
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

3-2004

Natural XML for data binding, processing, and
persistence
George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2004 George K. Thiruvathukal and Konstantin Läufer

Recommended Citation
G. Thiruvathukal and K. Läufer, “Natural XML for data binding, processing, and persistence,” Computing in Science & Engineering,
vol. 6, no. 2, pp. 86-92, Mar. 2004.

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

what you need to do to incorporate XML directly into your
application. Our exploration involves the use of a standard
parser to automatically build object trees entirely from appli-
cation-specific classes. This discussion very much focuses on
object-oriented programming languages such as Java and
Python, but it can work for non-object-oriented languages as
well. The ideas in this article provide a glimpse into our Nat-
ural XML research project. All the code examples in this ar-
ticle appear in full at http://content.cs.luc.edu/projects/cise/
code/march_april_2004.

Practical Use of XML
Practical uses of XML, especially in computational science,
require the ability to process XML in languages other than
XML itself. Doing so requires computational scientists to
learn something about parsing.

Parsing introduces new challenges when it comes to sci-
entific computing. First and foremost, XML assumes an un-
derlying tree model to represent hierarchical information.
Although computer scientists naturally rely on trees to rep-
resent dynamic, hierarchical structures, computational sci-
entists tend to shun them in favor of arrays and other sta-
tic(ally allocated), flat data structures. Today, even pure
computer scientists tend to avoid messing directly with con-
crete tree structures, opting instead to work with arbitrary,
high-level collections of objects such as sets or maps, which
may or may not be implemented as trees. In languages such
as C++, Java, and Python, programmers need only define
their own item classes and arrange them in any way desired
(via composition), most often by taking advantage of the
powerful collection class libraries provided by their imple-
mentation language of choice.

In practice, using XML requires following this life cycle:

• Read one or more input XML files.
• Perform some custom (or ad hoc) processing.
• Write XML output (often in the same format).

As you read this description, pause momentarily to think
how scientific computing applications currently work, and
then take heart: the tradition of computing lives on, at least
in terms of the life cycle. You read data files, process them,
and write output files every day. The difference here is three
little letters: X-M-L. Unfortunately, it’s still the old model
in many ways: input, processing, output.

Fortunately, these three letters add something we didn’t
have before: a more precise way of structuring information
and ensuring that it is well defined.

XML Parsing
Parsing is the terminology that linguists and programming
language designers use to describe the notion of recogniz-
ing phrases in any given language. In programming lan-
guages, compilers break the input (your source code) into
lexical units (called tokens), which a parser then checks to
ensure compliance with the language’s grammatical rules.

The XML community tends to use the term parsing some-
what generically and loosely. For example, one kind of parser
called DOM (Document Object Model) reads an XML doc-
ument and produces a tree representation of it. Another
parser, called SAX (Simple API for XML), reads the XML
document and generates events as it works its way through the
document. These events don’t actually do anything unless
acted upon by user-defined code. In the case of DOM parsers,
a good portion of what compiler designers call semantics is ad-
dressed via a canonical abstract syntax tree format.

All XML parsers can check syntax (via the DTD or XML
schema, both of which the previous issue introduced), but
they can limit their checking to basic syntax only (the so-
called well-formedness rules). The term parsing does, in
fact, apply—at the user’s sole discretion.

Components
In recent months, we (the authors) have been looking into
ways to map XML to more modern programming lan-

86 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

NATURAL XML FOR DATA BINDING,
PROCESSING, AND PERSISTENCE
By George K. Thiruvathukal and Konstantin Läufer

T HE LAST ISSUE’S INSTALLMENT OF THIS

DEPARTMENT PRESENTED AN OVERVIEW

OF XML AND ITS POTENTIAL FOR COMPUTA-

TIONAL SCIENCE. IN THIS ISSUE, WE’LL EXPLORE

Editors: Paul F. Dubois, paul@pfdubois.com

George K. Thiruvathukal, gkt@nimkathana.com

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

MARCH/APRIL 2004 87

guages, such as Java and Python, and even to aging ones
(such as C, C++, and Fortran). As noted in the sidebar, the
DOM specification presents a very troubling interface to sci-
entific programmers (really, to programmers in general). Its
one-size-fits-all approach is advocated by the W3C and is
now in its third revision. From a usage perspective, the pro-
gramming interfaces are numerous and complex.

