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Abstract

Single-molecule transistors (SMTs) incorporating individual small molecules are unique tools for examining the fundamental physics
and chemistry of electronic transport in molecular systems at the single nanometer scale. We describe the fabrication and characteriza-
tion of such devices, and the synthesis and surface attachment chemistry of novel transition metal complexes that have been incorporated
into such SMTs. We present gate-modulated inelastic electron tunneling vibrational spectroscopy of single molecules, strong Kondo
physics (TK � 75 K) as evidence of excellent molecule/electrode electronic coupling, and a demonstration that covalent attachment
chemistry can produce SMTs that survive repeated thermal cycling to room temperature. We conclude with a look ahead at the prospects
for these nanoscale systems.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Electron transfer through molecules has been a topic of
intense study for decades. Only in recent years, however,
techniques have been developed to experimentally access
the electronic conduction properties of individual small
molecules. Even restricting oneself to small molecules, the
variety of systems available for examination is enormous,
from saturated alkanes and conjugated oligomers to fulle-
renes and organometallic complexes. Combined with the
ability to vary attachment chemistry and derivatives within
a family of compounds, electrodes spaced at the nanometer
scale make possible systematic studies of electron transport
in the single-molecule limit.

The scanning tunneling microscope (STM) is an exam-
ple of such an enabling technology for single-molecule
studies. In such a device, molecules of interest are physi-

sorbed or chemisorbed onto a smooth conductive sub-
strate, while a metal tip is scanned over the surface, with
tip height controlled by a feedback loop that maintains a
constant tunneling current between the tip and the sub-
strate. As a result, the apparent height of molecular fea-
tures in STM is a convolution of the topography and
local electronic properties. In a highly stable STM, at a
desired location the feedback loop may be turned off,
and a current/voltage characteristic may be acquired as a
function of tip/substrate bias. Assuming that the electronic
density of states of the tip is relatively featureless, this tech-
nique, known as scanning tunneling spectroscopy (STS),
allows the measurement of the local density of states
induced by the molecule. This novel spectroscopy has been
revelatory, allowing the solid state observation of the
alignment and broadening of occupied molecular orbitals
[1], vibronic effects [2], inelastic electron tunneling via
molecular vibrations [3] and spin flips [4], and electronic
correlations such as Kondo physics [5].

While these two-terminal measurements are very power-
ful, they lack the ability to tune the energies of the mole-
cule’s electronic states independent of the applied bias.
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STM in the presence of electrolytic solutions is a recent
innovation that allows in situ tuning of molecular redox
state combined with STS. However, such electrochemical
‘‘gating’’ is restricted to operations near room temperature.
Indeed, the exponential dependence of tunneling conduc-
tance on interelectrode distance coupled with the strong
temperature response of piezoelectric actuators makes per-
forming STS at fixed junction configuration over a broad
temperature range extremely challenging.

In this paper, we report recent single-molecule electron
transport experiments in planar nanoscale junctions capac-
itively coupled to gate electrodes. These single-molecule
transistors (SMTs), developed quite recently [6], allow
studies of electronic transport in individual small molecules
from room temperature to cryogenic temperatures, with
gate modulation of the charge state of the molecule [7–
13]. Below we describe sample fabrication and character-
ization, with an emphasis on the importance of a statistical
approach with large numbers of candidate devices and con-
trol experiments. We discuss the synthesis methods used to
produce the novel transition metal coordination complexes
that we study, and the thiocyanate-based self-assembly
mechanism used to attach the conjugated ligands to our
metal source and drain electrodes. After summarizing the
conductance mechanisms at work in such devices, we pres-
ent data showing inelastic electron tunneling in single mol-
ecules via vibrational states; strong Kondo effects in single
molecules that confirm the extremely efficient molecule/
metal electronic coupling possible with appropriate ligands
and attachment chemistry; and finally evidence that such
SMTs can survive multiple thermal cycling between cryo-
genic conditions and room temperature. We conclude with
a discussion of open scientific issues and future directions
for this exciting, nascent field of research.

