NOFS follows the dependency
inversion principle in that the higher level domain model does not depend
upon the lower level file system model. The third contribution made by the
NOFS framework is that by providing an object-oriented framework to de-
velop filesystems, we allow developers who are unfamiliar with systems or
UNIX programming to more easily and rapidly implement experimental or
lightweight filesystems. With this object-oriented framework, it becomes eas-
ier to unit test a filesystem implementation because details of the operating
system do not need to be stubbed or mocked out; only the domain model
needs to be verified.

1.3.3 Implementing a Domain Model with NOFS

Here we will explore developing a domain model with NOFS. We will explore
three domain models: an address book domain model that was developed for
presentation purposes, a Flickr domain model for manipulating photos on the
Flickr photo service, and a stock ticker tracking filesystem for Yahoo! Finance.

1.3.3.1 Implementing Files and Folders in NOFS

In NOFS, files are modeled as plain classes that are described with metadata.
The methods on the class are not constrained to any specific interface but
are used to model the structure of the data in a file. There are two ways for
classes to expose their data: through translation of the return values of public
methods to structured XML files or by defining the structure of these files by
implementing an interface with read and write methods.

In the example in Figure 1.10, the class Contact marks itself as a file
object by using the @DomainObject Java annotation. The class also tells
NOFS that it manages its own file name with the @ProvidesName annotation
on the getName accessor and the setName mutator methods. The persistence
mechanism of NOS is injected upon construction of the Contact class through
the setContainer method, which is marked by the @NeedsContainer method.
An example representation of the Contact class as a file in the NOFS filesystem
is as follows in Figure 1.11.

In this example the class FlickrPhoto (Figure 1.4) marks itself as a file
object by using the @DomainObject Java annotation. It tells NOFS that it is
immutable by setting the CanWrite member of the DomainObject annotation
to false. IFlickrPhoto’s responsibility is to model a graphical image from the
Flickr photo sharing website. Since it is convenient to expose to the filesystem
these photos as an image file and not as an XML file, FlickrPhoto provides
read and write methods as defined by the IProvidesUnstructuredData NOFS
interface.

22 Book title goes here

@DomainObject
public class Contact {
private String _name;
private String _phoneNumber;
private IDomainObjectContainer<Contact> _container;

Q@ProvidesName
public String getName() { return _name; }

@ProvidesName
public void setName(String name) { _name = name; }

public String getPhoneNumber() { return _phoneNumber; }
public void setPhoneNumber (String value) {
_phoneNumber = value;

}

ONeedsContainer
public void setContainer (IDomainObjectContainer<Contact>
container) {
_container = container;

FIGURE 1.10
The Contact NOFS Domain Object

<?xml version="1.0"7>

<Contact>
<PhoneNumber>555-5555</PhoneNumber>

<Contact>

FIGURE 1.11
Representation on the filesystem of the Contact domain object

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 23

@DomainObject

@FolderObject (CanAdd=true, CanRemove=true)

public class Category extends LinkedList<Contact> {
private String _name;

@ProvidesName
public void setName(String name) { _name = name; }

@ProvidesName

public String getName() { return _name; }
}
FIGURE 1.12

The Category NOFS Domain Object

In the example in Figure 1.6, the class Portfolio marks itself as a folder
object by using the @DomainObject and the @FolderObject Java annota-
tions. The FolderObject annotation sets CanAdd and CanRemove to false to
tell NOFS that the user of the filesystem cannot add or remove files from the
folder. The Portfolio class exposes two objects to NOFS, a folder called Stocks
through the getStocks() method and an executable script through the AddA-
Stock method. NOFS can tell that getStocks() is a folder because its return
type is a collection and because of the FolderObject annotation on the method
declaration. NOFS can tell that the AddAStock method is to be exposed as
an executable script because of the Executable annotation on the method dec-
laration. The script that will appear in the Portfolio object’s folder will be an
automatically generated Perl script that will accept one argument and pass it
back to NOFS, which will in turn pass it to the correct domain object instance
based upon path. In this way, NOFS domain objects can expose additional
executable behavior to the filesystem interface.

Another way to implement a folder is through extending a collection type
such as LinkedList. The Category class in Figure 1.12, which is a part of the
address-book filesystem, takes advantage of this approach. Instead of statically
defining the components of a folder as was done in the Portfolio example,
the Category folder’s components will be defined by what is present in the
collection.