DOM’s fundamentally homogeneous tree representation
means that the major problem of working with it is dupli-
cating the tree to match the data structures actually used in
the application. For scientific programming, this approach
simply is not feasible. You want to create as few data struc-
tures as possible, not two copies of essentially the same data
structure. A second but equally significant problem is the de-
sired goal to support (easily) the process of saving the data
structure in XML format. Today, programmers usually per-
form this round-trip process via ad hoc code-generation
techniques (OK, print statements). The resulting XML, un-
less done very carefully, is not equivalent to the XML used
when creating the structure.

Java and Visual Basic are two language technologies in
which the term component has been introduced. In Java’s case,
components are defined via the JavaBeans architecture. The
notion of components provides a natural mapping for XML
in particular. A component has several characteristics that
we can apply to virtually any language in which we choose
to write XML applications.

At the core of components is the notion of properties. A
property is a special variable (usually a string) that can be set
or accessed, subject to visibility modifiers. The JavaBeans
framework integrates properties by having set/get meth-
ods to allow the property to be accessed or modified, re-
spectively. A set method’s presence implies that the prop-
erty is mutable; a get method’s presence implies the
property can be read. Write-only properties are rare, but
eliminating either a get or set method allows exclusivity
of reads or writes.

As authors, we’re always wary of writing more than a few
paragraphs without presenting a code example, so here’s a
demonstration of how this works. Let’s say that
Particle.java shows a user application class (a structure for
C/Fortran readers) to model a particle. For each attribute
found in a Particle, a set/get method exists for each
property. For now, don’t be alarmed about the large num-
ber of methods: we’ll be able to generate all this code from
the XML schema definition.

The Particle class contains several other methods—in
particular, getElementName(), getAttributes(), and

getChildren(). All these methods must be implemented
to go from the application class back to XML. In most cases,
we can generate the methods, but they’re often trivial to im-
plement. These methods also demonstrate a powerful con-
cept in object-oriented languages known as interfaces. Think
of an interface as a contract that a class promises to fulfill. It
is not an altogether new concept, but in object-oriented pro-
gramming languages with strong typing, interfaces provide
a mechanism for bridging user-defined entities to more
generic algorithms. As we’ll see, these interfaces provide the
glue that lets us generate perfect XML. The programmer
does nothing more than implement the interface functions,
usually with a single line of code per method.

Each interface method does the following:

• String getElementName() is the XML element name
for any instance of this class. We can generate any element
name as desired, provided we follow the XML naming
conventions.

• The Map getAttributes()method invokes any attrib-
utes from this class that will be exposed when appearing in
XML. A map should be familiar to long-time readers of this
column; it is similar to the notion of a dictionary in Python,
which is an associative data structure. Any data structure
that implements the Map interface can be returned.

• Any nested instances that should appear in the XML doc-
ument model should be returned via the List getChil-
dren()method. The notion of a list also should be fa-
miliar to this column’s long-time readers; it exposes
array and list operations. Any data structure that im-
plements the List interface can be returned.

Once the programmer implements these three methods, we
can easily generate an XML document starting with the root
of the internal object tree and recursing through its children.