2. Fabrication and characterization

We use an electromigration procedure [14] to fabricate
single-molecule transistors. Thin (1 nm Ti/15 nm Au) metal
constrictions are defined by electron beam lithography and
e-beam evaporation. The choice of electrode materials is
one of convenience: gold surface chemistry is well known
and gold is robust against the formation of a stable oxide;
the titanium serves as an adhesion layer. For our experi-
ments, the substrate is a degenerately doped p+ silicon
wafer coated with 200 nm of thermally grown SiO2. The
substrate itself is used as a gate. Following evaporation
and liftoff, the chip is cleaned in an oxygen plasma for
1 min, and molecules of interest are deposited. The mole-
cules used in this work deposit by self-assembly during
48 h of immersion in a 2 mM solution in tetrahydrofuran
(THF) in the dark.

When assembly is complete, the substrate, typically pat-
terned with at least 45 constrictions, is placed into a vari-
able temperature vacuum probe station and pumped to
high vacuum conditions. Electromigration is performed
at room temperature to ‘‘pre-break’’ constrictions to a

resistance of a few hundred Ohms. The sample is then
cooled to cryogenic temperatures (�5 K) and further elec-
tromigration is performed to break the sample to a resis-
tance greater than 20 kX. The hope is that some fraction
of the resulting interelectrode gaps will be bridged by single
molecules, and that those molecules will have significant
capacitive coupling to the underlying gate to permit tran-
sistor action. This final procedure is performed in the cryo-
pumped ultrahigh vacuum environment to minimize the
risk of surface contamination by unintended adsorbates
(see Fig. 1).

As has been discussed elsewhere [11], this fabrication
procedure is inherently statistical. Not every interelectrode
gap will contain a molecule. The precise morphology of
each interelectrode gap and electrode surface is unique
and unknown. The details of metal/molecule bonding (ori-
entation, binding sites) are unknown. In this respect, SMTs
are far inferior to STM approaches that allow significant
surface characterization. Given the exponential depen-
dence of tunneling conductance with distance, one might
well imagine that every device would have properties com-
pletely different from every other device, and that no gen-
eral conclusions could be drawn. Coupled with the lack
of microscopy tools that can directly examine the interelec-
trode gap region, the situation may appear bleak.

Fortunately, however, an appropriate statistical
approach with systematic control experiments enables real
progress to be made in spite of these complications. In fact,
the exponential sensitivity of tunneling to geometry works
in favor of the experimentalist, for precisely the same rea-
son that STM tips do not have to be prepared with atomic
precision. The interelectrode conductance is dominated by
the subnanometer-scale region of closest interelectrode sep-
aration. The result is that the gap location through which
most of the current flows is most likely to contain zero or
one molecule, rather than dozens.

Device characterization is performed by measuring the
drain current (ID) as a function of source/drain voltage
(VSD) and gate voltage (VG) at low temperatures. More
than 80% of the initial constrictions are typically found
to still exhibit some measurable interelectrode conduction
at low temperatures following the completion of the

Fig. 1. Metal nanoconstriction before (left) and after (right) electromi-
gration procedure used to break it into distinct source and drain electrodes
separated at the nanometer scale.
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electromigration process. Upon subsequent scanning elec-
tron microscope (SEM) imaging, the nonmeasurable elec-
trode pairs are typically observed to have interelectrode
separations 5 nm in size or greater. For the measurable
electrode sets, the results have been found to fit into three
broad categories. Weakly nonlinear ID–VD curves with no
gate dependence account for half of the remaining devices,
and are assumed to be vacuum gaps. Roughly 25% of the
original electrodes exhibit significantly nonlinear ID–VD

curves with no gate dependence. Without any gate modula-
tion, it is generally not possible to tell whether such data
are due to molecules, adsorbed contaminants, or metal
nanoparticles produced during the electromigration pro-
cess. We do not study this class of devices. The remaining
15% of the starting devices exhibit significant ID–VD non-
linearities with good gate modulation. These are the
devices of interest. Remarkably, these rough proportions
of ID–VD properties are robust across many different mol-
ecules, and even across research groups.

