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The electric field at the chargeless interface between two regions

of space
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Department of Physics, Loyola University Chicago, Chicago, lllinois 60626
(Received 21 November 2012; accepted 20 February 2014)

A common method for solving Poisson’s equation in electrostatics is to patch together two or more
solutions of Laplace’s equation using boundary conditions on the potential and its gradient. Other
methods may generate solutions without the need to check these conditions explicitly, and
reconciling these solutions with the appropriate boundary conditions can be surprisingly subtle. As
a result, a student may arrive at paradoxical conclusions—even in the case of elementary
problems—that seem to be at odds with basic physical intuition. We illustrate this issue by
showing how the potential of a uniformly charged ring appears to violate continuity of the normal
component of the electric field at a chargeless surface. © 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4867378]

I. INTRODUCTION

In electrostatics, the first step in solving Poisson’s equa-
tion is often dividing space into multiple regions separated
by two-dimensional interfaces. A few basic techniques are
used to establish the solution (or its general form) in each
region, and these solutions are then spliced together to give
the full solution over all space. This last step is accomplished
by imposing boundary conditions on the potential and its
gradient at the interfaces between regions.

For example, suppose @ (7) is the potential throughout a
region V; and @, (7) is the potential in an adjacent region ).
If the two regions are separated by a surface Sy, that carries
a surface charge density o, then the boundary conditions on
the potentials are

@, (75, = ©2(7)5, and
(VO,(7) — VO <>>|S,2=§Ofm, 1)

where 71, is the unit vector on Sy, that points from V; to V,.
These conditions are usually summarized by stating that the
potential is always continuous, but the normal component of
the electric field will experience a “jump” discontinuity at a
charged surface. This succinct explanation is quickly inter-
nalized by undergraduate students, and it forms an important
part of their developing physical intuition for the behavior of
the electric potential.

However, some techniques for solving Poisson’s equation
do not explicitly use these boundary conditions when deter-
mining the potential. For instance, given a charge distribu-
tion with azimuthal symmetry, it may be possible to obtain
the solution on the symmetry axis directly from Coulomb’s
law. In regions where there is no charge this solution can be
compared to the general solution of Laplace’s equation to
obtam a solution that is valid at points off the symmetry
axis."? This solution might take different forms in different
regions—inside and outside a charged sphere, for instance—
and of course the appropriate boundary conditions must be
satisfied at the interfaces between such regions. But in some
cases, we find that verifying the boundary conditions and
confirming the expected behavior of the potential can be sur-
prisingly subtle. This is especially true in situations where
there is no physical surface separating the regions. If there is
no physical surface then there is no surface charge density,
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which leads one to expect that continuity of the electric field
should be easy (or even trivial) to demonstrate. When this
turns out to not be the case, students may be left wondering
whether they have misunderstood the essential physical ideas
expressed by the boundary conditions, or else made some
sort of error in obtaining the potential. The purpose of this
article is to show how the solutions of even very simple
examples can be tricky to reconcile with the boundary condi-
tions as they are expressed in Eq. (1).

In Sec. II, we establish notation and conventions by
reviewing the boundary conditions on the potential for an
azimuthally symmetric system that is most conveniently
described in spherical coordinates. In subsequent sections we
obtain the potential of a particular azimuthally symmetric
system—a charged ring—using the method described above,
and attempt to verify the boundary conditions as expressed
in Eq. (1). As we will show, this requires both nontrivial
effort and a careful re-examination of our assumptions.

