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Abstract 

There a.re certain straightforward algorithms for laying out finite-state ma.chines . This pa.per shows 
that these algorithms are optimal in the worst case for machines with fixed alphabets. That is, for any 
s and k, there is a. deterministic finite-state machine with s states and k symbols such that any layout 
algorithm requires O(kslgs) area. to lay out its realization. Similarly, any layout algorithm requires 
O(ks2 ) area. in the worst case for nondeterministic finite-state ma.chines with s states and k symbols. 

1 Introduction 

To manage the complexity of designing large VLSI chips, automated layout algorithms, sometimes called 
silicon compilers, are required. These are computer programs that accept a high-level behavioral description 
of a chip and produce its layout. There are many layouts corresponding to any behavioral specification, 
some better than others according to various measures. For example, some layouts may be very compact so 
that the chip can be small , some layouts may be very fast, so that the chip can work quickly, or some may 
be very low-power . We would like to be sure that our layout algorithms produce good layouts according 
to the measure we select. 

Regular languages and finite automata have proven to be useful models for a wide range of computations. 
Many chips and portions of chips are commonly modelled as finite automata, and several systems have 
been built for automatic layout of these machines. Given a state-table or algorithmic description of a 
finite-state machine, these systems attempt to produce a small, fast layout on a VLSI chip. Techniques 
for layout have included regular expression trees [5, 4], networks of PLA's [8], and multi-level standard-cell 
logic [3] . 

This paper shows that straightforward techniques for layout of regular languages are optimal in the 
worst case. Although some of the techniques that are used in practice can produce small layouts for some 
examples, there are many finite state machines for which the straightforward implementation (such as 
direct coding of the state table) is the best possible. In particular, we show that for any s and k, any 
algorithm for laying out a finite-state machine must use area 0( ks lg s) for some deterministic machine 

Th.is research was supported in part by the Defense Advanced Research Projects Agency under contract N00014-87-K-
0825. M. Foster was partially supported by the National Science Foundation as a Presidential Young Investigator and by the 
Center for Telecommunications Research at Columbia University. R. Greenberg was supported in part by a Fannie and John 
Hertz Foundation Fellowship. 
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with s states and k symbols. Asymptotically, this is the area of the direct state table implementation. 
Similarly, we show that D(ks2 ) area is required for some nondeterministic machine with s states and k 
symbols, which corresponds to a straightforward implementation of nondeterministic machines. 

This paper is organized to highlight the ideas behind the lower bounds. We prove a simple theorem 
that displays the method, then extend it to cover more complicated cases. In Section 2 we describe the 
model of computation in which these lower bounds hold. Section 3 proves the lower bound on the area 
of a fixed-shape region for layout of deterministic finite-state machines with 2 character alphabets, and 
Section 4 proves a similar lower bound for nondeterministic machines. Section 5 extends the results to 
machines with larger alphabets . In Section 6 we show that allowing different machines to occupy regions 
of different shapes does not decrease the area required. 

2 Area Low er Bounds in VLSI 

Why prove a lower bound on area? Several types of lower bounds on the resources needed by VLSI chips 
have been proven [1, 2, 6, 7] . Most of these have been bounds on the product of chip area and some 
power of the running time; AT2 is common. In this paper we prove a lower bound for area alone, without 
considering time. Finite-state computations differ from the computations considered by previous authors 
(context-free language recognition, sorting, DFT, etc.); the area required by a computation on a string of 
length n is independent of n . Computations on which bounds have previously been proven (including an 
area lower bound on string matching [6]) have required increasing area as the length of the input increases. 
The memory required by a finite state machine is fixed, no matter how long the input may be. Moreover , 
the time taken by a finite-state computation is simply the time to read the input. As the length of the input 
increases , then, the computation time increases proportionally while the area stays constant, so that the 
tightest ATk lower bound on a finite-state computation on an input of size n is simply D(nk). Therefore, 
we can characterize the implementation of a finite-state machine strictly in terms of its area. 

To prove a lower bound on area, we need a model of computation that relates area to the problem 
to be solved. We will use a model similar to the one introduced by Thompson [7]. Any computational 
structure must be laid out on a grid of unit squares, corresponding to the minimum feature size of the 
implementation technology. Each of the unit squares may contain one or more types of conducting or 
insulating material in several layers. There is a finite number of possible conducting or insulating layers, 
and a unit square may contain some combination of these layers. The combination chosen for a particular 
unit square can be specified by a fixed number of bits , so the set of combinations chosen for an area A 
can be specified by a number of bits proportional to A . The set of layers chosen for each square of the 
chip determines its structure completely, which determines the computation performed. We have therefore 
proven the following fundamental lemma. 

Lemma 1 The computation performed by an area of size A can be specified with 0(A) bits. 