In control experiments with no molecules, approxi-
mately 1–2% of the total devices are found to exhibit gate
response. On the basis of their conductance properties (see
below), these are judged to be unintentionally produced
metal nanoparticles. Such particles can be produced delib-
erately for study, if desired, and have been reported by oth-
ers in similar electromigrated systems [15].

Generally the best control experiment to run is a com-
parison of significant numbers of devices fabricated with
the molecule of interest, and similar quantities of devices
made incorporating either control molecules (e.g., alkane
chains) or just the solvent in question. Discriminating
between metal nanoparticles and actual molecules is dis-
cussed in more detail below.

When considering potential improvements on this
experimental approach, a desirable variation becomes
clear. It would be best to take a constriction-bearing sub-
strate, clean it in UHV using standard surface science tech-
niques, perform the electromigration process in UHV, and
sublime a dilute coverage of molecules onto preexisting,
characterized interelectrode gaps. Resulting devices could
then be measured in situ. Something similar to this, though
with a different junction fabrication method, has been

attempted elsewhere [9]. The main reasons that such an
approach has not been implemented are high cost, because
of the complexity of the resulting UHV chamber/measure-
ment system, and the challenge of volatilizing candidate
molecules.

3. Properties and attachment of the transition metal complex

The transition metal complex consists of a cobalt atom
in a 2+ oxidation state surrounded by two anionic ligands
for an overall neutral molecule with no counter ions. The
oxidation of the metal center from the 2+ state to the 3+
state is the only transition observed when scanned from
�1 to 0.5 V (vs. Ag|AgNO3). The respective reduction
and oxidation occur at �0.012 and 0.144 V at a 20 mV/s
scan rate. Reduction of the ligand is possible at sufficiently
negative potentials (��2 V) with the SCN moiety being the
most probable location. The ligand provides a compressed
octahedral environment (Fig. 2a) and a high spin (3/2) sys-
tem as confirmed by SQUID and EPR spectroscopy. Orbi-
tal energy levels are consistent with that of compressed
octahedral geometry (E dxy < dyz; dxz < dx2�y2 < dz2 ). Hence
the unpaired electrons are expected to occupy the dz2 ,
dx2�y2 , and dxz or dyz with the degeneracy of the latter
two being lifted by Jahn–Teller distortion.

This molecular system is designed for simplistic assem-
bly and takes advantage of the relatively new process of
thiocyanate assembly. Thiocyanates are converted by the
surface via cleavage of the S–CN bond to the same thio-
late species found in the ubiquitous thiol or disulfide
assemblies. The resultant adsorbed CN leaves the surfaces
as [Au(CN)2]�. Hence exposure of the metal complex to a
gold surface will give the same bonding motif as if start-
ing with the free thiol (Fig. 2b). Aromatic free thiols are
troublesome, easily giving disulfide polymers when dealing
with a,x-dithiols, a problem adverted by use of the
thiocyanate.

Assembly on gold gives a thickness consistent with what
is expected for a loosely packed layer of bulky molecules.
Other surface characterizations (XPS, surface IR) show
species pre- and post-assembly that are virtually identical
except for the two thiocyanates that have been converted

Fig. 2. Visualization of the cobalt complex and its assembly. (a) ORTEP of the cobalt complex from X-ray crystallography. (b) The assembly sequence on
gold and final assembled structure.
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to thiolates during assembly. This confirms that minimal
change occurs in the molecule during assembly.

4. Conduction processes and single-electron transistors

For reasons that are not entirely clear, the SMTs that
have so far been examined are observed to function as sin-
gle-electron transistors (SETs) [16]. A generic SET is shown
in Fig. 3a, and consists of an ‘‘island’’ in tunneling contact
with source and drain electrodes, and capacitively coupled
to a gate. Such systems have been studied extensively using
patterned metal islands [16], gate-defined ‘‘quantum dots’’
in semiconductor heterostructures, and nanoparticle
islands [17].