II. BOUNDARY CONDITIONS IN
ELECTROSTATICS

Let us determine the potential due to a charged spherical
surface of radius R. The physical surface of the sphere natu-
rally divides space into two distinct regions: the “inside”
defined by < R, and the “outside” defined by r > R. We will
assume azimuthal symmetry, as is usually the case with prob-
lems in an undergraduate course, so the surface charge density
a(0) depends only on the polar angle. Then the general solu-
tion for the potential ®(r, 0) in each region is given by

@, (r,0) = ZagréPg cosf))  for r <R,

@(r,0) =
Doy ( Z é+1 v(cosf)  for r >R,
2

where Py(cos6) are Legendre polynomials in the variable
cosl. The constants a, and b, are determined by imposing
the following boundary conditions at the interface r =R:

1. continuity of the potential,
Din(R, 0) = Dou (R, 0); 3)
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2. a discontinuity in the radial derivative of the potential,

00| 9| a(0)
or R or R n €0 '

“

The second boundary condition, which expresses the dis-
continuity in the radial component of the electric field due
to a surface charge density on the physical surface r =R,
is derived from the integral form of Gauss’ law. It can
also be obtained directly from the differential form of
Maxwell’s equations, as in Refs. 3-5.

The series solutions and boundary conditions for the
potential, as written above, rely only on the symmetry of the
charge distribution and the division of space into spherically
symmetric inner and outer charge-free regions. Thus, they
should be an appropriate starting point for other charge dis-
tributions with these properties, including situations where
there is no physical surface separating the inner and outer
regions. In Sec. III, we will consider the potential for just
such an example and carefully analyze the boundary condi-
tions at points where there is no surface charge.

III. POTENTIAL DUE TO A UNIFORMLY
CHARGED RING

Let us consider a ring of radius R, oriented in the xy-plane
and centered at the origin that carries a uniformly distributed
total charge Q. This configuration is shown in Fig. 1.
Working in spherical polar coordinates, space is once again
naturally divided into the two domains r <R and r > R. But
unlike the case of the charged sphere, the interface r=R
between these regions is not a physical surface. The left-
hand side of Eq. (4) is expected to vanish at most of the
points on this interface, because there is no physical surface
there to support a charge density o.

The regions r <R and r > R contain no charge, and hence
the potential in these domains is given by Eq. (2). For this
type of azimuthally symmetric problem the coefficients a, and
b, are determined by explicitly calculating the potential on the
axis of symmetry (the z-axis with 6 =0) using Coulomb S
law, expanding the result in powers of 7 (for 7 < R) or r~ " (for
r>R), and then equating these expansions with the general
solution, Eq. (2), evaluated at 0 =0.° The equality holds for
all values of r in each region, so the coefficients can be deter-
mined by a term-by-term matching of the expansions. Since
this method gives the full solution in both regions without
invoking the boundary conditions (3) and (4), one should
check that the result exhibits the correct behavior at the inter-
face r =R. Is the potential continuous, and is its radial deriva-
tive continuous at points where there is no charge?

The potential due to a uniformly charged ring, at a point
z=r on the axis of the ring, is given by

Q > Y (26) r%
D (r,0) = -5 (~1)
41e ; 22( (f') R2€+1
D(r,0) =
- ol | R¥
out r, 9 47‘560 Z |2M ] ,2l+1
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P>y(cos 0)

Py¢(cos 0)

Fig. 1. A uniformly charged ring located at r=R, 0 =7/2, 0 < ¢ < 27. The

dashed line represents the “surface” r=R that separates the regions r <R
and r > R.
Q
@(r,0) = . (5)
7 4megVR? + 12

In the above two domains, this potential can be expanded as

00 r2l
drmey ZO: [z” ] g forr <Kk

D(r,0) = o1 R
—| =— for r >R.

47e 1,2(; [zﬂ p2trl
(6)

Comparing these expansions with the general solution in
Eq. (2) shows that the odd coefficients a,,,; and b, are
all zero, while the even coefficients are

_ (=10 [ v
= 47I50 R2(+1 22[ (E')2
C(=D'OR* [ (20)
by = o, 2 ()| (7

Hence, the potential throughout the inner and outer regions
can be written

for r <R;

®)

for r > R.
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A similar derivation of this potential can be found in Ref. 7,
and an approximation motivated by numerical analysis is
given in Ref. 8.