Collections
Think of collections as data structures on steroids. Un-
doubtedly, we have piqued your interest in the classes named
List and Map. All modern programming languages possess
native collections (not necessarily created equal, of course).
In Java, the names List and Map are actually interfaces
themselves, which can be used to refer to any type of col-
lection that implements the interface. List is nothing more
than an interface that refers to the expected operations we
can perform on a list-like collection—for example, we can
use the add(Object object) interface method to append
an item to a list. Java provides several concrete list types,

88 COMPUTING IN SCIENCE & ENGINEERING

some of which have very efficient implementations. The
ArrayList is a concrete list type built on a contiguous ar-
ray of values. Because ArrayList implements the list in-

terface, however, it can do all the operations normally per-
mitted on lists. From a programming viewpoint, this is a
wonderful development: you can choose a particular list im-

S C I E N T I F I C P R O G R A M M I N G

Data-Binding Technologies
for XML Documents

L et’s take a look at some of the better-known data-
binding technologies for XML documents: DOM,

JDOM, and JAXB. We will see how they fare in comparison
with our Natural XML approach.

Document Object Model
XML’s Document Object Model (DOM) is a standard set of
procedural interfaces for working with a tree representation of
XML. Without going into too much detail, DOM is an exam-
ple of committee work at its best. To create it, the W3C de-
signed a collection of interfaces that can be mapped to any
programming language. However, the programmer must
master dozens of interfaces that present several complications
(such as tight coupling, in which you must be careful to call
methods in a certain order to avoid unexpected results).

The worst part of working with DOM is that, for all prac-
tical purposes, the tree it creates must be rewritten to
match data structures in the application. Developing such
code is tedious and complex, and from our teaching expe-
rience, most computer-science students find it difficult. Af-
ter rewriting the tree, you often have to do the reverse:
translate the application-specific data structures back to
DOM format to allow for automatic code generation. (The
good thing about DOM, though, is that you can be reason-
ably assured of being able to generate valid XML from it.)

JDOM
The Java DOM (JDOM) class library is similar to DOM; it
purports to be a natural way for Java programmers to write
XML applications. Although it’s a step in the right direction,
it does not follow the ideas of components and collections
described in the main text, requiring prospective users to
master interfaces similar to the DOM specification’s.

Here is an example from the W3C’s tutorial of some code
to generate XML:

SAXBuilder builder = new SAXBuilder();

Document inputDoc = builder.build(url);

// Generate code for <root>This is the

root</root>

Document outputDoc = new Document();

Element root = new Element(“root”);

root.setText(“This is the root”);

outputDoc.addContent(root);

XMLOutputter outputter = new XMLOutputter();

outputter.output(outputDoc, System.out);

Natural XML
By contrast, our Natural XML framework allows applica-
tions to integrate XML code-generation capabilities directly
into existing code, virtually eliminating the need for scien-
tific programmers to write such code. By implementing the
ContainedContent interface, the programmer simply
defines methods that will automatically generate XML.

JDOM is limited to Java; we’re already working on
Python, C#, and C++ versions of Natural XML, which can
support all these languages easily.

JAXB
JAXB is another Java-based framework designed to support
data binding. It would take a long time to cover the details
here, since the specification spans hundreds of pages—
JAXB clearly has a steep learning curve for developers. Pro-
grammers must first master an XML-based language for de-
scribing data structures in the program. A binding compiler
generates stubs and skeletons, which the user can then im-
plement for any application-specific functionality.

A significant problem with the framework appears to in-
volve philosophy. To use it, the programmer must rework
everything into Java’s view of the world: collections, serializa-
tion (something that Natural XML provides innately), and
Sun-proprietary tools. A good part of the documentation ad-
dresses why XML/Schema is vastly better to DTDs, but we’re
not convinced. Scientific applications often use a single
namespace and, therefore, need nothing more than a DTD.

Java, Java, Java?
The vast majority of interesting work we have seen with
XML and data binding seems to be happening in the Java
community. Although some of the best basic XML tools ex-
ist for C, C++, and C#, the Java community appears to be
one of the few places where significant work is going into
integrating XML and non-XML languages. We consider this
a problem because it limits the options available for lever-
aging XML in one’s software.

