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Abstract 

Meta-analysis multiplicity, the concept of conducting multiple tests of statistical significance 

within one study, is an underdeveloped literature (Tendal, Nüesch, Higgins, Jüni, & Gøtzsche, 

2011). We address this issue by considering how Type I1 errors can impact meta-analytic results, 

suggest how statistical power may be affected through the use of multiplicity corrections, and 

propose how meta-analysts should analyze multiple tests of statistical significance. The context 

for this study is a meta-review of meta-analyses published in two leading review journals in 

education and psychology. Our review of 130 meta-analyses revealed a strong reliance on 

statistical significance testing without considering of Type 1I errors or the use of multiplicity 

corrections. In order to provide valid conclusions, meta-analysts must consider these issues prior 

to conducting the study.  

Keywords: Meta-analysis; Sstatistical significance testing, multiplicity corrections, Type I 

errors, moderator analyses, power analysis, review of reviews.   
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The Use of Meta-Analytic Statistical Significance Testing 

 The concept of multiplicity, conducting multiple tests of statistical significance within 

one study, has received much attention in primary research over the last seven decades 

(Hochberg & Tamhane, 1987; Keselman, Cribbie, & Holland, 1999; Neyman & Pearson, 1928; 

Tukey, 1949). The major focus of this attention is due to the fact that conclusions derived from 

multiple tests have an increased probability of falsely rejecting a true null hypothesis (i.e., Type 

1I error). Researchers and statisticians, as such, have developed methods to control the 

probability of making such false conclusions. Far less research, however, has been conducted on 

multiplicity in meta-analysis (Tendal, Nüesch, Higgins, Jüni, & Gøtzsche, 2011). In fact, 

multiple calls have been made for meta-analysis methodologists to address this important issue 

(Bender et al., 2008; Sutton & Higgins, 2008), yet few scientific advances have been put forth 

since Hedges and Olkin’s (1985) discussion of this topic.  

Given the prolific dissemination and increased usage of meta-analysis (Williams, 2012), 

it is paramount to investigate and ensure the validity of reviews’ results. Matt and Cook (2009) 

developed a validity framework for meta-analytic results using the paradigm delineated in Cook 

and Campbell (1979) for primary studies. One threat discussed by Matt and Cook is the threat of 

“capitalizing on chance in meta-analysis” (pg. 544). They summarized the inherent problem: 

“Although research syntheses may combine findings from hundreds of studies and thousands of 

respondents, they are not immune to inflated tType 1I error when many statistical tests are 

conducted without adequate control for error rate” (pg. 545). A second issue raised by Matt and 

Cook (2009) is the lack of statistical power for detecting an association. The statistical power for 

any meta-analytic test depends on the number of studies, the sample sizes within studies, the size 

of the effect of interest, and for random effects models, the between-studies variance component 

(Hedges and Pigott, 2001; 2004). The power or Type II error rate within a meta-analysis also 
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depends on the type of test conducted, with the test of the mean effect size generally having more 

power than tests of moderators in effect size models. 

While researchers have been concerned with both Type I and Type II errors in meta-

analysis, few researchers have examined both issues simultaneously. For example, Bender et al. 

(2008) identified some of the reasons for multiplicity, but did not investigate the prevalence of 

the problem nor its impact on power. Cafri, Kromrey, and Brannick (2010) studied the extent of 

Type 1I and Type II errors through a systematic review of meta-analyses in psychology. The 

authors randomly selected a relatively small subset of studies (n = 13) for analysis. The results 

indicated that only 14% of statistical tests had power less than .80 (pg. 252), and up to 78% of 

the studies’ conclusions could be the product of Type 1I errors. While the authors investigated 

both Type I and Type II errors in meta-analyses, they did not discuss these issues 

simultaneously. Though reviewers could make corrections for Type I error rates across a meta-

analysis, few researchers have acknowledged the simultaneous impact on power when adjusting 

for Type I error rates. The prevalence of statistical tests in meta-analysis and their consequences 

for both Type I and Type II error is the concern of this paper.  

We have three aims in this paper. First, the paper reviews the kinds of tests used in meta-

analysis, and discusses the problems with Type I and Type II error rates when multiple tests are 

conducted. Second, the paper updates the review of meta-analyses by Cafri et al. (2010) to 

examine the prevalence of multiplicity in both psychology and education reviews. This larger 

sample of meta-analyses in these two areas allows the examination of the potential for Type I 

errors, and the subsequent impact on power when adjusting for Type I error rate. Third, given the 

prevalence of statistical testing in meta-analyses, we suggest a framework for categorizing 

families of tests in order to plan for optimal levels of Type I and Type II errors. We believe this 
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paper will elucidate further the issue of significance testing in meta-analyses as well as serve to 

inform the community of current and past practices so as to produce more meaningful 

methodological policy.  

Background 

Statistical Significance Testing in Meta-Analysis 

 In some methods of meta-analysis (Borenstein, Hedges, Higgins, & Rothstein, 2009), A 

number of statistical significance tests coincide with each quantitative synthesis phase 

(Borenstein, Hedges, Higgins, & Rothstein, 2009). Each of these tests follows the traditional null 

hypothesis testing framework from a frequentist perspective (Cohen, 1994; Howell, 2006). 