Now let us verify that the solutions @y, (r, ) and @y (r, 0)
satisfy the boundary conditions at the interface r=R.
Demonstrating continuity of the potential is straightforward:
when evaluated at r =R the two expressions in Eq. (8) are
clearly equal to one another term-by-term. All that remains
is to check whether the radial derivative of the potential is
continuous on the parts of the interface » =R where there is
no charge. Computing the difference in the radial derivative
across the interface, we find

O;,(r, 0)
or

3 Oy (r, 0)
R or

0 | (20)
- 4megR? ; (_1)[ Lze

5| (40 4 1)Pyy(cos 0).

€))

According to Eq. (4), the left-hand side of this equation is
expected to be zero at any point where there is no charge
density (i.e., for 0+ 7/2). For instance, there is no charge
along the z-axis, so the radial derivative of the potentials on
the inner and outer regions should agree at 0 = 0. But the dif-
ference in the radial derivatives at this point is

6(I)in(l”, O) - 8(Doul (}", 0)
or R or

R

47T60R2 Z [ )

Is the infinite sum on the right-hand side equal to zero?
Applying one of the many convergence tests shows that the
sum does not converge.” Does this mean that the radial com-
ponent of the electric field is somehow discontinuous at this
point? Surely this cannot be the case—it is clear from Eq. (5)
that the potential and its radial derivative are continuous
everywhere on the z-axis.

To shed light on this confusing result, we return to the
expression for the dlscontlnul Z}/ 1n 8 D at a general point.

(4+1). (10)

Using Py(0) = (—1 2€ /2% (1)7], we write Eq. (9) as
0D;,(r, 0) B Oy (1, 0)
or R or R
— 4ngR2 > 42+ 1)P3(0)P(cos ). (11)
=0

Since odd Legendre polynomials vanish when evaluated at 0
(i.e., P»;,1(0)=0) we can insert them in this expression to
obtain a sum that includes both even and odd terms:

BCDin (l’, 9)
or

_ 8(1)0ut(l‘, 9)
R or

R

>\ (20+1
- 275)132 Z( ; )P/:(O)Pz(cos 0). (12)
=0

This sum does not converge at 0 =0, as we saw above, or at
any other value of 0.'"° However, using the completeness
property of the Legendre polynomials, we obtain
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0Diy(r, 0) Oy (1, 6) 0
ol o T SR d(cos —0)
Q 4(0—m/2)

 2meoR? [sin(n/2)]

__0 n
B 27'560R2 0 (9 2) '

13)

The discontinuity in the radial derivative of the potential at
r =R is proportional to the Legendre series representation of
the Dirac delta function. In fact, the right-hand side of this
equation correctly expresses the uniform line charge on the
ring, L = Q/2xR, as a surface charge density. To the extent
that we are willing to think of the delta function 6(0 — 7/2) as
being “zero” at 0 # w/2, this confirms our expectation: the ra-
dial derivative of the potential is continuous at points where
there is no surface charge.

On the other hand, a literal interpretation of Eq. (13) is
problematic. A delta function is a distribution that makes
sense only inside an integral, and its Legendre series repre-
sentation, Eq. (12), does not converge. So how does one
prove that the radial derivative of the potential is continuous
at points on the surface r =R where there is no charge, if
expressions like Egs. (12) and (13) cannot be evaluated at
such points? The problem here is the condition given in Eq.
(4), which assumes that the surface charge density is a well-
behaved function on the surface r =R. Since ¢ is singular for
the charged ring, we must take a step back and use the full
integral form of Gauss’ law to understand what happens.

