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CHAPTER I 

INTRODUCTION 

No disease so uniformly affects the,microvasculatuie as diabetes 

mellitus. The chronic degenerative disease of the microvascular system 

which occurs in diabetes mellitus was first recognized over a century ago 

[reference cited in 71]. Elucidation of the nature of diabetic micro

angiopathy was extr~mely slow until the discovery of insulin in 1922. 

The advent of insulin therapy brought a lohger life after the onset of 

measurable biochemical abnormalities. Consequently, more extensive vascular 

disease has developed, so that today 85% of the people with diabetes 

mellitus die from the cardiovascular-renal complications of diabetic 

microangiopathy rather than from ketoacidosis, insulin shock and other 

related conditions. 

The microvascular manifestations of ~iabetes mellitus represent 

a far more serious aspect of this disease than do the carbohydrate 

derangements. "Tightly controlled" diabetics develop vascular problems 

as readily as insulin-iridependent diabetics' [91]. Yet little is known 

about the basic pathogenesis of diabetic micro:mgiopnthy. Hith recognition 

of the importance of diahctlc m:Lcroangiopathy, there is an appreciation 

of the need to evaluate quantitatively how diabetes mellitus alters 

microcirculatory phenomena. 
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The purpose of this study was to evaluate quantitatively the 

microcirculation in an animal model of diabetes mellitus. Specifically, 

the red cell velocity in mesenteric microvessels, i.e., arterioles, 

capillaries and venules, .vere measured in non-diabet~c and streptozotocin

diabetic rats. 



CHAPTER II 

LITERATURE REVIEW 

A. PHYSICAL AND CHEMICAL ALTERATIONS OF THE CAPILLARY BASE"t-1ENT NEHBRANE 
IN DIABETES HELLITUS 
1. Physical Changes in the Diabetic Capillary Basement Membrane 

The term "diabetic microangiopathy" denotes the chronic, degen-

erative vascular disease of the smallest blood vessels throughout the 

body in diabetes mellitus [24, 30, 54, 79]. Using histochemical techniques, 

light microscopic examination of various tissues revealed the presence of 

increased amounts of periodic acid-Schiff (PAS) positive material in the 

vessel walls of arterioles, capillaries and venules [30, 39, 65, 79, 107]. 

Basement membranes are extra-cellular structures that rea~t intensely 

with periodic acid-Schiff stain. On the basis of light microscopic studies, 

Friedemvald [ 34, 35] suggested that a specific thickening of the capillary 

basement membrane contributed to· the microvascular complications of diabetes 

mellitus. Electron microscopy provided the technology with which the 

validity of this suggestion could be examined. 

The basement membrane located under the endothelium of blood vessels 

appears as an electron dense feltwork of fine fibrils when seen on electron 

micrographs [58]. It is usually only a few hundred angstroms in width [79]. 

When the same localization is demonstrated with PAS staining techniques 

<1nd vll'\vC'd wlt:h <1 Light microscope, i L <1ppc;Jrs ns <1 homogeneous structure 

and measures about 1 to 2 microns in width [79]. The basement membrane 

seen on light microscopy and electron n1icroscopy are two different things. 

-3-
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The first electron microscopists simply borrm.;red a term in common usage 

among light microscopists. 

· Electron microscopy was used extensively by Siperstein et. al. [92] 

and Williamson and his group [53, 123] as a tool for quantitatively as

sessing basement membrane thickening in diabetics. Their anatomical 

studies demonstrated that a segmental thickening of the capillary basement 

membrane is the'morphological feature which best characterizes diabetic 

microangiopathy [53, 124]. Arterioles and venules may be similarly affected 

[30, 122]. Other investigators reported similar observations in such 

diverse tissues as skin [1, 65, 79], muscle [53, 79, 92, 115, 116], retina 

[8, 79) and kidney [7, 32, 78, 79]. This suggests that thickening of the 

capillary basement membrane may be a generalized phenomenon involving small 

blood vessels throughout the body [30, 54, 71, 96, 107, 124]. 

While thickening of the capillary basement membrane is generally 

actepted as one of the first manifestations of diabetic microangiopathy, 

the electron microscopic observations have become disputed in two areas. 

These are: (1) the time of the occurence of thickening in relation to 

the onset of carbohydrate derangements and (2) whether basem-ent membrane 

thickening progresses with duration of diabetes. Siperstein proposed that 

basement membrane thickening occur's before the onset of diabetes and may 

be the cause and not the consequence of diabetes. ¢sterby-Hansen [78] 

found that diabetic microangiopathy and tliickenlng of the basement membrane 

do not. occur in the glomeruli of young diabetics of recent .onset. This 

indicates that early changes in prediabetes is unlikely. Williamson [53] 

suggests that the basement membrane ~Vidth of muscle capillaries is normal 

in most individuals prior to the onset pf carbohydrate intoleranc~. 
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According to Pometta et. al. [82] there is no significant increase in th~ --- -

basement membrane width of muscle capillaries in potential diabetics or 

diabetics of recent onset as compared to non-diabetic control subjects. 

Siperstein [92] has reported that no relationship exists between 

the duration and severity of diabetes and the width of the capillary 

basement membrane. If generalized basement membrane thickening precedes 

carbohydrate intolerance, then basement membrane thickening should be found 

in all diabetics. That_Williamson [125] found basement membrane thickening 

i11 less than one third of insulin-dependent diabetics who have had their 

disease less -than four years, coupled with a highly significant increase 

in the incidence of basement membrane thickening with increased duration 

of carbohydrate intolerance supports the concept that basement membrane 

thickening is a consequence of the carbohydrate intolerance associated 

with diabetes. 

The disparate results responsible For the controversy regarding 

the incidence arid significance of capillary basement membrane thickening 

in diabetes mellitus can be reconciled on the basis of the following: 

(1) methods of fixation and measurement technique [52, 94, 120, 123, 125]; 

(2) artifacts related to criteria for selection of subjects [52, 120, 125]; 

(3) sample size [52, 120]; and (4) the use of age and sex adjusted normal 

confidence limits in assessing basement membrane thickening. 

