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INI'RODUCTION 

The purpose of this study was to determine if electrosurgery 

caused abnormal effects on healing when mucoperiosteal incisions 

were made directly through the mucoperiosteum to alveolar bone. 

These incisions were compared histologically under the light micro­

scope to similar incisions using a scalpel. Previous studies were 

primarily concerned with the deleterious effects of electrosurgery 

performed in close proximity or momentary contact with-bone (Glick­

man, 1970; Ozimek, 1972; and Nixon, 1975). This investigation de­

viated from former studies by making deliberate incisions directly 

through the gingiva to the bone. This afforded a direct comparison 

of healing between electrosurgery and scalpel incisions. To my 

knowledge, no previous study has shown any results where contact 

with bone throughout the length of the incisions was used. 
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REVIEW OF THE LITERATURE 

In 1580, William Gilbert, the physician of Queen Elizabeth I, 

performed experiments in magnetism and electricity and coined the 

term "electricity." Another landmark in the history of electricity 

and electrosurgery occurred in 1746 when the Leyden Jar Capacitor 

was developed. Later, Oersted (1821) discovered electromagnetic 

induction. Nolet (1834) developed an inductance coil and demonstra­

ted the effects of electrical sparks. The discovery that the Leyden 

Jar discharged in an oscillating manner went to Henry in 1842. For­

ty-two years later in 1884, Hertz found these oscillations or wave­

forms could pass from a generator to a distant receiver without any 

connections. Three years prior in 1881, Morton combined all previous 

works by demonstrating an oscillating freqUency of 100,000 cps which 

did not shock the body or cause muscle contraction. In 1891, d'Ar­

sonval found the lower limit of 10,000 cps also contained a thermal 

component. 

A ground plate to distribute the surface charge was first 

used in 1919 by Iredell and Turner. Then, in 1923, Wyeth observed 

endothermy (local heat production by high frequency from a spark 

gap generator) was valuable in treating cancer. Clark (1925) ern-
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ployed electrodessication and electrocoagulation for oral cancer 

removal. Histologically, he found cells to be shrunken, elongated, 

divided, and blood vessels thrombosed. He stated more fibrosis and 

bone sloughing occurred with electrocoagulation. The first time 

cutting took precedence over coagulation was in 1925 when Wyeth used 

proper current levels generated in a vacuum tube and fine electrode 

tips. The tissue was cut by minutely-localized disintegration of 

cells at the tip of the electrode; this was called "acusection." A 

short time later in 1929, McClean stated a vacuum tube oscillator 

produced current with a waveform more conducive to cutting than to 

coagulation. 

Ellis {1931) measured tensile strength of num~rous healing in­

cisions and found in skin, a tensile strength of 97% of normal tis­

sue following knife incisions, and 60% following electrosurgery. 

Ten years later in 1941, Ogus used electrosurgery for gingivoplast­

ies. Orban showed severe inflammation, necrosis, and bone sloughing 

due to electrocoagulation in 1944, and in 1945, he and Archer de­

scribed the reparative processes of connective tissue and epithelium 

after electrosurgery. 

It was shown byHardwick {1953) the high resistance of bone 

results in coagulation of bone cells by a current that does not 

coagulate soft tissue. In 1955 Hartwell demonstrated the viability 

of the connective tissue base adjacent to periosteum as an important 

factor influencing the rate of epithelialization and ultimate heal-
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ing. In 1957 Catchpole noted ground substance was important in 

healing. 

Cringer (1960) stated coagulation still accompanied the cut­

ting action, which he thought was produced by fully rectified cur­

rent. In 1962 Mitchell and Lumb discussed the cause of volatiliza­

tion as being due to vacuum tube oscillators producing continuous 

frequency sine wave current without damping. They theorized cell 

morphology was altered by dissolution of molecular structure in the 

path of the electrode tip. In the next year, 1963, Klingberg and 

Butcher noted the importance of the epithelium layer i~ healing; if 

more connective tissue is removed with epithelium, then healing is 

delayed further. That same year, Trott and Gorenstein established 

mitotic rates of rat oral and gingival epithelium. Combined with 

Stahl's (1968) autoradiographic technique, a definitive set of ··events 

for healing dynamics in the rat was established. 

Toto and Annoni described the importance of an intact clot as 

a sealant and defense mechanism during healing (1965). Armstrong 

(1966) demonstrated it was possible to deepen periosteal involvement. 

In the same year, Harrison and Kelly showed the fully rectified units 

to be superior with less lateral heat dissipation. Another investi­

gator, Klug, presented the notion that operator variance was impor­

tant, but also noted gingivae regenerated to within 0.1 mm of its 

initial heights (also 1966). 

In 1968 Pope used a loop electrode with a partially rectified 
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unit to perform gingivectomies.on dogs and observed retarded heal­

ing, bone involvement, and decreased height of gingival contour. 

In the same year, Battig stated spark gaps produced pulses of damped 

frequency current of the sine wave form. Kelly demonstrated there 

was no retardation of reepithelialization in monkeys after one week 

(1968). Also in 1968, Malone and Manning performed gingivoplasty 

with a partially rectified unit and found no adverse healing. In 

another study they emphasized the choice of needle electrodes and 

swift, deliberate strokes through the tissue as necessary for an 

optimum tissue response. 

Oringer (1969) said an indifferent plate creates a biterminal 

circuit with an end result of deeper penetration of the electroco­

agulation effect. Later that year, Oringer placed lateral heat dis­

sipation in perspective to coagulation. The important factors he 

mentioned were the time interval between applications of electrode 

tip to tissues, and the motion of the electrode within the gingival 

sulcus. He also stated bone necrosis was due to a current type 

other than fully rectified. Additionally, Oringer stated inadequate 

output of a fully rectified unit could cause simultaneous coagulation 

and cutting, meaning that there was not enough power to create total 

disintegration. I~ 1969 Schomburg and Malone showed electrode ster­

ilization to be unnecessary when the passive plate was used to com­

plete the circuit. 

