
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

6-1997

Technologies for Ubiquitous Supercomputing: A
Java Interface to the Nexus Communication system
Ian Foster

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Steven Tuecke

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1997 Ian Foster, George K. Thiruvathukal, and Steven Tuecke

Recommended Citation
I. Foster, G. K. Thiruvathukal, and S. Tuecke, “Technologies for ubiquitous supercomputing: a Java interface to the Nexus
communication system,” Concurrency: Practice and Experience, vol. 9, no. 6, pp. 465-475, Jun. 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Technologies for Ubiquitous Supercomputing: A Java Interface to theNexus Communication SystemIan Foster, George K. Thiruvathukal, and Steven TueckeMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, U.S.A.ffoster,thiruvat,tueckeg@mcs.anl.govhttp://www.globus.org/AbstractWe use the term ubiquitous supercomputing to re-fer to systems that integrate low- and mid-range com-puting systems, advanced networks, and remote high-end computers with the goal of enhancing the com-putational power accessible from local environments.Such systems promise to enable new applications inareas as diverse as smart instruments and collabora-tive environments. However, they also demand toolsfor transporting code between computers and for estab-lishing exible, dynamic communication structures. Inthis article, we propose that these requirements be sat-is�ed by introducing Java classes that implement theglobal pointer and remote service request mechanismsde�ned by a communication library called Nexus. Javasupports transportable code; Nexus provides communi-cation support and represents the core communicationframework for Globus, a project building infrastructurefor ubiquitous supercomputing. We explain how thisNexusJava library is implemented and illustrate its usewith examples.1 IntroductionRapid advances in networking technologies havemade it possible to construct an application that in-tegrates resources located at multiple geographicallydistributed locations. Various high-end networking ex-periments have demonstrated convincingly that impor-tant new classes of applications become possible in suchenvironments [3]. Typically, these applications exploithigh-speed networks to assemble in one (virtual) placecollections of resources that would not otherwise beaccessible, such as scienti�c instruments, supercomput-

ers, databases, and people.Most work on high-performance distributed comput-ing has originated within the high-performance com-puting community, and these origins are reected inthe types of applications considered and the techniquesused to construct these applications. Supercomputersare highly visible, and programs typically use messagepassing to transfer data between program components.The user interfaces with the application from a localsystem|or, in many cases, from a high-end displaydevice [3]. While e�ective, these techniques have thedrawback that they hinder the widespread dissemina-tion of the technology, for example because sophisti-cated software systems must be installed at each par-ticipating site [7].An alternative model for high-performance dis-tributed computing focuses on making the power ofremote supercomputers accessible to users in a com-pletely transparent manner. The goal is to supportthe development of applications that execute locally(whether on a low-end PC or high-end workstation)and exploit remote supercomputing resources to pro-vide enhanced services. We use the term ubiquitoussupercomputing to denote this type of computing, be-cause by coupling low-cost local devices with remotesupercomputer resources, it combines aspects of ubiq-uitous computing [15] and traditional supercomputing.This article is concerned with the tools that mightbe used to construct ubiquitous supercomputing sys-tems and applications. We explain how a combina-tion of the Java programming language and two sim-ple mechanisms|the global pointer and remote servicerequest|can be used to satisfy these requirements.