Our main effort with the Natural XML project has been
to prototype core concepts using a modern programming
language like Java, but the needs we have addressed are
hardly unique to Java. They can be incorporated into lan-
guages that support (minimally) structured types and dy-
namic data structures. Stay tuned to our project pages for
more information.

MARCH/APRIL 2004 89

plementation and later replace it with another (say, a dy-
namic linked list) without breaking the interface. The end
result will be the same, with the biggest difference appear-
ing in the amount of memory consumed and the relative
performance, depending on which operations on the list are
used most.

Collections are essential for dealing with XML. Unfortu-
nately, XML standards say nothing about them. Instead, the
XML DOM specification presents an assortment of inter-
faces, leaving the choice of collections entirely up to the de-
veloper. In our Natural XML approach, we give the devel-
oper freedom to map to arbitrary collection classes, such as
lists and maps (known in Java as List and Map interfaces).
When the user wants to do something XML-specific, we re-
quire him or her to follow certain interfaces. In most cases,
these interfaces contain straightforward code that can be
added easily to any user-defined class.

Consider the InitialConditions class, which contains
one or more Particle instances. Similar to Particle,
this class also implements the ContainedContent inter-
face described in the preceding section. Note that this class
differs from Particle because it is a container of Parti-
cle objects. The programmer simply creates an Array
List of particles, which will maintain references to all the
contained Particle objects read in from XML. The
getChildren() method simply returns a reference to this
list. What we have in this class is essentially an idiom that
can be used (like most idioms) over and over again, almost
without thinking about it.

Introspection: Assembling
Structures from User-Defined Classes
Everything we’ve discussed thus far has been helpful only
for seeing how we would build our own data structures us-
ing Java class definitions. We use the InitialConditions
class (a container) to keep an array-based collection of Par-
ticle instances, but other classes in the application exist
(one for each of the XML element names shown in last is-
sue’s particle.xml file, see www.thiruvathukal.com).

For this to work, though, we need to write a parser that can
read the XML document and construct a correct class instance
when it encounters an element definition. When the parser sees
InitialConditions in the Nbody XML, the parser must
create an instance of the InitialConditions class; when it
sees Particle, a Particle is created. Furthermore, each
Particle must be added to the InitialConditions in-
stance (in its array list).

Depending on the programming language, accomplish-

ing this task is either trivial or requires special tools. Luck-
ily, Java (Python and C#, too) provides facilities for intro-
spection. Here is where things can get a bit weird, but please
bear with us. Introspection is a program’s ability to answer
questions about itself at runtime—both Java and Python
have elaborate interfaces for doing so. Introspection helps
answer the following types of questions:

1.Given a reference to an object x, what is its class? Class
c = x.getClass() provides the answer.

2.Given a class, what methods are available? Method m =
c.getMethod(...) provides the answer.

3.Given a method and an object, invoke it. m.invoke
(object, parameters) does the job.

These introspective capabilities are valuable in a number
of situations. In XML, we simply don’t know what type we
want to create or what methods to invoke until we’ve actu-
ally read the document. For example, when we see the Ini-
tialConditions element, we must look up the class that
handles this element (it need not have the same name) and
create an instance of it. The same is true for a Particle el-
ement and all other XML element names.

When a contained element must be linked to its so-called
parent (or container), we need the ability to call the correct
method. In our Natural XML framework, we attempt to lo-
cate an appropriate add method; for example, we add a
Particle to InitialConditions by invoking the add-
Particle(Particle p) method on an instance of Ini-
tialConditions.

This discussion might seem a bit abstract, but luckily for
prospective developers, you’ll never have to think about it. You
simply implement the correct method names, and it just works.

The Actual SAX Parser
All the discussion up to this point naturally leads us to the
actual SAX parser. The SAX parser works in the following
way. First, it separates the XML document into tokens; these
are items such as <Particle>, </Particle>, attributes,
string values, and entities, which are the special symbols
beginning with &, such as >, and < that let you use the
< and > symbols literally in your XML document. These to-
kens isolate significant parsing events. Although many events
exist, we’ll just focus on the essentials here:

• startDocument() is generated before the document’s
root element is processed.

