
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1994

Distributed Memo: A Heterogeneously
Distributed and Parallel Software Development
Environment
William T. O'Connell

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Thomas W. Christopher

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for
inclusion in Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information,
please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1994 William T. O'Connell, George K. Thiruvathukal, and Thomas W. Christopher

Recommended Citation
William T. O'Connell, George K. Thiruvathukal, and Thoas W. Christopher, Distributed Memo: A Heterogeneously Distributed and
Parallel Software Development Environment. In International Conference on Parallel Processing, 1994.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract
Heterogeneously distributed and parallel computing
environments are highly dependent on hardware, data
migration, and protocols. The result is significant difficulty
in software reuse, portability across platforms, and an
increased overall development effort. The appearance of a
shared directory of unordered queues can be provided by
integrating heterogeneous computers transparently. This
integration provides a conducive environment for parallel
and distributed application development, by abstracting
the issues of hardware and communication. Object
oriented technology is exploited to provide this seamless
environment.

Index Terms - Heterogeneous computing. Parallel and
distributed processing. Directories of unordered queues.
Dynamic Data Migration. Portability. Extensibility.

1 Introduction
Heterogeneous computing (HC) allows parallel and
distributed applications to achieve a higher level of
performance at a lower cost/performance ratio. HC
provides the ability to coordinate a wide range of diverse
high-performance machines, each being used for
computationally demanding tasks [1]. This provides the
ability to differentiate between code, algorithms, and data
to optimize the matching of computational tasks to the
appropriate machine [2].

However, this leads to difficulty in writing parallel and
distributed programs in an easy, efficient, and portable
manner. The complexity arises from the differences in
specialized hardware, incompatible data domain
mappings, communication protocols, operating system
interfaces, and other distinguishing characteristics (e.g.
number of processors, shared versus distributed memory).
This results in considerable effort needed to port to new
platforms with little code reuse. As the hardware continues
to improve and new architectures introduced, the
investment in developing, maintaining, and porting HC
code across platforms becomes considerable. Monetary
costs are effected with longer development cycles.

In addition to the basic HC problems, emerging
technology is changing the shape of computing. One trend
indicates that many parallel and distributed applications
may potentially be a workstation phenomenon rather than
a specialized parallel hardware phenomenon. As shown by
Eq. (1), processor performance is doubling annually since
1984 [3].

Workstations are typically the first to exploit new
processor technology. Additionally, networking speeds are
jumping by an order of magnitude on average, every three
years [3]. Recent research in networking protocols, such
as Distributed Queueing Random Access Protocol
(DQRAP), has shown that M/D/1 performance numbers
can be achieved over a broadcast channel [13]. This
results in a near ideal hardware environment for HC.

The fact is that workstations are economical. Most
organizations can not afford specialized machines. If they
can, the number is limited. It is now possible to get
performance improvements of substantial nature with the
fast processing and networking capabilities of the average
workstation. In addition to the processing power,
workstations have large-screen graphical I/O capabilities.

Our focal point is on conventional parallel programming
over heterogeneous systems. We use Object-Oriented
technology to define the heterogeneous environment of
the Distributed Memo System (D-Memo). The system
provides the following to the application:
• Under-utilized resources on a network exploited.
• Easy-to-use parallelism capabilities.
• Complete transparency for underlying machines.
• Dynamic data migration across HC machines.
• High degree of portability and reusability for both

applications and the system itself.
• An environment that can easily implement data-

parallel, data-flow, functional, and object oriented
languages.

In this paper, we will place greatest emphasis on the
philosophy and description of D-Memo. We will describe
the four basic foundations that are the key to its portability
and extensibility. We will then discuss the system’s
framework, which is how the pieces work together.
Finally, we will survey related work and present
conclusions.

2 Implementation Philosophy
Many distributed-memory Multiple Instruction, Multiple
Data (MIMD) systems allocate one process to each node
on the multiprocessor. The nodes send messages directly
to each other for communication and synchronization. The
problem with such systems is that data structures are not
global, but rather localized in each node. One of the most

MIPS
3
2
---⇐ 2year 1984–⋅ (1)

Distributed Memo:
A Heterogeneously Distributed and Parallel Software Development Environment

George K. Thiruvathukal
R.R. Donnelley and Sons Company

750 Warrenville Road
Lisle, IL 60532

gkt@disney.donnelley.com

William T. O’Connell
AT&T Bell Laboratories
1200 E. Warrenville Rd.