2 Ubiquitous SupercomputingWe discuss the types of applications that might beconstructed in a ubiquitous supercomputing system.Smart instruments. The utility of many scienti�cinstruments can be enhanced signi�cantly by the use ofcomputational techniques. For example, in the case ofan imaging device, computers can be used to enhanceimages, to annotate images with hints as to signi�cantfeatures, to locate similar images, to provide compar-isons of observation and theory, or to integrate informa-tion from several imaging modalities. Such techniqueshave been used to a limited extent for some time; how-ever, in general, only fairly limited computation couldbe performed because it was not feasible to co-locatea high-end computer with the instrument. The adventof high-speed networks makes it feasible to use a sin-gle supercomputer to serve many instruments, with theresult that the computational power accessible to a sin-gle instrument increases dramatically. Quasi-real-timecomputer-enhanced imaging becomes possible.Lee et al. [13] have developed an interesting exam-ple of this type of application. The instrument inquestion, a weather satellite, takes pictures at multi-ple wavelengths. Data from the satellite is received atthe ground station and passed over a wide area net-work to a supercomputer, where it is enhanced by acloud detection algorithm to obtain three-dimensionalimages of cloud location. These images are then passedto a display device, allowing scientists to browse thecomputer-enhanced images almost in real time.Smart applications. Similar techniques can be usedto enhance the utility of desktop applications. Cur-rently, these may have sophisticated user interfaces butperform relatively simple computations. The ability toconnect to substantially greater computing resourcescan allow desktop applications to perform more de-manding computations. For example, a future spread-sheet might connect to a model of the U.S. economywhen evaluating investment strategies, or to a climatemodel when evaluating risk management strategies foran agricultural concern. A system for preparing audio-visual presentations might reach over the network tosearch massive image banks for pictures matching aspeci�ed textual description or might exploit externalcomputing resources to render a video clip.Simple examples of this sort of tool have alreadybeen constructed. To name just two examples, theNetwork Enabled Optimization System (NEOS) allowsusers to submit optimization problems electronically toan optimization server, while NetSolve allows desktop

applications written in MatLab to pass computation-ally demanding tasks to high-performance computers.In both these cases, access to networked resources is farfrom seamless; however, these systems are suggestive ofhow future \smart applications" might work.Collaborative environments. Collaborative envi-ronments are computer systems that enhance people'sability to collaborate with people at remote locations.A wide variety of such systems exist, ranging fromsystems focused on enhancing people's ability to cre-ate shared documents (e.g., Lotus Notes) to those de-signed to permit more free-form electronic discussionsin shared virtual spaces (e.g., MUDs). Advanced col-laborative environments enable users to collaborate inthe manipulation of complex virtual spaces, which mayfurthermore incorporate entities corresponding to su-percomputer simulations. For example, the Boiler-Maker system [4] allows engineers at multiple locationsto participate in the placement of injection devices ina simulated combustion system. The complete sys-tem comprises multiple display devices and a super-computer, connected by high-speed networks.Looking further into the future, Gelertner positsthe widespread deployment of what he calls MirrorWorlds [11], computer models of interesting aspects ofreality designed to make those aspects of reality morereadily visible to people|and perhaps also to simplifymanagement. (Examples might include a city govern-ment, hospital, or tra�c system.) These systems wouldinclude advanced computer models, data assimilationfrom many sensors, and collaborative capabilities al-lowing explorers of a mirror world to communicate witheach other.3 Ubiquitous Computing TechnologiesTo a signi�cant extent, the hard technical problemsunderlying the applications described in the precedingsection are those of distributed computing. However,two aspects of these applications complicate the pic-ture. First, to a much greater extent than in mostdistributed applications, these applications are per-formance focused. For example, a supercomputer-enhanced microscope that is intended to provide real-time response needs to be able to acquire computa-tional resources rapidly when an image is available, andthen transfer large amounts of data to that resource forprocessing. The second di�erence is that true ubiquitydemands tools that can be deployed quasi-universally.Many of the example applications referred to above re-quire that sophisticated software be installed locally2