Consider a Gaussian pillbox that straddles the surface
r=R and encloses a region A on the surface. Then the inte-
gral form of Gauss’ law gives

1 J Jao— J Ja (8<D,—n(r,0)  ODu(r, 9))
€0 Ja A or or

where da = R*sin0d0d¢ is the scalar area element on the
sphere. The left-hand side is the charge Q.. enclosed by the
Gaussian surface, which is just the surface charge on the part
of the sphere A inside the pillbox, and the right-hand side is
the integral over A of the divergent sum in Eq. (12). Let us
explicitly evaluate this integral for arbitrary regions with
0,<0<0, and ¢, < ¢ < ¢,, as shown in Fig. 2. Then
Eq. (14) becomes

;14
R

Oecnc = 0 —Z (2£+1)P,(0) J d0sin 0 P(cos ),

s)

where A¢p = ¢, — ¢,. The integral of P, can be expressed in
terms of P, and P,_, and the resulting sum can be rear-
ranged so that it takes the form

0,

O =03 (Z[Pze+z(0) — Par(0)]Ps1(cos 9)>

=0

0,
(16)
Unlike the sum in Eq. (12), the sum in this expression is

well-defined and converges for any value of 0. It is Just the
Legendre series representation of a function f(0) given by
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Fig. 2. Two patches 0; <0< 0,, ¢; < ¢ < ¢, on the surface r=R.

—1 for 0<0<m/2,

16) = 1 form/2<0<m. {an

As a result, the surface charge on the region A is

0 for 0; < 0, < m/2,

Ourc — 0 for /2 < 01 < 0,, (18)

0 % for 0; < /2 < 0,.
2n
Thus, the enclosed charge is always zero if A does not over-
lap the ring at 0 =7/2, and we can use this result to prove
that the radial derivative of the potential is continuous at a
point on 7 = R with no surface charge. First, consider a small
region A that contains the point in question and does not
overlap the ring. Then Q.,. =0, and Eq. (14) becomes

3(1’1,1(}’, 0) 8(I)oul(ra 0))
Lda ( or or

=0. (19)
R

@ (b

This equality does not depend on the details of A—it is true
for all values 0, 05, ¢, and ¢, such that A does not overlap
the ring—so we can conclude that the integrand is equal to
zero. Therefore, the radial derivative of the potential is contin-
uous at points on the surface » =R where there is no charge.

IV. CONCLUSION

Using the example of a uniformly charged ring, we
showed that verifying the expected behavior of the potential
at the interface between two charge-free regions can be non-
trivial. In particular, significant analysis and careful consid-
eration of Gauss’ law is needed to confirm that the derivative
of the potential is continuous at points on the interface where
there is no charge. Similar issues arise in many other situa-
tions involving singular or localized charge distributions,
such as a collection of point charges, multiple charged rings,
or a band or annulus of charge. It is important to be aware of
instances where these elementary examples appear to dis-
agree with a student’s physically motivated expectations.

The potential for the uniformly charged ring was obtained
without appealing to the boundary conditions at r =R, so the
process of checking these conditions might be regarded as an
intellectual exercise rather than a necessary step in solving the
problem. But it is easy to see how the example we have
described might cause confusion for students in their first elec-
tromagnetism course. Methods for obtaining solutions like
Eq. (8) are usually taught not long after the boundary condi-
tions are first expressed in the form given in Eq. (1), and it is
natural for a student to appeal to these simple boundary condi-
tions as a tool for understanding new results. Examples like
the one described here both reinforce the physical meaning of
the boundary conditions—the electric field is continuous at
points where there is no charge—and illustrate how careful
one must be in jumping from a generally applicable result like
Gauss’ Law to an expression like Eq. (1).

One might question the relevance of this example, since a
perfectly thin ring of charge is unrealistic. Shouldn’t the
issues we describe be resolved by more physically realistic
charge distributions like the ones shown in Fig. 3?7 After all,
the sum in Eq. (10) fails to converge because the charge dis-
tribution of the ring is singular, with the surface charge den-
sity given by a delta function:

