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Abstract  

 

α-Sulfone-α-piperidine and α-tetrahydropyranyl hydroxamates were explored that are potent 

inhibitors of MMP’s-2, -9, and -13 that spare MMP-1, with oral efficacy in inhibiting tumor 

growth in mice and left-ventricular hypertrophy in rats, and cartilage degradation in vitro.  α-

Piperidine 19v (SC-78080/SD-2590) was selected for development toward the initial indication 

of cancer, while α-piperidine and α-tetrahydropyranyl hydroxamates 19w (SC-77964) and 9i 

(SC-77774),  respectively were identified as backup compounds.  

 

Introduction 

 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are 

involved in the remodeling and degradation of all components of the extracellular matrix (ECM) 



and have key roles in development, morphogenesis, bone remodeling, wound healing, and 

angiogenesis.1  The first matrix metalloproteinase, a collagenase, was discovered by Gross and 

Lapiere in 1962 explaining the metamorphosis of a tadpole into a frog.2, 3  However, 

inappropriate MMP activity has been implicated in a number of disease states including tumor 

growth and metastasis4-6 degradation of articular cartilage in arthritis7-9 and tissue remodeling 

and weakening of the left ventricular wall in congestive heart failure.10-13  In order to ameliorate 

disease progression resulting from inappropriate matrix remodeling mediated by MMPs in these 

various disease states, MMP inhibitors (MMPi's) have been extensively explored.4, 5, 14-16  

 

However, patients dosed with broad-spectrum MMPi’s including marimastat (1, Figure 1) suffer 

stiffening of the joints referred to as musculoskeletal syndrome (MSS)12 and the broad-spectrum 

inhibitor marimastat induces joint fibroplasia in rats.17  The underlying cause of MSS observed 

clinically with broad-spectrum inhibitors, has been hypothesized to be due to inhibition of the 

constitutive interstitial collagenase MMP-1,18-21 or sheddases such as TACE22 or a combination 

of those metalloproteinases.  Hence, recent efforts have been toward the discovery and 

development of highly-specific MMP inhibitors that spare off-target isozymes.23-26 

 

Several MMP inhibitors have been in clinical trials.  Bramhall reported the first success in 

treating cancer with an MMPi in a placebo-controlled, double-blind study treating gastric cancer 

patients with the broad-spectrum inhibitor marimastat (1).27  Marimastat afforded a survival rate 

similar to gemcitabine in patients with unresectable pancreatic cancer,28 and a survival benefit 

was demonstrated in glioblastoma multiforme patients on marimastat in combination with 

temozolomide,29 although results with marimastat have been mixed and plagued with MSS.30  

Rebimastat (2, D2163/BMS-275291), a thiol-containing, broad-spectrum MMP inhibitor that does not 



inhibit sheddases, was added to systemic chemotherapy  for the treatment of hormone-refractory prostate 

cancer with bone metastases31 and for Kaposi Sarcoma.32  Encouragingly, rebimastat did not elicit joint 

toxicity in Phase I studies at levels well above the targeted therapeutic range.  but patients did suffer from 

general toxicities and lack of efficacy and the compound was therefore not advanced,  In a Phase II early-

stage breast cancer trial, the pattern of arthralgia in rebimastat-treated patients was consistent with MMPi-

induced joint toxicity, although the differential incidence of arthralgia did not reach statistical 

significance.33  A Phase III study of 3 (Prinomastat/AG3340) in non-small-cell lung cancer (NSCLC) did 

not show improvement in the outcome of chemotherapy in advanced cancer, and toxicities did include 

arthralgia, stiffness, and joint swelling.34  Carboxylic acid 4 (PG-116800) is a broad-spectrum 

MMP inhibitor that elicited arthralgia despite sparing both MMP-1 and MMP-7, and the 

compound failed to show efficacy in preventing ventricular (LV) remodeling after myocardial 

infarction in humans over a course of 90 days of dosing,35 despite impressive outcomes in 

preclinical animal studies where it significantly reduced LV volumes along with infarct zone 

collagen content in a post-MI porcine model.36  Carboxylic acid 4 also induced musculoskeletal 

toxicity without clear benefit in patients with knee osteoarthritis in a 12-month, double-blind 

study.37  Despite these setbacks, impressive efficacy in preclinical models combined with 

advances in the understanding of MMP biology, improved parameters to adequately evaluate 

efficacy, and enhanced inhibitor design underscore the perseverance toward safe and efficacious 

MMP inhibitors in the clinical setting.4, 5 

We previously described the synthesis and MMP inhibitory activity of β-sulfone 

hydroxamates38, 39 inspired by the Roche broad-spectrum MMP-inhibitor 5 which was in the 

clinic for OA.40, 41   Our early β-sulfones potently inhibited MMP-2 and MMP-13 while sparing 

MMP-1, but suffered poor pk.  We subsequently discovered that α-sulfone hydroxamates 

including 6 (SC-276) are superior to the β-sulfones in both MMP-1 sparing enzyme profile and 



ADME properties, and exhibited excellent oral antitumor efficacy in vivo.42  Hydroxamates tend 

to be rapidly metabolized, but we believe that the α-spiro moiety in combination with the α-

sulfone moiety sterically hinder the metabolism of the otherwise labile hydroxamate moiety in 

vivo leading to the outstanding pk properties of molecules of type 6.  Herein we highlight our 

further efforts in the exporation of α-sulfone  α-piperidine and α-THP hydroxamates resulting in 

the discovery of potent inhibitors of MMP’s-2, -9, and -13 that spare MMP-1, with oral efficacy 

in inhibiting tumor growth in mice, cartilage degradation in vitro, and left-ventricular 

hypertrophy in rats, including the development candidate 19v (SC-78080/SD-2590) as well as α-

piperidine 19w (SC-77964) and α-THP 9i (SC-77774).   
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Figure 1. MMP Inhibitors 



 

 

Chemistry 

 

The preparation of α-sulfone hydroxamates 9a-m and 19a-ee is summarized in the following 

schemes.  Phenyloxyphenyl α-tetrahydropyranyl sulfone hydroxamate 9a was prepared as 

outlined in Scheme 1.  4-Fluorosulfone 7 was reacted with phenol in the presence of cesium 

carbonate to afford the diaryl ether followed by saponification to yield carboxylic acid 8a.  

Direct coupling with hydroxylamine employing EDC afforded hydroxamate 9a after purification 

by reverse-phase chromatography.  Other α-tetrahydropyranyl sulfone hydroxamates were 

prepared according to Scheme 2.  O-Tetrahydropyranyl-protected hydroxamate 10 was 

prepared42 by hydrolysis of the methyl ester of 6 with potassium trimethylsilanoate followed by 

EDC coupling with O-(tetrahydro-2H-pyran-2-yl)hydroxylamine.  Nucleophilic aromatic 

substitution of the fluoride proceeded in the presence of cesium carbonate in DMF to afford 

THP-protected diaryl ethers 11.  Acidic removal of the THP group with HCl afforded the α-

tetrahydropyranyl hydroxamates 9.  Specifically for the preparation of 4-

hydroxyphenyloxyphenyl 9e, the phenol employed was 4-(benzyloxy)phenol yielding 11e [Ar = 

4-(benzyloxy)phenyl], which was deprotected as well as debenzylated with concentrated HCl in 

glacial acetic acid at 60°C to afford 9e. 

 



Scheme 1.  Preparation of α-tetrahydropyranyl-α-sulfone 9a 

 

 

 

Scheme 2.  Synthesis of α-tetrahydropyranyl-α-sulfones 9b-d, f-h, j-m 

 

The preparation of α-tetrahydropyranyl sulfone hydroxamate 9i bearing the 4-trifluoromethyl 

group commenced with diaryl ether 12 (Scheme 3).  According to the general method of 

Samaritoni,43 phenol 12 was deprotonated with sodium hydride and the resulting sodium salt was 

then treated with dimethylthiocarbamoyl chloride.  Pyrolysis and subsequent hydrolysis afforded 

thiophenol 13, which was alkylated with sodium chloroacetate and oxidized with potassium 

peroxymonosulfate to yield sulfone 14.  Fischer esterification was followed by double alkylation 

with bis(2-bromoethyl)ether and hydrolysis with potassium trimethylsilanoate to afford 



carboxylic acid 8i.  Coupling with THP-protected hydroxylamine was accomplished with the 

water-soluble diimide reagent (EDC) to afford the protected hydroxamate 11i, which was 

deprotected with HCl in 1,4-dioxane to afford hydroxamate 9i. 

 

Scheme 3.  Synthesis of α-tetrahydropyranyl-α-sulfone 9i 

 

 

The N-unsubstituted α-piperidines 19j, p, and u were prepared as summarized in Scheme 4.  N-

Aryl fluoride 15 was subjected to nucleophilic aromatic substitution with the requisite phenol 

(ArOH) with cesium carbonate to afford the corresponding diaryl ether 16.  Saponification of the 

ethyl ester of 16 gave carboxylic acid 17j, and coupling with tetrahydropyranyl-protected 

hydroxylamine using EDC gave the protected hydroxamate 18.  Removal of both the BOC and 

the tetrahydropyranyl protecting groups afforded α-piperidine hydroxamates 19. 

 

 

 



Scheme 4.  Synthesis of unsubstituted α-piperidine hydroxamates 19j,p,u 
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Scheme 5 outlines the general synthesis of N-substituted α-piperidine sulfonamide hydroxamates 

19.  N-BOC ethyl ester diaryl ether 16 was deprotected with trifluoroacetic acid to afford the 

secondary amine, which was then alkylated or subjected to reductive alkylation to give N-alkyl 

piperidines 20.  Saponification then gave carboxylic acids 17 which was coupled with O-

(tetrahydro-2H-pyran-2-yl)hydroxylamine to give the THP-protected hydroxamates 18.  

Removal of the THP with HCl gave the free hydroxamate as the hydrochloride salts 19.   For the 

specific preparation of N-acetyl trifluoromethoxyphenyloxyphenyl sulfone derivative 19x, N-

BOC carboxylic acid 17a was deprotected with HCl and then acetylated with acetyl chloride to 

afford acetamide 17x, which was then converted to the hydroxamate 19x via the THP-protected 

intermediate.  Alternatively for the preparation of hydroxamates 19, N-alkylation of piperidine 



21
42 may be carried out first to afford N-alkylpiperidines 22 followed by nucleophilic 

displacement of the aryl fluoride to yield diaryl ethers 20 (Scheme 6) which are then converted to 

hydroxamates 19 according to Scheme 5. 

 

Scheme 5.  Synthesis of N-alkylated α-piperidine hydroxamates 19a-z 

 

 

 

Scheme 6.  Alternate synthesis of N-alkylated α-piperidine ethyl esters 20a-bb 

 

 



Results and Discussion 

 

The synthesized α-tetrahydropyranyl (THP) and α-piperidine hydroxamates were tested for 

inhibitory potency versus MMP-1, -2, -3, -7, -8, -9, -13 and -14 (Tables 1 and 2, respectively).  

Selected analogs were assayed for pharmacokinetic profiles in rats to assess potential for further 

development.  Rats metabolize hydroxamates quite rapidly, so using the rat as a filter was a high 

bar that we expected would improve the quality of compounds selected for advancement within 

the series.  Moreover, the post-MI left-ventricular hypertrophy efficacy assay was performed in 

the rat (vida infra) and therefore it was essential to have good oral exposure in this species.  As 

noted above, the α-spiro, α-sulfone moiety that was optimized in our earlier work42 was 

maintained because of its beneficial effect on pharmacokinetic properties of the analogs, 

apparently through sterically limiting access to the hydroxamate by metabolic enzymes, in 

addition to improving enzyme potency and selectivity.   Intermediate carbylic acid of all 

hydroxamates were also tested but failed to show any significant inhibitory potency for the MMP 

isozymes tested. 

 The α-THP series was generally employed for rapidly screening the P1´ (diaryl ether) 

moieties for enzyme inhibitory potency and selectivity, since synthesis via common intermediate 

10 (Scheme 2) enabled rapid analog production.  Most analogs in Table 1 were prepared via this 

method.  This strategy of rapidly screening α-THP analogs, in some cases employing parallel 

medicinal chemistry (PMC), also enabled the discovery of compounds with more selective 

enzyme profiles, some of which have now been reported.44, 45  In most cases, the α-piperidines 

exhibited greater exposure than the α-THP analogs. 



 Simple phenyloxyphenyl derivative 9a exhibited subnanomolar potency for MMPs-2, -3, 

-9 and -13.  Potency for MMP-1 was 268 nM, with selectivity for MMP-13 relative to MMP-1 at 

approximately 2700X, but we sought an even wider therapeutic window (>10,000X) with respect 

to MMP-1 to avoid any inhibition of this isozyme at Cmax.  We had noted previously that the 

phenyloxyphenyl ethers were more potent than phenylthiophenyl ethers of type 6, but turned our 

attention away from the more metabolically labile thioethers to the oxygen-linked  analogs 

described herein, relying on aryl substitution on the distal ring to afford greater selectivity.  

Unsubstituted phenyl ether 9a had only 5.8% bioavailability in the rat, presumably due to the 

availability of the para position in the distal ring to metabolism, combined with the low clogP of 

0.8, given the optimal logP for oral bioavilability of ~2,46  which was consistent with our 

findings in this series.  Thus, our strategy in analog preparation was to improve potency and 

selectivity with aryl substituents, and to block metabolism at the 4-position, but given the 

narrowness of the P1´ pocket, we were essentially limited to substituents in the 3- and/or 4-

positions in the distal ring.  Substitution with a chlorine on the 3-position (9b) raised the clogP to 

1.51, but reduced the potency for all MMP isozymes tested by several fold.  Chlorine substitution 

on the 4-position (9c), however, maintained robust potency and dramatically enhanced the oral 

exposure in rat, giving an excellent bioavailability of 46%, consistent with blocking metabolism 

at the electron-rich 4-position of the phenyl ether.  Interestingly, hydroxamate 9c is the α-sulfone 

analog of β-sulfone 5 that was advanced by Roche Bio-Science to Phase II clinical trials for 

osteoarthritis.41  We had directly compared 9c with RS-130,830 (5) in our earlier report to 

demonstrate the superiority of α-sulfones over β-sulfones in both potency and pk.  3,4-Dichloro 

substitution led to approximately an order of magnitude loss of potency (9d), given the steric 

demand of the two chlorine atoms.  3,5-disubstitution with either two chlorines or two methoxy 



substituents led to compounds that were much less potent for MMP-13 (83 nM and 230 nM, 

respectively; these compounds are not exemplified in the Tables).  Introduction of an H-bond 

donor/acceptor 4-hydroxy group in phenol 9e gave excellent potency for desired isozymes, but 

surprisingly a relatively potent MMP-1 inhibition of 400 nM.  As part of our strategy we turned 

to ethers of phenol 9e to extend the P1´ substituent even further, while blocking the 4-position 

without introducing metabolically-labile benzylic hydrogens.  Introduction of the more bulky 

isopropyloxy in compound 9f and the biphenyl moiety in 9g gave potent compounds, and 

slightly-reduced potency for MMP-1 (>1000 nM) by biphenyl 9g. Installation of a 

trifluoromethyl group in the 4-position gave a more selective compound (12,500X for MMP-13 

over MMP-1) and modest pk in the rat.  Moving the trifluoromethyl group to the para position 

improved both potency and selectivity (20,000X for MMP-13 vs. MMP-1) and dramatically 

enhanced the pk, with t1/2 = 2.68 h and BA = 33%.  Similarly, 4-trifluoromethoxyphenyl ether 9j 

was several times more potent, and also exhibited excellent pk in the rat.  These two 

trifluoromethyl-containing compounds (9i and 9j) had the best overall profiles that we had seen 

among the MMP-1 sparing α-THP sulfones, with greater exposures and half lives than 4-chloro 

derivative 9c, and rivaling α-piperidine 6 (cf. Table 2).  Methylthio derivative 9k also had 

excellent potency, as did trifluoromethylthio derivative 9l, which also had a noteworthy pk 

profile, boasting a bioavailability of 49%.  The latter two compounds were de-emphasized due to 

modest concerns that the sulfur linkages might present a metabolic liability, and 

trifluormethylthio moiety of 9l raised concerns about a high cost of goods.  4-Pyridine derivative 

9m was an order of magnitude less potent at MMP-13 than several other α-THPs, and had low 

exposure upon oral dosing in the rat, with a t1/2 of only 0.25 h and the plasma concentration 



approaching 0 ng/mL after 6 hours, possibly due to oxidation of the pyridine nitrogen as well as 

its dramatically lower clogP of -2.6. 

 Table 2 summarizes the MMP inhibitory potency and rat pharmacokinetics of selected α-

piperidine sulfone hydroxamates.  Among these α-piperidines, we employed N-substituted 

piperidines of varying basicity with the expectation of optimizing pk through modulating 

physicochemical properties and affecting membrane-crossing potential.47  The crystal structure 

of (vide infra) showed that the piperidine N-substituent projects into solvent, so this moiety 

generally had little impact on potency and selectivity at least for the smaller substituents, and 

provided a handle for modulating pk.  An N-methoxyethyl substituent lowers the basicity of the 

piperidine nitrogen inductively48 and substitution with an N-cyclopropyl substituent, introduced 

by the procedure of Gillaspy, lowers the basicity of a substituted amine by 1-2 log units (per 

cyclopropyl substituent) as she has shown.49  Varying the substituents at the distal phenyl 3- and 

4-positions affected potency and selectivity more profoundly, and also affected pk in the α-

THPs, and limited the selection of aryl substituents selected for installation in the α-piperidines, 

ultimately pointing to trifluoromethyl-containing derivatives in the 4-position of the distal phenyl 

ring as having optimal properties overall.  Substitution with a 4-methoxy group on the distal 

phenyl ring  (R2 =4-MeOPh) combined with an N-propargyl substituent on the piperidine gave 

19a which exhibited good potency and selectivity and a very high Cmax, but a modest half life of 

1.0 h.  Hydroxamate 19b with a bulky N-2-pyridylmethyl substituent on the α-piperidine 

exhibited comparable potencies at MMPs-1, -2 and -13, but lost two orders of magnitude potency 

versus MMP-3, while gaining an order of magnitude potency at MMPs-8 and 9.  Meanwhile, the 

exposure in the rat was roughly a third of the exposure of the corresponding α-piperidine N-

propargyl analog.  Hydroxamate 19c with an N-cyclopropylpiperidine and bearing a 4-ethoxy 



group in P1´ had comparable potencies at target MMPs while losing some selectivity toward 

MMP-1.  Para-isopropylphenyl ether 19d exhibited good potencies and selectivity, though losing 

some potency for MMP-9.  In the rat, a fairly high initial Cmax of 5300 ng/mL was due in part to 

the higher clogP of 3.08, yet the compound was rapidly cleared by 6 h, with a t1/2 of less than one 

hour, presumably due to metabolism of the isopropyl group.  Some hemolysis was apparent with 

this compound as judged by blood observed in the urine.  Isopropylphenyl compound 19e had 

good potency for MMPs-2 and -13 and selectivity versus MMP-1, while isopropylphenyl N-

isopropylpiperidine 19f was surprisingly somewhat less potent at target isozymes, although 

solubility may have been an issue, giving the higher clogP fo 3.49.  These 4-isopropylphenyl 

derivatives were not advanced due to concern about the hemolysis observed in the iv arm with 

19d.  Extension of the 4-substituent as isopropyl ethers 19g and 19h showed potency for target 

isozymes, but these derivatives were also unexpectedly more potent versus MMP-1, in particular 

19h with a potency of 770 versus MMP-1.  4-Methylsulfone 19i backed off on potency versus 

MMP-13 by almost 30X relative to some analogs.  Interestingly, whereas most analogs did not 

spare the non-target MT1-MMP (MMP-14) enzyme, 19i was 1200X selective for MMP-13 over 

MT1-MMP.  This elicited some excitement later on, when our focus shifted to dual MMP-1/14 

sparing compounds, but was not initially considered as a criterion for advancement.  The 

sesamol-derived 1,3-benzodioxole derivative 19j with a free piperidine NH was slightly less 

potent than N-alkyl piperidines, and its oral exposure in the rat was modest, as we had seen for 

N-unsubstituted piperidines in the first-generation series.  The poor pk of the unsubstituted 

piperidines may be due to the lower logP (clogP = 0.74 for 19j) or the first-pass metabolism of 

the free piperidine NH, or both.  Sesamol-substituted N-poropargyl piperidine 19k exhibited a 

very high exposure when dosed orally as judged by the high Cmax of over 18,000 ng/mL, but the 



half life was less than 1 h.  N-Methoxyethyl piperidine 19l was virtually identical to propargyl 

derivative 19k based on the enzyme profile.  Installation of an N-cyclopropyl substituent on the 

piperidine gave hydroxamate 19m which was potent and selective, with moderate exposure in 

the rat.  The ring-expanded 1,4-benzodioxane 19n displayed good potency and selectivity, but 

had a moderate bioavailability of 16.6%.  The 4-trifluoromethylphenyl ether 19o bearing an N-

cyclopropyl piperidine was a very promising compound with sub-nanomolar potency for MMPs-

2 and 13, excellent selectivity versus MMP-1, and attenuated potency for MT1-MMP.  Oral 

exposure in the rat was good, with a bioavailability of  36% and a half life of nearly 1.5 h, 

although slight hemolysis was detected after iv administration of the compound.  Free piperidine 

19p again suffered a loss of potency and reduced oral exposure as for piperidine 19j above, and 

the N-morpholinyl-ethyl piperidine 19q had minimal exposure in the rat and only 2.6% 

bioavailability, demonstrating that the additional basic site in this analog was counterproductive.  

N-Isopropyl piperidine 19r exhibited excellent pk in the rat with a half life of greater than 2 h 

and a BA of almost 50%, but the enzyme potency was attenuated, particular for target enzyme 

MMP-13.  The enzyme profile of N-ethyl piperidine 19s was very comparable to N-

methoxyethylpiperidine 19t bearing the trifluorothiophenyl ether, but the methoxyethyl 

derivative was chosen for pk due to the reduced basicity of its piperidine nitrogen, which we 

believe to be advantageous for oral exposure.  The profile of trifluoromethylthioether 19t was 

deemed worthy of promotion, with one of the highest concentrations at 6 h observed  overall 

(14078 ng/mL), a half life of approximately 3 h and a good bioavailability of  34%, yet higher 

cost of goods concerns and perhaps a bias against the somewhat less common 

trifluoromethylthio functionality limited its advancement; a trifluoromethoxy group is present in 

the approved drug riluzole, but there are no trifluormethylthiophenyl ethers approved or in 



testing.50  In contrast, the 4-trifluoromethoxyphenyl ether contributed to overall spectacular 

profiles within the series and was installed in a number of analogs, including all subsequent 

analogs in Table 2, with varying piperidine N-substituents.  Nonetheless, unsubstituted 

piperidine 19p bearing the 4-trifluoromethyl group in P1’ suffered from limited exposure and 

low bioavailability of only 6.7%, nearly identical to the rat pk of trifluoromethoxyphenyl ether 

19u.  On the other hand, N-methoxyethylpiperidine 19v bearing the 4-trifluoromethoxyphenyl 

ether distinguished itself with exceptional inhibitory potency and 106-fold selectivity versus 

MMP-1, combined with unmatched exposure after oral dosing in the rat with a BA of 68%, a 

half-life of almost 3 h, and a concentration of >20000 ng/mL six hours after dosing.  Thus, N-

methoxyethylpiperidine hydroxamate 19v was selected for development as a 50 pM inhibitor of 

the gelatinases (MMP-2 and MMP-9) with 100,000-fold selectivity over MMP-1.  The other top-

performing piperidine N-substituent, the cyclopropyl, was also incorporated giving rise to N-

cyclopropylpiperidine 19w, with an enzyme profile nearly identical to 19v, and with a very good 

pk profile in the rat including a similar t1/2 to 19v of just under 3 h and lower but acceptable BA 

of 23%.  This compound was selected as the development back-up to 19v.  N-2-Pyridylmethyl 

and N-3-pyridylmethylpiperidine analogs 19x and 19y were very attractive compounds from the 

perspective of potency and selectivity, and also in consideration of their high exposures and 

bioavailabilities of ca. 47% and 50%, respectively, although their half lives in the rat were just 

over one hour.  The shorter half-lives were a concern for these two pyridylmethyl derivatives, as 

well as higher the protein binding, as indicated by 110-fold and 123-fold shifts in MMP-2 

inhibitory potency, respectively, in the presence of human plasma in a classic plasma-shift 

assay,51 compared with the somewhat-lower 69-fold and 38-fold for 19v and 19w, respectively.  

N-Ethoxyethyl- and N-hydroxyethyl- piperidines 19z and 19aa were potent and selective, with 



food exposure in the rat, but with only a 14.7 % bioavailability (19z) and a 1.39 h half life 

(19aa), respectively.  Acetamide derivative 19bb maintained excellent potency and selectivity, 

but the pk in the rat dropped precipitously to only 4% BA and very low plasma concentrations.  

