
Loyola University Chicago
Loyola eCommons

Physics: Faculty Publications and Other Works Faculty Publications

9-25-2007

Shape Invariance and the Exactness of Quantum
Hamilton-Jacobi Formalism
Charles Cherqui
Loyola University Chicago

Yevgeny Binder
Loyola University Chicago, Law School

Asim Gangopadhyaya
Loyola University Chicago, agangop@luc.edu

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Physics:
Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© 2007 The Authors.

Recommended Citation
Cherqui, C, Y Binder, and A Gangopadhyaya. "Shape invariance and the exactness of quantum Hamilton-Jacobi formalism."
http://arxiv.org/pdf/0708.2455.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/physics_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


ar
X

iv
:0

70
8.

24
55

v2
  [

he
p-

th
] 

 2
5 

Se
p 

20
07

Shape invariance and the exactness of quantum Hamilton-Jacobi formalism

Charles Cherqui1, Yevgeny Binder2, Asim Gangopadhyaya3

Department of Physics, Loyola University Chicago, Chicago IL, USA

Abstract

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two par-

allel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger

equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM

formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum func-

tions. In this paper, we show that shape invariance also suffices to determine the eigenvalues in Quantum

Hamilton-Jacobi Theory.

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two very

different methods that give eigenvalues for quantum mechanical systems without solving the Schrödinger

differential eigenvalue equation.

Supersymmetric quantum mechanics is a generalization of Dirac’s ladder operator method4 for the har-

monic oscillator. This method consists of factorizing Schrödinger’s second order differential operator into

two first order differential operators that play roles analogous to ladder operators. If the interaction of a

quantum mechanical system is described by shape invariant potentials [1, 2], SUSYQM allows one to generate

all eigenvalues and eigenfunctions through algebraic methods.

Another formulation of quantum mechanics, the Quantum Hamilton-Jacobi (QHJ) formalism, was devel-

oped by Leacock and Padgett [3] and independently by Gozzi [4]. It was made popular by a series of papers

by Kapoor et. al. [5]. In this formalism one works with the quantum momentum function (QMF) p(x),

which is related to the wave function ψ through the relationship p(x) = −ψ′(x)/ψ(x), where prime denotes

differentiation with respect to x. Our definition of QMF’s differs by a factor of i ≡
√
−1 from that of ref.

[3, 5, 6], where they define p(x) = −iψ
′(x)
ψ(x) ; we use p(x) = −ψ′(x)

ψ(x) . It was shown, on a case by case basis,

that the singularity structure of the function p(x) determines the eigenvalues of the Hamiltonian [3, 4, 5]

for all known solvable potentials. Kapoor and his collaborators have shown that the QHJ formalism can be

used not only to determine the eigenvalues of the Hamiltonian of the system, but also its eigenfunctions [7].

They have also used QHJ to analyze Quasi-exactly solvable systems where only an incomplete set of the

eigenspectra can be derived analytically and also to study periodic potentials [8]. It is important to note

that all cases worked out in Refs. [3, 5] satisfied the integrability condition known as the translational shape

invariance for which the SUSYQM method always gave the exact result.

1e-mail: ccherqu@luc.edu
2e-mail: yev@freeshell.org
3e-mail: agangop@luc.edu
4Dirac attributes this method to Fock.
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In an earlier paper [6], one of the authors (AG) and his collaborators had connected the Quantum

Hamilton-Jacobi formalism to supersymmetry (SUSY) and shape invariance. Using shape invariance, it was

shown that QMFs corresponding to different energies are connected via fractional linear transformations,

and a general recursion formula was given for quantum momenta of any energy. Since QMFs are related

to wave functions, Ref. [6] provided an alternate recursive procedure to derive eigenfunction directly from

shape invariance.

In this paper, we show that shape invariance also suffices to determine the singularity structure of the

QMFs, and hence provide an explanation why translational shape invariance also determines the eigenvalues

of the system with the QHJ formalism.

