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Enabling Greater Access to Home Meal Delivery

Leo Gala, Mike Hewitt 1

Department of Industrial and Systems Engineering
Rochester Institute of Technology

Rochester, NY 14534, U.S.A, Email: mrheie@rit.edu

Maciek Nowak

Information Systems and Operations Management
Graduate School of Business
Loyola University Chicago

Abstract

Non-profit organizations like the Meals On Wheels (MOW) association of America
prepare and deliver meals, typically daily, to approximately one million homebound
citizens in the United States alone. However, many MOW agencies are facing a
steadily increasing number of clients requesting meal service without an increase
in resources (either financial or human). One strategy for accommodating these
requests is to deliver multiple (frozen) meals at a time and thus make fewer deliveries.
However, many of the stakeholders (funders, volunteers, meal recipients) value the
relationships that are developed by having a client receive daily deliveries from the
same volunteer. Further, meal recipients may be concerned with the quality of food
delivered through a frozen meal. In this paper, we develop a method for introducing
consolidation into home meal delivery while minimizing operational disruptions and
maintaining client satisfaction. With an extensive computational study, the savings
associated with various levels and types of disruptions are detailed.

Keywords: OR in health services, transportation, integer programming, heuristics.

1. Introduction

On a daily basis, non-profit organizations like the Meals On Wheels Association of
America (MOW) deliver approximately one million meals throughout communities
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in the United States. Within each of these communities, many individuals aged 60
and older rely on government funded programs like MOW to meet their dietary needs
for sustaining a healthy lifestyle. In addition to the aging population, MOW serves
individuals who are incapable of sustaining themselves due to medical limitations.
The assistance MOW provides enables their clients to remain comfortable in their
homes instead of requiring them to relocate to subsidized housing or nursing homes,
either at personal or government expense. Individuals who wish to receive free or
reduced-cost meal assistance must qualify, where the qualification process also deter-
mines the number of meals the individual should receive in a week. To deliver meals,
MOW relies on a workforce comprised of both professionals and volunteers from each
community, and routes between 800,000 and 1.2 million volunteers annually in the
United States [17].

MOW is seeing is a steadily increasing demand for meals. From 1980 to 2002,
the demand for meals in the United States increased by 290%. While contributions
from private organizations and cost reduction efforts have helped MOW to increase
the number of meals it delivers, their capabilities have not grown at the same rate
as demand. As a result, MOW agencies are often forced to put some or all of a
clients deliveries on a wait-list, although this is clearly undesirable. Similarly, MOW
anticipates a significant increase in the number of seniors in America that face the
threat of hunger (8.3. million in 2010, 9.5 million projected in 2025), and has stated
that its vision is to end senior hunger by 2020 [18].

One strategy for reducing costs and increasing capacity that some MOW agencies
have undertaken (while there is a national association, agencies are locally owned
and operated) is to deliver frozen meals. An official from New York City stated, “for
us it’s really been about creating a more efficient system and not having anyone on
a waiting list.” That same official mentioned that by delivering frozen meals twice
a week to 40% of its recipients they were able to reduce the number of professional
drivers they paid from seventeen to three [14]. Similarly, delivering frozen meals has
enabled MOW agencies to serve recipients in rural areas that, given limited driver
resources, were too costly to reach on a daily basis [12]. By using frozen meals, MOW
agencies find the benefits of consolidating deliveries that many other transportation
providers have already discovered. However, while frozen meals allow for considerable
cost savings, there are several operational challenges.

While the primary purpose of a MOW agency is to provide nutritious meals to
those who can not provide one for themselves, many agencies and their supporters
(both volunteers and funders) also see themselves as providing human interactions
and relationships to those who may otherwise have little human contact [15]. As an
example, many MOW agencies like to invoke the slogan “more than just a meal.”
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Thus, while there are some clear efficiencies that can be gained by delivering frozen
meals, some funding agencies that support MOW programs are reticent to support
their delivery as they fear doing so will diminish the health monitoring capabilities of
Meals On Wheels. Further, many have claimed that the quality of the frozen meals
is simply inferior to the hot meals [8].

Like major parcel delivery companies such as FedEx and UPS, MOW faces the
problem of making home deliveries in large sized communities, containing demand
at varied locations, and with delivery routes limited by vehicle capacity. However,
while industry leaders in parcel delivery have the engineering and financial resources
to invest in technology that handles these routing scenarios and to answer strategic
what-if questions regarding how deliveries are made, many community based MOW
agencies do not. Creating a good set of routes that are repeated on a daily basis can
be difficult enough without an advanced routing algorithm. Consolidating deliveries
on those routes may require the creation of a unique route for each day of service,
putting an even greater strain on the MOW agency’s limited operational resources.