Malone, Kusek, and Eisenmann (1970) found healing in human 
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soft tissue to occur within seven days after surgery with reepithe­

lialization and keratinization. Glickman and Imber (1970) compared 

shallow resections of gingivae in dogs and found no difference be­

tween the healing after the knife or electrosurgery. With deep 

resection there was no problem with the knife, but electrosurgery 

resulted in deleterious healing problems in bone, ie, necrosis, 

sequestration, and resorption. 

Ozimek (1972) found that in rats, unpredictable healing re­

sponses occurred when electrosurgery involved calcified tissues such 

as bone and cementum. He noted there was a one-day delay. in epithe­

lialization of electrosurgery incisions compared to scalpel incisions. 

Additionally, he found more extensive connective tissue inflammation 

in electrosurgical incisions that was not evident in scalpel inci­

sions. 

In 1974 Schneider and Zaki performed a two-part experiment on 

rabbits using the light microscope and the electron microscope to 

investigate gingival wound healing following experimental electro­

surgery. Their studies involved soft tissue gingivoplasties, and at 

the light microscope level they observed an altered homogeneous, 

hyalinized-appearing connective tissue seen only in the electrosur­

gerized specimens. At the electron microscope level, the only dif­

ference evident between the knife and electrosurgerized specimens 

was the presence of ill-defined collagen fibers. No other remark­

able differences were found. 
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Nixon, Adkins, and Keys (1975) used 25 guinea pigs and studied 

the effect of undamped fully rectified current with the electrode 

in direct contact with the periosteum. They found a substantially 

more extensive inflammatory reaction and greater destruction of 

periosteum after electrosurgery compared to the controls incised 

with a knife. 

Wilhelmsen, Ramfjord, and Blankenship (1976) performed electro­

surgical gingival "troughing" in Rhesus monkeys and found substantial 

gingival recession with apical migration of the sulcular epithelium. 

In addition, burn marks on root surfaces were noted where the elec­

trode made contact. 

The literature review presents few studies using mucoperio­

steal flaps incised directly over bone. Glickman's study (1970) 

used a small loop electrode which was brushed through the gingiva 

almost to the bone in one procedure performed on a dog. He extra­

polated results similar to Ozimek's subsequent thesis (1972) that 

compared 24 electrosurgical incisions and 24 scalpel incisions dir­

ectly to bone in rat maxillae. Both researchers found that electro­

surgical incisions contacting periosteum or tooth structure resulted 

in delayed healing. Nixon's study (1975) used 25 guinea pigs with 

similar procedures and results. No study has yet involved the com­

parison of healing between mucoperiosteal incisions using electro­

surgery and the scalpel in primates. This investigation used Rhesus 

monkeys since these animals are generally accepted as choice speci-
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mens for periodontal healing studies. 



MATERIALS AND METHODS 

A. Experimental Animals 

Two adult Rhesus monkeys were used. Four electrosurgical and 

four scalpel incisions were made in each monkey. 

B. Operative Procedures 

Using refined electrosurgical current developed by the Cameron­

Miller 255 electrosurgery unit and the thinnest needle electrode, in­

cisions were made that completely penetrated the gingiva. A new, 

sterile Bard-Parker #12 surgical blade was used to make each scalpel 

incision. Contact with the alveolar bone was intentional and extend­

ed the full length of the incisions. All incisions were located 

buccally and were made with the cutting instrument held almost per­

pendicular to the alveolar process. 

One anterior and one posterior incision were made in each 

quadrant using one method of incision per quadrant (Table 1). The 

anterior and posterior incisions were angled so either buccal-lingual 

or horizontal sections would pass through the incised areas. The 

incisions were made as deliberately and as quickly as possible. 

Contralateral sides of the opposite arches in each monkey were in-

9 



24-hour monkey 

14-day monkey 

Table !.--Incisions 

Location 

Maxilla - Right side 

Maxilla - Left side 

Mandible - Right side 

Mandible - Left side 

Maxilla - Right side 

Maxilla - Left side 

Mandible - Right side 

Mandible - Left side 

10 
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Scalpel 

Electrosurgery 

Electrosurgery 

Scalpel 

Scalpel 

Electrosurgery 

Electrosurgery 

Scalpel 
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cised with either electrosurgery or the scalpel to prevent each mon­

key from favoring either side. 

After the incisions were made, the tissue between the incisions 

was elevated as mucoperiosteal flaps. Each flap was immediately re­

placed as close as possible to its original position. 

c. Tissue Preparation 

One monkey was sacrificed 24 hours after the incisions were 

made to determine if any remarkable, histologic differences occurred 

that rapidly after surgery. The other monkey was surgerized, then 

received antibiotics and a soft diet for nine days. On day 14 this 

second specimen was sacrificed. Both monkeys' incisions were left 

exposed to the normal oral environment. 

After each animal was sacrificed, the skull was immediately 

immersed in 10% formalin. Then the incised areas were prepared and 

sectioned as usual for slides that were stained with hematoxylin 

and eosin. Control sections were obtained from nonsurgerized areas 

in each monkey. Sections were made as listed in Table 2. The dou­

ble-blind method of examining data was employed on each slide. 