1.3.4 Architecture of NOFS

There are two important aspects to the architecture of NOFS. The first is its
place and role in the filesystem architecture and the second is how domain
objects are mapped to FUSE calls. Firstly, the overall architecture of FUSE
is not changed by NOFS. NOFS exists as an additional layer on top of FUSE.
A diagram of this relationship is available in Figure 1.13.

The existing context switches between user-mode programs with the kernel

24 Book title goes here

[dev/ | o » Fuse module |« p| Linux

fuse | Kernel
Context|{Switch Context|Switch
A4 A4
libFuse libc
\4 Y
User mode
NOFS program
\ 4
Domain
Model

FIGURE 1.13
The relationship between NOFS, FUSE, and the Linux kernel

and between filesystem implementations with FUSE still exist with NOFS.
No new context switches are created by the NOFS framework. The reader
is encouraged to consult literature and documentation on FUSE to explore
additional details of FUSE and its implementations (see also 1.1.4 above).

The way domain models are mapped to fuse calls can be split into two
important parts: how paths are translated to domain objects and how domain
objects are translated to different file object types.

Domain objects are translated to files, folders, root-folders, and executable
scripts through the use of Java annotations. Depending upon the annotation,
classes or methods are scanned to see if there are matching annotations. If
a class or method is marked as a file, then that class instance or the return
value of that method is exposed as a file on the filesystem. The same is true
of folders. If a class is marked as a folder and if it is also a list, then the class
is exposed as a folder and the contained objects in the list are exposed as
children of that folder. If the class is marked as a folder and is not also a list,
then the member methods of the class are exposed as children of the folder. If a
particular method is encountered and marked as executable, NOFS generates
a Perl script that accepts as arguments a list matching the parameters of the
method. Executable methods will be explored in more detail soon.

Paths are translated with the algorithms in Figures 1.14 and 1.15. The
algorithm basically finds the root of the filesystem by searching for an object
instance of type root and then traverses the path from that instance until
it encounters a mismatch or runs out of segments in the path and returns a
matching object.

Additional path and type translation is involved in methods that are ex-
posed as executable scripts in NOFS. If an method has as parameters just

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 25

translate_path(path) {
current = find_root();
for-each(segment in path) {
if (current IsA folder) {
if (current IsA list) {
current = current[segment];
} else if(current HasA member whose name matches

segment) {
current = current.members[segment];
} else {
raise exception "invalid path";
}
} else {

raise exception "invalid path";

}

return current;

FIGURE 1.14
The NOFS path translation algorithm

find_root() {
List roots = new List();
for-each(instance in all_instances) {
if (instance IsA root-folder) {
roots.add(instance) ;

}
if (roots.count() == 0) {
raise exception "nmo roots found";
} else if(roots.count() > 1) {
raise exception "more than one root found";

}

return roots[0];

FIGURE 1.15
The NOFS root discovery algorithm

26 Book title goes here

NOFS Exectuion |

Service —» NOFS
y Y
NOFS Script DOn;AaeI;lhlc\;Igdel

FIGURE 1.16
The communication path for executable scripts in NOFS

translate_arguments(arg_list, method) {
for(int i = 0; i < arg_list.length; it++) {
if (method.parameters[i] IsA NOFS-domain-object) {
args_list[i] = translate_path(arg_list[i]);
}

FIGURE 1.17
The NOFS argument translation algorithm

primitive or string types, then NOFS has no additional translation work to
perform and just passes values as they are to a method from the script. If
a method parameter is of one of the domain model’s types, then the script
will accept a path as a valid argument and NOFS will translate the path to
an object reference that is then passed to the method (see Figure 1.17). In
this way, it is possible to pass by value or by reference to methods on NOFS
domain classes.

With path to object translation, filesystem calls like getdir(), mkdir(),
mknod(), unlink() and similar calls map pretty well into path translation and
object creation and deletion actions. Next, we will discuss how calls such as
read(), write(), open(), and close() work.