The contribution of this paper is a methodology that MOW agencies can use
to effectively introduce frozen meal delivery while limiting operational disruption.
While this work is presented in the context of its inspiration, Meals On Wheels, the
methodology and results presented are pertinent to any organization that wishes to
quantify the tradeoffs between consolidating deliveries and maintaining high levels of
customer service, such as a parcel delivery or LTL carrier. In particular, the approach
presented here is configurable to the operational realities faced and quality metrics
valued by the MOW agencies. The focus is on a setting where clients currently
receive hot meals five days a week and the agency has an established set of delivery
routes that are executed daily. Based on those routes, this approach can maintain
consistency with historical operations by ensuring that a client remains on the same
route as before, and that clients are seen in the same order.

Introducing consolidation into daily delivery routes is reminiscent of vendor-
managed inventory or the Inventory Routing Problem [1, 5]. However, we consider
constraints that have not been included in the inventory routing problem. For ex-
ample, this approach can support fixed routes [4, 9] by serving the clients in the
same order on every route. Such a restriction can have many operational advan-
tages, including making it easier to synchronize the meal preparation and vehicle
loading process. This problem is inherently periodic and thus shares characteristics
with the Periodic Vehicle Routing Problem (PVRP) [11]. However, like the work on
the PVRP with Service Choice [10], the number of times an individual is visited is
not an input to the model but a decision variable.

Some of the earliest work on the home meal delivery problem was presented in [3],

3



which used space-filling curves as the basis of a system that could be implemented on
two rolodex cards. While the approach presented here is fundamentally different, the
emphasis on operational ease is shared, as the focus is on minimizing the operational
disruptions associated with introducing consolidation into delivery operations. This
approach can also enforce various quality of service-type metrics. For an agency that
is concerned with the quality disparity between frozen and hot meals, this approach
can ensure that each client receives at least a minimum number of hot meals. For an
agency that wishes to maintain the relationships their drivers have with clients this
approach can enforce a maximum number of days between visits and that a client
is always visited by the same driver. Quality-of-service metrics were also studied in
the context of inventory routing in [7].

To determine the potential efficiencies associated with delivering frozen meals,
the problem of introducing consolidation is formulated as a mixed integer program
(MIP). Different variants of this MIP are considered, based on the constraints to be
enforced, e.g. fixed routes, a maximum number of days between deliveries to a client,
etc. A characteristic of the problem is exploited to limit the solution space, allowing
for shorter computational times. Transportation costs incurred by executing daily
routes with and without consolidation are compared in an extensive computational
analysis that details the constraints that most impact transportation costs. It is
found that there is virtually no impact on the savings from consolidation when op-
erational disruptions are prohibited. The savings decrease as quality of service is
more strictly enforced, but even when consolidating just two deliveries into one for
each customer, transportation costs are reduced by 10%. For MOW agencies that
are operating at such tight margins, those savings can have a very significant impact.
Finally, it is shown that through consolidation, more space may be created on the
daily routes to service additional clients while still cutting transportation costs.

The remainder of this paper is organized as follows. In Section 2, the problem
of introducing consolidation is presented along with several constraints used to limit
operational disruption and client dissatisfaction. In Section 3 the heuristic used in
this study is developed. Section 4 contains the results of an extensive computational
study of the benefits associated with consolidation under various settings. Finally,
Section 5 provides managerial insights based on the results.

2. Home Meal Consolidation and Delivery Problem

We next describe the problem of introducing consolidation into routes that are ex-
ecuted by a set of delivery vehicles, v ∈ V , every day, t, over a planning horizon,
T, and how this problem is modeled as a mixed integer program (MIP). One week
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consisting of five days is used for this problem (thus |T | = 5). In this work, it is
assumed that the solution for a week can be used repeatedly to provide service over
a longer period, such that frozen meals left at the end of one week may be used in
the following week. Each day the set of delivery vehicles begin at a common depot,
D, visiting a set of clients, I, delivering a single meal to each, and returning to the
depot. To preserve the quality of the meals delivered, they are stored in a container
which can hold at most K meals. In the computational study in Section 4, K is the
same for both frozen and hot meals. The cost of traveling from client i to client j is
denoted by cij.

