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Abstract 

N,N’,N’’-Trimethyl tribenzo-1,4-7-triazacyclononatriene has been synthesized via 

sequential palladium-catalyzed Buchwald-Hartwig N-arylation reactions affording the 9-

membered triaza ortho-cyclophane in 35% overall yield.  An X-ray crystal structure 

shows the new cyclophane to have a C2-symmetric saddle conformation, as compared to 

the crown conformation exhibited by the related carbocyclic cyclotriveratrylene (CTV). 
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Introduction 

The area of supramolecular chemistry is of continued interest due to a wide variety of 

applications including materials technology, catalysis, medicine, analytical detection and 

sensing.  Cyclophanes, which are supramolecular structures comprised of aromatic units 

with bridging chains, have applications in molecular recognition as synthetic receptors1 

and have been used as building blocks for organic catalysts.2  There is growing interest in 

the development of cyclophanes as hosts for ionic guests.3-5   

 

The archetypal cyclophane cyclotriveratrylene (CTV, 1), a [1.1.1]orthocyclophane, is a 

commonly employed scaffold in supramolecular chemistry6 that is readily prepared from 

veratryl alcohol in acid, and has been studied extensively for its capability of binding a 

number of smaller organic and organometallic guests within its bowl-shaped cleft.7-9  

CTV modification continues to be a significant area of study10-13 and it has been used as a 

building block enabling the construction of more complex cryptophanes.14-17 Although 

CTV has proven to be quite useful the molecule suffers from insolubility in aqueous 

systems and only rare opportunities for derivatization of the apical methylenes; most 

derivatives of CTV have been prepared by varying the groups on the phenolic oxygens 

around the periphery of the molecule; Collet was among the first to transform CTV into 

cryptophanes in this manner.18
  Nierengarten addressed the aqueous insolubility of CTV 

by appending polyethylene glycol units via the peripheral oxygens toward derivatives 

with biomedical applications, specifically to aid in the biological delivery of fullerenes, 

although the derivatives were of high molecular weight (>3000 to >6000 amu).19  As part 

of our own exploration of apex-modified CTV derivatives20 we have isolated the crown 
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and saddle conformers of CTV-oxime (2a,b)21 and studied the kinetics and 

thermodynamics of their interconversion between the crown and saddle CTV-oxime 

derivative 2a,b
22 (Figure 1).  CTV exists almost exclusively in its crown conformation 

(1a), and the saddle conformer of CTV was only recently isolated and characterized 

through high temperature melt and quench techniques by Zimmermann who also studied 

the thermodynamic and kinetic properties of the interconversion of the crown and saddle 

CTV conformers.23  Holman24 as well as Huber25 have identified topoisomeric 

cryptophanes containing blended crown and saddle CTV moieties; Holman’s 

cryptophane undergoes a conformational crown to saddle “implosion” upon thermal 

liberation of its tetrahydrofuran guest. 

 

 

 

MeO OMe

MeO
MeO

OMe
OMe

1a CTV-crown 2a CTV - oxime saddle

MeO OMe

MeO
MeO

OMe
OMe

N
OH
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MeO
MeO
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MeO OMe

N OH

 

  

Figure 1. Cyclotriveratrylene (CTV) and CTV-oxime derivatives. 

 

Several heteroatom analogues of CTV and the tribenzocyclononene core have been 

reported in which the methylene groups have been replaced (3a-c). 