]:_. ___ C~1 em lc al~h[:!..!_"l_f,_~~s_:~~-~1_l~-~iah_~t_:_~c __ _£~"l_E.:! 11 rl_!Y _ _Ba ~~'me_J_~~-ll~'_m h filn e 

The periodic acid-SchHf staining technique is very discriminating 

in detcct:inr, glycoproteins in tiss11e sections [81, 99, 107]. B<1scment 

membranes react intensely with PAS stain. This indicates their glyco-

protein nature [101]. Compositional analyses of basement membranes have 

supported the histochemical evidence concerning their glycoprotein nature 

[ 101' 105] . 
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On the hasis of histochemical evidence it was postulated th<1t 

diabetic microangiopathy resulted from a disturbance in the metabolism 

of the carbohydrate containing proteins [35]. Studies of the glomerular 

basement membrane in human diabetes indicated that the total amount of 

membrane present is increased and furthermore that a distinct chemical 

alteration occurred [5, 6, 57]. The chemical alteration in the basement 

membrane was found to specifically involve an increased amount of hydroxy

lysine and a similar elevation in the number of hydroxylysine attached 

glucosylgalactose disaccharide units. 

Spiro proposed a·sophisticated hypothesis to explain the alteration 

in chemical composition [104, 105]. He found that the level of kidney 

glucosyltransferase, an enzyme involved in the synthesis of the hydroxy

lysine-linked disaccharide units of the glomerular basement membrane, was 

significantly elevated in alloxan diabetic rats when compared to age 

. matched controls [102]. He suggested that the elevation of carbohydrate 

content in the diabetic glomerular basement membrane is not simply due 

to an increased attachment of glucosylgalactose disaccharide units to 

unsubstituted ·hydroxylysine residues. In the normal glomerular basement 

membrane, all sterically available hydroxylysine residues are glycosylated 

[103]. Spiro [104, 105] postulated that the increase in the carbohydrate 

content of the diabetic glomerular basement membrane is due to a preferential 

production of subunits rich in hyclroxylyslnc, r;1thcr thnn to ;m :incrcnsc 

ln hydroxyl<1tion of lysitw residues <1 Lre;1cly present. These newly formed 

!tvdn>xvlv.!;lm' t't'sldttt's <II"L' ~;uhc;t'CfltL'ttlly glyt't>!;yl:tt t'd. 

The validity of this hypothesis was challenged by Kcfalides [51] 

and Westberg nncl Hiclw.el r12·0]. These investigators have performed 
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compositional analyses on the ht~an diabetic glomerular basement membrane 

with variable results. Westberg and Michael [120] found that the most 

distinct difference in the amino acid composition between glomerular 

basement membranes from normal and diabetic kidneys was the decrease in 

the half cystine content of the diabetic kidneys. Contrary to the findings 

of Beisswenger and Spiro [6], they found no increase in the amounts of 

hydroxylysine or in the number of glucosylgalactose disaccharides lipked 

to this amino acid. Kefalides [51] found no difference in the half cystine 

content of normal and diabetic glomerular basement membranes. His data 

demonstrated that the amino acid and carbohydrate compositions of the 

diabetic glomerular basement membrane are very similar to those of the 

normal glomerular basement membrane·. 

Spiro [105] has pointed out a number of pitfalls to be avoided in 

compositional analyses of glomerular basement membranes. The kidneys ·to 

be analyzed for chemical changes must be limited to those showing micre

scopic evidence of glomerular pathology. Care must be taken that patho

logical glomeruli are isolated and that the preparation is not contaminated 

with cell membranes. The pathological changes in the kidneys used by 

Westberg and Michael [120] and Beisswenger and Spiro [5, 6] were compatible 

with diabetic kidney disease. Differences in the purity of the glomerular 

basement membrane preparations could possibly explain the,discrepancy 

between the results of Westberg and Michael [120] and those reported by 

Beisswcnger and Spiro [5, 6]. Kefalidcs [51] does not give any information 

about the presence or absence of glomerular pathology in the kidneys he 

used in performing l1is compositional analyses. In addition, his preparations 

were probably contaminated ~vi th cell membranes. 
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3. SurnmaD::_ of 13<Jscment 1-Jcmbranc Alterntions in Diabetes Hellitus 

Studies of ndcrovessels in diabetes in the last fifteen years 

have concentrated heavily on the anatomic and biochemical abnormalities 

of the capillary basement membrane [5, 6, 52, 53, 57, 71, 78, 79, 82, 92, 

94, 104, 105, 115, 116, 123, 124, 125]. The anatomical studies demonstrated 

that a segmental thickening of the capillary basement membrane character-

istically occurs in diabetics. The biochemical studies suggest that the 

chemical structure of the basement membrane may be altered. Controversy 

has developed about both of these changes. This has had th~ unplanned 

effect of diminishing attention to the ov~rall goal, i.e., elucidation 

of the relationship between the insulin-deficient state and the development 

of the microvascular concomitants of diabetes mellitus. It remains to be 

established how these anatomic and biochemical changes influence the 

physiologic role of the capillary basement membrane as a supportive structure 

and selective filter. 

B. PERNEABILITY OF SHALL VESSELS IN DIABETES HELLITUS 

The periendothelial deposition of PAS(+) material and the pronounced 

thickening of the capillary basement membrane in diabetic microangiopathy 

has implications for transcapillary transport. Westberg and Michael [120] 

and Spiro [5, 100, 103~ 104] have suggested that the changes they find in 

the chemical composition of the glomerular basement membrane could alter 

the porosity of the membrane. This would be due to the compositional 

ch<Jngcs affecting cross-links between peptide chains or by sterically 

interfering with their packing. 
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~-J'-~rmeab:iJ_~:_ Skeletal___k1uscle Capil_laries 

Various investigators [2, 80, 110, 111, 112, 113, Uff] studied. 

the transfer of electrolytes and large molecules across the capillary 

n!embrane between the vascular compartment and the interstitial compartment 

of skeletal muscle in long-term (>10 years) and short-term (<5 years) 

juvenile diabetics. Their findings suggest that the skeletal muscle cap-

illaries of long-term diabetics are more permeable. This increase in· 

permeability was attributed to an increase in the diameter of the intra-

c~llular cleft from 40 to 50 angstroms [114]. It was not attributed to 

an increase in the porosity of the basement membrane or to an increase in 

the area of the exchange surface [ 2] . The thickened capillary basement· 

membrane is not the rate limiting factor in the transcapillary exchange 

process in ske~etal muscle. 

2. Permeability of Glomerular Capillaries 

The basement membrane surrounding glomerular capillaries is regarded 

.as the main filter preventing.passage of large molecules in the kidney. 

A more direct application of the theories of molecular sieving is possible 

in the glomerulus. The filtration rate can be determined with a high 

~egree of accuracy and complete collection of the filtered macromolecules 

is possible if insignificant tubular reabsorption takes place. The sug-

gestion that changes in the chemical composition of the glomerular basement 

membrane alters the porosity of the membrane [5, 6, 100, 103, 104, 105, 

120] ought to he studied in the kidney r:1ther th:1n in skclct<ll mnsc1e. 