before a user can exploit remote computing capabil-ities. This requirement severely limits our ability todisseminate the technology.The Web provides a compelling case study for howto achieve universal access to a highly distributed ser-vice. The beauty of the Web is that anyone with abrowser can use it to access information anywhere inthe world. The key to this universal access is the pro-vision of a low-cost, standard interface mechanism (thebrowser) that is dynamically extensible (we just uploadan HTML document) to reect the characteristics of aremote data source.While tremendously exible as a tool for locatingand browsing multimedia data, the original Web pro-tocols were constrained by the fact that the browsercould not perform computation: it could only fetchand display data. The Java programming language [1]represents one step toward overcoming this limita-tion. Java is a simple object-oriented programminglanguage (with similarities to Objective C and C++),augmented with standard libraries for graphics, com-munications, and other functions. Java programs canbe compiled to byte codes to obtain a portable, rea-sonably compact representation suitable for commu-nication over networks. A process receiving Java bytecodes can execute them by using an interpreter or just-in-time compiler. Java interpreters have been embed-ded in various Web browsers, making it possible forusers to create Web pages that perform various com-putations.While Java has signi�cant advantages as a languagefor ubiquitous computing, it is de�cient in the impor-tant area of communication. (Other signi�cant short-comings, for example, in security area are beyond thescope of this article, which focuses on communicationframeworks.) The Java library provides only basicsupport for communication using low-level UDP andTCP protocols. The lack of higher-level communica-tion mechanisms greatly complicates the implementa-tion of applications such as those described above.We argue that communication facilities for Javashould satisfy four basic requirements. (1) Asynchrony.While synchronous remote procedure call (RPC) isappropriate for many distributed applications, par-ticularly those with a client-server structure, high-performance ubiquitous supercomputing applicationsalso require mechanisms that do not enforce synchro-nization between sender and receiver, such as asyn-chronous remote function invocation and|in somecases|point-to-point communication (message pass-ing). (2) Symmetry. \Clients" (user Java programs)and \servers" (remote processes) need to be able to beequal partners in a computation. Not only should a

client be able to call procedures in a server, but viceversa also. (3) Global names. The ability to createreferences to objects and then communicate those ref-erences between objects proves to be extremely usefulin practice, making it possible to create complex, dis-tributed data structures and to write programs thatoperate on these data structures in a uniform fash-ion, independently of object location. Note that whatis required here is a global name space, not a globaladdress space. (4) High performance. We requiretechniques that permit high-performance implementa-tions. This requirement means not only that our tech-niques should not introduce performance bottlenecks,but they should permit us to write programs that canadapt their behavior to the often complex heteroge-neous systems in which they can be expected to oper-ate.As we explain in the next section, we propose tomeet these requirements by developing a Java bind-ing for a communication library called Nexus that pro-vides remote object reference (called, in Nexus, a globalpointer) and asynchronous remote method invocation(in Nexus, remote service request) mechanisms.4 NexusNexus is a communication library developed at Ar-gonne National Laboratory and the California Insti-tute of Technology to support applications that requiremechanisms for asynchronous communication, multi-threading, and dynamic resource management in het-erogeneous environments [10].Nexus services provide direct support for light-weight threading, address space management, commu-nication, and synchronization. The Nexus interfaceis structured in terms of �ve basic abstractions, illus-trated in Figure 1: nodes, contexts, threads, globalpointers, and remote service requests. A computa-tion executes on a set of nodes and consists of a setof threads, each executing in an address space called acontext. For the purpose of this article, it su�ces toassume that a context is equivalent to a process andthat a node is equivalent to a particular computer.A global pointer (GP) is a name that can refer toa memory location (or object) located anywhere in adistributed system. GPs are used in conjunction withasynchronous remote service requests (RSRs) to invokeactions at remote locations. An RSR takes a GP, aprocedure name, and data; transfers the data to thecontext referenced by the GP; and remotely invokes thespeci�ed procedure, providing the data and the localportion of the GP as arguments. GPs can be passedas arguments to RSRs, hence allowing global names to3

be propagated between processes.Experience indicates that Nexus mechanisms canbe implemented e�ciently on a wide range of paral-lel and networked computer systems [10]. Further-more, global pointers can be used as a basis for mech-anisms that support both automatic and programmer-guided selection from among multiple communicationmethods [6]. These mechanisms allow programs toexecute e�ciently in heterogeneous environments andmake it possible to use di�erent communication pro-tocols for di�erent communication structures. Nexushas been used to implement a variety of di�erent par-allel and distributed programming tools providing dif-ferent interaction models, including remote procedurecall (in CC++ [2] and nPerl, an RPC library forthe Perl scripting language), multimedia streams (inCAVEcomm [5]) and message passing (the MessagePassing Interface [8]). Nexus also serves as the com-munication infrastructure for the Globus distributedcomputing infrastructure toolkit [9].Nexus mechanisms satisfy each of the requirementsintroduced above. The RSR provides an asynchronouscommunication substrate, on which can be layered avariety of more sophisticated interaction methods. Theglobal pointer makes it easy to specify symmetric struc-tures, since a \client" can easily pass a global pointerto a \server," hence allowing the server to invoke pro-cedures in the client. Global pointers also provide aglobal name space. Finally, Nexus mechanisms havebeen shown to permit high-performance implementa-tions.5 A Java Binding for NexusWe have constructed a Java binding for Nexus; thatis, an interface to Nexus mechanisms that allows Javaprograms to create and exchange global pointers and toperform remote service requests to methods de�ned inobjects referenced by these global pointers. This bind-ing also allows Java programs to communicate withother programs (such as MPI or one of the many par-allel languages that support Nexus) that employ Nexusmechanisms.The Java binding for Nexus implements just theNexus global pointer and remote service request mech-anisms. Nexus also includes support for a set of threadmanagement, condition variables, and mutual exclu-sion (mutex) functions; however, these functions neednot be implemented in the Java binding for Nexus, be-cause the Java Thread class supports these functionsand the Java language itself provides support synchro-nization mechanisms at the object and method levels.As we shall explain, the Java binding provides direct

