
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

2003

The Extreme Software Development Series: An
Open Curricular Framework for Applied Capstone
Courses
Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

This Working Paper is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2003 Konstantin Läufer, George K. Thiruvathukal

Recommended Citation
Läufer, Konstantin and Thiruvathukal, George K.. The Extreme Software Development Series: An Open Curricular Framework for
Applied Capstone Courses. , , : , 2003. Retrieved from Loyola eCommons, Computer Science: Faculty Publications and Other Works,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


The Extreme Software Development Series: An Open
Curricular Framework for Applied Capstone Courses

Konstantin Läufer and George K. Thiruvathukal
Department of Computer Science

Loyola University Chicago
6525 N. Sheridan Road
Chicago, IL 60626, USA

{laufer,gkt}@cs.luc.edu

ABSTRACT
We describe an open, flexible curricular framework for of-
fering a collection of advanced undergraduate and graduate
courses in software development. The courses offered within
this framework are further unified by combining solid foun-
dations with current technology and play the role of cap-
stone courses in a modern software development track. Our
initiative has been very successful with all stakeholders in-
volved.

Category and Subject Descriptors
K.3.2 Computer and Information Science Education; I.7.2
Document Preparation; D.1.3 Concurrent Programming;
D.2.11 Software Architectures

General Terms
Design, Languages, Performance

Keywords
Markup languages, XML, Event-based programming, De-
sign patterns, Frameworks, Distributed programming, Pro-
tocols, Servlets, Web applications, Enterprise applications

1. INTRODUCTION AND INSTITUTIONAL
CONTEXT

We describe a curricular initiative marketed to students un-
der the overarching title The Extreme Software Development
Series. This initiative was initiated, planned, designed, and
implemented by two faculty members over the last three
semesters. Our key objective was to provide an open, flexible
framework for offering an exciting collection of advanced un-
dergraduate and graduate courses in software development
that combine the state-of-the-art in research with the state-
of-the-practice [4] in industry. Both faculty members are
active researchers in systems and have industry experience.

Currently, the series consists of the following courses in the
authors’ areas of expertise; we will describe these courses
below in detail.

• Extreme Markup Languages

• Extreme Concurrency

• Extreme Distributed Computing

• Extreme Server-Side Applications

Additional courses in the area of software development will
be added to this framework as they become available.

The challenge has been to offer the Extreme Series within
our institutional context, a small but research-active depart-
ment in a liberal-arts-oriented, private, religious university.
The department offers an undergraduate major in computer
science, a terminal masters degree, as well as a combined
five-year bachelors/masters degree. Because of the large set
of liberal arts requirements at the undergraduate level, there
is not too much room for the computer science major re-
quirements, so flexibility is key. Therefore, the courses of-
fered through this framework are loosely coupled electives
that play the role of capstone courses in a modern soft-
ware development track [1, 3]. Undergraduate students are
able to take up to three, and graduate students four, of the
courses offered.

Our initiative has been very successful with students, as
documented by consistently high enrollments and very high
teaching evaluations, possibly the two highest in the de-
partment; and with employers, as documented by anecdotal
evidence.

2. UNIFYING THEMES OF THE FRAME-
WORK

Although the courses offered as part of the Extreme Series
cover a wide range of topics, they are designed to form a
cohesive series unified by several pervasive themes.

Foundations
All courses are based upon state-of-the-art, theoretical foun-
dations in the relevant areas of research, including:



• programming language theory

• concurrency

• distributed programming

Concepts
All courses study the general, technology-independent con-
cepts relevant to the topics studied, including:

• object-orientation and aspect-orientation

• software architecture, frameworks, and design patterns

• processes and threads

• interaction among distributed objects

Technologies and Tools
All courses are heavily oriented toward “real-world” projects
and use state-of-the-practice approaches and technologies as
delivery vehicles, including:

• development methodologies, especially agile approaches
such as Extreme Programming (XP)

• modeling tools, such as the Unified Modeling Language
(UML)

• language technologies, such as Java, Python, and XML

• (mostly) open-source development tools, such as Ant,
CVS, Eclipse, JBuilder, and JBoss

Where appropriate, courses include guest lectures by experts
from industry.