Several test statistics pervade the meta-analytic literature as illustrated in Table 1. Notably, 

Hunter and Schmidt (2004) suggested confidence intervals in place of statistical significance 

tests.  

Generally speaking, the reviewer usually begins by conducting a z-test to determine 

whether the average effect size differs significantly from zero. The meta-analyst then tests the 

overall distribution of effect sizes for homogeneity (the second row of Table 1). Given 

significant appropriate variation in the distribution of effect sizes, the meta-analyst has a number 

of choices to explain the variability: subgroup analyses, categorical moderator analyses using the 

Q-Between and Q-Within statistics, pairwise comparisons, and meta-regression models (the 

remaining rows of Table 1). Each type of analysis uses a test statistic to determine whether the 

effect occurred by chance. A test statistic greater than or equal to a pre-determined critical value 

provides information to reject the null hypothesis.  

 The framework of testing for statistical significance at each stage will result in a number 

of tests of statistical significance being conducted in each study. For example, a typical meta-

Formatted: Indent: First line:  36 pt
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analysis in education or psychology may examine a number of different outcomes, and thus 

conduct a series of tests for each of these outcomes such as a test of the overall effect size, a test 

of homogeneity, and a number of subgroup tests if there are sufficient numbers of studies that 

examine this outcome.  The consequence of conducting multiple tests of statistical significance is 

a higher probability of Type I1 errors. Tukey (1949) deemed the error rate within an experiment 

(i.e., a single study) the family-wise error rate. This can be shown as:  

Family-wise error rate (FWER) = 1 – (1 – α’)
c
 (EQ 1) 

where α’ is the analysts’ chosen alpha level for a given comparison (e.g., α’ = .05), and c is the 

number of statistical tests. EQ 1 represents a strong control of Type 1I error rate, or the 

assumption that Type 1I errors can be controlled under any combination of true and false null 

hypotheses (Dudoit, Shaffer, & Boldrick, 2003). In other words, in EQ 1, we assume that 100% 

of the null hypotheses are true, and we want our error rate across these tests to be constant. In 

practice, however, we may hypothesize that less than 100% of the null hypotheses are true, 

presumably guided by prior research. Such a scenario, where less than 100% of null hypotheses 

are presumed to be true, represents weak control, and is represented by an adaptation to EQ 1: 

FWER* = 1 – (1- α’)c*p (EQ 2) 

where p represents the proportion of true null hypotheses proposed (Dudoit et al., 2003). When p 

= 1.0 or 100% of true null hypotheses, EQ 2 simplifies to EQ 1. Figure 1 illustrates the FWER 

under different assumptions about p, the percentage of null hypotheses that are true. When 100% 

of the null hypotheses are true (p=1.0), our FWER increases steeply so that our chances of 

making a Type I error is .5, or 50% when conducting between 10 and 15 tests. If we assume that 

only 1% of our null hypotheses are true (p=0.1), then we are much less likely to commit a Type I 

error even after conducting 90 tests. Thus, our FWER depends not only on our choice of alpha 
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(α) but also on the number of null hypotheses we consider are true. This will be an important 

consideration in thinking about the impact of multiplicity on power in meta-analysis. 

Type I1 Error Rate Control  

Many corrections, adjustments, and modifications to statistical tests have been proposed 

in primary studies in order to control Type I error rate for multiple hypothesis testing, and any 

could be proposed for use in meta-analysis (see Keselman, Miller, & Holland, 2011 for a 

review). The major strategy for these corrections is to decrease the critical p-value to a level less 

than the original nominal level. The corrections limit Type 1I errors by making it more difficult 

to reject a null hypothesis.  

Hedges and Olkin (1985) hypothesized the use of two such techniques for Type I error 

control in meta-analysis. The first advocated by Hedges and Olkin, the Bonferroni correction, is 

formally written:  

α* = 
�

� 
 (EQ 3) 

where α* is the researcher’s new alpha level, α is the researcher’s alpha level for the family of 

comparisons, and c is the number of comparisons. The researcher simply divides the alpha 

(usually .05) by the number of comparisons, α* = 
.��

 �
 = .01. The procedure is identical to the 

primary study procedure and therefore encounters similar problems (i.e., too conservative with 

many comparisons; Hochberg, 1988). The second method advocated by Hedges and Olkin 

(1985) was Scheffe’s S (1959) procedure. The meta-analyst compares the squared z-statistic 

against a chi-square distribution with degrees of freedom equal to the number of comparisons 

minus 1. For example, if the researcher is interested in 6 comparisons, the researcher would use 

the chi-square with 5 df for the critical value; thus, the squared z-statistic must exceed 11.05 to 

reject the null hypothesis. A third suggestion comes from Borenstein et al. (2009) who advocated 
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for decreasing the alpha level to .01. Borenstein et al. argued that increased usage of statistical 

tests, as well as an increase in perceived power, provided ample leverage to suggest the decrease 

in alpha. The logic of decreasing the alpha value to .01 follows Fisher’s (1935) originally 

suggested values. Yet, Borenstein et al. failed to provide an explanation as to why the p-value of 

.01 was chosen beyond convention.  