In the QHJ formalism the spectrum of a quantum mechanical system is determined by the solution of

the equation:

p 2(x, α0) − p ′(x, α0) = V (x, α0) − E (1)

Here we have chosen our units such that h̄ = 1 and 2m = 1. α0 is a parameter characterizing the strength

of the potential. This equation is related to the Schrödinger equation

− ψ ′′ + (V (x, α0) − E)ψ = 0 (2)

via the correspondence

p = −
(
ψ ′

ψ

)
whence ψ(x) ∼ e−

∫
p(x)dx . (3)

In SUSYQM, the supersymmetric partner potentials V±(x, α0) are given by W 2(x, α0) ±W ′(x, α0) respec-

tively. W (x, α0) is a real function, called the superpotential [1]. In this paper V−(x, α0) is chosen as the

potential for a Hamiltonian H−(x, α0) whose eigenvalues we will be seeking. Thus, in terms of the superpo-

tential W (x, α0), the Quantum Hamilton-Jacobi equation we will be solving is

p 2(x, α0) − p ′(x, α0) = W 2(x, α0) −W ′(x, α0) − E . (4)

We will assume that our superpotential is such that SUSY remains unbroken for a range of values of

the parameter α0. This implies that the ground state eigenvalue E
(−)
0 = 0 [1], and the correspond-

ing eigenfunction ψ−

0 (x) ∼ e−
∫
W (x,α0)dx is normalizable. By differentiating ψ

(−)
0 (x), one can show that

W (x, α0) = −
[
ψ

(−)
0 (x)

]′
/ψ

(−)
0 (x). A comparison with Eq. [3] shows that we should expect the following

limit:

p (x) = W (x, α0) for E = 0. (5)

(Note that the partner Hamiltonian H+(x, α0), built using the potential V+(x, α0), has the same set of

eigenvalues E
(+)
n = E

(−)
n+1, except for the groundstate.)

As stated earlier, in this paper our focus will be on H−(x, α0). In SUSYQM literature, it is customary

to denote the eigenfunctions of H− by ψ(−), and the corresponding QMF by p−(x) ≡ −ψ(−) ′/ψ(−). Since
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we are going to be working with H− and its solutions exclusively, we will henceforth suppress the “-”

subscript/superscript.

The QHJ method is centered around analyzing the pole structure of the quantum momentum function

p(x). Since the n-th eigenfunction of the Hamiltonian has n nodes within the domain of the potential, the

corresponding momentum function p(x) will have n singular points which can be shown to be simple poles

[5], each with a residue of −1. These are known as the “moving poles”. Hence, a contour integral of p(x)

around the moving poles of the system yields:

∮
p(x) dx = −2πin . (6)

This is the quantization condition for QHJ. For the sake of clarity, let us reiterate that the factor of −i in

the above quantization condition is due to our definition of the QMF differing from that of refs. [3, 5, 6]

by a factor of i. Our choice is guided by our desire to keep p(x) close in its definition to the superpotential

W (x) so Eq. (5) holds, without any factor of i. For n = 0, p(x) would be identical to W (x).

The strength of QHJ derives from the fact that the contour of the above integration can be deformed

to enclose “fixed poles” instead (albeit traversing in the opposite direction [3, 5]). Thus, the quantization

condition can now be written as

∮
p(x) dx

∣∣∣∣
origin

+

∮
p(x) dx

∣∣∣∣
∞

= +2πin . (7)

The difference in sign between Eqs. (6) and (7) is due to the change in direction in which the integration is

carried out. In this paper, we only consider systems that have fixed poles at the origin and/or ∞.

We now consider the impact of shape invariance on the Hamiltonian-Jacobi formalism. Shape invariance

implies the following relation among partner potentials of supersymmetric quantum mechanics:

V+(r, α0) = V−(r, α1) +R(α0),

i.e., potentials V+(r) and V−(r) have the same functional dependence on the coordinate variable r and only

differ from each other in the value of the parameter α0 and an additive constant R(α0). For all known shape

invariant potentials, it is possible to express the constant R(α0) as a difference:

R(α0) = g(α1) − g(α0) . (8)

We assume that R(α0) can be written as a difference of g-functions for all shape invariant problems.

The shape invariance condition, when written in terms of the superpotential W , takes the form:

W 2(r, α0) +
dW (r, α0)

dr
= W 2(r, α1) −

dW (r, α1)

dr
+R(α0). (9)

We will consider only the additive shape invariance with α1 = α0 + 1, and use it to determine the structure

of the superpotential near zero and ∞, two assumed end points of the domain. It is essential that the

knowledge of the superpotential at these boundary points be known in order to determine eigenvalues using
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QHJ. In particular, we will not consider cyclic shape invariant systems [9, 10] because their superpotentials

have an oscillatory behavior at large distances; i.e, they are not well defined at infinity.