Place in Curriculum
All courses are consistently positioned in the curriculum as
applied electives with common characteristics:

• providing a combination of challenge and excitement

• offered at least once a year (evenly distributed between
fall and spring semesters)

From the point of view of other interested faculty, the frame-
work is open to the addition of suitable courses that can be
presented consistently with the existing ones.

3. COURSE DESCRIPTIONS
In this section, we provide details on each course in the fol-
lowing format: overview, prerequisites, textbooks and other
materials, example, and road map (concepts, research/tech-
nologies, and projects).

3.1 Extreme Markup Languages
This course covers markup languages and their applications.
Specifically, this course discusses XML, XSLT, and the var-
ious W3C specifications for manipulating XML documents
programmatically, including the DOM and SAX frameworks.
The course also covers some advanced topics, including how
to manage large XML documents and integration with data-
bases. The course includes several intermediate to advanced
programming projects using Python and available XML
frameworks. The road map for this course is shown in Ta-
ble 1.

Prerequisites
The required prerequisite for this course is our version of
CS2 and basic or working knowledge of object-oriented pro-
gramming.

Textbooks
For learning Python, [9] contains two chapters of compre-
hensive nature to learn the language quickly. A compre-
hensive and concise tour of XML is presented in [5]. Both
texts are recommended but not required. Several excellent
tutorials on Python are provided at the Python web site
(http://www.python.org/).

Example
In the most recent offering, a distributed calendaring system
is being developed using XML. Such a system allows virtu-
ally every aspect of XML and its component frameworks to
be explored. The end product is one that can be used for
real-world project management.

3.2 Extreme Concurrency
This course provides an architectural perspective on the de-
velopment of concurrent software with an emphasis on de-
sign patterns, composition, and reuse. Initially, this course
was developed jointly by the first author and another col-
league as an avenue to transfer recent research results in con-
currency into the classroom, but from a decidedly applied
perspective. The course was first offered in 1997 and has
evolved significantly since that time, along with the body
of research in this area and the resulting technologies. The
road map for this course is shown in Table 2.

Prerequisites
The required prerequisite for this course is our version of CS2
and our intermediate object-oriented programming course
that follows CS2.

Textbooks
This course uses two texts, one on Java Swing [7] and one
on concurrent programming in Java from a design patterns
perspective [6]. In addition, the course relies on various
online resources. The Swing text is optional because there
is high-quality online material available on this subject.

Example
A distributed voting system with the following functional
requirements:



• Multiple polling booths. Each polling booth has a but-
ton for each candidate.

• Multiple tracking stations. Each tracking station has
a vote count display for each candidate.

• There is a single control panel, which is used to open or
close the poll, add or remove candidates, and control
the frequency of vote count updates.

The voting system has the following nonfunctional require-
ments:

• Each component follows a presentation-translation-app-
lication architecture.

• Remote method invocation (RMI) is used for commu-
nication among components.

• There is a central server object providing a passive
application data model and a communication router.

3.3 Extreme Distributed Computing
Extreme distributed computing is positioned as a modern
discussion of distributed computing systems. In this course,
we explore the advanced distributed computing technologies
and the important principles and patterns behind them (the
tradition of distributed systems): the various forms of trans-
parency, remote procedure calls (RPCs), consistency, coher-
ence, transactions, and security. The actual technologies to
be explored will vary but will include a discussion of many
Java technologies, including Servlets, Remote Method In-
vocation (RMI) and Activation, Jini, JNDI, messaging sys-
tems, etc. We will also consider the potential for parallel
and cluster computing to address server performance. The
road map for this course is shown in Table 3.

Prerequisites
The required prerequisite for this course is our version of
CS2.