Trithiacyclotrivertrylene (3a)26, 27 forms complexes with copper(I),28 rhodium (III),29 and 
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platinum (II),30 and it also exists in a temperature and solvent-dependent equilibrium of 

the crown and saddle forms. In addition, the trioxycyclononene 3b,31, 32 and trimercury 

3c,33 which is planar rather than crown-shaped have also been described. Recently, the 

first apical methylene aza-substituted cyclophane was reported with the synthesis of 

monoamine tribenzo-1-azacyclophane 3d
34 which was prepared as a potential 

benzodiazepine receptor ligand, while Tanaka reported the synthesis of the trimethyl 

triaza[13]metacyclophane 4.35  We envisioned a derivative of the 

tribenzotricyclononatriene core of CTV retaining its high (C3V) symmetry with nitrogen 

atoms in place of the methylenes, to provide a ready handle for apical functionalization 

and altering the charge on the scaffold, to enable modulation of host-guest properties and 

to facilitate attachment to surfaces.  Furthermore, the nitrogen atoms should function as a 

ligand for metals as described for the oxa- and thia-analogs above, ultimately providing a 

redox-switchable host molecule.  Herein we describe the synthesis of the novel triaza-

orthocyclophane 5a (Figure 2). 
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Figure 2. Analogs of CTV 

 

Results and Discussion 

Looking retrosynthetically at the target tribenzo-1,4,7-triazacyclononatriene, we 

envisioned four unique synthetic approaches (Figure 3), with N-aryl bonds constructed 

potentially utilizing Buchwald-Hartwig36-39, Ullman40, or nucleophilic aromatic 

substitution (SNAR) methodologies.  Route A considers the direct trimerization of an 

ortho-substituted aniline.  This highly convergent synthesis has literature precedent in the 

work of Tanka35 and coworkers who synthesized meta-cyclophane 4 in low yield directly 

from a meta-substituted aniline.  Approaches B and C consider a diphenlyamine 

derivative joining the third ring in a double-coupling.  Finally, route D describes a linear 

construction of the molecule.  The final intramolecular macrocyclization of the 9-

membered ring should be aided by the limited degrees of freedom imposed by the aryl 
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rings (Figure 3). 

 

N

N
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NH2
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N

X XR

+
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[1 x 1 x 1] linear synthesis

N

N NH2

R
R

X

 

Figure 3. Retrosynthetic strategies toward the tribenzo-1,4-7-triazacyclononatriene ring 

system 

 

 

For the highly-convergent approach (A), we subjected 2-iodoaniline and 2-bromoaniline 

to a variety of Buchwald-Hartwig cross-coupling conditions.  Employing Pd(OAc)2, P(t-

Bu)3 as the ligand, and sodium tert-butoxide as the base in dioxane under reflux as a 

typical example afforded only phenazine in 92% isolated yield, via facile air oxidation of 

the metastable dihydrophenazine.41 Tanaka was able to synthesize the triaza-

metacyclophane 4 from the corresponding secondary N-methyl derivative but not from 

the unsubstituted (primary) aniline. Therefore we attempted the convergent trimerization 

employing a secondary aniline utilizing similar Pd-catalyzed cross coupling conditions.  

N-Methyl-2-bromoaniline which under Buchwald-Hartwig conditions produced a 
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complex mixture from which only dehalogenated dimer and dehalogenated tetramer were 

isolated in extremely low yields (0.3% and 2%, respectively).  We were unable to detect 

the desired product in any mixture derived from the direct trimerization approach under a 

variety of Buchwald-Hartwig conditions, even when an authentic sample was available 

for direct comparison from the linear approach below.  

 

Given the facile formation of phenazine in the trimerization attempt, we focused on the 

moderately convergent [2x1] syntheses (Routes B and C).  Subjecting bis-(2-

bromophenyl)amine to Buchwald-Hartwig conditions, carbazole 6 was formed as the 

major product via a reductive coupling in 65% yield.  In addition, the phenazine 

derivative 7 was produced in 4% via intramolecular N-arylation involving a 6-member 

ring formation.  The mono-coupled triaryl product 8 was also isolated in 4% yield 

(Scheme 1).   

 

N

Br

Br

H2N

H2N
H

R = alkyl, H

+

X = I, Br, Cl

H
N

N

N

NH2H
H

Br

H
N

N

NH2

6

7

8

 

Scheme 1. 1 x 2 synthesis attempt from bis-(2-bromophenyl)amine 

 

A similar convergent synthesis beginning with N-(2-aminophenyl)-1,2-benzenediamine42, 

43 is shown in scheme 4.  The diamine and the 1,2-dihalide were subjected to palladium-
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catalyzed N-arylation producing phenazine 9 in 20% yield as the only isolated product.  