In NOFS, there are three ways that a file object’s data is managed. The
first way is if the file happens to be an executable script. If a method is
determined to be an executable script, NOFS will generate Perl code to wrap
a call back into NOFS and make file that the Perl code is placed in read-only.
The second way data is managed is through the IProvidesUnstructuredData
interface. This interface was mentioned earlier in the FlickrPhoto example. If
NOFS encounters a file object that implements this interface, it will pass read
and write calls directly to the object. The final way data is managed is if the
domain object exposes public members. In this case, NOFS will examine the
members and translate all primitive members into XML elements. If a non

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 27

represent_as_xml (object) {
for-each(member in object.class_definition) {
if (member IsA primitive) {
emit element with value of primitive;
} else {
represent_as_xml (member) ;

}

FIGURE 1.18
The NOFS XML serialization algorithm

(") Commit
Fie Opene

Yes
\ 4

A 4

Write To File

Rollback
Changes

Yes

Deserialize

Write?
FIGURE 1.19

The NOFS cache and serialization relationship

primitive type is encountered an element will be emitted and it will also be
serialized into XML. The algorithm is available in Figure 1.18.

In the case of XML files being written back to, all writes are cached by
NOFS until the file handle is closed. When the file handle is closed, NOFS
will perform a similar algorithm as represent as_xml except to deserialize
the XML back into the domain object. If there is a mismatch in the XML
structure with respect to the domain object or if the deserialization process
causes the domain object to throw an exception, the change to the domain is
rolled back entirely and the contents of the XML file are reverted to their state
before any write occurred. The cache management algorithm can be found in
Figure 1.19.

28 Book title goes here

The final set of calls mapped to FUSE by NOFS are metadata calls such as
getxattr, getattr, chown, chmod, and other related calls. There are two ways
that these are managed. The first way is if a method has any of the Provides-
GID, ProvidesUID, ProvidesMode, ProvidesLastAccessTime, ProvidesLast-
ModifiedTime, or ProvidesCreateTime annotations. For any class that has
methods with these annotation, NOFS assumes that the domain object main-
tains this metadata. For each case where one of these annotations is not en-
countered, NOFS will provide a default implementation and store appropriate
metadata in a small db4o database for each instance of a domain object.

It is sometimes useful for domain models to manage this additional meta-
data in a non-default way. One important reason is if the data is a legitimate
part of the domain model. One good example would be a web service that
provides online document editing. The domain object that models a docu-
ment should also retrieve attributes like creation, modification, and access
times from the server. For other domain models, such as the stock ticker do-
main model presented earlier, this information is less important to the domain
model and can be adequately handled by the NOFS default implementation.
These two possibilities allow the creator of the domain model to model only
attributes that they are concerned with and nothing more.

The domain object persistence mechanism used in NOFS is straightforward
and natural in the way it maps annotated class definitions to XML elements
at run time. A thorough evaluation of this approach and its alternatives is
still needed. One alternative is our earlier work on simple XML data bindings
and linearized external representations of XML data [2]. Other choices include
more complex, schema-based XML data binding frameworks such as JAXB [5]
and XStream [23], as well as non-XML formats such as JSON [4]. In addition,
we plan to allow domain classes in future versions of NOFS to choose alternate
representations through their own serializers or XSLT transformations.

1.4 Architecture and Details of RestFS

Our work on RestFS was inspired by two other bodies of work: Plan 9’s
9P protocol and netfs [18], and Representational State Transfer or REST [7].
While exploring REST, we realized that the GET, PUT, POST, and DELETE
HTTP methods mapped well into filesystem operations and that there were a
few ways that we might map REST-ful services onto the filesystem. Another
important observation that we made at the time is how other forms of interpro-
cess communication and especially sockets have been the basis for composing
programs and services. We felt after our exploration of layered filesystems
research with the OLFS filesystem that the filesystem held the possibility to
mediate the composition of web services. With these observations in hand and

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 29

with the NOFS filesystem framework we set about developing a filesystem to
support communication with and composition of web services.

In Plan9, network communication is not performed through the use of sys-
tem calls like accept, connect, listen, send or recv. Network communications
are performed through file operations in netfs under a special folder ‘/net’
in the Plan 9 filesystem. In addition to folders separating types of network
connections into UDP and TCP, there are two types of folders in netfs: con-
nection / configuration files and stream files. Connection / configuration files
contained details about TP addresses, port numbers, and socket options. Once
fully configured it is possible to read from and write to the special stream files
in netfs to send and receive data from a remote computer.