Naperville, IL 60566
 wto@uscbu.att.com

Thomas W. Christopher
Illinois Institute of Technology

10 West Federal Street
Chicago, IL 60616

tc@iitmax.acc.iit.edu

Proceedings of the 23rd International Conference on Parallel Processing, 1994

common programming techniques is to manipulate data
structures. But on most distributed-memory systems, the
data structures must be partitioned and the parts hidden in
a fixed number of processes. This creates both complexity
and conceptual problems in the software applications.

This common use of shared data structures can be
represented as a shared directory of queues. Both
directories and queues have long been known to be useful
in multi-programming and multi-tasking environments.
This system is based on exploiting this in a HC
environment. A virtual machine is provided to the
application by transparently using a network. Messages
are referred to as memos and queues as folders. Once a
process places a memo (message) into a folder (queue),
any process can extract it. The combined folders provide
the virtual shared directory. This allows any process to
either examine, extract, or place memos into them.

The communication scheme allows processes to
communicate through memo passing. They are deposited
into any one of the shared folders (directory of unordered
queues). If a folder does not exist, it is created. The folders
provide synchronization and communication between
processes. By distributing the folders over the network, a
pool of segments is used to create a larger virtual shared
segment. This provides the abstraction of executing on a
single shared-memory MIMD machine. This high level
abstraction removes the underlying concurrent memory
access and communication problems of parallel and
distributed programming and provides a seamless
heterogeneous environment.

The System is designed to support many different types of
architectures from both Massively Parallel Processing
(MPP) machines to workstations. The system has
currently been implemented on the following platforms:
Sun SPARC 4 workstation, Encore Multimax, and Intel
80486 time-sharing system (System V). Work is currently
underway to integrate the IBM SP-1 MPP machine.

We caution the reader that the system is not yet another
remote procedure call (RPC) system nor a rehash of the
existing work (see “Relation to Other Research” on page
8). Languages we have implemented on top of the API
include:
• Message Driven Computing language, a pattern-

driven language based on Actors [4].
• Lucid, a dataflow programming language [5].

We have found that these languages are excellent for
writing parallel programs (as well as using D-Memo’s API
itself). Their implementation on top of D-Memo will allow
us to attract a larger audience for our systems (and for
implementation of their systems) through greater
flexibility and portability in a HC environment.

The API provides a rich set of primitives for supporting
many synchronization mechanisms and programming
paradigms. Examples include named objects, arrays of
objects, locks, semaphores, unordered and ordered queues,
job jars, futures, incremental structures, and barriers (see
“Memo Language (API)” on page 6). The API is
influenced by Linda [6], but it has been scaled down in
features of dubious value and augmented with features of
proven value.

3 Abstracting the HC Environment
Object oriented design (OOD) was chosen for
implementation, because it offers several advantages over
the commonly used (or abused) structured methodologies.
OOD enhances re-use opportunities through class
extension (class derivation) and delegation. Since D-
Memo is a major systems programming effort, the intent is
to simplify migration to new platforms and protocols by
abstracting the HC environment.

The OO implementation was aimed at addressing D-
Memo’s portability and extensibility. In addition, we
needed to provide high level abstractions (foundations) for
the HC environment. The first two terms are so frequently
abused that we will attempt to establish some formalism.

Portability is the ability to migrate a software application
to a new platform (or, in distributed computing, to a new
set of platforms) with a lucid understanding of what
aspects of the application must be replaced with platform-
specific code. In D-Memo, platform-specific changes can
always be traced to a class. As an example, an abstract
class called SharedMemory exists. Operating systems
that support shared memory tend to do it differently. There
is some commonality, however, and this commonality is
extrapolated into the abstract class SharedMemory. For
example, on the Encore Multimax, one must specify the
maximum amount of shared memory the application
intends to use, then allocate and free pieces of it using
specially named primitives. Then on termination, it must
release the pool of shared memory. System V systems
(like the Sun Sparc) manage shared memory in a similar
way, although the functions to use shared memory and
how they are used differ in a subtle manner. Abstract
classes allow shared memory and its conventional use to
have a consistent interface, although the actual
implementation of each derived SharedMemory class
may differ between systems.