The Relationship between Type 1I Error Rate Controls and Power 

When a researcher applies corrections to control for Type I error rates, there will be a 

corresponding impact to the power of the statistical tests. To illustrate the relationship between 

power and the Bonferroni correction in the context of meta-analysis, let us first delineate the 

equation for the power of the overall z-test for the meta-analytic main effect: 

p = 1 – Φ(cα – λ) (EQ 4) 

where cα represents the 100(1-α) critical value from the standard normal distribution, Φ(x) is the 

standard normal cumulative distribution function, and λ represents the noncentrality parameter 

and provides evidence against the null the hypothesis. Please not the model varies slightly given 

different assumptions of the distribution of effect sizes (i.e., fixed- vs. random-effects models). 

Valentine, Pigott, and Rothstein (2010) provide the exact values for formulas comput for 

computing ing the noncentrality parameter under these scenariosa number of scenarios.   

 As can be readily seen from EQ 4, power is closely related to the critical value, cα, 

chosen. Traditionally, pPower analyses traditionally keep constant this parameter and vary the 

noncentrality parameter to measure the impact of effect size magnitude or variance on power. 

However, Oone may also vary the critical value as a function of the number of statistical tests, as 

is done using the Bonferroni correction. Figures 2 and 3illustrates show how the power of the 

overall z-test varies as function of the number of tests conducted, and the number of studies 
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included in the meta-analysis. Each graph illustrates the power to detect an effect size of .2 and a 

within-study sample size of 50 for the treatment and control groups. We varied the size of the 

meta-analyses to be 10, 20, and 40 studies. The upper quadrants represent a fixed effect analysis. 

The lower quadrants represent a random-effects analysis, where heterogeneity is moderate 

(Pigott, 2012; I2 = 75%). The right-hand quadrants use alpha values of .05, while the left-hand 

quadrants use values of .01. Figure 2 uses a critical values of .05 and Figure 3 uses the .01 

critical value. We then adjusted these critical values using the Bonferroni procedure, dividing the 

critical value by the number of statistical tests (e.g., 1-20).  

 As seen in Figure 2, the power to detect an effect size of .2 is quite large given a 

moderate number of studies (k = 20 and above and 40). For example, using the Bonferroni 

corrected critical value of .0025 for 20 significance tests (.05/20), under the fixed-effect 

framework, would still result in power of .95. Using the smaller original critical value of .01 as 

in Figure 3 would results in a much lower critical value given 20 tests of statistical significance 

(α* = .01/20 = .0005); however, the resulting power to detect a main effect only decreases to .88, 

above what is generally considered the nominal level of .80. With a smaller number of studies 

(k=10), however, the power is much reduced. Indeed the power of the test using the .0025 critical 

value in Figure 2 drops to .64 and decreases substantially to .45 in Figure 3 using the critical 

value of .0005. The power to detect significant effects under a random-effects model, intuitively, 

is always lower.   

 The above illustration shows the interplay between power and Type I error corrections in 

the context of meta-analysis for the overall z-test of the mean effect size. As seen in the next 

section of the paper, there are a number of other tests that are conducted routinely in meta-

analysis that are generally less powerful than the test of the mean effect size, and thus the power 

Comment [JRP1]: if we change the graphs, this 

would need to be changed to reflect type 2 errors 

instead of power 
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of those tests will be more impacted by corrections for Type I error rate. The next section 

presents results from a review of reviews designed to examine the prevalence of statistical tests 

conducted, the typical rates of Type I error, and the potential impact on power of adjusting for 

those error rates.  

The Prevalence of Statistical Tests in Meta-Analyses in Psychology and Education 

 Cafri, Kromey & Brannick (2010) conducted what they called a meta-meta-analysis or a 

meta-review or umbrella review (Cooper & Koenka, 2012) in meta-analyses in psychology to 

illustrate the typical statistical power, Type I error rates, and other practices used. In this section, 

we examine both psychology and education meta-analyses to understand the number and types 

of statistical tests conducted. Knowing the prevalence of particular types of statistical tests can 

guide the development of a framework for planning meta-analyses for optimal levels of both 

Type I error and power. 

Sampling Frame 

 Published meta-analyses served as the primary observational unit. Included reviews were 

published from 1986-2011 in either Psychological Bulletin (PB) or the Review of Educational 

Research (RER). The date parameters were chosen because they represented the era when meta-

analysis grew in popularity and the field established a primary set of recommendations and 

procedures. These journals were chosen purposively for a number of reasons. First, these 

journals published reviews that were relevant to psychology and education, our main substantive 

interests. Second, the journals offered high quality studies that underwent an intensive peer-

review process.  

Inclusion/Exclusion Criteria 
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 The reviews must have met several criteria to be included in the sample. First, the 

reviews must have been a quantitative synthesis (i.e., meta-analysis) and not merely a systematic 

review. Studies that reviewed other meta-analyses (e.g., meta-reviews, umbrella reviews, etc.) 

were also eliminated. Second, the review must have utilized a technique that combines effect 

sizes to calculate point estimates and confidence intervals (or have the potential to calculate 

confidence intervals). This eliminated vote counting procedures or descriptive studies. Third, the 

studies must have presented the results of the synthesis in a quantitative manner.  

