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CONVENTIONS, DEFINITIONS, IDENTITIES,
AND OTHER USEFUL FORMULAE
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1. Curvature tensors

Consider a d + 1 dimensional manifold M with metric g,,,. The covariant derivative on M that is metric-
compatible with g, is V.

Christoffel Symbols

1
F/)w =5 g)\p (Ougpv + OvGup — OpGuw) (1)
Riemann Tensor
R)\/W'V = aﬁri\w - 8VF,)L\LU + FZV]‘—‘)}\{O' - F’:LO'F)I\{V (2)
Ricci Tensor
Ry = 0°\R 1o (3)
Schouten Tensor
1 1
S,uu = ﬁ (R,uu - ﬁ g,uuR> (4)
V'S, =V,5%, (5)
Weyl Tensor
CA,ual/ = RA,U,O’I/ + g>\u S,uo - g>\¢7 S,uu + g,ua SAV - g,uy S/\o (6)



Commutators of Covariant Derivatives

[vua vu] A)\ = R)\J/WAU

V., V] AY = RY,,, A7
Bianchi Identity

VKR)\MCTI/ - V)\Rnual/ + VMRIQ)\UV =0
VVR/\MUV = V,uR)\a - v)\Rua
y 1
VYR, = 5 VR

Bianchi Identity for Weyl

VY Copov = (d —2) <VMS/\U - VAS;w)

d—2 1 d—1 d+1
Ao _ 2 = 2 o o A
VAV C’\“””_id—l [v R ng,wv R i V.V,R <d1> R, Ry
d+1) 1 1
Chpor R ( RR,, + —— guw | R Ry, — = R?
O Ty et g 9 ( AT

2. Conventions for Differential Forms

p-Form Components

1
= — Ay, NN dat

Ap =

P)

Exterior Derivative

(dA(p))ul._.upﬂ =P+ 1D I Az

1

B[m-..un} = ol <BH1--~IJn + permutations)

Hodge-Star
A — 1 vi-Vp A
* A(p) Pt 1—p - H €p1eparip Vi..Vp
ok — ( 1 )P(d+1—p)+1
Wedge Product
(p+9q)!
(A(p) A B(Q))m-..up+q - plq! Al sy Bugir g



3. Euler Densities
Let M be a manifold with dimension d + 1 = 2n an even number. Normalized so that x(5?") = 2.

Euler Number

) = | [N (20)

-/ e (21)

Euler Density

Eon = (87r)”F1(n+1) €lty ofi, €vy oy, TIH2Y1Y2 L RE2n—1Hon Pon—1P2n (22)
e, = Mﬂ)”f‘l(n—l—l) €a,..ap, R12 AN R%n-1%n (23)
Curvature Two-Form .
RabziR“bcdec/\ed (24)
Examples
£ = o sy RV (25)
1
T ir
&y = @ €uvrp €afrs RHveB pAeyd (26)

1 1 d—2 d+1
— (VA - 1177 _ 2
5272 O G = g (d - 1) (R Buw == B >

4. Hypersurfaces

Let % C M be a d dimensional hypersurface whose embedding is described locally by an outward-pointing, unit
normal vector n*. Rather than keeping track of the signs associated with n* being either spacelike or timelike,
we will just assume that n* is spacelike. Indices are lowered and raised using g,, and g, and symmetrization
of indices is implied when appropriate.

First Fundamental Form / Induced Metric on X
hyw = guv — npny (27)

Projection onto X

v g ...