By delivering frozen meals and, in particular, multiple meals on a single day,
the delivery route may skip a client on certain days. Thus, the decision variable
yvti ∈ {0, 1} is defined to denote whether or not vehicle v visits client i ∈ I on day
t ∈ T, qvtci ∈ Z to represent the number of cold meals delivered by vehicle v, and
qvthi ∈ {0, 1} the number of hot meals delivered by vehicle v. Because hot and frozen
meals can not be in the same meal container (and each vehicle carries at most one
container), delivering a hot meal to one client on day t precludes delivering frozen
meals to any client that day by that vehicle. Thus, the variable rvt ∈ {0, 1} is defined
to indicate whether or not vehicle v delivers hot meals on day t. The decision variable
xvt
ij ∈ {0, 1} is defined to denote whether vehicle v travels from location i ∈ D ∪ I

to location j ∈ D ∪ I on day t ∈ T. Finally, define zvi ∈ {0, 1} to represent whether
client i ∈ I is served by vehicle v ∈ V. The baseline home meal consolidation and
delivery problem (HMCD) problem is then to:

minimize
∑
v∈V

∑
t∈T

∑
i∈I∪D

∑
j∈I∪D

cijx
vt
ij

subject to ∑
v∈V

zvi = 1 ∀i ∈ I, (1)

yvti ≤ zvi ∀i ∈ I, v ∈ V, t ∈ T, (2)∑
v∈V

∑
t∈T

qvtic + qvthi = |T | ∀i ∈ I, (3)

qvtic ≤ |T |yvti ∀i ∈ I, v ∈ V, t ∈ T,

qvtih ≤ yvti ∀i ∈ I, v ∈ V, t ∈ T, (4)

rvt ≤ qvtih ≤ rvt ∀i ∈ I, v ∈ V, t ∈ T, (5)

qvtic ≤ |T | − |T |rvt ∀i ∈ I, v ∈ V, t ∈ T, (6)
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∑
i∈I

qvtic + qvtih ≤ K ∀v ∈ V, t ∈ T, (7)

∑
j∈I

xvt
ij = yvti ∀i ∈ I, v ∈ V, t ∈ T, (8)

∑
j∈I

xvt
ji = yvti ∀i ∈ I, v ∈ V, t ∈ T, (9)

∑
j∈I∪D

xvt
ij =

∑
j∈I∪D

xvt
ji ∀i ∈ I, v ∈ V, t ∈ T, (10)

∑
i∈S

∑
j∈S

xvt
ij ≤ |S| − 1, ∀S ⊆ I ∪D, |D| ≥ 2,∀v ∈ V, t ∈ T. (11)

The objective is to minimize the total cost associated with travel. Constraints (1)
and (2) ensure that each client is seen by exactly one delivery person during the week.
To help foster relationships between clients and delivery persons, as was shown to be
beneficial in [19], when a client is moved between vehicles on one day, she is moved
to that vehicle on all days, ensuring that each client is seen by at most one delivery
person each week. Constraints (3) ensure that each client receives a meal for every
day of the time horizon, whereas constraints (4) ensure that a client is not delivered
a hot or cold meal on a day unless the delivery vehicle visits them on that day. Note
that an individual can receive at most |T | frozen meals and at most one hot meal
in one delivery. Constraints (5) and (6) together ensure that if one client receives
a hot meal on day t then no other client receives a frozen meal on that day. Note
constraints (5) also ensure that when hot meals are delivered on a day, every client
receives a hot meal that day. Constraints (7) ensure that vehicle capacity for meals
is not exceeded. Constraints (8, 9, 10, and 11) are standard routing constraints.

While the HMCD ensures that each client receives five meals a week, it requires
little else. From the delivery agencies perspective, it may yield delivery routes that
vary significantly by day, which could complicate administrative tasks. From the
client’s perspective, the use of frozen meals limits the number of deliveries and the
time for interaction between client and volunteer, harming this relationship. Also,
some clients only receive frozen meals, which they may enjoy less than hot meals.
Thus, we next discuss constraints that can be added to the model to mitigate neg-
ative side effects associated with delivering frozen meals. Then, in Section 4 an
extensive computational study is reported regarding how different combinations of
these constraints impact costs.
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2.1 Minimizing Operational Disruption

The modifications to the model discussed in this section are meant to minimize the
degree to which consolidation can change the daily operations of the Meals On Wheels
agency. This can be done by ensuring that the new set of routes for the delivery
vehicles follow a pre-defined order throughout the week, by fixing the assignment of
clients to drivers, or by maintaining consistency with respect to the order clients are
visited in the current daily routes.