N-Propargyl piperidine hydroxamate 18cc was potent and selective, and bears the same 

piperidine substituent as first-generation MMP-1 sparing hydroxamate 6.  We shied away from 

propargyl substituent  as it did not afford any advantages over N-methoxyethyl or N-cyclopropyl 

(among other substituents), and we observed that it forms 1-2% of a vinyl chloride impurity in 

the final API (active pharmaceutical ingredient) upon HCl deprotection of the THP-protected 

hydroxamate.  N-Methyl and N-isopropyl piperidine derivatives 19dd and 19ee were potent and 

selective, and should have favorable pk profiles in the rat, but were simply not advanced. 

Thus, preparation of the α-THP derivatives enabled rapid exploration of SAR, but these 

compounds had poorer pk profiles than the corresponding α-piperidines.  The trifluoromethyl-

substituted analogs 9i, 9j and 9l are notable exceptions with excellent pk profiles, and these P1´ 

substituents performed well in the α-piperidine series as well.  We believe that this enhancement 

is the result of blocking metabolism at the para position of the terminal phenyl ring of the diaryl 

ether as well as enhanced membrane penetration due to fluorine substitution.52  N-

Methoxyethylpiperidine 19v and N-cyclopropylpiperidine 19w, both bearing the distal 

trifluoromethoxyphenyl group in P1´, were promoted for full efficacy evaluation, and α-THP 9i 

was also considered a top priority compound to augment the structural diversity the leads and 

spread the risk among different chemistries. 

 

 

 



Crystallography 

 

The crystal structure of MMP-13 in complex with 19v was determined at 1.9Å resolution 

(Rfree=25.6%; PDB accession code: 3KRY) and shows the compound forming an intricate web of 

contacts to the catalytic zinc ion and surrounding amino acids (Figure 2).  Two hydrogen bonds 

are made between an oxygen atom of the sulfone moiety and the protein backbone, and an 

additional hydrogen bond is made from the nitrogen of the hydroxamate function to the protein 

backbone (Figure 2A).  The two oxygen atoms of the hydroxamate coordinate to the metal, and 

an additional interaction is formed with the sidechain of Glu223.  For that close interaction 

(2.8Å), it is assumed that either the Glu residue or the hydroxamate oxygen is protonated.  The 

diphenyl ether tail of the compound protrudes deeply into the S1’ subsite, which is in an open 

conformation.  Five ordered solvent molecules bridge across the two sides of the pocket and 

encapsulate the trifluormethyl tail of the compound. 

 

 



     

Figure 2. Structure of 19v and origins of its selectivity.  A) Complex of 19v bound at the MMP-

13 active site.  Hydrogen bonds and metal (green sphere) coordination is depicted as dotted lines.  

Solvent molecules are shown as red spheres.  B) Superposition of the catalytic domains of MMP-

1 (PDB accession code: 1HFC) and the 19v:MMP-13 complex.  The molecular surface for 

Arg214 of MMP-1 is drawn to demonstrate its steric blockade of inhibitors with sufficient length 

of their S1´ substituents. 

 

Metalloproteinase selectivity for 19v was achieved by exploiting the larger S1´ pocket found in 

MMP-13 compared to other MMPs, such as MMP-1.  As was previously reported,53-55  MMP-1 

and MMP-13 S1´ pockets differ in two key ways.  First, the length of the loop and thus the depth 

of the pocket are shorter in MMP-1 because of a two residue deletion in that sequence relative to 

MMP-13.  In addition, MMP-1 has a significantly larger residue, Arg214, in place of Leu218 in 



MMP-13.  This presents a steric blockade for inhibitors of sufficient length from binding to the 

S1´ site.  The relevance of this amino acid difference was evaluated for 19v by superimposing 

the structure of MMP-1 (PDB accession code: 1HFC) onto the structure of MMP-13 with 19v.  

Overall, the two catalytic domains aligned well, differing by an RMSd of only 0.75Å over 154 

residues aligned.  However, at the S1´ subsite, their structures diverged as expected with MMP-1 

presenting a significantly smaller cavity within which the compound would have to fit.  In the 

case of 19v, the diphenyl ether tail of the compound would collide with the Arg sidechain in 

MMP-1 (Figure 2B).  While this Arg residue has been observed in alternate conformations in 

MMP-1 with compounds similar to 19v
55 the molecular determinants for when that conformation 

is accessible and its relevance to full length enzyme remain unclear. 

 As noted above, the piperidine N-substituents (R1) extend into solvent and generally had 

little or no impact on potency at MMP-13, although the larger 2-pyridylmethyl substituent of 19b 

did impact selectivity toward several other isozymes.  The capacity for the P1´ pocket to 

accomodate such large moieties as the biphenyloxyphenylsulfone of 9g is rather remarkable, but 

also demonstrates that the pocket is both flexible and open at the bottom, near Phe252.  The size 

of the pocket is consistent with the inability to substitute only on the 3- and/or 4-positions of the 

distal phenyl ring in P1´.  The substituents at the terminus of the distal phenyl ring in P1´ are 

surrounded by the hydroxyl of Thr 245, the methyl of Thr247, the edge of the phenyl ring of 

Phe252, and the hydrophobic chain of Leu218, plus several solvent (water) molecules.  Smaller, 

hydrophobic but polarizable moieties tended to be the best aryl substituents at this position.  The 

distance of 2.87 Å between F35 and the Thr245 oxygen is more consistent with a simple Van der 

Waals interaction than a potential but very rare56 OH…F hydrogen bond. 

 



Antitumor Efficacy 

Marimastat and AG-3340 are effective in preclinical models of cancer but produce a dose-

limiting musculoskeletal syndrome characterized as joint fibrosis, pain and limited mobility in 

humans.  As noted above, one strategy for improving the therapeutic index of MMP inhibitors is 

to design selective inhibitors of the MMPs that promote neoplastic growth while sparing MMP-

1, a widely distributed collagenase thought to play a central role in connective tissue 

homeostasis.   Hydroxamate 19w is a potent inhibitor of several MMPs with IC50’s of 0.2nM, 

56.5nM, 1.0nM, <0.1nM and 0.2nM against MMP-2, -3, -8, -9, and -13 respectively.  Although 

potent against MMPs that are thought to play a significant role in angiogenesis and tumor 

growth, 19w is highly sparing of MMP-1 (IC50 = 3883 nM). The IC50 of 19w for MMP-1 is 100-

fold greater than that of AG-3340.57  Hydroxamate 19w has good oral bioavailability and half-

life across multiple species, and it is well tolerated in mice dosed twice daily for greater than 90 

days.  MMPi 19w is a dose-dependent and potent inhibitor of angiogenesis in the mouse bFGF-

induced corneal micropocket model and delays tumor growth in variety of models of human 

cancer including  the androgen-independent PC3 human prostate tumor, the difficult-to-treat 

SKMES human lung carcinoma (data not shown) and MX-1 human breast tumors was 

significantly inhibited by treatment of tumor-bearing mice with 19w.   

 

The efficacy of 19w in the PC3 tumor growth delay model, either as single agent or in 

combination with cisplatin, is shown in Figures 3a and 3b.  BALB/c nu/nu mice, implanted with 

PC3 cells were administered 19w twice daily beginning on the day of cell injection. Tumor 

volume was measured over the course of the experiment.  MMP inhibitor 19w inhibited PC3 



tumors in a dose responsive manner; animals dosed with 100 and 200 mg/kg 19w inhibited 

tumor growth by greater than 65% (p<0.001 vs vehicle -treated mice).   

 

MMPi 19w in combination with cisplatin therapy was more effective than treatment with either 

agent alone.   Mice implanted with PC3 cells and administered 19w by gavage twice daily were 

injected with a single intraperitoneal injection of cisplatin on day 8.   Treatment of mice bearing 

PC3 tumors with 10 mg/kg 19w or 10mg/kg cisplatin inhibited tumor growth by 49% and 53%, 

respectively, whereas PC3 tumor growth was inhibited by 78% in mice treated with 19w and 

cisplatin.   

 

 

Figures 3a and 3b.  Efficacy of 19w in the PC3 tumor growth delay model, either as single 

agent or in combination with cisplatin 
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MMPi 19w was shown to significantly delay the growth of MX-1 human breast tumors in nude 

mice  when used as a single agent (data not shown).  Inhibitor 19w was subsequently tested in 

the MX-1 adjuvant model; a clinically relevant disease model designed to determine the 

anticancer activity of non-traditional, non-cytotoxic agents in a setting of minimal tumor burden.     

Mice bearing MX-1 tumors were treated with cyclophosphamide (CY) and beginning 

approximately  two weeks later mice were administered 19w delivered by gavage, twice a day 

over the remainder of the experiment.  Efficacy was measured by survival extension. As shown 

in Figure 4, adjuvant therapy with 19w,  following initial cytoreduction of MX-1 breast 

carcinomas in nude mice by CY treatment greatly increased the survival times of animals 

compared to treatment with CY  monotherapy.  CY alone (120 mg/kg) extended survival by 

three weeks compared to saline controls.  High dose 19w (50 mg/kg) following CY treatment 

further increased the mean survival time of mice by an additional four weeks compared to CY 

monotherapy.  Significant survival gains over CY monotherapy were shown for all doses of 19w 

following CY treatment.  The highly effective adjuvant therapy seen with 19w after CY 

treatment was obtained with no side effects, indicating that the adjuvant efficacy was achieved 

with a good therapeutic index.   

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 4. Survival extention provided by 19w to mice bearing MX-1 tumors  

 

These results support the potential utility of 19w in the treatment of patients with malignancies 

of the lung, prostate and breast.  

 

Inhibition of Cartilage Degradation 

 

Osteoarthritis (OA) is a degenerative disease of the joints that is characterized by the progressive 

degeneration and loss of articular cartilage.  Current treatments focus on alleviating the pain 

associated with OA but do not address the underlying disease process.  While the precise 

etiology of OA is not known, it appears to be the result of a complex system of interacting 

mechanical, biologic, biochemical, and enzymatic feedback loops.  The final common pathway 

of articular cartilage deterioration results from a failure of chondrocytes to maintain a 

homeostatic balance between matrix synthesis and degradation.  The major matrix components 

of articular cartilage, aggrecan and collagen, provide the physical properties essential for 
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maintaining joint function, compressibility and tensile strength, respectively.  Accumulating 

evidence implicates an imbalance between intraarticular synthesis of matrix-degrading enzymes, 

particularly MMPs, and their endogenous tissue inhibitors of metalloproteinases (TIMPs) as 

causally associated with cartilage loss in OA.  

 

In that no disease-modifying OA drugs (DMOADs) have yet been approved, animal models 

capable of predicting efficacy in human disease have not been validated.  Furthermore, the 

translatability of relatively acute in vivo preclinical models to the human disease which develops 

over decades is not known.  However, in an attempt to provide early evidence of the cartilage 

protective properties of test compounds, a cytokine-induced bovine nasal cartilage degradation 

(BNCD) assay was developed and has been used to evaluate the importance to cartilage 

metabolism of numerous targets.  Using an adaptation of the assay described by Bottomley, et 

al,58 selected compounds were tested for their ability to inhibit cartilage degradation.  

Importantly, this model system allows for the concentration-dependent characterization of 

compounds, including endpoint measurements that reflect both loss of aggrecan and collagen.  

Additionally, the same collagenase-dependent collagen fragments generated using this in vitro 

system have also been detected in urine, providing some confidence that this assay may be 

relevant to what occurs in the whole animal.   

 

The α-THP sulfone 9i, which had an IC50 of 0.4 nM when assayed using a purified MMP-13 

enzyme preparation and synthetic small molecule as substrate, exhibited an IC50 of 70 nM in the 

BNCD assay (Figure 5).  The α-piperidine 19w was somewhat more potent than α-THP 9i in 

both the enzyme (IC50 = 0.1 nM) and cartilage explant (IC50 = 10 nM) assays.  Compound 5, 



which was included as a standard in all BNCD assays, had an IC50 = 0.6 nM and 30 nM in the 

enzyme and explant assays, respectively.  A complete understanding of the reduced potency 

demonstrated by these compounds in the explant system relative to the purified enzyme system is 

not known.  However, this right-shift in potency was a consistent feature of all compounds tested 

and may represent differences between synthetic and native substrates, ability of inhibitors to 

reach the target enzyme in the cartilage matrix, or microenvironments in the cartilage that are not 

represented in the purified system assay. 

 

Further demonstration of the cartilage-protective potential of these compounds was evidenced by 

a reduction of collagenase-dependent type II collagen fragments excreted in the urine of healthy 

dogs treated with the alpha-piperidine sulfone MMP inhibitor 19v (data not shown).  Consistent 

with the pharmacokinetic properties of this compound in canine, urinary collagen fragment 

excretion returned to pre-treatment levels as inhibitor was cleared.   
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Figure 5.  MMP inhibitors protect bovine nasal cartilage from cytokine-induced degradation in 

the ex vivo cartilage explant assay of Billinghurst.59  Individual uniform cartilage disks were 

treated with cytokines (IL-1 and oncostatin M) in the presence of 19w (squares) or 9i 

(diamonds).  HO-Pro released into the supernatant over 16 days of tissue culture was measured 

to determine cartilage breakdown, 0% and 100% degradation were defined as the HO-Pro 

released from inhibitor-free cartilage without and with cytokine stimulation, 

respectively.  Quantification of HO-Pro release as a function of inhibitor concentration (1 nM to 

1 uM) allowed for IC50 determinations estimated at 10 nM and 75 nM for 19w and 9i, 

respectively.  Each data point represents the average of at least three independent incubations 

and error bars indicate the standard deviation of the data for the specific condition.    

 

Inhibition of post-infarction left ventricular dilation 

 

The effects of α-piperidine 19w and α-THP 9i on left ventricular (LV) dilation following 

myocardial infarction were investigated in a rat model of myocardial infarction (MI).  MI was 

induced by permanent ligation of the left coronary artery as previously described.60  The efficacy 

of 19w and 9i in reducing post-infarction LV dilation was assessed by ex vivo diastolic pressure-

volume relationship a measure of LV size and compliance, as described by Fletcher et al.61  

MMP inhibitors 19w and 9i were administered orally at doses of 10 and 50 mg/kg/day (qd) for 

four weeks.  LV dilation was significantly shifted to the right in the MI-vehicle group relative to 

the sham-vehicle group, indicating significant LV dilation.  At an intraventricular pressure of 40 

mmHg, the mean LV volume of the MI-vehicle group (0.69 ± 0.02 mL) was significantly greater 

than the sham-vehicle group (0.55 ± 0.02 mL).  Both 19w and 9i produced dose-dependent 



inhibition of post-infarction LV dilation (Figure 6).  50 mg/kg 19w and 9i significantly 

attenuated LV dilation, with mean LV volumes of 0.62 ± 0.01 mL and 0.63 ± 0.03 mL, 

respectively (p<0.05 vs. MI-vehicle group, 0.69 ± 0.02 mL).   
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Figure 6. Effect of 19w and 9i on LV post-MI.  * p<0.05 vs. Sham-vehicle, #p<0.05 vs. MI-

vehicle       

 

 

 

 

 

 



In a separate experiment, the efficacy of 19v in reducing post-infarction LV dilation was 

assessed.  Compound 19v was administered orally at doses of 0.01, 0.1, 1, and 10 mg/kg/day 

(qd) for four weeks following MI. The LV diastolic pressure-volume relationship of the MI-

vehicle group was significantly shifted to the right compared to the sham-vehicle group (Figure 

7).  At an intraventricular pressure of 40 mmHg, the mean LV volume of the MI-vehicle group 

(0.59 ± 0.02 mL) was significantly greater then that of sham-vehicle group (0.49 ± 0.02 mL).  

Hydroxamate 19v produced a dose-dependent inhibition of post-infarction LV dilation.  At dose 

of 10 mg/kg, 19v significantly attenuated LV dilation, with mean LV volume of 0.51 ± 0.02 mL 

(p<0.05 vs. MI-vehicle group, 0.59 ± 0.02 mL).          
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Figure 7. Effect of 19v on LV post-MI.  * p<0.05 vs. Sham-vehicle, #p<0.05 vs. MI-vehicle       

 



Conclusions 

 

Our first-generation MMP-1 sparing hydroxamate development candidate 6 was replaced by N-

methoxyethyl α-piperidine sulfone 19v, with N-cyclopropylpiperidine hydroxamate 19w as the 

backup compound.  Compound 6 was ultimately deemed inferior to the compounds described in 

this manuscript due to its metabolically-labile piperidine N-propargyl group and diaryl thioether, 

and the presence of vinyl chloride in the final product after final HCl deprotection of the THP-

protected hydroxamate.  Furthermore, the present diaryl ether compounds were generally 

superior in potency, selectivity and pharmaceutical properties.    

 

 

 

Compound 19v is a ca. 100 pM inhibitor of MMP-13 and the gelatinases (MMP-2 and MMP-9) 

with >100,000-fold selectivity over MMP-1 for MMP-2 and MMP-13, and >50,000-fold 

selectivity for MMP-9 over MMP-1.  We have found that 19v does not inhibit TNFα release in a 

cellular assay.  The compound has good oral bioavailability (52 to 82%) in the mouse, rat, dog, 

and cynomolgus monkey (Table 3), including the species used for testing cancer efficacy (tumor 

bearing mice) and cardiovascular post-MI efficacy (rat).  It is rapidly absorbed after oral dosing, 

with a Tmax ranging from 10 min (mouse) to 4 hours (rat).  The elimination half life (T1/2) ranges 

from 4 to 6 hr.  Compound 19v shows dose-dependent inhibition of angiogenesis in the mouse 

corneal micropocket model with a maximal inhibition of about 60% at 5 mg/kg, b.i.d.  It also 

demonstrates dose-dependent inhibition of tumor growth of human prostate PC3 with efficacy 

that is additive with cisplatin and nearly achieving stasis at the highest dose tested.   



 

Nonetheless, although 19v caused less joint fibroplasia in rats, the marmoset indicated that MSS 

would still be an issue clinically, and we realized that an MMP-1 sparing approach was not 

adequate to provide joint safety. While this side effect is obviously unacceptable for OA, the 

merits of a short-term regiment post-MI in the prevention of CHF are arguable.  But even for 

life-threatening cancer, dose limitations and holidays due to MSS have limited the efficacy and 

effectiveness of MMP inhibitors in the clinic.   Specifically, these highly MMP-1-sparing 

inhibitors were not completely devoid of fibroplasia in either rat or marmoset, consistent with the 

findings of others.21 Thus, toward attaining the greatest promise of safety, we turned our 

attention to even more selective profiles, specifically to a dual-sparing approach, sparing both 

MMP-1 and MMP-14 (MT-1 MMP), based on the observation that MT-1 MMP knockout mice 

suffer connective tissue disease due to inadequate collagen turnover62 and impaired 

endochondral ossification63 histologically similar to joint lesions in MSS.  We subsequently 

found that highly selective compounds that spared both MMP-1 and MMP-14 do maintain 

efficacy in attenuating cardiovascular post-MI hypertrophy as well as maintaining antitumor 

efficacy, without eliciting a similar joint toxicity, despite the reported potential role for MMP-14 

itself in tumor growth, invasion, and neovascularization.64
  Our initial progress toward dual 

MMP-1/14 sparing inhibitors, including modifications in the P’ region incorporating aryl 

piperidines and isonipecotamide derivatives that are highly selective for MMP-13 and sparing of 

both MMP-1 and MMP-14 has just been reported,44, 45 and the discovery of joint-safe, dual 

MMP-1/14-sparing hydroxamate MMPi’s with oral antitumor efficacy in mice and the ability to 

block post-MI LV hypertrophy in rats will be reported in due course.   

 



Experimental Section 

 

General Procedures and Analysis.  All solvents and reagents were used without further 

purification unless otherwise noted. All reactions were performed under an atmosphere of 

nitrogen or argon.  Merck silica gel 60 (230-400 mesh) was used for flash chromatography.  

Merck Kieselgel 60 F254 DC-Fertigplatten (0.25 mm, Art. 5719) were used for TLC.  High 

performance liquid chromatograms (HPLC) were obtained from YMC AQ C-18 reverse phase 

columns.  1H NMR spectra were obtained from either General Electric QE-300 or Bruker-400 

MHz Ultrashield spectrometers with tetramethylsilane (TMS) as an internal standard. Noise-

decoupled and APT 13C NMR spectra were recorded at 75 MHz on a General Electric QE-300 

spectrometer.  IR spectra were recorded on a Perkin Elmer 685 spectrophotometer.  DSC refers 

to differential scanning calorimetry.  MIR refers to multiple internal reflectance infrared 

spectroscopy.  DMAC refers to N,N-dimethylacetamide.  EDC refers to 1,3-

(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride.  NMM refers to N-

methylmorpholine.  High-resolution mass spectra were recorded on a Finnigan MAT8430 

instrument.  Elemental analyses were conducted on a Control Equipment CEC240-XA 

instrument.  All final products were analyzed for purity by reverse-phase hplc eluting with a 

gradient of acetonitrile/water and were determined to be ≥95% pure.  All animal work was 

carried out in accordance with institutional guidelines.  All animal procedures were approved the 

Institutional Animal Care and Use Committee and conform to the NIH Guidelines for the Ethical 

Care and Treatment of Animals.   

 



Tetrahydro-N-hydroxy-4-[(4-phenoxyphenyl)sulfonyl]-2H-pyran- 4-carboxamide (9a).  To 

a stirred solution of α-tetrahydropyranyl 4-fluorophenylsulfone methyl ester 7, (0.96 g, 3.2 mmol) 

in DMF(30 mL) was added phenol (0.3 g, 3.2 mmol), followed by Cs2CO3 (3.2 g, 10 mmol). The 

resulting mixture was heated to 70°C for 5 hours. The solution remained at ambient temperature 

for 18 hours, was diluted with H2O and extracted with EtOAc. The organic layer was washed 

with half-brine and dried over Na2SO4. The solvent was removed by rotary evaporation to yield 

the desired diaryl ether methyl ester (1.1 g, 92%).  Sodium hydroxide (1.0 g, 25 mmol) was 

added to a solution of the methyl ester (1.1 g, 2.9 mmol) in THF (10 mL) and ethanol (10 mL). 

The resulting solution was stirred at ambient temperature for 1 hour. The solution was then 

heated to 80°C for 1 hour. The solvent was removed by rotary evaporation and the resulting 

sodium salt was acidified with 1 N HCl (50 mL) and extracted with EtOAc. The organic layer 

was dried over Na2SO4 . The solvent was removed by rotary evaporation to yield the desired 

carboxylic acid 8a (1.1 g, 99%).  

To a stirred solution of carboxylic acid 8a (1.1 g, 3.0 mmol) in DMF (7 mL) was added N-

hydroxybenzotriazole-H2O (0.623 g, 4.6 mmol), followed by 1-[3-(dimethylamino)propyl]-3-

ethylcarbodiimide hydrochloride (0.634 g, 3.3 mmol). After 10 minutes, a 50% aqueous 

hydroxylamine solution was added (2 mL, 30 mmol) and the solution was stirred at ambient 

temperature for 18 hours. The solution was diluted with saturated NaHCO3 and extracted with 

EtOAc. The organic layer was washed with water and followed by half-brine and then dried over 

Na2SO4. Reverse phase chromatography (on silica, acetonitrile/H2O) provided the hydroxamate 

9a as a white solid (0.37 g, 33%). HRMS (ES+) MH+ for C18H19NO6S, 378.1011, found: 

378.0994.  

 



4-[[4-(3-chlorophenoxy)phenyl]sulfonyl]tetrahydro-N-hydroxy- 2H-pyran-4-carboxamide 

(9b).  Fluorophenylsulfone THP-protected hydroxamate 10 was prepared from methyl ester 7 by 

hydrolysis with trimethylsilanoate followed by coupling with O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine and EDC as previously described.42  To a solution of fluorophenylsulfone 10 

(5.0 g, 13 mmol) in DMF (20 mL) was added p-chloro-phenol (5.0 g, 39 mmol), followed by 

Cs2CO3 (17 g, 52 mmol). The resulting solution was heated to 95°C for 7 hours. The solution 

was maintained at ambient temperature for 7 hours, diluted with water and extracted with EtOAc. 

The organic layer was washed with half-brine and dried over Na2SO4. The solution was 

concentrated by rotary evaporation. Chromatography (on silica, EtOAc/hexane) provided the m-

chloro phenoxyphenyl THP-protected hydroxamate compound 11b (5.2 g, 82%).  

To a solution of the m-chloro phenoxyphenyl THP-protected hydroxamate 11b (5.2 g, 10 mmol) 

in dioxane (5 mL) was added 4N HCl in dioxane (5 mL, 20 mmol), followed by methanol (10 

mL). The resulting solution was stirred at ambient temperature for 1 hour. The solvent was 

removed by rotary evaporation to provide the hydroxamate 9b as a white solid (3.4 g, 79%). .  1H 

NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1 H), 9.18 (d, J=1.56 Hz, 1 H), 7.73 (d, J=8.99 Hz, 2 H), 

7.51 (t, J=8.20 Hz, 1 H), 7.36 (d, J=8.99 Hz, 1 H), 7.32 (t, J=2.15 Hz, 1 H), 7.18 (d, J=8.99 Hz, 2 

H), 7.15 (dd, J=7.81, 1.95 Hz, 1 H), 3.88 (dd, J=11.53, 3.71 Hz, 2 H), 3.16 (t, J=11.33 Hz, 2 H), 

2.22 (d, J=12.50 Hz, 2 H), 1.83 - 1.98 (m, 2 H).  HRMS (ES+) M.NH4
+ calcd for C18H18NO6SCl 

429.0887; found: 429.0880.  HRMS MH+ calcd for C18H18NO6SCl, 412.0622; found, 412.0615. 

