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2Department of Science and Mathematics, Columbia College Chicago, Chicago, |llinois 60605, USA
SDepartment of Physics, University of lllinais at Chicago, Chicago, 1llinois 60605, USA

(Received September 15, 2000)

Using supersymmetric quantum mechanics, one can obtain andytic expressions for the
eigenvdues and eigenfunctions for all nonrelativistic shape invariant Hamiltonians. These
Hamiltonians also possess spectrum generating dgebras and are hence solvable by an inde-
pendent, group theoreticd method. In this paper, we demonstrate the equivalence of the two
methods of solution, and review related progress in this fidd.

PACS. 03.65.-w — Quantum mechanics.
PACS. 03.65.Fd — Algebraic methods.

|. Introduction

Supersymmetric quantum mechanics (SUSYQM) [1] provides an degant and useful pre-
<cription for obtaining dosed andytic expressions for the energy eigenvalues and eigenfunctions
of many one dimensional problems. It makes use of first order differential operators A and AY,

A(X;ap) = dix +W(x;a0); AY(X;ap) =i dd_x +W (x;a); @
which are generdizations of the raising and lowering operaors first used by Dirac for treating the
harmonic oscillator. The superpotentid W (X; ap) is areal function of x and ag is aparameter (or
a st of parameters), which plays a crucid role in the SUSYQM gpproach. From SUSY QM, one
finds that the supersymmetric partner Hamiltonians H; ~ AYA and H+ ~ AAY have the same
energy eigenvalues (except for the ground state). The potentids V; and V4, corresponding to the
Hamiltonians H; and H+, are rdated to the superpotentia by

Vs =W2(x;a) § —deX; %), @)
X
Superpotentials W (x; a) which satisfy the condition
Vi (20) = W2 20) + N 0ot = w2y § M M) 1 Riag) =V, (xa0) + Reao)
a1 = f(ao):
©)
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FIG. 1. A typical set of supersymmetric partner potentials with common eigenenergies.

aecalled “ shapeinvariant” [2]. Here, a; and ag are parameters. Shagpeinvariant partner potentials
V+(X;ap) and V; (x;a1) have the same x-dependence. As illudrated in Figure 1, R(ao) is the
energy difference of the ground gates of V; (X; a1) and V+(X;ap). The functions f(ag) might
include a large class of change of parameters. trandaions, scdings projective trandormations,
as well as more complicated ones We shdl restrict our discusson to the firdg three

Note that “shape invariance’ is a very specidized notion. An example of two such shape
invari ant partners are the infinite well and the cosec? potentia, something one would hardly guess
from the name “ shape invariance”.

A remarkable feaure of shape invariant potentials is that their entire spectrum can be
determined exactly by algebraic means without ever referring to underlying differentid equations
[1], andogousto the way that the one-dimensona harmonic oscillator is solved by Dirac' s method
of raising and lowering operators.

It has dso been discovered that some of these exactly solvable sysems possess a so-called
“spectrum generating algebra” (SGA) [3, 5]. The Hamiltonian of these systems can be written as
alinear or quadratic function of an underlying algebra, and dl the quantum states of these sysems
can be determined by group theoretical methods

One may therefore ask the question: Is there any connection between a general shape
invari ance condition within the formalism of SUSYQM, and a spectrum generatiing algebra? If
0, then dl shapeinvariant potentials should have such an dgebra  Furthermore, we should be able
to egablish the connection between the SUSYQM method of solution and the group theoreticd
potentid dgebramethod. Lag but not least, we may be able to identify whether there are hitherto
unknown potentid s beonging to this family, or, on the other hand, whether the set of known
potentids appears to be complete.

In this paper we discuss the work of others and oursdves dl of which lead to the conclusion
that, indeed, the two methods are equivalent, and in fact, the known set of exactly solvable
potentids appears to be complete.

[1. Super symmetric quantum mechanics and shape invariance

In this section, we very briefly describe supersymmetric quantum mechanics (SUSYQM),
and also show how SUSYQM applied to shape invariant potentials allows one to compledy
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determine the spectrum of a quantum system. For a more detailed description, see Ref. [1].
A guantum mechanical sysem described by a potential V; (X) can alternately be described

by its ground state wavefunction A(()i ): from the Schrodi nger equation for the ground stateé/ve[}ove

function, j Ay +V (x)Ay = 0, it follows that the potentid can be written as V; (x) = %% ,
where prime denotes differentiation with respect to x. Note that the potentia has been adjused
to make the ground date energy Eq =0. In SUSYQM, it is cusomary to express the system in
% 0
terms of the superpotential W(X) = j %g V; Rand W are then rdaed by Eq. (2). The ground
date wavefunction is then given by Ag » exp(j W(x)dx) where Xg is an arbitrarily chosen
reference point. At this point it is important to pomt out that whenever a potentid is defined in
the above form in terms of the a normalizable ground sate wavefunction, the zero-value for the
ground state energy is assured.
Usng units with ~ and 2m = 1, the Hamiltonian H; can now be written as

H T )l
_ d? T d? 2,0~ . AW (X)
H; = d2+V x) = 'dx_2+W () i ix
L Tu !l 4
= i +W(X) dx +W(X)
As discussed in the Introduction, in and vvlth the fparmonic oscillator raisng and low-
ering operators we |Qtroduce operaors A = 4 +W(X) , and and its Hermitian conjugate
AY = L +W(x) . ThusH; = AA. Wth these operators A and AY, one can congruct

another Hermitian operator Hy- = AAY. The eigenstaes of bl are iso-gectral with excited
dtates of H; . The Hamiltonian H., with potentid Vi (x) = W2(x) + ™) s called the
uperpartner of the Hamiltonian H; . To show the iso-spectrdity mentioned aove, |et us denote
the eigenfunctions of Hs that correspond to eigenvalues E§ byAﬁ,§). For n = 1;2; ¢¢¢,
H+3AZ\$4) = AA* 3AAr(,i ) =A3A+AA$,”
3 - 3 - 5)
=AH; A =gi AASD

Hence, except for the ground state which obeysAA(i) =0, dl excited statesAS ) of H; haveone
to one correqoondmoewithA(+) 7 ARG of Hy with exactlythesamenergy, ie En . =Ej,

where n = 1;2;¢¢¢. Conversdy, one a0 has A+A(+) / An' . Thus, if the eigenvalues and
the eigenfunctions of H, were known, one would autometi cdly obtain the eigenvdues and the
egenfunctions of Hx, Which isin generd a completdy different Hamiltonian. See Figure 2.