Fixed Route: Fixed routes, or a set of routes that visit locations in the same order
every day, often offer advantages over routes that vary by day. For home meal
delivery, a fixed route can make it easier to synchronize the meal preparation and
vehicle loading process. Similarly, while some routes are executed by volunteers,
some are done by professional drivers, in which case the same driver executes the
route every day. In this case, even though some clients may be skipped on some
days, ensuring that they are always visited in the same order can make executing the
delivery route easier. Thus, to ensure the delivery routes follow a fixed ordering of
clients, we define the variable ovij ∈ {0, 1} to indicate whether client i is visited before
client j by delivery vehicle v on days they are both visited and add the following
constraints to the HMCD:

ovij + ovji = 1 ∀i, j ∈ I, v ∈ V, (12)

ovij + ovjk + ovki ≤ 2 ∀i, j, k ∈ I, v ∈ V, (13)

xvt
ij ≤ ovij ∀i, j ∈ I, v ∈ V, t ∈ T. (14)

Constraints (12) and (13) are standard ordering constraints, with the first ensuring
that either i precedes j or j precedes i, and the second ensuring for a triplet i, j, k
the “ordering” i → j → k → i is not allowed. Finally, constraints (14) ensure that
daily travel corresponds to the ordering prescribed for the week. These are referred
to as the Fixed Route constraints.

Client Consistency: The model focuses on introducing consolidation into routes that
are already executed on a daily basis by the same MOW provider, and, typically,
in the same order on every day. However, the HMCD, even with the fixed route
constraints above, may change the vehicle, and therefore the driver, that services a
client. A driver may have developed a bond with his or her clients and disrupting
that bond in the interest of operational efficiency may be discouraged. Therefore, it
may be of interest to keep the same clients assigned to the same vehicles as on the
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currently established routes. Consistency with clients is maintained by adding the
constraint:

yvti = 0 ∀t ∈ T, v ∈ V, i ∈ I if i is not currently visited by v. (15)

This is referred to as the Client Consistency constraint. When these constraints are
added to the HMCD, it separates into a single-vehicle variant of the problem for each
vehicle.

Order Consistency: The HMCD may also change the order in which clients are visited
on currently established routes, even with the fixed route constraints above. As with
the developed client relationship, a driver may have an established route that she
is familiar with and disrupting that route may add some intangible operating costs.
Therefore, it may be of interest to keep the order in which clients are visited the
same as on the currently established routes. Consistency with order of clients is
maintained by adding the constraint:

xvt
ij = 0 ∀t ∈ T, v ∈ V, i, j ∈ I if j visited before i in current route. (16)

This is referred to as the Order Consistency constraint.

2.2 Minimizing Client Dissatisfaction

While consolidation has been shown to yield tremendous savings in many settings,
Meals On Wheels is primarily focused on the wellness and betterment of its clients.
Thus, the client experience within a meal delivery program that delivers frozen meals
is of utmost importance. The human interactions and relationships offered by Meals
On Wheels may be maintained by limiting the number of days that can elapse be-
tween visits. Also, a minimum may be placed on the number of hot meals that each
client receives as most prefer these to frozen meals.

Delivery Frequency: The yti variables may be used to derive a constraint ensuring
that a client must be seen at least once within a specific span of days, ensuring that
there are never too many days between visits. For example, to allow no more than
two days between visits (recall that |T | = 5), the following constraints are added to
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the HMCD: ∑
v∈V

yv1i +
∑
v∈V

yv2i +
∑
v∈V

yv3i ≥ 1 ∀i ∈ I,∑
v∈V

yv2i +
∑
v∈V

yv3i +
∑
v∈V

yv4i ≥ 1 ∀i ∈ I,∑
v∈V

yv3i +
∑
v∈V

yv4i +
∑
v∈V

yv5i ≥ 1 ∀i ∈ I,∑
v∈V

yv4i +
∑
v∈V

yv5i +
∑
v∈V

yv1i ≥ 1 ∀i ∈ I,∑
v∈V

yv5i +
∑
v∈V

yv1i +
∑
v∈V

yv2i ≥ 1 ∀i ∈ I. (17)

These types of constraints are referred to as Delivery Frequency constraints. Note
that because each yvti is binary, the valid inequality yv1i + yv2i + yv3i + yv4i + yv5i ≥ 2
may be derived from these constraints with a rounding argument.

Hot Meal Delivery: To ensure that at least H hot meals are delivered to each indi-
vidual, the following constraint is added to the HMCD:∑

t∈T

qvtih ≥ H ∀i ∈ I, v ∈ V. (18)

This is referred to as the Hot Meal constraint.
Some analysis of these constraints can be useful in restricting the solution space

of the HMCD. By guaranteeing a minimum number of hot meals and a maximum
time between visits, the scheduling options are strictly limited. Specifically, a lemma
regarding the schedule follows:

Lemma 2.1. Given a time horizon of five days (|T | = 5), if at least two hot meals
must be delivered to each individual (H = 2) and at most two days are allowed between
visits, then there is an optimal solution to HMCD where hot meals are delivered on
days two and four (Tuesday and Thursday).