The following features were examined on each slide where the 

sections made this possible: 

(1) the surface of the incised tissues 

(2) the presence and character of inflammation 

(3) the extent and quality of reparative processes 
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(4) the histology of the periosteum at each incision· base 

(5) evidence of bone resorption and necrosis. 

Photomicrographs were taken of these features as x40, xlOO, x200, 

or x450. 



Table 2.--Microscope Slide Sections 

Jaw Incised 

Maxilla - Right 
Maxilla - Right 
Maxilla - Left 
Maxilla - Left 
Mandible - Right 
Mandible - Right 
Mandible - Left 
Mandible - Left 

Jaw Incised 

Maxilla - Right 
Maxilla - Right 
Maxilla - Left 
Maxilla - Left 
Mandible - Right 
Mandible - Right 
Mandible - Left 
Mandible - Left 

24-Hr Monkey 

Location and Type of Incision 

Anterior - Knife 
Posterior - Knife 
Anterior - Electrosurgery 
Posterior - Electrosurgery 
Anterior - Electrosurgery 
Posterior - Electrosurgery 
Anterior - Knife 
Posterior - Knife 

14-Day Monkey 

Location and Type of Incision 

Anterior - Knife 
Posterior - Knife 
Anterior - Electrosurgery 
Posterior - Electrosurgery 
Anterior - Electrosurgery 
Posterior - Electrosurgery 
Anterior - Knife 
Posterior - Knife 

13 

Plane of Section 

Horizontal 
Buccal - Lingual 
Buccal - Lingual 
Horizontal 
Horizontal 
Buccal - Lingual 
Horizontal 
Buccal - Lingual 

Plane of Section 

Buccal - Lingual 
Horizontal 
Horizontal 
Buccal - Lingual 
Buccal - Lingual 
Horizontal 
Buccal - Lingual 
Horizontal 



RESULTS 

Examination of the slides involved the histologic comparison 

of each slide with known control sections. After examining each 

previously numbered slide, the findings of each were compared to the 

controls and any histologic differences noted. The slides were then 

identified by type of incision, and the results pooled so that gener­

al comparisons could be made. Aside from the initial examination, 

pooling the results eliminated needless description of_minute details 

from slide to slide. It also provided for histologic comparisons of 

one group of slides to another. Representative photomicrographs were 

taken from each group. 

A. Control Sections 

These slides showed the monkeys had normal appearing hard and 

soft tissues (Fig A and B). Normal epithelium was noted with rete 

pegs intact. The lamina propria exhibited uniform staining with a 

normal amount of collagen and connective tissue elements. Few cap­

illaries were seen and no demonstrable inflammation was present. 

The periosteum was intact and adjacent to bone that presented a nor­

mal histologic appearance. 

14 



Fig A. Note the normal appearing lamina propria, periosteum, and 

bone (control; H & E x4SO). 

Fig B. The relationship between the overlying epithelium, connec­

tive tissue, periosteum, and bone is normal and healthy 

(control; H & E xlOO). 

15 



Figure A 

Figure B 
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B. Sections of 24-hour Scalpel Incisions 

Figures C and D demonstrated typical scalpel incisions. Note 

the periosteum was nicked with the scalpel but remained intact. The 

basal cell layer with the uniform staining lamina propria and its 

connective tissue have maintained their integrity. A mild inflamma­

tory response initiating repair was observed. Minute areas of hem­

orrhage and fibrin clot can be illustrated. 

c. Sections of 24-hour Electrosurgery Incisions 

Characteristic electrosurgery incisions are depicted in low 

power (Fig E and H). Figure G showed where the electrode contacted 

bone with the resulting blood clot formation. The epithelium has 

been disrupted from the lamina propria at the basal cell layer. 

The degenerating lamina propria showed darker staining adjacent to 

the incision. The connective tissue had apparently lost its cellu­

lar and fibrillar definition immediately adjacent to the incision. 

Figure J demonstrated a proliferative leukocyte infiltration of the 

lamina propria subadjacent to an incision. ·This is considered one 

of the initial stages of acute inflammation. Rete pegs were not ob­

served adjacent to the incision. High magnification of Figures F, 

G, and I demonstrated the bone was nicked with the electrode. How­

ever, no burn marks are apparent, indicating the electrode had been 

in contact with ossified structures for a minimal length of time. 



Fig c. Low magnification of typical scalpel incision at 24 hours. 

Some hemorrhage and fibrin clot are seen. Periosteal cov­

ering is sanewhat intact (scalpel; H & E x40). 

Fig D. Note the nick in the periosteum and the evenly stained 

ground substance. A mild inflammatory response indicating 

repair has begun (scalpel; H & E xlOO). 

17 



Figure C 

Figure D 



Fig E. Low magnification of 24-hour electrosurgery incision. Note 

that the bone was contacted and the presence of a blood 

clot. The lamina propria has been disrupted and the margins 

of the incisions stained more intensely (electrosurgery; 

H & E x40). 

Fig F. High magnification of Figure E showing disrupted, more in­

tensely stained lamina propria (electrosurgery; H & E x200). 

18 



Fig G. Higher magnification of F.igure E showing that the electrode 

contacted bone but left no burn marks. Bone marrow area on 

the lower right appears to be necrotic, which accounts for 

the belated healing (electrosurgery; H & E x200). 

Fig H. Low magnification of electrode contact with bone. Osteo­

clasia activity would be re~ired for the initiation of re­

pair (electrosurgery; H & E x40). 

19 



Figure G 

Figure H 



Fig I. High magnification of Figure H showing area of electrode 

contact without burn marks. Note di,~upted vacuolized 

lamina prop1;ia (electros\lrge%'1; H &.E x200). 

Fig J. Note intense inflammation-of the 24-hour electrosurgery 

incision (electrosurgery; H & E x200). 