 

4-{[4-(4-Chlorophenoxy)phenyl]sulfonyl}-N-hydroxytetrahydro-2H-pyran-4-carboxamide  

(9c).  The α-THP p-chlorophenyloxyphenylsulfone 9c was prepared as previously described.42 

 



4-[[4-(3,4-dichlorophenoxy)-phenyl]sulfonyl]-tetrahydro-N-hydroxy-2H-pyran-4-

carboxamide (9d).  To a solution of fluorophenylsulfone 10 (3.1 g, 8 mmol) in N,N-DMAC (20 

mL) were added Cs2CO3 (8.8 g, 27 mmol) and 3,4-dichlorophenol (2.61 g, 16 mmol). The slurry 

was stirred at 95°C for 41 hours. The reaction was concentrated in vacuo, and the residue was 

taken up in EtOAc, washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. 

Chromatography (on silica, EtOAc/hexanes) provided the substituted THP-protected 

hydroxamate 11d as a white foam (4.17 g, 98%). MS (ES+) M.NH4
+ calcd for C23H25NO7SCl2, 

547.11; found 547.10.  

To a slurry of the THP-protected hydroxamate 11d (3.5 g, 6.6 mmol) in dioxane (20 mL) were 

added a 4N HCl dioxane solution (20 mL) and methanol (20 mL). After fifteen minutes at 

ambient temperature the reaction was diluted with EtOAc and washed with water, dried over 

Na2SO4, filtered, and concentrated in vacuo. The residue was slurried in diethyl ether and 

vacuum filtration of the resulting precipitate provided the hydroxamate 9d as a white solid (2.98 

g, 100%). MS (ES+) M.NH4
+ calcd for C18H17NO6SCl2, 463.05; found, 463.05.  

 

N-hydroxy-4-{[4-(4-hydroxyphenoxy)phenyl]sulfonyl}tetrahydro-2H-pyran-4-carboxamide 

(9e). To a solution of fluorophenylsulfone 10
42

 (2.7 g, 7.0 mmol) in DMAC (20 mL) was added 

Cs2CO3 (6.84 g, 21 mmol) and 4-(benzyloxy)phenol (2.8 g, 14 mmol).  The slurry was stirred at 

95°C for 6 h.  The reaction was concentrated in vacuo and the residue was taken up in EtOAc, 

washed with brine, dried over Na2SO4, filtered and concentrated.  Chromatography on silica gel 

eluting with EtOAc/hexanes provided the diaryl ether 11e as a white foam (3.94 g, 99%).  MS 

(ES+) M.NH4
+ calcd for C30H33NO8S, 585.23; found, 585.23.   

 



To a solution of the THP-protected hydroxamate 11e (1.5 g, 2.64 mmol) in glacial acetic acid (5 

mL) was added concentrated HCl (5 mL) and the reaction was heated to 60°C for 20 min.  The 

reaction was cooled, diluted with water (100 mL) and extracted with EtOAc.  The EtOAc extract 

was washed successively with water (3X) and brine, dried over Na2SO4, filtered and 

concentrated in vacuo.  The product was recrystallized (acetone/hexanes) to give hydroxamate 9e 

as a white solid (810 mg, 78%).  1H NMR (400 MHz, DMSO-d6) δ 10.96 (1H br s), 9.54 (1H, s), 

9.16 (1H, s), 7.59 - 7.82 (2H, m), 6.95 - 7.14 (4H, m), 6.77 - 6.95 (2H, m), 3.86 (2H, dd, J=11.4 

Hz), 3.15 (2H, t, J=11.6 Hz), 2.20 (2H, d, J=13.1 Hz), 1.76-1.96 (2H, m).  MS (ES+) M.MH4
+ 

calcd for C18H19NO7S, 468.15; found, 468.15.  HRMS MH+ calcd for C18H19NO7S 394.0960, 

found 394.0962.   

 

N-hydroxy-4-{[4-(4-isopropoxyphenoxy)phenyl]sulfonyl}tetrahydro-2H-pyran-4-

carboxamide (9f).  To a solution fluorophenylsulfone 10
42 (3.1 g, 8.0 mmol) in DMAC (20 mL) 

was added Cs2CO3 (7.28 g, 24 mmol) and 4-isopropoxyphenol (2.4 g, 16 mmol).  The slurry was 

stirred at 95°C for 21 h.  The reaction was concentrated in vacuo.  The residue was taken up in 

EtOAc, washed successively with water (3X) and brine, dried over Na2SO4, filtered and 

concentrated in vacuo.  Chromatography on silica gel eluting with EtOAc/hexanes provided the 

diaryl ether 11f as an off-white foam (3.65 g, 88%).  MS (IS+) MH+ calcd for C26H33NO8S, 

520.20; found, 520.20.   

 

To a solution of the THP-protected hydroxamate 11f (3.5 g, 6.7 mmol) in 1,4-dioxane (17 mL) 

was added 4N HCl in dioxane (17 mL) and methanol (17 mL).  After 15 min at rt the reaction 

was diluted with EtOAc and washed with water, dried over Na2SO4, filtered, and concentrated in 



vacuo.  The product was recrystallized (acetone/hexanes) to give the hydroxamate 9f as an off-

white solid (2.2 g, 80%).  1H NMR (400 MHz, DMSO-d6) δ 10.97 (1H, s), 9.16 (1H, s), 7.58 - 

7.78 (2H, m), 6.93-7.23 (6H, m), 4.60 (1H, dt, J=11.9 Hz), 3.86 (2H, dd, J=11.5 Hz), 3.15 (2H, t, 

J=11.6 Hz), 2.21 (2H, d, J=12.9 Hz), 1.87 (2H, td, J=4.5 Hz), 1.25-1.40 (2H, m).  MS (ES+) 

MH+ calcd for C21H25NO7S, 436.14; found, 436.14.  HRMS calcd for C21H25NO7S 436.1430, 

found 436.1431. 

 

4-[[4-([1,1′-biphenyl]-4-yloxy]phenyl)sulfonyl]tetrahydro- N-hydroxy-2H-pyran-4-

carboxamide (9g).  To a solution fluorophenylsulfone 9 (2.0 g, 5.2 mmol) in DMAC (8 mL) was 

added 4-phenylphenol (Aldrich, 1.3 g, 7.8 mmol) followed by Cs2CO3 (6.8 g, 20.8 mmol). The 

reaction was heated at 95°C for five hours. Stripping the DMAC in vacuo afforded a brown solid 

(5.3 g, 100%). Preparative reverse-phase chromatography on a C-18 column eluting with 

acetonitrile/water gave the THP-protected biphenyl product 11g in solution.  To this solution of 

11g in acetonitrile/water (50 mL) was slowly added 10% HCl aq (100 mL). After stirring 

overnight for 18 hours) the acetonitrile was removed in vacuo. The resultant precipitate was 

collected, giving the hydroxamate 9g as a white solid (2.0 g, 83%). 1H NMR (300 MHz, DMSO-

d6) δ 1.75 - 1.99 (2H, m), 2.21 (2H, d, J=12.9 Hz), 3.15 (2H, t, J=11.3 Hz), 7.11-7.31 (2H, m) 

3.85 (2H, d), 7.31-7.52 (2H, m), 7.61-7.82 (6H, m), 10.97 (1H, br s).  MS (FAB) MH+ calcd for 

C24H23NO6, 454; found, 454.   

 

N-hydroxy-4-({4-[3-(trifluoromethyl)phenoxy]phenyl}sulfonyl)tetrahydro-2H-pyran-4-

carboxamide (9h).  To a solution of fluorophenylsulfone 10
42 in DMAc (20 mL) was added 

CsCO2 (7.28 g, 24 mmol) and m-(trifluoromethyl)phenol (1.95 mL, 16 mmol).  The slurry was 



stirred at 95°C for 20 h.  After the reaction mixture was concentrated, the residue was dissolved 

in EtOAc and washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo.  

Chromatography on silica gel eluting with EtOAc/hexane provided the diaryl ether 10h as a 

white foam (4.1 g, 97%).  HRMS (ES+) MH+ calcd for C24H26NO7SF3, 530.15; found, 530.14. 

  

To a solution of the THP-protected hydroxamate 11h (3.9 g, 7.4 mmol) in 1,4-dioxane (20 mL) 

was added 4N HCl in dioxane (20 mL) and methanol (20 mL).  After 15 min at rt the reaction 

was diluted with EtOAc and washed with water, dried over Na2SO4, filtered, and concentrated in 

vacuo.  The residue was crystallized from acetone/hexanes to give the hydroxamate 9h as a white 

solid (1.9 g, 58%). 1H NMR (400 MHz, DMSO-d6) δ 10.99 (1H, s), 9.18 (1H, s), 7.69-7.82 (3H, 

m), 7.63-7.69 (1H, m), 7.58 (1H, s), 7.49 (1H, d, J=8.0 Hz), 7.17-7.25 (2H, m), 3.88 (2H, dd, 

J=11.5 Hz), 3.16 (2H, t, J=11.6 Hz), 2.22 (2H, d, J=12.9 Hz), 1.90 (2H, td).  HRMS (ES+) MH+ 

calcd for C19H18N3O6SF3, 446.09, found 446.09.  HRMS calcd for C19H18N3O6SF3, 446.0885; 

found, 446.0872.   

 

N-hydroxy-4-({4-[4-(trifluoromethyl)phenoxy]phenyl}sulfonyl)tetrahydro-2H-pyran-4-

carboxamide (9i).  According to the general method of Samaritoni[J Het Chem 1997 34(4) 

1263-1266] in dry equipment under nitrogen, sodium hydride (60% oil dispersion, 11.0 g, 0.275 

mol) was added to a solution of 4-[4-(trifluoromethyl)phenoxy]-phenol 10 (50.0 g, 0.197 mol) in 

dry DMF (150 mL) at 0°C.  After 15 min, a solution of dimethylthiocarbamoyl chloride (32.0 g, 

0.259 mol) in dry DMF (100 mL) was added.  The reaction was stirred at rt for 16 h.  The 

reaction was poured onto 10% aqueous HCl (1 L).  Vacuum filtration of the resulting precipitate 

provided the thiono compound as a white solid (67.0 g, 100%).  The thiono derivative (67 g, 0.20 



mol) was heated to 317°C for 30 min behind a safety shield.  The reaction temperature rose to 

330°C.  The heat was removed and the reaction was allowed to cool to rt to yield the 

thiocarbamate as a brown solid (67 g, 100%).  To a solution of the thiocarbamate (65.0 g, 0.19 

mol) in methanol (510 mL) with a subsurface nitrogen stream was added 2.5N NaOH solution 

(160 mL, 0.40 mol).  The slurry was stirred at 74°C for 2 h.  The reaction was cooled and the 

methanol removed in vacuo to yield the crude 4-[4-(trifluoromethoxy)phenoxy]-benzenethiol 13.   

 

The crude sample of thiol 13 was diluted with water (100 mL) and extracted with diethyl ether 

(4X).  A subsurface stream of nitrogen was added to the aqueous solution and sodium 

chloroacetate (22.2 g, 0.19 mol) was added.  The reaction was stirred at rt and after 30 min the 

nitrogen stream was removed.  After 12 h, the solution was cooled and 6N HCl was added until 

pH = 1.  The slurry was extracted with EtOAc (4X), and the combined extracts were washed 

with 0.1N HCl, water, and brine, and dried over Na2SO4 and filtered.  Concentration in vacuo 

gave the arylthioacetic acid as a tan solid (61.0 g, 98%).  To a solution of the thioacetic acid 

(54.45 g, 0.166 mol) in THF (370 mL) was added water (45 mL) and Oxone® (306 g, 0.498 

mol) at rt.  An exotherm to 42°C was noted.  After 2 h, the reaction was filtered and the filter 

cake was washed well with THF and then water (250 mL) was added to the filtrate.  The filtrate 

was concentrated in vacuo.  The slurry was extracted with EtOAc (4X).  The combined extracts 

were washed with water three times, brine, dried over MgSO4, filtered and concentrated in 

vacuo to give the sulfone 14 as a beige solid (60.0 g, 100%).   

 

A solution of the sulfone 14 (119.5 g, 0.332 mol) in methanol (660 mL) and 4N HCl in dioxane 

(20 mL) was stirred at rt for 12 h.  The reaction was heated to reflux and then cooled to rt.  The 



resulting crystals were filtered, washed well with cold methanol, and then dried to give the 

methyl ester as a white solid (89.4 g, 72%).   

 

To a solution of the methyl ester (64.5 g, 0.180 mol) in DMF (360 mL) was added K2CO3 (66.8 

g, 0.48 mol), bis(2-bromoethyl)ether (40 mL, 0.305 mol), 4-dimethylaminopyridine (1.1g, 9 

mmol) and tetrabutylammonium bromide (2.9 g, 9 mmol).  The reaction was stirred overnight at 

rt.  The reaction was slowly poured into 1N HCl (500 mL).  The resulting precipitate was 

filtered, washed with water and then with hexanes.  The solid was recrystallized from methanol 

to give the pyran methyl ester as a white solid (62.8 g, 79%).  MS (ES+) M.MH4
+ calcd for 

C20H19O6SF3, 462.12; found, 462.12.   

 

In dry equipment under an atmosphere of nitrogen, the pyran (64.0 g, 0.144 mol) was dissolved 

in dry THF (250 mL) and a solution of potassium trimethylsilanoate (55.9 g, 0.432 mol) in dry 

THF (40 mL) was added at rt.  After 2 h, water (200 mL) was added and the solution was 

concentrated in vacuo.  The slurry was extracted with EtOAc to removed unreacted starting 

material.  The aqueous solution was treated with 6N HCl until pH=1.  The slurry was extracted 

with EtOAc and the combined extracts were washed with water and brine and dried over 

Na2SO4, filtered and concentrated in vacuo.  The residue was heated in diethyl ether, and the 

resulting solid filtered and dried to give the carboxylic acid 8i as a white solid (56.3 g, 91%).  

HRMS (ES+) M.NH4
+ calcd for C19H17O6SF3 448.10, found 448.10. 

 

To a solution of the carboxylic acid 8i (49.0 g, 0.114 mol) in dry DMF (280 mL) was added 

HOBt hydrate (18.5 g, 0.137 mol), NMM (37.5 mL, 0.342 mol), O-(tetrahydro-2H-pyran-2-



yl)hydroxylamine (41.3 g, 0.353 mol) and EDC (30.6 g, 0.160 mol).  After 4h at rt the reaction 

was concentrated in vacuo.  The residue was taken up in EtOAc, washed with water, 5% aqueous 

KHSO4, saturated NaHCO3, and brine and dried over Na2SO4, filtered and concentrated to give 

the THP-protected hydroxamate 11i as a white foam (62.6 g, 100%).  MS (ES+) M.NH4
+ calcd 

for C24H26NO7SF3, 547.17; found, 547.17. 

 

To a solution of the THP-protected hydroxamate 11i (58.5 g, 0.11 mol) in 1,4-dioxane (280 mL) 

was added 4N HCl in dioxane (280 mL) and methanol (280 mL).  After 15 min at rt the reaction 

was diluted with EtOAc and washed with water, dried over Na2SO4, filtered and concentrated in 

vacuo.  The product was recrystallized (acetone/hexanes) to give compound 19p as a white solid 

(42.79 g, 87%).  1H NMR (400 MHz, DMSO-d6) δ 11.00 (1H, s), 9.19 (1H, d, J=1.2 Hz), 7.68-

7.94 (4H, m), 7.19-7.44 (4H, m), 3.88 (2H, dd, J=11.4, 3.2 Hz), 3.16 (2H, t, J=11.7 Hz), 2.23 (2 

H, d, J=13.3 Hz), 1.84-2.00 (2 H, m).  MS (ES+) M.NH4
+ calcd for C19H18NO6SF3, 463; found, 

463.  HRMS MH+ calcd for C19H18NO6SF3, 446.0885; found, 446.0871.   



 

N-hydroxy-4-({4-[4-(trifluoromethoxy)phenoxy]phenyl}sulfonyl)tetrahydro-2H-pyran-4-

carboxamide (9j).  To a solution of fluorophenylsulfone 10 (3.1 g, 8 mmol) in DMAC (20 mL) 

were added Cs2CO3 (8.8 g, 27 mmol) and p-(trifluoromethoxy)phenol (2.1 mL, 16 mmol). The 

slurry was stirred at 95°C for 19 h. The reaction was concentrated in vacuo. The residue was 

taken up in EtOAc, washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. 

Chromatography on silica eluting with EtOAc/hexanes provided the THP-protected hydroxamate 

11j as a white foam (4.2 g, 96%).  MS (ES+) MH+ calcd for C24H26NO8SF3, 546.14; found, 

546.14.  

 

To a slurry of the THP-protected hydroxamate 11j (4.0 g, 7.3 mmol) in 1,4-dioxane (20 mL) 

were added a 4N HCl dioxane solution (20 mL) and methanol (20 mL). After 15 minutes at 

ambient temperature, the reaction was diluted with EtOAc and washed with water, dried over 

Na2SO4, filtered, and concentrated in vacuo. The product was recrystallized (acetone/hexanes) to 

give the hydroxamate 9j as a white solid (2.2 g, 65%).  1H NMR (400 MHz, DMSO-d6) δ 10.84 

(1H, br s), 9.19 (1H, br s), 7.73 (2H, d, J=8.8 Hz), 7.49 (2H, d, J=8.8 Hz), 7.26-7.43 (2H, m), 

7.18 (2H, d, J=9.0 Hz), 3.87 (2H, dd, J=3.8 Hz), 3.16 (2H, t, J=11.6 Hz), 2.22 (2H, d, J=12.9 Hz), 

1.89 (2H, td).  MS (ES+) M.NH4
+ calcd for C19H18NO7SF3, 479.11; found, 479.11.  HRMS MH+ 

calcd for C19H18NO7SF3, 462.0834; found, 462.0815.   

 

N-hydroxy-4-({4-[4-(methylthio)phenoxy]phenyl}sulfonyl)tetrahydro-2H-pyran-4-

carboxamide (9k).  To a solution of fluorophenylsulfone 10
42 (3.1 g, 8.0 mmol) in DMAC (20 

mL) was added Cs2CO3 (7.28 g, 24 mmol) and 4-(methylthio)phenol (2.24 g, 16 mmol).  The 



slurry was stirred at 95°C for 24 h.  The reaction was concentrated in vacuo, and the residue was 

taken up in EtOAc, washed with brine, dried over Na2SO4, filtered and concentrated in vacuo.  

Chromatography on silica gel eluting with EtOAc/hexanes provided the diaryl ether 11k as a 

white foam (4.1 g, 100%).  MS (ES+) calcd for C24H29NO7S2, 208.15; found, 508.15.   

 

To a solution of the THP hydroxamate 11k (4.0 g, 7.9 mmol) in 1,4-dioxane (20 mL) was added 

4N HCl in dioxane (20 mL) and methanol (20 mL).  After 15 min at rt the reaction was diluted 

with EtOAc and washed with water, dried over Na2SO4, filtered and concentrated in vacuo.  The 

residue was recrystallized (acetone/hexanes) to give the hydroxamate 9k as a white solid (1.9 g, 

57%).  1H NMR (400 MHz, DMSO-d6) δ 10.97 (1H, br s), 7.62-7.81 (2H, m) 9.17 (1H, s), 7.32-

7.51 (2H, m), 7.03-7.26 (4H, m), 3.87 (2H, dd, J=3.7 Hz), 3.15 (2H, t, J=11.6 Hz), 2.50 (3H, s), 

2.21 (2H, d, J=12.9 Hz), 1.74-2.03 (2H, m).  HRMS (ES+) MH+ calcd for C19H21NO6S2 424.09, 

found 424.09.  HRMS MH+ calcd for C19H21NO6S2 424.0889, found 424.0874.   

 

N-hydroxy-4-[(4-{4-[(trifluoromethyl)thio]phenoxy}phenyl)sulfonyl]tetrahydro-2H-pyran-

4-carboxamide (9l).  To a solution of fluorophenylsulfone 10
42 (2.0 g, 5.2 mmol) in DMAC (6 

mL) was added 4-(trifluoromethylthio)thiophenol (1.5 g, 7.8 mmol) followed by Cs2CO3 (6.8 g, 

20.8 mmol).  After adding a catalytic amount of potassium fluoride, the reaction was heated at 

95°C for 12 h.  The DMAC was removed in vacuo to afford the diaryl ether 11l as a brown solid 

(7.2 g, 100%).   

 

To the crude THP-protected diaryl ether 11l (7.2 g, 5.2 mmol) in acetonitrile/water (50 mL) was 

slowly added 10% aqueous HCl (100 mL).  After stirring for 18h at rt the acetonitrile was 



removed in vacuo.  The resultant precipitate was collected by filtration to afford hydroxamate 

11l as a tan solid (0.60 g, 24%).  1H NMR (400 MHz, DMSO-d6) δ 10.88 - 11.06 (1H, m), 9.19 

(1H, d, J=2.0 Hz), 7.63-7.94 (4H, m), 7.16-7.36 (4H, m), 3.88 (2H, dd, J=11.5, 4.3 Hz), 3.05-

3.22 (2H, m), 2.23 (2H, d, J=13.5 Hz), 1.79-1.99 (2H, m).  MS (FAB) calcd for C19H18F3NO6S, 

476; found, 476.  HRMS MH+ calcd for C19H18F3NO6S, 478.0606; found, 478.0615.   

 

4-pyridyl  N-hydroxy-4-(4-(pyridin-4-yloxy)phenylsulfonyl)tetrahydro-2H-pyran-4-

carboxamide(9m).  Pyridyloxyphenyl sulfone hydroxamate 9m was prepared from 

fluorophenylsulfone 10 according to the general method of 9l to afford the desired hydroxamate 

9m as a colorless foam.  1H NMR (400 MHz, DMSO-d6) δ 11.08 (1H, s), 9.25 (1H, d, J=1.9 Hz), 

8.12 (2H, d, J=8.2 Hz), 7.78-7.91 (4H, m), 6.29 (2H, d, J=7.8 Hz), 3.89 (2H, dd, J=11.9, 3.7 Hz), 

3.17 (2H, t, J=11.7 Hz), 2.24 (2H, d, J=12.9 Hz), 1.89-2.02 (2H, m).  HRMS calcd for 

C17H18N2O6S, 378.0886; found, 379.0970. 

 

N-hydroxy-4-(4-(4-methoxyphenoxy)phenylsulfonyl)-1-(prop-2-ynyl)piperidine-4-

carboxamide (19a).  To a solution of N-propargyl piperidine 4-fluorophenylsulfone ethyl ester 

22a
42 (3.00 g, 5.66 mmol) in DMF (10 mL) was added Cs2CO3 (4.7 g, 14.5 mmol) and 4-

methoxyphenol (1.80 g, 14.5 mmol) and the solution was heated to 95 C for 24 h.  The solution 

was diluted with EtOAc and washed successively with 1N NaOH and brine, and then dried over 

MgSO4.  Concentration and chromatographic purification of the residue afforded the 

methoxyphenyl ether 20a as a solid (2.67 g, 100%).   

 



To a solution of the phenoxy ether 20a (2.40 g, 5.25 mmol) in ethanol (30 mL) and H2O (6 mL) 

was added KOH (2.0 g, 31.37 mmol) and the solution was heated to reflux for 4 h.  The solution 

was then cooled and acidified with conc HCl to pH = 3, and the resulting precipitate was 

collected by vacuum filtration to provide the crude acid 17a that was carried on without 

additional purification. 

 

To a solution of the carboxylic acid 17a (2.25 g, 5.25 mmol) in acetonitrile (30 mL) was added 

triethylamine (1 mL) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (1.34 g, 9.0 mmol).  After 

the solution was stirred for 15 min, EDC (1.72g, 9.0 mmol) was added and the solution was 

stirred at rt for 18 h.  The solution was concentrated in vacuo and the residue was dissolved in 

EtOAc and washed successively with saturated aqueous NaHCO3, H2O and brine, and then dried 

over MgSO4.  After concentration the resulting residue was chromatographed on silica gel 

eluting with EtOAc/hexane to afford the THP-protected hydroxamate 18a as a white solid (0.93 

g, 33%).   

 

To a solution of the THP-protected hydroxamate 18a (0.93 g, 1.7 mmol) in methanol (15 mL) 

was added acetyl chloride (0.36 mL, 5.1 mmol) and the solution was stirred for 3 h.  The solution 

was concentrated in vacuo to provide the hydroxamate 19a as a white solid (650 mg, 82%).  MS 

MH+ calcd for C22H24N2O6S, 445; found, 445.  Anal calcd for C22H24N2O6S.HCl: C, 54.84; H, 

5.24; N, 5.82; S, 6.67; Cl, 6.67.  Found: C, 53.10; H, 5.07; 5.59; S, 7.04; Cl, 6.32.    