At this point, we could obtain the E*’s and A(*)’s from the Ei’s and A(i)’s or vice
versa, but we can go no further. That is, unless we know ether set a priori, this andysisis simply
a mahematical curiosity.
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FIG. 2. Isospectrality of Hy and H; . Note that V. and V; have different shapes, as do variousA™* and
Ai.
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FIG. 3. Infinite Square Well and cosec®x: two shape invariant partners.

Now, let us consider the special case where V; (X;aop) is a shape invariant potential. For
auch systems, potentials V+(x; a) = V; (X;a1) + R(ag). Hence, V; and and V+ have the same
X-dependence (dthough, as we shall see, thisis not dways obvious). Their superpotentid W
obeys the shape invariance condition of Eq. (3). Since potentials V+(x;ag) and V; (X; a1) dif-
fer by the additive constant R(ap), their respective Hamiltonians differ by that same constant.
Thus, the eigenfunctions of the Schroedinger equation are the same for both potentids. In par-
ticulgr, they have a common ground state wavefunction, given by /1(()+) (X;a0) = A(()‘ )(x;a1) »
exp i x’; W(x; a1)dx , and the ground gae energy of H+(X;ap) is R(ap), because the ground
date energy of H; (X; a1) is zero. NB: the parameter shift ap ¥ a; has an effect similar to thet
of aladder operator: A S (x;a0) » A*(x; a0) A{i’(x;a1). Note that ladder operators A, AY,
like H, are also dependent on parameters an.
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Now using SUSYQM d gebra, the first excited stateof H; (X; ap) isgiven by A™ (x; ao)Aoi )
(x; a1) and the corresponding eigenvalue is R(ap). By iteraing this procedure, the (n + 1)-th
excited gate is given by

A6 a0) » A™(a0) A (ar) C00A™(an) A" (x;an); ©®
and corresponding eigenvaues are given by

Mt
Eo=0; and E{’ = R(ay) forn>0: @)
k=0
(To avoid notationd complexity, we have suppressed the X-dependence of operators A(X; ap) and
A" (x;ap).) Thus, for a shape invariant potentia, one can obtain the entire spectrum of H; itself
by the algebraic methods of SUSYQM (and of course the same is true for H+). Now we are
moving up (or down) aong the ladder of a single Hamiltonian H; , albeit the price we pay is that
the ASi )’'s have different parameters a,.

As an example let us demonstrate this method for the unlikely pair of shgpe invariant
potentias: theinfinitewdl and cosec?x. We begin by showing tha they are indeed superpotentia
partners Condder a superpotential W (X) = j bcotx with b > 0. We restrict the domain of this
potentia to (0;%). The supersymmetric partner potentids generated by this superpotential are

V; (x;b) = W2(x) j c:j—\;v =b( i 1)cosec®xj b’
and 8
V(X b) = W2(x) + dd_V)i/ =b(b + 1)cosec®x j b?%:

Now for a specid case of b = 1, the potential V; (x;1) is atrivid constant function j b = j 1,
while the partner potential V4-(x; 1) isgiven by 2cosec?xj 1. Thus, in generd, two supersymmetric
partner potentiads could be of very different shepes V; (X; 1) is just an infinite one-dimensiond
quare we | potentid whose bottomissetto j 1. Sinceweknow the eigenvaues and eigenfunctions
of a infinitely degp square wdl potentid, SUSYQM dlows us to determine spectrum of the
very nontrivial cosec?x potentid. The eigenspectrum (in s mplified units) of the square-wdl
potentid V; (X; 1) are given by AG) » sin(nx) and ES) = n2(n =0;1;2;:::). Hence, using
Z\r(:)l » A%ﬁi) and Eq. (1) the eigenspectrum of the cosec?x potential is given by A(n;+)1 »
'dd—x i cotx sin(nx) ad E,(1+) =n(n=1;23;:::).

As we have stated before, if one knows the spectrum of one of the partner Hamiltonians
one knows the other.

In the above example, we knew the spectrum of the infinite square wel and used tha
to determine the spectrum of the cosec?x potentia. Now we demonstrate that they are indeed
shape invariant partners. One can write the potential V4 (X;b) as

Vi(x;b) = W2(x)+ %—V)\(’ = b(b + 1)cosec®x j b?

= (G+1[b+1)i Yoo j (b+1)?+ (b+1)%j b° ©)

V; (b +1)+ (b +1)?j bx
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So the potential V; (X;b) is a shape invariant potentid as defined in Eq. (3), with R(ag) =
b+1)2jb%a=banda;=ap+1=b+1.

