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The ability for a virus to expand its host range is dependent upon a successful mode of viral entry. As such,
the host range of the well-studied �X174 bacteriophage is dictated by the presence of a particular lipopoly-
saccharide (LPS) on the bacterial surface. The mutant �X174 strain JACS-K, unlike its ancestor, is capable
of infecting both its native host Escherichia coli C and E. coli K-12, which does not have the necessary LPS. The
conversion of an alanine to a very reactive threonine on its virion surface was found to be responsible for the
strain’s expanded host range.

Critical to the success of any pathogen is its ability to both
infect and persist within its host species. Extrapolation of the
evolutionary mechanisms responsible for viral emergence has
predominantly relied upon introducing the pathogen to sus-
ceptible hosts and/or introducing pathogen-specific receptors
to the host species. A substantial effort has been conducted
utilizing model bacteriophage species and their bacterial hosts,
particularly �X174. As �X174 necessitates the presence of a
particular lipopolysaccharide (LPS) on the bacterial surface,
present for both native hosts Escherichia coli C and Salmonella
typhimurium (17), several studies have utilized this two-host
system to identify host-specific adaptations (6, 11, 21). Al-
though enterobacteria without this surface protein are resis-
tant to the �X174 wild type (19), previous studies have suc-
cessfully infected mutant E. coli K-12 strains (10, 18) and
wild-type E. coli K-12 by utilizing an intermediary mutant E.
coli K-12 host species (3).

While wild-type �X174 is not capable of infecting wild-type
E. coli K-12, several other phages are capable, most notably the
lambda and lambda-like phages which infect E. coli K-12
through interaction with LamB, a cell surface receptor (20).
For this to occur, oxidative phosphorylation is required for
successful infection of E. coli K-12 by the lambda DNA (1).
Thus, one can speculate that the expanded host range in the
previous study using an intermediary host (3) can be the result
of either the creation of a novel function to infect wild-type E.
coli K-12 or the activation of an otherwise dormant means of
entering E. coli K-12 present within the wild-type �X174
strain.

A �X174 mutant strain, JACS-K, created within our labo-
ratory via extreme heat-induced mutagenesis (5a), was found
to be capable of infecting both its native host E. coli C and the
novel host E. coli K-12. In contrast with previous studies, no
intermediary host is necessary.

In order to identify the mutations unique to the JACS-K

isolate, the phage’s DNA was extracted using the UltraClean
microbial DNA isolation kit (Mo Bio Laboratories, Inc., Carls-
bad, CA) and amplified using the Platinum Taq kit (Invitrogen,
Carlsbad, CA) by 12 sets of PCR primer pairs (synthesized by
Eurofins MWG Operon, Huntsville, AL), providing a min-
imum of 2� coverage of the genome (primers available upon
request); PCR products were purified using ExoSAP-It (U.S.
Biological, Swampscott, MA) and sequenced by the University of
Chicago Cancer Research Center DNA Sequencing Facility. The
resulting sequences were assembled using Lasergene SeqMan
(DNAStar, Inc., Madison, WI). Comparison of the JACS-K ge-
nome sequence (GenBank accession no. GU385905) to that of
its ancestral strain JACS (GenBank accession no. FJ849058)
revealed the presence of one nonsynonymous mutation,
A100T, within the F coding region and a synonymous mutation
at nucleotide position 4784. The nonsynonymous mutation oc-
curs at a position documented as lowly conserved (15, 9).

Both the JACS-K strain and the ancestor JACS strain were
plated on the native host E. coli C (provided by C. Burch,
University of North Carolina) and E. coli K-12 (ATCC 25404;
obtained from ATCC) using the following protocol: 100 �l of
phage, 3 ml 0.5% LB agar, and 1 ml turbid bacterial culture
was overlaid on a 1.7% LB agar plate. Plates were incubated
overnight at 37°C. While the JACS-K strain was capable of
forming plaques on both E. coli host plates, the ancestral JACS
strain was not. The JACS-K plaques on E. coli K-12 were
significantly smaller than the plaques observed on the E. coli C
plates, similar to those described previously (7). Over 40 rep-
licates were conducted to ensure reproducibility of the mu-
tant’s infectivity of E. coli K-12 and plaque size. The adsorption
rates for both the ancestor JACS strain and the JACS-K mu-
tant were assessed by performing an adsorption rate assay
(using the methodology described previously by Bull et al. [5])
and are listed in Table 1. The adsorption rate of the JACS-K
mutant by the E. coli K-12 host is �40 times worse than that
possible by the E. coli C host.

A mutant strain, �X174-100, was created to confer that the
mutation observed was responsible for the ability of JACS-K to
infect K-12. The protocol for creating this mutant is as follows.
The JACS ancestor strain was digested using the restriction
enzymes SspI and PshAI (New England Biolabs, Ipswich,
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MA), and a primer (synthesized by Eurofins MWG Operon,
Huntsville, AL) containing ACT at the 100th codon position of
F was inserted using T4 ligase (Promega, Madison, WI). E. coli
C was used as the competent cell grown overnight in Fraser
and Jerrel’s glycerol media before being transferred to fresh
media, a slight modification to the otherwise used Benzinger,
Kleber, and Huskey protocol (2). Construction of the sphero-
plast followed the protocol previously described (2). Visible
plaques were observed for the �X174-100 mutant plated on
both E. coli C and K-12, exhibiting the number and morphol-
ogy of plaques comparable to those observed for the JACS-K
strain. This suggests that the change from the nonpolar alanine
to the highly reactive threonine within the F gene is responsi-
ble for the expanded host range.