1.4.1 RestFS’s approach

The use of files for networking and the separation of files into configuration
and streams offer very important advantages over the family of calls used in
UNIX and other operating systems for networking. The first advantage is that
no additional system calls other than the ones necessary for filesystem inter-
action are needed to work with the network. Calls like connect, listen, send,
recv, accept, and others are not necessary when the network can be managed
through the filesystem. The other important advantage is in the separation
of responsibility between the files. With the separation, it is possible for one
process to manage configuration of the network connection while another pro-
cess is responsible for reading and writing to the connection as if it were a
normal file. In this way, software that is capable of working with just file I/O
calls does not need to be extended to support networking code; it need only
be supplemented with some prior configuration. Another important advantage
of using the filesystem for network communication is that it allows for net-
work connections to be named in a namespace that has a longer lifetime than
programs that may take advantage of a network connection. For example, a
program may read from and write to a network file and work correctly for
some time. If that program crashes, it can be re-launched and resume work-
ing with the network file without having to re-establish any connections. This
capability also allows the programs on either end point of the connection to
change over time without resetting the connection.

1.4.1.1 Configuration Files in RestFS

In RestF'S, when a file is created, it is created as a pair consisting of a resource
and a configuration file that are bound to each other. For example, if a file
called “GoogleSearch” is created, then a companion configuration file called
“.GoogleSearch” will also be created in skeleton form.

Next, this skeleton is populated manually to contact a specific web service.
In the example shown in 1.20, the resource file has been configured to contact
the Google search service and perform a GET HTTP request when the utime

30 Book title goes here

<?xml version="1.0" encoding="UTF-8"7>

<RestfulSetting>
<FsMethod>utime</FsMethod>
<WebMethod>get</WebMethod>
<FormName></FormName>
<Resource>ajax/services/search/web?v=1.0&q=Brett/Favre
</Resource>
<Host>ajax.googleapis.com</Host>
<Port>80</Port>
<0AuthTokenPath></0AuthTokenPath>

</RestfulSetting>

FIGURE 1.20
An example RestFS configuration file for a Google Search

filesystem call is performed on the GoogleSearch file. When this occurs, RestFS
will make a call to the web service and place the results in the resource file.

The Web Application Description Language (WADL) [8] has been pro-
posed as a REST-ful counterpart to the Web Service Definition Language
(WSDL) [3]. We are currently investigating ways to use WADL in conjunc-
tion with RestFS, in particular, to populate RestF'S configuration files from
WADL service descriptions.

1.4.1.2 Implementation of Configuration Files in RestFS

Since RestFS is implemented as a NOFS application filesystem, implementing
files that are represented as XML is straightforward. The individual elements
are implemented as accessors and mutators in a Java class called RestfulSet-
ting in Figure 1.21. These settings objects are managed by the resource files
that we will discuss shortly.

1.4.1.3 Resource Files in RestFS

As stated before, resource files in RestF'S contain the state of a current request
or response with a web service. Resource files can be configured to be triggered
to respond to web service calls upon being opened, before deletion, when the
resource file’s timestamp is updated, before the resource file is read from, and
after the resource file has been written to. This triggering capability is accom-
plished through the implementation of the NOFS IListensToEvents interface.
With this interface, the RestFS resource file is notified by NOFS when ac-
tual calls to FUSE are encountered. Once a triggering call is encountered, the
algorithm in Figure 1.22 is run.

When the triggering call is made on the resource file, RestFS will
check the current contents of the file. If the file contains a JSON
object, the object will be parsed and passed as arguments to the
web service call. For example, the JSON object {"description" : "stu-

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 31

@DomainObject

public class RestfulSetting extends BaseFileObject {
private String _method;
public String getMethod() { return _method; }
public void setMethod(String value) { _method = value; }

private String _formName;
public String getFormName() { return _formName; }
public void setFormName(String value) { _formName = value; }

private String _port = "";
public String getPort() { return _port; }
public void setPort(String value) { _port = value; }

private String _host = "";
public String getHost() { return _host; }
public void setHost(String value) { _host = value; }

private String _resource = "";
public String getResource() { return _resource; }
public void setResource(String value) { _resource = value; }

private String _oauthTokenPath = "";
public String getOAuthTokenPath() { return _oauthTokenPath; }
public void setDAuthTokenPath(String value) {