Proof Consider a solution (q̄c, q̄h, x̄, ȳ, r̄) to the HMCD where at least two hot meals
are delivered and at most two days pass between visits. Suppose hot meals are
delivered on days t

′
, t

′′
. For vehicle v, set the value of all variables associated with

day two equal to the values of the variables associated with t
′

and day four variables
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equal to the values of the t
′′

variables, while similarly setting the variables associated
with t

′
equal to the day two variables and t

′′
equal to day four (i.e. set xv2

ij =

x̄vt
′

ij , x
vt

′

ij = x̄v2
ij , q

v2
ic = q̄vt

′

ic , qvt
′

ic = q̄v2ic , q
v2
ih = q̄vt

′

ih , qvt
′

ih = q̄v2ih , r
v2 = r̄vt

′
, rvt

′
= r̄v2, yv2i =

ȳvt
′

i , yvt
′

i = ȳv2i and similarly for days four and t
′′
). This may be repeated for all

vehicles v ∈ V . Changing the day on which a route is executed does not have an
effect on the cost of that route, so the cost of this new solution is the same as the
original solution. This new solution is still feasible because the number of hot meals
delivered to each client during the week remains the same. Also, by ensuring everyone
is delivered to on days two and four, there can be at most two days between visits
(days five and one if an individual does not receive a delivery on those days). Thus,
any optimal solution to the HMCD can be translated to a solution where hot meals
are delivered on days two and four, and because the cost of that new solution is the
same, it is also optimal. �

For instances of the HMCD where the premise of Lemma 2.1 applies, we can fix
rv2 = rv4 = 1, rv1 = rv3 = rv5 = 0 for all v ∈ V , which in turn reduces the problem to
one where decisions only need to be made for days one, three, and five. Similarly, one
can argue that if three hot meals must be delivered to each individual, then there is
an optimal solution where they are delivered on days one, three, and five. While this
lemma has algorithmic implications in that instances of the HMCD may be solved in
much less time by fixing rvt variables, it also has practical implications. Specifically,
this lemma implies that an agency only needs to prepare hot meals on specific days
and thus resource requirements for meal preparation may be re-allocated.

3. Introducing consolidation into daily delivery routes

One of two algorithms is used to introduce consolidation into daily delivery routes,
with the choice of algorithm dependent on whether Client Consistency is enforced.
Each algorithm is based on solving restrictions of the HMCD, and thus can be used
(unchanged) when the model is extended to include other constraints such as the
Fixed Route or Delivery Frequency constraints. In describing these algorithms, the
constraints described in Sections 2.1 and 2.2 are collectively referred to as Opera-
tional Considerations. As alluded to above, when Lemma 2.1 applies, restrictions
of the HMCD are further constrained by fixing the appropriate rvt variables to 1 or 0.

With Client Consistency : As noted previously, when Client Consistency is enforced,
such that the constraints

yvti = 0 ∀t ∈ T, v ∈ V, i ∈ I if i is not currently visited by v
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are added to the HMCD, then the problem separates into a single-vehicle variant of
the problem for each vehicle. In this case, consolidation is achieved by solving |V |
restrictions of the HMCD, one for each vehicle, which we do to (near-) optimality
with a commercial integer programming software package. Specifically, Algorithm 1
is executed.

Algorithm 1 Introducing consolidation while maintaining driver-client assignments

Require: Set of Operational Considerations to enforce
1: Given the pre-existing daily routes used by the MOW provider, create initial

solution where these routes are executed every day of the time horizon
2: for all v ∈ V do
3: Create instance of HMCD where the set of clients, I, corresponds to those

visited by v in daily routes
4: Add to HMCD constraints that model Operational Considerations
5: Solve resulting instance of HMCD
6: end for

Without Client Consistency : When Client Consistency is not enforced, the HMCD
does not separate by vehicle, leaving an optimization problem that, for realistically-
sized instances, is difficult to solve to near-optimality with off-the-shelf software. As
a result, to introduce consolidation into daily delivery routes, a heuristic is used
that repeatedly solves restricted versions of the HMCD in which certain values are
fixed during execution of the heuristic. These restricted versions are created by
first partitioning the set of vehicles into subsets, V̄1, V̄2, . . . , V̄k ⊆ V, and then, the
clients seen by vehicles in a subset V̄i, I(V̄i), are further partitioned into subsets,
Ī1(V̄i), . . . , Īk(V̄i) ⊆ I(V̄ ). Given these subsets, the following variables of the HMCD
are fixed to their values in the current solution:

• zvi , y
vt
i , x

vt
ij , ∀v ∈ V \ V̄

• zvi , y
vt
i , ∀v ∈ V̄ , i ∈ I(V̄ ) \ Ī(V̄ ).