In a typical CMOS implementation, for example, the unit squares are typically about one micron on 
a side, and each square may contain p or n-type diffusion, polysilicon, and one or two layers of metal. 
There may also be insulators present to isolate these layers, or the insulators may be removed to make a 
contact. There are about 60 combinations of conducting layers and insulators that make electrical sense, 
so the configuration of each unit square can be specified by 6 bits. Therefore, the computation performed 
within an area of m square microns can be specified by at most 6m bits. Of course, many of the possible 
combinations will not perform meaningful computations, since neighboring squares might violate design 
rules, or the layout as a whole might not be a working circuit. The constant of proportionality is therefore 
less than 6, but it is clear that the computation performed by a CMOS chip of area m can be specified by 
8(m) bits. 

To prove a lower bound of area D(n) using this model, we show that the computation we want to 
perform requires n bits of specification. Suppose that we are given a chip of area A, together with a family 
of 2n different computations, any one of which may be specified as the circuit to be built on the chip. Since 
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the computations are all different, each one requires a different structure for area A. The structure of area 
A is thus specified by n bits, so A must be 0( n). 

In using this proof technique, notice that the computations themselves must be different, not just the 
computational structures. If two different structures on the same chip produced the same behavior, an 
implementor could always use just one of them in implementing a computation. By counting behaviors 
rather than structures, we can be sure that we need a different chip for each different computation. 

The results we obtain from this technique are worst case bounds. They show that at least one member 
of the family of 2n computations will require area n. The best case could of course be considerably better. 
For example, we show below that the worst case area for laying out an s-state deterministic machine is 
0( s lg s). Many s-state machines have considerably smaller area, requiring as little as O(lg s) area for the 
best layout. The bounds in this paper, while existentially tight, do not eliminate the search for clever 
implementations. 

3 Deterministic Automata 

There is a well-known method for simulating a deterministic finite automaton (DFA) with a program for a 
general-purpose computer. States of the machine are represented by integers, which are used as indices into 
a transition table. Position i of the table contains the next states for all input characters if the machine is 
in state i. If the program is in state i, it selects its next state from position i in the table, and uses that 
state to index into the table on the next character input. 

This program structure can be implemented in hardware in a straightforward fashion using a PLA. The 
PLA for a machine with s states and 2 symbols in the alphabet will have lg s input and output columns 
to represent the states as well as an input line for the alphabet symbol. The number of rows (product 
terms) in the PLA will be 2s, one for each combination of state and input symbol. The output state bits 
are computed by ORing the appropriate product terms into each state bit. The total area of this hardware 
realization of the finite-state machine is 0( s lg s). 

Of course, for many machines the PLA implementation is extremely wasteful of space. For example, an 
n-bit counter has 2n states so that its PLA representation would require area n x 2n. A simple ripple-carry 
implementation of the same counter, however, requires only area n. A clever layout algorithm for finite
state machines might be able to recognize that a particular machine was a counter and use the smaller 
implementation. There are other tricks of this kind for other types of machines, such as machines that 
recognize patterns having short regular expressions [4, 5, 8]. Do all finite-state machines succumb to these 
kinds of techniques, or are there machines for which the obvious PLA layout is the best? 

In the worst case, the PLA layout is the best that can be done. We can show this by producing a set 
of s• different languages that can each be accepted by machines with s states. It is not sufficient to simply 
note that there are s 2' different state tables for s-state machines, since some of these state tables represent 
equivalent machines. A clever layout algorithm could implement equivalent machines in the same way. 
We must count languages or behaviors, not machines. Keeping this in mind, we can prove the following 
theorem, which provides a lower bound matching the upper bound for area of an s state DFA. 

Theorem 2 The amount of area required to implement an s state deterministic finite automa
ton is 0( s lg s) in the worst case. 

Proof. Consider the following class, F,, of s state machines with input alphabet {O, 1}. Each machine has 
states numbered 0 to s - 1, where state 0 can be distinguished from all others by observing the output 
of the machine; it can be thought of as a final state if the machine is used as a recognizer. The machines 
act identically in every state on input O; specifically, if a machine is in state i and gets an input of 0, it 
goes to state i + 1 mods. On input 1, however, all possible behaviors are included among the machines in 
F,. Since the transition on input 1 from each of the s states can be to any one of s states, there are s• 
machines in F,. 
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The machines in F, represent different languages, so they can be distinguished by their behaviors. To 
see this, consider two different machines in F,. There must be some state i for which a 1 input takes the 
machines to different states, say j and k. We can test for the presence of an edge from i to j by inputting 
zeros to put the machine into its distinguished state, then inputting the string Oilo'-i. The machine will 
be in its distinguished state at the end of this input if and only if there is a transition from state i to state 
j on input 1. Thus if two machines in F, differ , there is a string accepted by one but not by the other. 