Extensibility goes hand-in-hand with portability, but it
pertains specifically to the design. An extensible design is
one that enables portability with little or no change to the
existing design. Reverting to the SharedMemory class
example, if major modifications are required to the base
abstract class SharedMemory to support a new
processor, there is obviously a major problem. The OO
community is constantly grappling with the issue of how
to develop extensible abstractions. In attempting to define
a highly general abstraction it is best to get an adequate
perspective of how the abstraction is used in general.
Clustering of concepts is the mechanism typically used by
humans. In the case of shared memory one must study
how it is done in numerous operating systems to determine
the common protocol. Some systems require the
application to specify its dynamic memory requirements
before actually doing dynamic memory operations. Other
systems do not. The abstract class must be able to cope
with both cases

3.1 HC Foundations (Abstractions)

Our approach has been to define and implement four
general HC abstractions. The core set is: communication,
shared-memory, transferable, and locking. These
abstractions are based on the Generic Modelling

Framework [7]. To support a new platform in a HC
network one must consider each of these four abstractions.
Often it is merely a matter of extending one or two of them
to support the new platform. The OO terminology for this
idea is class derivation. Each foundation is actually a
cluster of related classes built with either one or two layers
of inheritance. Through virtual functions, all platform-
specific code is selected at run-time. This allows the basic
foundations to provide a transparent environment to the
upperlying software.

3.1.1 Network Communication Class

The idea of network communication being an abstract
class in many respects is not completely new. The OSI
model addresses the business of one application
interfacing with another application through a layered
architecture.

In D-Memo, it is fundamentally important to establish a
connection between two processes, located on any two
machines or the same machine. This abstraction is known
as a Connection. To establish a connection does require
the assistance of a Routing class, used as a collaborator.
The notion of a connection, we contend, is generally
useful in the context of two processes that must
communicate and can be defined independent of any
known networking protocol. The notion of a Connection
allows processes in the system to connect to other
processes by a logical network address.

To achieve a connection requires the help of other classes.
A transport class provides an interface to the transport
protocol supported by the host. The class provides the
ability to simultaneously interact with different protocols
in an application, e.g. TCP, EIU-H, and UDP. However,
many of the systems do not provide a transport layer, in
which case a transport layer must be derived. INMOS
Transputers are a perfect example. No transport layer
exists. When one wants to send a message, a channel is
opened and the message is sent into it. This, however,
results in poor performance. Compute-bound processes
that are ready to use the CPU are blocked until the long-
winded communication is ended. A derived transport layer
that supports packet fragmentation and virtual connections
would allow the communication cost to be amortized over
time and allow some useful processing to be done in the
process.

The Routing class is used to provide routing capabilities
over the network. Many considerations are considered to
improve network efficiency (see section 5.1).

3.1.2 Shared Memory Class

Shared memory was presented in the beginning of section
3 to help motivate the object oriented principles of
portability and extensibility. It has been adequately
discussed there, thus will not be discussed further.

3.1.3 Transferable Class

Because architectures today support word sizes of 16, 32,
64, and 128 bits (as well as arbitrary bit-vectors), lossy
domain mappings can occur. Similar problems exist for
floating point numbers, since different precision

representations are common: single-, double-, and extra-
precision, for example. A lossy mapping occurs when an
Alpha processor (64-bit) sends an integer to an Intel
80486 (16-bit) and the value is greater than 16-bits. The
problem is not byte order, but precision. To support
lossless data domain mapping between heterogeneous
machines, distributed software must learn to think in
concrete domains. Instead of built-in data types like
int, float, etc., the application must use absolute
domains (e.g. int16, uint16, int64, float32, etc.).

The transferable classes (e.g. int16) define a protocol to
encode and decode data structures in a language
independent manner. We believe the support for persistent
data structures is essential to develop serious parallel
software applications, especially for non-numerical
algorithms. Each transferable is an active object that will
encode arbitrary data structures and scalars for transfer
between compatible and incompatible domains.
Transferables encode/decode themselves recursively, so
that messages may be created from either previously user
defined or base transferables.

The inspiration for the transferable classes is found in the
Abstract Syntax Notation/1 (ASN.1) [8] and the XDR
library supported by Sun RPC. There are two major
differences, however, between the mechanisms supported
by the transferable classes and these other methods of
encoding data. The major difference is that arbitrary data
structures, even self-referential structures, can be moved
with ease via the transferable classes. Without going into
great detail here the basic observation is that all data
structures have a spanning tree. A spanning tree can be
constructed in polynomial time. Thus, it is possible to
encode (linearize) an arbitrary structure and to decode (de-
linearize) it in polynomial time. The OSI and RPC
systems both require significant programmer intervention
to manage the details of encoding and decoding data
structures. This should be transparent to all processes.

