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Abstract 

This manuscript describes the extension of Stille’s palladium-catalyzed olefin dicarbonylation reaction to 

chiral allylic alcohols with chirality transfer to afford the corresponding chiral alcohol functionalized with 

bis-carbomethoxy esters, containing three contiguous chiral centers, in good to excellent 

diastereoselectivities (78-98%).
 

Introduction 

Enantiopure chiral materials are of key importance, particularly in the preparation of bioactive 

pharmaceuticals and more recently in liquid crystals, and palladium catalysis can be used in the 

construction of new asymmetric centers, either asymmetric catalysis or through the intramolecular 

transfer of existing chirality within a molecule.  The directing influence of the hydroxyl group has been 

demonstrated for a number of reactions of chiral allylic alcohols,
1-9

  and stereoselectivities of over 98% 

have been demonstrated for some reactions.
10-13

  We presently wish to report the extension of chirality 

transfer from chiral allylic alcohols utilizing Stille’s palladium-catalyzed olefin dicarbonylation 

reaction.
14

  In this context is it noteworthy that a number of groups have explored the use of chiral 

catalysts with the Stille bis-alkoxycarbonylation for the asymmetric construction of chiral bis-esters.  

Inomata and coworkers recently reported the palladium-catalyzed asymmetric bis(alkoxycarbonylation) 

of cyclic olefins in the presence of copper triflate.15  Liang and coworkers have described a palladium-
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catalyzed asymmetric biscarbonylation of terminal olefins using chiral S,N-heterobidentate ligands.16  

Takeuchi described a palladium-catalyzed asymmetric bis(alkoxycarbonylation) reaction of terminal 

olefins in the presence of copper(I) triflate using a chiral bioxazoline ligand to give optically active mono-

substituted succinates with enantioselectivities up to 66% ee,
17

 while Sperrle reported the enantioselective 

bis-alkoxycarbonylation of 1-olefins to substituted succinates using cationic palladium(II) complexes with 

C2 symmetric chelating ligands, and also the use of cationic palladium(II) complexes to catalyze multiple 

carbonylation of 1-olefins to 2-oxopentanedioates and to butanedioates.
18

  The dicarbonylation reaction is 

catalyzed by a PdCl2 - CuCl2 system in methanol under basic conditions at low CO pressures (3 atm) to 

give diesters with an overall syn addition.19-27   While chirality transfer generally involves transfer of 

optical activity from one carbon to another, this  allylic dicarbonylation that we now report involves a 

double insertion of CO to give diesters containing three contiguous chiral centers.  

Results and Discussion 

The bis-carbonylation with chirality transfer was first tested with the chiral cyclic allylic alcohol (R)-(+)-

cyclopent-2-en-1-ol
28

 (1). Cyclopent-2-enone underwent clean 1,2-reduction to afford compound (R)-(+)-

1  in 78.3% isolated yield and 71% ee  by reduction with chiral (R)-oxazaborolidine
29-31

 and borane.
  
Kita 

reported a similar asymmetric reduction of a cyclic enone with an oxazaborolidine
32

 and Matusuo recently 

reported the oxazaborolidine-catalyzed asymmetric reduction of α-methylene ketones using borane-

diethylaniline as a stoichiometric reducing agent.33   The absolute configuration of 1 was determined 

based upon measurement of rotation and comparison with literature values.
34

  Treatment of of (R)-(+)-1 

with PdCl2 and CuCl2 in methanol at room temperature under an atmosphere of CO (3 atm) in the 

presence of trimethyl orthoformate to remove adventitious water gave two products in 65% and 35% 

relative yields as determined by gas chromatography.  The two products were identified by 
1
H and 

13
C 

NMR to be (1S,2S,3R)-dimethyl 3-hydroxycyclopentane-1,2-dicarboxylate (2) and (S)-methyl 3-

oxocyclopentanecarboxylate (3), respectively (Scheme 1). The e.e. of 2 was established to be 69.7% as 

determined by 
1
H NMR in the presence of lanthanide shift reagent Eu(hcf)3, thus the reaction proceeded 
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in 98% diastereoselectivity (Table 1), representing the efficiency of chirality transfer from the asymmetric 

carbinol center.  As noted, allylic alcohol (R)-(+)-1 was utilized with 71% ee, such that complete 

diastereoselectivity in the bis-alkoxycarbonylation would yield diester of e.e. identical to the starting 

allylic alcohol.  The relative stereochemistry of the dicarbonylation product 2 was established by 
1
H 