Once this shape invariance is established we do not need a priori knowledge of the
egenvadues and egenfunctions of a potential to determine the spectrum of a partner potential.
We first used the formaism of the preceding page Eqgs (6) and (7). Here we solve the in-
finitdy deep potentid wel as an example Setting b = 1 in Eq. (8), we find V4 (X;1) =
2coec®x | 1 and V; (x;1) = j 1. The later represents an infinitely deep potentid wel in
the region 0 < x, < %. The ground dtate eigenfunction and the energy of H; (X;1) are given by
A(§+)(x; 1) » ei WoOcDax,, o cotxdx; sinx and 0, respectively. Now, we use shape invariance
to determine the excited states of this Hamiltonian. Since V. (x;1) =V, (x; 2) + 3, the ground
date energy E((,+)(1) of H+(x; 1) isequd to 3 (using the fact that the ground state energy Eéi )(2)
of H; (X; 2) iszero,) The commop ground stateReigenfundion of H+(x;1) and H; (X;2) isgiven
by A (1) = AJ(x;2) » i WEddx, g 2c0txdx 5y sin? x Thus the first excited state of
H; (1) is given by A (x;1) » AY(x 1)sin2x = (j & | cotx)sin?x » sin2x. Thus, we
have derived the energy and the egenfunction of the firs excited gate of H; (x; 1). By iterating
this procedure, we can generate its entire spectrum. Note thet our choice of V; (x;1) = j 1 shifts
the wel known infinite well spectrum: Eqy ) =2 i L

At this point, we would like to point out that shgpe invariance does not dways help onein
determining the spectrum. There is another important ingredient necessary, and that is unbroken
Supersymmetry. To understand this let us firgt note that the condition EOi ) = 0 was crudd in
determining the spectrum. However, unless Ag is normalizable, it is rﬁeenlizngles to tak-about

Eoi ). For the function Ao to be normalizable, we need Ag(8 1) » exp X§01W(x)dx =0.

Thus a necessary condition for this normalizability is that XiOlW(x)dx = 1. This can be

accomplished if W(x ¥ 1) >0and WX ¥ j1) s 0 and ther iaﬁgrds diverge: If

Ao is not normalizable but 1:Aé‘) is, we write limy s 1. A(li) » exp X5;)1W(x)dx =
3 ’ 0

R
exp i STiWE)Xx =0. Thus W ¥ W, and the roles of V;, and V. are reversed

Xo
in Eq. (3); i.e ES) >0 ad ESY = 0. However, if W(x ¥ 1) and W(x ¥ j 1) both
have same sign, then ndther of the two functions A and 1=A8 is normdizeble. Systems
described by superpotentids W (X)'s with this type of asymptotic behavior are called cases of

broken supersymmetry. For this type of sysems egenvaue spectra of H+ and H; are strictly
identical, i.e

EG) =EM: (10

with ground state energies greaer than zero. Extending this work to include a few select cases of
broken SUSY can be done dong the direction of Ref. [6]. Wewill, in this paper, restrict oursdves
to cases of unbroken SUSY.

Most of the known exactly solvable problems possess a spectrum generating dgebra (SGA)
[3, 4, 5] as has been demongrated by numerous authors starting with Pauli [7]. We would like
to find out if there is any connection between the SGA and shape invariance of these systems.
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In many of these SGA approaches, the Schroedinger Equation is written as. [8iCiTi i
.JR(r) = 0, where rR(r) is the customary radial part of the wave function [Adams et al. [§]]
and Ti's are the generators of the underlying algebra. Eigenvadues of H = §c;iT; are then given
by diagonalization of these generators. For example [8], the Coulomb problem can be constructed
from the generators Ty = 3[rp? + L2ri 1 i r], To = [rpc], Tz = 1[rpZ + L?ri * +r], where
pr = j I(@=@r + 1=r);[r;pr] = i. The algebra is so(2;1): [T1;T2] = j iTs, [T2; T3] = iTy,
[Ts; T1] = iTo. Then H = 1p2 + 1L2ri2 § Zri ! |eads to the radial Schroedinger Equation
reformulated as [T1(L +E) +T3(1j E) i 2Z]R(r) =0 where E is the energy eigenvaue.

In SUSYQM, by contrast, the Hamiltonian is given in terms of the ladder operators. H =
AVA, andogous, as we have noted earlier, to @ and a in the traditiona Dirac solution to the one-
dimensiona harmonic ocillator, or L, and L; in the wel-known angular momentum problems
for sphericadly symmetric potentials As we shdl see later, the type of SGA that is most relevant
to SUSYQM is known as potentid adgebra, studied extensively by Alhassid et al. [3, 4]. In
potentid algebra, the Hamiltonian of the system is written in terms of the Casimir operator (C»)
of the dgebra, and the energy of dates specified by an eigenvdue ! of C,. This Casimir is
analogous to (and often identical to) H, and will commute with a st of operators Jg and Js.
Different gates with a given ! represent e genstates of a set of Hamiltonians that differ only in
vaues of parameters and share a common st of energies. Thisis very similar to the case of shape
invariant potentiads. In the next section, we will atempt to esablish this connection in a more
concrete fashion. In fact, for a set of solvable quantum mechanical sysems we shdl explicitly
show that shape invariance leads to a potential algebra.