 The selection process followed two stages. The first author screened all titles and 

abstracts for potential reviews. Citations that appeared to meet the inclusion criteria were 

downloaded and fully screened. The studies that met the inclusion criteria listed above were 

included. Due to the large number of studies included, we found it necessary to sample from this 

included population. To ensure that the sample of studies represented the populations, we 

utilized a stratified-random sampling technique. The date of publication and publication outlet 

served as the two main strata. This sampling design constituted a 2x2 sampling frame. 

Proportional allocation (Lohr, 1999) was used to maintain the unbalanced samples across the 

strata. We sampled meta-analyses, rather than to select all meta-analyses, to reduce the burden of 

coding.  

Coding 

 A codebook was constructed to extract study-specific information in a standardized 

manner. Four major sections guided the coding process. The first section coded basic 

information about the review. The second section detailed the study’s meta-analytic 

characteristics. This section extracted specific information on the number of statistical tests and 

syntheses. In order to be counted as testing a hypothesis, the review authors must have presented 
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p-values or its equivalent (i.e., an asterisk to represent a p-value). Hypotheses where the review 

author reported only a confidence interval were not counted as conducting a significance test 

(e.g., Hunter & Schmidt, 2004, meta-analyses). In addition, each independent synthesis was 

coded separately. For instance, if the review authors split the effect sizes into two groups (e.g., 

by the outcome), then each synthesis was coded separately. For each synthesis, then, the first 

author coded the type and number of significance tests. 

Analysis 

 We conducted several analytic procedures to answer the research questions sufficiently. 

To understand the reliance and prevalence of statistical tests, we first present the descriptive 

results conditional on the publication outlet. These results included the number of statistical test 

utilized by the type of test. In addition, an examination of the use of multiplicity corrections was 

provided. Based on the number of statistical tests conducted, we also evaluated the probability of 

committing a Type 1I error under differing assumption of the proportion of true null hypotheses 

(100% and 10%). The calculations for this statistic were provided in Equations 1 & 2. The 

descriptive analyses were conducted using SPSS version 21 (IBM Corp., 2012); the figures were 

drawn using EXCEL.  

Results 

 We scanned and screened every article from every issue of PB and RER from 1986 – 

2011. PB citations represented 74.2% of the total and therefore were selected with the same 

proportionality. To ensure proportionality by publication date, we selected the greatest 

proportion of studies from 2000-2011 within the PB strata (42.6%). The second highest 

proportion derived from PB within the 1986-1999 year range (31.6%). Only 10.4% and 15.4% of 

the total citations selected derived from RER during the years of 1986-1999 and 2000-2011, 
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respectively. A total of 130 articles were included in the review (list available upon request from 

the authors). 

Descriptive Overview 

 Of the 130 articles reviewed, 96 (73.8%) were published in PB and 34 (36.2%) in RER 

(Table 2). Half of the reviews indicated that they received at least partial financial contributions 

(PB = 53.1%, RER = 47.1%). The two journals differed with respect to the types of reviews 

published. PB included a substantial portion of observational reviews (i.e., correlational; 74.0%) 

while RER published more experimental studies (i.e., intervention reviews; 70.6%). More 

reviews in RER were considered updates (44.1%) relative to PB (21.9%).  

 Several other relevant findings related to the methodological quality of reviews are 

important to note. While most studies that reported a model specification utilized a random-

effects model (PB = 29.2%, RER = 32.4%), many studies failed to report the underlying model 

(PB = 10.4%, RER = 47.1%). Very few reviews conducted or discussed any type of power 

analysis (PB = 3.1%, RER = 0%). Only a small proportion reported the p-values for all statistical 

analyses (PB = 22.9%, RER = 14.7%), and an even smaller portion of studies discussed the 

possibility of multiplicity, Type 1I error rates, or statistical significance tests (PB = 9.4%, RER = 

0%).  

 Finally, only a small portion of reviews utilized a multiplicity correction or adjustment 

(PB = 18.8%, RER = 20.6%). The most popular way to combat Type 1I errors, when a correction 

was utilized, was to simply adjust the alpha level to something less than the nominal .05 (PB = 

55.6%, RER = 57.1%). In PB, one-third of studies that used a correction used the Bonferroni, a 

larger portion of studies relative to its use in RER (14.3%). Scheffe’s correction and the False 

Discovery Rate were also utilized once by each publication. Overall, the review authors were 



META-ANALYTIC STATISTICAL SIGNIFICANCE TESTING  14 

 

unlikely to utilize a correction and when they did, it was often the nominal step of adjusting the 

alpha level. 

Statistical Test Usage 

  We examine statistical test usage following the organization of Table 1. Statistical 

significance tests were relied upon heavily across both sources (Table 3). On average, reviews 

published in PB conducted 67.94 tests of significance (SD = 105.51), while reviews in RER 

conducted 51.85 (SD = 49.17). The average meta-analysis in PB included 7.17 tests of the 

statistical significance of the effect size (SD = 14.00); similar results were revealed for RER (M 

= 7.09, SD = 30.32). When reviewers use a test of the mean effect size, this typically indicates a 

“split,” or an independent meta-analysis within a larger systematic review. Thus, in both PB and 

RER, reviewers conducted an average of seven meta-analyses. This might occur, for example, by 

analyzing outcomes types separately such as splitting academic measures from attitudinal ones. 