NMR, and NOE studies. The J values of Hb  with Ha and Hc, respectively are 8.0 and 15.6 Hz.  These 

values are consistent with the syn stereochemistry between Ha, Hb and Hc. Since the absolute 

configuration at C-1 is known to be R, the absolute configuration at C-1 and C-2, bearing the 

carbomethoxy groups, must both be S.  The relative stereochemistries of Ha, Hb and Hc were also 

confirmed on the basis of NOE studies (Figure 1).  The all-syn relative stereochemistry evident by the 

10.2% enhancement of the signal for Ha upon irradiation of Hb and the 13.3% enhancement of the signal 

for Hc.  The cis stereochemistry is as predicted for the double-carbonylation reaction.
35

 

.  

Scheme 1.  Dicarbonylation of (R)-(+)-1 

 
Figure 1. Confirmation of all-cis stereochemistry of dicarbonylated product 2 based on vicinal 
coupling constants and NOE correlations. 
 
 

The product distribution and relative stereochemistries are consistent with the proposed mechanism 

(Scheme 2), similar to the mechanism proposed by Uenishi
13

 for an intramolecular palladium(II)-

catalyzed oxypalladation and 1,3-chirality transfer.  Thus, the hydroxyl group directs the palladium to the 

face that produces the most stable π-complex 4, which in turn depends on the absolute configuration of 

the starting allylic alcohol 1.
4, 10-13

  Addition of carbon monoxide to complex 4 followed by insertion of 
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methanol yields the olefin-carbomethoxypalladium intermediate 5, which undergoes insertion of the 

carbomethoxy group to produce the σ-complex 6.
14,19

  Adduct 6 then either undergoes further syn addition 

of CO to give desired 2, or loses a proton and eliminates palladium yielding an enol which tautomerizes 

to ketone 3. 

 

Scheme 2. Proposed mechanism for the palladium-catalyzed bis-alkoxycarbonylation of allylic 
alcohols with chirality transfer. 

 
 

 Next we examined the carbomethoxylation of (R)-(Z)-pent-3-en-2-ol [(Z)-9] and (E)-pent-3-en-2-ol 

[(E)-9]. Both isomers were prepared from the reduction of (R)-(+)-pent-3-yn-2-ol (8) (Scheme 3).  (R)-

(+)-pent-3-yn-2-ol (8) was prepared in 85% yield by the reduction of 3-pentyn-2-one 7 with chiral (S,S)-

RuCl[N-(tosyl)-1,2-diphenylethylenediamine)(p-cymene)] reagent in formic acid/triethylamine isotropic 

mixture according to the general method of Bogliotti.
36

  A sample of (R)-(Z)-9 was prepared in 86 % ee 

by reduction of the triple bond with Lindlar’s catalyst
37

 while (R)-(E)-9 was prepared in 83% ee by 

reduction with LiAlH4.
38

  GLC and 
1
H NMR analysis showed that each sample was greater than 95% of 

the desired double bond geometric isomer.  
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Scheme 3.  Preparation of Z and E allylic alcohols 9 and 13. 

 

 Dicarbomethoxylation of each geometric isomer of 9 independently was carried out in the same manner 

as for the substrate (R)-(+)-1 (Table 1).  (R)-(Z)-9 afforded three products as shown by GLC, which were 

identified by NMR spectroscopy to be the desired (2R,3R)-dimethyl 2-((R)-1-hydroxyethyl)-3-

methylsuccinate [R,R,R)-10] in 80% relative yield, plus 4-methoxy-pentan-2-one in 10% yield, and 4-

acetoxy-pentan-2-one in 10% yield.  A pure sample of (R,R,R)-10 was obtained by gas chromatography 

and the enantiomeric excess was determined by 1H NMR in the presence of chiral shift reagent, Eu(hfc)3 

to be 82.7%, thus the diastereoselectivity was 96%.  The dicarbonylation of (R)-(E)-9 afforded the desired 

dicarboxymethylation product (2R,3S)-dimethyl 2-((R)-1-hydroxyethyl)-3-methylsuccinate, (R,R,S)-10, 