Fig. 3. Three ways of smoothing out the singular charge distribution of the ring: (a) a charged band (n/2 — d < 0 < /2 + J, r=R); (b) a charged annulus
(0 ="7/2, Rinner <7 < Rouer); and (c) a solid of revolution formed by rotating an annular sector about the z-axis (/2 — 0 < 0 < 7/2 + 9, Ripner < 7' < Router)-
In each case, the analog of Eq. (12) converges but demonstrating continuity of the radial component of the electric field at points with ¢ =0 requires nontrivial
identities for Legendre polynomials.
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(0) = 1% 5 (e - g) . (20)

While it is true that spreading the charge over an extended
region addresses the issue of convergence, there are at least two
reasons why our example should not be discounted. The first
reason is pedagogical. Singular charge distributions are a com-
mon tool in electromagnetism courses because they tend to be
conceptually simple and mathematically tractable, and this
helps a student focus on essential physics. When one of these
examples leads to a confusing result, the student is forced to an-
alyze basic statements like Eq (1) and think deeply about the
physics involved in order to determine the source of the prob-
lem. The second reason is technical, but no less important.
Replacing the singular charged ring with one of the distribu-
tions shown in Fig. 3 makes it more difficult to demonstrate
continuity of the gradient of the potential. In those cases, verify-
ing the boundary conditions requires Legendre polynomial
identities that are outside the scope of most undergraduate
courses.'? Such examples, which are more difficult to work out
in detail, would be just as likely to leave students wondering
why their expression for the potential does not seem to satisfy
the expected boundary conditions at points where ¢ = 0.

ACKNOWLEDGMENTS

The authors wish to thank the referees of an early ver-
sion of this manuscript for several helpful suggestions that
improved the quality of the paper. A.G. would like to thank
the Center for Experiential Learning at Loyola University
Chicago for an Engaged Learning Faculty Fellowship
that provided partial support for this research. R.M. is

supported by a Faculty Research Stipend from Loyola
University Chicago.

DElectronic mail: rmenees@luc.edu

PElectronic mail: agangop@luc.edu
'7. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons,
New York, 1999).

’D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice-Hall,
Englewood Cliffs, NJ, 1991).

3S. T. Epstein, “Alternative discussion of discontinuities at an interface,”
Am. J. Phys. 53, 583-584 (1985).

“D. G. Hall, “A few remarks on the matching conditions at interfaces in
electromagnetic theory,” Am. J. Phys. 63, 508-512 (1995).

SThese references assume that the surface charge density ¢ is a well-
behaved function on the surface.

“Note that P¢(cos 0) = P(1) = 1 for all £.

E. A. Matute, “On the vector solutions of Maxwell equations in spherical
coordinate systems,” Rev. Mex. Fis. 51, 31-36 (2005); available at: http://
arxiv.org/abs/physics/0512261.

8F. Zypman, “Off-axis electric field of a ring of charge,” Am. J. Phys. 74,
295-300 (2006).

°For instance, Stirling’s approximation ¢! ~ ¢‘¢~*/2n¢ can be used to
verify that the summand grows as v/¢ for large ¢, and therefore does
not vanish in the ¢ — oo limit. Combining subsequent even (¢ =2k) and
odd (/=2k+1) terms in the sum gives a strictly negative summand
proportional to 1/ Vk at large k. This form of the sum can be shown
to diverge by the integral test or by comparison with the harmonic series.

1A thorough discussion of the convergence properties of the Legendre se-
ries solution for the potential of a uniform charged ring can be found in F.
Glick, “Axisymmetric electric field calculation with zonal harmonic
expansion,” Prog. Electromagn. Res. 32, 319-350 (2011).

"Students will have encountered a similar Legendre series in problem 3.22
of Ref. 2.

2One must use identities for Legendre polynomials on the half-intervals
0<0<m/2 and 7/2 < 0 <, where the familiar orthogonality conditions
do not apply.

Newton’s Color Wheel

In 1882, Walker Hall on the Amherst College campus burned, and with it all of the Philosophical Cabinet. This Color
Wheel, designed for use in a projector, was one of many pieces purchased from the Paris firm of Ducretet to replace
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