LT, =R R, T (28)

Second Fundamental Form / Extrinsic Curvature of ¥

1
KMV = J—(Vﬂny) = hMAhVUV)\ng = 5 £nhp,l/ (29>



Trace of Extrinsic Curvature

K =V,nt (30)
‘Acceleration’ Vector
at =n"V,nt (31)
Surface-Forming Normal Vectors
1
ny = opoe = 1Vn,=0 (32)

V9" 0,a0x\

Covariant Derivative on ¥ compatible with h,,

DI g =1V, T% 5 ¥V T=1T (33)
Intrinsic Curvature of (X, h)
[Dy, D) AN =RY,,, A7 ¥V AM=1 AN (34)
Gauss-Codazzi
LRy uovr = Rapor — Knoe K + Kpuo Ky (35)
L (RW,, n)‘> = DKo — DoK (36)
L (R,\Ml, n)‘n”> = — Lo K+ K, Ky, + Dya, — aa, (37)
Projections of the Ricci tensor
L (Ruw) = Ruw + Dpay — auay — Lo Ky — K Ky + 2K, K, 5 (38)
1L (Ruwn") =D'K,, — DK (39)
R,n'n" = - L, K — K" K,,, + D,a" — a,a" (40)
Decomposition of the Ricci scalar
R=R-K’-K"K,, —2L,K+2D,a" —2a,a" (41)
Lie Derivatives along n*
£nKyy = VK + KV + KnVynt (42)
L(£p, FH ), )= £ FF, ¥ LF=F (43)

5. Sign Conventions for the Action

These conventions follow Weinberg, keeping in mind that he defines the Riemann tensor with a minus sign
relative to our definition. They are appropriate when using signature (—,+,...,+). The d + 1-dimensional
Newton’s constant is 22 = 167G441. The sign on the boundary term follows from our definition of the extrinsic
curvature.



Gravitational Action

Ig = 2%2 /Mdd+1x\/§ (R - 2A) + % /(Mc/ltdxﬁK (44)
- 2%2 /Mdd+1a:\/§ (R+ K2~ K" K~ 2) (45)
Gauge Field Coupled to Particles
Iy= - % /Mdd“x@ FWE,, (46)
S [ (—awlono) TGP " (a7)
+2en / dp dxj;p) Ap(zn(p)) (48)

n

Gravity Minimally Coupled to a Gauge Field
I= /dd“x\/g L (R—2A)—1FWF +1/ddazﬁK (49)
M 2 K2 4 i H2 OM

6. Hamiltonian Formulation

The canonical variables are the metric h,, on ¥ and its conjugate momenta 7#”. The momenta are defined
with respect to evolution in the spacelike direction n*, so this is not the usual notion of the Hamiltonian as the
generator of time translations.

Bulk Lagrangian Density

1
D=5 (KQ—K“”KW—FR—ZA) (50)
Momentum Conjugate to h,,
0L 1
p _ = M K — KM 51
T 0 (L) 282 ( ) (51)
Momentum Constraint
1 14 124
HMZEL(n Gu)=2D"m,, =0 (52)
Hamiltonian Constraint
He Lo, =262 (7 L L (R_2A)=0 53
_—?nn = KR T W#V_ﬁﬂ +27/<.32( — )— ( )

7. Conformal Transformations
The dimension of spacetime is d + 1. Indices are raised and lowered using the metric g,,, and its inverse gh”.

Metric

Guw = e?? Guv (54)



Christoffel

Riemann Tensor

Ricei Tensor

Ricci Scalar

Schouten Tensor

Weyl Tensor

Normal Vector

Extrinsic Curvature

™A 1A A
D =Tl + @uv

0, =86, V,o+ 0", Vo — g Vo

= R, +0",V,V,0— 6", VYo + g Vi V0 — g4, V, V0

+ 0%, Vo V0 — 6%, Vo Vo + g Vo Vo = g, Vo Vo
+ (gup 5)\y — Guv 5)\p> V% V0o

Ru = Ry — g V30— (d—1)V,Vyo+(d—1) Vo Vo
—(d—1) g Vo Vo

R=e2° <R— 2dV%0 —d(d - 1)V“0VMU>

. 1
Sww = S = VuVuo + V0 Voo = o 9wV Vo

Ky = ¢ (K + by n*Vi0)

K=e" (K + dn)‘V,\o>

8. Small Variations of the Metric

Consider a small perturbation to the metric of the form g,, — gu + dgu,. All indices are raised and lowered
using the unperturbed metric g,, and its inverse. All quantities are expressed in terms of the perturbation to
the metric with lower indices, and never in terms of the perturbation to the inverse metric. As in the previous
sections, V, is the covariant derivative on M compatible with g,, and D, is the covariant derivative on a
hypersurface ¥ compatible with h,,.