3.1.4 Locking Class

Similar to the problem of shared memory management,
mechanisms for low-level locking tend to vary between
platforms. For the case of specialized parallel machines
with one or more memory organizations, different locking
mechanisms may be present. Our experience with the
Encore and Sequent machines is a testament to the number
of available options. While there are attempts to
standardize the locking mechanisms (e.g., POSIX), there
will undoubtedly always be systems that expand on the
capabilities provided by the standardized mechanism. In
the case of the machines mentioned, there are times when
it is a good idea not to use a semaphore and opt for a more
efficient locking mechanism.

4 Application Frameworks
The frameworks describe the layout of the major
components of the system. The servers will be described
first, followed by system partitioning methods, application
description files, and the registration process.

4.1 Distributed Memo System Servers

Two types of servers are used, both using the four basic

abstractions to hide the details of the underlying platform.
This allows the servers to remain portable between
heterogeneous machines and improves software
reusability and extensibility for the system.

The two server types are the memo and folder servers. The
folder servers maintain a directory of unordered queues on
selected hosts (each queue representing a folder). There
can be 0, 1, or more folder servers per machine, each
having exclusive access to its folders. The memo servers
are responsible for message routing between processes
(there is one memo server per machine).

Figure 1 Intra-Machine Server Behavior

Figure 1 illustrates two application processes and one
folder and memo server on a machine. It shows the
communication between the different processes along
with the shared memory abstraction. Note that the servers
use threading to increase concurrency. As an application
attempts to deposit/retrieve memos to/from a given folder,
that folder name is hashed to a folder server on a particular
machine. All references for memos in a particular folder
will be directed to the appropriate folder server. Each
request to a server will cause a thread to be created to
handle the request, thus exploiting parallelism. The
system uses the idea of thread caching to avoid the
overhead of creating processes un-necessarily. When a
thread completes its transactions, it will set a timer and
wait for additional requests. If a request comes in, the
thread will handle it. If not, it will terminate.

Figure 2 Inter-Machine Server Behavior

If a folder name is hashed to a folder server that does not
already contain a folder entry for any memos, a folder will
be created. When hashing the folder name to a particular
server, the costs associated with the machines’
processor(s) speed and communication links are

head

folder folder

memo

(Thread)

(Thread)(Thread)

(Thread) Shared Memory
abstraction

memo

memo

memo

Folder Server

Memo Server Application

on the host.

Data

Control info

(Thread)(Thread)(Thread)

Host BHost A
Server Server head

folder

memo

Shared Memory
on the host.

memo

memo

memo

folder

considered. The idea is to optimize the message traffic
according to processor and network link speeds (see
section 4.3). Figure 2 illustrates an inter-machine
communication transaction where a request is made from
a process on host A to host B.

Each memo server (one per machine) listens for
connection requests from either other memo servers
(inter-machine traffic) or user applications. As requests
arrive, the server will create a thread (if no cached thread
is available) to handle the request while it goes back to
listening for more requests. A path is then established
between an application program and a folder server via
one or more memo server threads (as shown in figures 1
and 2).

The memo servers are also used to start a distributed
application on the network. This will include registering a
user application during initial start-up (see section 4.4).

4.2 Partitioning (Work Distribution)

When an application is started, control is given to the
appropriate application programs on the user specified
network topology as defined in the application description
file (see section 4.3). This file defines a directory where
both the boss and worker programs’ source code can be
found. These two types of programs typically use the host-
node paradigm; where the boss is the controlling process
and the workers do the parallelized/distributed work
(other programming paradigms are also supported).
Typically, the input/output of the application is done in the
controlling process (boss). Since the boss application
typically has overall control of the parallel operations, it is
generally used to start the parallel operations by
distributing the data sets to the appropriate worker
applications. In addition, It is typically used to determine
when all necessary work has been completed.

The worker programs typically do all the parallel
operations; each executing the same (or different) code in
parallel on different processors. It’s up to the application
software (which supplies the worker and boss programs)
to distribute the data sets using adequate medium to larger
grain distribution. Because of HC environment,
applications that use a small grain size distribution of
work will have to consider the effects of overhead spent
on communicating, versus getting work done. If the grain
size is too large, parallelism will have been lost.

4.3 Application Description Files

The logical network topology is defined by an Application
Description File (ADF). This description file defines the
communication scheme used by the System. It not only
describes the hosts that will be used for an application, but
also the logical topology that connects the hosts to the
network. This topology may, or may not follow the
physical network inter-connections. This offers an
application to selectively run on different types of
topologies; e.g. Star, Cube, Ring, and Mesh. Depending
on the application, it may be beneficial to have more
control over the message routing than the physical
connections allow.