Here we shall divide all superpotentials into two categories: those with infinite domain (0,∞) or (−∞,∞)

and those with finite domain, such as (x1, x2). Superpotentials that are given in algebraic form or those

in which a transformation such as r = ex converts it into an algebraic form will be considered in this

paper. These potentials are defined over an infinite domain. We call them as “Algebraic” and “Hyperbolic”

respectively. In the following, we will show how the shape invariance suffices to determine eigenvalues of

generic algebraic and hyperbolic potentials. (We will not be considering superpotentials with finite domain

which we define as trigonometric.)

Algebraic Potentials:

In this category, we assume that the potential is explicitly expressed in an algebraic form. Let us assume

the superpotential has the following structure near origin:

W (r, α0) =

∞∑

k=−1

bk(α0) r
k =

b−1(α0)

r
+ b0(α0) r

0 + b1(α0) r
1 + b2(α0) r

2 + · · ·

We have not included a term more singular than 1/r in the superpotential to avoid the particle’s “falling

to the center.” Particles cannot be sustained in a bound state in an attractive singular potential if the

singularity is higher than − 1
4r2 [11]. Additionally, we are interested in the simple poles of the QMF at

boundary points, which are expected to be related to the same order singularities of the superpotential at

those points.

The derivative of the superpotential is then given by

dW (r, α0)

dr
= −b−1(α0)

r2
+ 0 + b1(α0) + 2 b2(α0) r + · · · ;

and the square of the superpotential is given by

W 2(r, α0) = (b−1(α0))
2
r−2 + (2 b−1(α0) b0(α0)) r

−1 +
(
(b0(α0))

2
+ 2 b−1(α0) b1(α0)

)
+ · · ·

Substituting these expansions into the shape invariance condition (9), we arrive at the following constraints

on coefficients of the superpotential W (x, α0):

from the r−2 terms (b−1(α0))
2 − b−1(α0) = (b−1(α1))

2 + b−1(α1)

from the r−1 terms (2 b−1(α0) b0(α0)) = (2 b−1(α1) b0(α1))

from the r0 terms
(
(b0(α0))

2 + 2 b−1(α0) b1(α0)
)

+ b1(α0)

=
(
(b0(α1))

2
+ 2 b−1(α1) b1(α1)

)
− b1(α1) +R(α0)

(10)

The first of these three constraints of Eq. (10) is a quadratic equation for the coefficient b−1(α1) in terms

of b−1(α0). It has two solutions: b−1(α1) = − b−1(α0) or b−1(α1) = b−1(α0) − 1. Since b−1(α0) is the

coefficient of the most dominant term and hence determines the structure near the origin, its value plays an

4



essential role in deciding whether SUSY is unbroken5. Hence, the first solution b−1(α1) = − b−1(α0), is not

acceptable if both b−1(α0) and b−1(α1) were to keep the system in a parameter domain needed for unbroken

SUSY. Thus, the first constraint (10) implies the relationship b−1(α1) = b−1(α0) − 1. For α1 = α0 + 1, this

gives the difference equation b−1(α0 + 1) = b−1(α0) − 1, whose solution is given by

b−1(α0) = −α0 + constant; (11)

we choose the constant = 0. This choice, while it simplifies the calculation, has no effect on the final result.

The second constraint leads to the difference equation

α0 b0(α0) = α1 b0(α1) . (12)

In other words, the product α0 b0(α0) does not depend on the parameter α0. Hence, we have

b0(α0) =
β

α0
,

where β is a constant independent of the parameter α0. Thus, near the origin, the structure of the superpo-

tential W (x, α0) is given by:

W (r , α0)|origin = − α0

r
+

β

α0
+ · · · (13)

Now, let us explore the structure of the superpotential near ∞. To do this, we define a variable u = 1
r
, and

W (1/u , α0) ≡ W̃ (u , α0). The shape invariance condition of Eq. (9) thus transforms to

W̃ 2 (u , α0) − u2 d W̃ (u , α0)

du
= W̃ 2 (u , α1) + u2 d W̃ (u , α1)

du
+R(α0). (14)

Analogous to the expansion near the origin, let us expand W
(

1
u
, α0

)
in powers of u as we have done earlier.