_oauthTokenPath = value;

}

FIGURE 1.21
The RestfulSetting NOFS domain object

RespondToEvent (event_type, settings, current_file_data) {
if (settings.triggering_call == event_type) {
response = IssueWebRequest(settings.URI,
settings.WebMethod, current_file_data);
SetCurrentFileData(response) ;

FIGURE 1.22
RestFS resource file triggering algorithm

32 Book title goes here

[D
config
auth ‘
[D
status
S twitter
[D
verifier
[D
token

FIGURE 1.23
An example of an OAuth configuration in RestFS

<?xml version="1.0" encoding="UTF-8"7>

<0AuthConfigFile>
<Key>asdf3244dsf</Key>
<AccessTokenURL>https://api.twitter.com/oauth/access_token
</AccessTokenURL>
<UserAuthURL>https://api.twitter.com/auth/authorize
</UserAuthURL>
<RequestTokenURL>https://api.twitter.com/oauth/request_token
</RequestTokenURL>
<Secret>147sdfkek</Secret>

</0AuthConfigFile>

FIGURE 1.24
An example OAuth configuration file for Twitter

dent", "name": "Joe"} would translate to the URI http://host/service?
description=student&name=joe.

1.4.1.4 Authentication in RestFS

As many REST-ful web services support the OAuth authentication model, we
decided to add special OAuth file and folder types to assist in establishing
authorization for web services. In RestFS, there is one special folder ¢/auth’
in the root of every mounted RestFS filesystem. When a folder is created in
the ‘/auth’ folder, a config, status, verifier, and token file are created. The
config file takes the OAuth API-Key, secret, and set of URLSs to communicate
with to establish an authorization token. These fields are typically provided
by the service provider for a REST-ful web service.

RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition 33

<0AuthTokenFile>
<AccessToken>2534534asdf2348</AccessToken>
<RequestToken>aql2343</RequestToken>
<TokenSecret>adf jds124522</TokenSecret>
</0AuthTokenFile>

FIGURE 1.25
An example OAuth Token file

create new
folder in /auth
\ 4

Complete 'config’
file

Interaction Visit site' URL in
—r “ohian B
No

A 4
e

FIGURE 1.26
The RestFS authentication process

Once all of the appropriate fields are written to the configuration file,
RestFS will contact the web service to obtain authorization. Depending upon
the implementation there are a few possibilities. If the service requires human
interaction to accept a PIN or pass a CAPTCHA test, the URL for that step
will be written to the ‘status’ file. If the service provides a PIN, it should be
written to the ‘verifier’ file. Once this process is complete, the ‘token’ file will
be populated with the OAuth access and request tokens for use in further
communications. An example of this token file can be seen in Figure 1.25.

Once authorization is successful, the token file can be referred to in any
configuration file by path reference in the OAuthTokenPath element. If the
configuration file contains a valid token file, RestF'S will handle any call to the
resource file using the appropriate OAuth token. The user of the resource file
then, does not need to worry about authentication any further. This process
is summarized by figure 1.26.

34 Book title goes here

1.4.1.5 Putting it All Together

With these three types of files: authentication, configuration, and resource, it
is possible to connect to and work with a web service through filesystem calls.
If several resource files are created, it is possible to work with several web
services and to send multiple requests and compose multiple responses locally
using UNIX command line tools or through small programs.

1.5 Summary

With RestFS and NOFS, we have demonstrated how web services can be
abstracted and composed in an arbitrarily deep hierarchy through the imple-
mentation and use of filesystems. We have shown how the filesystem can be
used as a connector layer to translate filesystem calls into web service calls and
how this can allow for local and external composition of web services. We have
also shown how application filesystems can be used to provide a user-friendly
interface for web services to provide validation and more complex structure.
Finally, we have shown how the two approaches can be combined to provide
effective representations of web services through the filesystem interface.

In our deeper exploration of NOFS, we discussed how the Naked Objects
design principles can be used to build filesystems and how the dependency
inversion approach simplifies filesystem design. We also explored several ex-
ample filesystems and explained how NOFS handles translating requests from
FUSE to operations on a domain model.