The ADF defines what the network looks like for a

particular application. Each application running in the D-
Memo system can use either the system default ADF, or
register its own (see “Application Registration Process”
on page 6). This allows an application to customize its
own logical network and define its communication
characteristics, or default to the system’s ADF description.
The system’s default ADF is constructed when installing
the system on a network. Each ADF has five sections: the
application name, host machines, folder servers, user
processes, and the logical point-to-point machine
connections. Each section will be started with a keyword,
followed by the appropriate data. Any section missing will
default to the appropriate system ADF section.

The first section defines the application’s name. The
servers prepend the application’s name with each
requested folder name. This will allow more than one
application to run concurrently on the system. It provides a
unique folder/application name combination so that the
same memo and folder servers can be shared over the
network. By defining unique application names,
applications will share data between only their own
processes. This sharing of data is fully distributed in time
and in space, as is Linda [6]. By using common
application names, different programs will be able to
communicate. This provides the idea of being fully
distributed in time and space over multiple applications.
Note that eventhough the memo servers are shared over
applications, each memo server is loaded with unique
routing tables for each application. An example of naming
an application called invert is:

Application Name
APP invert

Comments in the file are preceded by a ‘#’ symbol.

The second section defines the host machines. It defines
the machines that will be used in the computation for this
application. Each machine is listed by it’s internet address,
followed by the number of processors it has, the
architecture type, and the processor cost. The architecture
type names can be used as variables in computing the
processor cost in relation to other processors on the
network. The processor cost is implemented into the
routing table algorithm where a faster processor may have
more weight than a slower one. Note that the internet
address does not imply that only internet addressing
modes are supported (e.g. work is currently underway to
investigate integrating INMOS transputers). The
following example illustrates the definition of four host
machines.

HOSTS
Hosts #Procs Arch Cost
glen-ellyn.iit.edu 1 sun4 1
aurora.iit.edu 1 sun4 1
joliet.iit.edu 1 sun4 1
bonnie.mcs.anl.gov 128 sp1 sun4*0.5

The above host section defines three Sparc workstations
labeled with an architecture type of sun4 with a processor
cost of 1. The other host is an IBM SP-1 MPP machine
with 128 processors. Notice that each individual processor
on the SP-1 is less expensive to use then a Sparc.

Following the host section is the folder server

descriptions. Each folder server that is used, is given a
numeric name followed by host machine name that it will
reside on. If a machine has more than one server, the
numeric names can be combined as shown below. Note
that only one is required on the network, but by
distributing folder servers over the network, the
application will get a better distribution of message traffic
on all communication links. The following example
illustrates defining nine servers.

FOLDERS
Folder Location at
0 glen-ellyn.iit.edu
1 aurora.iit.edu
2 joliet.iit.edu
3-8 bonnie.mcs.anl.gov

The fourth section defines the application process
distribution. Each process is given a numeric name and the
host it will execute on. The directory defines where the
source code exists for the boss and worker processes. In
this example, three different source directories were given.
The boss directory is in fact optional, which will facilitate
Single Program, Multiple Data (SPMD) applications
better. Each directory listed is a root directory that must
contain a Makefile. This Makefile will build the
executable for that process. This can be a single directory
or the root node of a directory structure. Each executable
is linked to the D-Memo library which provides access to
the system API. The current version requires either
manual intervention or packages such as the Network File
System (NFS) or Andrew File System to access the
executables on each of the remote machines. This issue is
being addressed (see section 4.4). The following is an
example process distribution on the network where we
will be doing I/O using the boss process on the glen-ellyn
machine. The example actually shows two worker source
code trees, one that will run on the Sparcs, the other on the
SP-1.

PROCESSES
#Proc Directory Located at
0 boss glen-ellyn.iit.edu
1 worker1 aurora.iit.edu
2 worker1 joliet.iit.edu
3-22 worker2 bonnie.mcs.anl.gov

The standard executable names are boss and worker
respectively. The typical use of the system is that the boss
directory contains the executable code for the controlling
process. The worker directory contains the executable
code that does the parallel and/or distributed computation.
But, different programming paradigms can be used.

The final section defines the logical point-to-point
connections for the application. Each line defines either a
duplex or simplex connection. Duplex connections are
denoted by the ‘<->’ symbol, simplex by ‘->’. A
connection cost is also associated with each connection.
The value represents the cost in using this link. This
reflects distance and transmission speed. The point-to-
point connection, defines a software level topology for a
particular application. Each software defined link must
have a corresponding physical connection. The following
example defines a logical topology between the set of
machines that will be used for the invert application. Note
that the communication link between to the SP-1 is more

expensive than on the Sun network. Figure 3 illustrates
this example.