I11. Potential algebra modd for shape invariant potentials (SIP’s)

To begin the construction of the operator dgebra let us express the shape invariance
condition [Eq. (3)] interms of A and AY :

V(X a0) i Vi (X a1)= H+(X a) i H; (X;a1)

(1D
= A(;a0)AV(x; ) i AY(x;a1)A(X;a1) = R(ao):
This rdation, which resembles the familiar commutator Sructure, but with distinct parameters agp
and az, is not as exotic as it may appea. For example, we have seen such an equdion in the
context of angular momentum in quantum mechanics

[L+; L;]=2L3: (12

This operator equation, when applied to spherical harmonics, gives the following result involving
its egenvalues

fmi LDY™ i f(Mm; Y™ =2m Y™

Weidentify ag =m, ay =mj 1, and f(m;1) ~ I(1 +1) j m(m + 1). In asimilar fashion, we
would like to characterize Eq. (11) as an eigenva ue equation of operaors J+;J; in an enlarged
gpace, with parameters ap; a1 the eigenvalues of the corresponding Js;. We introduce, in andogy
with 3-space, a coordinate A such that J’s are its “rotational” generators. After quite a bit of trid



108 EXACT SOLUTIONS OF THE SCHROEDINGER EQUATION: ¢¢¢ VOL. 39

and error, we find that one such set of operators is given by

Ji =P AYOCAGB)): 3 = AGAGG)) e P and I3 = | é@A: (13)
The congant p is an arbitrary real constant that scales the gpacing between eigendates of J3. The
red function A, as will be explained below and exemplified later, js chosen judiciously in accord
with the relaion among the parameters a,. The operators A(x;A(i@)) and AY(x; A(i@)) ae
obtained from Eq. (1) with the subgtitution ag ¥ A(i@ ). From Eq. (13), one obtains

[3+:3; 1= eP AV AGG))ACA84))el P AGAI0))AY (6 A(i84)): (14)
If we carry out the operation of 1@ on eiPA, Eqg. (14) reduces to

[3+:; 1= AYOGAGIGA + PDACGAGG +p)) | ACGA(IB))IAY (6 A(i84)): (15)

At this point if we can judiciously choose a function A(i@;) such that A(i@; + p) =
f[A(i@4)], ther.h.s of Eq. (15) becomes

A0 FAGGODACG FAGEA)]) § ACGAG0:))AY(; Air)):

Now using

ao ¥ AGiG:); ay = F(ag) ¥ F[AGiG)] =A(ils + p); (16)
and the shape invariance Eq. (11), Eq. (15) reduces to

[3+:3; 1= i RAA(i84)): (17)

As a consequence, we obtain a “deformed” Lie agebra whose generators J+;J; and Jsz
satisfy the commutetion relations

[D3;Js]1=8Js; [J+:3;1=»J3); (18

»(J3) 7 i R(A(i@A)) defines the deformation of the dgebra from the so(2,1) vdue of j 2J3.
Thus we see that the shape invariance condition plays an indispensible role in the closng of this
dgebra .

Dependi ng on the relationship between ag and a1, we have different forms of theA function
in Eq. (16). This resultsin different deformed agebras. For example,

1. trandational modeds: a1 =ap+p O A(z) = z. In these modelsif R isalinear function
of Jz the algebra turns out to be so(2,1) [11]. It is important to point out thet Balantekin
[12], independently, established a 9 milar connection about the same time as us.

2. scaling models a; =ePag ™ gqag OO A(z) = e?,
3. cyclic modds: a; = 2%t @ A(z) = (ridiT+(2i 9.2 "BE)

o ++? z= zZ=
a0t °LL1P+.57"B(2)]
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where _ 1.2 are solutions of theequation (Xj ®)(xj )i ° = 0and B(z) isan arbitrary periodic
function of z with period p. We shdl daborate on these cases in Sec. 4. Other rdaions between
ag and a1 lead to more complicated forms for A(z). For example, a function A(z) = €, is
required for a; = f[ag] = a3.

The operator J+J; corresponds to a supersymmetric Hamiltonian. From Eq. (13)

J+d; = AYOGA(iRs + p)ACGA>iGs + p)) = HOGA(i@s + p)): (19)

This is our old Hamiltonian H; (x;a;) whose spectrum we seek; we will now suppress the
subscript “-" to avoid confusion with a similar index on the generator J; . To find the energy
spectrum of H of Eq. (19), we thus need to condruct the unitary representations of the operators
J+; J; , and J3. By definition, the action of theoperaors J+; J; and Jz on anarbitrary egendate
jhi of Jz is given by

Jsjhi = hjhi;
J;jhi=a(h)jhi 1i; (20)
Jijhi = a’(h +1) jh + Li;

For determination of the representation, we now need to find the coefficients a(h). Given the
fact that these operators satify a deformed dgebra [Egs (18)], the representation is expected
to be different from our familiar so(3) ([J+;J;] = 2 J3) or its less familiar cousin so(2;1)
([3+:;3; 1 =i 2 J3): The technique that will be followed is based on Ref. [13]. Usng Egs (18)
and (20), operating with [J+;J; ] on a state jhi and writing »(J3) = »(h), we obtain

ja)i? i ja(h+ 1)j* = »(h): (21)
To obtain a(h) fromthis which involves ja(h + 1)j?, let us define a function g(Js) such that
»(J3) =9(J3) i 9(Jz i 1) (22)

Thus, we have ja(h)j? i ja(h + 1)j2 = »(h) =g(h) i g(hj 1). (Note the generality of
tha g(h); it can be changed by an additive congant or a function of unit period without affecting
»(h)). The Casimir of this algebra is then given by C, = J; J+« + g(Js) L. The profile of g(h)
determines the dimension of the unitary representation. To illustrate how this mechanism works,
let us consider the two cases presented in Fig. 4.

If welabel the lowed egendate of the operator J3 ashmin, then J; jhi =0 ) a(hmin) =0.
Without loss of generdity we can choose the coefficients a(h) to be red. Then from (21) and
(22), for an arbitrary h = hyin +n; n = 0;1;2; ::: one obtains by iteration

a?(ny=g(hiniighil): (23)

1This can be verified explicitly by showing that it commutes with J+; J; ; Ja
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FIG. 5. Potential Algebra Schematic of generation of SIP's by “haopping” of h.