• startElement() is generated for every element in the

90 COMPUTING IN SCIENCE & ENGINEERING

document, including the document root.
• endElement()is generated for every element in the doc-

ument, including the document root. There’s an instance
of this event for every startElement() event.

• endDocument()is generated after the root element of
the document and all its nested content has been
processed.

• characters()is generated when nested character data
is found within an element. It is usually not called for in-
significant whitespace character data.

To do anything meaningful with these events, you must
provide an event handler with code to actually do something
with the event. The NaturalXMLHandler exhibit shows
the code for handling the key events shown earlier.

Writing a SAX handler is reminiscent of the old days (late
1980s) when one of us (Thiruvahtukal) was working on a
compiler toolkit for LL-style parsing and also with the Yacc
(yet-another-compiler compiler) tool. In most such tools,
the event-handling methods we’re talking about here are
known as semantic actions, which is compiler-geek talk for
“what to do when you encounter an important syntactic
phrase.” If you’re interested, you can download the code
from http://sourceforge.net/projects/apt/ and study it. Ex-
tensive comments are provided in the downloadable version.

To write a meaningful handler, you must extend the base
class provided in the SAX framework. (In our approach, we
use the SAX 1 parser provided with the Apache Xerces
toolkit; it handles single namespace XML documents only.)
We maintain a context stack (member variable con-
textStack) to keep track of what we’re working on in
terms of the XML document. For example, when working
on a Particle nested within the InitialConditions el-
ement, it’s key to keep the current InitialConditions
instance on the stack so that the current Particle can ul-
timately link to it. (The notion of context is an old imple-
mentation trick used for compiling statically typed pro-
gramming languages with nested scopes and building
something known as the symbol table.)

We’ll focus on startElement() and endElement()
methods. In a nutshell, startElement() takes the incom-
ing element name (elementName) and uses it to look up the
class that should be used to construct a user-defined in-
stance. It does this by consulting another data structure
within the parser handler, called the class table
(classTable). The keys of this table are element names,
and the values are class descriptors. At the risk of peeping
ahead, entries in this table are made by calling methods be-
ginning with the name register; programmers can regis-
ter arbitrary classes to create the document root and appli-

S C I E N T I F I C P R O G R A M M I N G

Cafe Dubois

SCHOLARZHEIMERS

I was reviewing a paper for
publication recently and

noted that the author
seemed unaware of some
prior literature in the area.
When I make such a com-
plaint to an author, I like to
cite them the papers in ques-
tion. In this case, I didn’t re-
call precisely where I had
seen the papers, so I tried an
online search. Nothing
turned up.

Then it dawned on me:
these papers appeared circa
1990. They aren’t online, so
to an increasing portion of
the scholarly population,
they don’t exist.

If you have this problem,
which I hereby dub “schol-
arzheimers,” look for a big building on your campus that

says L-I-B-R-A-R-Y. Inside, you will find a weird, lonely nerd
called a reference librarian. (This person was just as weird
before the Internet, by the way.) Ask reference librarians

nicely for assistance, and
they will help you find
stuff from the past. The
good part is that you’ll be
practically the only per-
son who knows it. If you
watch a lot of MTV and
lose your moral compass,
you could even resubmit
these lost works to jour-
nals as your own work.
Nobody will ever know.
Just pick one with a
young editor.

The ACM Portal
That said, the situation is
a little better for pure
computer science thanks
to the ACM Portal. (Men-
tioning the ACM Portal in
an IEEE Computer Soci-

ety-cosponsored magazine is sort of like drinking Califor-

MARCH/APRIL 2004 91

cation nodes. We’ll return to this issue in the next section to
see how it all comes together. Once we know the class re-
sponsible for handling a given element (elementName), an
instance is created. The line of interest is where klass.
newInstance() appears.