Relatedly, reviews in PB conducted 11.43 tests of effect size homogeneity (SD = 16.71), while 

RER conducted only 2.69 (SD = 3.34).  

 Of particular interest is the number of moderator tests conducted as seen in the later rows 

of Table 3. Reviewers in PB and RER each conducted a relatively large number of Q-Between 

significance tests (PB = 9.11, RER = 11.00), which are used to test differences between mean 

effect sizes in an ANOVA model. With regard to the number of Q-Within tests conducted, PB 

meta-analyses reported a higher number (M = 16.79, SD = 33.68) relative to RER studies (M = 

4.24, SD = 10.94). Although differences may well exist, an alternative hypothesis is that RER 

authors fail to report the results of these significance tests. The results revealed differences less 

severe with regard to subgroup comparisons (PB = 12.05, RER = 17.32) and meta-regression 

analyses (PB = 11.39, RER = 9.53).  
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 Table 4 provides the family-wise error rates (FWER) under two assumptions about the 

proportion of true null hypotheses for the number of tests in Table 3. The table presents the 

average FWER under two assumptions of the proportion of true null hypotheses: p=1.0 and 

p=0.1 (EQs 2 & 3), and confidence intervals for these average FWER values using bootstrap 

techniques. The probability of committing a le Type I1 error rate, given the assumption of 100% 

true null hypotheses, was high for both PB and RER meta-analyses, not surprisingly, because of 

the large number of statistical tests conducted (Table 4). The FWER for PB reviews ranged from 

a low of .20 (95% C.I. = .15, .25) for the overall effect sizes to a high of .30 (95% C.I. = .25, .37) 

for the overall homogeneity calculations. For RER reviews, the FWER rate ranged from a low of 

.11 (95% C.I. = .06, .19) for the overall effect sizes to a high of .31 for Q-Between tests (95% 

C.I. = .21, .42). The FWER decreases significantly when the assumption of true null hypotheses 

decreases to only 10% (EQ 3 with p=0.1). For PB and RER, the FWER decreases to only 3% for 

the overall tests of the average effect.  

A Proposed Framework for Multiple Hypothesis Testing and Power in Meta-analysis 

 Clearly, review authors rely on statistical significance testing at each stage of the 

quantitative synthesis. What is not clear is how to handle the subsequent Type 1I error rates 

while maintaining sufficient power for meta-analysis. Power for any correction for multiple 

hypothesis testing will depend not only on the usual parameters (within-study sample size, alpha 

level, effect size of interest) but also on the assumptions we make about the number of true null 

hypotheses. Although it is tempting to posit that only 10% of the null hypotheses are in fact true, 

this may not be a fair assumption for some types of tests. Of course, should we allow for 100% 

of true null hypotheses and decide instead to use a correction procedure, we must be cautious not 

to decrease power beyond a reasonable level. Given the myriad decisions, we believe that these 



META-ANALYTIC STATISTICAL SIGNIFICANCE TESTING  16 

 

decisions should be dictated a priori, similar to the ways in which an author provides 

inclusion/exclusion criteria.  

 To help guide reviewers, we propose a preliminary framework for planning for the power 

of multiple hypothesis tests in meta-analysis. In order to think about power for multiple 

hypothesis tests, we need to group the tests so that we can compute both the FWER and the 

impact on power of any potential correction for multiple hypothesis testing. Our proposed 

grouping is informed by our review of meta-analyses in PB and RER. One preliminary 

suggestion might be to correct for multiple hypothesis testing by correcting for all possible 

statistical tests in a given meta-analysis. As seen in Table 3, we could potentially be applying 

corrections for a median of 50 tests. Another strategy, and one that we will describe here, is to 

group the tests in terms of the type of test, as outlined in Table 1. Using the groupings in Table 1 

allows us to make different kinds of assumptions about the proportions of null hypotheses that 

are true for different types of tests. We propose a framework that groups sets of statistical tests 

based on the rows of Table 1. Each of these sets of tests would be considered a family of tests, so 

that, for example, we correct for Type I error across all tests of the statistical significance of the 

mean effect size, apply another Type I error correction across all tests of homogeneity, etc.  

Within each family of tests, we would need to think about our optimal FWER. This 

consideration should include both the number of true null hypotheses we expect and the 

consequences of committing a Type I error. Let us take the case of a family of tests for the 

statistical significance of the mean effect size. In many cases, especially in intervention meta-

analyses, we might expect that many effect sizes are indeed statistically different from zero. 

Lipsey and Wilson (1993) surveyed 302 meta-analyses and found that only 6 of the 302 yielded 

average effect sizes less than 0 (i.e., harmful treatment effects). Based on this information, it may 
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be reasonable to propose that a proportion of null hypotheses are indeed false. Thus, we might 

want to decide, given the likely outcomes in the studies, which effect sizes are different from 

zero and have null hypotheses that are probably false. In this case, we may plan for a FWER that 

allows for less than 100% of null hypotheses as true.  