20 



Figure I 

Figure J 
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D. Sections of 14-day Scalpel Incisions 

These sections showed polymorphonuclear leukocyte invasion 

with a moderate concentration of cells. Figure K shows surface epi­

thelialization is near completion. The connective tissue is not 

disrupted and repair is almost complete. In Figure L the basal cell 

layer is intact and contacts the basement membrane. The greater 

staining intensity could be related to increased amounts of immature 

collagen and increased nutrients available in the ground substance 

for repair. 

E. Sections of 14-day Electrosurgery Incisions 

Delayed healing is demonstrated in Figure M that showed in­

complete epithelial maturation and migration. The incisional cleft 

remained open. Atypical epithelial cells had lost their definition, 

were abnormal in size and shape, and contained pyknotic nuclei. 

The basal layer of epithelial cells no longer retained its morpho­

logic orientation with the lamina propria and had lost its cohesive­

ness {Fig Nand 0). 

The lamina propria demonstrated an acute inflammatory reaction 

with polymorphonuclear leukocyte infiltration, a lack of fibrillar 

definition, and capillary engorgement {Fig Q). 

Figure P shows a higher magnification of the bone resorption 

seen in Figure M. The periosteum has been severely disrupted as re­

flected by osteoclast activity with concomitant Howship's lacunae. 



Fig K. Fourteen-day scalpel incisions demonstrating complete 

epithelial migration. Repair is almost complete (scalpel; 

H & E xlOO). 

Fig L. High magnification of ~igure K showing mild inflammatory 

cell infiltration and intact basal cell layer immediately 

adjacent to the lamina propria. Since this tissue is still 

undergoing repair, it stains more intensely (scalpel; H & E 

x200). 
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Figure K 

Figure L 



Fig M. Section of 14-day electrosurgery incision depicting incom­

plete epithelial migration and maturation. Note cleft be­

tween basal cell layer and lamina propria. Active repair 

between underlying bone and surface epithelium is evident. 

Matrix injury is still in progress. Sufficient connective 

tissue death is contributed to belated epithelial healing 

(electrosurgery; H & E x40). 

Fig N. Higher magnification of Figure M showing moderate inflam­

mation extending to the basal layer of epithelium. Moderate 

to severe degenerative changes are seen in the lamina pro­

pria (electrosurgery; H & E xlOO). 
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Figure M 

Figure N 



Fig 0. Higher magnification of Figure M depicting atypical epithe­

lial cells with disrupted junction between lamina propria 

and the epithelium. Some pyknotic nuclei can be seen. A 

pale, delicate, edematous network and residue of cells is 

present (electrosurgery; H & E x450). 

Fig P. Higher magnific_ation of Figure M showing necrosis and osteo­

clastic activity witb Howship's lacunae (electrosurgery; H 

& E x450). 
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Figure 0 

Figure P 



Fig Q. A different 14-day electrosurgery specimen that clearly 

shows the inflammatory cells, lack of complete fibrillar 

definition, and capillary engorgement. The surface epithe­

lium shows obvious degenerative disturbances (electrosur­

gery; H & E xlOO). 

25 



Figure Q 



26 

In isolated instances the inflammatory process was not as evi­

dent. However, Figures R and S show delayed epithelialization asso­

ciated with bone resorption. In contrast, the higher magnification 

of Figure R seen in Figure T depicts osseous repair with collagen 

and bundle bone adjacent to mature bone. 

In addition, empty lacunae could be found near the area of el­

ectrode contact. It was difficult to determine whether the osteo­

cytes "shrunk" away from the lacunae walls during tissue processing, 

whether they were dehydrated due to electrosurgical current, or 

whether impaired nutrient function of the periosteum caused their 

degeneration. 



Fig R. Fourteen-day electrosurgery incision with delayed epithe­

lialization. Not many inflammatory cells are present in 

this section (electrosurgery; H & E x40). 

Fig s. Higher magnification of Figure R depicting abnormal epithe­

lialization. The basal cell layer is abnormal and pyknotic 

nuclei can be seen. Th~ basement membrane is not clearly 

defined. Few inflammatory cells are present (electrosurgery; 

H & E x200). 
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Figure R 

Figure s 



Fig T. Higher magnification of Figure R showing collagen and bundle 

bone with minimal evidence of inflammatory cells. Osteocytes 

appear to be in the state of repair (electrosurgery; H & E 

x200). 

28 
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Figure T 



DISCUSSION 

The intent of this study was to demonstrate mucoperiosteal in­

cisions can cause complicated and/or delayed healing. The major con­

sistent difference found between the electrosurgical and scalpel mu­

coperiosteal incisions was delayed healing. Histologically, the scal­

pel incisions caused only relative injury to the periosteum. Perio­

steal damage was limited to the contact point of the blade with the 

bone. Healing proceeded uneventfully in most of these_incisions. 

The major difference between the 14-day scalpel incision sections 

and the control sections was the slight inflammatory response pre­

sent in the healing tissues, which was predictable. 

Bone necrosis reflected by Howship's lacunae in sections of 

electrosurgical incisions may be a primary factor that caused de­

layed epithelialization and disruption of the lamina propria. Since 

performing electrosurgical incisions in the vicinity of bone has 

been known to produce unpredictable results, this study used elec­

trosurgery to incise directly to the bone through the mucoperiosteal 

incisions. This approach of mucoperiosteal incisions consistently 

resulted in complicated and delayed healing. The electrosurgical 

current was directly responsible for abnormal healing results when 

29 
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used to make mucoperiosteal incisions. 