 

N-hydroxy-4-{[4-(4-methoxyphenoxy)phenyl]sulfonyl}-1-(pyridin-2-ylmethyl)piperidine-4-

carboxamide (19b).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (2.31 g, 4.0 



mmol) in 1,4-dioxane (5 mL) was added 4N HCl in 1,4-dioxane (5 mL) and the solution was 

stirred for 2 h at rt.  The solution was then diluted with ethyl ether and the resulting precipitate 

was collected by vacuum filtration to provide the deprotected piperidine hydrochloride salt 21 

(2.1 g, 100%).  The piperidine hydrochloride salt 21 (2.01 g, 5.76 mmol) was combined with 

K2CO3 (2.48 g, 18 mmol), 2-(chloromethyl)pyridine hydrochloride (1.00g, 6.1 mmol), and 

DMF(12 mL) and heated at 40°C for 24 h. The mixture was taken up in water (80 mL) and 

extracted with EtOAc (3 X 50 mL). The combined organic layer was dried over MgSO4 and 

concentrated. The residue was purified by chromatography, the desired N-pyridylmethyl 

piperidine 22b (2.30 g, 98%).   

 

The pyridinyl ester 22b (5.66 mmol, 2.30 g), K2CO3 (9.0 mmol, 1.29 g), 4-hydroxyanisole (9 

mmol, 1.12 g), and DMF(3 mL) were heated at 75-80°C for 24 h.  The reaction was judged to be 

incomplete based on TLC, so an additional 350 mg of base and 300 mg of the phenol were 

added, and stirring was continued at ambient temperature for 2 d. The reaction was then taken up 

in water (50 mL) and extracted with EtOAc (3 X 50 mL). The combined organic layers were 

concentrated. The residue was purified by chromatography, affording the diaryl ether 20b as an 

oil (2.85 g, 100%). 

 

The ethyl ester 20b (5.7 mmol, 2.85 g) was heated at reflux in the presence of KOH (40 mmol, 

2.24 g) in ethanol (18 ml) and water (6 mL) for 4.5 h. The mixture was allowed to cool, was 

acidified to ~pH 3 with HCl, and was concentrated and azeotroped to dryness using acetonitrile. 

This crude acid (~5.7 mmol) was combined with O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (7 

mmol, 0.82 g), HOBt (7 mmol, 0.945 g), NMM (1 mL), and EDC (7 mmol, 1.34 g) in the 



presence of DMF (21 mL). After 16 h of stirring, the mixture was diluted with 200 mL EtOAc 

and was washed with 50% saturated NaHCO3 (100 mL). The aqueous layer was extracted with 

additional EtOAc (50 mL), and the combined organic layer was dried over MgSO4. 

Concentration and chromatography afforded the desired THP-protected hydroxamate 18b as a 

yellow oil (2.82 g, 85 %). 

 

The THP-protected hydroxamate 18b (2.82 g, 5.0 mmol) was dissolved in dry methanol (20 mL). 

Acetyl chloride (30 mmol, 2.1 mL) was added over several minutes. The solution was stirred for 

4 h at ambient temperature. Concentration afforded 2.59 g of crude product, which was 

recrystallized from ethanol/water, yielding the first crop of hydroxamate 19b (525 mg, 18%). MS 

(EI) MH+ calcd for C25H27N3O6S 498, found 498.  1H NMR (400 MHz, DMSO-d6) δ 11.16 (1H, 

br s), 10.62 (1H, s), 8.66 (1H, d, J=4.3 Hz), 7.87-7.97 (1H, m), 7.72 (2H, d, J=9.0 H), 7.56 (1H, 

d, J=7.8 Hz), 7.45-7.52 (1H, m), 7.10-7.19 (2H, m), 7.01-7.10 (4H, m), 4.45 (2H, s), 3.79 (3H, 

s), 3.50 (2H, d, J=12.1 Hz), 2.90 (2H, t, J=12.1 Hz), 2.52-2.56 (2H, m), 2.29 (2H, t, J=12.9 Hz). 

Anal. calcd for C25H27N3O6S
.2HCl.1.5 H2O: C, 50.17; H, 5.18; N, 7.02.  Found.: C, 50.45; H, 

5.13; N, 7.02.  HRMS MH+ calcd for C25H27N3O6S, 498.1699; found, 498.1688.   

 

1-cyclopropyl-4-{[4-(4-ethoxyphenoxy)phenyl]sulfonyl}-N-hydroxypiperidine-4-

carboxamide (19c).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (8.0 g, 19.2 

mmol) in DMF (30 mL) was added K2CO3 (4.00 g, 28.8 mmol) and 4-ethoxyphenol (3.99 g, 28.8 

mmol). The solution was stirred at 90°C for 24 hours. The solution was diluted with H2O (400 

mL) and extracted with EtOAc. The organic layer was washed with brine and dried over 

MgSO4, filtered and concentrated in vacuo. Chromatography on silica gel eluting with 10% 



EtOAc/hexane provided the desired ester 16c as an oil (9.62 g, 94%). MS MH+ calcd for 

C27H35NSO8: 534.2162; found 534.2175. 1H NMR (400 MHz, CDCl3) δ 7.78 (2H, d, J = 6 Hz), 

7.01 (2H, d, J = 6 Hz), 6.99 (2H, d, J = 6 Hz), 6.94 (2H, d, J = 6 Hz), 4.21 (2H, q, J = 7 Hz), 4.05 

(2H, q, J = 7 Hz), 2.62 (2H, br m), 2.32 (2H, br m), 2.02 (4H, m), 1.46 (9H, s), 1.43 (3H, t, J = 7 

Hz), 1.26 (3H, t, J = 7 Hz). 

 

To a solution of N-BOC ethyl ester 16c (9.62 g, 18 mmol) in EtOAc (100 mL) cooled to 0°C was 

bubbled gaseous HCl for 5 minutes. The reaction was stirred at this temperature for 0.5 hours. 

The solution was then concentrated in vacuo to give the hydrochloride salt (8.1 g, 96%).  1H 

NMR (400 MHz, CDCl3) δ 9.71 (2H, br s), 7.70 (2H, d, J = 6 Hz), 7.02 (2H, d, J = 6 Hz), 7.00 

(2H, d, J = 6 Hz), 6.94 (2H, d, J = 6 Hz), 4.22 (2H, q, J = 7 Hz), 4.04 (2H, q, J = 7 Hz), 3.64 (2H, 

m), 2.85 (2H, m), 2.55 (4H, m), 1.43 (3H, t, J = 7 Hz), 1.26 (3H, t, J = 7 Hz).  HRMS MH+ calcd 

for C22H27NSO, 434.1637; found, 434.1637.  To a solution of the hydrochloride salt (8.1 g, 17.2 

mmol) in methanol (70 mL) was added acetic acid (9.86 mL, 172 mmol), a portion of 4Å 

molecular sieves (ca. 2 g), (1-ethoxycyclopropyl)-oxytrimethyl silane (20.7 mL, 103 mmol) and 

sodium cyanoborohydride (4.86 g, 77.4 mmol), and the solution was refluxed for 8 hours. The 

precipitate was removed by filtration and the filtrate was concentrated in vacuo. The residue was 

diluted with H2O (400 mL) and extracted with EtOAc. The organic layer was washed with 1 N 

NaOH, brine and dried over MgSO4 , filtered and concentrated in vacuo. Trituration with diethyl 

ether provided the desired cyclopropyl amine 20c as a white solid (6.84 g, 84%).  DSC 146.95-

150.60°C.  1H NMR (400 MHz, CDCl3) δ 7.68 (2H, d, J = 6 Hz), 7.00 (2H, d, J = 6 Hz), 6.98 

(2H, d, J = 6 Hz), 6.92 (2H, d, J = 6 Hz), 4.21 (2H, t, J = 7 Hz), 4.04 (2H, t, J = 7 Hz), 3.05 (2H, 



m), 2.32 (2H, m), 2.09 (4H, m), 1.53 (1H, m), 1.43 (3H, t, J = 7 Hz), 1.27 (3H, t, J = 7 Hz), 0.42 

(2H, m), 0.37 (2H, m). 

 

To a solution of cyclopropyl amine 20c (6.84 gm, 14.0 mmol) in ethanol (50 mL) and 

tetrahydrofuran (50 mL) was added a solution of NaOH (5.60 g, 140 mmol) in water (30 mL) 

and the solution was heated at 60°C for 18 hours. The solution was concentrated in vacuo and 

the aqueous residue was acidified to pH=3. Filtration gave the carboxylic acid 17c (6.07 g, 88%). 

MS MH+ calcd for C22H27NSO6, 446; found, 446.  Anal calcd for C23H27NSO6.0.5HCl: C, 59.57; 

H, 5.98; N, 3.02.  Found: C, 59.33; H, 5.35; N, 2.98. 

 

To a solution of carboxylic acid 17c (6.07 g, 12.6 mmol) in DMF (60 mL) was added 1-HOBt 

(2.04 g, 15.1 mmol), NMM (4.15 mL, 37.8 mmol) and O-tetrahydropyranyl hydroxyl amine 

(2.21 g, 18.9 mmol) followed by EDC (3.38 g, 17.6 mmol). The solution was stirred at ambient 

temperature for 18 hours. The solution was diluted with H2O (400 mL) and extracted with 

EtOAc. The organic layer was washed with brine and dried over MgSO4, filtered and 

concentrated in vacuo. Chromatography on silica gel eluting with 60% EtOAc/hexane provided 

the desired THP-protected hydroxamate 18c as a white foam (6.29 g, 92%).  1H NMR (400 MHz, 

CDCl3) δ 9.39 (1H, s), 7.73 (2H, d, J = 6 Hz), 7.02 (2H, d, J = 6 Hz), 6.98 (2H, d, J = 6 Hz), 6.93 

(2H, d, J = 6 Hz), 5.01 (1H, t, J = 1 Hz), 4.05 (2H, q, J = 7 Hz), 4.01 (1H, m), 3.70 (1H, m), 3.01 

(2H, m), 2.34 (2H, m), 2.14 (4H, m), 1.88 (2H, m), 1.81 (2H, m), 1.60 (2H, ), 1.44 (3H, t, J = 7 

Hz), 0.42 (2H, m), 0.37 (2H, m).  HRMS MH+ calcd for C28H36N2SO7, 545.2321; found, 

545.2316. 

 



To a solution of the THP-protected hydroxamate 18c (2.84 g, 5.0 mmol) in 1,4-dioxane (40 mL) 

was added 4 N HCl/dioxane (30 mL). After stirring at ambient temperature for 2.5 hours, the 

solution was concentrated in vacuo. Trituration of the resulting solid with diethyl ether and 

filtration gave the hydroxamate 19c as a white solid (2.33 g, 90%).  DSC 223.15-229.94°C at 

442.3 J/g.  1H NMR (400 MHz, DMSO-d6) δ 9.58 (1H, br s), 9.31 (1H, s), 7.70 (2H, d, J = 8.7 

Hz), 7.11 (2H, d, J = 7.8 Hz), 7.06 (2H, d, J = 7.8 Hz), 7.06 (2H, d, J = 7.8 Hz), 7.02 (2H, d, J = 

8.7 Hz), 4.04 (2H, q, J = 7 Hz), 3.59 (2H, m), 3.28 (2H, m), 2.95 (4H, m), 2.20 (1H, m), 0.97 

(2H, m), 0.76 (2H, m).  HRMS M+ calcd for C23H28N2SO6, 460.1677; found, 460.1678. Anal 

calcd for C23H28N2SO6.HCl: C, 55.58; H, 5.88; N, 5.64; Cl, 7.13; S, 6.45.  Found: C, 55.22; H, 

5.73; N, 5.59; Cl, 7.49; S, 6.64.   

 

N-hydroxy-4-{[4-(4-isopropylphenoxy)phenyl]sulfonyl}-1-prop-2-yn-1-ylpiperidine-4-

carboxamide (18d).  To a solution of N-propargyl ethyl ester p-fluorosulfone 22d
42 (6.0 g, 15.4 

mmol) in DMF (70 mL) was added powdered K2CO3 (8.0 g, 38.5 mmol) and 4-isopropyl phenol 

(5.24 g, 38.5 mmol) and the solution was heated to 90°C for 32 h.  The reaction mixture was then 

concentrated under high vacuum and the residue was then partitioned between EtOAc and water.  

The organic layer was washed successively with 1N aqueous NaOH and water and then 

concentrated to give a residue that was chromatographed on silica gel eluting with 

EtOAc/hexane to provide the diaryl ether 20d as a light yellow gel (6.89 g, 87%).   

 

To a solution of the diaryl ether ethyl ester 20d (6.89 g, 14.7 mmol) in ethanol (14 mL) and THF 

(14 mL) was added a solution of NaOH (5.88 g, 147 mmol) in water (28 mL) via an addition 

funnel at rt.  The solution was then heated to 60°C.  Concentration in vacuo gave a residue which 



was diluted with water, washed with ether, and then acidified to pH = 2 with concentrated 

aqueous HCl.  The resulting precipitate was collected via filtration to afford the carboxylic acid 

17d as a white solid (6.56 g, 100%).   

 

To a solution of carboxylic acid 17d (6.56 g, 14.86 mmol), NMM (6.5 mL, 59.4 mmol) HOBt 

(6.0 g, 44.6 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (3.5 g, 29.7 mmol) in DMF 

(50 mL) was added EDC (8.5 g, 44.6 mmol) and the solution was stirred at rt for 20 h.  The 

reaction mixture was then concentrated under high vacuum and the residue was partitioned 

between water and EtOAc.  The organic layer was washed with saturated aqueous NaHCO3 and 

water and dried over MgSO4.  Concentration in vacuo and chromatography on silica gel eluting 

with EtOAc/hexane provided the THP-protected hydroxamate 18d as a white foam (8.03 g, 

100%).   

 

To a solution of THP-protected hydroxamate 18d (8.03 g, 14.9 mmol) in methanol (5 mL) and 

1,4-dioxane (15 mL) was added a 4N solution of HCl in 1,4-dioxane (37 mL, 149 mmol) and the 

solution was stirred at rt for 3 h.  Concentration and trituration of the residue with diethyl ether 

provided the N-propargyl piperidine hydroxamate 19d (5.0 g, 71.1%) as a white solid.  1H NMR 

(400 MHz, DMSO-d6) δ 11.15 (1H, br s), 7.73 (2H, d, J=9.0 Hz) 9.36 (1H, s), 7.37 (2H, d, J=8.6 

Hz), 7.11 (4H, dd, J=8.8, 3.3 Hz), 4.01-4.15 (2H, m), 3.79-3.91 (1H, m), 3.49-3.66 (2H, m), 

2.88-3.02 (1H, m), 2.71-2.85 (2H, m), 2.60 (2H, s), 2.11-2.28 (2H, m), 1.24 (3H, s), 1.22 (3H, s).  

Anal. calcd for C24H28N2O5S.HCl.0.9H2O:  C, 56.61; H, 6.10; N, 5.50; S, 6.30.  Found:  C, 

56.97; H, 6.05; N, 5.41; S, 5.98.  HRMS MH+ calcd for C24H28N2O5S, 457.1797; found, 

457.1816.   



 

N-hydroxy-4-{[4-(4-isopropylphenoxy)phenyl]sulfonyl}-1-(2-methoxyethyl)piperidine-4-

carboxamide (19e).  Hydroxamate 19e was prepared according to the general method illustrated 

for 19d to afford N-methoxyethyl 4-isopropylphenyloxyphenylsulfone hydroxamate 19e:  1H 

NMR (400 MHz, DMSO-d6) δ 11.18 (1H, br s), 9.32 (1H, br s), 7.74 (2H, d, J=9.0 Hz), 7.37 

(2H, d, J=8.6 Hz), 7.11 (4H, dd, J=8.8, 6.8 Hz), 3.54-3.64 (4H, m), 3.22-3.30 (5H, m), 2.89-2.99 

(m), 2.71-2.83 (2H, m), 2.52-2.58 (2H, m), 2.17-2.30 (2H, m), 1.24 (3H, s), 1.22 (3H, s).  HRMS 

MH+ calcd for C24H32N2O6S, 477.2059; found, 477.2073.   

 

N-hydroxy-1-isopropyl-4-{[4-(4-isopropylphenoxy)phenyl]sulfonyl}piperidine-4-

carboxamide (19f).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (30 g, 161 

mmol) in dichloromethane (40 mL) cooled to 0°C was added trifluoroacetic acid (30 mL) and the 

solution was stirred at rt for 1 h.  Concentration in vacuo provided the trifluoroacetate salt as a 

light yellow oil.  To the solution of the trifluoroacetate salt and triethylamine (28 mL, 201 mmol) 

in dichloromethane (250 mL) cooled to 0°C were added acetone (24 mL, 320 mmol) and sodium 

triacetoxyborohydride (68 g, 201 mmol) in small portions followed by addition of acetic acid 

(18.5 mL, 320 mmol), and the solution was stirred at rt for 48 h.  The reaction mixture was 

concentrated and the residue diluted with diethyl ether and washed with 1N aqueous NaOH and 

water and dried over MgSO4.  Concentration in vacuo provided the N-isopropyl amine 22f as a 

light yellow oil. 

 

To a solution of N-isopropyl piperidine 22f (4.0 g, 11.2 mmol) and powdered K2CO3 (3.909 g, 

22.4 mmol) in DMF (30 mL) was added 4-isopropylphenol (3.05 g, 22 mmol) and the solution 



was heated to 90°C for 25 h.  Concentration under high vacuum afforded a residue which was 

dissolved in EtOAc.  This organic phase was washed with 1N aqueous NaOH, water and dried 

over MgSO4.  Chromatography on silica gel eluting with EtOAc/hexane provided the desired 

diaryl ether 20f as a light yellow gel (5.10 g, 96.2%).   

 

To a solution of diaryl ether ethyl ester 20f (5.10 g, 10.77 mmol) in ethanol (10 mL) and THF 

(10 mL) was added a solution of NaOH (4.3 g, 108 mmol) in water (20 mL) and the solution was 

heated to 60°C for 24 H.  Concentration afforded a residue which was dissolved in water.  This 

aqueous phase was washed with diethyl ether and then acidified with concentrated HCl to pH=2.  

Vacuum filtration of the resulting precipitate provided carboxylic acid 17f (4.80 g, 100%) as a 

white solid. 

 

To a solution of carboxylic acid 17f (4.80 g, 10.8 mmol), NMM (3.6 mL, 32.4 mmol), HOBt (4.4 

g, 32.4 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (2.6 g, 21.6 mmol) in DMF (100 

mL) was added EDC (6.17 g, 32.4 mmol) and the solution was stirred at rt for 7 d.  The mixture 

was filtered to remove unreacted starting material and the filtrate was concentrated under high 

vacuum.  The residue was dissolved in EtOAc and this organic phase was washed with saturated 

aqueous NaHCO3, water and dried over MgSO4.  Concentration in vacuo and chromatography 

on silica gel eluting with EtOAc/hexane provided the THP-protected hydroxamate 18f (2.45 g, 

41.7%) as a white foam. 

 

To a solution of THP-protected hydroxamate 18f in methanol (4 mL) and 1,4-dioxane (8 mL) 

was added a 4N solution of HCl in 1,4-dioxane (11.2 mL, 45 mmol) and the solution was stirred 



at rt for 3h.  Concentration in vacuo gave a residue which was triturated with diethyl ether to 

provide N-isopropyl piperidine hydroxamate 19f (2.01 g, 89.7%) as a white solid:  1H NMR (400 

MHz, DMSO-d6) δ 11.21 (1H, br s), 9.29 (1H, s), 7.73 (2H, d, J=8.6 Hz), 7.36 (2H, d, J=8.6 Hz), 

7.12 (4H, t, J=9.0 Hz), 3.49-3.62 (2H, m), 3.36-3.48 (3H, m), 2.87-3.00 (1H, m), 2.52-2.70 (2H, 

m), 2.17-2.31 (2H, m), 1.24 (3H, s), 1.22 (3H, s), 1.21 (3H, s), 1.19 (3H, s).  HRMS calcd for 

C24H32N2O5S, 461.2110; found, 461.2108.  Anal. calcd for C24H32N2O5S.HCl.0.5H2O: C, 56.96; 

H, 6.77; N, 5.54; S, 6.34.  Found:  C, 56.58; H, 6.71; N, 5.44; S, 6.25.   

 

N-hydroxy-4-{[4-(4-isopropoxyphenoxy)phenyl]sulfonyl}-1-(2-methoxyethyl)piperidine-4-

carboxamide (19g). To a solution of N-methoxyethyl-piperidine ethyl ester p-flourosulfone 22g 

(2.0 g, 5.4 mmol) in DMF (20 mL) were added 4-isopropoxyphenol65 (1.63 g, 10.7 mmol) and 

Cs2CO3 (7 g, 21.5 mmol) and the resulting suspension was heated to 60°C for 16 h.  The reaction 

mixture was then concentrated in vacuo.  The residue was dissolved in EtOAc and washed with 

1N NaOH, water and brine and dried over MgSO4.  Concentration of the organic phase gave a 

residue that was purified by chromatography on silica gel eluting with EtOAc/hexane to afford 

the desired diaryl ether 20g (1.37 g, 50%).  

 

To a solution of ethyl ester diaryl ether 20g (1.37 g, 2.7 mmol) in ethanol (30 mL) and water 30 

mL) and water (30 mL) was added NaOH (1.08 g, 27 mmol) and the mixture was heated to 65°C 

for 16 h.  The solvents were removed in vacuo.  Water (50 mL) was added and the mixture was 

again concentrated in vacuo and the resulting mixture was acidified with 2N HCl to pH = 4-5.  

The resulting precipitate was collected by filtration and rinsed with diethyl ether to afford 

carboxylic acid 17g (1.25 g, 100%). 



 

To a suspension of carboxylic acid 17g (1.25 g, 2.7 mmol) in DMF (15 mL) were added NMM 

(0.82 g, 8.1 mmol), O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (0.61 g, 4.1 mmol) followed by 

bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP, 1.51 g, 3.3 mmol).  After 

stirring for 16 h at rt the reaction was concentrated to a residue that was dissolved in EtOAc and 

washed with water and brine.  Concentration and purification by chromatography on silica gel 

eluting with EtOAc/hexane afforded the THP-protected hydroxamate 18g (1.0 g, 63%) as a white 

solid. 

 

Through a solution of the THP-protected hydroxamate 18g (1.0 g, 1.7 mmol) in EtOAc (20 mL) 

was bubbled HCl gas for 5 min.  After stirring at rt for an additional 5 h, the solvent was 

removed in vacuo.  EtOAc (30 mL) was added and then removed in vacuo.  EtOAc (30 mL) was 

again added and the resulting solid was collected by filtration to afford the N-methoxyethyl 

piperidine hydroxamate hydrochloride salt 19g (0.50 g, 56%) as a white solid:  1H NMR (400 

MHz, DMSO-d6) δ 11.17 (1H, br s), 9.32 (1H, br s), 7.72 (2H, d, J=9.0 Hz), 7.06-7.16 (4H, m), 

6.98-7.06 (2H, m), 4.51-4.67 (1H, m), 3.51-3.67 (4H, m), 3.20-3.32 (5H m), 2.69-2.84 (2H, m), 

2.50-2.59 (2H, m), 2.15-2.30 (2H, m), 1.29 (3H, s), 1.28 (3H, s).  Anal. calcd for 

C24H32N2O7S.HCl.1.5H2O:  C, 51.84; H, 6.53; N, 5.04; Cl, 6.38; S, 5.77.  Found: C, 51.87; H, 

6.12; N, 4.92; Cl, 6.38; S, 5.84.  MS MH+ calcd for C24H32N2O7S 493, found 493.  HRMS calcd 

for C24H32N2O7S, 493.2008; found, 493.1992.   

 

1-cyclopropyl-N-hydroxy-4-{[4-(4-isopropoxyphenoxy)phenyl]sulfonyl}piperidine-4-

carboxamide (19h). 



 

To a solution of N-cyclopropyl 4-fluorosulfone ethyl ester 22h (2.49 g, 7.0 mmol) in DMAC (30 

mL) were added 4-isopropoxyphenol65 (1.28 g, 8.4 mmol) and Cs2CO3 (5.48 g, 16.8 mmol), and 

the resulting suspension was heated at 60°C for 16 h. The reaction mixture was then concentrated 

in vacuo. The residue was dissolve in EtOAc and washed with 1 N NaOH, water and brine. 

Concentration of the organic phase gave a residue which was purified by chromatography on 

silica gel eluting with EtOAc/hexane to afford aryl ether 20h (2.8 grams, 82%).  

 

To a solution of the ethyl ester 20h (2.8 g, 5.7 mmol) in ethanol (50 mL) and water (50 mL) was 

added NaOH (2.3 g, 57 mmol) and the mixture was heated to 60°C for 16 hours. The solvents 

were removed in vacuo. Water (50 mL) was added and the mixture was acidified with 2 N HC1 

to pH = 4. The resulting precipitate was collected by filtration to afford carboxylic acid 17h (1.4 

g, 53%).  