In the case of families of tests of Q-between, for example, we might make a different 

choice. We might have a number of potential moderators that we wish to test within each set of 

outcomes. As seen in Table 3, reviews in PB had an average of about 10 Q-between tests. We 

might not have any idea if any of the moderators are related to effect size variation, and thus may 

want to be more conservative in our statistical testing. Here we might want to have strong control 

on Type I error by assuming all null hypotheses are true. In this case, we would choose strong 

control in our FWER. 

Table 5 shows a range of FWER for different assumptions about the number of true null 

hypotheses using a study in our sample by Archer (2000). Archer (2000) synthesized 82 studies 

that measured the gender difference in aggression between heterosexual partners. When we 

assume strong control, i.e., when we assume 100% true null hypotheses, all of the FWER for 

each of the four groups of tests is larger than the nominal 5% error rate. As we relax our 

assumptions about the number of true null hypotheses, our FWER is reduced, but is not close to 

the 5% error rate until we assume only 1% of true null hypotheses. If we are interested in 

maintaining a Type I error rate of 5%, we would need to apply a multiplicity correction 

particularly in the cases where we assume 100% or 50% true null hypotheses. 

The type of multiplicity correction applied will impact the overall power of our tests. To 

illustrate the impact of multiplicity corrections on power, we again use the data from Archer 

(2000). In the Archer study, all five of the outcomes were statistically significant using the p < 
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.05 critical value. Table 5 also shows the impact on average power for the four types of statistic 

tests when we use two different multiplicity correction procedures: a) reduce the level of α to 

0.01 as suggested by Borenstein et al. (2010), and b) Bonferroni corrections to ensure that the 

FWER is either 0.05 or 0.01. Looking first at the test for the average effect size, we see that each 

multiplicity correction procedure would result in one less effect size that is considered 

statistically significant. In addition, the average power across the five tests of average effect size 

remains high. The conclusions reached for the five tests of homogeneity are not changed using 

any of these procedures, and all have sufficient average power. The situation is different, 

however, for the tests used for moderator analyses. While 22 out of 37 Q-between tests were 

statistically significant at the 0.05 level, this number decreases to 19 if we use α=0.01, and to 14 

and 13 when we use the Bonferroni correction to keep the FWER to 0.05 or 0.01, respectively. 

The average power of the Q-between tests under the correction procedures is not close to 

nominal levels, with the highest average power occurring with decreasing alpha to 0.01. Similar 

results occur with Q-within tests, though the power of these tests is closer to acceptable levels. 

In this example, applying multiplicity corrections has different impacts on both the 

number of tests considered statistically significant as well as the power to conduct these tests. 

While tests of the average effect and overall homogeneity may be less prone to Type I and Type 

II errors, tests such as the Q-between and Q-within associated with moderator analyses are more 

susceptible to Type I and Type II errors due to the number of tests conducted. The overall lower 

power and Type I error problems with moderator analyses typically occur due to the large 

number of these tests that are conducted in a typical meta-analysis, and to the smaller number of 

studies usually available to conduct these tests. There may also be cases where we are not as 

concerned about our FWER, such as when we assume that only a small proportion of our null 
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hypotheses are true. When we assume that a large proportion of the null hypotheses for the 

overall average effect are likely to be false, we may not need to apply multiplicity corrections. 

Discussion 

 Our review of reviews along with Cafri et al.’s (2010) review clearly demonstrate the 

large number of statistical tests that are conducted in meta-analyses in high quality journals in 

psychology and education. Despite the number of tests conducted, less than 20% of all studies 

utilized a correction technique, and even fewer considered the impact of Type 1I errors on the 

results (6.9%). The average review in PB and RER conducted a high number of statistical 

significance tests (M: PB = 67.94, RER = 51.85). The resulting family-wise error rate, across all 

tests, was large enough to warrant caution of the findings. The remarkable irony of this 

conclusion is that meta-analysis is often lauded as an ends to remove all statistical significance 

testing. Indeed, Schmidt (1996) believed that meta-analysis would render the use of statistical 

significance testing null. The use of meta-analysis, Schmidt said, “…reveals more clearly than 

ever before the extent to which reliance on significance testing has retarded the growth of 

cumulative knowledge in psychology” (pg. 116). Paradoxically, the increased use of meta-

analysis may have inadvertently increased the use of statistical significance testing.  

 Reviewers should not apply multiplicity corrections, however, without attention to both 

assumptions about the optimal FWER for a set of tests as well as the potential impact on the 

power of the tests. As illustrated in our example, reviewers may assume that most of the null 

hypotheses for the overall effect size and overall homogeneity may in fact be false, and thus do 

not warrant multiplicity corrections. Tests for moderator analyses may be more susceptible both 

to Type I errors and lower power; researchers need to be cautious in their use and interpretation 

of these tests. We have proposed that reviewers treat the types of tests in a meta-analysis as a 
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family, and make decisions about optimal FWER as well as multiplicity corrections in relation to 

these groups of tests. 

 One suggestion for the practice of meta-analysis is to reduce the use of statistical tests by 

planning a priori the analyses that will be conducted. Though reviewers can never be sure about 

the numbers of studies that will be eligible for the review or the characteristics of those studies, 

understanding the nature of the research conducted in a given field can inform decisions about 

optimal levels of FWER and about the kinds of multiplicity corrections that would be needed. 