Inverse Metric

g = g — g" g"P Sgap + 0" 6"° g™ 5gar dgs, + - .

(68)



Square Root of Determinant

1
VI — /g (1+2g‘“’5gw+...>
Variational Operator

6(guw) = 0guw 52(9W) = 0(6g) =0
5(g") = —g"* g"" 6gap  6%(g") =6 (—g’“ g’ 59Ap) = 2" g% g™ 5gax 695,

1 1
Flg+09) =F(g)+6F(g) + 5 0°Flg) +...+ — 5" Flg) + ..
Christoffel (All Orders)

1

0 F//\w =3 g (Vu 0gpy + Vi dgup — Vo 59#!/)

521, = =0 6" 5gap (v# Sgp + Vo 6g,up — YV, (5gw,)
no,_

o F/;\w =3 st (g)‘p> (VM 0Gpw + Vo9, — Vp 5gw,>

Riemann Tensor

A _ A A
SRy, = VST, — V, 8%,

Ricci Tensor
A A
5 Ry = VST, — V,6T7,
1
- 5 (vAvu 89 + VAV, 80,0 — 0 V.V, 8gy, — V2 5gw)

Ricci Scalar

6 R = —R" dgu + V" (V" 89 — 6 Vb9, )
Surface Forming Normal Vector
1 VoA 1 v
ony, = 5 wnn Oguy = 559,“,71 +cu

1 1% 1 1% 1 1%
Cp = 5n#n n’\égw\ —3 O0guwn” = -3 hu/\ dgrun

Extrinsic Curvatures
1
S K = 3 nanﬁ5ga5 K+ 0gx,n” (nuK)‘l, + n,,KHA>
1
-3 h b1 (V26gap + Vp9ra — Vadga)

1 1
0K = —5 K" 69, — 3 n* (V"dgw, — g Vﬂégl,)\) + D,

(79)

(82)



9. The ADM Decomposition

The conventions and notation in this section (and the next) are different than what was used in the preceding
sections. We consider a d-dimensional spacetime with metric hgp.

We start by identifying a scalar field ¢ whose isosurfaces ¥; are normal to the timelike unit vector given by
Ug = — Oyt | (84)

where the lapse function « is

o= S (85)

/—ha 9.t Oyt

An observer whose worldline is tangent to u, experiences an acceleration given by the vector

ap = u’- Ve , (86)
which is orthogonal to u,. The (spatial) metric on the d — 1 dimensional surface ¥; is given by

Tab = hab + ugp - (87)

The intrinsic Ricci tensor built from this metric is denoted by R, and its Ricci scalar is R. The covariant
derivative on >; is defined in terms of the d dimensional covariant derivative as

D,Vyy = 0,°0p° (dVCVe) for any V, =0V, . (88)

The extrinsic curvature of ¥; embedded in the ambient d dimensional spacetime (the constant r surfaces from
the previous section) is

1
Oup i= —aacabd(dvcud) =~V up — ugap = ) Luoab - (89)

This definition has an additional minus sign, compared to the extrinsic curvature K, for the constant r surfaces
of the previous section. This is merely for compatibility with the standard conventions in the literature.
Now we consider a ‘time flow’ vector field ¢*, which satisfies the condition

t* Ot =1 . (90)
The vector t* can be decomposed into parts normal and along ¥; as
" =au+p*, (91)

where « is the lapse function (85) and 3% := 0%t® is the shift vector. An important result in the derivations
that follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to u® in all of its
indices) along the time flow vector field, to Lie derivatives along u® and %. Let S be a scalar. Then

LS = LouS+ £35S =al,S+ £35S . (92)
Rearranging this expression then gives
£,5= 1 (£5~ £55) (93)
Similarly, for a spatial tensor with all lower indices we have

LW = al W, + £,6’Wa... . (94)



This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along u® in terms of regular time derivatives and Lie derivatives along the shift
vector B%.