Finite dimensional representations are represented by graphs of g(h) vs. h with starting
a h = hpyip, then by moving in integer geps pardld to the h-axis to the point corresponding
to h = hmax, asin Fig. 4a Thus we obtain the family of partner potentids. At the end points,
a(hmin) = a(hmax + 1) = 0, and we get a finite representation. This is the case of su(2) for
example, where g(h) isgiven by the parabolah(h+1). However, if g(h) decreases monotonically,
Fig. 4b, there exists only one end point a& h = hyin. Starting from hyyin the vaue of h can be
increased in integer steps to infinity. In this case we have an infinite dimensond representation.
As in the finite case, hpmin labes the representation. The difference is that here hpin tekes
continuous values. Similar arguments apply for a monotonically increasng function g(h) as well.
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Recdl, we are looking for the eigenvaue spectrum of a given V by comparing it with the
partner V 's with same spectrum, but sequentid ground states. We can use the Jg ’s properties of
Eg. (20) to devdop a “hopping scheme’ as in Fig. 5 to move horizontaly from each partner’s Eg
to the E,, of our V of interest. Eq. (20) leadsto ether afinite representation similar to angular
momentum (i.e. h’s have a maximum and a minimum) or to an infinite representation (bounded
from above, beow, or completdly unbounded).

Having egtablished a connection between the representation of the above dgebra associated
with a shegpe invariant modd, it is graightforward to obtain (using Eq. (19, 21)) the complete
gpectrum of the system. To illustrate how this mechanism works, we investigate a few examples
in the next section.

Using a similar goproach to ours, with so(2; 1), Bdantekin and coworkers [12] have
dudied the cases of potentids with a positive quadratic power law in the energy eigenvalues:
En = n?+#n+ °. They have also studied the “ coherent states” for shape invariant cases.

IV. Examples

IV-1. Sdf-similar potentials

The firg exampleis for a scaling change of paameters a; = qag = €°ag. As stated before,
the function A(z) that emulates this rdationship is given by eZ. Consider the simple choice
R(ao) = r1, ap, where ry is a constant. This choice generates the sdf-amilar potentids studied
in Refs. [14, 15]. In this case, Eqs (18) become

[J3:3s] =8 Js; [I+J;1=»33) " i r1 exp(i pJa); (24)
which is a deformation of the standard so(2;1) Lie dgebra For this case, from Egs. (24) and
(22) one gets 2

g(h):eprﬁ |ph_ qulh q:ep; (25)

Note that for scaling problems [15], one requires 0 < q < 1, which leads top < 0. From the
monotonicaly decreasing profile of the function g(h), it follows that the unitary representations
of this algebra are infinite dimensiond. Then from Eq (23),

a(hy=gthini 1ighi 1)—r1q 1q (26)

To determine the energy eigenvalues, we find the expectation vdue of H in Eq. (19) in an arbitrary
eigenstate jhi of J3. This leads to the gpectrum of the Hamiltonian H; (Xx; a1) from

n -
H, jhi = a?(h)jhi = rqu_—'llqli hihi: (27)
|
Therefore, the eigenenergies are
En(h) = R LOMR 29

2To obtain a solution of Eq. (22), we have been guided by olutions of the differential equation »(u) = 994,
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To comparetheabove spectrum obtained using the group theoretic method with theresuits obtained
from SUSYQM [16], we go to the coordinate representation. Here jhi / ePM Ay, () 3 and
hence, the Schrodinger equation for the Hamiltonian H; reaeds

i Y

2 A A
i (g(—z + W20 A0 +p)) i WOAG[@ +p) i E ePAPA, . (X)=0;
ko | | W
i W"’WZ(X;G'@A +p) i WO(X;eI@Aﬂ)) i E elphAAhmin;n(X): 0 29)
# d2 %
i 2 WAGB() | WGBM) i B Anyin(0=0;

which is exactly the Schrodinger equation appearing in Ref. [15], with eigenenergies given by
Eq. (28). The degant correspondence that exi gs between potentid dgebra and supersymmetric
guantum mechanics for shgpe invariant potentids |sfurthq5descr|bed in Ref. [16].

For a more generd case [15], we assume R(ap) = -_1 Rja). In this case

X R .
= e (30)

and one gets

@ZM=ghini ighil

X 1j Jn (31)
=" o
j=1

where ®(h) = Rjei 1M D, These results agree with those obtained in Ref. [15].

IV-2. Cyclic potentials
Let us consider a particular change of parameters given by the following cycle (or chain):

ao; a1 = f(ag); a2 = Ff(ar) ;15 akj 1 = fF(ak;2); ak = f(ak; 1) = ao; (32

and choose R(aj) =aj = !i. Thischoice generates the cydic potentids sudied in Ref. [9].
Cydic potentials form a series of shgpe invariant potentials the series repeats after a cycle
of k iterations In Fig. 6 we show the first potentid V (x;ag) from a 3-chain (k = 3) of cyclic
potentids, corresponding to o = 0:15, 1; = 0:25, 1, = 0:60.
Such potentials have an infinite number of periodicd ly spaced eigenvalues. More precisely,
the level specingsare given by Yo; 115000 0y Yo Yas oo g 10 Bos By it

®Jajhi 1§ Lgie®hh = hePh
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“l

-15 -10 -5 0 5 10 15

FIG. 6. First potentid V (x; ag) from a 3-chain (k = 3).

In order to generate the change of parameters (32) the function f should satisfy (F(; :: F(X)

1))~ F¥(X) = x. The equation (a projective map)
_Oy+

f)= o1 (33
with specific constraints on the parameters ® ; ; °; , satisfies such a condition [9].