in 45% relative yield, plus 4-methoxy-pentan-2-one, 4-acetoxy-pentan-2-one, and 4-carbomethoxy-

pentan-2-one, and 5%, 20%, and 30% relative yields, respectively.  A pure sample of (R,R,S)-10 was 

collected by GLC and analyzed by 
1
H NMR in the presence of the lanthanide shift reagent Eu(hcf)3 to 

establish an e.e. of 64.7%, representing a diastereoselectivity of 78%.  The relative configurations of 
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stereogenic centers in the carbonylated products (10) of (R)-(Z)-9 and R-(E)-9 were confirmed by NOE.  

NOE has been used previously to assign absolute configurations of cyclic systems
39

 and the theory for 

acyclic systems such as 9 with restricted rotation has also been presented.
40

  Shown in Figure 2 are the 

NOE assignments for the most stable rotamers of the two products. These assignments are in agreement 

with all the information from 
1
H-

1
H NOESY NMR. The assignment of absolute configuration is 

consistent with the expected initial syn addition of the elements of the carbomethoxy-Pd(II) moiety shown 

in Scheme 2. 

 

Figure 2  Assignment of relative stereochemistry of stereoisomers of 10 based on N.O.E. 

 Carbonylation of allylic alcohols (R)-(Z)-4-phenyl-but-3-ene-2-ol [(R)-(Z)-13] and  (R)-(E)-4-phenyl-

3-buten-2-ol [(R)-(E)-13] were then evaluated.    Propargyl alcohol 12 was prepared in  87% ee with (R) 

absolute configuration by the reduction of propagyl ketone again using (S,S)-RuCl[N-(tosyl)-1,2-

diphenylethylenediamine)(p-cymene)] as outlined in Scheme 3.  Allylic alcohol (R)-(Z)-13 was prepared 

in 87% ee by the reduction of the propagyl alcohol (R)-4-phenyl-but-3-yne-2-ol (12) using Lindlar's 

catalyst. Allylic alcohol (R)-(E)-13 was prepared in 75% ee by the reduction of 12 using LiAlH4.  

 Carbomethylation of (R)-(Z)-13 afforded three products that were isolated and purified by flash 

chromatography.  NMR analysis showed the compounds to be 4-methoxy-4-phenylbutan-2-one, 4-

acetoxy-4-phenyl-butan-2-one, and the desired (2R,3S)-dimethyl 2-((R)-1-hydroxyethyl)-3-

phenylsuccinate (R,R,S)-14, in 41% yield.  The ee of (R,R,S)-14 was determined by 
1
H NMR in the 

presence of the lanthanide shift reagent Eu(hcf)3 to be 80.7%, representing a diastereoselectivity of 93%.   

Dicarbomethoxylation of (R)-(E)-13 also produced three products, which were isolated and purified by 
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flash chromatography.  1H NMR analysis showed the compounds to be 4-methoxy-4-phenylbutan-2-one,  

4-acetoxy-4-phenyl-butan-2-one, and the (2R,3R)-dimethyl 2-((R)-1-hydroxyethyl)-3-phenylsuccinate 

(R,R,R)-14 in 17%, 27% and 56% yield, respectively. The diastereomeric ratio for (R,R,R)-14 was 

determined by 
1
H NMR in the presence of the lanthanide shift reagent Eu(hcf)3 to be 64.7% , thus the 

dicarbomethoxylation proceeded in 86% diastereoselectivity. 

 We also attempted to prepare (R)-1-phenyl-3-butyn-1-ol and (R)-1,1-dipheny-4-pentyne-2-ol utilizing 

(S,S)-RuCl[N-(tosyl)-1,2-diphenylethylenediamine)(p-cymene)] from the corresponding propargyl 

ketones 15 and 16, but only clean 1,4-reduction occurred as shown in Scheme 3.  These results indicate 

that 1,2-reduction of propargyl ketone to chiral allylic alcohol using this chiral ruthenium reagent may be 

limited to propargyl ketones with a non-bulky group on the α carbon.   

 In summary, we have demonstrated the utilization of asymmetric dicarboxymethylation of allylic 

alcohols for the preparation of materials containing three contiguous asymmetric centers in good to 

excellent (78-98%) diastereoselectivities.  
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