When an N-methyl blocking group was added44 to block the central nitrogen, attempted 

N-arylation of the N-(2-aminophenyl)-N-methyl-1,2-benzenediamine with 1,2-

dibromobenzene resulted in N,N’-dimethyl phenazine derivative 10 as the only isolated 

product (Scheme 2).    

  

 

N

NH2

NH2

X

X
R

R = alkyl, H

+

X = I, Br, Cl

N

N

N
R

R
N

9 10

or

 

 

Scheme 2. 1 x 2 synthesis attempt from N-(2-aminophenyl)-1,2-benzenediamine 

 

The inability to produce the desired cyclophane utilizing convergent approaches led us to 

pursue a linear synthesis (Route D) with sequential protection of the aniline nitrogens to 

avoid 6-membered ring formation.  Scheme 5 outlines the successful synthesis of the 

N,N’,N’’-trimethyl triaza-orthocyclophane 5a in 35% overall yield.  A modification of 

the Buchwald-Hartwig N-arylation method used by Tietze42 employing 1,2-

bromochlorobenzene and o-nitroaniline gave 2-chloro-N-(2-nitrophenyl)-benzenamine 11 

in 99% yield.  The aniline was protected by methylation using KOH and Me2SO4 in 

refluxing acetone45 to give the N-methyl diphenylamine 12 in quantitative yield without 

the need for further purification.  Compound 12 was easily reduced with the general 
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method of Sanz46 using CuCl and KBH4 in dry MeOH at room temperature to give 13 in 

quantitative yield, again without further purification, whereas more common reduction 

methods such as Pd/C and H2NNH2 or hydrogenation gave dehalogenated or 

demethylated reduction products. The aniline 13 was coupled to iodonitrobenzene using 

the previously established Buchwald-Hartwig conditions to produce the triaryl amine 14 

in 80% yield. Compound 14 was subjected to methylation by KH and MeI followed by 

reduction of the nitro group with CuCl and KBH4 to give products 15 and 16, 

respectively.  The triaryl aniline was successfully closed to the 9-membered cyclophane 

through the use of Buchwald-Hartwig coupling in a microwave reactor to afford the 

N,N’-dimethyl triaza-orthocyclophane 5b in 50% isolated yield after purification.  The 

last step is a macrocyclization with unique steric demands and application of thermal 

conditions gave significant decomposition, low yields (<5%), poor conversion and 

extremely long reaction times (> 5 days).  However we found that application of 

microwave conditions in this step gave moderate to good yields.  The third apical 

nitrogen was methylated employing KH and MeI to give a quantitative yield of the 

N,N’,N’’-trimethyl triaza-orthocyclophane 5a without the need for further purification 

(Scheme 3). 
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Scheme 3.  Reaction conditions: a. Pd(dba)2, BINAP, tol, 24 h; b. KOH, Me2SO4, acetone; c. CuCl, 

KBH4, MeOH; d. KH, MeI, DMF; e. Pd(dba)2, BINAP, 1:5 t-BuOH:tol  

 

  

The structure of the N,N’-dimethyl derivative 5b was assigned based on the equivalent 

methyls in the 1H NMR at δ 2.68 (6H, s) and the exact mass (MH+) observed by mass 

spectrometry.  The structure was ultimately confirmed by single crystal X-ray analysis 

revealing a C2-symmetric saddle (Figure 4).  The 1H NMR of the N,N’,N’’-trimethyl 

dervative 5a reveals the high C3v symmetry with chemical shifts δ 6.90 (12H, s), δ 2.91 

(9H, s) manifesting the similarity of protons ortho and meta to the nitrogen, leading to a 

fortuitous singlet for all 12 aromatic protons. 
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Figure 4. X-ray structure of compound 5b with atom labels, thermal ellipsoids are at the 

50% probability level. 