The next step is to identify the Lie dgebra behind this modd. For this, we need to find
the function A satisfying the equation
BA)+
°A(z) ++
It is a difference equation and its generd solution is given by

(i i)hiiﬂ,zz:i 1.5 B@). )
o p+, pB(Z)

>

Az+p) =Ff(A@)~ (34

A(Z) =

where , 12 ae solutions of the equation (xj ®)(xj 1) i ° =0. For simplicity B(z) can be
chosen to be an arbitrary congant. Plugging this expression in Egs. (18) we obtain:

[J3;Js]=8 Js;

CLACLE DT +B2i D0 (35)
l C A)iJ3+Bb£J3 :

[3+ 3i1=»(Ja)
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Applying our standard procedure to find the spectrum of the Hamiltoni an Hi= J+J; we
find that the ground date is at zero energy; the next (k j 1) egenvauesare E, = J'-=0 i l=
0;1;:::;(k j 2); and all other eigenvaues are obtained by adding arbitrary multiples of the
quantity -~ Yo+ 11+ ¢CC+ I, 1. Thisresult isin complete agreement with [9].

IV-3. Scarf potential with a, =an; 1 +=

As a concrete example of translationa dgebra, we will examine the Scarf potential, which
is rdlaed to the Poschl-Teler |1 potentid by a redefinition of the independent variable. We will
show that the shape invariance of the Scarf potentid automaticaly leads to its potential dgebra
s0(2;1). (Exactly amilar analyses can be carried out for the Morse, the Rosen-Morse, and the
Poschl-Teller potentials) The Scarf potentid is described by its superpotentid W (X;ap; B) = ag
tanh x + B sech x. The potentid V; (X;ao; B) = W2(X;a0; B) i W!(x;ao; B) is then given by

o]

V; (X;a0;B)= B?j ag(ag +1) sech?x+ B(2ag + 1) sech x tanh x + &3: (37)
The eigenvalues of this system are given by ([1])
En=2i (a0i ny: (39)

The partner potential V4(x; ao; B) = W2(x; ap; B) + W'(x; ap; B) is given by
Vi(X;a0;B)=[B? j ag(aoi 1)]sech?x + B(2apj 1)sechx tanhx + a:

39
=V; (x;a;B)+a3 | a3 9
wherea; = ap j 1. Thus, R(ao) for thiscaseisa3j af =2ag i 1, linear in ao.
Now, consider a s&t 2f operators J8 which are given bys/
- 2 U (N
s _.5ih g0 . .0 .1 . .
J e §@x' |I@A§2 tanhx+ B sechx (40)

It can be explicitly checked that the commutator of the J® operators, as defined above, is indeed
given by j 2J3, thus forming a dosed so(2;1) algebra. Moreover, the operator J*J i, acting on
the basis jJ; mi gives:

ﬂ5
JYJi 7 B?i m?j % sech? x
Tt T W nE (41)
+B 2 mij 5 +1 sechxtanhx+ mij > X

which is just the Hscart(;m j 3;B), i.e the Scarf Hamiltonian with ao replaced by m j 3.
Thus the energy egenvaues of the Hamiltonian will be the same as that of the operator J*Ji =
J2i J3i J2 Hence theenergyisgiven by E=m?j mj j(j + 1). In this example, the
quantum number j playstherole of hyin defined in the previous section. Substitutingj =nj m,
one gets

En=m?imj (ni m(i m+1)
H _ 1'"2_ - H 1ﬂ,2. (42)

=m|§|ni mi§
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which is the same as Eq. (38), with ap replaced by (m j %). Note that the parameter B of
the Hamiltonian does not show up in the expresson for the energy, and thus plays the role of a
“spectator”. Aswe shdl show laer, this property is shared by all known exactly solvable modds
with two independent parameters.

Thus for this potential, (as well as for the Morse, Rosen-Morse and Poschl-Teler potentids
mentioned above), there are actually an infinite number of partner potentids, each characterized
by an dlowed vadue of the parameter m, that correspond to the same value of j = n j m and
thus to the same energy E. Hence the name “ potentid algebra” ([3, 4]).

V. Natanzon potentials

In the Section 4.3, we noted that for SIP's with translationdly rdaed parameters (i.e.
an = an; 1 + %), the shape invariance condition led to the closng of the algebra to the familiar
s0(3) or so(2; 1), provided that R(ap) was linear in ag [ 11]. Severd SIP sbdong to this category;
among them are the Morse, Scarf |, Scarf 1, and generdized Poschl-Tdler potentials. However,
there are many important SIP' s (eg., Coulomb), whose associated R(ap)’'s are not linear in ao.
Our method of the previous section would lead to deformed potentid agebras for these sysems
While we now know how to get deformed representations of such algebras, in this section we shall
take a different goproach. We choose to generdize the structure of the operators Jg such that
thar algebra still remains linear. In fact, in this section, we reverse the scheme of the last section:
rather than showing the agebraic structure hidden in a shape invariant sysem, we generate shape
invariant potentids from an underlying potentia algebra. To do this we take advantage of the
properties of a generdized quadratic potential discussed by Natanzon [10].

Alhassd et a. [3] have shown that the algebra associ ated with the general potential of the
Natanzon dass is so(2;2). The Schrodinger equation for these potentials reduces in generd to
the hypergeometric equation.

We will briefly examine the properties of the so(2; 2) dgebrain this section, and show its
connection to the Natanzon potentias [10]. We shd| propose an additional constraint to select a
shape invariant subset of the Natanzon potentials We shdl then show that this constraint indeed
produces all known SIP's of the trandational type. We shall find in fact that this subset of
Natanzon potentids associated with the translational SIP's has the Smpler so(2;1) dgebra

We begin by describing Alhassid et al.’s representation of the so(2; 2) dgebrain terms of
differential operators. For consigency, we use the formalism and the notations of Ref. [3]. Our
program here isto take the Alhassid e al. so(2; 2) operaors, which they call A and B, and see
how these can be rdated to the previous section’'sJ’'s i.e, the operators we associated with shgpe
invariance.