 

To a solution of carboxylic acid 17h (1.4 g, 3.1 mmol) in DMF(15 mL) were added NMM (0.92 

g, 9.1 mmol), HOBt (0.49 g, 3.66 mmol), and EDC (0.82 g, 4.26 mmol) followed by O- 

(tetrahydro-2H-pyran-2-yl) hydroxylamine (0.68 g, 4.5 mmol). After stirring for 16 hours at 

ambient temperature, the reaction mixture was concentrated to a residue that was dissolve in 

EtOAc and washed with water and brine. Concentration and purification by chromatography on 

silica gel, eluting with EtOAc/hexane, afforded THP-protected hydroxamate 18h. 

 

To a solution of protected hydroxamate 18h in methanol/1,4-dioxane (1:3, 20 mL) was added 4 

N HC1/1,4-dioxane (10 mL) and the solution was stirred at ambient temperature for 3 h. The 



solvent was then removed in vacuo. An additional portion of EtOAc was added and then 

removed in vacuo. Diethyl ether was added and the resulting solid was collected by filtration to 

afford hydroxamate 19h (0.3 g, 19%).  1H NMR (400 MHz, DMSO-d6) δ 11.19 (1H, br s), 9.34 

(1H, br s), 7.70 (2H, d, J=8.6 Hz), 7.09 (4H, d), 6.99-7.04 (2H, m), 4.57-4.65 (1H, m), 2.87-3.06 

(3H, m), 2.52-2.60 (2H, m), 2.09-2.25 (3H, m), 1.29 (3H, s), 1.28 (3H, s), 0.91 - 0.98 (2H, m), 

0.74-0.79 (2H, m).  Anal. calcd for C24H30N206S.HC1: C, 56.41; H, 6.11; N, 5.48. Found: 

C, 56.04; H, 5.82; N, 5.44.  MS (CI) MH+ calcd for C24H30N206S, 475; found. 475.  HRMS MH+ 

calcd for C24H30N206S, 475.1903; found, 475.1893.   

 

N-hydroxy-4-(4-(4-(methylsulfonyl)phenoxy)phenylsulfonyl)-1-(prop-2-ynyl)piperidine-4-

carboxamide (19i).   To a solution of N-propargyl ethyl ester p-fluorosulfone 22i
42 (2.5 g, 6.4 

mmol) in DMF (15 mL) were added 4-methylsulfonylphenol (3.5 g, 20.3 mmol) and Cs2CO3 (8.7 

g, 27 mmol) and the resulting suspension was heated to 90°C for 16 h.  The reaction mixture was 

then concentrated in vacuo.  The residue was dissolved in EtOAc (500 mL) and washed with 1N 

NaOH, water and brine.  Concentration of the organic phase gave a residue which was purified 

by chromatography on silica gel eluting with EtOAc/hexane (1;1) to afford diaryl ether 20i (2.5 

g, 77%). 

 

To a solution of the diaryl ether ethyl ester 20i (2.5 g, 4.9 mmol) in ethanol (50 mL) and water 

(30 mL) was added NaOH (2.0 g, 49 mmol) and the mixture was heated to 65°C for 8 h.  The 

solvents were removed in vacuo.  Water (50 mL) was added, the mixture was again concentrated 

in vacuo and the resulting mixture was acidified with 2N HCl to pH = 4-5.  The resulting 

precipitate was collected by filtration to afford carboxylic acid 17i (1.57 g, 67%). 



 

To a solution of carboxylic acid 17i (1.57 g, 3.3 mmol) in DMF (15 mL) were added NMM (0.5 

g, 4.9 mmol), HOBt (0.53 g, 3.9 mmol), and EDC (0.88 g, 4.6 mmol) followed by O-(tetrahydro-

2H-pyran-2-yl)hydroxylamine (0.74 g, 4.9 mmol).  After stirring for 16 h at rt the reaction 

mixture was concentrated to a residue that was dissolved in EtOAc (200 mL) and washed with 

water and brine.  Concentration and purification by chromatography on silica gel eluting with 

EtOAc/hexane afforded THP-protected hydroxamate 18i (1.5 g, 79%) which was used directly. 

 

To a solution of THP-protected hydroxamate 18i (1.5 g, 2.60 mmol) in methanol/1,4-dioxane 

(1:3, 40 mL) was added 4N HCl/1,4-dioxane (10 mL) and the solution was stirred at rt for 3 h.  

The solvent was then removed in vacuo.  Methanol (30 mL) was added and then removed in 

vacuo.  Diethyl ether (100 mL) was added and the resulting solid was collected by filtration to 

afford hydroxamate 19i (1.35 g, 98%) as a colorless solid:  1H NMR (400 MHz, DMSO-d6) δ 

11.19 (1H, br s), 9.41 (1H br s), 8.01 (2H, d, J=9.0 Hz), 7.82 (d, J=9.0 Hz), 7.40 (2H, d, J=8.6 

Hz, 2 H), 7.33 (2H, d, J=8.6 Hz), 3.98-4.14 (2H, m), 3.76-3.89 (1H, m), 3.51-3.64 (2H, m), 3.45 

(3H, br s), 2.72-2.86 (2H, m), 2.53-2.64 (2H, m), 2.19-2.31 (2H, m).  Anal. calcd for 

C22H24N2O7S2.HCl:  C, 49.95; H, 4.76; N, 5.30; Cl, 6.70; S, 12.12.  Found C, 49.78; H, 4.56; N, 

5.25; Cl, 6.98; S, 11.98.  HRMS (ESI) MH+ calcd for C22H24N2O7S2, 493.1103; found, 493.1106.   

 

4-(4-(benzo[d][1,3]dioxol-5-yloxy)phenylsulfonyl)-N-hydroxypiperidine-4-carboxamide 

(19j).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (25.0 g, 67.3 mmol) and 

powdered K2CO3 (23.3 g, 16.9 mmol) in DMF was added sesamol (23.24 g, 16.8 mmol) at rt and 

the solution was heated to 90°C for 24 h.  The solution was concentrated and then dissolved in 



EtOAc.  The organic layer was washed successively with 1N NaOH and water and then dried 

over MgSO4.  Concentration gave a residue which was chromatographed on silica gel eluting 

with EtOAc/hexane to provide N-BOC diaryl ether 16j as a white foam (33.6 g, 93.6%).   

 

To a solution of ethyl ester 16j (29.31 g, 54.93 mmol) in ethanol (60 mL) and THF (60 mL) was 

added NaOH (21.97 g, 544 mmol) over 20 min at rt.  The solution was then heated to 60°C for 9 

h.  The reaction mixture was then concentrated and diluted with water and extracted with diethyl 

ether, and then acidified to pH=2.  The mixture was then extracted with EtOAc.  The combined 

organic layers were washed with water and dried over MgSO4.  Concentration gave carboxylic 

acid 17j as a white solid (25.3 g, 91.0%). 

 

To a solution of N-BOC-piperidine carboxylic acid 17j (1.25 g, 2.47 mmol), NMM (1.00 g, 9.89 

mmol) and HOBt (0.40 g, 2.96 mmol) in DMF (6 mL) was added solid EDC (0.616 g, 3.21 

mmol) followed by a solution of O-(tetrahydro-2H-pyran-2-yl)hydroxylamine in DMF (2 mL).  

After stirring for 2 d at rt the pale yellow solution was concentrated in vacuo, then dissolved in 

EA and washed successively with water (3 X 40 mL) and brine (30 mL).  The solution was dried 

over Na2SO4 and concentrated to give THP-protected hydroxamate 18j as a nearly colorless 

foam (1.54 g, 100%):  DSC 221.01°C.  MIR ν 32 85, 1693, 1478 cm-1.   

 

To a solution of THP-protected hydroxamate 18j (1.49 g, 2.46 mmol) in 1,4-dioxane (9 mL) and 

methanol (3 mL) was added 4N HCl in dioxane (10 mL, 40 mmol).  After 1.5 h at rt the 

suspension was treated with diethyl ether (15 mL) and filtered to afford hydroxamic acid 19j 

(1.00 g, 89%) as a colorless powder.  DSC 255.96C;  IR ν 3213, 3107, 1653, 1144 cm-1; MS 



MH+ calcd for C19H20N2O7S, 421; found, 421; C19H20N2O7S, 49.95; H, 4.73; N, 6.13; Cl, 7.76; S, 

7.02.  Found C, 49.82; H, 4.60; N, 5.98; Cl, 17.38; S, 7.10.   

 

4-{[4-(1,3-benzodioxol-5-yloxy)phenyl]sulfonyl}-N-hydroxy-1-prop-2-yn-1-ylpiperidine-4-

carboxamide (19k).  To 4-(4-fluorobenzenesulfonyl)-1-prop-2-ynyl-piperidine-4-carboxylic 

acid ethyl ester 22k (19.8 mmol, 7.00 g) was added 1,3-benzodioxol-5-ol (40 mmol, 5.52 g), 

K2CO3 (40 mmol, 5.52 g), and DMF(30 mL). The mixture was heated at 80°C for 48 h. The 

mixture was then partitioned between EtOAc (200 mL) and water (150 mL). The aqueous phase 

was extracted with additional EtOAc (2 X 100 mL). The combined organic phases were dried 

over MgSO4, then filtered through silica, and concentrated. Chromatography afforded diaryl 

ether 20k as an oil (9.38 g, 100%). Elem. Anal. calcd for C24H25NO7S: C, 61.13; H, 5.34; N, 

2.97. obsd C, 61.02; H, 5.44; N, 2.72.   

 

Ethyl ester 20k (2.72 g, 5.92 mmol) was combined with ethanol (30 mL), water, (5 mL) and 

potassium hydroxide (2.0g, 36 mmol) and stirred for 1 h at ambient. Reaction was incomplete, so 

the mixture was heated at reflux for 4 h. The mixture was allowed to cool and was acidified to 

~pH 3 using conc. HCl. Concentration following by azeotropic drying with acetonitrile afforded 

crude carboxylic acid 17k, which was used without purification. 

 

To carboxylic acid 17k was added O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (9 mmol, 1.053 

g) and acetonitrile (30 mL). Triethylamine (1 mL) was added, followed by EDC (9 mmol, 1.72 

g). The mixture was stirred for 16 h and worked up using half-saturated NaHCO3 (20 mL) and 



EtOAc (2 X 50 mL). The combined organic phase was dried over MgSO4, concentrated and 

chromatographed, affording THP-protected hydroxamate 18k (2.86 g, 89%).   

 

The THP-protected hydroxamate 18k (5.27 mmol, 2.86 g) was diluted with methanol (40 mL) 

and lowered into a water bath. Acetyl chloride (1.14 mL, 15.8 mmol) was added over 1 minute. 

After stirring at ambient temperature for 3 h, the mixture was concentrated and azeotroped 5 

times with chloroform to afford 2.42 g white solid was obtained, of which 1 g (41%) was 

purified by reverse-phase chromatography on a C-18 column eluting with15% acetonitrile, 85% 

0.1N HCl.  Concentration of the eluent gave hydroxamate 19k (1.0 g, 97%) as a white solid. 1H 

NMR (400 MHz, DMSO-d6) δ 11.14 (1H, br s), 9.36 (1H, s), 7.72 (2H, d, J=9.0 Hz), 7.11 (2H, d, 

J=9.0 Hz), 7.00 (1H, d, J=8.6 Hz), 6.88 (1H, d, J=2.3 Hz), 6.65 (1H, dd, J=8.6, 2.3 Hz), 3.98-

4.18 (2H, m) 6.10 (2H, s), 3.79-3.90 (1H, m), 3.50-3.68 (2H, m), 2.69-2.87 (2H, m), 2.52-2.62 

(2H, m), 2.11-2.28 (2H, m).  MS (CI) MH+ calcd for C22H22N2O7S, 459; found, 459.  HRMS 

calcd for C22H22N2O7S, 459.1226; found, 459.1222.  Anal. calcd for C22H22N2O7S
.HCl.1.5 H2O: 

C, 51.56; H, 5.07; N, 5.47.  Found: C, 51.54; H, 4.55; N, 5.64. 

 

4-{[4-(1,3-benzodioxol-5-yloxy)phenyl]sulfonyl}-N-hydroxy-1-(2-methoxyethyl)piperidine-

4-carboxamide (19l).  To a solution of N-BOC ethyl ester diaryl ether 16l (4.0 g, 7.4 mmol) in 

dichloromethane (7 mL) at 0°C was added trifluoroacetic acid (7 mL) and the solution was 

stirred a rt for 2 h.  Concentration in vacuo provided the piperidine trifluoroacetate salt as a light 

yellow gel.  To a solution of the trifluoroacetate salt in DMF (50 mL) was added K2CO3 (3.6 g, 

26 mmol) and 2-bromoethyl methyl ether (1.8 mL, 18.7 mmol) and the solution was stirred at rt 

for 36 h.  The DMF was evaporated under high vacuum and the residue was diluted with EtOAc.  



This organic phase was then washed with water and brine and dried over MgSO4.  Concentration 

in vacuo provided the N-methoxyethyl-piperidine 20l as a light yellow oil (3.7 g, 100%).   

 

To a solution of the ethyl ester 20l in ethanol (7 mL) and THF (7 mL) was added a solution of 

NaOH (3.0 g, 75 mmol) in water (15 mL) and the solution was heated to 60°C for 19 h.  The 

solution was then concentrated in vacuo and diluted with water.  This aqueous phase was washed 

with ether and then acidified to pH=2.  Vacuum filtration of the white precipitate provided 

carboxylic acid 17l as a white solid (4.0 g, 100%).   

 

To a solution of carboxylic acid 17l (4.0 g, 7.5 mmol) NMM (3.3 mL, 30 mmol), HOBt (3.0 g, 

22.5 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (1.8 g, 15 mmol) in DMF (100 

mL) was added EDC (4.3 g, 22.5 mmol) and the solution was stirred at rt for 4 d.  The reaction 

mixture was then concentrated under high vacuum and the residue was dissolved in EtOAc.  This 

organic phase was washed with saturated aqueous NaHCO3 and water and dried over MgSO4.  

Concentration in vacuo and chromatography of the residue on silica gel eluting with 

EtOAc/hexane provided the THP-protected hydroxamate 18l as a white foam (2.40 g, 57.1%).   

 

To a solution of THP-protected hydroxamate 18l (2.4 g, 4.3 mmol) in methanol (2 mL) and 1,4-

dioxane (6 mL) was added a 4N solution of HCl in 1,4-dioxane (11 mL, 43 mmol).  The solution 

was stirred at rt for 3 h.  Concentration in vacuo and trituration of the residue with ether provided 

the N-methoxyethyl piperidine hydroxamate 19l (1.88 g, 85.8%) as a white solid:  1H NMR (400 

MHz, DMSO-d6) δ 11.18 (1H, br s), 9.33 (1H, br s), 7.72 (2H, d, J=9.0 Hz), 7.11 (2H, d, J=9.0 

Hz), 7.01 (1H, d, J=8.6 Hz), 6.87 (1H, d, J=2.7 Hz), 6.64 (1H, dd, J=8.6, 2.3 Hz), 6.10 (2H, s), 



3.52-3.67 (2H, m), 3.34-3.43 (2H, m), 3.19-3.31 (5H, m), 2.71-2.85 (2H, m), 2.53-2.59 (2H, m), 

2.13-2.28 (2H, m).  Anal. calcd for C22H26N2O8S.HCl.H2O: C, 49.58; H, 5.48; N, 5.26; S, 6.02.  

Found C, 49.59; H, 5.53; N, 5.06; S, 5.71.  HRMS MH+ calcd for C22H26N2O8S, 479.1488; 

found, 479.1497.   

 

4-(4-(benzo[d][1,3]dioxol-5-yloxy)phenylsulfonyl)-1-cyclopropyl-N-hydroxypiperidine-4-

carboxamide (19m).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (9.0 g, 

22.0 mmol) in DMF (30 mL) was added K2CO3 (4.55 g, 33 mmol) and sesamol (4.55 g, 33 

mmol).  The solution was stirred at 90°C for 24 H.  The mixture was diluted with H2O (400 mL) 

and extracted with EtOAc.  The organic layer was washed with brine and dried over MgSO4, 

filtered and concentrated in vacuo.  Chromatography on silica gel eluting with EtOAc/hexane 

(10/90) provided diaryl ether 16m as an oil (9.3 g, 79%).  1H NMR (CDCl3, 400 MHz) δ 7.69 

(2H, d, J = 7 Hz), 7.01 (2H, d, J = 7 Hz), 6.60 (1H, s), 6.55 (1H, d, J = 7 Hz), 6.02 (2H, s), 4.20 

(2H, q, J = 7 Hz), 4.19 (4h, br m), 2.72 (2H, br m), 2.32 (2H, br m), 1.45 (9H, s), 1.26 3H, t, J = 

7 Hz).  HRMS MH+ calcd for C26H31NSO9,  534.1798; found, 534.1796.   

 

Through a solution of ethyl ester 16m (9.3 g, 17 mmol) in EtOAc (100 mL) cooled to 0°C was 

bubbled HCl gas for 10 min.  The reaction was stirred for an additional 0.5 h at 0°C.  

Concentration afforded the piperidine hydrochloride salt (7.34 g, 92%) as a white solid.  1H 

NMR (400 MHz, CDCl3) δ 9.60 (2H, br s), 7.71 (2H, d, J = 6 Hz), 7.04 (2H, d, J = 6 Hz), 6.82 

(1H, d, J = 6 Hz), 6.62 (1H, s), 6.57 (1H, d, J = 6 Hz), 6.03 (2H, s), 4.22 (2H, q, J = 7 Hz), 3.63 

(2H, m), 2.83 (2H, br m), 2.53, 4H, br m), 1.26 (3H, t, J = 7 Hz).  HRMS MH+ calcd for 

C21H23NSO7, 434.1273; found, 434.1285.  To a solution of this hydrochloride salt (7.34 g, 15.6 



mmol) in methanol (60 mL) was added acetic acid (8.94 mL, 156 mmol), a portion of 4A 

molecular sieves (2 g), (1-ethoxycyclopropyl)-oxytrimethylsilane (18.8 mL, 93.6 mmol) and 

sodium cyanoborohydride (4.41 g, 70.2 mmol).  The reaction was heated under reflux for 8 h.  

Upon cooling the precipitate was removed by filtration and the filtrate was concentrated in 

vacuo.  The residue was partitioned between water and EtOAc.  The organic layer was washed 

with brine and dried over MgSO4, filtered and concentrated in vacuo.  Chromatography on silica 

gel eluting with EtOAc provided N-cyclopropyl amine 20m (7.9 g, 100%) as a white solid:  1H 

NMR (400 MHz, CDCl3) δ 7.69 (2H, d, J = 7 Hz), 7.00 (2H, d, J = 7 Hz), 6.82 (1H, d, J = 7 Hz), 

6.60 (1H, d, J = 7 Hz), 6.55 (1H, d, J = 7 Hz), 6.02 (2H, s), 4.21 (2H, q, J = 7 Hz), 3.10 (2H, m), 

2.31 (2H, m), 2.09 (4H, m), 0.94 (1H, m), 0.40 (4H, m).  HRMS MH+ calcd for C24H27NSO7,  

474.1586; found, 474.1599.   

 

To a solution of the N-cyclopropyl piperidine ethyl ester 20m (7.9 g, 16.7 mmol) in ethanol (50 

mL) and THF (50 mL) was added a solution of NaOH (6.68 g, 166.8 mmol) in water (30 mL) 

and the solution was heated to 60°C for 18h.  The solution was then concentrated in vacuo and 

the aqueous remnant was acidified to pH=3 with concentrated aqueous HCl.  The resulting 

precipitate was filtered to give carboxylic acid 17m (6.14 g, 76%) as a colorless solid:   HRMS 

MH+ calcd for C22H25NSO7,  446.1273; found, 446.1331. 

 

To a solution of carboxylic acid 17m (6.14 g, 12.7 mmol) in DMF (60 mL) was added HOBt 

(2.06 g, 15.2 mmol), NMM (4.2 mL, 38.0 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine (2.23 g, 19.0 mmol) followed by EDC (3.41 g, 17.8 mmol).  The solution was 

stirred at rt for 18 h.  The solution was then cooled and diluted with water (400 mL) and 



extracted with EtOAc.  The organic layer was washed with brine and dried over MgSO4, filtered 

and concentrated in vacuo.  Chromatography on silica gel eluting with EtOAc/hexane (40/60) 

provided the THP-protected hydroxamate 18m (6.67 g, 96%) as a colorless solid. 

 

To a solution of THP-protected hydroxamate 18m (6.67 g, 12.0 mmol) in 1,4-dioxane (70 mL) 

was added 4N HCl in 1,4-dioxane (6.6 mL).  After stirring at rt for 3 h the solution was 

concentrated in vacuo.  Chromatography on a C18 reverse-phase column eluting with 

acetonitrile/(HCl)water provided the desired hydroxamate 19m (4.21 g, 69%) as a white solid.  

DSC 188.76-198.88°C.  1H NMR (400 MHz, CDCl3) δ 11.17 (1H, s), 10.18 (1H, br s), 9.31 (1H, 

s), 7.71 (2H, d, J = 7 Hz), 7.10 (2H, d, J = 7 Hz), 6.99 (1H, d, J = 7 Hz), 6.88 (1H, s), 6.66 (1H, 

d, J = 7 Hz), 6.09 (2H, s), 3.55 (2H, br m), 3.00-2.83 (4H, br m), 2.26 (2H, br m), 1.02 (2H, m), 

0.74 (2H, m).  HRMS MH+ calcd for C22H24N2SO7,  461.1382; found, 461.1386.  Anal. calcd for 

C22H24N2SO7.HCl C, 53.17; H, 5.07; N, 5.64; Cl, 7.14; S, 6.45.  Found C, 52.97; H, 5.03; N, 

5.63, Cl, 6.99; S, 6.78.   

 

1-cyclopropyl-4-{[4-(2,3-dihydro-1,4-benzodioxin-6-yloxy)phenyl]sulfonyl}-N-

hydroxypiperidine-4-carboxamide (19n).  To a solution of 4-fluorophenyl sulfone piperidine 

hydrochloride 21
42 (14.36 g, 40 mmol) in methanol (50 mL) was added acetic acid (24.5 g, 400 

mmol), a portion of 4A molecular sieves (2 g), (1-ethoxycyclopropyl)-oxytrimethylsilane (25.8 

mL, 148 mmol) and sodium cyanoborohydride (7.l05 g, 112 mmol).  The solution was heated 

under reflux for 8 h.  The reaction was allowed to cool and the precipitated solids were removed 

by filtration and the filtrate was concentrated in vacuo.  The residue was diluted with water (400 

mL) and extracted with EtOAc.  The organic layer was washed with brine and dried over 



MgSO4, filtered, and concentrated in vacuo to give the N-cyclopropyl piperidine 22n as a 

colorless solid (11.83 g, 81.5%).  MS MH+ calcd for C17H22NO4SF3, 356; found, 356. 

 

To a solution of the N-cyclopropyl amine ethyl ester p-fluoro sulfone 22n (1.36 g, 3.47 mmol) in 

DMF (8 mL) was added 6-hydroxybenzo-1,4-dioxane (792 mg, 5.21 mmol) followed by Cs2CO3 

(2.83 g, 8.69 mmol) and the solution was heated to 100°C for 20 h.  The solution was then 

cooled and partitioned between EtOAc and water.  The aqueous layer was extracted with EtOAc 

and the combined organic extracts were washed with water and brine and dried over Na2SO4.  

Filtration through a pad of silica gel eluting with EtOAc/hexane provided the diaryl ether ethyl 

20n an orange oil (1.81 g, 100%).  MS(CI) MH+ calcd for C25H29NO7S, 488; found, 488.   

 

To a solution of the ethyl ester 20n (1.81 g) in THF (10 mL) and ethanol (10 mL) was added 

sodium hydroxide (1.39 g, 34.7 mmol) in water (5 mL).  The solution was heated to 60°C for 20 

h.  The solution was then concentrated in vacuo and the aqueous residue acidified to pH=2 with 

10% aqueous HCl.  The resulting solid was collected by vacuum filtration to provide carboxylic 

acid 17n as a yellow solid (1.23 g, 72%).  HRMS(CI) MH+ calcd for C23H25NO7S, 460.1430; 

found, 460.1445. 

 

To a suspension of carboxylic acid 17n (1.21 g, 2.46 mmol) in DMF (20 mL) was added HOBt 

(399 mg, 2.95 mmol), NMM (0.81 mL, 7.38 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine (432 mg, 3.69 mmol).  After stirring for 1 h, EDC (660 mg, 3.44 mmol) was 

added and the solution was stirred for 20 h at rt.  The mixture was then partitioned between 

EtOAc and water.  The organic layer was washed with brine and dried over Na2SO4.  



Chromatography on silica gel eluting with EtOAc/hexane provided the THP-protected 

hydroxamate 18n as a yellow oil (940 mg, 70%).  MS (CI) MH+ calcd for C28H34N2O2S,  559; 

found, 559.   