access to the relatively low-level Nexus interface; thisinterface can then be used to build higher-level Javacommunication libraries for speci�c purposes.We implement the Java binding as a Nexus-compatible library written entirely in Java. This meansthat Nexus code can run within any system thatincorporates a Java interpreter or just-in-time com-piler. The library comprises four basic classes: Nexus,which supports initialization, argument handling, han-dler registration, global pointer creation, and attach-ment to other processes; GlobalPointer, which im-plements the Nexus global pointer abstraction, for usein remote service requests; PutBuffer, which providesmechanisms for bu�er packing; and GetBuffer, whichprovides bu�er unpacking mechanisms. We shall usea simple example to illustrate the use of the variousfunctions de�ned in these classes. (NexusJava func-tion prototypes are generally equivalent to those of theNexus C library.)Our example comprises the simple client and serverprograms in Figure 2. The client performs a singleremote service request to the server. The client ter-minates immediately after generating the request, andthe server terminates immediately after performing therequest. This trivial example does not really demon-strate the expressiveness of NexusJava, but does havethe pedagogical advantage of introducing most Nexus-Java features.The client begins by instantiating and initializ-ing a Nexus object. This must be done before anyother NexusJava operations are performed. The clientthen attaches to the server using the Nexus.attach()method. This method takes as its argument a URLspecifying the hostname and port on which the serveris listening; it returns a GlobalPointer referencing anobject in the server process.Once the client has attached to the server, it canuse the GP to invoke methods de�ned in the remoteobject that this pointer references. For example, theprocedure call server handler() invokes a remoteprocedure called server handler, passing as its argu-ment the single integer 10. It calls low-level Nexusroutines to (a) initiate the remote service request, (b)construct a bu�er containing the integer argument,and (c) complete the RSR. The client then uses theGlobalPointer.destroy()method to destroy the GPto the server; this action severs the connection betweenthe client and server. Finally, the client shuts downNexusJava by calling the destroy current context()method on the Nexus object. This action cleanly termi-nates any threads and other state that are maintainedby this object.The server program, like the client, �rst instanti-4

N O D E

Context

N O D E

Context Context

Thread

GP
GPGP int i;int i;

int j;

Thread Thread Thread Thread Thread

Figure 1. Nodes, Contexts, Threads, and Global Pointerspublic class ExampleClient {private Nexus nexus;public static void main (String args[]) {ExampleClient n = new ExampleClient(); n.start(args);}public void start(String args[]) {GlobalPointer gp;nexus = new Nexus();args = nexus.init(args, "nx", null);try { gp = nexus.attach("x-nexus://cosmo.mcs.anl.gov:1234/");call_server_handler(gp, 10);gp.destroy();} catch (Exception e) e.printStackTrace();nexus.destroy_current_context(false);}public void call_server_handler(GlobalPointer gp, int i) {PutBuffer buffer;try { buffer = gp.init_remote_service_request("server_handler", 42);buffer.set_buffer_size(buffer.sizeof_int(1), 1);buffer.put_int(i);buffer.send_remote_service_request();} catch (Exception e) e.printStackTrace();}}
Figure 2. Example: Client program that demonstrates initialization, packing a buffer, and sending an
RSR. 5