The machines in F, all behave differently, so any layout algorithm must produce different layouts for 
each one. Since there are s' machines in this set, s lg s bits are required to specify one of the layouts. 
Therefore, an area A that can contain the layout of any of the machines in F, must be of size 0( s lg s). • 

4 Nondeterministic Automata 

Floyd and Ullman [4] presented a generic layout for a non-deterministic finite automata (NFA) that is 
analogous to the layout given above for deterministic machines. The only difference is that instead of 
encoding the state into lg s PLA inputs and outputs, one bit is used for each of the s states. After each 
input symbol is received, the PLA output corresponding to a given state is on if and only if the non
deterministic machine could be in that state. The area of the Floyd-Ullman implementation of an s-state 
NFA over a two-symbol alphabet is O(s2 ) since there ares input and output terms and at most 2s product 
terms. 

Is there a better way to implement non-deterministic machines? In a proof similar to that for the 
deterministic case, we can show that O(s2

) is a lower bound on the layout area. 

Theorem 3 The amount of area required to implement an s state nondeterministic finite au
tomaton is O(s2 ) in the worst case. 

Proof. Once again, consider a set F, of machines over the two-symbol alphabet {O, l}. The states of each 
machine are numbered 0 to s - 1, with state 0 distinguishable by the output of the machine. The set F, 
consists of those machines such that the only 0-edge out of state i goes to state i + 1 mod s. Every possible 
combination of 1-edges occurs in some machine in F,. Since the transitions on input 1 from each state can 
be to any subset of the s states, F, contains (2')', or 2'

2 

machines. 

The machines in F, all recognize different languages, by the same argument used in the deterministic 
case. If two machines differ, there must be a 1-edge present in one machine that is not present in the other 
one. Thus we can distinguish different machines by testing for the presence of a single 1-edge. As above, 
to determine whether the 1-edge from state i to state j is present in a machine we place the machine in 
state 0, then input the string Oi l0 1 -i. Since the machines in F, are deterministid on 0 inputs, the machine 
will be in state 0 after this input if and only if there is a 1-edge from i to j. 

Since the machines in F, represent different languages, they must all have different layouts. The 
specification of a non-deterministic machine with s states is therefore a specification of one of 2•

2 
different 

layouts. By the arguments given in the preceding sections, the smallest chip that can contain any of these 
layouts has area O(s2

). • 

5 More Than Two Symbols 

If a machine has more than two symbols in its alphabet, both the upper and lower bounds for layout area 
increase. An s-state deterministic machine with k symbols in the alphabet has a PLA implementation 
with area 0( ks lg s). This is easy to see when k is 0( s). Then we use a construction just like the earlier 
one except that there are lg s +lg k inputs in order to account for both the states and input symbols, and 
there are ks product terms. If k is not O(s), then we can use an alternative construction which yields an 
area bound of O((k +lg s)s lg s), which is O(ks lg s) for k = O(lg s). 
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The alternative upper-bound construction is obtained by using a PLA in which the input symbol has 
been decoded, i.e., it is represented by turning on exactly one of k input lines. (It is actually desirable to 
input the complements of these signals to the PLA.) Each product term corresponds to the pairing of a 
state and an output state bit which is turned on by some transitions from that state. The product term 
includes the check that the input symbol is not one which fails to generate such a transition. Since there 
are s lg s product terms and k + lg s input terms, the area of the PLA is 0( ( k +lg s )s lg s). 

To decode input symbols specified with lg k bits into the k-bit representation, we just need to add 
the area of a decoder, which is k lg k. The decoder is certainly small enough if lg k is 0( s lg s). If lg k is 
greater than O(s lg s), then some of the input symbols are extraneous. That is, there are only s 8 complete 
state-transition behaviors which can be assigned to the input symbols , so if there is a larger number of 
input symbols, there must be symbols with identical behaviors. Thus it suffices to translate the lg k input 
signals into s lg s signals corresponding to the appropriate state-transition behavior in binary (requiring 
area s lg s lg k), and then decode these s lg s signals into the appropriate s8 signals in unary (requiring area 
s8 slgs, which is O(kslgs) for lgk = O(slgs)). 

The lower bound on deterministic machines with s states and k symbols is also O(ks lg s ), as we now 
show. 

Theorem 4 The amount of area required to implement ans state, k symbol DFA is O(ks lg s) 
in the worst case. 

Proof Consider the family F8 , extended so that each state has k outgoing edges instead of just two. For 
each of the s states, one of the outgoing edges (the 0-edge) is constrained, but each of the other k - 1 
edges can go to any one of s next states. Each state therefore has sk-l possibilities, and since all states are 
independent the number of possible machines is (sk-l )8

• The machines are all different, since the presence 
of any edge can be tested by experiments on the machine. The number of bits required to specify one of 
these machines, and thus the layout area required, is therefore O(kslgs). • 

The extension to k symbols is similar in the case of nondeterministic finite automata. The area of an s 
state NFA with k symbols is O(ks2 ). The straightforward modification of Floyd and Ullman's construction 
gives a PLA with s+lgk input terms and ks product terms for an area of O((s+lgk)ks), which is O(ks2

) 

whens is O(lgk). Ifs is not O(lgk) , we can use an alternative construction which yields an area bound of 
O((k + s)s2 ), which is O(ks2 ) whens is O(k). 