C.E. 1·1ogcnsen [72, 73, 74] studied the glomerular filtration rate 

(GFR) and glomerular permeability to macromolecules in newly diagnosed, 

untreated juvenile diabetics and in short-term and long-term juvenile 
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di~betics. He found that the GFR was increased 41% in the newly diag-

nosed, untreated diabetics when compared with age matched controls [74]. 

131 
The renal plasma flows obtained by PAH and I-hippuran clearances were 

not different from normal values. If a more porous basement membrane was 

responsible for the increase in GFR, then the clearance of larger molecula-r 

weight dextrans should increase. :Hogensen [72, 73] found no evidence to 

indicate this. H.ogensen [74] also found that the GFR decreased as the 

duration of diabetes increased. This is not consistent with the suggestion 

of Westberg and Michael [120] or Beisswenger and Spiro [5, 6] that changes 

in the chemical composition of the glomerular basement membrane alters 

its porosity. 

3. Summary of Permeability Changes in Diabetic Capillaries 

The permeability studies of skeletal muscle and glomerular capillary 

basement membranes strongly suggest that ,the thickened basement membranes 

of diabetics do not hinder transcapillary exchange processes. The glom-

erular permeability to macromolecules does not indicate that the porosity 

of the glomerular basement membrane is increased. Therefore, any change 

in the chemical composition of the diabetic basement membrane does not 

result in a structural defect that alters its role as a selective filter. 

C. FUNCTIONAL DIABETIC MICROANGIOPATHY 

The structural abnormalities characterisric of diabetic micro-

angiopathy· Here dcmonstr~1tcd t:o occur at <l L1tcr stage in the evolution 

of the disease [71]. Functional abnormalities were obseryed in several 

vascular beds 'prior to the appearance of any clinical signs of micro-

angiopathy [30, 31, 54]. One manifestation of this functional microangiopathy 

is that alterations in blood flow precede structural changes in blood vessels~ 
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1. · Blood Flow Changes in Diabetes Hell it us 

The gross blood flow has been studied in various vascular beds 

of hwnan diabetics [2, 11, 18, 36, 38, 40, 55]. The vascular beds studied 

include the skin [36, 38], retina [55], abdominal subcutaneous adipose 

tissue [38, 40], and skeletal muscle in the forearm [11, 18, 38, 40] and 

calf [2]. The techniques used for flow measurement include isotope clear

ance [2, 36, 38, 40], fluorescein angiography [55], mercury-in-rubber 

strain gauges and venous occlusion plethysmography [2, 11, 18, 36, 38]. 

A high resting blood flow has been found in the retina [55] and 

forearm [11] of diabetics with no or .only mild microangiopathy. Furthermore, 

it was demonstrated that the elevated blood flow declined towards normal 

as the microangiopathic lesions progressed to severe levels. Christensen 

[18] demonstrated that the resting forearm blood flow to be increased in 

newly diagnosed, untreated juvenile diabetics. 

Alpert ~· al. [2] used venous Gcclusion plethysmography to determine 

resting blood flow in normal persons and patients with prediabetes and 

diabetes with nnd without ·microangiopnthy. No significant' differences 

in resting calf blood flow were found between the groups. This finding 

does not support the work of Butterfield and Holling [13], Christensen [18] 

and Kohner~_!· al. [55]. It is supported by the work o.f Greeson et. al. 

[36]. Using plethysmographic.techniques to study blood flow in th~ calf, 

they found no diffprence in blood f1ow hett.;ecn cllnhctics nncl nnnnnl controls. 

In~~· cnmp:11~Lson of tilL' abdomfn:ll suhcut::liH'OU~; [at tissue blood 

flow in healthy individuals and in diabetics made be Haggendal ~· al. [ 40], 

it 1ms demonstrated tlwt the average blood flow wns higher in clinhetics 

than in healthy individuals. Administration of insulin·to the diabetics 
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lowered the blood flow. The relationship between elevated peripheral 

blood flow and metabolic control \vas investigated by Gunderson [ 38]. 

Previously insulin-treated patients, in whom insulin was withdrawn for a 

few days, showed elevated blood flow in the forearm, subcutaneous abdominal 

fat tissue and skin. A group of newly diagnosed, non-treated diabetic 

patients showed elevated blood flow only in the subcutaneous abdominal fat 

tissue and skin. During periods of .good metabolic control, the diabetics 

had normal values for forearm, sub~utaneous abdominal fat tissue and skln 

blood flow. 

2. Changes in Blood Vessel Responsiveness 

In conjunction with the altered blood flows, the responsiveness 

of diabetic blood vessels to various stimuli was found to be abnormal [18, 

36, 40]. Greeson~·~- [36] demonstrated an impaired ability of diabetic 

cutaneous blood vessels to respond to dilating stimuli. If the resistance 

vessels were maximally dilated when the stimulus was applied, then the 

results could be falsely interpreted as a diminished vascular reactivity. 

Without quantitatively measuring the dimensions of the cutaneous vessels 

when the dilating stimuli \\'as applied, no direct assessment of vascular 

reactivity can be made. 

These studies were performed using plethysmographic techniques. 

This measures both skin and muscle blood flow. A technique that measures 

cutaneous blood flow independently of mus4le blood flow would have been 

mo~c appropriate for assessing tlte reactivity of cutaneous blood vessels 

to dilating stimuli. Greeson et. al. did use an isotope clearance tech-

nique to measure resting skin blood flow. They did not use this method 

to test the responsiveness of the cutaneous vasculature to dilating stimuli. 
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Christensen [18] investigated abnormal vascular function in a 

group of short-term ~iabetic patients. The rate 6£ return of blood flow 

towards basal levels following reactive hyperemia was determined before 

treatment or after withdrawal of insulin· and again after insulin treatment. 

In the diabetic patients peak flow was greater than in the non-diabetic 

controls. No significant differ-ence was seen before or after insulin 

treatment. Reactive hyperemia was found to be consid€rably prolonged in 

the diabetic patients. This abnormality disappeared after insulin treat-

ment. 

The maximum blood flow in the anterior tibial muscle during rea.ctive 

hyperemia following ischemia and exercise has been measured by various 

investigators with· conflicting results. Trap-Jensen and Lassen [110] and 

Trap-Jensen ~· al. [111] found no significant difference in the maximal 

hyperemic muscle blood flow within the groups (~on-diabetic, recently 

diagnosed and long-term diabetics) studied. Using identical techniques, 

Alpert~· al. [2] found normal persons had hyperemic muscle flows signif

icantly greater than those in prediabetics or diabetics with and without 

microangiopathy. No differences were found betw.een the prediabetic and 

diabetic groups. The hyperemic muscle blood flo~s in the prediabetic and 

diabetic groups were identical with those reported by Trap-Jensen and 

Lassen [110] and Trap-Jensen.et. al. [111] for their non-diabetic, recently 

di<tRnoscd and long-term dinhct:ic. p:tt:ients. 