PPC
Point-to-Point Connection with cost
glen-ellyn.iit.edu <-> aurora.iit.edu 1
glen-ellyn.iit.edu <-> joliet.iit.edu 1
glen-ellyn.iit.edu <-> bonnie.mcs.anl.gov 2

Figure 3 Example Network Topology

This allows the user to define and restrict communication
between hosts. This provision allows the users to define
any one of many topology types (e.g. Star, Tree, Mesh,
Point-to-Point, Cube, Systolic). The resulting effect, is
allowing an application to have more control in defining
its communication pattern. These connections are the basis
for each application’s routing table.

4.4 Application Registration Process

When an application is started up, it will register itself
with all the memo servers it will interact. If, for example
on a unix based operating system, and one or more of the
servers are not running, they will be started up by the
system inetd daemon. This registration process includes
storing the application’s name and it’s routing table in
each of the memo servers. This allows multiple memo
applications to run concurrently, using the same servers
(thus, not overloading a system with duplicate servers).

To start the registration process, the user enters “memo
adf” on the command line, where “adf” is the user’s ADF
file. Each source code directory listed in the ADF should
contain a makefile. If the binaries are out of date, they will
be recompiled. The ADF tables will then be registered
with each appropriate memo server.

Once the application has been registered with the system,
the requested number of application processes will be
started on each of the host machines. The current version
does not support dynamic application cross-compiling and
pumping of the executables to the destination remote
machines. A current version is in design that will fully
support the cross-compiling of the boss and worker
executables by using a pumping method to get them to the
appropriate remote host if NFS is not available.

5 System Performance
The main issue relating to performance is the memo
distribution over the network. The ADF associates a
processor cost in relation to the other processors on the
network. By classifying each host with a ratio percentage

Folder Server

Memo Server

Application

LEGEND

Aurora (Sparc) Glen-ellyn (Sparc) Joliet (Sparc)

bonnie (SP-1)

......

of processing power, the system can control the
distribution of memos. This is done by giving a higher
percentage of proportional probability of hashing memos
to a given host (in relation to the ratio percentage of the
other hosts). With out this control, an even distribution
would be seen over the folder servers. Thus, by
associating the servers’ host processor speed with the
other hosts, the system will result in hashing the
appropriate percentage of memos to each server.

The memo distribution also takes into consideration the
network topology. When dealing with a network, the
memo distribution on the network can drastically increase
system response time. The routing class takes into
consideration communication costs based on distances
(machine localities) as specified by the ADF. Each link in
the topology has a weight associated with it in which the
routing class incorporates into the folder name hashing.
The result is that hashing a memo to a folder server
considers communication link and processor overhead. No
broadcasting is done by the system.

6 Memo Language (API)
This section provides a brief introduction to the systems
API (member functions of class Memo). Also shown are a
sample set of shared data structures and synchronization
mechanisms that are supported by the API.

6.1 Application Programming Interface

6.1.1 Keys and Values

A key is defined to be symbol, S, followed by a vector of
unsigned integers, X. The key is used to represent a folder
name. This is a slight departure from the familiar key
definition in the context of associative tables, which is
usually a string of characters. The definition is equivalent,
however, and the purpose of not using a character is to
provide better support for data structures. A function,
create_symbol, is provided to create a unique symbol.

A value is defined to be a pointer to a transferable objecta.
The value represents the contents of a memo stored in the
folder space. It is not necessarily to understand the notion
of a transferable instance to study the later examples, but
the essential point is that any data structure can be entered
and extracted intact from the memo space with no
programming effort for the application developer.

6.1.2 Basic Functions

Several basic abstractions are provided to extract,
examine, and store memos in the system. A bullet item list
illustrates them.
• put(key,value)

Put “value” in the folder labeled “key”. Control is
immediately returned to the executing process.
• put_delayed(key1,key2,value)

Put “value” in the folder labeled “key1”. It will remain in
the folder “key1” until another memo arrives into that

a. A transferable may be complex (e.g. a message) or a scalar.

folder. The “value” in folder “key1” can not be extractable
by another process. Once a value has been put into folder
labeled “key1”, the passed value will then be placed into
folder labeled “key2” where “value” will now be
accessible. This operation facilitates data flow operations.
Process control will immediately be returned.
• get(key)