Referencing the structural map of �X174’s F protein re-
vealed that the altered amino acid is in fact at the position
furthest from the viral center (17). Thus, the JACS-K mutant,
in contrast with the JACS strain, has a very reactive threonine
on its virion surface which can readily have its terminal hy-
droxyl group phosphorylated (13). In a recent study, it was
found that the E. coli K-12 infecting coliphages HK022 and
lambda are phosphorylated at one or more of their tyrosine

residues (13), and the penetration of E. coli K-12 by these
phages is dependent on the energy supplied by phosphoryla-
tion (1). To verify if indeed the phosphorylation of the new
residue on the JACS-K mutant surface was responsible for the
mutant’s ability to infect E. coli K-12, analogous to the means
in which HK022 and lambda infect this same host, we inhibited
phosphorylation using carbonyl cyanide m-chlorophenylhydra-
zone (CCCP). CCCP uncouples phosphorylation and prevents
lambda from infecting E. coli K-12 (1), without interfering with
plaque formation or reducing the viability of the bacterial cells
(4). Figure 1 illustrates the protocol used. As a result, none of
the replicate JACS-K strains produced plaques when plated
with E. coli K-12, indicating that phosphorylation is imperative
to its ability to infect this host.

The topology of the virion particle and the results of the
�X174-F mutation suggest that converting the surrounding
codons into amino acids that can be phosphorylated will result
in entry into E. coli K-12. Three additional mutants were cre-
ated, �X174-101, �X174-102, and �X174-100/101/102, indi-
cating the change in amino acids at positions 101, 102, and 100,
101, and 102. All three were found to successfully infect E. coli
C and E. coli K-12, although once again, pinpoint plaques were
observed, with adsorption rates comparable to those of the
�X174-100 strain. Table 2 indicates the changes incorporated,
the adsorption rates, and burst sizes. The burst size observed
here is comparable to that previously reported for 40 phage/
infected cell (3). Figure 2 presents the average plaque size and
standard error for each mutant.

The phosphorylation of the amino acid on the viral capsid
appears to have a significant role in the adsorption pathway of
the JACS-K isolate, as confirmed using the same experimental

TABLE 1. Adsorption rates of the ancestor JACS and JACS-K
strains in both hosts

Viral strain
Adsorption rate (ml/min)

E. coli C E. coli K-12

JACS 1.94 � 10�10 0
JACS-K 1.91 � 10�10 4.98 � 10�11

FIG. 1. Dephosphorylation experimental protocol. (1) CCCP was diluted in equal volumes of 0.01 M Tris, 0.01 M MgSO4, and 0.01 M CaCl2
to a final concentration of 2 M. (2) A total of 1 ml CCCP was added to five experimental liquid cultures containing 1 ml E. coli K-12 and to two
control liquid cultures containing 1 ml E. coli C, and the cultures were incubated at 37°C. (3) After 5 min, 100 �l of JACS-K lysate was added to
each experimental culture and one of the control tubes. A total of 100 �l of the ancestor �X174 JACS strain was added to the remaining control
tube. (4) DNA attachment in the experimental tubes was terminated every minute for 5 min by adding cold 0.3 M NaCl. (5) DNA attachment in
the control tubes was terminated after 5 min using the same method used in step 4. (6) The liquid cultures were centrifuged, and the pellet (bacteria
plus any absorbed phage) was resuspended in 1 ml of saline. (7) The cultures were plated using the plating method described previously,
substituting 100 �l of the suspended pellet for 100 �l of phage lysate.
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protocol employed to verify lambda’s entry mechanism. While
the small plaques and lower adsorption rate of the JACS-K
mutant initially suggested that a single phosphorylation event
is not optimal for infection to occur, the results for �X174-
100/101/102 suggest that additional conversion sites do not
increase plaque size or adsorption rate. While lambda has
several tyrosine residues that are phosphorylated during the
lysogenic pathway, controlling the specific timing of cell lysis
(13), it benefits by encoding a protein kinase that can auto-
phosphorylate as well as dephosphorylate, allowing lambda to
balance the lysogenization rate with its own growth rate (13).
�X174 does not encode a kinase, limiting its control of E. coli
K-12 lysis.

The ability to be phosphorylated supports a new pathway of
adsorption. Despite this, the fact that only a single mutation is
necessary for the �X174 JACS strain to expand its host range
suggests that this alternative means of entry into nonnative
hosts may be exploited in nature, analogous to observations
made within �6 (8). Within bacteria, it has been observed
that the alteration of just one or two amino acids into a
phosphoprotein can dramatically alter the protein’s func-
tion, a mechanism frequently employed (12). Interestingly,
the threonine at amino acid position 100 in the F protein is
ubiquitous among the 66 complete �X174 genomic se-
quences available in GenBank. Moreover, the presence of
Ser101 or Ser102 appears in five publicly available genomes
(GenBank accession no. AF274751, M14428, DQ079892,
EF380013, and EF380025). As the majority of �X174 experi-
ments in the literature examine the phage’s infection of bacterial

strains in which the LPS is present on the host’s outer membrane,
the ability to infect K-12 has been largely ignored.

The JACS-K isolate was propagated in triplicate for 21 days
through liquid culture with naïve E. coli C only, E. coli K-12
only, and alternating hosts in an effort to explore the selection
upon the strain given the different host systems. While no
difference in phenotype was observed, all three lineages main-
tained their ability to infect K-12. Increased fitness, at least
with respect to traits preferable within the laboratory, like
plaque size, may require more than a means of entry to infect
E. coli K-12 at a rate comparable to those of its native hosts.
We hypothesize that the acquisition of the same mutation
observed here (or one conveying the ability to phosphorylate)
occurred in the study of Bone and Dowell (3) during the
phage’s replication within the intermediary mutant E. coli K-12
host.

This work was partially supported by the Loyola University Chicago
WISER fellowship and by the Loyola University Chicago Biology de-
partment (to J.C.).
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