That is, all but the delivery quantity variables are fixed for a subset of vehicles.
Then, for the remainder of the vehicles, a subset of the client-assignment variables
are fixed (but none of the routing variables are fixed). This is done in the context of
executing Algorithm 2

The k-means clustering algorithm [16] is used to partition the vehicles and clients
into the subsets. The purpose of k-means clustering is to partition n data points into
k clusters such that each data point is in the cluster whose mean is closest. While
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Algorithm 2 Introducing consolidation while allowing driver-client assignments to
change

Require: Set of Operational Considerations to enforce
1: Given the pre-existing daily routes used by the MOW provider, create initial

solution where these routes are executed every day of the time horizon
2: while not stop do
3: Partition vehicles into groups V̄1, V̄2, . . . , V̄k

4: for all vehicle groups V̄i do
5: Partition clients I(V̄i) delivered to by some v ∈ V̄i into groups

Ī1(V̄i), . . . , Īk(V̄i)
6: for all client groups Ij(V̄i) do
7: Formulate HMCD with constraints that model Operational Considera-

tions
8: Fix variables zvi , y

vt
i , x

vt
ij , ∀v ∈ V \ V̄ and then zvi , y

vt
i , ∀v ∈ V̄ , i ∈

I(V̄ ) \ Ī(V̄ )
9: Solve resulting instance to get new solution
10: if improved solution is found then
11: Set current solution to improved solution
12: end if
13: end for
14: end for
15: end while
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determining the optimal set of k clusters for a fixed k is NP-Hard, many computa-
tionally effective and efficient heuristics have been developed. In particular, we use
the heuristic k-means++ [2] which has been shown to have approximation guaran-
tees. To use the k-means++ algorithm to partition a set of objects into groups each
object must be represented by a data point. Once this representation of each object
is determined, the k-means++ algorithm may be executed to cluster the data points
into groups. The representations for vehicles and clients is discussed next.

Partitioning vehicles: To partition the vehicles into groups a 2|T |-dimensional data
point is created for each vehicle containing the average (x, y) coordinates for that ve-
hicle for each day over the problem horizon. Assume the coordinates (xi, yi) are given
for each client and that vehicle v sees mt clients on day t. The average coordinates for
each day are calculated as avgtx =

∑
i seen on t x

i/mt and avgty =
∑

i seen on t y
i/mt.

The data point for vehicle v is then [avg1x avg1y . . . avg
|T |
x avg

|T |
y ]. As an exam-

ple, consider a two day planning horizon (T = 2) and a vehicle that on day one
visits clients at locations (20, 40), (10, 90), and (0,−10) and on day two visits clients
at locations (10, 10), and (50, 50). Then, the data point for that vehicle would be
[10 30 30 30 ].
Partitioning clients: To partition the clients into groups, each client is represented
by a 2-dimensional data point that contains the (x, y) coordinates for that client.

While the k-means++ algorithm is the primary mechanism for partitioning ve-
hicles and clients into groups, to introduce diversity into the search, the heuristic
periodically partitions them randomly.

4. Computational Analysis

For these experiments, eight of the Christofides instances are modified from [6],
specifically, instances one through four and six through nine. There are then two
instances each with 50, 75, 100 and 150 customers. The instances are modified so
that each customer has a demand of one unit per day (in our context, a meal) and
each vehicle has a capacity of eight. The number of vehicles is adjusted so that the
utilization of each vehicle is roughly 90%, with 7, 10, 13 and 20 vehicles for the
problems in increasing size. As the algorithm indicates, the initial solution is the
pre-existing routes daily routes used by the provider executed on each day of the
problem horizon, such that each client receives a hot meal on each day. Given that
pre-existing routes do not exist for the modified Christofides instances, a heuristic
presented in [13] is used to create these daily routes with costs that are within 5%
of the best known solution for each of the eight original Christofides instances. Note
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that most MOW providers do not utilize advanced routing techniques such as this
heuristic, and thus their current daily routes may not be as cost efficient.

After the heuristic establishes the baseline daily routes providing service to every
client on each day, either Algorithm 1 or 2 is applied, depending on which is ap-
propriate under the various conditions described in Section 2 and comparisons may
be made with the baseline routes. When solving integer programs in the context of
executing either Algorithm 1 or 2, Gurobi 4.6 is used with the optimality tolerance
parameter set to 1%. When solving instances of HMCD in the course of executing
Algorithm 1, solution time is limited to ten minutes. When solving restrictions of
HMCD in the course of executing Algorithm 2, solution time is limited to one minute.
Finally, the complete runtime for Algorithm 2 is limited to one hour.