Qualitative descriptions-of the bulbar conjuctiva in diabetics 

were carried out by Ditzel and his co-workers using tltc biomicroscope 

combined with a flash photographic technique [25, 26, 27, 28, 30]. The 

most consistent observation was the pathological formation of erythrocyte 
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aggregations. A reduction in the velocity of flow was associated with 

the formation of erythrocyte aggregates. This created a condition which 

favored microthrombus formation and deposition of carbohydrate-lipid-

protein complexes in the walls of small blood vessels. 

3. Summary of Changes in Blood Flow and Blood Vessel, Responsiveness 

The exact role of altered blood flow in producing microangiopathy 

is not clear. Only by adequately defining the degree of microangiopathy 

and the deg!ee of metabolic control can this be established. In the gross 

bloGd flow studies the degiee of metabolic control has been either abnormal 

[11, 18, 40] or not described [2, 36, 55]. In addition, the degree of 

microangiopathy was either not stated [18, 38] or diabetics without evidence 

of microangiopathy,were grouped with diabetics with evidence of micro-

angiopathy. 

Vasodilatation and/or an el~vated blood pressure could be responsible 

for the increase in blood flow observed in diabetics. As vessel dimensions 

and blood pressure were not quantitatively measured in these studies, the 

mec-hanisms responsible for the elevated blood flow are not known. The 

same arguments are applicable to the mechanisms responsible for return of 

blood flo~ towards normal in satisfactorily controlled cliab~tics and in 

diabetics with progressively worsening microangiopathy. 

The exact relationship between altered blood flow, abnormal vascular 

reactivity and diabetic microangiopathy ii not clear. The failure of 

investigators to define exactly the state of metabolic control .:ll1d the 

presence of microangiopathic lesions has left the issue muddled. The 

investigations of Christensen [18] and Gunderson [38] definitely suggest 

insulin alters ;he ability of blood vessels to regulate their tone. No 
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investigations where direct quantitative measurements of blood flow in 

microvessels, i.e., arterioles, capillaries and vemtles have been conducted. 

Therefore, the relationships between the insulin-deficient state, abnormal 

vascular-function and thickening of the capillary basement membrane remain 

speculative. 

D. BIOCHEHICAL AND PHYSIOLOGICAL ALTERATIONS OF DIABETIC BLOOD 
1. Changes in Serum Protein Composition 

The blo6d vessels are not the only componen~ nf the circulatory 

system to be biochemically and physiologically altered in diabetes mellitus. 

The blood also undergoes biochemical and physiological alterations. In 

addition to hyperglycemia, there are changes in the plasma concentrations 

of the circulating protein-bound carbohydrates, protein.s and lipids. 

Characteristically, a decrease in serum albumin, accompanied by an increase 

in the a- and S-globulin$ was observed [9, 27, 66, 69, 70, 88]. Winzler 

[127] has reviewed the considerable wealth of data in the literature 

substantiating this observation. It was suggested, but not proven, that 

these changes precede the degenerative alterations in blood vessels [88]. 

2. Abnormal Blood Viscosity in Diabetes Hellitus 

The blood proteins impart ·a significant influence on the rheological 

characteristics of circulating blood [~7, 67, 121]. Hodifications in the 

plasma pr~tein distribution may have considerable bearing on the viscous 

behavior of blood in the various microvascular compartments, i.e., arterioles, 

C<lpf.l.J;Jr.iL'~; :ltHJ Slll<lll Vl'llll]c:.;, <IS \1/l'il <IS Oil lhl' dcv<'lnpmt•nt nf t"IH' dl'gl'll-

erative cl1anges in the smaller blood vessels of individuals with diabetes 

[69J. Blond viscosity c;m only he of :lmporlnncc in the development of 

microangiopathy if blood viscosity is altered before the occurence of 

microangiopathic lesions. 
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In vitro studies of the rheological properties of human diabetic 

blood ,and· serum have yielded conflicting results, both in regards to 

changes in diabetes and about the relation of viscosity to diabetic micro-

angiopathy. Cogan~· al. Il9] first published evidence of serum viscosity 

elevation in diabetes mellitus. However, serum viscosity was not greater 

in diabetics with microangiopathy than in those without microangiopathy. 

Studies of diabetic patients without evidence of vascular complications 

by Ditzel~[29] demoDstrated no significant differences in whole blood 

.viscosity betwee~ diabetic and non-diabetic patients. Similar studies 

with more accurate viscometers have indicated that blood and serum viscosity 

are both elevated in diabeti~s [19, 45, 67, 69, 70, 95]. The viscosity 

is even more strikipgly increased in diabetics with evidence of microangiopathy 

[45, 67, 69, 70], and especially at low .shear rates 143]. 

Over the years the increased serum viscosity might favor the 

development of diabetic microangiopathic lesions. Despite quantitative 

differences in the degree of viscosity elevation, the hyperviscosity syndromes 

share such features as retinal changes, neurological disorders and glom-

erular basement membrane thickening with diabetic microangiopathy [71, 119]. 

MicrQaneurysms, hemorrhages and retinal vein dilatation have been found· in 

macroglobulinemia [4, 32] and myelomatosis [56]. Both are conditions in 

which.the blood viscosity is raised. Microangiopathic lesions have been 

produced experiment~lly by increasing the ~lood viscosity with dextran [63]. 

3. Summary of lliochcmical and Physiolog:Lc.:1l Alterations of Diclhctic 
Blood 

~--~~-----------------------

Conclusions about the rheology of blood in the microcir~ulation can 

only be based on inferences from the physical characteristics of blood with-

drawn from the macroc'irculation but analyzed in an in vitro system .which 
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may not represent the J-n :'ivo situation. \,fithout knowledge of the shear 

stresses and .shear rates existing in the microcirculation, extrapolation 

from the in vitro conditions of a viscometer to conclusions about the 

hemodynamic significance of viscosity in the microcirculation cannot be 

made. Silent testimony to the difficulty of making .in vivo measurements 

of shear stress and shear rate for blood ln the microcirculation is found 

in the absence of such data in the literature .. However, information of 

this nature would derive from quantitative measurement of microvessel blood 

flow. 