 

To a solution of THP-protected hydroxamate 18n (920 mg, 1.68 mmol) in 1,4-dioxane (15 mL) 

was added 4N HCl in 1,4-dioxane (10 mL).  After stirring at rt for 2 h the resulting precipitate 

was collected by vacuum filtration and washed with diethyl ether to provide the N-

cyclopropylpiperidine hydroxamate 19n as a white solid (510 mg, 60%).  1H NMR (400 MHz, 

DMSO-d6) δ 11.18 (1H, br s), 9.34 (1H, br s), 7.70 (2H, d, J=9.0 Hz), 7.09 (2H, d, J=9.0 Hz), 

6.96 (1H, d, J=8.6 Hz), 6.74 (1H, d, J=2.7 Hz), 6.66 (1H, dd, J=8.8, 2.9 Hz), 4.27 (4H, s), 3.60 

(2H, d, J=11.7 Hz), 2.85-3.04 (3H, m), 2.53-2.59 (2H, m), 2.06-2.28 (2H, m), 0.91-1.03 (2H, m), 

0.64-0.81 (2H, m).  MS (CI) MH+ calcd for C23H26N2O7S, 475; found, 475.  HRMS calcd for 

C23H26N2O7S, 475.1539; found, 475.1553.  Anal. calcd for C23H26N2O7S.1.15HCl.05H2O: C, 

52.57; H, 5.40; N, 5.33; Cl, 7.76.  Found: C, 52.62; H, 5.42; N, 5.79; Cl, 7.71.   

 

1-cyclopropyl-N-hydroxy-4-(4-(4-(trifluoromethyl)phenoxy)phenylsulfonyl)piperidine-4-

carboxamide (19o).  To a solution of the N-cyclopropyl piperidine ethyl ester p-fluoro sulfone 

21o (5.96 g, 15.0 mmol) in DMF (100 mL) was added K2CO3 (12.34 g, 38.0 mmol) and α,α,α-

trifluoromethylphenol (3.65 g, 22.5 mmol).  The solution was stirred at 90°C for 28 h.  The 

solution was the cooled and diluted with H2O (400 mL) and extracted with EtOAc.  This organic 

phase was washed with water and brine and dried over MgSO4, filtered and concentrated in 

vacuo to afford the desired aryl ether 20o (7.54 g, 100%) as an oil. 

 



To the ethyl ester 20o (7.54 g, 15.0 mmol) in ethanol (40 mL) and THF (40 mL) was added a 

solution of NaOH (6.06 g, 15.1 mmol) in water (20 mL) and the solution was heated at 60°C for 

18 h.  The reaction mixture was then concentrated in vacuo and the aqueous residue was 

acidified to pH=2.0.  The resulting precipitate was filtered to give carboxylic acid piperidine 

hydrochloride salt 17o (7.98 g, 100%) as a white solid:  HRMS MH+ calcd for C22H22NSO5F3, 

470.1171; found, 470.1253 

 

To a solution of the carboxylic acid 17o (7.60 g, 15.0 mmol) in DMF (100 mL) were added 

HOBt (2.44 g, 18.0 mmol), NMM (3.4 mL, 30.9 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine hydrochloride (2.63 g, 22.5 mmol) followed by EDC (4.02 g, 21.0 mmol).  

The solution was stirred at rt for 96 h.  The reaction was then diluted with H2O (400 mL) and 

extracted with EtOAc.  The organic layer was washed with brine and dried over MgSO4, filtered 

and concentrated in vacuo.  Chromatography on silica gel eluting with EtOAc/hexane (30/70) 

provided the THP-protected hydroxamate 18o (5.93 g, 69%) as a white solid. 

 

To a solution of the THP-protected hydroxamate 18o (3.8 g, 6.7 mmol) in 1,4-dioxane (100 mL) 

was added 4N HCl in 1,4-dioxane (30 mL).  The reaction was stirred at rt for 2 h, then the 

solution was concentrated in vacuo.  Trituration of the residue with diethyl ether afforded the N-

cyclopropyl piperidine hydroxamate hydrochloride salt (3.33 g, 96%) as a white solid:  DSC 

207.29-211.84°C at 373.8 J/g.  1H NMR (400 MHz, DMSO-d6) δ 9.69 (1H, br s), 9.32 (1H, s), 

7.75 (2H, d, J = 8 Hz), 7.49 (2H, d, J = 8 Hz), 7.32 (2H, d, J = 8 Hz), 7.19 (2H, d, J = 8 Hz), 3.60 

(2H, m), 3.31 (2H, m), 2.95 (4H, m), 2.22 (1H, m), 0.99 (2H, m), 0.77 (2H, m).  MS MH+ calcd 

for C22H23N2SO5F3, 485; found, 485. 



 

N-hydroxy-4-({4-[4-(trifluoromethyl)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide 

(19p).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (1.5 g, 3.61 mmol) in 

DMF (10 mL) was added Cs2CO3 (2.95 g, 9.03 mmol) and α,α,α-trifluoro-p-cresol (877 mg, 

5.41 mmol).  The solution was heated to 90°C for 20 h.  The solution was then cooled and 

partitioned between EtOAc and water, and the organic layer was washed with brine and dried 

over Na2SO4.  Filtration through a pad of silica gel eluting with EtOAc provided diaryl ether 16p 

as a yellow oil (2.30 g, 100%).  MS(CI) MH+ calcd for C26H30NO7SF3, 558; found, 558.   

 

To a solution of ethyl ester 16p (2.30 g, 3.61 mmol) in THF (10 mL) and ethanol (10 mL) was 

added NaOH (1.44 g, 36.1 mmol) in water (5 mL) and the solution was heated to 60°C for 18 h.  

The solution was concentrated and the aqueous residue was acidified to pH=2 with 10% aqueous 

HCl and then extracted with EtOAc.  The organic layer was washed with brine and dried over 

Na2SO4.  Concentration in vacuo provided the carboxylic acid 17p as a solid (2.11 g, 100%).  

MS (CI) MH+ calcd for C24H26NO7SF3, 530; found, 530.   

 

To a solution of carboxylic acid 17p (2.11 g, 3.61 mmol) in DMF (10 mL) was added HOBt (586 

mg, 4.33 mmol), NMM (1.19 mL, 10.8 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine 

(634 mg, 5.41 mmol).  After stirring for 1h at rt, EDC (969 mg, 5.05 mmol) was added and the 

solution was stirred for 18 h.  The mixture was then partitioned between EtOAc and water.  The 

aqueous layer was extracted with EtOAc and the combined organic layers were washed with 

water and brine and dried over MgSO4.  Chromatography on silica gel eluting with 



EtOAc/hexane provided the THP-protected hydroxamate 18p as a clear, colorless oil (1.40 g, 

62%).  MS (CI) MH+ calcd for C29H35N2O8SF3, 629; found, 629. 

 

To a solution of the THP-protected hydroxamate 18p (1.40 g, 2.23 mmol) in 1,4-dioxane (10 

nM) was added 4N HCl in 1,4-dioxane (15 mL) and the solution was stirred for 2h.  The solution 

was then diluted with diethyl ether and the resulting precipitate was collected by vacuum 

filtration to provide compound 19p as a white solid (747 mg, 70%).  1H NMR (400 MHz, 

DMSO-d6) δ 11.17 (1H, br s), 9.32 (1H, s), 8.78 (1H, d, J=8.99 Hz), 7.86 (2H, d, J=8.6 Hz), 7.78 

(2H, d, J=8.99 Hz), 7.36 (2H, d, J=8.6 Hz), 7.29 (2H, d, J=8.99 Hz), 3.40 (2H, d, J=12.5 Hz), 

2.58-2.70 (2H, m), 2.42-2.58 (2H, m), 2.04-2.20 (2H, m).  MS (CI) MH+ calcd for 

C19H19N2O5SF3, 445; found, 445.  HRMS calcd for C19H19N2O5SF3, 445.1045; found, 445.1052.  

Anal. calcd for C19H19N2O5SF3.0.5H20.1.0HCl: C, 46.58; H, 4.32; N, 5.72; S, 6.55; Cl, 7.24.  

Found: C, 46.58; H, 3.82; N, 5.61; S, 6.96; Cl, 7.37.   

 

N-hydroxy-1-(2-morpholin-4-ylethyl)-4-({4-[4-

(trifluoromethyl)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19q).  According to 

the general procedure specified for hydroxamate 19m, N-morpholinylethyl piperidine 

hydroxamate 19q was prepared as a colorless foam.  1H NMR (400 MHz, DMSO-d6) δ 11.22 

(1H, br s), 7.73-7.90 (4H, m), 7.40 (2H, d, J=8.5 Hz), 7.30 (2H, d, J=8.9 Hz), 3.22-4.08 (8H, m), 

2.94-3.23 (2H, m), 2.45-2.89 (6H, m), 2.32 (2H, d, J=12.3 Hz), 1.67-2.05 (2H, m).  HRMS MH+ 

calcd for C25H30F3N3O6S, 558.1886; found, 558.1894. 

 



N-hydroxy-4-{[4-(4-isopropoxyphenoxy)phenyl]sulfonyl}tetrahydro-2H-pyran-4-

carboxamide (19r).  To a solution of N-BOC piperidine 15
42 (30.0 g, 80.8 mmol) in methylene 

chloride (100 mL) was added trifluoroacetic acid (30 mL) in methylene chloride (40 mL).  The 

solution was stirred at rt for 2 h and then concentrated in vacuo.  To the residue redissolved in 

methylene chloride (150 mL) at 0°C were added triethylamine (28.0 mL, 277 mmol), acetone 

(24.0 mL, 413 mmol), sodium cyanoborohydride (68 g, 323.1 mmol) and acetic acid (18.5 mL, 

308 mmol).  The reaction mixture was stirred at rt for 18 h, then diluted with 1N NaOH and 

extracted with ethyl ether.  The organic layer was washed with 1n NaOH, water, brine and dried 

over MgSO4, filtered and concentrated in vacuo to provide the desired N-isopropyl piperidine 

22r (21.03 g, 72%).   

 

To a solution of the N-isopropyl piperidine 22r (4.04 g, 11.0 mmol) in DMF (50 mL) was added 

Cs2CO3 (10.75 g, 33.3 mmol) and α,α,α-trifluoro-p-cresol (2.67 g, 16.5 mmol).  The solution 

was stirred at 90°C for 40 h.  The mixture was then diluted with H2O (400 mL) and extracted 

with EtOAc.  The organic layer was washed with water, brine and dried over MgSO4, filtered 

and concentrated in vacuo.  Chromatography on silica gel eluting with EtOAc/hexane (30/70) 

provided diaryl ether 20r as an oil (5.35 g, 97%).  1H NMR (400 MHz, CDCl3) δ 7.77 (2H, d, J = 

8 Hz), 7.68 (2H, d, J = 8 Hz), 7.17 (2H, d, J = 8 Hz), 7.10 (2H, d, J = 8 Hz), 4.23 (2H, q, J = 7 

Hz), 2.92 (2H, m), 2.68 (1H, m), 2.37 (2H, m), 2.14 (2H, m), 2.06 (2H, m), 1.28 (3H, t, J = 7 

Hz), 0.99 (6H, d, J = 7 Hz).  HRMS MH+ calcd for C24H28NSO5F3, 500.1640; found, 500.1678.   

 

To a solution of the ethyl ester 20r (5.3 g, 10.6 mmol) in ethanol (50 mL) and THF (50 mL) was 

added a solution of NaOH (4.2 g, 106 mmol) in H2O (25 mL) and the solution was heated at 



60°C for 18 h.  The mixture was then concentrated in vacuo and the aqueous residue was 

acidified to pH=3.0 with concentrated aqueous HCl.  The resulting precipitate was filtered to 

give the carboxylic acid as the piperidine hydrochloride salt 17r (5.38 g, 100%) as a white solid:  

DSC 189.24-205.07°C at 115.7 J/g.  HRMS MH+ calcd for C22H24NSO5F3, 472.1406; found, 

472.1407. 

 

To a solution of the carboxylic acid 17r (5.4 g, 10.6 mmol) in DMF (90 mL) were added HOBt 

(1.72 g, 12.3 mmol), NMM (3.5 mL, 32.0 mmol) and O-tetrahydropyranyl hydroxylamine 

hydrochloride (1.87 g, 15.9 mmol) followed by EDC (2.8 g, 15.0 mmol).  The reaction was 

stirred at rt for 144 h.  The solution was then diluted with H2O (400 mL) and extracted with 

EtOAc.  The organic layer was washed with brine and dried over MgSO4, filtered and 

concentrated in vacuo.  Chromatography on silica gel eluting with methanol/EtOAc (2/98) 

provided the THP-protected hydroxamate 18r (2.75 g, 45%) as a white solid:  1H NMR (400 

MHz, CDCl3) δ 9.35 (1H, br s), 7.83 (2H, d, J = 8 Hz), 7.67 (2H, d, J = 8 Hz), 7.18 (2H, d, J = 8 

Hz), 7.09 (2H, d, J = 8 Hz), 5.00 (1H, t, J = 1 Hz), 4.00 (1H, td, J = 7, 1Hz), 4.69 (1H, dt, J = 7, 1 

Hz), 3.88 (2H, m), 2.69 (1H, m), 2.28 (2H, m), 2.20 (4H, m), 1.87 (2H, m), 1.80 (2H, m), 1.61 

(2H, m), 0.99 (6H, d).  HRMS MH+ calcd for C27H33N2SO5F3, 571.2090; found, 571.2103.   

 

To a solution of the THP-protected hydroxamate 18r (2.7 g, 4.7 mmol) in 1,4-dioxane (50 mL) 

was added 4N HCl in 1,4-dioxane (20 mL).  The reaction was stirred at rt for 2 h.  Filtration 

afforded the hydroxamate as the piperidine hydrochloride salt 19r (2.08 g, 84%) as a white solid:  

1H NMR (400 MHz, DMSO-d6) δ 9.59 (1H, br s), 9.29 (1H, s), 7.84 (2H, d, J = 8 Hz), 7.78 (2H, 



d, J = 8 Hz), 7.37 (2H, d, J = 8 Hz), 7.29 (2H, d, J = 8 Hz), 3.57 (1H, m), 3.41 (1H, m), 2.60 (4H, 

m), 2.26 (1H, m), 1.21 (6H, d, J = 7 Hz).  MS MH+ calcd for C22H25SN2O5F3,  487; found, 487.   

 

1-ethyl-N-hydroxy-4-({4-[4-(trifluoromethyl)phenoxy]phenyl}sulfonyl)piperidine-4-

carboxamide (19s).  Through a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (48 g, 

115 mmol) in EtOAc (750 mL) at 0°C was bubbled HCl gas for 45 min, then stirred at 0°C for 7 

h.  The solution was concentrated in vacuo to afford a residue that was triturated with diethyl 

ether to afford piperidine hydrochloride salt 21 (32.76 g, 81%) as a white solid. 

 

To a solution of the piperidine hydrochloride salt 21 (15.8 g, 45.0 mmol) in DMF (75 mL) was 

added K2CO3 (12.4 g, 90.0 mmol) and bromoethane (3.4 mL, 45.0 mmol).  The solution was 

stirred at rt for 18 h, then diluted with H2O (200 mL) and extracted with  EtOAc.  The organic 

layer was washed with H2O, brine and dried over MgSO4, filtered and concentrated in vacuo to 

provide the desired N-ethyl piperidine 22s (15.4 g, 100%) as an oil.  1H NMR (400 MHz, CDCl3) 

δ 7.80 (2H, m), 7.22 (2H, m), 4.19 (2H, t, J = 7 Hz), 2.98 (2H, m), 2.33 (5H, m), 2.17 (1H, td, J = 

11, 1 Hz), 1.82 (1H, td, J = 11, 1Hz), 1.24 (3H, t, J = 7 Hz), 1.03 (3H, t, J = 7 Hz).  HRMS calcd 

for C16H22NSO4F, 343.1254; found, 343.1292.   

 

To a solution of the N-ethyl piperidine p-fluoro sulfone 22s (5.2 g, 15.0 mmol) in DMF (50 mL) 

was added Cs2CO3 (12.2 g, 37.5 mmol) and α,α,α,-trifluoro-p-cresol (3.65 g, 23.0 mmol).  The 

solution was stirred at 90°C for 25 h.  The reaction mixture was then diluted with H2O (400 mL) 

and extracted with EtOAc.  The organic layer was washed with water, brine and dried over 

MgSO4, filtered and concentrated in vacuo.  Chromatography on silica gel eluting with 



EtOAc/hexane (20/80) provided the diaryl ether 20s (7.3 g, 100%) as an oil.  1H NMR (400 

MHz, CDCl3) δ 7.78 (2H, d, J = 8 Hz), 7.68 (2H, d, J = 8 Hz), 7.17 (2H, d, J = 8 Hz), 7.10 (2H, 

d, J = 8 Hz), 4.21 (2H, t J = 7 Hz), 2.99 (2H, m), 2.34 (6H, m), 2.17 (2H, td, J = 11, 5 Hz), 1.83 

(2H, td, J = 11, 1 Hz), 1.27 (3H, t, J = 7 Hz), 1.05 (3H, t, J = 7 Hz).  MS MH+ calcd for 

C23H26NSO5F3, 486; found, 486.   

 

To a solution of the ethyl ester 20s (7.3 g, 15.0 mmol) in ethanol (40 mL) and THF (40 mL) was 

added a solution of NaOH (6.0 g, 150 mmol) in water (30 mL) and the solution was heated at 

60°C for 16 h.  The solution was then concentrated in vacuo and the aqueous residue was 

acidified to pH = 4.0.  The resulting precipitate was filtered to give carboxylic acid piperidine 

hydrochloride salt 17s (5.96 g, 80%) as a white solid:  DSC 177.57-189.45°C at 117.2 J/g.  

HRMS MH+ calcd for C21H22NSO5F3, 458.1249; found, 458.1260. 

 

To a solution of the hydrochloride salt 17s (5.96 g, 12.0 mmol) in DMF (80 mL) were added 

HOBt (1.96 g, 14.0 mmol), NMM (3.9 mL, 36.0 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine (2.11 g, 18.0 mmol) followed by EDC (3.24 g, 17.0 mmol).  The reaction was 

stirred at rt for 18 h.  The insoluble material was removed by filtration and the filtrate was 

diluted with H2O (400 mL) and extracted with EtOAc.  The organic layer was washed with brine 

and dried over MgSO4, filtered and concentrated in vacuo.  Chromatography on silica gel eluting 

with EtOAc/hexane (70/30) provided the THP-protected hydroxamate 18s (2.80 g, 41%) as a 

white solid.  MS MH+ calcd for C28H39N2SO6, 531; found, 531. 

 



To a solution of the THP-protected hydroxamate 18s (2.8 g, 5.0 mmol) in 1,4-dioxane (80 mL) 

was added 4N HCl in 1,4-dioxane (20 mL).  The reaction was stirred at rt for 5 h and then 

concentrated in vacuo.  Trituration with diethyl ether afforded the hydroxamate piperidine 

hydrochloride salt (2.08 g, 84%) as a white solid:  DSC 229.31-235.74°C at 187.8 J/g.  1H NMR 

(400 MHz, DMSO-d6) δ 9.32 (1H, s), 7.83 (2H, d, J = 8 Hz), 7.78 (2H, d, J = 8 Hz), 7.37 (2H, d, 

J = 8 Hz), 7.29 (2H, d, J = 8 Hz), 3.57 (2H, m), 3.05 (2H, m), 2.60 (2H, m), 2.54 (2H, m), 2.23 

(2H, m), 1.18 (3H, t, J = 7 Hz).  HRMS MH+ calcd for C21H23N2SO5F3, 473.1358; found, 

473.1361.  Anal calcd for C21H23N2SO5F3.HCl: C, 49.56; H, 4.75; N, 5.50; Cl, 6.70; S, 6.30.  

Found: C, 49.18; H, 4.61; N, 5.51; Cl, 6.95; S, 6.14.   

 

N-hydroxy-1-(2-methoxyethyl)-4-[(4-{4-

[(trifluoromethyl)thio]phenoxy}phenyl)sulfonyl]piperidine-4-carboxamide (19t).   To a 

solution of N-methoxyethyl-piperidine p-flourosulfone 22t (5.0 g, 13.4 mmol) and powdered 

K2CO3 (3.7 g, 27 mmol) in DMF (20 mL) was added 4-(trifluoromethylthio)phenol (3.9 g, 20 

mmol) and the mixture was heated to 90°C for 24h.  The solution was concentrated under high 

vacuum and the residue was dissolved in EtOAc.  The organic phase was washed with 1N 

aqueous NaOH, water, and dried over MgSO4.  Chromatography on silica gel eluting with 

EtOAc/hexane provided diaryl ether 20t as a light yellow gel (5.94 g, 81.0%).   

 

To a solution of the ethyl ester 20t (5.94 g, 210 mmol) in ethanol (10 mL) and THF (10 mL) was 

added a solution of NaOH (4.34 g, 108 mmol) in water (20 mL).  The solution was then heated to 

60°C for 24 h.  After cooling the solution was concentrated in vacuo and diluted with water.  



This aqueous phase was washed with diethyl ether and then acidified to pH=2. Vacuum filtration 

of the resulting precipitate provided the carboxylic acid 17t (5.5 g, 100%) as a white solid.   

 

To a solution of the carboxylic acid 17t (5.5 g, 10.8 mmol), NMM (3.6 mL, 32.4 mmol) HOBt 

(4.4 g, 32.4 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (2.6 g, 21.8 mmol) in DMF 

(200 mL) was added EDC (6.2 g, 32.4 mmol) and the solution was stirred at rt for 24 h.  The 

reaction mixture was then concentrated under high vacuum and the residue dissolved in EtOAc.  

This organic phase was washed with saturated aqueous NaHCO3, water, and dried over MgSO4.  

Concentration in vacuo and chromatography on silica gel eluting with EtOAc/hexane provided 

the THP-protected hydroxamate 18t (4.66 g, 69.8%) as a white foam. 

 

To a solution of the THP-protected hydroxamate 18t (4.65 g, 7.9 mmol) in methanol (2.5 mL) 

and 1,4-dioxane (8 mL) was added a 4N solution of HCl in 1,4-dioxane (20 mL, 79 mmol) and 

the solution was stirred at rt for 3h.  Concentration in vacuo gave a residue which was triturated 

with diethyl ether to afford the N-methoxyethyl piperidine hydroxamate (3.95 g, 92.1%) as a 

white solid:  1H NMR (400 MHz, DMSO-d6) δ 11.21 (1H, s), 10.50 (1H, br s), 9.37 (1H, br s), 

7.81 (4H, d, J=8.5 Hz), 7.32 (4H, dd, J=16.9, 8.7 Hz), 3.53-3.74 (4H, m), 3.20-3.30 (5H, m), 

2.70-2.87 (2H, m), 2.46-2.59 (2H, m), 2.30 (2H, t, J=12.1 Hz).  HRMS calcd for 

C22H25F3N2O6S2, 535.1184; found, 535.1179.  Anal calcd for C22H25F3N2O6S2.HCl: C, 46.27; H, 

4.59; N, 4.91; S, 11.23.  Found: C, 46.02; H, 4.68; N, 4.57; S, 11.11.   

 

N-hydroxy-4-({4-[4-(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide 

(19u).  To a solution of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (1.5 g, 3.61 mmol) in 



DMF (10 mL) was added Cs2CO3 (2.94 g, 9.03 mmol) and 4-(trifluoromethoxy)phenol (0.70 mL, 

5.41 mmol).  The solution was heated to 90°C for 20 h.  The solution was then cooled and 

partitioned between EtOAc and water, and the organic layer was washed with brine and dried 

over Na2SO4.  Filtration through a pad of silica gel eluting with EtOAc provided the diaryl ether 

16u as a yellow oil (2.11 g, 100%).  MS(CI) MNa+ calcd for C26H30F3NO8S, 596, found 596. 

 

To a solution of the ethyl ester 16u (2.11 g, 3.61 mmol) in THF (10 mL) and ethanol (10 mL) 

was added a solution of sodium hydroxide (1.44 g, 36.1 mmol) in water (5 mL) and the solution 

was heated to 60°C for 18h.  The solution was concentrated and the aqueous residue was then 

acidified to pH=2 with 10% aqueous HCl and extracted with EtOAc.  The organic layer was 

washed with brine and dried over Na2SO4.  Concentration in vacuo provided the carboxylic acid 

17u as a solid (2.2 g, 100%).  MS(CI) MH+ calcd for C24H26NO8SF3, 546; found, 546. 

 

To a solution of the carboxylic acid 17u (2.2 g, 3.6 mmol) in DMF (10 mL) was added HOBt 

(586 mg, 4.33 mmol), NMM (1.19 mL, 10.8 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine (634 mg, 5.41 mmol).  After stirring at rt for 30 min, EDC (969 mg, 5.05 

mmol) was added and the solution was stirred for 96 h.  The solution was then partitioned 

between EtOAc and water.  The aqueous layer was extracted with EtOAc and the combined 

organic layers were washed with water and brine and dried over MgSO4.  Chromatography on 

silica gel eluting with EtOAc/hexane provided the THP-protected hydroxamate 18u as a clear, 

colorless oil (1.26 g, 53%).   