 

In conclusion, we have constructed the new triazacyclophane, tribenzo-1,4,7-

triazacyclononatriene 5b, in 7 steps via palladium catalyzed C-N amination, followed by 

alkylation and reduction, and reiteration of this sequence in order to obtain the triaryl 

precursor to the final palladium-catalyzed cyclization to the 9-membered cyclophane.  

Alkylation of 5b gives the C3V–symmetric N,N’,N’’-trimethyl triaza-orthocyclophane and 

demonstrates the ability to functionalize the cyclophane at the apex in order to modulate 

its physicochemical properties.  We envision that the new triazacyclophane should will 

complement the familiar carbocyclic framework of CTV with greater versatility, 

including the ability to bind cationic species in the apex analogous to metal complexes of 

the well known triazacyclononene (TACN) derivatives that have utility as MRI contrast 

agents47, 48 and radioimmunotherapy agents.49  These studies are in progress and will be 

reported in due course. 

 

Experimental  

 

Page 11 of 22

ACS Paragon Plus Environment

Submitted to The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



General Experimental 

All solvents were distilled prior to use.  All reagents were used without further 

purification unless otherwise noted.  All Pd-catalyzed and Cu-catalyzed reactions were 

conducted under an inert atmosphere of argon, and all other reactions were conducted 

under a nitrogen atmosphere.  Sorbent Technologies silica gel 60A, 40–75 µm (200 x 400 

mesh) was used for column chromatography.  Sorbent Technologies aluminum-backed 

Silica gel 200µm plates were used for TLC.  1H NMR spectra were obtained utilizing a 

300 MHz spectrometer with trimethylsilane (TMS) as the internal standard.  13C NMR 

spectra were obtained using a 75 MHz spectrometer.  A CEM Discover® Microwave 

Model # 908005 was used for all microwave (MW) reactions.  Infrared (IR) spectra were 

determined as a solution in CHCl3. Single crystal X-ray diffraction data were collected on 

a charge-coupled-device (CCD) diffractometer with a liquid nitrogen vapor cooling 

device. Data were collected at 100 K with a graphite monochromatized MoKα X-ray 

radiation (λ= 0.71073 Å). Data were collected and reduced and corrected for absorption 

using multi-scan methods. The structure was solved by direct methods and refined by full 

matrix least squares against F2 with all reflections. Non hydrogen atoms were refined 

anisotropically. C-H hydrogen atom positions were idealized. Additional details of the 

structure determination can be found in the supplementary cif file. 

 

(2’
-Chlorophenyl)-(2-nitrophenyl)-amine (11).  Compound 11 was synthesized 

according to the general procedures outlined by Tietze et al.
42  A pressure tube was 

charged with o-nitroaniline ( 0.690 g, 5 mmol), o-bromochlorobenzene ( 0.60 mL, 5.00 
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mmol), Pd(dba)2 (0.144 g, 5%), BINAP (0.233 g, 7.5%), Cs2CO3 (3.26 g, 10 mmol) and 

toluene (10 mL).  The mixture was purged with argon for 10 min at rt and the pressure 

tube was sealed.  The reaction was sealed and placed in a pre-heated oil bath.  The 

temperature was brought to 120oC and the reaction stirred for 24 h.  TLC showed 

complete consumption of o-nitroaniline and the reaction mixture was filtered through a 

pad of SiO2 using 5/5/90 EA/DCM/petroleum ether as the eluent. The solvent was 

removed under vacuum and no further purification was needed to give the product as an 

orange solid (1.24 g, 100%) which was identical to the material reported in the literature42 

by 1H NMR. 