Get a value from folder labeled “key”. If no value is
present in the folder labeled “key”, the executing process
is blocked, until a value becomes available.
• get_copy(key)

Identical to the get function; however, a copy of the value
in the folder labeled “key” is returned, thus enabling
another process (or the same process) to issue another get
operation on the folder labeled “key”.
• get_skip(key)

Get a value from folder labeled “key”. If there is no value
present, return NIL. This function is usually used to poll
for messages.
• get_alt(array_of_keys)

Get a value from any one of the folders labeled by an
element of “array_of_keys”. If more than one folder
actually contains a value, nondeterministically return a
value from an eligible folder. This function blocks until a
memo is returned.
• get_alt_skip(array_of_keys)

Similar to get_alt, but will return immediately if there are
no memos available.

6.2 Data Structures

Many commonly used data structures can be shared
through the system by using memos and folders. A sample
set is discussed below.

6.2.1 Named Objects

A folder that holds at most one memo can represent a
dynamically allocated object on the heap. Instead of
pointers to objects, we use folder names.

6.2.2 Arrays

Arrays of shared objects may be created similarly. The
element a[i,j] can be stored in a folder whose name is
constructed as:

FOLDER_NAME key;
SYMBOL a;
...
a = memo.create_symbol();
key.S = a;
key.X[0] = i;
key.X[1] = j;
key.X[2] = 0;

The above example illustrates using the key name to build
a 2-dimensional array abstraction.

6.2.3 Unordered Queues

A folder is an unordered queue, so if order is not vitally
important, process can communicate simply by passing

memos through a folder.

6.2.4 Job Jar

An important use of an unordered queue is a job jar. The
memos in the job jar indicate tasks to perform. When ever
a process creates more work to do, it drops memos in the
job jar. It is often convenient to have one job jar for each
process and one common jar for all. The individual job jars
are used for operations that must be performed by a
particular process (e.g. file I/O, a file is typically opened in
only one process). The primitives get_alt and
get_alt_skip can be used to get a memo from either
the local or common job jar.

6.2.5 Futures and I-structures

A future is an assign-once variable used to communicate
between a producer (typically a subroutine) and a
consumer (it’s caller). Both the producer and the consumer
may run in parallel, with the consumer only being delayed
if it attempts to fetch from a variable before it has been
assigned. An I-structure (an “incremental structure”) is a
collection (e.g. an array) of futures. I-structures were
invented for dataflow [9]. In D-Memo, any folder that will
have only one memo ever placed into it may correspond to
a future. The consumer executing a get, get_copy, or
get_alt fetching from the folder will be delayed until
the value has been produced. The folder will vanish once
the memo is removed. Since it is usually better not to
block an entire process, the consumer can delay a memo
(using put_delay) for a job jar in the future’s folder
that will trigger the desired computation when the data
becomes available.

FOLDER_NAME future, job_jar;
...
memo.put_delayed(future,

job_jar, operation);

6.3 Synchronization Mechanisms

In addition to data structures, the folders and memos can
be used by applications to provide synchronization
methods.

6.3.1 Locks and Shared Records

Shared records are accessed by getting them from their
folders, examining and updating them, then putting them
back. While the record is being updated, it’s folder is
empty. If any other process try to access it, it will be
blocked. The records are implicitly locked.

FOLDER_NAME obj_name;
OBJECT *p;
...
p = (OBJECT *)memo.get(obj_name);
/* Record locked */
...
memo.put(p);

6.3.2 Semaphores

The simplest implementation of a counting semaphore is
identical to a lock, except that the semaphore is initialized
with as many memos as needed in the counting
semaphore.

6.3.3 Dataflow

Dataflow programming triggers execution of code when
it’s operands become available [9][10]. The system
simplifies dataflow programming by providing the
put_delayed procedure. Assume the operands are
futures. One simply arranges to have an operation dropped
into a jar when an operand memo arrives in a folder.

FOLDER_NAME operand, job_jar;
...
memo.put_delayed(operand,

job_jar, operation);

7 Relation to Other Research
The idea of a virtual machine is not new, and one might
wonder why yet-another-paper addressing the issue should
be written. Most of the related efforts pertaining to virtual
machines have been successful in presenting
computational models amenable to the virtual machine
concept, but little effort has been dedicated to the harder
problems of data modeling and engineering.

The Linda research was used to create the illusion of a
virtual machine, wherein an arbitrary number of processes
communicated via a virtual shared memory known as a
tuple space [6]. We believe that this tuple space is just “a
flat directory of unordered queues”. Using this approach,
we are able to provide better programming abstractions
then Linda (e.g. job jars, dataflow).