public class ExampleServer implements HandlerInterface,AttachApprovalInterface {private Nexus nexus;private GlobalPointer this_gp;public static void main (String args[]) {ExampleServer n = new ExampleServer(); n.start(args);}public void start(String args[]) {nexus = new Nexus();args = nexus.init(args, "nx", null);register_my_handlers();this_gp = nexus.global_pointer(this);nexus.allow_attach(1234, this);wait_for_client(); nexus.disallow_attach(1234);this_gp.destroy(); nexus.destroy_current_context(false);}public void register_my_handlers() {Handler h[] = new Handler[2];h[0] = new Handler("server_handler",42,Handler.NEXUS_HANDLER_TYPE_THREADED,this,0);h[1] = new Handler("other_handler",53,Handler.NEXUS_HANDLER_TYPE_NONTHREADED,this,1);nexus.register_handlers(h);}public void invoke_handler(String name,int id,int local_id,Object addr,GetBuffer buf) {switch (local_id) {case 0:try { int i = buf.get_int();server_handler(i);} catch (Exception e) e.printStackTrace();break;case 1:other_handler();break;}}public GlobalPointer attach_approval(String url) {return(this_gp);}private synchronized void wait_for_client() {try { wait(); } catch (Exception e) e.printStackTrace();}private synchronized void server_handler(int i) {System.out.println("server_handler() got i="+i);try { notify(); } catch (Exception e) e.printStackTrace();}private void other_handler() {}}
Figure 3. Example: Server program that demonstrates handler registration, handler invocation, and
buffer unpacking. 6

ates and initializes a Nexus object. Then, it regis-ters the set of handler names for which it will acceptmessages. The registration is performed by the rou-tine register my handlers(), which creates an ar-ray of Handler objects in which each element de-scribes a handler. This description includes the han-dler name (e.g., \server handler"), a handler id (e.g.,42), a ag specifying whether this handler should beinvoked in a newly created thread or in an existingthread, the HandlerInterface object to call whenan RSR arrives for this handler, and a local han-dler id that can be used for quick dispatch of thehandler within that HandlerInterface object. TheNexus.register handlers() method is then calledwith the Handler array to inform the Nexus object ofthe handlers for which RSRs are to be accepted.After registering the handlers, the server next callsNexus.allow attach() to indicate that it is pre-pared to accept incoming RSRs. It then suspends inwait for client, processing subsequent attachmentor RSR requests as call backs. Attachment requestsresult in calls to the attach approval() methodin the AttachApprovalInterface object passed asthe second argument to allow attach(). Theattach approval() method returns a GP to a localobject, which will be returned to the attacher. Theserver may also decide to deny the attachment request,in which case it must return null.RSR requests (for example, to server handler)cause the invoke handler() method (part of theHandlerInterface provided by ExampleServer) to becalled by NexusJava. This method (a) uses the han-dler name, id, and local id to �gure out which of thisobject's methods should be invoked, (b) unpacks theGetBuffer to get the arguments for the method, and(c) calls that method with the arguments.As mentioned above, handlers can be eitherthreaded or nonthreaded. When an RSR arrives fora threaded handler, a new Java thread is createdby NexusJava, and the invoke handler() method iscalled from within this new thread. There are no re-strictions on what this handler may do. NexusJava alsosupports a more e�cient but restricted form of handlerinvocation. If a handler is registered as nonthreaded,NexusJava does not create a new thread. Instead, itcalls invoke handler() directly from its preexisting,internal communications thread. This approach avoidsthe cost of thread creation and switching during han-dler dispatch. However, the user must guarantee that ahandler registered as nonthreaded will not block (wait)on any operation that may require another RSR han-dler invocation to unblock (notify) the �rst handler.Once the server receives the RSR and calls the