2-Chloro-N-methyl-N-(2-nitrophenyl)aniline (12).  Following the general method of 

Wilshire45 compound 11 ( 1.25 g, 5 mmol) was stirred at rt in acetone (16 mL) and 

freshly crushed KOH ( 1.23 g, 22.0 mmol) was added to the stirring mixture.  After the 

reaction was brought to reflux, Me2SO4 (2.18 mL, 23 mmol) was added dropwise via 

syringe over 10 min.  The mixture was allowed to stir at reflux for 1 h.  The reaction was 

cooled to rt and 20 mL of 10 M NaOH was added to the solution.  After 1 h the mixture 

was quenched with 10 mL H2O and extracted 3 x 10 mL DCM.  The organic layers were 

combined and dried over Na2SO4.  The solvent was removed under vacuum and the 

mixture was placed in an 80oC oil bath under vacuum to remove excess Me2SO4.  No 

further purification was needed to obtain the desired as an off-white solid (1.31 g, 100%). 

mp 73-75 oC; 1H NMR (300 MHz, CDCl3) δ 7.68 (1H, dd, J= 8.1, 1.5 Hz), 7.54 (1H, ddd, 

J= 8.7, 7.3, 1.7 Hz), 7.42 (1H, dd, J= 7.8, 1.5 Hz), 7.19 (1H, dd, J=7.7, 1.7 Hz), 7.14-7.11 

(2H, m), 7.06 (1H, dd, J=7.7, 1.9 Hz), 7.0 (1H, ddd, J=8.2, 7.3, 1.1 Hz); 13C NMR (75 

MHz, CDCl3) δ 145.0, 143.0, 133.2, 131.3, 130.9, 128.7, 127.9, 126.7, 126.2, 125.9, 
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120.8, 120.6, 41.1; IR (CDCl3): 1520 (NO2); HRMS (MH+) calcd for C13H11O2N2Cl 

263.0509, found 263.0604. 

 

N
1
-(2-Chlorophenyl)-N

1
-methylbenzene-1,2-diamine (13).  Following the general 

procedure of Sanz46, CuCl (0.137 g, 1.38 mmol) was added to a stirring solution of 

compound 12 (0.121 g, 0.46 mmol) in MeOH (4.6 mL) at rt.  KBH4 (0.174 g, 3.22 mmol) 

was then added in portions.  The reaction stirred at rt until the solution became clear, (2-4 

h).  The reaction was quenched with H2O and extracted 3 x 15 mL 90/10 EA/DCM.  The 

organic layers were combined and dried over Na2SO4 and the solvent was removed to 

give the desired product as a brown oil (0.107 g, 100%). 1H NMR (300MHz, CDCl3) δ 

7.32 (1H, dd, J= 7.8, 1.4 Hz), 7.25 (1H, dd, J= 7.3, 1.7 Hz), 7.22 (1H, dd, J= 7.1, 1.7 Hz), 

7.16 (1H, dd, J= 8.0, 1.6 Hz), 7.00-6.95 (2H, m), 6.76 (1H, ddd, J=9.3, 7.7, 1.4 Hz), 6.67 

(1H, ddd, J= 8.9, 7.6, 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ 147.6, 142.2, 136.9, 130.7, 

130.68, 127.4, 125.5, 123.6, 121.9, 118.6, 115.8, 41.1;  IR (CDCl3): 3440 (NH2), 3351 

(NH2); HRMS (MH+) calcd for C13H13N2Cl 233.0767, found 233.0791. 

 

N
1
-(2-Chlorophenyl)-N

1
-methyl-N

2
-(2-nitrophenyl)benzene-1,2-diamine (14).  

Compound 13 (0.842 g, 3.62 mmol), o-iodonitrobenzene (1.35 g, 5.43 mmol), Pd(dba)2 

(0.104 g, 5% mol), BINAP (0.170 g, 7.5%), Cs2CO3 (2.35 g, 7.42 mmol) and 12 mL of 

toluene were placed in a pressure tube.  The mixture was purged with argon at rt for 15 

min and the tube was then sealed and placed in a pre-heated oil bath at 80-90oC for 30 h.  