W̃ (u , α0) =

∞∑

k=−1

ck(α0)u
k =

c−1(α0)

u
+ c0(α0)u

0 + c1(α0)u
1 + c2(α0)u

2 + · · ·

W̃ 2 (u, α0) =
(c−1(α0))

2

u2
+

(2 c−1(α0) c0(α0))

u
+
(
(c0(α0))

2 + 2 c−1(α0) c1(α0)
)

+ · · ·

dW (r, α0)

dr
= −u2 d W̃ (u, α0)

du
= c−1(α0) − c1(α0)u

2 − 2 c2(α0)u
3 + · · · ;

Substituting these expressions in the transformed shape invariance condition of Eq. (14), we get

from the r−2 terms (c−1(α0))
2

= (c−1(α1))
2

; (15)

from the r−1 terms (2 c−1(α0) c0(α0)) (2 c−1(α1) c0(α1)) ; and (16)

from the r0 terms (c0(α0))
2

+ 2 c−1(α0) c1(α0) + c−1(α0)

= (c0(α1))
2
+ 2 c−1(α1) c1(α1) − c−1(α1) +R(α0) . (17)

5The limiting values of the superpotential at two boundary points of the domain determine whether SUSY is broken or

unbroken. If the value of the superpotential at both end points have the same sign SUSY is broken and SUSY is unbroken if

both end points have opposite signs. Thus, if the sign of W at one end is altered relative to the other end, the SUSY goes from

being unbroken to broken or vice versa. For more details, see Ref. [1, 2]
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From Eq. (15), we get c−1(α1) = ± c−1(α0). As stated earlier we assumed that SUSY remains unbroken

for a range of values of the parameter, and since c−1(α1) = − c−1(α0) would lead to breaking of SUSY,

we choose c−1(α1) = c−1(α0) = c−1; i.e., this coefficient does not depend on the parameter α0. This

then further leads to c0(α0) = c0(α1) = c0, another constant. Eq. (17) now yields, 2 c−1 c1(α0) + c−1 =

2 c−1 c1(α1) − c−1 + g(α1) − g(α0). Which gives

c1(α1) +
g(α1)

2 c−1
= c1(α0) +

g(α0)

2 c−1
+ 1 . (18)

We can write this equation as

f(α1) = f(α0) + 1 , (19)

where f(α0) = c1(α0) + g(α0)
2 c−1

. Since α1 = α0 + 1, the solution of Eq. (19) is f(α0) = α0 + ∆. Hence, we

have c1(α0) = α0 − g(α0)
2 c−1

+ ∆, where ∆ is a constant independent of α0. Thus, near ∞ the superpotential

is given by

W̃ (u , α0)
∣∣∣
∞

=
c−1

u
+ c0 +

(
α0 −

g(α0)

2 c−1
+ ∆

)
u + · · · (20)

The result we have obtained depended crucially upon the assumption that c−1 is not zero. If c−1 = 0, the

structure of the potential near ∞ will be very different and the constraints given by Eqs. (15)-(17) would

no longer be valid. We would need to do the calculations again. This case is presented next.

For c−1 = 0, the superpotential near ∞ is given by W̃ (u, α0) = c0 + c1u + c2u
2 + · · ·. This leads to

W̃ 2(u, α0) = c20 + 2c0c1u + (c21 + 2c0c2)u
2 + · · ·, and u2 dW̃

du
= c1u

2 + 2c2u
3 + · · ·. Since W̃ 2(u, α0) and

W̃ 2(u, α1) must satisfy the shape invariance condition (14), matching the first two powers of u we get

from the r0 terms c20(α1) = c20(α1) +R(α0)

from the r1 terms c0(α0)c1(α0) = c0(α1)c1(α1).
(21)

The first constraint of Eq. (21) may be rewritten using (8) as c20(α0)+ g(α0) = c20(α0 + 1)+ g(α0 + 1) which

means that the quantity c20(α0) + g(α0) is independent of the argument α0, and hence equal to a constant

Λ. This leads to

c0(α0) = ±
√
−g(α0) + Λ . (22)

Now from the second constraint we see that the product c0(α0)c1(α0) is also independent of the argument

α0, and hence it must also be equal to a constant, which we denote by ζ. Thus, from c0(α0)c1(α0) = ζ, we

have

c1(α0) =
ζ

c0(α0)
=

ζ

±
√
−g(α0) + Λ

. (23)

Thus, near ∞,

W̃ (u, α0) =

[
±
(√

−g(α0) + Λ
)

±
(

ζ√
−g(α0) + Λ

)
u+ · · ·

]
(24)
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Thus, we have gathered significant knowledge about the structure of the superpotential near boundary points

simply from the shape invariance. Recapitulating: near the origin, as given in Eq. (13), the structure is

W (r , α0) = − α0

r
+ β

α0

+ · · ·. Near ∞, as u→ 0, there are two possible structures that depend on whether

the superpotential has a singularity; i.e., whether the value of the coefficient c−1(α0) is zero or non-zero.