While exploring RestFS, we discussed the challenges of translating web
service authentication to the filesystem interface, how configuration and re-
source files are separated, and how best to use RestFS to expose web services
through external programs or scripts.

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems, 2:39-59, 1984.

Matt Bone, Peter F. Nabicht, Konstantin Liufer, and George K. Thiru-
vathukal. Taming XML: Objects first, then markup. In Proc. IEEE Intl.
Conf. on Electro/Information Technology (EIT), May 2008.

R Chinnici, J-J Moreau, A Ryman, and S Weerawarana. = Web
services description language (WSDL) version 2.0 part 1: Core
language. W3C Recommendation, June 2007. Available from
http://www.w3.org/TR/wsdl20.

D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006.

Joe Fialli and Sekhar Vajjhala. Java architecture for XML binding
(JAXB) 2.0. Java Specification Request (JSR) 222, October 2005.

R. Fielding, H. Frystyk, Tim Berners-Lee, J. Gettys, and J. C. Mogul.
Hypertext transfer protocol - HTTP/1.1, 1996.

Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

Marc J. Hadley. Web application description language (WADL). Tech-
nical report, Sun Microsystems, Inc., Mountain View, CA, USA, 2006.

John F. Karpovich, Andrew S. Grimshaw, and James C. French. Extensi-
ble file system (ELFS): an object-oriented approach to high performance
file I/O. In OOPSLA ’94: Proceedings of the ninth annual conference on
Object-oriented programming systems, language, and applications, pages
191-204, New York, NY, USA, 1994. ACM.

Joe Kaylor, Konstantin Laufer, and George K. Thiruvathukal. Online
layered file system (OLFS): A layered and versioned filesystem and per-
formance analysis. In Proc. IEEE Intl. Conf. on Electro/Information
Technology (EIT), May 2010.

Joe Kaylor, Konstantin Liufer, and George K. Thiruvathukal.
RestFS: A FUSE filesystem to expose REST-ful services.
http:/ /restfs.googlecode.com/, 2010-2011.

35

36

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Book title goes here

Joe Kaylor, George K. Thiruvathukal, and Konstantin Laufer. Naked ob-
ject file system (NOFS): A framework to expose an object-oriented do-

main model as a filesystem. Technical report, Loyola University Chicago,
May 2010.

Brian W. Kernighan and Rob Pike. The UNIX Programming Environ-
ment. Prentice Hall Professional Technical Reference, 1983.

Ted H. Kim and Gerald J. Popek. Frigate: an object-oriented file system
for ordinary users. In COOTS’97: Proceedings of the 3rd conference on
USENIX Conference on Object-Oriented Technologies (COOTS), pages
9-9, Berkeley, CA, USA, 1997. USENIX Association.

S. R. Kleiman. Vnodes: An architecture for multiple file system types in
Sun UNIX. In Proc. Summer USENIX Technical Conf., pages 238—247,
1986.

R. Pawson. Naked Objects. PhD thesis, Trinity College, Dublin, Ireland,
2004.

Jan-Simon Pendry and Marshall Kirk McKusick. Union mounts in
4.4BSD-lite. In TCON’95: Proc. of the USENIX 1995 Technical Conf.,
pages 3-3, Berkeley, CA, USA, 1995. USENIX Association.

Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-
son, Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221-254, Summer 1995.

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Win-
terbottom. The use of name spaces in Plan 9. SIGOPS Oper. Syst. Rewv.,
27(2):72-76, 1993.

M. Szeredi. Filesystem in userspace. http://fuse.sourceforge.net, Febru-
ary 2005.

K Thompson. UNIX implementation, pages 26—41. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

J. Whitehead and Y. A. Goland. WebDAV: A network protocol for remote
collaborative authoring on the web. In ECSCW 1999, 1999.

Eugene Y. C. Wong, Alvin T. S. Chan, and Hong Va Leong. Xstream:
A middleware for streaming XML contents over wireless environments.
IEEFE Trans. Softw. Eng., 30:918-935, December 2004.

	Loyola University Chicago
	Loyola eCommons
	3-2011

	RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition
	Joseph P. Kaylor
	Konstantin Läufer
	George K. Thiruvathukal
	Recommended Citation

	tmp.1322166644.pdf.LKSyl