In order to minimize the deleterious effects of heat build-up 

at the electrode tip, a concerted effort was made to perform all in­

cisions as quickly as possible. The results were in agreement with 

previous studies (Glickman, 1970; Ozimek, 1972; Nixon, 1975), and 

few histologic or photomicrographic differences were noted when com­

pared with these investigations. 

The diversity of tissue responses reported in the literature 

was due to the broad range of specimens used to evaluate electro­

surgery. Although mice, rats, guinea pigs, dogs, monkeys, and hu­

mans have been used as specimens, the experimental results demon­

strated that deleterious healing occurred regardless of the specimen 

used (Pope, 1965; Glickman, 1970; Ozimek, 1972; Nixon, 1975; Wil­

helmsen, 1976). The experimental design in each case used incisions 

through the gingiva to periosteum producing predictably belated 

healing. 

In contrast to these investigations, there were studies whose 

purpose was to elicit the most innocuous responses possible (Malone, 

1969; Eisenmann, 1970; Schneider, 1976). In each investigation, 

only soft tissues were incised and healing followed uneventfully. 

Host response was an important parameter to consider in these 

investigations. The human response would be predictably better in 

each instance, particularly in the maxillary incisions, due to the 

increased blood supply in this area. 
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Electrosurgery is an excellent modality that may be used for 

the following procedures: in periodontal surgery for removing tena-

cious tissue tags interproximally, performing frenectomies and gin-

givoplasties, removing opecula, planing edentulous ridges, elongat-

ing clinical crowns, and gaining access to subgingival caries. 

The major advantage of electrosurgery over the scalpel is the 

accessibility of the electrode tip into areas where conventional 

instrumentation with a scalpel is impossible. Another advantage is 

the excellent hemostasis achieved with electrosurgery facilitating 

tissue dilatation prior to impressions for prosthodontic considera-

tion. An excellent application of electrosurgery is the manner in 

which a "bleeder" can be quickly sealed using the coagulating cur-

rent setting. 

Use of electrosurgery is contraindicated in patients with a 

pacemaker or where inevitable contact with periosteum or bone is ex-

pected to be more than momentary, ie, radiated patients or patients 

with a collagen deficiency. 

When performing electrosurgery, it is desireable to have a re-

fined, fully rectified unit with the thinnest needle electrode. 

This will insure a higher degree of efficiency with negligible dele-

terious effects and minimizes "operator variance." 

If the operator restricts his use of electrosurgery to soft 

tissue modifications using refined instrumentation and acceptable 

' technical approaches, he can insure a more theraputic profile for 
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this instrument. This modality is used routinely without problems 

by oncologists, urologists'· general surgeons, and other paramedical 

personnel. 

It would be ludicrous to require dentists who use electrosur­

gery to be more cautious and prudent (when approaching the tissues 

around a single tooth in a confined area of the oral cavity) than 

other medical personnel who routinely use less refined instruments 

in a bolder manner under less restricted operating fields. 

Electrosurgery is not a panacea, but merely a refined manner 

in which to treat patients; it is still in its infancy. The paucity 

of innovative research and the reluctance of dental researchers to 

recognize the significance of employing the assistance of other in­

vestigators has hindered advancements of electronic surgery. 

Electronic engineering, crystallography, biochemistry, bio­

physics, and other specialty consultations would expedite research 

in electrosurgery. This would benefit all theraputic applications 

of electrosurgery. There was enough research reported in the liter­

ature of other sciences that this author, with expert assistance 

from an electronic technician, has been able to advance mechanisms 

and theory on the effects of electrosurgery. How it works and why 

hard tissues should be avoided are discussed in Appendices A and B. 

During healing, the electrosurgical mucoperiosteal incisions 

were found to vary in the inflammatory response elicited (see App­

endix B). It is not clear at this time why varying degrees of in-
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flammation occurred in the same animal. The redundant or trite 

phrase "operator variance" may be appropriate, but, more likely, the 

peculiarities of electrosurgical current were probably responsible 

when periosteal tissues were involved. 

Previous authors suggest operator variance may be the cause 

for varying degrees of deleterious healing after electrosurgical 

procedures. At this point, the author of this study maintains "op­

erator variance" is a normal consideration when using electrosurgery 

if the electrosurgery performed did not involve periosteal tissues. 

In order to obtain acceptable experimental results, previous authors 

had to contend with the various peculiarities of the nature of elec­

trosurgery. Therefore, this author concludes that more than likely, 

previous experimenters did, in fact, use electrosurgery properly. 

Understanding the operation of an electrosurgical unit would bene­

fit any novice operator and is of paramount importance if used daily 

in clinical practice (see Appendix A). 

Research on the effects of electrosurgery in soft tissues with 

or without hard tissue involvement has been literally exhausted. 

Current areas for innovative research include the following: 

(1) refining and updating the electronic components in elec­

trosurgery units using integrated circuitry and electron­

ic clocks that divide a second into one million or more 

parts allowing finer control over the current. 
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(2) experimenting with different methods of modifying the RF 

(radio frequency) and/or using different RF values. 

(3) investigating more thoroughly the mechanisms and theory 

of bone resorption and method of operation of RF. 

(4) investigating the biological hazards of RF 

(a) Is enough energy concentrated at the electrode to 

cause free radicals? 

(b) Is enough energy present to dissociate DNA or other 

macromolecules? 

(c) Is RF cumulative in tissues of the body? 

(d) Are any biological hazards of microwave radiation 

applicable to RF radiation? 

(e) Is healing altered by experimenting with different 

methods of modifying the RF and/or using different RF 

values? 