Two questions are explored in this computational analysis. The first is, given
a set of clients, I, that are currently being served, how much money can be saved
by delivering frozen meals to the clients in I, as compared to delivering a hot meal
every day to each of those clients? The second is, given a set of clients, I, that
are currently being served and a set of clients, U, that are currently unserved, by
delivering frozen meals how many clients in U can be served a meal while still saving
money, as compared to delivering a hot meal every day to each client in I? These
questions are answered in the next two subsections for the different settings discussed
in Sections 2.1 and 2.2.

4.1 Savings through consolidation

Table 1 presents several metrics for instances with consolidation that have no addi-
tional constraints and instances with the constraints used for minimizing operational
disruption. These metrics include the averages of the savings in travel cost compared
to the baseline case where only hot meals are delivered, and the number of hot meals
and visits a client receives in a five day week. As might be expected, using frozen
meals to allow for load consolidation leads to considerable cost savings. However,
these results show that cost savings may be found without significantly altering cur-
rent operations. When implementing the constraints to minimize disruption from
current operations, the cost savings are virtually equivalent, as are the other metrics
of interest.

These findings indicate that the cost savings related to consolidation are not a
result of major changes in the routes used to deliver service. The heuristic used
produces base daily routes that deliver hot meals every day that are within 5% of
the best known solution, with little room for improvement from swapping clients
between routes or reordering them within a route. Consolidation of deliveries results
in the elimination of clients from routes on certain days and the routes are robust
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enough that removing stops does not open up savings opportunities associated with
altering the route in other ways. Thus, the order of clients served and the assignment
of clients to drivers may be maintained while travel costs are reduced by skipping
multiple stops. If implemented in a real world setting with lower quality routes,
this algorithm may find more opportunities to improve the solution through route
adjustments. However, these results show that consolidation can lead to savings
even without making those adjustments. From a managerial perspective, this is
important as it indicates that operational costs may be reduced with minimal change
management required for the pool of drivers.

Constraint Cost savings
Hot meals 
per client

Visits per 
client

No operational constraints 21.21% 1.313 3.061

Fixed route 21.14% 1.316 3.056

Client consistency 21.21% 1.309 3.035

Order consistency 21.04% 1.308 3.036

All constraints 21.03% 1.307 3.036

Table 1: Evaluation of constraints minimizing operation disruption

While the impact on drivers may be minimized, consolidation leads to clients
receiving more frozen meals and fewer visits. Table 2 presents the results when
constraints are placed on the amount that a client may be inconvenienced through
consolidation, attempting to limit dissatisfaction with the MOW service. Tests were
not run with certain combinations of minimum hot meals and maximum days between
visits as they were not feasible (e.g., four frozen meals must be delivered the day
before there are three days between visits). These constraints have a much greater
impact on the savings associated with consolidation than the operational constraints.
As might be expected, the savings decrease as more hot meals are required per week
and less consolidation is allowed. The minimum number of hot meals allowed by the
constraints are delivered to the clients for each constraint setting. The savings also
increased as more days were allowed between visits. However, a 10% cost savings still
results when a minimum of three hot meals are required. Allowing two frozen meals
per customer is equivalent to removing one day of service to each customer. While
this is not a drastic adjustment to the MOW operations, with such tight margins,
even a savings of 10% can be significant.

To see the effect of fixing rvt variables when Lemma 2.1 holds, Algorithm 2 was run
twice for each of the instances, once with the variables fixed and once without. This
was done for the setting with a maximum of two days between service, a minimum
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Maximum days 
between service

Minimum number 
of hot meals

Cost 
savings

Hot meals 
per client

Visits per 
client

0 22.6% 0.03 3.03
1 20.8% 1.00 3.09
2 11.4% 2.03 4.00
3 10.2% 3.00 4.01
0 31.3% 0.01 2.09
1 22.0% 1.02 3.01
2 19.6% 2.00 3.12
0 32.7% 0.02 2.03
1 30.7% 1.00 2.07

1

2

3

Table 2: Evaluation of constraints minimizing client dissatisfaction

of two hot meals per client, and no additional operational constraints. For each
execution and instance, Algorithm 2 found the same solution. However, with the
rvt variables fixed, Algorithm 2 was able to find that solution an average of almost
eight minutes faster than when the variables were not fixed. Similarly, fixing the
rvt variables enabled Gurobi to solve instances of the HMCD in much less time, as
evidenced by the fact that Algorithm 2 was able to execute 48% more iterations in
one hour when doing so.