The second item of business is to set the properties in the
user-defined class; we do this by using introspection to look
up the appropriate set method. (We don’t need get meth-
ods at this juncture; the parser creates a user-defined data
model from the XML document.) The framework lets the
user map attribute names differently from how they appear
in the source document. This is mostly a cosmetic issue that
lets you observe the host language’s naming conventions.
For example, Particle has an x attribute (in lower case),
but we want the property-setting method to be named
setX(). We let users suggest a mapping for the property
name. Again, we do this invocation by constructing the
method descriptor for the method we want to look up (set-
MethodName) and invoking it on the instance we previously
created (element).

The last item of business is to attempt to link the new in-
stance to whatever instance is resting atop the stack. The
very first time startElement() is called, the stack is
guaranteed to have one element: the document root. (The
code for creating this is just a special case and appears in

startDocument().) In the case of our particle.xml file,
the topmost element is an NBody object. So an instance of
NBody will be linked to the document root instance, which
is detailed in the NBodyRoot class. The way this linkage is
established is again achieved by using introspection. We
ask whatever object is atop the stack whether its class pro-
vides an add<MyType>() method. If this method is ab-
sent, an exception is thrown, and the programmer gets a
very clear indication of a problem. From an XML view-
point, steps must be taken to preserve the actual content
model in whatever mapping is performed. In the full source
code, you will be able to observe that every class has an ap-
propriate add<Type>() method (or methods) to address
nested content.

At the end of the startElement() implementation, we
push the newly created instance on the context stack. This
will let any nested content be handled recursively.

The endElement() implementation is straightforward;
we did the hard work in the startElement() method. All
the endElement() method needs to do is to remove the in-
stance resting atop the stack because this instance will have
been linked as contained content to another instance, which
is still being worked on.

The characters() implementation is straightforward.
We simply notify the instance atop the stack that we’ve

nia wine in France, but I’m brave.) At portal.acm.org, you
will find links to a great deal of computing literature in the
Guide to Computing Literature as well as in their own on-
line archive. You can read the Journal of the ACM all the
way back to volume 1, issue 1, 1954, including such arti-
cles as “Automatic Strain-Gage and Thermocouple Record-
ing on Punched Cards.” Using the Guide, you will not only
find a reference but see a list of the author’s other works
and the names of “Collaborative Colleagues.” This use of
hyperspace adds real value to an archive.

Reducing Computer Noise
Mrs. Dubois, family Web master, usually gets the hand-me-
down computers from the rest of us since she has lower per-
formance needs. When she inherited the Gateway (made ex-
tra loud by one of our son’s roaring video cards), she started
using my computer because hers made so much noise that
she couldn’t stand it. Sensitive violin-trained ears, you know.
Well, this was clearly a problem I needed to solve.

Riding to the rescue was endpcnoise.com. It sells comput-
ers designed to be very quiet. I got prompt delivery on a
high-performance model from Vancouver at a price not
much more than an equivalent noisy PC. The site also sells
components such as quiet power supplies, quiet case fans,
quiet hard drives, and quiet CPU fans.

In unpacking the machine, I had to open the case to re-

lieve the carefully stuffed interior of some bubble-wrap. The
CPU fan looked interesting: apparently it’s bigger and slower
than normal. The case is bigger than normal (but not alarm-
ingly so), and the wires are neatly organized so as to mini-
mize noise when the fan blows over them.

I found another company that specializes in quiet compo-
nents, called QuietPC. It operates in a variety of countries;
the US outlet is quietpcusa.com. I did not see any assembled
computers for sale, though.

Mrs. Dubois’ new computer really is quiet, all the way
down to the keyboard. When idle, you can tell it’s turned on
if the room is quiet, but even then, you have to listen. It’s
amazing how much nicer this makes computing. I think
there’s an endpcnoise computer in my future, too.