server handler() method, this method will notifythe main thread waiting in wait for client(). Theserver then disallows additional attachments by callingNexus.disallow attach() and shuts down NexusJavausing Nexus.destroy current context().In summary, the NexusJava library makes the fullpower of Nexus available to Java programs, which canuse Nexus mechanisms to create global pointers toobjects, pass these references between processes, useRSRs to invoke methods de�ned in remote objects, andso forth.6 Higher-Level InterfacesAs noted above, a wide variety of higher-level inter-action models can be layered on top of the low-levelNexus mechanisms. Here, we discuss techniques thatcan be used to implement an RPC model. The basicidea is to use IDL-like techniques to generate automati-cally the code responsible for registering handlers, mar-shaling arguments to remote method calls, demarshal-ing arguments, and dispatching method invocations.Similar techniques are used in other systems, notablyCC++ [2] and CORBA [12].Figures 2 and 3 illustrate what is involved. Inthe ExampleClient class, the call server handler()method is essentially a stub that encapsulates the ar-gument marshaling and other bookkeeping requiredto perform a remote method invocation to theserver handler() in the ExampleServer. Similarly,in the ExampleServer class, the invoke handler()method is essentially a stub that demarshals the argu-ments from the bu�er and calls the appropriate method(such as server handler()) locally.These stub methods can be generated automaticallyin a number of di�erent ways. The CORBA approachcould be followed, whereby a high-level Interface De�-nition Language (IDL) is used to describe the methodsto which one wishes to perform remote invocations. AnIDL compiler is then used to convert automatically thisIDL speci�cation into Java stub code. A disadvantageof this approach is that the de�nition and compilationof explicit interfaces can be rather complex. Since theJava source to byte-code compiler is implemented inJava, and since Java classes can be loaded on the y,an intriguing alternative is to generate the appropriatestubs on the y when doing handler registration.7 Other ApproachesThe Java community has seen several recent at-tempts to provide higher-level communication in Java.7

The two most important (and interesting) are CORBA-based products by several companies and JavaSoft'sRemote Method Invocation (RMI) package [14].The Common Object Request Broker Architecture(CORBA) provides standard mechanisms for exportingobjects for remote use, for locating remote objects, andfor invoking methods in remote objects. As mentionedabove, objects export interfaces de�ned using an IDL,which is compiled into language speci�c stubs for usein remote method invocation. IDL to Java mappingshave been de�ned, and several companies have releasedan IDL compiler. These products allow Java objects tocommunicate with other remote objects that have beenwritten in Java or another language.The JavaSoft Remote Method Invocation (RMI)speci�cation is similar in spirit to the CORBA ap-proach, with three signi�cant di�erences. First, it usesJava-speci�c interface de�nitions instead of a language-neutral IDL speci�cation to produce stub code. Thisis a sensible design decision for an all-Java applicationfocus, but hinders interoperability. Second, RMI doesnot use standard CORBA methods for object locationand method invocation. However, once a reference toa remote object has been obtained, both Java imple-mentations of CORBA and RMI allow methods to beinvoked on that object using essentially the same syn-tax as normal, local Java method invocations. Third,the RMI speci�cation de�nes a Java-speci�c frameworkfor marshaling parameters between locations. This Ob-ject Serialization framework is tightly coupled with thecompiler front-end. Like RMI, it works well when theentire application is to be written in Java, but is noteasily integrated with other languages, such as C andC++.CORBA and RMI mechanisms can be used to pro-vide Nexus-like functionality, namely, the abilities toobtain references to remote objects and to use those ref-erences to invoke methods within those objects. TheJavaSoft CORBA and RMI products are better inte-grated into Java than NexusJava. However, they alsohave signi�cant limitations. Neither CORBA nor RMIsupports the fully asynchronous operations providedin Nexus. CORBA does not support the concept of aglobal pointer and hence cannot de�ne a global namespace. RMI supports a remote object construct thathas some similarities to the global pointer, but it isJava-speci�c and does not support interfaces to othersystems.8 ConclusionsWe have shown how the Nexus global pointer and re-mote service request mechanisms can be incorporated