They are:

W̃ (u, α0) =





c−1

u
+ c0 +

(
α0 − g(α0)

2 c−1

+ ∆
)
u + · · · c−1(α0) 6= 0

±
√
−g(α0) + Λ ± ζ√

−g(α0)+Λ
u+ · · · c−1(α0) = 0.

(25)

With the understanding about the structure of W (x, α0) at the end points of the domain, we now

substitute these expansions of W into QHJ and obtain the implications on the QMFs, and hence on the

eigenvalues of the hamiltonian. We first expand the momentum p(r) near the origin as:

p(r, α0) =

∞∑

k=−1

pk r
k =

p−1

r
+ p0 r

0 + p1 r
1 + p2 r

2 + · · ·

The derivative of the momentum p is then given by d p(r,α0)
dr

= − p−1

r2
+ 0 + p1 + 2 p2 r + · · · and the square

of p is given by p2(r, α0) = (p−1)2

r2
+ (2 p−1 p0)

r
+
(
p2
0 + 2 p−1 p1

)
+ · · ·.

Collecting terms with various powers of r, we find that near the origin the combination p2 − p′ is given

by

(
p2 − p′

)∣∣
origin

∼ p2
−1 + p−1

r2
+

(2 p−1 p0)

r
+
(
p2
0 + 2 p−1 p1 − p1

)
+ · · ·

Substituting into the QHJ equation (4) near r = 0, we get

p−1 = −α0 . (26)

It is this term in the expansion of p that contributes to the contour integration around the origin in the

complex r plane. So, we do not need other coefficients.

To determine the leading order behavior of the momentum function at ∞, let us first consider the case

that c1(α0) 6= 0. We expand the momentum function p
(

1
u
, α0

)
≡ p̃ (u , α0) in powers of u:

p̃ (u , α0) =
∞∑

k=−1

p̃k u
k =

p̃−1

u
+ p̃ 0 u

0 + p̃1 u
1 + p̃2 u

2 + · · ·

This leads to the following expression for the combination p̃2 − p̃ ′:

(
p̃2 − p̃′

)∣∣
∞

=

(
p̃2 + u2 dp̃

du

)∣∣∣∣
∞

∼ p̃ 2
−1u

−2 + (2 p̃−1 p̃0)u
−1 +

(
p̃ 2
0 + 2 p̃−1 p̃1 − p̃−1

)
+ · · · (27)

Substituting into Eq. (4), p̃2 + u2 dp̃
du

= W̃ 2 + u2 dW̃
du

− E , we obtain

(p̃−1)
2

u2
+

2p̃0p̃−1

u
+
(
p̃2
0 + 2 p̃−1 p̃1 − p̃−1

)
+ · · · =

(c−1)
2

u2
+

2c0c−1

u
(28)

+

(
c20 + 2 c−1

(
α0 −

g(α0)

2 c−1

)
− c−1 − E

)
.
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By matching the various powers of the variable u, we get p̃−1 = c−1 ; p̃0 = c0; and p̃2
0 + 2 p̃−1 p̃1 − p̃−1 =

c20 + 2 c−1

(
α0 − g(α0)

2 c−1

)
− c−1 − E. From the last equality, we get 2 c−1

(
α0 − g(α0)

2 c−1

)
− E = (2 c−1p̃1), i.e.,

p̃1 = α0 − g(α0)+E
2 c−1

. At ∞, it is this last coefficient p̃1 that contributes to the contour integration.

We are now ready to determine the eigenvalues for the system using the information we have generated

solely from shape invariance. The contribution to the contour integration is given by

[∮
p dr

]

Moving poles

= −
∮

r=0

p dr −
∮

r=∞

p dr

= −
∮

r=0

p dr +

∮

u=0

1

u2
p̃ du

= −(2πip−1) + (2πip̃1)

= −2π i (−α0) + 2π i

[
α0 −

g(α0) + E

2 c−1

]

= 2π i

[
2α0 −

g(α0) + E

2 c−1

]
. (29)

Please note that due to the 1
u2 factor in the term

∮
u=0

( 1
u2 p̃) du, only the linear term of p̃ contributes towards

the integral and is given by (2πip̃1).