The differential operators of Alhassd can be written explicitly as

As ~ Ai§ Az:%eﬁi(‘\*“) "@@A—+tanhA(i i04) + coth A (j i0,) ;

Aa= i (8 +0,); w
By ~ By S 82:%e§i(/\iu) "@@K+tanhA(i i@A)+cothA(+i@u)b;

Bo= i (@ i 6.
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The A’s and B’s separady form an so(2; 1) algebra:
[As; As]=8As;  [An A 1= 2A;

and similarly for the B’s. The Cagmir operator Cy; i.e, the operator which commutes with dl
of the above (cf. the ordinary angular momentum operators L? vis-avis Lg , L) is given by

Co=2(A%i A+A; i A3)+2(B%i B:B; i B3)

g

~ ~ a N s 44
@A—2+(tanhA +cothA)@@A-+sed12A(i i0;)? i cosech?A(j i0,)% : 44

Operators Az, B3 and C, commute, and can therefore be simultaneoudy diagonalized, and their
actions on their common egensteae are given by

ng!;ml;mgi = !(!+2)j!;m1;m2i;
Azjl;mg;mei = mg ji;mg; mot; (49)
Bsj!;my;mai = myj¥;mg; mal:

(It is important to note that the Casimir operator given above is indeed sdf-adjoint, once we
recognize that the appropriate “measure’; viz., the volume element over which it is integrated,
is sinh A coshAdAdAdp. This is compurable to the more familiar “3-space” algebra so(4), for
which [Az; As] = § As, [A+; A, ] = +2A3, and the measure is sin A cosAdAdAdy.)

We thus have the eilgenval ues and e genfunctions of C,, Az, and B3. Theproblem resembles
the familiar 2-particde angular momentum case for H, L,,, Ly,. Az and B3 certanly have
differential forms (j 1@4 8 1@y) analogous to L,. However, our C, cannot, in its present form, be
a Schrodinger Hamiltonian, since it has a first order derivative term. When we seek to diminae
this term, we discover that this constrains the allowed potentials to the special family, discovered
by Natanzon [10].

To connect the Casimir operator C of theso(2; 2) dgebra[Eq. (44)] tothegenerd Natanzon
potentid, we try the standard set of operaions to transform both coordinate system and vari ables
firg we perform a similarity transforméation on C, by afunction F and then follow that up by an

gopropriate change of variableA ¥ g(r) 4. Under the similarity transformation,
A L A L|

d gpdoi d FE @, # o 2kd 2E P
AT AT T A E o A2t gR2l F AT F2ZFE

where dots represent derivatives with respect to A The Casimir operaor C, of Eq. (44) transforms

cs. . A " )
] o2 A i 2F d 2F2 PR
CitC = EA—2+ tanhA+cothA. = EA_-FEl E

# (46)
i (tanhA + coth A)E +sech?A( 104)2 i cosech?A(j i0,)% :

“No connection to the g(h) discussed in the previous section.



VOL. 39 ASIM GANGOPADHYAYA ¢¢¢ 117

Now, let us carry out a change of varigble from Atorviah = g(r). We ae going to denote
differentiation with respect to r by a prime. The operators % and d—A‘%Z—Z tranform as
d_1d 2 1 & "d*

dA T gidr  dA2 T g2 gzt gigr -

The operator C,; now trangorms into
T2 # 0 0 %
=1 d—+ i 3 £+g0(tanhg+cothg) a4
g2 dr2 U = dr
2|:02 |:00 |:0 g00
i — +
'F T F¢

C

= (47)

Fogo
'F

5

i ¢
(tanh g + cothg) + g2 'sech?q(j i04)? i cosechPg(j i6,)?

In order for g®2C, to be a Schrodinger Hamiltonian, we require the “coefficient” of the
first order derivative d%; viz the expression ingde the curly brackets in Eq. (47), to vanish. This
constrains the relaionship between the two functions F and g to be

g  2F!

o i g’(tanhg +cothg) = 0; (48)

which yidds

M sinh(2g) %
g’ '

(49)

Thus, the operator C», transforms into

1 d? N 02“(1i tanh? g)? j 4tanh2g11

Co=— —
2792 dr2 4tanh? g

(50)
. &
+%fg;rg+g°2 'sech?g(j i04)% i cosech?g(j i0,)2

This Cagmir operator now has the form

1
C=ij—H;
1 goz

where H is a one-dimensiond Hamiltonian with the potentid U(r) given by
Moo 2 \2 - 2 1
(1 tanh“g) ; 4tanh“g +1fg; g
4tanh- g 2

£
+g% “secPg(i i64)? i cosech?(j i8,)? -

. — 02
Ei U(r)=g (5)
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Following Alhassd, we now mug rdate these so(2; 2) operators- in particular the trans
formed Cagmir— to the Natanzon potentids. A general Natanzon potential U (r) is implicitly
defined by [10]

i fzLi 2)+ho(li Z)+huz 1 _
) i =fz;rg; (52

2
with Q(z2) quadratic in z : Q(z) = az®> +bpz +co = a(lj 2)°i bi(Lj z)+ ¢ and
T; ho; hy;a; bo; by; co; 1 are constants. The Schwarzian derivative fz; rg is defined by

Ulz(n] =

. dBz=dr® 3 d2z=dr2°?
209" “Gar 12 “dz=ar (59)
The reationship between the variables z (0 <z < 1) and r isimplicitly given by
T |
dz 2251 i 2)
— = PpP=——" 4
dr Q@) (%4

Now, for our potentid [Eg. (51)] to take the form of a generd Natanzon potential, we have
to relate the variables g and z in such away that the potential in terms of z is given by Eq. (52).
Since the potential has to be a ratio of two quadratic functions of z, we find, after some work,
that this can be accomplished with the identification z = tanh? g, which leads to