After TLC showed consumption of 13, the reaction mixture was filtered through a pad of 

silica gel eluting with 90/10 EA/DCM.  The solvent was then removed under vacuum.  
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The crude product was then purified by column chromatography on silica gel eluting with 

1/99 Et2O/petroleum ether to afford the desired product as a red crystalline solid (0.785 g, 

80%): mp 141-145 oC;  1H NMR (300 MHz, CDCl3) δ 9.03 (1H, bs), 8.07 (1H, dd, J=8.7, 

1.5 Hz), 7.32-7.19 (4H, m), 7.12-6.99 (5H, m), 6.90 (1H, ddd, J= 8.0, 6.9, 2.2 Hz), 6.68 

(1H, ddd, J= 8.4, 6.9, 1.2 Hz), 3.16 (3H, s); 13C NMR (75 MHz, CDCl3) δ 147.2, 145.1, 

142.4, 135.2, 131.6, 130.7, 129.5, 127.4, 126.5, 126.5, 126.0, 124.8, 124.0, 123.2, 121.7, 

117.0, 115.8, 40.6; IR (CDCl3) 3344 (NH), 1503 (NO2); HRMS (MH+) calcd for 

C19H16N3O2Cl 354.1009, found 354.0961.  

 

N
1
-(2-Chlorophenyl)-N

1
,N

2
-dimethyl-N

2
-(2-nitrophenyl)benzene-1,2-diamine (15).  A 

solution of compound 14 (0.405 g, 1.14 mmol) in 4 mL of DMF was added to KH (0.46 

g, 3.42 mmol).  Upon addition, the solution turned from orange to deep purple.  The 

mixture was stirred at rt for 10 min then MeI (0.4 mL, 5.7 mmol) was added dropwise via 

syringe. The reaction was stirred at rt until the solution returned to a yellow color.  The 

reaction was then quenched with H2O and extracted 3 x 15 mL EA.  The organic layers 

were combined and washed 3 x 15 mL H2O, brine then H2O again to remove excess 

DMF.  The organic layer was then dried over MgSO4, the solvent was removed under 

reduced pressure to give the desired product as a yellow powder with no further 

purification necessary (0.362 g, 86%): 1H NMR (300MHz, CDCl3) δ 7.63 (1H, dd, J= 

8.0, 1.7 Hz), 7.36 (1H, ddd, J=8.8, 7.3, 1.8 Hz), 7.29-7.19 (2H, m), 7.12 (1H, dd, J=8.2, 

1.7 Hz), 7.07-6.92 (5H, m), 6.88 (1H, ddd, J=8.2, 7.3, 1.2 Hz), 6.81 (1H, dd, J=7.8, 1.2 

Hz), 3.32 (3H, s), 3.27 (3H, s); 13C NMR (75 MHz, CDCl3) δ 146.5, 143.5, 142.1, 138.8, 
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132.7, 131.0, 128.7, 127.6, 126.2, 124.2, 124.1, 123.7, 123.1, 120.4, 118.8, 38.5, 38.1; IR 

(CDCl3) 1520 (NO2); HRMS (MH+) calcd for C20H18N3O2Cl 368.1166, found 368.1091. 

 

N
1
-(2-Aminophenyl)-N

2
-(2-chlorophenyl)-N

1
,N

2
-dimethylbenzene-1,2-diamine (16).  

Following the general procedure of Sanz,46 CuCl (0.460 g, 4.65 mmol) was added to a 

stirring solution of compound 15 (0.570 g, 1.55 mmol) in MeOH (15.5 mL) at rt.  KBH4 

(0.836 g, 15.5 mmol) was then added in portions.  The reaction stirred at rt until the 

solution became clear, 2-4 h.  The reaction was then quenched with H2O and extracted 3 

x 30 mL 90/10 EA/DCM.  The organic layers were combined and dried over Na2SO4 and 

the solvent was removed to give the desired product as a reddish-brown oil, (0.450 g, 