It is worth noting that we cannot get the entire global behavior of the potential from expansions at the

origin and ∞. If the potential is a symmetric function of r, as is the case for the three dimensional harmonic

oscillator, one gets an additional contribution [3, 5]. As one embeds the domain (0, r) in a two-dimensional

complex plane, a mirror image of the potential function in the region Real(r) < 0 also generates singularities

for p(r) exactly at the same points as p(r) does in the region Real(r) > 0. As a consequence, we get

[∮
p dr

]

Moving poles

≡
[∮

p dr

]

Real(r)>0

= −
[∮

p dr

]

Real(r)<0

−
∮

r=0

p dr +

∮

u=0

1

u2
p̃ du

However,
[∮
p dr

]
Real(r)>0

and
[∮
p dr

]
Real(r)<0

have identical value due to the symmetry of the potential.

This leads to

[∮
p dr

]

Moving poles

=
1

2

(
−
∮

r=0

p dr +

∮

u=0

1

u2
p̃ du

)
= −2π i n . (30)

From Eq. (29), we then get
1

2

{
2π i

[
2α0 −

g(α0) + En
2 c−1

]}
= −2πin .

Solving for the energy, the Eq. (29) gives En = 4 c−1 (n+ α0) − g(α0). To determine the value of g(α0), we

remember that for unbroken SUSY that the groundstate energy E0 = 0. Thus, substituting for n = 0, we
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get g(α0) = 4 c−1α0, and hence g(αn) = 4 c−1 (α0 + n). Substituting for g(α0) and g(αn) in En, we get

En = 4n c−1 = g(αn) − g(α0). (31)

This is the desired result for any shape invariant problem. For the 3-dimensional harmonic oscillator, one

would identify the coefficient c−1 with 1
2 ω, and the energy would be given by

En = 4n c−1 = 2nω , (32)

as expected. However, the result of Eq. (31) is valid for any superpotential that is a) shape invariant and

b) has singularities at both infinity and the origin.

Now let us consider the case that the superpotential has no divergence at ∞, i.e., c−1 = 0. For this case,

we will need to determine the structure of the quantum momentum function p(x) at ∞ (the structure at the

origin remains the same as that for c−1 6= 0.) We substitute the expansion of superpotential W̃ (u, α0) from

Eq. (25) into the Quantum Hamilton-Jacobi equation at ∞, and we get

(p̃−1)
2

u2
+

2p̃0p̃−1

u
+
(
p̃2
0 + 2 p̃−1 p̃1 − p̃−1

)
+ · · · = (−g(α0) + Λ − E) + 2ζ u+ · · · .

Now equating the coefficients of various powers of u, we get p̃−1(α0) = 0; p̃2
0(α0) = −g(α0) + Λ − E ;

p̃0(α0)p̃1(α0) = ζ; etc. From these, we obtain the following coefficients for p:

p̃0 = ±
√
−g(α0) + Λ − E; and p̃1 = ± ζ√

−g(α0) + Λ − E
.

The quantization condition yields:

[∮
p dr

]

Moving poles

= −
∮

r=0

p dr +

∮

u=0

1

u2
p̃ du

second = −(2πip−1) + (2πip̃1)

= −2π i (−α0) + 2π i

[
± ζ√

−g(α0) + Λ − E

]

= −2π i n . (33)

Thus, we have −α0 − ζ

±

√
−g(α0)+Λ−E

= n. Solving for En,

En =
ζ

(n+ α0)2
+ g(α0) − Λ. (34)

Since we are in the domain of unbroken SUSY, we must have E0 = 0. Hence substituting n = 0 in Eq. (34),

we get g(α0) = − 1
α2

0

+ Λ; i.e., g(αn) = − 1
(α0+n)2 + Λ. The energy En is then given by

En = ζ2

[
1

(α0)2
− 1

(n+ α0)2

]
= g(αn) − g(α0). (35)

Thus, we determined the energy of this system described by a potential that is singular at the origin and has

no singularity at ∞ (Coulomb-like) simply by employing the shape invariance condition. Once we identify ζ2
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with e2/2 and α0 with l+ 1, this energy is exactly the same as that for the Coulomb potential. Once again,

we state that Eq. (35) is valid not only for the Coulomb potential, but for any shape invariant potential

that has a fixed pole at the origin and none at the ∞.

Hyperbolic potentials:

Now we consider superpotentials that arise as a linear combination of various powers of a basic exponential

function ex. For example, the Morse, Eckart, hyperbolic Rosen-Morse potentials would fall under this

category. We assume that our generic superpotential has the general form

W (x, α0) =
∑

j

bj [ex]j . (36)

This superpotential has singularities at ±∞. To analyze the nature of these singularities we first convert

it into an algebraic form with a transformation r = ex. This change of the variable maps x ∈ (−∞,∞) to

r ∈ (0,∞). We then subject the resulting superpotential to the shape invariance condition.