 



To a solution of the THP-protected hydroxamate 18u (1.26 g, 1.96 mmol) in 1,4-dioxane (10 

mL) was added 4N HCl in 1,4-dioxane (10 mL) and the solution was stirred for 2 h.  The 

solution was then diluted with ethyl ether and the resulting precipitate was collected by vacuum 

filtration to provide 19u as a white solid (455 mg, 47%).  1H NMR (400 MHz, DMSO-d6) δ 

11.16 (1H br s), 9.31 (1H, s), 8.79 (1H, d, J=8.99 Hz), 7.75 (2H, d, J=8.6 Hz), 7.51 (2H, d, J=8.6 

Hz), 7.31 (2H, d, J=8.99 Hz), 7.20 (2H, d, J=8.99 Hz), 3.34-3.45 (2H, m), 2.57-2.70 (2H, m), 

2.45 (2H, d, J=13.6 Hz), 2.10 (2H, t, J=12.5 Hz).  MS(CI) MH+ calcd for C19H19N2O6SF3, 461; 

found, 461.  HRMS calcd for C19H19N2O6SF3, 461.0994; found, 461.0997.  Anal calcd for 

C19H19N2O6SF3
.HCl:  C, 45.93; H, 4.06; N, 5.64; S, 6.45; Cl, 6.45.  Found:  C, 46.23; H, 4.07; N, 

5.66; S, 6.59; Cl, 7.03.   

 

N-hydroxy-1-(2-methoxyethyl)-4-({4-[4-

(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19v).  To a solution 

of N-BOC 4-fluorophenylsulfone ethyl ester 15
42 (30.0 g, 161 mmol) in dichloromethane (50 

mL) cooled to 0°C was added trifluoroacetic acid (25 mL) and the solution was stirred at rt for 1 

h.  Concentration in vacuo provided the piperidine trifluoroacetate salt as a light yellow gel.  To 

the solution of the trifluoroacetate salt in DMF (50 ML) at 0°C was added K2CO3 (3.6 g, 26 

mmol) and 2-bromoethyl methyl ether (19 mL, 201 mmol) and the reaction was stirred at rt for 

36 h.  The DMF was then removed under high vacuum and the residue was diluted with EtOAc.  

This organic phase was washed with water and brine and dried over MgSO4.  Concentration in 

vacuo provided the N-methoxyethyl-piperidine 22v as a light yellow gel (26.03 g, 86.8%).   

 



To a solution of the N-methoxyethyl piperidine 4-fluorosulfone 22v (6.0 g, 16.0 mmol) and 

powdered K2CO3 (4.44 g, 32 mmol) in DMF (30 mL) was added 4-(trifluoromethoxy)phenol 

(5.72 g, 32 mmol) and the mixture was then heated to 90°C for 25 h.  The solution was 

concentrated under high vacuum and the residue was dissolved in EtOAc.  This organic phase 

was washed with 1N aqueous NaOH, water, brine and dried over MgSO4.  Chromatography on 

silica gel eluting with EtOAc/hexane provided the trifluoromethoxy phenoxyphenyl sulfone 20v 

as a light yellow gel (7.81 g, 91.5%).   

 

To a solution of the ethyl ester 20v (7.81 g, 14.7 mmol) in ethanol (14 mL) and THF (14 mL) 

was added a solution of NaOH (5.88 g, 147 mmol) in H2O (28 mL).  The solution was then 

heated to 60°C for 18h.  The mixture was then concentrated in vacuo and diluted with water.  

This aqueous phase was washed with ether and then acidified to pH=2 with concentrated 

aqueous HCl.  Vacuum filtration of the resulting precipitate provided carboxylic acid 16v (5.64 

g, 73.3%) as a white solid.  

 

To a solution of carboxylic acid 17v (5.64 g, 10.8 mmol), NMM (4.8 mL, 43.1 mmol), HOBt 

(4.38 g, 32.4 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (2.5 g, 21.6 mmol) in 

DMF (50 mL) was added EDC (6.2 g, 32.4 mmol) and the solution was stirred at rt for 24 h.  The 

reaction mixture was then concentrated under high vacuum and the residue was dissolved in 

EtOAc.  This organic phase was washed with saturated aqueous NaHCO3 and water and dried 

over MgSO4.  Concentration in vacuo and chromatography on silica gel eluting with 

EtOAc/hexane provided the THP-protected hydroxamate 18v as a white foam (6.65 g, 100%). 

 



To a solution of the THP-protected hydroxamate 18v (6.65 g, 11.03 mmol) in methanol (3 mL) 

and 1,4-dioxane (9 mL) was added a 4N solution of HCl in 1,4-dioxane (28 mL, 110 mmol) and 

the solution was stirred at rt for 3h.  Concentration in vacuo and trituration with ether provided 

the N-methoxyethyl piperidine hydroxamate hydrochloride salt 19v (4.79 g, 78.2%) as a white 

solid:  1H NMR (400 MHz, DMSO-d6) δ 11.20 (1H, br s), 9.33 (1H, br s), 7.77 (2H, d, J=8.6 

Hz), 7.51 (2H, d, J=8.99 Hz), 7.32 (2H, d, J=9.4 Hz), 7.21 (2H, d, J=8.99 Hz), 3.55-3.66 (4H, 

m), 3.23-3.31 (5H, m), 2.71-2.85 (2H, m), 2.52-2.59 (2H, m), 2.18-2.30 (2H, m).  HRMS MH+ 

calcd for C22H25F3N2O7S, 519.1413; found, 519.1399.  Anal. calcd for 

C22H25F3N2O7S.HCl.0.5H2O: C, 46.85; H, 4.83; N, 4.97; S, 5.69.  Found: C, 46.73; H, 4.57; N, 

4.82; S, 5.77.   

 

1-Cyclopropyl-N-hydroxy-4-(4-(4-(trifluoromethoxy)phenoxy)phenylsulfonyl)piperidine-4-

carboxamide(19w).  To a solution of the N-cyclopropyl amine p-fluoro sulfone 22w (6.97 g, 

19.6 mmol) in DMF (500 mL) was added K2CO3 (3.42 g, 18.0 mmol) and 4-(trifluoromethoxy)-

phenol (3.7 g, 24.8 mmol).  The solution was stirred at 90°C for 40 h.  The mixture was then 

diluted with H2O (600 mL) and extracted with EtOAc.  The organic layer was washed with 

water, brine and dried over MgSO4, filtered and concentrated in vacuo to afford the desired 

diaryl ether 20w as an oil (8.5 g, 100%).  HRMS MH+ calcd for C24H26NSO6F3,  514.1511; 

found, 514.1524. 

 

To a solution of the ethyl ester 20w (8.4 g, 16.4 mmol) in ethanol (50 mL) and THF (50 mL) was 

added a solution of NaOH (6.54 g, 164 mmol) in H2O (20 mL) and the solution was heated to 

60°C for 18 h.  The solution was concentrated in vacuo to remove most of the organic solvents, 



and the aqueous residue was acidified to pH=4.0.  The resulting precipitate was filtered to give 

carboxylic acid piperidine hydrochloride salt 17w (5.01 g, 63%) as a white solid:  HRMS MH+ 

calcd for C22H22NSO6F3, 486.1198; found, 486.1200. 

 

To a solution of the carboxylic acid 17w (5.0 g, 10.3 mmol) in DMF (80 mL) were added HOBt 

(3.4 mL, 30.9 mmol) and O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (1.8 g, 15.4 mmol) 

followed by EDC (1.60 g, 12.3 mmol).  The solution was stirred at rt for 42 h.  The reaction 

mixture was then diluted with H2O (400 mL) and extracted with EtOAc.  The organic layer was 

washed with brine and dried over MgSO4, filtered and concentrated in vacuo.  Chromatography 

on silica gel eluting with EtOAc/hexane (30/70) provided the desired THP-protected 

hydroxamate 18w (5.41 g, 89%) as a white solid.  HPLC purity 98.38%. 

 

To a solution of the THP-protected hydroxamate 18w (5.4 g, 9.2 mmol) in 1,4-dioxane (80 mL) 

and methanol (20 mL) was added 4N HCl in 1,4-dioxane (50 mL).  The reaction was stirred at rt 

for 2.5 h, then the solution was concentrated in vacuo.  Trituration with diethyl ether afforded the 

N-cyclopropyl-piperidine hydroxamate 19w (4.02 g, 81%) as a white solid:  DSC 224.98-

231.59°C at 392.0 J/g.  1H NMR (400 MHz, DMSO-d6) δ 9.58 (1H, br s), 9.34 (1H, s), 7.84 (2H, 

d, J = 8.0 Hz), 7.77 (2H, d, J = 7.1 Hz), 7.37 (2H, d, J = 7.1 Hz), 7.28 (2H, d, J = 8.0 Hz), 3.60 

(2H, m), 3.27 (2H, m), 2.95 (4H, m), 2.22 (1H, m), 0.97 (2H, m), 0.77 (2H, m).  HRMS MH+ 

calcd for C22H23N2SO6F3, 501.1307; found, 501.1324.  Anal. calcd for C22H23N2SO6F3.HCl: C, 

49.30; H, 4.33; N, 5.23; Cl, 6.62; S, 5.98.  Found: C, 49.13; H, 4.56; N, 5.17; Cl, 6.98; S, 6.24.   

 



N-Hydroxy-1-(2-5 pyridinylmethyl)-4-[4-(4-trifluoro-methoxyphenoxy)phenyl]sulfonyl]-4-

piperidinecarboxamide, Dihydrochloride (19x).  To a solution of 4-fluorophenylsulfone 15
42 

(6.22 g, 15 mmol) in DMF (7 mL) was added powdered K2CO3 (3.04 g, 22 mmol) and 4-

(trifluoromethoxy)phenol (3.92 g, 322 mmol) and the mixture was stirred at 90°C for 16 h. 

Additional 4-(trifluoromethoxy)-phenol (1 g) and K2CO3 (800 mg) were added and the reaction 

was continued at 115°C for 20 additional hours. The mixture was diluted with water (100 mL) 

and extracted with EtOAc (100 mL, then 2×25 mL). The combined organic layers were dried 

using MgSO4, concentrated, and chromatographed, affording the desired diaryl ether 16x as an 

oil (9.6 g, 100%).  

The N-BOC piperidine 16x (9.6 g, 15 mmol) was dissolved in EtOAc (45 mL). A solution of 4N 

HCl in dioxane (12 mL, 48 mmol) was added, and the mixture was stirred at rt for 3 h.  

Concentrated aqueous HCl (4 mL) was added and the reaction was heated to reflux with a heat 

gun several times. The solution was concentrated and was then azeotroped with acetonitrile to 

afford the piperidine hydrochloride salt as a foam (9.6 g). The piperidine hydrochloride salt (6.0 

g) was dissolved in EtOAc (125 mL) and washed with aqueous sodium hydroxide (2 g NaOH in 

50 mL water). The organic layer was dried with MgSO4 and filtered through a pad of silica gel. 

The 4-(trifluoromethoxy)phenol contaminant was eluted, then the desired piperidine was freed 

from the filter cake by elution with methanol containing 1% aqueous ammonium hydroxide (100 

mL). The filtrate was concentrated and azeotroped with acetonitrile to yield the salt (3.3 g 7.3 

mmol).  This piperidine (1.24 g, 2.7 mmol) was combined with powdered K2CO3 (828 mg, 6.0 

mmol), 2-picolyl hydrochloride (492 mg, 3.0 mmol), and DMF (3 mL), and the mixture was 

stirred at ambient temperature for 2 h, then heated at 50°C for an additional 2 h. The mixture was 

diluted with water (40 mL) and extracted with EtOAc (150 mL, then 50 mL). The combined 



organic layers were dried using MgSO4, concentrated and chromatographed to afford the N-

picolyl piperidine 20x as an oil (1.13 g, 74%).  

To the ethyl ester 20x (1.1 g, 2.0 mmol) in ethanol (6 mL) and water (2 mL) was added KOH 

(0.90 g, 16 mmol). The mixture was brought to reflux and heated for 4.5 h. The solution was 

then cooled to 0°C and acidified using concentrated aqueous HCl. The solvent was removed, and 

the resulting solids were dried by azeotroping with acetonitrile to afford carboxylic acid 

piperidine hydrochloride 17x.   

 

Carboxylic acid 17x was stirred with NMM (about 0.5 mL), 1-hydroxybenzotriazole (0.405 g, 3 

mmol), O-tetrahydropyranyl hydroxylamine (0.35 g, 3.0 mmol), and DMF(9 mL). After ten 

minutes, EDC (0.57 g, 3.0 mmol) was added, and the mixture was stirred overnight. The reaction 

was then diluted with half-saturated aqueous NaHCO3 (50 mL) and extracted with EtOAc (100 

mL, then 25 mL). The combined organic layers were dried over MgSO4, concentrated, and 

chromatographed (9:1 EtOAc: methanol) to afford the desired THP-protected hydroxamate 18x 

as a yellow oil (1.20 g, 95%).  

The THP-protected hydroxamate 18x (1.20 g, 1.90 mmol) was dissolved in methanol (9 mL). 

Acetyl chloride (0.78 mL, 11 mmol) was added over two minutes. The reaction was stirred for 2 

hours at ambient temperature, then concentrated to afford the hydroxamate as the 

dihydrochloride salt 19x (1.20 g, 100%) as a white crystalline solid.  1H NMR (400 MHz, 

DMSO-d6) δ 11.19 (1H, br s), 8.67 (1H, d, J=3.91 Hz), 7.92 (1H, td, J=7.6, 1.6 Hz), 7.77 (2H, d, 

J=8.99 Hz), 7.43-7.56 (4H, m), 7.31 (2H, d, J=8.99 Hz), 7.20 (2H, d, J=8.99 Hz), 4.46 (2H, br s), 

3.51 (2H, d, J=11.7 Hz), 2.83-2.98 (2H, m), 2.52-2.60 (2H, m), 2.30 (2H, d, J=16.4 Hz).  HRMS 



calcd for C25H24F3N3O6, 552.1416; found, 522.1428.  Anal. calcd for C25H24F3N3O6S
.2HCl.1/3 

H2O: C, 47.58; H, 4.07; N, 6.66. Found: C, 47.31; H, 4.14; N, 6.80.   

 

N-hydroxy-1-(pyridin-3-ylmethyl)-4-({4-[4-

(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19y).  To a solution 

of N-BOC ethyl ester trifluorophenoxy ether 16p (2.64 g, 4.6 mmol) in 1,4-dioxane (5 mL) was 

added 4N HCl in 1,4-dioxane (5 mL) and the solution was stirred for 2 h at rt.  The solution was 

then diluted with ethyl ether and the resulting precipitate was collected by vacuum filtration to 

provide the deprotected piperidine as the hydrochloride salt (2.4 g, 100%).  To a solution of this 

hydrochloride salt (2.4 g, 4.6 mmol) in DMF (12 mL) was added 3-picolyl chloride (1.5 g, 8.8 

mmol) and K2CO3 (4.3 g, 31 mmol) and the mixture was heated to 50°C for 24 h under an 

atmosphere of nitrogen.  The reaction mixture was then concentrated in vacuo, dissolved in water 

and extracted with EtOAc (3X).  The combined organic layers were washed with water and brine 

and dried over MgSO4 and then concentrated in vacuo.  The residue was purified by 

chromatography on silica gel eluting with EtOAc/hexane (50:50) to afford the 3-picolyl 

piperidine 20y as an amber oil (1.6 g, 60%):  MS MH+ calcd for C27H27N2O6SF3, 565; found, 

565.  Anal. calcd for C27H27N2O6SF3: C, 57.44; H, 4.82; N, 4.96; S, 5.68.  Found: C, 57.49; H, 

5.10; N, 4.69; S, 5.67. 

 

To a solution of the 3-picolyl piperidine ethyl ester 20y (1.5 g, 2.6 mmol) in THF (22 mL) 

ethanol (22 mL) and water (11 mL) was added a 50% aqueous NaOH solution (2.1 g, 26 mmol) 

and the solution was heated to 65°C for 24 h.  The mixture was concentrated in vacuo and 

triturated with ether to afford a tan solid which was dissolved in water and acidified to pH = 1 



with concentrated hydrochloric acid.  The mixture was then concentrated in vacuo and dried at 

45°C under vacuum to afford carboxylic acid 17y (2.5 g):  MS MH+ calcd for C25H23N2O6SF3, 

537; found, 537. 

 

To a solution of carboxylic acid 17y (2.5 g) in DMF (40 mL) was added HOBt (1.0 g, 7.7 mmol), 

NMM (0.64 g, 7.7 mmol), O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (0.60 g, 5.1 mmol) and 

EDC (1.5 g, 7.7 mmol) and the reaction was stirred at rt for 5 d.  The mixture was then 

concentrated in vacuo, dissolved in EtOAc, washed with water and brine, and dried over MgSO4.  

Concentration in vacuo gave a residue which was purified by chromatography on silica gel 

eluting with methanol/chloroform (5/95) to afford the THP-protected hydroxamate 18y as a 

colorless foam (1.1 g, 66%):  MS MH+ calcd for C30H32N3O7SF3, 636; found, 636.   

 

T a solution of the THP-protected hydroxamate 18y (1.0 g, 1.6 mmol) in methanol (11 mL) was 

added acetyl chloride (0.34 mL, 4.7 mmol) and the solution was stirred at rt for 2.5 h and then 

poured into diethyl ether.  The resulting precipitate was then isolated by filtration and dried at 

46°C in a vacuum oven to afford the N-picolyl hydroxamate 19y as a white solid (0.85 g, 87%).  

1H NMR (400 MHz, DMSO-d6) δ 11.14 - 11.33 (2H, br s), 8.88 (1H, s), 8.77 (1H, d, J=6.2 Hz), 

8.32 (1H, d, J=8.2 Hz), 7.76 (2H, d, J=8.99 Hz), 7.69-7.74 (1H, m), 7.48 (2H, d, J=8.20 Hz), 

7.33 (2H, d, J=8.99 Hz), 7.20 (2H, d, J=8.99 Hz), 4.39 (2H, br s), 3.43 (2H, d, J=12.1 Hz), 2.71-

2.91 (2H, m), 2.51-2.58 (2H, m), 2.23-2.36 (2H, m).  HRMS MH+ calcd for C25H24N3O6SF3 

552.1416, found 552.1417.  Anal. calcd for C25H24N3O6SF3.2.2HCl: C, 47.53; H, 4.18; N, 6.65; 

S, 5.08.  Found: C, 47.27; H, 4.34; N, 6.60; S, 5.29.   

 



1-(2-ethoxyethyl)-N-hydroxy-4-({4-[4-

(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19z).  To a solution 

of N-BOC piperidine 15 (1.0 g, 2.4 mmol) in dichloromethane (10 mL) was added trifluoroacetic 

acid (10 mL) and the solution was stirred at ambient temperature for 1 hour. Concentration in 

vacuo provided the amine trifluoroacetate salt 21 as a light yellow gel. To the solution of the 

amine trifluoroacetate salt in DMF (5 mL) was added K2CO3 (0.99 g, 7.2 mmol) and 2-

bromoethyl ethyl ether (0.33 mL, 2.87 mmol) and the solution was stirred at ambient temperature 

for 36 hours. Then DMF was evaporated under high vacuum and the residue was diluted with 

EtOAc. The organic layer was washed with water and dried over MgSO4. Concentration in vacuo 

provided the ethoxyl ethyl piperidine 22z as a light yellow gel (0.68 g, 65.4%).  

 

To a solution of 4-fluorophenylsulfone 22z (0.68 g, 1.56 mmol) and powdered K2CO3 (0.43 g, 

3.1 mmol) in DMF (5 mL) was added 4-(trifluoromethoxy)phenol (0.4 mL, 3.08 mmol) and the 

solution was heated to 90°C for 25 hours. The solution was concentrated under high vacuum and 

the residue was dissolved in EtOAc. The organic layer was washed with 1N NaOH, water and 

dried over MgSO4. Chromatography on silica eluting with EtOAc/hexane provided the desired 

diaryl sulfone 20z as a light yellow gel (1.0 g, quantitative).  

 

To a solution of ethyl ester 20z (1.0 g, 1.72 mmol) in ethanol (2 mL) and tetrahydrofuran (2 mL) 

was added NaOH (0.688 g, 17.2 mmol) in water (4 mL). The solution was then heated to 60°C 

for 18 hours. The solution was concentrated in vacuo and diluted with water. The aqueous layer 

was extracted with ether and acidified to pH=2. Vacuum filtration of the white precipitate 

provided the carboxylic acid 17z as a white solid (0.94 g, 100%).  



 

To a solution of carboxylic acid 17z (0.94 g, 1.86 mmol), NMM (0.61 mL, 5.55 mmol), HOBt 

(0.76 g, 5.59 mmol) and O-tetrahydropyranyl hydroxyl amine (0.33 g, 2.7 mmol) in DMF (40 

mL) was added EDC (1.06 g, 5.59 mmol) and the solution was stirred at rt for 24 h. The solution 

was concentrated under high vacuum and the residue was dissolved in EtOAc. The organic layer 

was washed with saturated aqueous NaHCO3, water and dried over MgSO4. Concentration in 

vacuo and chromatography on silica eluting with EtOAc/hexane provided the THP-protected 

hydroxamate 18z as a white foam (0.74 g, 66.1%).  

 

To a solution of 4N hydrochloric acid (3 mL, 12 mmol)) in dioxane was added a solution of 

THP-protected hydroxamate 18z (0.74 g, 1.2 mmol) in methanol (0.4 ml) and dioxane (1.2 mL) 

and was stirred at rt for 3 h. Filtration of precipitation gave the title compound as white solid 

(0.217 g, 32.9%).  1H NMR (400 MHz, DMSO-d6) δ 11.19 (1H, s), 9.33 (1H, br s), 7.77 (2H, d, 

J=8.59 Hz), 7.50 (2H, d, J=8.2 Hz), 7.33 (2H, d, J=8.99 Hz), 7.21 (2H, d, J=8.99 Hz), 3.64-3.70 

(2H, m), 3.59 (2H, d, J=12.1 Hz), 3.45 (2H, q, J=7.0 Hz), 3.19-3.28 (2H, m), 2.71-2.86 (2H, m), 

2.52-2.57 (2H, m), 2.28 (2H, t, J=13.5 Hz), 1.12 (2H, t, J=7.0 Hz).  HRMS MH+ calcd for 

C23H27N2O7SF3, 533.1459; found, 533.1566.  Anal. calcd for C23H27N2O7SF3.HCl.H2O:  C, 

47.06; H, 5.15; N, 4.77; S, 5.46.  Found: C, 46.73; H, 4.57; N, 4.82; S, 5.77.   

 

N-hydroxy-1-(2-hydroxyethyl)-4-({4-[4-

(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19aa).  To a 

solution of piperidine hydrochloride 21 (3.95 g, 11.3 mmol) in DMF (11 mL) was added K2CO3 

(3.45 g, 25 mmol) and 2-(2-bromoethoxy)tetrahydro-2H-pyran (1.85 mL, 12 mmol) and the 



mixture was stirred for 48 hours at rt. The reaction was diluted with water (100 mL) and 

extracted with EtOAc (100 mL, then 50 mL). The combined organic layers were dried over 

MgSO4, concentrated, and chromatographed to afford the desired tetrahydropyranyl ether 22aa 

as an oil (4.44 g, 88%)  

 

A solution of tetrahydropyranyl ether 22aa in DMF (5 mL) was stirred at 110°C for 20 hours in 

the presence of powdered K2CO3 (2.07 g, 15 mmol) and 4-(trifluoromethoxy)phenol (2.67 mL, 

15 mmol). The mixture was diluted with saturated NaHCO3 (50 mL) and was extracted with 

EtOAc (150, then 50 mL). The combined organic layers were dried over MgSO4, concentrated, 

and chromatographed to afford diaryl ether 20aa as an oil (5.72 g, 100%).  

 

Ethyl ester 20aa (1.28 g, 2.1 mmol) was refluxed in the presence of KOH (954 mg, 16.8 mmol), 

ethanol (9 mL), and water (3 mL). After 2 hours, the reaction was cooled to 0°C. Concentrated 

hydrochloric acid was added drop-wise to adjust the pH to 4.0. The acidified reaction was 

concentrated, azeotroped with acetonitrile, and dried in vacuo, affording carboxylic acid 16aa. 

 

Carboxylic acid 17aa was converted to the O-THP hydroxamate using O-tetrahydropyranyl 

hydroxylamine (351 mg, 3 mmol), NMM (0.5 mL), HOBt (405 mg, 3 mmol), and EDC (573 mg, 

3 mmol) in DMF(9 mL) at rt for 16h. After an aqueous workup, the THP-protected hydroxamate 

18aa (855 mg, 60%) was obtained as an oil.  

 

The tetrahydropyranyl hydroxamate 18aa (855 mg, 1.26 mmol) was dissolved in methanol (10 

mL). Acetyl chloride (0.78 mL, 11 mmol) was added over 2-3 minutes. After 4 hours both THP 



groups had been cleaved. The reaction was concentrated, azeotroped with 

chloroform/acetonitrile, and dried in vacuo affording hydroxamate 19aa as a white foam (676 

mg, 98%).  1H NMR (400 MHz, DMSO-d6) δ 11.19 (1H, br s), 9.33 (1H, br s), 7.77 (2H, d, 

J=8.99 Hz), 7.50 (2H, d, J=8.2 Hz), 7.33 (2H, d, J=8.99 Hz), 7.21 (2H, d, J=8.99 Hz), 5.29 (1H, 

br s), 3.69 (2H, br s), 3.60 (2H, d, J=13.3 Hz), 3.13 (2H, br s), 2.78 (2H, d, J=11.7 Hz), 2.48-2.58 

(2H, m), 2.21-2.39 (2H, m).  HRMS MH+ calcd for C21H23F3N2O7S, 505.1256; found, 505.1250.   