These devices are commonly called ‘‘single-electron’’
transistors because the conductance through such a device
can be modulated dramatically by changing the average
charge on the island by a single electron. Fig. 3c maps
the differential conductance, oID/oVSD, of a generic SET
as a function of source–drain bias, VSD, and gate voltage,
VG. Fig. 3b shows the energetics of such a system, and
Fig. 3d enumerates possible electronic transport
mechanisms.

As is shown in Fig. 3b, the spectrum of allowed single-
particle states of the island is discrete, while the source
and drain electrodes can generally be treated as having a
continuum of states filled up to some Fermi energy (chem-
ical potential). There is a highest occupied island state (in a
molecule, this would be the highest occupied molecular
orbital, HOMO), and a lowest unoccupied state (in a mol-
ecule, the lowest unoccupied molecular orbital, LUMO).
The energetic separation between island single-particle
states consists of two components. The first is the single-

particle level spacing, D, analogous to the splitting between
states in a ‘‘particle-in-a-box’’ picture. In the absence of
electron–electron interactions, this is the minimum energy
required to form an electron–hole excitation on the island.
The second contribution is the Coulomb charging energy,
Ec. This charging energy is a zeroth order means of dealing
with electron–electron interactions. In the absence of more
subtle issues (e.g., spin and exchange), the total energy
required to add an additional electron to the island is
D + Ec. The charging energy is usually written in terms of
a classical capacitance, though the physical interpretation
of this in molecular structures is subtle.

The capacitive coupling to the gate allows the discrete
spectrum of the island to be shifted energetically relative
to the chemical potential of the source and drain. The
result is that the gate can modulate the equilibrium charge
state of the island. In molecular parlance, the gate allows
tuning through redox transitions of the island.

It is important to note that VG does not correspond
directly with the oxidation/reduction potentials encoun-
tered in electrochemical experiments. Rather, there is a
sample geometry dependent constant of proportionality
that converts VG into actual shifts in island energy. This
constant may be inferred from the slopes of the diagonal
lines in Fig. 3c. If every device were precisely identical (that
is, the same molecular orientation bonded the same way
onto the same crystallographic surfaces of the metal elec-
trodes, with identical charge environments and surface
states around the metal), then the locations of conductance
features as a function of VG would reproduce perfectly
from device to device, and would correlate with electro-
chemical measurements. However, since molecule–metal
charge transfer (which defines the relative energies of the
HOMO/LUMO and the metal chemical potentials) and
the local charge environment (via trap states in the oxide,
for example) can vary strongly from device to device, sig-
nificant variation is seen in the VG location of conductance
features. We note that such ‘‘offset charge’’ variations are
routinely seen in metal and semiconductor single-electron
devices.

For low biases (1, 1 0) the average number of electrons on
the island is fixed; the chemical potential of the source and
drain lies within a gap in the island spectrum, and transport
is suppressed at T = 0. Historically this suppression is
called Coulomb blockade because in SETs with larger
islands, Ec� D. The requirement for observing robust
Coulomb blockade is D + Ec� kBT. In the blockaded con-
figuration, transport can only occur by higher order tunnel-
ling through virtual states. An example of this is
‘‘superexchange’’ [18], and in SETs such processes are
called ‘‘elastic cotunnelling’’ [19]. At higher biases in the
blockaded regime, ‘‘inelastic cotunnelling’’ via an excited

virtual state [2] is possible. For an excitation of energy
E*, the opening of the inelastic channel results in a feature
in o2ID=oV 2