The alternative upper bound is obtained in the same fashion as described above for deterministic 
machines. When decoded alphabet symbols are input to the PLA, the number of inputs plus outputs is 
O(k + s), and the number of product terms is s 2 , for an area of O((k + s)s2 ). Again we can handle input 
symbols which have not been decoded with a decoder of area k lg k. The area of the decoder is O(ks2 ) ifs 
is 0( yilg7C), and otherwise we have redundant symbols. That is, there are only 2•

2 
possible state-transition 

behaviors for each symbol. Thus the lg k input bits for the alphabet symbols can be translated into s 2 bits 
representing the state-transition behavior and then decoded into 2•

2 
bits, all in area s2 lg k + s 2282

, which 
is O(ks2 ) for s = 0( y1gk). 

As before, we obtain a lower bound which matches the upper bound on area. 

Theorem 5 The amount of area required to implement ans state, k symbol NFA is S1(ks2 ) in 
the worst case. 

Proof We once again consider the family of machines F,, in which 0-edges form a cycle. There are 
(2 8 )•(k-l) machines in Fa since from each state, there are 28 possible combinations of edges for each 
character. A similar proof to those above shows that these machines all recognize different languages, and 
thus must have different layouts, so the area lower bound for a non-deterministic machine with s states 
and a k-symbol alphabet is n( s2 k). • 
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6 Shape independence 

The results which we have given so far hold in the case of laying out machines in a fixed region such as a 
square. The results depend only on the mild assumption that there is a minimum size grid , with each grid 
square having a finite number of possible compositions. 

In fact, stronger assumptions are reasonable for VLSI technologies, and we can show that all the previous 
results hold even if we allow each machine to be implemented in a different area of arbitrary shape. In 
VLSI technologies, adjacent grid squares containing conducting material on the same layer are electrically 
connected, and there is no other relevance to the shape in which the grid squares are arranged as long as 
the design rules are obeyed. It is therefore possible to view a VLSI layout as a bounded-degree graph of 
grid squares of various compositions. 

We extend our earlier results by invoking the following lemma, which states that 0(A) bits suffice to 
specify all graphs of wire area A (i.e. A grid squares). 

Lemma 6 There are 20(A) VLSI layouts of wire area A. 

Proof We b~in by invoking a result of Thompson that a graph of wire area A must have a bisection 
width of O(v A) [7]. Then we can write a recurrence for G(A), the number of graphs of wire area A as 
follows: 

The right side of the recurrence is an upper bound on the number of ways of forming two graphs of wire 
area at most A/2 and then forming connections across the bisection. Letting H(A) = lg G(A), we can 
rewrite the recurrence as 

H(A):::; 2H(A/2) + O(VAlgA) . 

Then noting, that G(l) is a constant, we can solve the recurrence to obtain H(A) = O(A), and G(A) = 
20(A). • 

7 Conclusion 

This paper has presented results on area lower bounds for finite state automata. We have shown that 
any algorithm for laying out finite automata must require as much area for some machines as do the most 
straightforward algorithms. Our results can be extended easily to volume lower bounds in 3D-VLSI circuits , 
as long as there is a minimum feature size. 

Can our bounds be tightened? Our lower bounds are tight for only the worst case machines with a 
given number of states. However, there are finite-state machines with s states that can be laid out in 
considerably less than s lg s area. For example, an s-state counter can be laid out in area lg s. What 
features of finite state machines let them have small layout area? It would be desirable to obtain a simple 
measure of complexity of finite state machines in terms of which we could obtain universally close upper 
and lower bounds on area. 

Even if tighter bounds are found for some types of finite state machines, it is clear that almost all 
machines will require the area that our bounds specify. For example, consider the set of s-state deterministic 
machines that have layouts of area s. There are at most 28 different machines that can be laid out in area 
s, so the fraction of s-state machines that can have areas layouts is at most 2' / s• , which is asymptotically 
zero. Thus, almost all deterministic machines with s states require more than area s. Similar arguments 
show that, for any area lower bound L( s) in this paper and for any function f ( s) such that 

2JC•) 
lim -- = 0 

S-+00 2L(s) 

almost all machines with s states require more than f(s) area. 

Tighter bounds than ours must depend upon machine features which are present in a vanishingly small 
proportion of s-state machines. Nonetheless, machines of practical interest may contain these features, so 
a search for tighter bounds is worthwhile. 
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