Near negative ∞; i.e., x→ −∞, and r → 0, we assume the potential has the following structure:

W (x, α0) = b−1r
−1 + b0 + b1r + · · · . (37)

Near positive ∞; r → ∞, we express it in terms of a variable u = 1/r = e−x, where we assume it has the

following structure:

W̃ (u, α0) = c−1u
−1 + c0 + c1u+ · · · . (38)

Now we will determine how shape invariance constrains various terms in these two expansions at the end

points of the domain of r.

As with the algebraic superpotential, the following procedure differs depending on whether b−1 and c−1

are each zero or nonzero, making for four possible cases. We want to stress that we are considering only

those shape invariant superpotentials that have at least one singularity at either the origin or ∞. If the

superpotential has no poles at these extremes, then it must have poles at “finite” fixed-points. These are

potentials of trigonometric type, and as noted earlier, will not be considered in this paper.

It is not hard to show that the case b−1 = 0, c−1 6= 0 is identical to the case b−1 6= 0, c−1 = 0. Hence,

we need consider only two cases: b−1 6= 0, c−1 = 0 and b−1 6= 0, c−1 6= 0. However, it turns out that

for (b−1 6= 0, c−1 6= 0), the quantization condition
∮
p dx = −2πin, does not yield an equation involving

energy, and hence energy cannot be determined from singularities at boundary points alone. The QMF in

such a case must have poles at points other than the origin and ∞ and, as stated earlier, such cases will

not be considered here. It is important to note that there are no exponential type known shape invariant

potentials in quantum mechanics for which the superpotential has a singularities for both x = ±∞. Thus,

in the following, we will only consider the case where b−1 6= 0 and c−1 = 0.
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Near r = 0, the superpotential is given by

W (r, α0) =
b−1(α0)

r
+ b0(α0) + b1(α0)r + · · · (39)

From W , we get dW
dx

= dW
dr

dr
dx

= r dW
dr

= − b−1

r
+ b1r, and W 2 =

b2
−1

r2
+ 2b−1b0

r
+ b20 + 2b−1b1 + · · ·. Hence, due

to the above change of variable, the shape invariance condition now takes the form

W 2(α0) + r
dW (α0)

dr
= W 2(α1) − r

dW (α1)

dr
+R(α0). (40)

Substituting the expansion of W into Eq. (40), and matching various powers of r, we get the following set

of difference equations:

from the r−2 terms b2−1(α0) = b2−1(α1);

from the r−1 terms 2b−1(α0)b0(α0) − b−1(α0) = 2b−1(α1)b0(α1) + b−1(α1);

from the r0 terms b20(α0) + 2b−1(α0)b1(α0) = b20(α1) + 2b−1(α1)b1(α1) +R(α0).

(41)

From Eq. (41), the first constraint implies that b−1(α0) does not depend upon its argument; i.e., it is a

constant. We denote this constant by b−1. The second constraint we get from matching the coefficients of

r−1 gives b0(α1) = b0(α0) − 1. Substituting α1 = α0 + 1, we get the difference equation

b0(α0 + 1) = b0(α0) − 1,

whose solution is b0(α0) = −α0+C, where C is a constant. Now, from the last constraint of the set: b20(α0)+

2b−1b1(α0) = b20(α1) + 2b−1b1(α1) +R(α0), we have

(−α0 + C)2 + 2b−1b1(α0) = (−α1 + C)2 + 2b−1b1(α1) + g(α1) − g(α0).

This equation can be written as

b1(α0) +
g(α0) + (−α0 + C)2

2b−1
= b1(α1) +

g(α1) + (−α1 + C)2

2b−1
,

which shows that the expression b1(α0) + g(α0)+(−α0+C)2

2b−1

is independent of its argument α0, hence we set it

equal to a constant D. Thus, we get

b1(α0) = D −
(
g(α0) + (−α0 + C)2

2b−1

)
. (42)

We carry out a very similar analysis in the region r → ∞, where the superpotential has the form given in

Eq. (38); i.e., W̃ (u, α0) = c0(α0) + c1(α0)u+ c1(α0)u
2 · · ·, and we get

(c0(α0))
2

= (c0(α1))
2

+R(α0)

Writing this equation as (c0(α0))
2 + g(α0) = (c0(α1))

2 + g(α1), we see that the expression (c0(α0))
2 + g(α0)

is independent of α0. We set it equal to a constant Θ. Thus, we get

c0(α0) = ±
√

Θ − g(α0).
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Thus, to summarize, the structure of W at two end points are given by

W (r, α0) =
b−1

r
+ (−α0 + C) +

[
D −

(
g(α0) + (−α0 + C)2

2b−1

)]
r + · · · ,

and

W̃ (u, α0) =
(
±
√

Θ − g(α0)
)

+ c1(α0)u+ c1(α0)u
2 · · · .