 

1-acetyl-N-hydroxy-4-({4-[4-(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-

carboxamide (19bb).  To a solution of 4-fluorophenylsulfone 15 (33.2 g, 80.0 mmol) in DMF 

(150 mL) was added Cs2CO3 (65.2 g, 200 mmol) and 4-(trifluoromethoxy)phenol (21.4 g, 120 

mmol). The solution was mechanically stirred at 60°C for 24 hours. The solution was then 

diluted with water (1 L) and extracted with EtOAc. The organic layer was washed with water, 

brine and dried over MgSO4, then filtered and concentrated in vacuo. Chromatography on silica 

gel eluting with 20% EtOAc/hexane provided the desired diaryl ether 16bb as a white solid (45.0 

g, 100%).  

 

To a solution of ethyl ester 16bb (24.0 g, 42.8 mmol) in ethanol (80 mL) and THF (80 mL) was 

added a solution of NaOH (14.8 g, 370 mmol) in water (100 mL) and the solution was heated at 

60°C for 18 hours. The solution was concentrated in vacuo and the aqueous residue was acidified 

to pH=5.0 and extracted with EtOAc. The organic extract was washed with brine and dried over 

MgSO4, then filtered and concentrated in vacuo to give the desired carboxylic acid 17bb as a 

white foam (23.0 g, 100%).   

 



Through a solution of carboxylic acid 17bb (22.8 g, 43.0 mmol) in EtOAc (400 mL) cooled to 

0°C was bubbled gaseous HCl for 20 minutes. The reaction was stirred at this temperature for 

2.5 hours. The solution was then concentrated in vacuo to afford the piperidine hydrochloride 

salt as a white foam (21.0 g, 100%).  

 

To a solution of hydrochloride salt (17, R = H) (17.0 g, 35.0 mmol) in acetone (125 mL) and 

water (125 mL) was added triethyl amine (24 mL, 175 mmol). The reaction was cooled to 0°C 

and acetyl chloride (3.73 mL, 53.0 mmol) was added. The solution was then stirred at ambient 

temperature for 18 hours. Concentration in vacuo gave a residue which was acidified with 

aqueous hydrochloric acid to pH 1.0 and then extracted with EtOAc. The organic layer was 

washed with water, saturated aqueous sodium chloride and dried over MgSO4, then filtered and 

concentrated in vacuo to give the desired acetamide 17bb as a white solid (17.0 g, quantitative 

yield).  

 

To a solution of the acetamide 17bb (14.4 g, 29.6 mmol) in DMF (250 mL) was added HOBt 

(4.8 g, 35.5 mmol), NMM (12.3 mL, 88.8 mmol) and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine (5.2 g, 44.4 mmol) followed by EDC (7.99 g, 41.4 mmol). The solution was 

stirred at ambient temperature for 18 hours. The solution was diluted with water (500 mL) and 

extracted with EtOAc. The organic layer was washed with saturated aqueous sodium chloride 

and dried over MgSO4, then filtered and concentrated in vacuo. Chromatography on a C-18 

reverse-phase column eluting with acetonitrile/water provided the desired THP-protected 

hydroxamate 18bb as a white solid (12.0 g, 71%). 

 



To a solution of THP-protected hydroxamate 18bb (12.0 g, 20.5 mmol) in 1,4-dioxane (250 mL) 

and methanol (50 mL) was added 4 N HCl/dioxane (51 mL). After stirring at rt for 3.5 hours the 

solution was concentrated in vacuo. Trituration with diethyl ether and filtration provided 

piperidine acetamide hydroxamate 19bb as a white solid (8.84 g, 85%). HRMS MH+ calcd for 

C21H21N2SO7F3, 502.1021; found, 502.0979.  Anal. calcd for C21H21N2SO7F3:  C, 50.20; H, 4.21; 

N, 5.58; S, 6.38.  Found: C, 49.93; H, 4.14; N, 5.60; S, 6.56. 

 

N-hydroxy-1-prop-2-yn-1-yl-4-({4-[4-

(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-carboxamide (19cc).  N-Propargyl 

piperidine hydroxamate 19cc was prepared according to the procedure outlined for 19v.  1H 

NMR (400 MHz, DMSO-d6) δ 11.17 (1H, br s), 9.37 (1H, br s), 7.77 (2H, d, J=8.99 Hz), 7.50 

(2H, d, J=8.2 Hz), 7.33 (2H, d, J=8.99 Hz), 7.20 (2H, d, J=8.99 Hz), 4.08 (2H, br s), 3.82 (1H, br 

s), 3.48-3.70 (2H, m), 2.79-2.80 (2H, m), 2.52-2.63 (2H, m), 2.14-2.32 (2H, m).  HRMS MH+ 

calcd for C22H21F3N2O6S, 499.1151; found, 499.1145. 

 

N-hydroxy-1-methyl-4-({4-[4-(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-

carboxamide (19dd).  N-Methyl piperidine hydroxamate 19dd was prepared according to the 

procedure outlined for 19v.  1H NMR (400 MHz, DMSO-d6) δ 11.18 (1H, s), 9.33 (1H, s), 7.77 

(2H, d, J=8.99 Hz), 7.50 (2H, d, J=8.6 Hz), 7.33 (2H, d, J=9.4 Hz), 7.20 (2H, d, J=8.99 Hz), 3.48 

(2H, d, J=13.7 Hz), 2.72-2.83 (2H, m), 2.70 (3H, br s), 2.51-2.58 (2H, m), 2.17-2.29 (2H, m).  

HRMS MH+ calcd for C20H21F3N2O6S, 475.1151; found, 475.1142.   

 



N-hydroxy-1-isopropyl-4-({4-[4-(trifluoromethoxy)phenoxy]phenyl}sulfonyl)piperidine-4-

carboxamide (19ee).  N-Isopropyl piperidine hydroxamate 19ee was prepared according to the 

procedure outlined for 19v.  HRMS MH+ calcd for C22H25F3N2O6S 503.1464, found 503.1461.  

1H NMR (400 MHz, DMSO-d6) δ 9.31 (1H, s) 11.22 (1H, s), 7.77 (2H, d, J=8.99 Hz), 7.49 (2H, 

d, J=8.2 Hz), 7.34 (2H, d, J=8.99 Hz), 7.22 (2H, d, J=8.99 Hz), 3.65-3.75 (1H, m), 3.54 (2H, d, 

J=10.9 Hz), 3.37-3.46 (2H, m), 2.52-2.66 (2H, m), 2.20-2.35 (2H, m), 1.21 (3H, s), 1.20 (3H, s). 

 

Crystallography 

 

Crystals of the MMP13:tetrahydro-N-hydroxy-4-[[4-(phenylmethyl)-1-piperazinyl]sulfonyl]-2H-

pyran-4-carboxamide, hydrochloride66 complex were grown at 4°C by sitting drop vapor 

diffusion using 5 mg/mL protein and a reservoir solution of 1.4M lithium sulfate, 0.1M Hepes, 

pH 7.7.  The crystallization drop consisted of 5µL protein plus 1µL reservoir solution.  Rod-like 

crystals appeared within four to six weeks.  Crystals were pre-equilibrated in a soaking solution 

containing 1.5M lithium sulfate, 0.1M Hepes, pH 7.7 without inhibitor at room temperature for 

more than two hours.  These crystals were then transferred to a second solution containing 1.5M 

lithium sulfate, 0.1M Hepes, pH 7.7 and 2.5mM of replacement inhibitor (19v) and were left to 

incubate at room temperature for five to seven days.  The cryo solution consisted of 20% 

sucrose, 1.5M lithium sulfate, and 0.1M Hepes, pH 7.7.  Data were collected using a Rigaku 

Micromax 007 X-ray generator on a Mar Research MarCCD 165 detector.  The diffraction data 

were integrated and scaled with HKL-200067, and the structures were determined by molecular 

replacement using a prior internal structure of MMP-13 as the initial model.  The model 



adjustment occurred as in Kjeldgaard68 and Coot69, and the structures were refined (Table 4) 

initially with X-PLOR70 and were further optimized in Refmac71. 

 

 

 

Table 4. Crystallographic data and refinement statistics 

PDB accession code 3KRY 

Data collection statistics  

  Radiation source Rotating anode 

  Radiation detector MAR CCD 165 

  Space group P1 

  Resolution (Å) 20.0-1.9 (1.97-1.90) 

  Observed reflections 84,869 

  Unique reflections 48,703 

  Completeness (%) 95.3, 91.6 

  Mean I/σI 6.9, 1.4 

  Rsym%b 7.7, 28.0 

  

Refinement statistics  

  Resolution (Å) 20-1.9 

  No. protein + ligand atoms 5,358 



  No. solvent atoms 528 

  R (%), Rfree (%) 20.6, 25.6 

Wilson B (Å2), Refined <B> (Å2) 14.2, 18.4 

      Rmsd ideal bond lengths (Å) 0.008 

      Bond angles (°) 1.10 

Ramachandran plot statistics  

      Most favored regions (#,%) 484, 88.8 

      Disallowed regions (#,%) 3, 0.6 

 a Highest resolution bin. b Rsym = Σ(|Ii-<I>|)/ΣIi.  All reflections with I/σI < -1.0 eliminated from scaling.  

 

Enzyme Assays.  Inhibitors were assayed against purified hMMP-1 hMMP-2, hMMP-8, hMMP-

9, and hMMP-13 and MMP-14 using an enzyme assay based on cleavage of the fluorogenic 

peptide MCA-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2. Human MMP-3 activity was measured using 

a fluorogenic substrate containing glutamic acid and (S)-2-aminopentanoic acid as reported by 

Nagase.72  Assay conditions were similar to those described in G. Knight et al.73  All basic 

compounds were tested as their hydrochloride salts unless otherwise indicated. 

 

MMP-1 was obtained from MMP-1 expressing transfected HT-1080 cells provided by Dr. 

Harold Welgus of Washington University in St. Louis, Mo. The MMP-1 was activated using 4-

aminophenylmercuric acetate (APMA), and then purified over a hydroxamic acid column. 

MMP-2 was obtained from MMP-2 expressing transfected cells provided by Dr. Gregory 

Goldberg of Washington University. MMP-9 was obtained from MMP-9 expressing transfected 

cells provided by Dr. Gregory Goldberg. The MMP-13 was obtained as a proenzyme from a full-



length cDNA clone using baculovirus, as described by V. A. Luckow.74  The expressed 

proenzyme was first purified over a heparin agarose column, and then over a chelating zinc 

chloride column. The proenzyme was then activated by APMA for use in the assay. Further 

details on baculovirus expression systems have been described by Luckow.75 

 

The enzyme substrate was a methoxycoumarin-containing polypeptide having the following 

sequence:  MCA-ProLeuGlyLeuDpaAlaArgNH2 where, “MCA” is methoxycoumarin and “Dpa” 

is 3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl alanine as purchased from Baychem (Redwood 

City, Calif.) as product M-1895. Compounds were dissolved at various concentrations using 1% 

dimethyl sulfoxide (DMSO) in a buffer containing 100 mM Tris-HCl, 100 mM NaCl, 10 mM 

CaCl2 , and 0.05% polyethylene glycol lauryl ether at a pH of 7.5. These solutions were then 

compared to a control (which contained equal amount of DMSO/buffer solution, but no 

hydroxamate compound) using Microfluor™ White Plates (Dynatech, Chantilly, Va.). 

Specifically, The MMPs were activated with APMA or trypsin. Then the various 

hydroxamate/DMSO/buffer solutions were incubated in separate plates at room temperature with 

the activated MMP and 4 um of the MMP substrate. The control likewise was incubated at room 

temperature in separate plates with the MMP and 4 uM of the MMP substrate. In the absence of 

inhibitor activity, a fluorogenic peptide was cleaved at the gly-leu peptide bond of the substrate, 

separating the highly fluorogenic peptide from a 2,4-dinitrophenyl quencher, resulting in an 

increase of fluorescent intensity (excitation at 328 nm/emission at 415). Inhibition was measured 

as a reduction in fluorescent intensity as a function of inhibitor concentration using a Perkin 

Elmer (Norwalk, Conn.) L550 plate reader. The IC50's were the calculated from these 

measurements. 



 

Pharmacokinetic (pk) evaluation of MMP Inhibitors in Rats  

Under metofane anesthesia, the femoral artery (all 8 rats) and femoral vein (only 4 of 8 rats) are 

isolated and canulated with PESO tubing and secured with 3.0 silk suture. The following 

determinations require two catheters, with the venous line being used for infusion of compound 

(in the group of rats that receives compound via the intravenous (IV) route.), and the arterial line 

being used for collection of blood samples. The rats are then placed in restraining cages that 

permit minimal movement and allowed to recover from anesthesia for approximately 30 minutes. 

At time 0 (prior to dosing), blood samples (400 µL) are collected from arterial cannula.  

One group of rats (4 rats per group) receives compound via the oral route at a dosing volume of 2 

mL/kg (10 mg/mL, dissolved in 0.5% methylcellulose, 0.1% Tween® 20), while the other group 

of rats receives compound via the intravenous cannula, at a dosing volume of 2 ml/kg (10 

mg/mL, dissolved in 10% EtOH, 50% PEG 400, 40% saline). The blood samples are collected 

from the arterial cannula at 15, 30, 60, 120, 240, and 360 minutes from the oral group with an 

additional 3 minute sample being collected from IV group. After each sample, the cannulas are 

flushed with PBS containing 10 units/mL heparin. The animals are subjected to euthanasia with 

an excess of anesthesia or carbon monoxide asphyxiation when the study is terminated at 6 hours. 

Blood samples from each time point are assayed for MMP-13 enzyme inhibitory activity and the 

circulating concentration of compound plus active metabolites is estimated based on the standard 

curve. Pharmacokinetic (pk) parameters are calculated by the VAX computer program CSTRIP.  

 

MX1 Tumor Model Method 



Mice were implanted subcutaneously with 1 mm3 MX-1 human breast carcinoma fragments in 

the flank.  Tumors were monitored reached the desired size, approximately 100 mg and then 

pair-matched and assigned to treatment groups. The chemotherapy drug Cyclophosphamide 

(CY) was obtained as the formulated pharmaceutical drug (Neosar®; Pharmacia).  Compound 

19w was formulated in MC/TW 80 vehicle (0.5% methyl cellulose: 0.1% polysorbate 80).     

  

CY was administered to mice i.p. on the day of pair-match (Day 1) on a qd x 1 schedule at a dose 

of 120 mg/kg.  Tumors were monitored until they reached an approximate nadir in size at which 

time they were administered oral treatment b.i.d. to end with vehicle or compound 19w  at doses 

of 50, 25, 12.5  and 6 mg/kg (b.i.d. to end). The test was terminated on Day 90.  

 

The tumor growth delay (TGD) method was used in this study; treatment-effected mean 

increases in survival of various groups were compared to each other and to the mean survival 

time of breast tumor-bearing mice receiving only vehicle.  In the TGD method, each animal was 

euthanized as a cancer death when its MX-1 carcinoma reached a size of 1.5 g.   

 

PC3 Tumor Model Method 

PC3 tumor cells were grown in F12/MEM (Gibco) and 7 % FBS(Gibco).  The cells were  

mechanically harvested, washed twice with cold media and resuspended in cold media with 30 % 

matrigel (Collaborative Research) and stored on ice.  Balb/c nu/ nu at 7- 9 weeks of age were 

injected with 3 -5 x 106 cells in the flank of the mouse.  Cells were injected in the morning and 

dosing started that same evening. The animals were gavaged b.i.d. from evening of day 0 to day 

25-30, when the animal were euthanized and tumors weighed.  Vehicle and compound 19w 



formulated in vehicle (MC/TW 80 vehicle; 0.5% methyl cellulose: 0.1% polysorbate 80). Tumor 

measurements begin on day 7 and continue every 3rd to 4th day until the mice were sacrificed.  

 

In some experiments, mice were treated as described above with 19w and treated with a single 

dose of cisplatin (10 mg/kg i.p. diluted in PBS) on day 8 post cell injection.  

 

Bovine Nasal Cartilage Degradation Assay 

 

Based on the method described by Bottomley, et al,58 fresh bovine nasal cartilage disks (1 mm 

thick x 8 mm in diameter) were sterilely prepared and incubated for 72 hours in DMEM 

containing 5% heat-inactivated FBS containing penicillin (100 IU/mL), streptomycin (100 

ug/mL) and amphotericin B (0.25 ug/mL).  Disks were weighed to insure uniformity, divided 

into eighths, plated one piece per well in a 96-well plate, and incubated overnight in the DMEM 

plus penicillin/streptomycin/amphotericin B media.  Degradation of cartilage explants was 

induced by replacing media with fresh media containing cytokine stimulation (DMEM plus 

recombinant human IL-1 (10 ng/mL) and oncostatin M (50 ng/mL) ) and various concentrations 

of test compound.  Cultures were incubated at 37°C/5% CO2 for up to 16 days, collecting 

supernatants every 3-4 days and replacing with media containing fresh cytokines and test 

compound.  Minimally, triplicate incubations were conducted for each condition.  Inhibition of 

cartilage degradation was measured by quantification of hydroxyproline in the supernatants 

collected from explant cultures after hydrolysis with 6N HCl at 110°C for 24 hours.  The 

presence and amount of hydroxyproline in hydrolysates was measured by mass spectrometry.  

Cartilage degradation was calculated as a percentage of the hydroxproline released into the 



supernatant collected over the 16 days in the presence of test compound relative to cultures 

without added inhibitor.       
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Table 1. IC50 values (nM) versus MMPs for α-tetrahydropyranyl sulfones 

 
Cmpd R2 

MMP- 
1 

MMP-
2 

MMP-
3 

MMP-
7 

MMP-
8 

MMP-
9 

MMP-
13 

MMP-
14 

clogPa Cmax 

(ng/mL) 
C6h 

(ng/mL) 
t1/2  

(h) 
BA 

(%) 

9a 

 

268 0.1 7.0 - 0.4 0.4 0.1 - 0.80 872 50 1.74 5.8 

9b 

 

1800 0.3 18.1 - 1.8 2.9 0.45 4.5 1.51 - - - - 

9c
b
 

Cl

 

435 <0.1 18.1 - 1.2 0.3 0.15 5.6 1.51 3119 506 1.5 45.8 

9d 

Cl

Cl  

3600 0.35 35 - 4.0 5.0 0.8 47 2.10 - - - - 

9e 

OH

 

400 0.2 - - - <0.1 0.3 1.71 0.13 - - - - 

9f 

 

300 <0.1 - - - <0.1 0.1 10.5 1.56     

9g 

 

1400 0.1 50 - 2.4 1.7 0.25 20 2.69 - - - - 

9h 

CF3  

>10K 
0.8, 
6.0 

55.3 - 30 42.5 0.8 
1.3K, 

24 
1.68 1143 257 1.12 18.3 

9i 

 

8000 0.1 22 >10K 9,4 1.2 0.4 64 1.68 
4304; 

98,500 
1154, 
8133 

nd, 
3.68 

33.0, 
62.1 



9j 

 

1140 <0.1 35 - 0.9 0.2 <0.1 10.6 1.83 8584 1172 1.87 35.9 

9k 

 

2500 <0.1 - - - <0.1 <0.1 3.63 1.36 - - - - 

9l 

 

5000 0.4 20 - 0.4 0.25 0.25 200 2.47 7272 3113 1.71 49.0 

9m 

 

5000 0.6 - - - - 1.0 - -0.47 1610 3 0.25 42.3 

 

acalculated by ACD Labs. 

bSome data for 9c previously reported42
 

 
 



Table 2. IC50 values (nM) and Oral Rat PK Data of α-Piperidine Sulfones (20 mpk suspension) 

   
Cmpd R1 R2 

MMP-
1 

MMP-
2 

MMP-
3 

MMP-
7 

MMP-
8 

MMP-
9 

MMP-
13 

MT1-
MMP 

clogPc Cmax 

(ng/mL) 
C6h 

(ng/mL) 
t1/2  

(h) 
BA 

(%) 

6
a
 propargyl - 8660 0.33 13.0 >10K 1.8 1.5 0.40 19.1 2.04 13630 281 1.1 28 

19a propargyl 

OCH3

 
3600 0.4 0.2 - 10 1.1 0.4 - 1.57 27158 192 1.01 36.9 

19b 2-pyridylmethyl 

OCH3

 
4500 0.2 20.6 - 1.9 0.1 0.3 3.1 1.44 8551 160 - - 

19c 

  
1000 0.1 - - - 0.2 0.25 6.8 2.00 - - - - 

19d
b
 propargyl 

 

>10K 0.1 32.6 - 1.6 2.0 0.25 
90, 

17.9 
3.08 5312 21 0.73 23.8 

19e methoxyethyl 

 

10K 0.1 - - - - 0.2 - 2.83 - - - - 

19f 

 

 

>10K 1.0 22.5 - 1.8 2.2 2.7 159 3.49 - - - - 

19g methoxyethyl 

 
2000 0.3 - - - - 0.5 25.8 2.16 - - - - 

19h 

  
770 0.1 - - - 0.21 0.1 13.3 2.31 - - - - 



19i propargyl 

 
>10K 3.3 - - - 82.3 2.9 3486 0.01 - - - - 

19j H 

 
4400 0.4 35 - 2.4 3.8 1.9 

21.1, 
145 

0.74 1548 128 - - 

19k propargyl 

 

2000 0.2 18.1 - 1.3 0.3 0.6 
4.2, 
25.6 

1.62 18,474 134 0.843 30.1 

19l methoxyethyl 

 
2400 0.25 20 - 1.2 0.27 0.2 4.0 1.37 - - - - 

19m 

  
1000 0.5 - - - <0.1 0.3 0.73 1.51 13079 206 - - 

19n 

  

6000 0.2 21.5 - 1.5 1.9 0.5 49.4 1.47 9460 15 3.30 16.6 

19o
c
 

  
>10K 0.1 76.8 >10K 1.3 2.3 0.2 500 2.43 8316 631 1.48 36.3 

19p H 

 
>10K 1.7 64.7 - 2.0 4.0 1.2 160 1.66 540 150 1.88 12.4 

19q N-morpholinyl-ethyl 

 
>10K 0.3 - - - 0.1 0.35 7.4 1.41 147 73 0.94 2.6 

19r 

  
>10K 0.3 40 - 1.4 1.9 5.5 58.6 2.95 5118 429 2.08 48.3 

19s ethyl 
 

>10K 0.2 36.9 - 1.4 1.5 0.6 100.5 2.64 - - - - 

19t methoxyethyl 

 
>10K 0.2 23.9 9000 1.9 0.25 0.2 108 3.08 32938 14078 2.99 34.1 



19u H 

 
10K <0.1 21.5 - 0.7 0.22 0.1 53.3 1.81 630 223 1.78 6.7 

19v methoxyethyl 

 
>10K <0.1 28.7 7000 1.7 0.18 <0.1 13 2.44 29634 20521 2.94 67.9 

19w 

  
4000 <0.1 22 7000 1.2 0.15 0.1 4.6 2.58 4160 440 2.85 23.0 

19x 2-pyridylmethyl 

 
6000 0.2 115 >10K 0.6 0.2 <0.1 4.1 2.54 36810 1850 1.25 46.8 

19y 3-pyridylmethyl 

 
4600 <0.1 42.5 >10K 1.5 0.6 0.2 3.7 2.54 52640 1900 1.05 49.8 

19z ethoxyethyl 

 
5900 <0.1 - - - 0.1 <0.1 9.5 2.82 3130 3040 1.66 14.7 

19aa hydroxyethyl 

 
4500 <0.1 - - - - <0.1 - 1.68 1380 570 1.39 21.9 

19bb acetyl 

 
3600 0.1 18.1 - 1.6 0.1 0.2 9.0 0.85 159 72 1.06 4.0 

19cc propargyl 

 
2600 <0.1 - - - <0.1 0.2 1.33 2.68 - - - - 

19dd methyl 

 
>10K <0.1 - - - 0.18 0.6 24.9 2.25 - - - - 

19ee 

  
>10K <0.1 - - 0.4 <0.1 <0.1 7.1 3.09 - - - - 

 

aData for 6 taken from Becker et. al.42 except for MMP-14 



bcalculated by ACD Labs. 

cSome hemolysis was observed as evidenced by blood in the urine after iv dosing. 

 

 



 
Table 3.  Pharmacokinetic Parameters of 19v After a Single Oral Administration of 20 mg/kga

 

 
 T

max
 (hr) C

max
 (µg/mL) AUC

(0-∞)
 (hr*µg/mL) BA (%) 

Mouse (M) 0.167 26.6 29.3 51.7 

Mouse (F) 0.167 41.0 36.1 80.8 

Rat (M) 2.00 42.4 273 66.6 

Rat (F) 4.00 69.8 668 82.2 

Dog (M) 0.833 ± 0.167 60.6 ± 5.9 228 ± 41 64.0 ± 6.1 

Dog (F) 0.500 ± 0.000 68.9 ± 1.2 156 ± 16 69.2 ± 2.1 

Cyno Monkey (M) 1.67 ± 0.33 37.1 ± 2.9 191 ± 35 53.8 ± 0.7 

 
ablood sampled out to 24 h. 
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