The recently developed quality appraisal tool for meta-analyses, indeed, asks reviewers to 

consider the ramifications of multiplicity specifically (Higgins et al., 2013).  

 We also advocate for a standardized means to test moderators. From the standpoint of 

decreasing multiplicity in meta-analysis, meta-regression is the logical choice. The model 

decreases statistical testing because it simultaneously conducts multiple tests. Moreover, the 

model inherently controls for all other predictors in the model, and therefore provides a more 

precise result. We should caution readers, however, that meta-regression has several egregious 

issues; and these should be weighed against the probability of committing Type 1I or 2II errors. 

As a result, we might also suggest two-way ANOVA models to test for the presence of 

interactions. 

 Finally, we should mention that avoiding statistical significance testing altogether is a 

worthy alternative. The journal Psychological Science, in fact, initiated a new policy to reduce 

and eventually eliminate the use of null hypothesis significance testing (Cumming, 2014). Hunter 

and Schmidt (2004) advocated for the use of confidence intervals, in lieu of p-values, as well as a 

reliance on the clinical significance of effect sizes. Moderator analyses are handled through a 

purely descriptive approach, where differences between subgroup are not tested for statistical 
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significance. Alternatively, Sutton and Abrams (2001) espoused the Bayesian methodological 

approach. Using this framework completely eliminates the need for significance testing.  

Limitations 

 A number of limitations about this project should be considered. For instance, it is 

feasible that PB and RER attract meta-analyses where the literature is developed and plentiful, 

therefore leading review authors to assume it is reasonable to conduct a high rate of significance 

testing. This is partially confirmed by the fact that reviews that included more than the average 

number of studies tended to conduct more significance tests. Similarly, review authors might 

choose to publish their findings in PB or RER because they included a large number of studies. 

Given these concerns, one should limit generalizability hypotheses. 

 One critical limitation to consider is whether Type 1I errors are a problem in meta-

analysis at all. At least with regard to the overall average effect size, the goal is to collect and 

synthesize the population of effect sizes across every available resource. As such, it is not clear 

whether the distribution of effect sizes is subject to traditional frequentist logic inherent in 

primary study inference testing. What is not in question, however, is the Type 1I errors 

associated with conducting moderator analyses. The conclusions drawn from multiple one-way 

ANOVAs should be considered highly suspect under the condition that many such tests are 

conducted. 

Conclusions 

 The conceit of this project was to investigate whether statistical significance testing is a 

problem worth addressing in meta-analysis. It seems clear, given the high rate of null hypothesis 

significance testing coupled with the egregious lack of correction, Type 1I errors can and will 

impact the validity of meta-analytic results. Instead of blindly correcting for Type 1I errors, 
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however, we must consider the impact of these corrections on power and balance both these 

concerns. As with any statistical analysis, an a priori protocol of the tests to be conducted as well 

as a power analysis is advised. Meta-analysis methodologists and practitioners simply cannot 

afford to ignore these issues while simultaneously promoting the promise of the paradigm’s 

results. We must take action to prevent any doubt about the results of meta-analysis. 
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Table 1. Types of Statistical Tests in Meta-Analysis 

Type Description Test Distribution 

Overall Effect Size H0: ES = 0; Tests whether the effect size differs from 

zero 

Z 

Overall Homogeneity H0: Q = 0; Tests whether the homogeneity of effect 

sizes differs greater than from sampling error alone 

Chi-square 

Subgroup Effect Size H0: ES = 0; Tests whether the subgroup’s effect size 

differs from zero (Can be independent or dependent 

subgroup) 

Z 

Subgroup Homogeneity H0: Q = 0; Tests whether the subgroup’s homogeneity 

of effect sizes differs greater than from sampling error 

alone (Can be independent or dependent subgroup) 

Chi-square 

Subgroup comparisons H0: ES1 – ES2 = 0; Tests for the difference between 

subgroups 

Z 

Moderator analysis: Q-Between H0: QB = 0; Tests whether the variance of the 

subgroups is greater than sampling error alone 

Chi-square 

Moderator analysis: Q-Within H0: QW = 0; Tests whether the variance within each 

subgroup is greater than sampling error alone 

Chi-square 

Meta-regression: Model fit statistics H0: Q = 0; Tests whether at least one variable has a 

significant relationship with the outcome 

F 

Meta-regression: Parameter estimates H0: β = 0; Tests whether the slope of the regression 

line is greater than sampling error 

Z or t 
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Table 2. Characteristics of Included Reviews 