E. SUMHARY OF LITERATURE REVIEW AND STATEHENT OF PURPOSE 

Thickening of capillary basement membranes has emerged as the 

fundamental morphologic alteration characteristic of diabetic microangiopathy 

[53, 91, 123, 124]. Although the microangiopathy of the the retina and 

kidneys has traditionally received great attention, rece~t studies have 

shown that most, if not all, capillary beds of the body are affected [30, 

54, 71, 96, 107, 124]. The ubiquitous nature of diabetic microangiopathy 

suggests that the formation of microangiopathic lesions is relatively 

independent of extravascular metabolic processes. It is unlikely that 

an extravascular metabolic process unique to a single organ is responsible 

for the accumulation of PAS positive material in the vessel walls of 

arterioles, capillaries and venules. This indicates a change in the blood 

may play a role in the development of diabetic microangiopath~. 

Changes in plasma protein composition are known to occur in diabetes 

mellitus [127]. Both increased pL1sma v:iscosity ;mel· enh;mced JntrovascuL1r 

aggregation have been related to the same changes in plasma protein compo-

. . 
sition [27, 69, 70]. The circulatory problem in diabetes mellitus is 
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confined mainly to the capillaries and small venules; hence, this is t:he 

level of the circulation where intravascular rheology requires analysis 

in this disease. Therefore, information about diabetic microangiopathy 

will result from techniques which provide for direct·in vivo quantitation 

of blood flow in microvessels. 

The purpose of this study was to evaluate quantitatively the 

microcirculation in an animal model of diabetes mellitus. Specifically, 

the red cell velocity in mesenteric microvessels, i.e., arterioles, cap

illaries and venules, were measured in non-diabetic and streptozotocin

diabetic rats. 



CHAPTER III 

HETHODS 

A. ANIHALS AND CARE 

Adult male Holtzman rats (>60 days old) were used in this study. 

0 
They were acclimated to the temperature (76±2 F) and the light period 

(7 AH to 7 PM) in the animals quarters for at least one week before use. 

Laboratory chow and water were provided ad libitum. Prior to an experiment, 

the animals were fasted overnight. This consisted of removing food, but 

not water, from the animals at approximately 6 PM on the evening immediately 

preceding an experiment. 

B. INDUCTION OF DIABETES MELLITUS AND EVALUATION OF THE DIABETIC STATE 

Streptozotocin (Upjohn Co., Kalamazoo, Hichigan) was used to induce 

diabetes mellittts in fed male Holtzman rats. The rats were anesthetised 

with sodium pentobarbital (1.6 mg, i.p.) to facilitate rapid handling. A 

solution of streptozotocin (100 mg/dl) in citrate buffer (0.1 M in 0.9% 

saline) was made not more than 2.5 minutes before an intravenous injection 

of streptozotocin (25 mg) was given into the dorsal vein of the penis. At 

the time of injection these rats were 12 weeks old and of a mean body weight 

of 330 grams. 

The polydipsia, polyphagia and polyuria evident "in these rats during 

the weeks followLng the streptozotocin treatment <JS well as their weight 

loss and emaciated appearan~e suggested a diabetic state. Only those rats 

whose plasma glucose concentration following an overnight fast was greater 

than 140 mg/dl were used. A Yellow Springs Instrument Hodel 23A Glucose 
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Analyzer was used to measure plasma glucose concentrations. The blood 

s~mple was obtained from the left carotid artery on the day of the exper

iment. 

The effect of streptozotocin-diabetes on the microcirculation was 

assessed by measuring the red cell velocity in the mesenteric microvessels 

of three groups of rats. One group of rats was not treated with strepto

zotocin. They served as age-matched, normal controls. The streptozotocin

treated animals were divided into two g~oups: a short-term and a long-term 

diabetic group. The rats in the short-term diabetic group served as hyper

glycemic controls. Experiments conducted on control animals were inter

spersed with those conducted on the streptozotocin-tre~ted animals. 

C. SURGICAL PROCEDURE 

Fasted male Holtzmann rats were anesthetized with sodium pentobarbital 

(35 mg/kg, i.~.). The abdomen and ventral aspect of the neck were shaved in 

preparation·for surgery. 

The right jugular ve:i,n \vas cannulated (PE-50, Clay-Adams) for the 

intravenous administration of maintenance doses of anesthesia. A second 

PE-50 catheter was placed in the left carotid artery and coupled to a 

Statham P23Gb pressure transducer for arterial pressure measurement. 

The trachea was cannulated and the ventilation of the animal was 

controlled with a Harvard Apparatus Rodent Respirator. Respiration was 

maintained at 60 breaths per minute. The tidal volume of 2-3 ml was adjusted 

for each animal according to the venti laUon gr<1pll <1ccompanying the resp

irator·. 

A 3" X 5" piece of surgical drape was adhered to the abdomen. The 

surgical drape prevented loose hair clippings from getting on the exte-
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riori<;ed mesentery. I\ 2" midline incision, centered on the umbilicus, 

was made through the drape and into the peritoneal cavity along the linea 

alba. 

Each animal was placed on its right side in a holder on a specially 

0 
.. designed, constant temperature (37 C), water-heated, plexiglass microscope 

stage. Cotton-tipped swabs moistened with Tyrode's solution were used to 

gently remove a short length of ileum from the abdominal cavity. Once 

exteriorized, the mesentery was loosely draped over the viewing pedestal 

on the plexiglass stage. 
0 

A standing solution of warm (37 C) Tyrode's 

solution (compos'ition in m.M: NaCl 142.5; KCl 2.7; Cacl 2 1.4; HgC1 2 0.5; 

NaHC0
3 

11.9; NaH
2
Po

4 
0.3 .and glucose 5.5) adjusted to 300±5 mOsm with NaCl 

and to pH 7.4 with HCl and NaOH was used to keep the tissue moist. A small 

piece of polyvinyl film (Saran Wrap) was used to cover the mesentery to 

retard evaporation, yet permit observation. 

D. SELECTION OF VESSELS 

A section of the mesenteric microcirculation consisting of a 

vascular loop of an arteriole, capillaries and venules was selected for 

the measurement of red cell velocity. A schematic representation of such a 

loop is shown in Figure 1. The following criteria served to establish the 

normalcy of the microcirculation in each preparation: (1) flow through the 

terminal aiterioles was sufficiently rapid so that individual blood cells 

could not hc idcnti.ficd, (2) t.hc collccting venulcs hnd n stc;ndy, continuous 

fonvarcl flow w1thout evidence of retrograde flow or oscillntion, and (3) 

mean arterial perfusion pressure as measured in the left carotid artery was 

not l~ss thnn.70 mm Hg~ Thirty-fdur percent of tl1e animals were discarded 

because according to the criteria the_preparation was aberrant. 