into Java by de�ning appropriate Java classes. Theresulting system makes it possible to construct the ex-tremely exible communication structures enabled byNexus, without compromising the transportability ofJava code. The techniques also support interoperabil-ity with other Nexus-based applications. Our nextsteps in this area will be to experiment with the useof NexusJava for a range of ubiquitous supercomput-ing applications. We are also interested in developinghigher-level interfaces to Nexus mechanisms by usingsome of the techniques introduced above.Our work on Nexus forms part of a larger projectcalled Globus [9] that is developing key infrastructurecomponents for high-performance distributed comput-ing. We expect availability of NexusJava to increasesigni�cantly the range of applications for which Globusservices are useful.For more information on the NexusJava project andthe current software distribution, see the Nexus homepage http://www.mcs.anl.gov/nexus/. More infor-mation on the Globus project can be found at theGlobus home page http://www.globus.org/.AcknowledgmentsThe Nexus library used to construct NexusJava hasbeen developed jointly with Carl Kesselman. This workwas supported in part by the Mathematical, Informa-tion, and Computational Sciences Division subprogramof the O�ce of Computational and Technology Re-search, U.S. Department of Energy, under ContractW-31-109-Eng-38.Thanks to Gail Pieper and Gregor von Laszewskifor their assistance in preparing the �nal manuscript.References[1] K. Arnold and J. Gosling. The Java LanguageSpeci�cation. Addison-Wesley, 1996.[2] K. M. Chandy and C. Kesselman. CC++: Adeclarative concurrent object oriented program-ming notation. In Research Directions in ObjectOriented Programming, pages 281{313. The MITPress, 1993.[3] T. DeFanti, I. Foster, M. Papka, R. Stevens, andT. Kuhfuss. Overview of the I-WAY: Wide areavisual supercomputing. International Journal ofSupercomputer Applications, 10(2):123{130, 1996.[4] Darin Diachin, Lori Freitag, Daniel Heath, JamesHerzog, William Michels, and Paul Plassmann.8

Remote engineering tools for the design of pollu-tion control systems for commercial boilers. Inter-national Journal of Supercomputer Applications,10(2), 1996.[5] T. L. Disz, M. E. Papka, M. Pellegrino, andR. Stevens. Sharing visualization experiencesamong remote virtual environments. In Interna-tional Workshop on High Performance Computingfor Computer Graphics and Visualization, pages217{237. Springer-Verlag, 1995.[6] I. Foster, J. Geisler, C. Kesselman, andS. Tuecke. Multimethod communication for high-performance metacomputing applications. In Pro-ceedings of Supercomputing '96. ACM Press, 1996.[7] I. Foster, J. Geisler, W. Nickless, W. Smith, andS. Tuecke. Software infrastructure for the I-WAYhigh-performance distributed computing experi-ment. In Proc. 5th IEEE Symp. on High Per-formance Distributed Computing, pages 562{571.IEEE Computer Society Press, 1996.[8] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-WAY: A wide-area, multimethod implementationof the Message Passing Interface. In Proceedingsof the 1996 MPI Developers Conference, pages 10{17. IEEE Computer Society Press, 1996.[9] I. Foster and C. Kesselman. Globus: A metacom-puting infrastructure toolkit. International Jour-nal of Supercomputer Applications, 1997. to ap-pear.[10] I. Foster, C. Kesselman, and S. Tuecke. The Nexusapproach to integrating multithreading and com-munication. Journal of Parallel and DistributedComputing, 37:70{82, 1996.[11] David Gelertner. Mirror Worlds. Oxford Univer-sity Press, 1991.[12] Object Management Group. Common ob-ject request broker architecture speci�cation.http://www.omg.org.[13] C. Lee, C. Kesselman, and S. Schwab. Near-realtime satellite image processing: Metacomput-ing in CC++. Computer Graphics and Applica-tions, 16(4):79{84, 1996.[14] Sun Microsystems. Remote method invo-cation and object serialization speci�cations.http://www.javasoft.com.[15] Mark Weiser. Hot topics: Ubiquitous computing.IEEE Computer, 26(10), October 1993. 9

	Loyola University Chicago
	Loyola eCommons
	6-1997

	Technologies for Ubiquitous Supercomputing: A Java Interface to the Nexus Communication system
	Ian Foster
	George K. Thiruvathukal
	Steven Tuecke
	Recommended Citation

	tmp.1322191323.pdf.V3hmb