Textbooks
The required textbook is [2], which is used as a reference
to supplement the course lectures. Many of the lectures
are based on material available on the internet, such as the
DNS RFC from http://www.ietf.org/, which is one of the
most well-known communities for distributed software ap-
plications.

Projects
This course is project-based. Because distributed systems
involves more technologies and techniques than could ever
be covered in a single course, students are required to in-
vestigate technologies presented at a high-level and propose
a distributed project that meets the requirements of a dis-
tributed system (e.g. support for basic transparency princi-
ples, such as fault tolerance, consistency, etc.)

Example
Many projects have been done in the past, including a frame-
work for peer-to-peer computing on clusters of workstations,
a fault-tolerant chat system, web caching, and many others.

3.4 Extreme Server-Side Applications
This course provides an architectural perspective on the de-
velopment of interactive server-based software, building on
top of the perspective established in the Extreme Concur-
rency course. This course was first offered in 2000, and
recently developed server-side technologies have continually
been added to the course. The road map for this course is
shown in Table 4.

Prerequisites
The required prerequisite for this course is at least one of
Extreme Concurrency and Operating Systems. In addition,
a recommended prerequisite is Extreme Markup Languages.

Textbooks
This course requires one text on Java 2 Enterprise architec-
ture [8], which provides a high-level, architectural view of
the material. In addition, the course relies on various online
resources for design patterns and specific technologies.

Project
A server-based, device-independent bug or issue tracking
system, usable with ordinary desktop web browsers, as well
as small-screen devices, such as mobile phones or wireless
PDAs. This project proceeds in three consecutive phases:

• Static version: a static web site that illustrates all pos-
sible scenarios (use cases) of the system. This version
uses XHTML and CSS.

• Non-persistent dynamic version: a dynamic web ap-
plication that is functional but does not include per-
sistent data. The web pages from the previous ver-
sion become the view templates for this version. This
version uses JSPs in conjunction with the Struts web
application framework and the Java Mail API for no-
tification.

• Persistent dynamic version: an enterprise application
that is functional and includes persistent data. The
previous version becomes the web tier for this version.
This version uses entity EJBs for persistent storage.

4. DISSEMINATION AND REPLICATION
The authors are committed to disseminating their materials
through the following channels:

• All course materials developed by the authors for their
students are available on the web. URLs to the course
pages are available upon request.

• Course pages include links to the software used. All
software supports the most common platforms (Linux,
Mac OS X, Windows) and is either open-source or oth-
erwise freely available.

• Sample exams/quizzes and solutions are available to
qualified instructors upon request.

Furthermore, the authors are interested in establishing a
dialog with colleagues at other institutions who are planning
to develop similar courses.



Concept Research/Technology Project

Ad-Hoc Document Parsing Brute-Force Parser Calendar, To-Do List
Well-formedness and Validation Basic XML Parsers, DTD Calendar, To-Do List in XML w/DTD
Document Trees DOM, Instructor’s Framework Calendar, To-Do List with Recurring Dates,

Excluding Dates
Parsing Events SAX XElement: An OO Tree Framework

Grounded in Design Patterns
Directory Metaphor XPath N/A, Part of Later Project
Multiple XML Namespaces Namespaces, XML/Schema N/A, Part of Later Project
Transformation XSLT, Instructor’s Framework Generating XHTML Calendar View
Remote Procedure Call XML/RPC, SOAP Distributed Data Collector for a Computing

Cluster
XML Frameworks RSS, Selected Others Syndication of News, Blogs, CMS Content

Table 1: Road map for Extreme Markup Languages

Concept Research/Technology Project

Behavioral modeling UML state diagrams Wrist watch model
Graphical user interfaces Java Swing, JBuilder Wrist watch implementation
Event-based programming Java Beans Voting system
Multi-threading Java threads and monitors Adventure game
Reusable components util.concurrent library Adventure game
Abstract combinators for concurrency Instructor’s own framework Microwave oven
Event-based testing Temporal logic Microwave oven
Remote communication Java RMI Voting system

Table 2: Road map for Extreme Concurrency

Concept Research/Technology

Transparency Principles only; numerous examples such as HTTP, DNS, RPC, etc. are intro-
duced to see the big picture.