SD at e|VSD| = E*. Inelastic cotunnelling via elec-

tronically excited states has been seen in semiconductor [20]
and carbon nanotube SETs [21]. Inelastic cotunnelling via
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Fig. 3. Conduction in single-electron transistors. (a) Cartoon of generic
SET. (b) Energy level diagram of generic SET neglecting spin, showing
highest occupied (HO) and lowest unoccupied (LU) single-particle states
of the island. (c) Differential conductance (white = high oID/oVSD,
black = low oID/oVSD) map of a generic SET as a function of source/
drain and gate voltages, showing a single charge transition point. To the
left of the transition, the island has on average n electrons, while to the
right of the transition the average island electron number is n + 1. (d)
Specific conduction processes corresponding to the numbered locations
in (c).
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vibrationally excited molecules is responsible for conven-
tional IETS [22], but has never been studied in three-termi-
nal devices until now. IETS lineshapes are predicted to
vary significantly depending on the energetics of the virtual
states [23], and can be peaks, dips, or intermediate struc-
tures in o

2ID=oV 2
SD. At still higher source–drain biases [3]

Coulomb blockade is lifted leading to significant resonant
conduction, while at still higher biases [4] additional reso-
nant conduction occurs when eVSD is sufficient to leave
the island in an electronically [24–26] or vibrationally
[6,7,10] excited state.

One additional conduction mechanism is the Kondo res-
onance. If there is an unpaired spin localized to the island,
virtual processes like the one shown in Fig. 3c [5] can occur.
The result is antiferromagnetic exchange between the con-
duction electrons of the leads and the spin localized to the
island. Below a characteristic temperature TK that depends
exponentially on the matrix element coupling the spin and
the conduction electrons [27,28], resonant transmission
from the source to the drain is possible. The signature of
this mechanism is the appearance of a maximum in the dif-
ferential conductance at zero bias (the thick white line at
VSD = 0) for T< � TK. The width of this resonance is
�2kBTK/e, and for an island with symmetric coupling to
source and drain, the peak conductance for T� TK satu-
rates to 2e2/h, the maximum possible conductance for a sin-
gle channel. Kondo resonant charge transfer has been
observed in semiconductor quantum dots at sub-Kelvin
temperatures [29–31], and in SMTs at higher temperatures
[7,8].

When one of the island states is shifted, via a gate poten-
tial, to be degenerate with the chemical potential of the
source and drain, blockade is lifted and source/drain cur-
rent may flow at essentially zero source/drain bias. Such
a point is called a charge transition or charge degeneracy
point, because the island is on the cusp of changing its
average charge. In single-molecule transistors, D and Ec

are typically hundreds of meV. This is in strong contrast
to metal or gated semiconductor quantum dots, where
energy scales are hundreds of times lower. As a result,
the effects described above are in principle observable at
room temperature in SMTs.

These high energy scales, together with fundamental
chemical stability considerations, lead to a further con-
trol/diagnostic, as alluded to in Section 2. Electrochemical
measurements (e.g., cyclic voltammetry) give an upper limit
on the number of redox changes that may reasonably be
expected in a SMT. The gate coupling in a SMT is
undoubtedly far less efficient at compensating molecular
charge than the screening ions in solution Angstroms away
in the electrochemical case. Therefore, if one sees a large
number of charge degeneracy points [32] (more than the
number of redox transitions that the molecule should be
able to support stably) or comparatively low charging ener-
gies in a candidate SMT, one must be concerned that the
device actually contains a metal nanoparticle. Some have
argued that charging energies may be renormalized by

strong coupling to the metallic source and drain [9]. Fur-
ther, Coulomb charging effects can be strongly reduced
in, for example, electrochemical STM experiments [33],
due to the large relative dielectric constant of the surround-
ing solution.

Failing an independent imaging technique, the best diag-
nostic of all for SMTs is to measure a property that is
intrinsic and specific to the molecule in question. Examples
of such properties include Kondo conduction for known
spin states of molecules, vibrational modes that agree with
measured infrared and Raman spectra of molecules, optical
response, etc.

5. Experimental results

Devices are measured in the dark in the variable temper-
ature vacuum probe station, with a high surface area liquid
nitrogen cold trap attached to the chamber to guarantee a
low background pressure of potential condensates. Cur-
rent–voltage characteristics are measured at dc using a
semiconductor parameter analyzer. Numerical differentia-
tion is used to compute both oID/oVSD and o

2ID=oV 2
SD,

and these results have been compared to those obtained
directly from ac lock-in amplifier techniques with good
agreement.