FIGURE 1 

MESENTERIC HICROCIRCULi\TION 

This is a di.agr:1matic reprcscnt<1tion of the tenni.n<1l v:1scula-turc 
in the mesl'nteric ml.croci.rculntfon.· l.t consists of n vnsctt:l;lr. loop of 
an arteriole, capLLlaries and the effluent venule. Such vascular loops 
\vere. selected for the measurement of red c<:c:ll velocity. 
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A number of changes occurred in the vasculature which indicated 

tissue deterioration and were used as criteria for terminating experiments. 

The changes generally occurred in the following order: (1) the appear

ance of leukocytes sticking to or rolling along the walls of t~e collecting 

venules, (2) extravasation of red cells either by diapedesis or petechial 

hemorrhage, and (3) extensive intravascular coagulation. 

E. HICROSCOPE.OPTICS 

The plexiglass stage which held the rat and the exteriorized 

mesentery was placed on the mechanical stage of'a Leitz Pa~phot microscope. 

A xenon lamp '(XBO 150W) was used to transilluminate the mesentery. A 

magnified image of the mesent~ric microvasculature was projected onto a 

viewing screen by a projection prism (6.3 X) and two Leitz objectives 

(UH 20/0.33). One of the objectives was used as a long working distance 

condenser and the second was used as a high, dry objective. The total 

magnification realized at the viewing screen was 237 X. 

F. MEASUREMENT OF VESSEL DIHENSIONS 

The image of a. Bausch and Lomb stage micrometer was projected onto 

the-viewing screen. The distance between the minor ~ivisions (10 microns) 

was drawn onto the viewing screen. This graticule was used to measure the 

outside diameter of all vessels from which velocity recordings were made. 

G. ~IEASUIU~HI\NT OF HED CELl. Vl~T.OCTTY 

1\ llllHI!flc;ttlon nf till• du;ll-:-di.L pholonll'trlc tvchnlqul' of \v;tyl;llld 

and Johnson [ 117] \vas used to measure reel cell velocity. The image of a 

microvessel wa.-s aligned perpendicular to two parallel slits in a viewing 

screen as shown in Figure 2. As the image of a red cell passed'in front 



FIGURE 2 

EXPERIMENTAL ARRANGEMENT 
FOR ON-LINE.ME/\SUREHENT OF 

RED CELL VELOCITY 

PHOTODIODES 

UPST·REAM 

DOWNSTREAM 

COR RELATOR 

DIVIDER 

VELOCITY (mm/sec) 

TO RECORDER 

A t 

Schematic diagram of preparation and 'on-line red blood cell velocity 
mcnsuring syst~rn. Tmngc of microvcsscl Js projected onto n screen 
containing dual sllts. llpstrc;un ;mrl downstrcnm phobHI lod(:S <Jrc time 
correlated and the resulting ·time interval is divided into tl1e distance 
betwee~ the slits to obtain red cell velocities. 
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of the slits, the voltage output ~f a photodiode (United Detector Technology, 

Inc., PIN 020A) mounted behind each slit varied. When the vessel image 

was properly aligned, the magnitude of this variation was identical for 

both detectors, differing only iri the time it took for the image of the 

red cell to travel the distance between the two slits. This ttansit time 

was determined by an on-line cross-correlation technique [46, 118]. An 

analog divider circuit, programmed with the distance between the photo

detectors computed th~ red cell velocity. 

A strip chart recorder (Offner Type R dynograph) was used to record 

contiriuously the red cell velocity ahd arterial pressure. Red cell velocity 

data was collected and tabulated at two or five second intervals over the 

observation period: These were used to calculate the average red cell 

velocity in the vessel. 

H. STATISTICAL ANALYSIS 

Homogeneity of varianr:.e was tested for by the F-maximum test [97]. 

Or:te w~y analysis of variance was used to analyze for significant differences 

between corresponding variables of the three experimental groups (control, 

shor·t-term and long-term streptozotocin-diabetics). The Scheffe contrast 

was used to determine which groups differed. Correlation coefficients 

were calulated according to .the methods of Pearson's (r) [23]. The 5% 

level of significance was used. 



CHAPTER IV 

RESULTS 

A. CONFIRMATION OF DIABETES MELLITUS 

The plasma glucose·concentrations and body weights of the control, 

short-term and long-term streptozotocin-treated animals are shown in Table I. 

At the time of streptozotocin injection the fed weight of t~e 59 treated 

animals was 329 ,± .4.8 grams. All values are means ± standard errors. Those 

animals used one week after the streptozotocin injection weighed 276 ± 9 

grams. This was an average weight loss of 53 grams. There was a more 

gradual weight loss· during subsequent weeks. The treated animals weighed 

an average of 266 ± 8.6 grams 25 days after the streptozotocin injection. 

In addition to the weight loss, the streptozotocin-treated animals 

exhibited polydipsia, polyphagia and polyuria. This is consistent with an 

induced diabetic state and was confirmed by the elevated plasma glucose levels 

in these animals. The plasma glucose concentrations of the non-treated 

animals was 82 ± 7 mg/dl. At the end of one week of diabetes mellitus, the 

plasma glucose concentration was 273 ± 30 mg/dl. As the duration of diabetes 

increased, this rose to 296 ± 36 mg/dl in the long-term diabetic animals. 

B. EFFECT OF STREPTOZOTOCIN DIABETES ON RED CELL VELOCITY 

The red cell velocity in the various comportments of the micro-

circulation is shown in Figure 3. This figure represents data from vioble 

mesenteric prcpilrntions of seven control (C), nine short-term (S) ;mel 

seven long-term (L) diabetic animals. 
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TABLE I 

PLAS~~ GLUCOSE. CONCENTRATIONS IN 
CONTROL AND STREPTOZOTOCIN-TREATED ANI~LS 

STREPTOZOTOCIN-TREATED 
CONTROL SHORT-TERM LONG-TERM 

" 
NUMBER OF ANI_HALS (N) 15 12 12 

AGE (days) 96 89 105 
±3 ±2 ±3 

WEIGHT (grams) 353 276 266 
±11.4 ±9 ±8.6 

DURATION OF DIABETES (days) 0 7 25 
±0.5 ±3 

PLASHA GLUCOSE (mg/ dl) 82 273 296 
±7 ±30 ±36 

The 24 streptozotocin-treated animals are those animals which 
survived the diabetes which developed following the injection of 
streptozotocin. The duration of diabetes refers to the time since the 
streptozotocin injection. 
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FIGURE 3 

EFFECT OF STREPTOZOTOCIN DIABETES ON 
RED CELL VELOCITY 
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ARTERIOLES CAPILLARIES VENULES 