 Total Psychological 

Bulletin 

Review of 

Educational 

Research 

 N % N % N % 

N 130  96  34  

Funded  67 51.5 51 53.1 16 47.1 

Type       

  Experimental 43 33.1 19 19.8 24 70.6 

  Observational 80 61.5 71 74.0 9 26.5 

  Other 7 5.4 6 6.3 1 2.9 

Update       

  Yes 34 26.2 21 21.9 15 44.1 

  No 79 60.8 64 66.7 13 38.2 

  Partial 17 13.1 11 11.5 6 17.6 

Model specification       

  None 26 20.0 10 10.4 16 47.1 

  Fixed and Random 10 7.7 8 8.3 2 5.9 

  Fixed 15 11.5 10 10.4 5 14.7 

  Random 39 30.0 28 29.2 11 32.4 

Power analysis 3 2.3 3 3.1 0 0 

Report all p-values 27 21.0 22 22.9 5 14.7 

Discuss multiplicity 9 6.9 9 9.4 0 0 

Multiplicity Type I error 

correction used 

25 19.2 18 18.8 7 20.6 

Technique       

  Adjust alpha level 14 56.0 10 55.6 4 57.1 

  Bonferroni 7 28.0 6 33.3 1 14.3 

  Scheffe 2 8.0 1 5.6 1 14.3 

  False Discovery Rate 2 8.0 1 5.6 1 14.3 

Number of primary studies  32 53.5 33 65 30 29.5 

Notes: Percentages may not add to 100% due to rounding; Number of primary studies 

represented bys the median and interquartile rangee.  

Formatted Table
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Table 3. Number of Statistical Significance Tests by Publication Source 

 Psychological Bulletin Review of Educational Research 

 Mean (S.D.) 95% C.I. Median Mean (S.D.) 95% C.I. Median 

Overall ES 7.17 (14.00) 4.34, 10.01 1.50 7.09 (30.32) 0, 17.67 1.00 

Overall Homogeneity 11.43 (16.71) 8.04, 14.82 4.00 2.69 (3.34) 1.51, 3.84 1.50 

Q-Between 9.11 (18.38) 5.39, 12.84 0.00 11.00 (16.16) 5.36, 16.63 0.00 

Q-Within 16.79 (33.68) 9.96, 23.62 0.00 4.24 (10.94) .41, 8.05 0.00 

Subgroup Comparisons 12.05 (24.71) 7.16, 16.94 0.00 17.32 (35.49) 4.94, 29.71 0.00 

Meta-Regression 11.39 (29.71) 5.36, 17.41 0.00 9.53 (20.50) 2.37, 16.68 0.00 

Total  67.94 (105.51) 46.42, 88.64 50.5 51.85 (49.17) 35.32, 68.37 36.5 

Notes: Numbers in parentheses represent standard deviations.  
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Table 4. Average Family-Wise Error Rate for Each Type of Statistical Test 

 Psychological Bulletin Review of Educational Research 

True Null Hypotheses 100% 10% 100% 10% 

Overall ES .20 (.15, .25) .03 (.02, .05) .11 (.06, .19) .03 (.01, .07) 

Overall Homogeneity .30 (.25, .37) .05 (.04, .07) .12 (.08, .16) .01 (.01, .02) 

Q-Between .23 (.17, .29) .04 (.03, .06) .31 (.21, .42) .05 (.03, .08) 

Q-Within .28 (.20, .36) .07 (.05, .10) .12 (.04, .21) .02 (.01, .04) 

Subgroup Comparisons .24 (.17, .32) .05 (.03, .08) .26 (.14, .40) .07 (.03, .12) 

Meta-Regression .22 (.16, .29) .05 (.03, .07) .20 (.09, .31) .04 (.02, .07) 

Notes: Ns: Psychological Bulletin = 96, Review of Educational Research = 34; Numbers in 

parentheses represent bootstrap confidence intervals.
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Table 5. Use of Proposed Guidelines for Multiplicity on Archer’s (2000) Review 

 Overall ES Homogeneity Q-Between Q-Within 

Number of Tests 5 5 37 47 

Author Stated Significant (p < .05) 5 5 22 27 

FWER (100%) 22.6 22.6 85.0 91.0 

FWER (50%) 12.1 12.1 61.3 70.1 

FWER (1%) .25 .25 1.88 2.38 

Significant at .01 4 5 19 23 

Significant at .05 with Bonferroni 4 5 14 23 

Significant at .01 with Bonferroni 4 5 13 16 

Average Power at .01 84.1 99.9 52.7 70.2 

Average Power at .05 with Bonferroni 84.1 99.9 43.6 61.6 

Average Power at .01 with Bonferroni 79.7 99.7 33.2 50.5 

Notes: N experiment-wise statistical significance tests = 94; Author set p < .05 as critical value 

for all tests; FWER = Family-wise Error Rate; FWER calculation based on the assumption true 

null hypotheses represented in the parentheses; Author set p < .05 as critical value for all tests; 

Power calculated by finding power for each test within the group and taking the average.  
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Figure 1. Type I Error Rate for Different Proportions of True Null Hypotheses 

Notes: Lines represent assumptions of the percentage of true null hypotheses; FWER = Family-

wise error rate.  

 

Figure 2. Power of the Test of Average Effect Size under Different Model Assumptions Using the 

Bonferroni Correction 

Notes: All analyses represent two-sided hypothesis; Lines represent numbers of studies (k = 10, 

20, 40); Upper quadrants represent Fixed-effect analysis; Lower quadrants represent Random-

effects analysis (I
2
 = 75%); Left quadrants represent Alpha = .01; Right quadrants represent 

Alpha = .05; d = .20; Sample size (Treatment = 50, Control = 50).   
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