5.1. Inelastic electron tunneling spectroscopy

Fig. 4a shows a conductance map for a device incorpo-
rating the Co containing molecule at 5 K. As with most of
our devices, our gate coupling is sufficient to see one charge
degeneracy point at VG � +7 V; that is, we can change the
charge state of the molecule by one electron, with that
charge compensated by the gate. A pronounced Kondo res-
onance is visible at zero source/drain bias in the right-hand
charge state (tentatively Co(II)), while traces of such a res-
onance are apparent in the left-hand charge state (tenta-
tively Co(III)). We note that establishing strict
correspondence between observed conduction and transi-
tion metal valence is complicated by the fact that the con-
jugated ligands may also be capable of changing their
charge state. From the conductance map and the bound-
aries of the Coulomb blockade region, it is clear that the
electron addition energy in this molecule exceeds 200 meV.

Further, note that there is asymmetry between positive
and negative VSD. In such Coulomb blockade devices this
kind of asymmetry is common, and has its origins in the
asymmetric coupling between the island and the source
and drain electrodes. In the limit of extreme asymmetry
of coupling (e.g., in an STM experiment, where the tip-
molecule tunneling coupling is much weaker than the mol-
ecule/substrate coupling), symmetric IV curves can be
restored, since the molecule essentially remains pinned
energetically to the substrate. The lack of symmetric ID–
VSD curves about VSD = 0 in these SMTs guarantees that
vibrational features in o2ID=oV 2

SD will not have symmetric
intensities about VSD = 0 in these structures.

D. Natelson et al. / Chemical Physics 324 (2006) 267–275 271



Fig. 4b shows o2ID=oV 2
SD as a function of VSD and VG,

and two sharp features immediately stand out. One is at
positive VSD that follows the edges of the Coulomb block-
ade boundary at negative VG and then curves into positive
VG territory before being lost in the noise. The other
appears at negative VSD � �50 mV and positive VG. These
features and others like them are seen with regularity in
both the Coulomb blockaded regime, and as ‘‘satellites’’
of the Kondo resonance. In devices of apparently greater
symmetry, where the ID–VSD characteristics are more sym-
metric about VSD = 0, a feature in o

2ID=oV 2
SD at positive

bias is paired with an accompanying feature and negative
bias, as in standard inelastic electron tunneling spectros-
copy. The energies at which these features appear
(eVSD = E*) are significantly smaller than the electron
addition energies, and are therefore unlikely to be related
to electronic excitations of the molecules.

From prior experience [12] we can identify these features
as signatures of inelastic tunneling processes. When large
numbers of devices are examined (over 400 electrode sets
with molecules, total, with over 12 showing distinct inelas-
tic cotunneling features), and the inelastic energies E* are
histogrammed, good agreement is found between the loca-
tions of these inelastic peaks and features in the measured
Raman and IR adsorption spectra of the molecules [12]. It
is known theoretically that the ‘‘lineshapes’’ of these
o

2ID=oV 2
SD features are nontrivial, and can either be peaks,

dips, or Fano shapes depending on the microscopic details
of the system. Similarly, the fact that each device exhibits
only a small number of inelastic tunneling signatures is
not surprising, since the relative intensity of such vibra-
tional features can be altered dramatically by changes in
single bonds near the junction [34].

The observation of such vibrational inelastic tunneling
features is not surprising, since inelastic electron tunneling
spectroscopy (IETS) of vibrational modes has been seen in
tunnel junctions since the 1960s [35]. Indeed, IETS has
undergone a recent resurgence with elegant single-molecule
measurements made using STM [3], as well as measure-

ments made on ensembles of molecules by crossed wire
[36–38] and nanopore [39] methods.