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (t,2%) are defined by

Opx® =1t . (95)
The ' are d dimensional coordinates along the surface ;. If we define
ox*
P = Ozt (96)

then it follows from the definition of the coordinates that P;*d,t = 0 and we can use P;* to project tensors onto
Y. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and shift

vectors are

Oij = Pz‘anbUab (97)
0ij = P,"P;" 0 (98)
a; = P'ay (99)
Bi = Pi"Ba = Pty . (100)
The line element in the adapted coordinates takes a familiar form:
hapdz®dz® = hab<8;: dt + g‘z d:a') <%ﬁb dt + g;”j da:j> (101)

= hgp(tdt + P%da’) (t°dt + P;*da?) (102)
= %, dt* 4 2t dt PAdx’ 4 hop P2 Pibdat da? (103)
= (= o+ B'B;)dt* + 2Bidtda’ + oyjda’ da? (104)
= hgdadz’ = — o?dt? + 0 (da’ + B'dt) (dz? + Bdt) . (105)

Thus, in the adapted coordinate system we can express the components of the (d dimensional) metric hg, and

its inverse h® as
—a®+ 8| oy

Rty = ’8 & (106)

i ‘ Tij

_1 1 i
hab = = | _ “Zﬁ - (107)

L8 |0V - L8P

det(hab) =—a? det(aij) (108)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices ‘¢, j, ...’
in the adapted coordinates are lowered and raised using the spatial metric o;; and its inverse o,

In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a scalar
S along the time-flow vector ¢ is just the regular time-derivative

ox* 0S8

at % - (9tS . (109)

Next, we consider the projector FP;* applied to the Lie derivative along t* of a general vector W,, which gives

.ftS - t"@aS -

PrLW, =W, ¥ W, . (110)



The important point is that this applies not just to spatial vectors but to any vector W, as a consequence of
the result

PO Liug =0 . (111)
Finally, we can show that the Lie derivative along t® of any contravariant spatial vector satisfies
P LVI=0V ¥V Vi=P, V. (112)

This follows from a lengthier calculation than what is required for the first two results.
Given these results, we can express various geometric quantities and their projections normal to and along
Y+ in terms of quantities intrinsic to ¥; and simple time derivatives. First, the extrinsic curvature is

1

Oij = — 5 PP £u0a (113)
1 1
= — 5 Pianb(a (~£t0_ab — £50'ab)> (114)
1
= eij = = % <at0ab - (Daﬁb + Dbﬂa)> . (115)
Since f,; is a spatial tensor, projections of its Lie derivative along u® can be expressed in a similar manner
1
PP Lybay = — (010ap — £50a) - (116)
Q@
Now we present the Gauss-Codazzi and related equations in adapted coordinates:
1 1
PP (“Ryp) = Rij + 00,5 — 20;%0;4 — — (0103 — £4035) — — DiDja (117)
P ("Rypu’) = D;6 — D79, (118)
1 . g 1 .
IRpuu’ = - (00 — B'0;0) — 6770, + ~DiD'a (119)
g 2 A 2 )
‘R=TR+0%+0670; — = (00— p'0:0) — = DiD'ar (120)
10. Converting to ADM Variables
The metric is often presented in the form
hapdz®dz® = hydt? 4 2hydtds’ + hyjda'da’ . (121)

We would like to relate these components to the ADM variables: the lapse function «, the shift vector 5;, and
the spatial metric o;;. This is a fairly straightforward exercise in linear algebra. Comparing with (105), we first
note that

oij = hij . (122)
The inverse spatial metric, o/, is literally the inverse of hij, which is not the same thing as hi
o = (o)t = () (123)
For the shift vector we have
hy = ai]ﬂj = o*hy = %oyl = B (124)
= = aijhtj . (125)
Finally, for the lapse we obtain
o? = o hyihg — ha - (126)

10
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