4.2 Expanding the client set

For these experiments, initial daily routes are again generated for each instance.
Then, assuming |I| clients are in an instance, 0.1 ∗ |I| new clients are randomly
distributed across the region spanned by the original |I| clients. All of these new
clients are placed on one route for a “dummy” vehicle, wherein the transportation
costs for this route are multiplied by a large number. Algorithm 2 is then executed
on this instance, with the dummy vehicle included in each vehicle subset and each
client subset containing all of the clients served by this vehicle. Thus, when solving
restrictions of the HMCD in the course of executing Algorithm 2, clients may be
moved from one real vehicle to another, as well as from the dummy vehicle to a
real vehicle. By modeling a “waiting list” of clients with this dummy vehicle, it is
possible that a client only receives one or two meals over the time horizon. This is
in line with how agencies operate, as some clients may be assigned delivery on fewer
than five days a week if that is what the current routes will allow.

Table 3 presents several metrics to evaluate the addition of new clients when using
consolidation. These metrics are presented for the four problem sizes, defined by the
number of vehicles used to deliver the meals. The first values show the increase in

16



the total number of meals served when the new clients are added, as well as the
average number of additional meals that each vehicle delivers. As the problem size
increases the total number of additional meals served increases, while the efficiency
of the vehicles decreases. The heuristic is effective with the larger problems, but as
problem size increases it becomes difficult to find available capacity for as many new
clients on the routes.

Number of 
vehicles

Initial 
meals 
served

Meals served 
with additional 

clients

Additional 
meals per 

vehicle

7 250 268 2.59
10 375 398 2.66
13 500 520 2.33
20 750 787 1.90

Table 3: Additional meals served with increased client base

Table 4 presents the savings with consolidation over the baseline routes that
deliver all hot meals, comparing the instances with and without the additional clients.
Despite the increase in routing costs from serving additional clients, consolidation still
leads to considerable savings, while also allowing for the delivery of more meals. The
savings with additional clients increase with problem size as a smaller percentage
of the new clients may be inserted into the routes, leading to less of an increase
in routing costs. Conversely, the savings without additional clients decreases as
the problem size increases. Due to the larger problem size and solution space, the
heuristic cannot explore as many of the available opportunities for consolidation.

Number of 
vehicles

Savings without 
additional clients

Savings with 
additional 

clients

Baseline cost 
per meal

Cost per meal 
without additional 

clients

Cost per meal 
with additional 

clients

7 20.1% 9.8% 11.68 9.33 9.83
10 19.4% 11.6% 11.14 8.99 9.28
13 18.0% 14.9% 10.80 8.85 8.84
20 16.4% 14.0% 9.92 8.30 8.13

Table 4: Impact on consolidation savings with an increased client base

An analysis of the costs per meal for the three problem scenarios indicates not
only the considerable savings per meal from consolidation, but the reduction in cost
as the problem size increases. Further, while the cost per meal is initially greater
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with the new clients for the smallest problem size, it drops slightly below the cost
without the new clients for the problems with 13 and 20 vehicles (or 100 and 150
customers). In combination with the results in Table 3, this indicates that while
the heuristic can not find as much available capacity with the larger problem sizes,
efficiency is maintained with routing those additional clients that can be inserted.

5. Conclusion

In this paper a model and solution methodology are presented that will enable home
delivery companies to balance the efficiencies gained from consolidation with cus-
tomer satisfaction and ease of operation metrics. The results provide several insights
that may be beneficial to a MOW agency manager, or any transportation provider
interested in consolidating loads while minimizing operational disruption.

• The order in which clients are serviced and the assignment of drivers to clients
do not have to be altered in order to reduce costs through consolidation. This
may have a greater impact on other transportation providers focused more on
limiting operational disruption and less on customer service. However, while
MOW agencies may be more client-centric, a methodology that does not impact
their service providers is likely to be viewed favorably.

• While savings from consolidation decrease as customer service requirements
increase, a non-negligible benefit may be found even with a minimal amount
of consolidation. As described earlier, many MOW agencies are struggling to
remain operational with limited funding and even a small cost savings may be
what allows an agency to stay in business.

• Consolidation can lead to a reduction in transportation cost, while also allowing
for previously unserved clients to receive meals. Clients may be unhappy with
frozen meals; however, it may be easier to convince them of the benefit by
indicating how many additional people the program can aid when some hot
meals are replaced.

• The lemma implies that when certain customer service limits are in place,
an agency only needs to prepare hot meals on specific days. This allows for
operational planning to be simplified and for resource requirements for meal
preparation to be re-allocated.

As more people require the service provided by MOW and funding becomes harder
to find, the cost savings found through the use of frozen meals will be difficult to
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resist, despite some dissatisfaction on the part of clients. However, the methodol-
ogy presented in this paper may be used to make the transition easier by limiting
disruption to both clients and service providers.
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