86%):  1H NMR (300MHz, CDCl3) δ 7.3 (1H, dd, J= 8.0, 1.9 Hz), 7.15 (1H, 8.5, 7.3, 1.7 

Hz), 7.06-6.88 (7H, m), 6.83-6.73 (2H, m), 6.60 (1H, dd, J=7.3, 1.5 Hz); 13C NMR (75 

MHz, CDCl3) δ 147.0, 143.4, 142.2, 141.1, 136.7, 131.1, 128.2, 127.3, 124.6, 124.4, 

124.3, 123.4, 123.4, 123.2, 122.6, 122.5, 118.7, 116.1, 39.4, 38.6; IR (CDCl3) 3441 

(NH2), 3368 (NH2); HRMS (MH+) calcd for C20H20N3Cl 338.1424, found 338.1379.  

 

N-Methyl-2-(10-methylphenazin-5(10H)-yl)aniline (5b).  Compound 16 (0.090 g, 0.27 

mmol), Pd(dba)2 (0.016 g, 10% mol), BINAP (0.034 g, 20% mol), Cs2CO3 (0.132 g, 0.41 

mmol) in 3 mL of 1:1 toluene/t-BuOH were added to a 10 mL microwave tube.  The 

mixture was purged with Ar for 5 min while stirring at rt.  The MW settings were as 

follows; P = 250W, Time = 60 min, Temp = 130oC; PSI = 250.  The reaction mixture was 

checked by TLC after each 60 min run.  When TLC showed consumption of starting 

material 16 (240 min total), the mixture was filtered through a pad of silica gel eluting 
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with 90/10 EA/DCM.  The solvent was removed under reduced pressure.  The product 

was then purified by column chromatography eluting with DCM/petroleum ether gradient 

to give the final product as a white powder (41mg, 50%): 1H NMR (300MHz, CDCl3) δ 

7.05-6.95 (6H, m), 6.87 (1H, d, J= 1.1 Hz), 6.84 (1H, d, J= 1.1 Hz), 6.75-6.73 (4H, m), 

5.82 (1H, bs), 2.68 (6H, s); 13C NMR (75 MHz, CDCl3) δ 144.2, 141.4, 140.2, 127.8, 

126.1, 121.9, 121.1, 118.4, 117.5, 39.9; IR (CDCl3) 3382 (NH), 1499 (C=C);  HRMS 

(MH+) calcd for C20H19N3 302.1579, found 302.1573.  Single crystals for X-ray 

structural analysis were grown by the slow evaporation of DCM.    

 

5,10,15-Trimethyl-10,15-dihydro-5H-tribenzo[b,e,h][1,4,7]triazonine (5a).  A 

solution of dimethyl azacyclophane 5b (0.018 g, 0.07 mmol) in 0.2 mL of DMF was 

added to KH (0.028 g, 0.21 mmol).  Upon addition, effervescence ensued and the 

solution turned a pale pinkish-purple color.  The mixture was stirred at rt until 

effervescence ceased (about 5 min), and MeI (0.022 mL, 0.35 mmol) was added dropwise 

via syringe.  The reaction was allowed to stir at rt for 2 h, during which the solution 

became faint yellow in color.  The reaction mixture was quenched with deionized H2O 

and extracted with EA (3 x 10 mL).  The organic layers were combined and dried over 

Na2SO4, the solvent was removed under reduced pressure to give the product as a pale 

yellow oil. (0.021 g, 95% yield): 1H NMR (300MHz, CDCl3) δ 6.92 (12H, s), 2.93 (9H, 

s); 13C NMR (75 MHz, CDCl3) δ 144.0, 122.9, 121.0, 40.6; IR (CDCl3) 3052 (CH), 1605 

(C=C) HRMS (MH+) calcd for C21H21N3 316.1808, found 316.1799.  
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Supporting Information Available: X-ray crystal structure coordinates, and files for 

compound 5b in CIF format. 1H and 13C NMR spectra are available for all compounds in 

the 8-step linear synthesis.  This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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