Welcome to George K. Thiruvathukal
These last two issues you’ve gotten to know Professor
George K. Thiruvathukal. We’re glad to announce that he
will be joining me as co-editor of the Scientific Programming
department. By the way, unlike mine, his name is pro-
nounced just as it is spelled; you just have to keep on truck-
ing through those syllables. He will take his turn cooking in
the Cafe, bringing his own computer-science-flavored cui-
sine to the menu. As always, our intent is to bring you infor-
mation that you can use. We encourage you to write for us;
just contact either one of us to discuss your ideas.

92 COMPUTING IN SCIENCE & ENGINEERING

found some character data. More often than not, this char-
acter data is kept separately from other nested content (such
as nested elements). However, in applications where it re-
ally matters, such as text processors, the nested character
data could be maintained in a list of nested content instances
and string data.

Putting It All Together
Visualizing this approach might be hard, but what makes it
work for scientific programming is its ability to integrate ex-
isting codes with XML. By merely implementing straight-
forward interfaces, we can turn any class into an XML-ca-
pable class. There is no need to rewrite trees, and the
number of methods the user must learn to write is minimal.

The main() method code in class NBodyRoot shows
how to put an application together. Essentially, the user con-
structs a NaturalXMLParser instance. The code for this
class attaches the handler (NaturalXMLHandler) code to
do the dirty work of implementing the key parser event in-
terface methods. Using the registerElement-

ClassMapping(String,Class) method, each XML el-

ement is registered with the class that will be instantiated
when the element is seen. The registerElement-
AttributeMapping() method allows attributes to be
mapped nicely to the host language (as described). The
setDocumentRoot() class lets users provide a class for the
document root. Essentially, this framework lets a user make
simple modifications to existing classes and then use the
NaturalXMLParser to automatically instantiate the classes
to create a heterogeneous object tree.

Getting a class descriptor is easy for users. In Java, for ex-
ample, given a declared and visible name such as the class
names in our application, you simply use ClassName.
class to get its descriptor.

The main() method concludes with a demonstration
of how to generate XML from the data model after the
simulation is completed. Because each application class
implements the ContainedContent interface, we can
use a general-purpose code generator (available through
the parser instance’s toXML() method) to emit code from
the user’s data model. Please feel free to download the
code and observe how fully compatible the output XML
is with the input XML. This example SAX parser shows
how to create a full persistence framework for arbitrary
application classes.

I n a future article, we’ll present an extension of our frame-
work in which existing user-defined classes can be used,

without modification, as application classes in an internal ob-
ject tree. This gives us more flexibility because we won’t even
need access to the sources of our application classes.

George K. Thiruvathukal is a visiting associate professor of computer

science at Loyola University Chicago. He is also president and CEO of

Nimkathana Corporation, which does research and development in high-

performance cluster computing, data mining, handheld/embedded soft-

ware, and distributed systems. He wrote two books with Prentice Hall

covering concurrent, parallel, distributed programming patterns and

techniques in Java and Web programming in Python. Contact him at

gkt@nimkathana.com.

Konstantin Läufer is an associate professor of computer science at Loy-

ola University Chicago. He is also director of architecture and application

services at Nimkathana Corporation. His research interests are in pro-

gramming languages, software architecture and frameworks, concurrent

and distributed systems, and mobile computing. He received his PhD in

computer science from the Courant Institute at New York University.

Contact him through www.cs.luc.edu/~laufer.

S C I E N T I F I C P R O G R A M M I N G

25%

N
o

t
 a

 m
e

m
b

e
r

?

J
o

i
n

 o
n

l
i

n
e

 t
o

d
a

y
!

save

on all

conferences

sponsored

by the

IEEE

Computer Society

I E E E

C o m p u t e r

S o c i e t y

m e m b e r s

www.computer.org/join

	Loyola University Chicago
	Loyola eCommons
	3-2004

	Natural XML for data binding, processing, and persistence
	George K. Thiruvathukal
	Konstantin Läufer
	Recommended Citation

	c2sci.qxd