The dependence of the vibrational energies on VG is
only observable with this SMT technique, and is the most
interesting feature of the data. In the blockaded region or
in the Kondo regime, far away from a charge degeneracy
point, these features are independent of VG, as expected
for standard inelastic cotunneling. However, near charge
degeneracy, these vibrational modes can shift significantly.
This is not necessarily surprising: a cation or anion can
have shifted vibrational spectra relative to a neutral mole-
cule, for example. Similarly, if the geometry of the molecule
changes upon reduction or oxidation, one expects to see
vibrational modes corresponding to displacements along
the direction of the distortion soften as the redox state
change is reached. Currently no theoretical treatment exists
of this effect, which corresponds to an effective electronic

control over the vibrational properties of individual

molecules.

5.2. The Kondo resonance and strong molecule–metal

coupling

As mentioned above, the Kondo resonance appears in
systems with unpaired spins at temperatures below a char-
acteristic Kondo temperature that is exponentially sensitive
to the spin-leads coupling. Fig. 5 shows the conductance
map of another Co-complex device with a prominent
Kondo at zero bias in the right-hand charge state. The
charge degeneracy point is at VG � �30 V. The full-width
at half-maximum of the peak at VG = +10 V is 13 mV.
From the established correlation between Kondo tempera-
ture (determined by T dependence of conductance peak
height) and Kondo resonance width [7,40,41], this corre-
sponds to a Kondo temperature of �75 K. Such strong,
broad resonances have been seen in 40 out of over 1200
electrode sets examined containing transition metal com-
plexes, with inferred Kondo temperatures ranging from
40 to 120 K.

Fig. 4. Inelastic electron tunneling in a Co-complex SMT. (a) Map of differential conductance (black = 0; white = 0.01 e2/h) at 5 K for this device,
showing Coulomb blockade and transition to Kondo resonance in right-hand charge state. (b) Map of o2ID=oV 2

SD, showing narrow features at finite VSD

that correspond to inelastic electron tunneling via vibrational modes of the molecule.
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Weaker resonances (narrower, or with significantly
lower temperatures of appearance) have not been observed
in devices tested. Similarly, no Kondo resonances were
observed in over 500 control junctions with no molecules,
alkane chains, or other control molecules not containing
unpaired spins. This is particularly important in light of
recent work [15,42,43] that demonstrates that it is possible
to form metal nanoclusters on the molecular scale via elec-
tromigration, and that structures can show Kondo physics,
albeit with much lower (�7 K) Kondo temperatures [42].
We also note that such Kondo observations in all-metal
devices are extremely sensitive to the details of the electro-
migration method, and that devices fabricated without the
specific active feedback used in Ref. [42] do not show
Kondo resonances [44]. The nontrivial electronic and opti-
cal properties of nanoclustered metal further underscore
the importance of control experiments and a systematic
approach to SMTs.

The Kondo effect has also been studied with STM by
performing STS of single magnetic impurities on atomi-
cally smooth metal surfaces. Investigations of individual

Co atoms on Au(1 11) surfaces [5,45] have found a Kondo
temperature for that system of �70 K. A detailed electronic
structure study of charge transfer between the Co atom and
the Au(1 11) surface combined with sophisticated many-
body calculations of the Kondo correlations has success-
fully understood this result [46].

Remarkably, this similarity of Kondo temperatures
implies that the spin degree of freedom in our transition
metal complex is as strongly coupled to the delocalized Au

conduction electrons as it would be if the Co were directly

bonded metallically to the Au surface. This demonstrates
conclusively that conjugated ligands of the type used in this
complex can couple strongly to conduction electrons in a
metal. Similar strong coupling has been reported recently
in another conjugated system [47]. Detailed electronic
structure calculations of the ligand/metal binding, with a
realistic treatment of the Au surface, should help determine
what makes these ligands particularly effective.

We note two very recent STM works [48,49] have exam-
ined transition metal complexes physisorbed on noble
metal surfaces. Both groups have observed extremely
strong Kondo resonances with Kondo temperatures in
some cases approaching 300 K.