Dentistry should insist on the updating and refinement of elec­

trosurgery units. Current electrosurgery units are decades behind 

the state of the art of electronics. Few units use completely solid 

state circuitry. Integrated circuitry is essentially nonexistent. 

No unit employs power output metering that is essential to safe, ef­

fective operation. Other improvements necessary for sound operation 

include: capacitive isolation between the unit and electrode cable, 

over current protection at the output, linear output control, and 

use of standard electrical color codes for cables (black always in-
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dicates ground ••• except in electrosurgery units). 



SUMMARY AND CONCLUSION 

Using either electrosurgery or the scalpel, two full thickness 

mucoperiosteal incisions were made contacting bone in each quadrant 

of two Rhesus monkeys. One monkey was sacrificed within 24 hours; 

the other specimen at 14 days. The surgerized tissues were then 

prepared by standardized laboratory procedures for light microscopic 

examination with hematoxylin and eosin stain. These slides were ex­

amined by the double-blind method. Control sections were made from 

tissues not surgerized. 

The scalpel incisions in each case exhibited normal repair 

and healing. The electrosurgical specimens presented different hist­

ologic pictures. Twenty-four-hour and 14-day specimens showed evi­

dence of decreased osteocyte viability, which accounted for reepithe­

lialization, bone necrosis, and delayed healing. The lamina propria 

and periosteum were severely disrupted immediately adjacent to the 

incisions. Although epithelial cells migrated to cover the lamina 

propria at 14 days, the surface epithelium remained thin, friable, 

and lacked acceptable maturity. Healing was obviously delayed. 

The postsurgical histologic comparisons of healing of mucoper­

iosteal incisions made by electrosurgery and scalpel demonstrate the 
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deleterious effects of electrosurgery. Therefore, recommendations 

that mucoperiosteal incisions should be avoided when using electro­

surgery are consistent with the results of the present study. 

Electrosurgery should be restricted to soft tissue modifica­

tions or if periosteal involvement inadvertantly occurred, a surgi­

cal pack is a mandate. 
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APPENDIX A 



ELECTRONIC PRINCIPLES OF ELECTROSURGERY 

Electromagnetic energy is one of three known major energy 

groups, the other two being gravitation and nuclear forces. Elec-

tromagnetic energy consists of small quanta of energy called photons. 

The energy contained in each photon is given in the formula: 

E = hY 

where E is the energy in ergs, h -27 
is Plank's Constant (6.626 x 10 

erg-seconds) , and Y (nu) is the frequency in cycles per second 

(cps). The behavior of these photons can be described as waves, and 

predictions concerning the behavior of these waves can be made using 

simple laws of wave mechanics. Electromagnetic waves are described 

in terms of frequency or wavelength that are related by the equation: 

c = A.Y 

where A (lamda) is the wavelength, Y (nu) is the frequency, and c is 

10 
the speed of light in a vacuum equal to 3 x 10 em/sec. We shall be 

discussing these waves in the operation of the electrosurgery unit.l 

The electromagnetic waves are organized into the electromag-

netic spectrum (Fig 1) 9 starting with a frequency of zero, or direct 

current (DC), and extending through low frequency radio, VHF, UHF, 

microwaves, infrared, visible light, ultraviolet, x-rays, and gamma 
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rays. In theory, the spectrum could extend up to infinite frequency 

and zero wavelength; however, little research has been done concern­

ing frequencies above gamma rays that lie between 10 1~ and 1021 cps. 

Radio frequency (RF) is that portion of the electromagnetic 

spectrum that lies between 3 kHz (3,000 cps) and 300 gHz (300 bill­

ion cps). One typical electrosurgical unit works at a frequency of 

1.75 MHz, which lies between the AM broadcast band and the high fre­

quency aircraft communications band.2 

It is helpful to look at a typical electrosurgical unit and 

discuss each section in some detail. Figure 2 shows a block diagram 

of a simple electrosurgery unit.3 

The RF oscillator is the heart of the system. It is the func­

tion of the oscillator to supply the RF current that is ultimately 

used at the electrode tip. There are two popular methods of con­

structing an oscillator. The first is by use of a crystal and the 

other is the use of a tuned tank circuit~ 

When crystals of certain substances are compressed or expanded, 

a voltage appears across opposite faces of the crystal. The polarity 

of the generated voltage changes when the nechanical force is changed 

from one that compresses to one that expands the crystal. Converse­

ly, when a voltage is applied between the opposite faces of such a 

crystal, it will expand or contract depending on the polarity of the 

applied voltage. This phenomenon is called the piezoelectric effect. 

Although many crystalline substances are piezoelectric, natural 
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quartz has about the best frequency stability and is the most widely 

used crystal in the electronics industry. 

If an alternating voltage is applied across the opposite faces 

of a crystal, it will vibrate. The amplitude of the vibrations is 

very small at most frequencies but becomes very large at one fre­

quency called the resonant frequency of the crystal. The resonant 

frequency of a crystal depends on its physical dimensions, particu­

larly its thickness in the direction of vibration. The thinner the 

crystal, the higher the frequency. 

When a capacitor and inductor are arranged in parallel, the 

circuit is called a tuned tank circuit, and is the simplest form of 

oscillator (Fig 3).8 

If the capacitor (C) is charged and allowed to discharge 

through the inductor (L) the electric energy will be stored in the 

magnetic field of the inductor. As the charge on the capacitor drops 

to zero, the magnetic field around the inductor builds to its maxi­

mum intensity. When the charge on the capacitor reaches zero, the 

magnetic field around the inductor will begin to collapse and cause 

current to flow in the opposite direction, recharging the capacitor 

to its original value of charge but with opposite polarity. This 

continues indefinitely in a perfect circuit, creating a flywheel 

effect at a particular frequency. The frequency at which the cir­

cuit oscillates is called the resonant frequency and is given by the 

formula: 



f = 0 1 
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where ~ is the resonant frequency, L is the inductance of the coil 

in henrys, and C is the capacitance of the capacitor in farads. 