Red cell velocity (m~an ± SEM) in art~rioles, capillaries and 
venules of 7 con·trol (C), 9 short-term (S) and 7 long-term (L) diabetic 
animals. The n is the number of vessels bbserved. The level of 
significance is indicated by the P values; ns indicates P > 0.05. 
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No statistically significant difference was found betHeen -the red 

cell velocities measured in the various microvessels of the control and 

short-term diabetic animals. The average red cell velocity in the 14 

control arterioles studied was 0.60 ± 0.10 mm/sec as compared with 0.68 ± 

0.12 mm/sec in the 24 short-term diabetic arterioles. ·In the 18 control 

capillaries, the red cell velocity was 0.45 ± 0.09 mm/sec versus 0.24 ± 

0.03 mm/sec in the 22 short-term diabetic capillaries. The velocity at 

which red cells moved through the 12 non-diabetic venules was 0.34 ± 0.07 

mm/sec. It averaged 0.30 ± 0.07 mm/sec in the 21 short-term diabetic 

venules. 

The red_cell velocity of the 20 arterioles studied in the long

term animals \vas 1. 22 ±. 0.15 mm/ sec as compared with 0. 68. ± 0.12 mm/ sec 

for the short-term diabetic animals and with 0.60 ± 0.10 mm/sec for the 

control animals. The red cell velocity in the arterioles of the long-term 

diabetic group was signif~cantly greater (P < 0.025) than in the short

term diabetic or control animals. 

The red cell velocity in the 20 capillaries studied in the long

term di'al;>etic animals was 0.59 ± 0.12 mm/sec as compared with 0.45 ± 0.09 

mm/sec for the control animals and with 0.24 ± 0.03 miD./sec for the· short

term diabetic animals.. The red cell· velocity in the capillaries of the 

long-term diabetic animals was significantly greater (P < 0.025) than in 

the short-term diabetic animals, but was not significantly_greater than 

in the control animals. 

The red cell velocity ln the 22 venulcs studied in the long-term 

diab.etic animals was 0._70 ± 0.08 mm/sec as compared with 0.34 ± 0.07 mm/sec 

for the control animals and 0.30 ± 0.04 mm/sec for the short-term diabetic 
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animals. The red cell velocity in the venules of the long-term diabetic 

animals was significantly greater than in the control animals (P < 0.005). 

or the short-term diabetic animals (P < 0.001). 

An average for the red cell velocity in each segment of the micro

circulation was.determined for each preparation. The correlation between 

the severity of diabetes, as judged by the plasma gluc6se concentration, 

and the r~d cell velocity-in the arterioles, capilliries and venules ~as 

determined by calculating the Pearson (r) moment correlation coefficient. 

The correlation coefficients are shown in Table II. No significant 

correlation was found between the plasma glucose concentration and the red 

cell velocity in any segement of the microcirculation. 

C. EFFECT OF STREPTOZOTOCIN DIABETES ON VESSEL DIMENSIONS 

The caliber of the microvessels in the various compartments of the 

microcirculation of the same control (C), short-term (S) and long-term (L) 

animals is .shown in Figure 4. This represents data from the. same arterioles, 

capillaries and venules in which the red cell velocity was measured. The 

outside diameter of the arterioles in the control (C), short-term (S) and 

long-term (L) diabetic animals.was 12.5 ± 0.8 microns, 15.2 ± 1;4 microns, 

and 12.1 ± 0.8 microns, respectively. Tl1ese measurements were not significantly 

diEferent. The diameter of the capillaries in these animals was 7;9 ± 

0.4 microns, 7.7 ± 0.4 microns and 7.7 ± 0.5 microns, respectively. These 

measurements did not differ significantly. The caliber of the venules in 

the same control (C), short-term (S) and long-term (L) diabetic animals 

was found to be 22.8 ± 2.1 microns, 17.9 t 1.8 microns and 17.5 ± 1.4 

microns, respectiveli. Again, there was no statistical differenc~ •among 

these groups. 



TABLE II 

CORRELATION BET~ffiEN PLASMA GLUCOSE CONCENTRATION 
AND RED'CELL VELOCITY 

ARTERIOLES CAPILLARIES VENULES 

CORRELATION COEFFICIENT (r) 0.29 -0.07 0.08 

DEGREES OF FREEDOM (df) 18 17 17 

LEVEL OF SIGNIFICANCE p > 0.10 p > 0.10 p > 0.10 

This table shows the Pearson (r) moment correlation coefficient 
between the plasma glucose concentration and the red cell velocity in 
the arterioles, capillaries and venules of the non-diabetic and diabetic 
animals. The degrees of freedom arid the level ~f significance are also 
ii).dicated. 
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FIGURE'4 

EFFECT OF STREPTOZOTOCIN DIABETES ON 
VESSEL DIMENSIONS 

Outside clLnncter (nwnn L Sl\N) L'f <lrteriolc's, cnplll:Jries :mel 
venules of 7 control (C), 9 shnrl-tl'nn (S) nnd 7 IOnp,-term (L) di:1hctlc 
animals. The n is the number of vessels observed. The level of ' 
significance is indicated by the P values; ns indicates P > 0.05. 
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D. EFFECT OF STREPTOZOTOCIN DIABETES ON SYSTEHIC BLOOD PRESSURE 

Simultaneous with the measurement of red cell velocity in the 

various microvascular segmerits was the recording of blood pressure in the 

left carotid artery. The average mean blood pressure was calculated for 

the period of red cell velocity measurement. These data are shown in 

Figure 5. 

When the red cell velocity was being measured in the arterioles 

of the control (C), short-term (S) and long-term (L) diabetic animals, the 

blood pressure in the left carotid artery was 150 ± 4 mm Hg, 134 ± 4 mm Hg 

and -137 ± 3 mm Hg, respectively. There was a significant difference 

(P < 0.025) between the blood pressure in the control (C) and short-term 

(S) diabetic animal~ when arteriolar red cell velocities were being measured. 

No other differences were found. 

When the red cell velocity was being measured in the capillaries, 

the blood pressure was 146 ± 5 mm Hg in the control (C) animals as compared 

with .141 ± 3, mm Hg in the short-term (S) diabetic animals and 133 ± 3 mm Hg 

in the long-term (L), diabetic animals. · The only significant difference 

(P < 0.05) ~as found between the control and lorig-term animals. 

The blood pressure in the control (C), short-term (S) and 'long-t~rm 

(L) diabetic animals was 146 ± 6 mm Hg, 139 ± 3 mm Hg and 131 ± 3 mm .Hg, 

respectively, when the red cell velocity was being measured in the venules. 