We will now substitute these two forms of the superpotential into the QHJ equation to determine the

analytic structure of p and from it the eigenvalues of the shape invariant system.

Near r = 0, the QHJ equation is given by

p2 − r
dp

dr
= W 2(r, α0) − r

dW (r, α0)

dr
− E, (43)

where W (r, α0) is given by W (r, α0) = b−1

r
+ (−α0 + C) +

[
D −

(
g(α0)+(−α0+C)2

2b−1

)]
r + · · · . Expanding the

quantum momentum function as p(r) = p−1r
−1 + p0 + p1r + · · ·, and substituting it into Eq. (43), we get

p2
−1 = b2−1; 2p−1p0 − p−1 = 2b−1b0(α0) − b−1; etc. (44)

From the first equality in above equation, we get p−1 = ±b−1. However, in the limit E → 0, we must

have p → W . This implies p−1 = b−1. Substituting this value of p−1 in the second equality, we get

p0 = b0(α0) = −α0 + C. As we will soon see, we need go no further. p0 is all we need to determine the

contour integral around r = 0.

Near u = 0, i.e., r → ∞, we expand the QMF as p̃(r) = p̃−1u
−1 + p̃0 + p̃1u + · · ·. We substitute this

expansion for p̃(r) and the superpotential W̃ (u, α0) =
(
±
√

Θ − g(α0)
)

+ c1(α0)u+ c1(α0)u
2 · · · into the

QHJ equation

p̃2 + u
dp̃

du
= W̃ 2(α0) + u

dW̃ (α0)

du
− E. (45)

Now comparing various powers of u, we get p̃−1 = 0, (p̃0)
2 =

(
±
√

Θ − g(α0)
)2

− E, etc. Thus, we get

p̃0 = ±
√

Θ − g(α0) − E.

The quantization condition in this case is

∮

x=−∞

p dx+

∮

x=∞

p dx = 2π i n ; i.e.,

∮

r=0

(p0

r

)
dr −

∮

u=0

(
p̃0

u

)
du = 2π i n ;

(C − α0) ±
√

Θ − g(α0) − En = n ,

which yields,

En = Θ − (C − α0 − n)
2 − g(α0)
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Since we assume that SUSY is unbroken, we must have E0 = 0. This implies g(α0) = Θ − (C − α0)
2
, and

hence, g(αn) = Θ − (C − (α0 + n))
2

= Θ − (C − α0 − n)
2
. Thus, we have

En = (C − α0)
2 − (C − α0 − n)

2
= g(αn) − g(α0) . (46)

If we identify C − α0 with the parameter A of Morse superpotential W = A − Be−x, we get the energy

En = A2 − (A− n)2, which is exactly what is expected for the Morse potential.

Conclusion: One of the current authors (AG) and his collaborators had previously connected Quantum

Hamilton-Jacobi Theory with supersymmetric quantum mechanics, and had shown that the quantum mo-

menta for a shape invariant system can be derived recursively, analogous to SUSYQM. In this paper, we

have further explored the impact of shape invariance on Quantum Hamilton-Jacobi theory. In particular, we

showed that the shape invariance condition provides sufficient information about the singularity structure

of QMF’s to determine the eigenvalues of the system.

There are several directions in which this work could be extended. We only considered translational

shape invariant potentials; that is, those for which partner potentials are connected by a shift in parameter

(ai+1 = ai + 1). This leaves out the very important case where parameters in partner potentials are

multiplicatively connected, i.e., ai+1 = qai, where q ∈ (0, 1). In addition, we only considered the potentials

for which all fixed poles were at the origin or at ∞ or both. Potentials with finite domain, and those for

which the superpotential has poles at points other than 0 or/and ∞ can also be explored. Recently, the

work in SUSYQM has been extended to fractional supersymmetric quantum mechanics [12, 13]. One of the

benefits of this formalism is that several solvable potentials are generated from one generalized potential for

varying values of a parameter. The solvability in this case is described by a generalized shape invariance

condition that is somewhat more involved than the additive shape invariance considered here. It would be

worth exploring if the present formalism can be extended to fractional SUSYQM.
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