5.3. Robust SMTs under thermal cycling

We present one further new result with implications for
the eventual development of technologies based on SMTs.
Previous investigations of SMTs have been performed at
cryogenic temperatures in part because device geometric
stability at the atomic level is difficult to maintain at room
temperature in such systems. In the low temperature electro-
migration approach to SMT fabrication, the structure of the
resulting electrodes and interfaces is frozen in a metastable
state. Upon warming the devices to room temperature,
annealing, surface reconstruction, and surface diffusion of
Au atoms can significantly modify device conductance irre-
versibly, by altering the interelectrode geometry.

Fig. 6 shows the conductance map of a particular Co-
complex SMT at 5 K, on three successive days. Between

Fig. 5. Differential conductance map (black = 0; white = 0.018 e2/h) of
Co-complex SMT showing strong Kondo resonance in the right-hand
charge state at 5 K.

Fig. 6. Differential conductance map (black = 0; white = 0.76 e2/h) of Co-complex SMT at 5 K on three successive days. Between each day, the device
spent at least 18 h at 300 K.
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(a) and (b), the sample was warmed (in high vacuum) to
room temperature and allowed to sit for 18 h before being
re-cooled. A similar thermal cycling took place between (b)
and (c). While details of the map change, the main essen-
tials remain: a well-defined Coulomb blockade with elec-
tron addition energy in excess of 100 meV, with a charge
degeneracy point between VG = �20 and 0 V.

This particular device is clearly relatively robust under
extended times at 300 K. Indeed, this device is substantially
more stable than molecule-free metal junctions, the con-
ductance of which can change by orders of magnitude on
hour time scales due to surface diffusion of Au atoms.
We believe, though cannot verify directly, that the strong
covalent bonding of the molecule to both source and drain
electrodes is one reason for this impressive stability relative
to bare junctions. By choosing a more refractory metal for
electrodes, and with improvements in surface preparation,
we believe that SMTs capable of room temperature opera-
tion are possible.

6. Conclusions

We have given an overview of single-molecule transistor
fabrication, characterization, and operation, and a discus-
sion of the relevant chemical synthesis and surface chem-
istry. We present three recent results: SMTs used for
gate-modulated inelastic tunneling spectroscopy of single
molecules; the Kondo resonance in SMTs as a demonstra-
tion that conjugated ligands can provide very strong cou-
pling of molecular spin degrees of freedom to underlying
metal conduction electrons; and data showing that with
appropriate surface chemistry SMTs can be sufficiently
robust to survive extended periods at room temperature.

A number of practical issues remain before SMTs may
be utilized to their full potential. There is much room for
improvement in current fabrication and characterization
techniques. While the electromigration approach does pro-
duce enough devices with sufficient reproducibility for aca-
demic study, it is hard to believe that there is not a better
possible procedure that would raise the yield of devices
to greater than the current ceiling of 10–20%. Diagnostic
tools independent from electronic transport measurements
must be developed that will lend SMTs the same degree of
reproducible control as STM investigations.

Scientifically, there also remain a large number of open
issues. Every electronic transport measurement in such a
device is inherently a highly nonequilibrium experiment,
with electronic distribution functions in the leads remain-
ing nonthermal over distances much larger than the scale
of the molecule. Relaxational couplings between molecular
vibrations and bulk phonons of the leads are not known,
while electronic transport can pump vibrational modes,
resulting in extremely athermal vibrational distributions.
Single physisorbed or chemisorbed impurities or charged
defects [50] can profoundly shift local charge transfer and
energetics in manners which are challenging to control or
predict from first principles. Virtually all theoretical treat-

ments of electronic conduction through SMTs neglect elec-
tronic correlation effects such as Kondo exchange, while
such physics can profoundly affect transport.

In the brief time since their inception, SMTs have dem-
onstrated themselves to be excellent and unique tools for
studying physics and physical chemistry problems on a pre-
viously inaccessible scale. With the development of these
novel nanostructures, and the enormous capabilities avail-
able from the chemistry community, the next years promise
to be an exciting time for molecular electronics at the sin-
gle-molecule level.
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Note added in proof

The mechanism of the thiocyanate assembly has been
discussed in two publications: [51,52].
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