Since a perfect circuit does not exist, the resistance of the 

circuit causes the oscillations to die away slowly. This effect is 

called damping. In any practical oscillator, to make up for the 

energy lost is heat due to the resistance of the circuit. The re­

sulting steady waveform is called an undamped wave. 4 

As can be seen from the third equation, the resonant frequency 

of a tuned tank circuit can be changed by changing the value of L or 

c. The most common way to vary the resonant frequency is by the use 

of a variable capacitor. 

In a typical electrosurgical unit a fixed oscillator supplies 

the RF current and a series resonant circuit is used to vary the cur-

rent to the patient. The resonant frequency (f0 ) of the series re-

sonant circuit is typically the same as the f of the RF oscillator. 

The current curve through a series resonant circuit is shown in Fig-

ure 4. 

As can be seen from Figure 4, if the series resonant circuit 

were made tunable the current supplied to the patient from the fixed 

frequency RF oscillator could be regulated from minimum to maximum 

as the series resonant circuit is tuned from point A to fO. It 

should be noted that this current increase is nonlinear, and great 
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care should be taken when choosing the output setting for a parti­

cular operation as there is a sharp current rise between some adja­

cent settings on the output control while there is very little dif~ 

ference between other adjacent settings. 5 

In a typical unit a variable capacitor in series with a coil 

(making a series resonant circuit) is mounted on the front panel of 

the unit and is controlled by a knob marked off in fixed increments, 

usually 1 to 10, and marked output. In some older units, such as 

the Cameron-Miller model #255, separate outputs are used for cutting 

and coagulation with different variable capacitors for each output. 

In newer units such as the Macan, a switch is used to control the 

internal circuitry through the same output. 

Once the oscillator produces an RF waveform, the current must 

be amplified to a usable level. This is done in most units by a 

single RF amplifier tube. The amplified RF waveform is then im­

pressed on the output of the power supply in such a way as to give 

the desired output waveform at the electrode tip. The process of 

impressing one wave on another is called modulation and will be dis­

cussed below. 

The power supply has many functions. It must take the power 

available from the wall outlet or other power source and make it 

usable throughout the unit. Normally, the input power to the unit 

is 115 or 230 volts at 60 cps. Besides supplying power for the var­

ious lights, plate voltage for the amplifier and filament voltage if 
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the unit has a vacuum tube, the output of the power supply is modu-

lated with RF. 

There are two main types of waveforms produced in a typical 

power supply. These are half-wave rectified and full-wave rectified. 

Either of these can be filtered or unfiltered. The input of the 

power supply is a sine wave with a frequency of 60 cps (Fig Sa). 

During half-wave rectification as the positive pulse rises 

from 0 to +Max and then falls back to 0, the diode conducts current 

through the load. As the negative going pulse falls from 0 to -Max 

and again rises to 0, current tries to flow in the opposite direct-

ion; however, the diode will only pass current in one direction. 
' 

The diode then blocks the negative pulse and current does not flow 

through the load until the next positive pulse. The resulting cur-

rent through the load is as seen in Figure Sb. 

During full-wave rectification, opposite pairs of diodes con-

duct during each half cycle causing current to flow in the same dir-

ection through the load regardless of the polarity of the input 

wave. The output waveform is as in Figure Sc. 

Sometimes it is desireable to have a DC output from the power 

supply. This is done by a technique called filtering. A simple 

·filter is shown in Figure 6. Although there are many different 

kinds of filters, the one shown is the simplest and most common. 

As the first positive pulse from the power supply enters the 

filter circuit, the capacitor C charges to the +Max of the input 
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wave. As the pulse drops to 0, the capacitor discharges slowly 

through the load R keeping the voltage at nearly +Max until the next 

pulse recharges the capacitor to +Max. This phenomenon is diagrammed 

in Figure 7. 

As can be seen from the solid line in Figure 7, there is a 

small amount of waviness in the output waveform. This is called 

ripple voltage and is inherent in all power supplies except batter­

ies. However, with proper selection of components, ripple can be 

kept to a minimum with .01% being about the best. 6 

There are many different modulation techniques and the kind 

chosen for a particular unit is not really important. It is impor­

tant, however, to understand what is accomplished in the modulator. 

The circuitry of the modulator is constructed in such a way 

that when there is no voltage present at the power supply input 

(Fig 8a), no RF current will flow through the modulator. The nor­

mally open footswitch keeps the power supply voltage from entering 

the modulator. When the footswitch is pressed the voltage from the 

power supply enters the modulator and allows RF current to flow at 

a rate directly proportionate to the voltage level at the power 

supply input. As the voltage rises from 0 to +Max at the power 

supply input, more and more RF current is allowed through the modu­

lator. As the power supply input drops from +Max to 0, the modula­

tor conducts less and less until at Ov, no RF current flows. When 

the power supply is half-wave rectified and unfiltered, the output 
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waveform to the patient is as shown in Figure Sa. The RF pulses 

occur at a rate of 60/sec. Figure 8 shows full-wave rectified un-

7 8 
filtered (b) and full-wave rectified, filtered (c). ' 
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APPENDIX B 



MECHANISMS OF BONE RESORPTION INITIATED BY RADIO FREQUENCY 

ELECTROMAGNETIC WAVES GENERATED IN ELECTRONIC SURGERY 

The crystalline nature of calcified tissues in the oral cavity 

is, in our opinion, of prime importance in causing bone resorption 

when electrosurgery is used on or near bone. Crystals have been 

used to generate various frequencies in electronics for·over 50 years 

(this mechanism is called the piezoelectric effect and is explained 

in Appendix A). It is not unlikely the crystalline components of 

bone (cementum and even dentin) can conduct the high frequency os­

cillations produced by the electrosurgery unit directly to viable 

osteocytes when contact with the electrode is made. When a beam of 

charged particles, ie, RF, passes through a crystal lattice, it is 

referred to as "channeling." This has been reported by Brandt in 

1968. 