Networking TCP/IP, use of UDP for heartbeats and one-way messaging
Coordination Instructor’s Memo System, JavaSpaces
Directories LDAP (Lightweight Directory Access Protocol)
Remote Procedure Call RPC Classic (ONC/RPC), Remote Method Invocation (RMI), XML/RPC,

SOAP
Fault Tolerance Database Replication/Mirroring in MySQL or Oracle
Transactional Semantics Servlet Session Management, Database Transaction Facilities
Parallelism Parallel Database Servers, Clustering, Round-Robin DNS
Security and Authentication SSL, Certificate Management, Survey of Authentication Frameworks (Kerberos,

Windows Active Directory)

Table 3: Road map for Extreme Distributed Computing

Concept Research/Technology Project

Server-based multi-tiered systems J2EE Semester-long project: server-based
issue-tracking system

Presenting content XML-based markup languages Static prototype of project
Modeling dynamic behavior UML state diagrams UML state diagram to accompany

static prototype
Dynamic web-based applications Java servlets, JSP Web tier of project (without persis-

tence)
Web application frameworks Struts Web tier of project (without persis-

tence)
Server-side business logic components Session EJBs Not required in project
Server-side persistent components Entity EJBs, Hibernate Complete multi-tier project (with

persistence)
Security and authentication J2EE web container authentication Complete project
Application servers JBoss Deployment of project

Table 4: Road map for Extreme Server-Side Applications



5. CONCLUSION AND NEXT STEPS
In conclusion, the curricular framework presented here has
turned out to be a success for all stakeholders: administra-
tors, faculty, students, and employers.

The challenge for the coming years is to keep the compo-
sition of the curricular framework up-to-date with new re-
search and technologies in software development. This is
greatly facilitated when participating faculty are active re-
searchers and have ongoing relationships with industry.

Within the bigger context of our academic department, and
encouraged by other authors [3], our plan is to evolve the
Extreme Software Development Series into the centerpiece
of a full-fledged undergraduate major and graduate special-
ization in software development.

6. REFERENCES
[1] Eric Allen, Robert Cartwright, and Charles Reis.

Production programming in the classroom. In
Proceedings of the 34th SIGCSE technical symposium
on Computer science education, pages 89–93. ACM
Press, 2003.

[2] George Coulouris, Jean Dollimore, and Tim Kindberg.
Distributed Systems: Concepts and Design.
Addison-Wesley, 3rd edition, 2000.

[3] Alan Fekete and Bob Kummerfeld. Design of a major
in software development. In Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education, pages 73–77. ACM Press, 2002.

[4] Robert L. Glass. Practical programmer: On personal
technical obsolescence. Communications of the ACM,
43(7):15–17, 2000.

[5] Cheryl M. Hughes. The Web Wizard’s Guide to XML.
Addison Wesley, 2002.

[6] Doug Lea. Concurrent Programming in Java: Design
Principles and Patterns. The Java Series.
Addison-Wesley, 2nd edition, 2000.

[7] David Karr Matthew Robinson, Pavel Vorobiev. Swing.
Manning, 2nd edition, 2003.

[8] Inderjeet Singh, Beth Stearns, and Mark Johnson.
Designing Enterprise Applications with the J2EE
Platform. The Java Series. Addison-Wesley, 2nd
edition, 2002.

[9] George K. Thiruvathukal, John P. Shafaee, and
Thomas W. Christopher. Web Programming in Python.
Prentice Hall PTR, 2002.


	Loyola University Chicago
	Loyola eCommons
	2003

	The Extreme Software Development Series: An Open Curricular Framework for Applied Capstone Courses
	Konstantin Läufer
	George K. Thiruvathukal
	Recommended Citation


	tmp.1321391145.pdf.dvh1T