Q+[ig+3zi 427 z(Li 2)(i i0)* +(1i 2)(ii0)> 1
Q 2

- ; 1 H ; l

=i aBi ;7 +(Gi6) z(Li )+ wEi ;7+(ii6)® Li 2)

E
U(z(r))= fz;rg

+(a+bo+0)E i 1) Q@) i 321G

(55)
Here we have used
r—
go:d_gzgz n_l 2(1iz) _ z,
dz 2°zLiz) OQ Q
Now, with the following identification
N
f=aE j Z+(' 104)°;
(56)

7 .
ho= coE i i (i i8>
hy=(@+by +co)Ei 1

the potential of Eq. (55) indeed has the form of a general Natanzon potential [Eq. (52)].
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We are findly ready to explicitly demongrate the connection between the potential dgebra
based on Natanzon potentids, viz., so(2; 2), and the shape invariant potentials of supersymmetric
gquantum mechanics. We pow note that the signilarity transformation can be rewritten: since
g=tanhi ' Pz, and g = 2, Eg. (54) yidds SN =z

At this point we go back to the operators Ag [Eq.3 (43)] and ak how these operators trans-
1

form under the similarity trandformation given by F » %@Q 2y p%f. This trandformation
caries the operaors As to

_e§‘(A+“)'..“ d  1d 1 dzﬂ_

|| - s s
Ao B A = A2k T 2zdh
A ) . (57)
+tanhA (j i@i) + cothA (j i@,) :
s .

Except for the expression 2—%;%3 i %gﬁ— , this looks very much like Eq. (43), which gives in

fact the Ag of the shape invariant Poschi-Teller potentid [1]. Thus, if E%%ﬁo—l ~% weeto

bealinear combination of tanhA and coth A, the operators As could be cast in aform similar to
the operators Ag of Eq. (43), and we would get Ag 's that generate shape invariant Hamiltonians
Hence to get shape invariant potentid s, we reguire

U 1
1dz2! 14z A, — A
T | gk = ®tanhA + ~ cothA: (58)
This leads to
=z @j2)i% ; (59)

which is a constraint on the rdationship between the variables z and r. Since these variables
are already constrained by Eq. (54), only a handful of solutions would be compatible with both
redrictions. The z(r)’s that are compatible with both Eqs (54) and (59) are given by

2@ )% = EM (60)

Q@)

where Q(z) is a quadréic function of z. After some computation, we find that there is only a
finite number of vaues of ®,  which saisfy Eq. (60). These values are liged in Table I, and
they exhaust all known shape invariant potentids that lead to the hypergeometric equation. Thus
if the requirement of Eq. (58) is, as we conjecture, the mog general possibility, then the family
of known shape-invariant potentids is the complete set of such potentials
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TABLE |. All allowed values of ®,  and the superpotentids that they generae. Note that dl
known solvable potentials can be reached from these by special limits of m; and mj,

[19].
® z(r) Superpotentia Potentia
0 0 z=el' my coth 5 + mp Eckart
0 i3 z=sin?} mMiCosECr +mpcotr  Gen. Poschl-Teler trigonometric
0 j1 z=1jei" my coth & + m; Eckart
i % 0 z= sechz; micoxechr + my cothr  Poschl-Teller 1l
i3 i3 z=tanh®} mytanh 5 + mycoth S Gen. Poschl-Teler
il 0 z=1+tanhj mitanh+m; Rosen -Morse

Interegingly, while the potential algebra of a generd Natanzon system is so(2; 2), and
requires two sets of raising and lowering operators Ag and Bsg, all trandational shape invari ant
potentids turn out to need only one such set. For dl SIPsof Table 4.1 of Ref. [1], onefindsthat dl
partner potentiads are connected by change of just one independent parameter. Other parameters,
if present, do not change from caseto case Thusthere is a series of potentials that only differ in
one parameter.

For example, the two shape invariant partner potentials of Rosen-Morse | form are given
by

b2
V; =a(@j 1)cosec®x +2bcotxj a+ —;
a (61)

V4 =a(a+ 1)cosec®x +2bcotx j a2+ g;:

These two potentids arerdated by the transformation a j ¥ a+1, whileb is merely a* spectator”.
This suggedts a lower symmetry than so(2; 2). From the potential algebra perspective, dl these
potentids differ only by the eigenvd ue of a single operator (a linear combinaion of A; and B3),
and all are characterized by a common eigenvdue of C,. Thus these shape invariant potentials
can be associated with a so(2; 1) potentid dgebra generated by operators A+, A; and the linear
combination of Az and B3 mentioned above.

VI. Conclusions

In this paper, we have reviewed the topic of solvable shgpe invariant Hamiltonians from
upersymmetric quantum mechanics. We have summarized the gpparently unrdated topic of group
symmetries known as potentid algebras. We have then shown the reaionship between the two.
We have derived the potentid dgebras for shape invariant sysems, where hierarchies of super-
symmetric potentials are characterized by changes of parameters that are rdaed by translaiond
[an = an; 1 + 1], scding [an = q an; 1], and mapping of theform a, = (?,2:‘"i i; (The last map
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leads to cydic potentids.) In gened, one finds deformations of the so(2;1) Lie algebra. We
have discussed these deformations, but then showed that for the translationd case, they may be
avoided by generalizing the operator Sructure to keep the resulting dgebra linear. This led to the
identification with Naanzon potentids.

Our gpproach therefore has linked the group theoretic (potentid agebra) gpproach and the
upersymmetric quantum mechanics gpproach for tregting shape invariant potentials Its applica
tion has led to the condusion that the known family of exactly solvable SIP' s is complete.

Partid financid support from the U.S. Department of Energy is gratefully acknowledged.
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