In soft tissues of the oral cavity, the current from the 

electrosurgery unit meets less resistance than in bone and easily 

cleaves the tissues. Two phenomena occur: one is direct molecular 

oscillation or vibration, and the other is resistive heating. 

In the first situation, the high frequency electrosurgery 

current is sinusoidal and "flip flops" polar molecules at the fre-
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quency of the oscillator in the electrosurgery unit. Resistive 

heating, in the second instance, causes an instantaneous vaporiza­

tion of the water content of the tissues creating the "vacuoliza­

tion" or "blowing apart" of cells often described in the literature. 

The two processes do not occur independently. The instantan­

eous dehydration of the water content of the tissues, however, is 

not sufficient to be the cause of the deleterious effects in bone 

stated previously with the use of electrosurgery. Since distilled 

water is an excellent insulator, the presence of salts, inorganic 

ions, carbohydrates, lipids, and nucleic acids in vivo facilitate 

the current flow resulting in molecular oscillations coupled with 

resistive heating; both are required in order to cleave soft tissues. 

High resolution electron microscope examination has correlated 

the crystallinity of bone and tooth apatite to the fine structures 

of these tissues in normal and pathologic conditions (Selvig, 1970). 

The piezoelectric effect was first demonstrated in bone in 

1947 by Bussman (1958). Termine and Posner (1967) used x-ray dif­

fraction and demonstrated amorphous calcium phosphate could be con­

verted to crystalline apatite on exposure to water in vitro. Their 

results showed crystalline apatite to average 65% of the total cor­

tical bone mineral. Bloom and Fawcett (1968) described the mineral 

content of bone to average 65% of the fat-free dry weight of mature 

adult bone. 

The origin of the piezoelectric effect in bone has been shown 
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to arise in_part or in whole from the presence of organic molecules 

particularly collagen (Marino and Becker, 1971), which has also been 

shown to exhibit the piezoelectric effect (Hussman, 1976). This is 

important to note since collagen determines the pattern of mineral 

alignment and architecture in bone. Collagen is a long chain poly­

mer and can be degraded by the piezoelectric effect resulting from 

the application of high frequency oscillations (Bassett, 1968). 

The piezoelectric effect in bone was shown by Marino and 

Becker (1974) to be independent of age, sex, and lapse of time fol­

lowing either death or removal of the bone specimen fr~ the donor. 

Bone could therefore exhibit the piezoelectric effect in vitro and 

in vivo. However, in vitro studies cannot demonstrate bone necro­

sis; some additional phenomena must be responsible for bone necrosis 

in living tissues. 

Bone has many crystalline forms in vivo (Posner, 1969; Selvig, 

1970) , but for the purpose of this discussion bone will be consid­

ered as a simple, single crystal. When the electrode tip contacts 

viable bone a voltage is developed across the bone (or crystal) be­

tween the electrode tip and the capacitively coupled ground plate 

(or ground if no plate is used; not recommended clinically). This 

makes the crystalline structure of bone oscillate at the frequency 

of the oscillator in the electrosurgery unit causing the piezoelec­

tric effect. 

Most electrosurgery units operate at about 1.75 MHz. When 
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this frequency is applied to bone, the polarity across the faces of 

the bone crystals changes 1,750,000 times per second. The amplitude 

of the oscillations is directly proportional to the applied voltage 

and the applied voltage is directly proportional to the resistance 

of the crystal for any given voltage generator. 

Behari, Guha, and Agarwal (1975) applied a voltage of 220 

volts to dry, mature human tibia specimens and measured the current 

-7 
at 10 amperes. Using Ohm's Law of Resistance (E=IxR), where E = 

voltage, I = current, and R = resistance, it can be calculated that 

the average resistance of these bone samples was 2.2 x 109 Ohms. 

Since this resistance is very high, the oscillations would also be 

very high compared to the static state. 

These oscillations conducted through the crystalline struc-

ture of bone can easily damage the osteocytes in their lacunae, par-

ticuliarly those near the point of electrode contact, where the vol-

tage developed is highest. Varying degrees of penetration of the 

radio frequency due to haphazard arrangements of the apatite cry-

stals in bone could be one reason for varied reports of delayed heal-

ing. 

Once osteocytes have been altered by the RF, varying effects 

may result depending on the amount of RF that reached the osteo-

cytes. It is possible for enough RF to reach an osteocyte and cause 

its immediate death due to a combination of resistive heating and 

molecular oscillation. Another possibility may occur where a mini-
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mal amount of RF energy reaches an osteocyte and the cell survives 

for a period of time before death ensues. 

The latter situation probably is another reason delayed heal­

ing is reported. The extent of delayed healing would depend on the 

depth of penetration of the RF energy through the bone. The deeper 

the RF penetrates, the more osteocytes are affected, delaying heal­

ing even further. Normal physiologic bone resorptive sequences must 

than be initiated to remove dead or dying osteocytes. It has been 

noted above (p 28) that osseous tissue affected by RF appears to 

undergo repair in isolated instances. This was considered to be an 

exception and inconsistent with the results reported here. 
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