Parallel Virtual Machine (PVM) is a low-level approach
taken to support the virtual machine concept [11]. A
system service is provided for each machine on a
heterogeneous network. The interface between two
processes on the network is possible via a subroutine
library. The routines in the subroutine library allow
processes to communicate with one another without
knowing the details of communicating with the system
service. The limitations of this work are the dependence
on TCP/IP at the transport and network layers, the lack of
mechanisms to handle synchronization and
communication reliably, and the ability to handle dynamic
data migration between HC machines.

Mentat is a system that offers many of the advantages of
the Linda and PVM systems with some enhancements
[12]. At the application level it offers a balance between
explicit and implicit parallelism by providing an extended
C++ development language. Through C++ extensions and
a run time system, Mentat is able to provide applications
with an environment to support fine-grain and coarse-
grain parallelism. The coarse-grain parallelism is
supported via a “macro-dataflow” library. One issue, is the
problem with handling dynamic data migration between
HC machines.

8 Conclusion
We have discussed the importance of the HC abstractions
that ensure we have an extensible and portable system. We
addressed the need to fully use the networking capabilities
and resources of an organization(s) by providing a
seamless environment to the application code. The idea of
the “shared directory of queues” provides a
communication interface to the application that supports

many types of data structures and synchronization
mechanisms.

We have omitted significant details in describing the
implementation of the D-Memo System but have
presented the fundamental abstractions and characteristics
of the system. We are building a framework to exploit all
aspects of network utilization and machine processing
power but, simultaneously, providing a cohesive and
coherent environment for software engineering. Our
intermediate results look promising, which leads us to the
conclusion that further research on the D-Memo system is
worthwhile.

9 Acknowledgments

The authors gratefully acknowledge use of the Argonne
High-Performance Computing Research Facility. The
HPCRF is funded principally by the U.S. Department of
Energy Office of Scientific Computing.

10 References
[1] A. Khokhar, et al., “Challenges and Opportunities”,

IEEE Computer, June 1993, vol. 26, no. 6, pp. 18-27

[2] R.F. Freund, H.J. Siegel, “Heterogeneous
Processing”, IEEE Computer, June 1993, vol. 26,
no. 6, pp. 13-17.

[3] A. Deogirikar, Keynote Speaker, TOOLS USA ‘93
Conf. on OO Tech. Santa Barbara, CA. Summer ‘93.

[4] T.W. Christopher, “Message Driven Computing and
its Relationship to Actors”, Proc. ACM Sigplan
Wkshop on Object-Based Conc. Prog., San Diego,
CA. 1988.

[5] G.K. Thiruvathukal, et al., “A Simulation of
Demand Driven Dataflow: Translation of Lucid into
Message Driven Computing Language.”, 5th Int’l
Symp. on Parallel Proc., Anaheim, Ca. 1991.

[6] D. Gelernter, “Generative Communication in
Linda”, ACM Transactions on Parallel Languages
and Systems, Vol. 7, No 1, Jan. 1985, Pages 80-112.

[7] W. O’Connell, et al. “A Generic Modelling
Framework for Building Heterogenous Distributed
and Parallel Environments”, Proc. 10th Int’l Conf.
on Adv. Sci. & Tech., Naperville, Il, March, 1994.

[8] Blossom, “Decoding ASN.1 Transfer Syntax”, The
C Users journal, Sept. ‘91, vol. 9, num. 9, pp 57-63.

[9] Arvind. “I-structures: An Efficient Data Type for
Functional Languages”, TR LCS/TM-178, MIT, ‘80

[10] A.H. Veen “Data Flow Architecture”, ACM
Computing Surveys, 18, 4, Dec. 1986. pp. 365-396.

[11] Beguelin, A. et al. “A User’s Guide to PVM:
Parallel Virtual Machine”, TR ORNL/TM-11826,
Sept.’91.

[12] A. Grimshaw “Easy-to-Use object oriented Parallel
Processing with Mentat”, IEEE Computer, May ‘93

[13] W. Xu, G. Campbell, “A Distributed Queueing
Random Access Protocol for a Broadcast Channel.”
Comp. Comm. Review, ACM SIGCOMM, Oct. ‘93.

	Loyola University Chicago
	Loyola eCommons
	1994

	Distributed Memo: A Heterogeneously Distributed and Parallel Software Development Environment
	William T. O'Connell
	George K. Thiruvathukal
	Thomas W. Christopher
	Recommended Citation

	untitled