There was no significant difference between'these values. 

From the cl;Jta presented in Figure 5, it appl'ars as :if there is· a 

trend for blsod pressure to decrease as the duration of diabetes lengthens. 

An average mean blood pressure was. determined for each preparation. Computation 

of the Pearson (r) correlation coefficient (r = -0.29; df = 21) for these 

data indicates no significant relationship exists between the duration of 
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EFFECT OF STREPTOZOTOCIN DIABETES ON 
SYSTEMIC BLOOD PRESSURE 
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ARTERIOLES CAPILLARIES VENULES 

Mean systemic blood pressare (mean ± Sml) in the left carotid 
artery oe 7. control· (C), 9 short:-term (S) and 7 long-term (L) diabetic 
animals measured at the same time red cell velocities were being recorded. 
The n is the number of vessels observed. The level of significance is 
indicated by the P values; ns indicates P > 0.05. 
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diabetes and systemic blood pressure. The correlation between systemic 

blood pressure and plasma glucose concentration (r = -0.15; df = 19) 

indicates that the apparent tendency for blood pressure to decrease as the 

duration of diabetes incieased is not related to the plasma glucose 

concentrations. 

E. EFFECT OF STREPTOZOTOCIN DIABETES ON LYMPHATIC ACTIVITY 

In the course of an experiment, a lymphatic vessel would occasionally 

. come into view. Hhen .this happened, the rates of contraction were measured. 

The relaxed and contracted diameters of the lymphatic vessels were also 

measured. These data are shown in Table III. 

Lymphatic vessels were seen in only two non-diabetic (C) animals. 

This was because the mesenteric fat pads hid them from view. When the 

mesenteric fat pads atrophied, the lymphatic vessels were exposed. Seven 

lymphatics wer.e seen in four short-term (S) and six lymphatics were seen 

in four long-term (L) diabetic animals. 

The contraction-relaxation cycles appear most rapid in the larger 

collecting channels (L50-250 microns). The periodicity varied from 7-33/min. 



TABLE III 

LYHPHATIC ACTIVITY 
IN NON~DIABETIC AND. STREPTOZOTOCIN DIABETIC RATS 

DIAHETER (microns) CONTRACTIONS 
GROUP RELAXED CONTRACTED PER MINUTE 

c 175 100 28 

c 130 110 18 

s 250 0 

s 150 0 

225 0 

s 120 90 24 

140 110 22 

210 130 . 7 

s 75 50 23 

L 150 120 9 

200 175 . 12 

L 250 200 10 

L 200 150 24 

200 150 33 

L . 150 125 14 

This table shows the relaxed and contracted diameters of collecting 
lymphatics in 2 control (C), 4 short-term (S) and 4 long-term (L) 
diabetic animals, along with .their corresponding rate of contraction. 
In ~wo of the short-term animals, the lymphafics showed no spontaneous 
contractions, hence {t is not known whether the diameter measured 
represents a relaxed or contracted diamet.er. 
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CHAPTER V 

DISCUSSIO~ 

A. INDUCTION OF DIABETES MELLITUS AND EVALUATION OF THE DIABETIC STATE 

The purpose of this study was to quantitatively examine the effects 

of diabetes mellitus on circulatory dynamics within a microvascular network. 

This was achieved by measuring the red cell velocity in the mesenteric 

microcirculation of an animal model of diabetes mellitus. 

Currently, streptozotocin is the drug of choice for the induction

of experimental diabetes in laboratory animals [3, 49, SO]. The streptozo

tocin treated animals exhibited a weight 1oss when compared with age

matched controls. In addition, they exhibited polyphagia, polydipsiai 

and polyuria. This is consistent with an induced state of diabetes mellitus. 

The diabetic state was confirmed by the elevat,ed plasma glucose 

levels in these animals. The plasma glucose concentration in the short

term diabetic animals was 273 ± 30 mg/dl and was 296 ± 36 mg/dl in the long

term diabetic group, as compared with only 82 ± 7 ~g/dl in the non-treated 

control group. These values are in agre~ment with values reported in the 

literature [3, 49, SO] for glucose levels in rats treated with comparable 

doses of streptozotocin and after similar periods of time had elapsed. 

B. HICROC:IRCULJ\TION lN TilE INTESTINAL ~!ESENTI·:RY 

llnJikc structures, such ns skeletal. muscle, \vhich rcqui ~;e consldt'rnhl<' 

handling, the inter.ti.nc can be e;<;posed for study \vi th a mlnimum of hand] ing. 

The mesentery provides in a two-dimensional array all the elements of the 
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terminal vascular ~ed. It provides clear visualization of the vessel wall 

and blood cellular elements.· The thinness and vascularity of the mesentery 

make it a valuable structure for transillumination. This makes it possible 

to use a dual-slit photometric system for measuring red cell velocity [117]. 

The ubiquitous occurence of diabetic microangiopathy throughout 

the body makes it unlikely that an extravascular metabolic influence 

unique to a single organ is responsible for-the accumulation of PAS-positive 

material in the vessel_walls of arterioles, capillari~s and venules. This 

suggests that an intravascular derangement may be responsible for the 

development of microangiopathic lesions. 

The metabolic'influence of the loose connective tissue in the 

mesentery on the autoregulatory behavior of the terminal vascular bed is 

minimal. Flow through the mesenteric microcirculation is strongly regulated 

by myogenic mechanisms [48]. The mesenteric microcirculation is tailor 

made for investigating the influence of diabetes mellitus on microcirculatory 

phenomena. The results obtained would not be distorted by ~hanges in the 

metabolic environment of the vascular bed peculiar to the influence of 

diabetes mellitus on a parenchymatous organ. 

The most striking thing about the appearance of the diabetic 

m~sentery was the mark~d atrophy of the mesenteric fat cells. The decrease 

in the size of the fat cells is consistent \vith the increased mobilization 

of fatty acids in diabetes mellitus. [122]. The fat cells were very prominent 

in the non-diabetic animals. The microvessels were clearly visible only in 

a narrow zone along the margin of the fat pads. Larger arterioles and venules 

cbuld be less clearly discerned.through the overlying translu~ent adipocytes. 

In the diabetic animals it was as if the adipocyte quilt had been thrown 
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back, clearly exposing the complete distribtltion and branching pattern 

of the microvessels lying in the mesenteric bed. The vessels brought to 

view wer.e probably already in existence· at the time diabetes was induced 

'[98]. No gross anatomical differences in the appearance of the mesenteric 

microvascular architecture were observed. 

The preparations used in this series of experiments were physio

logically sound. The flow in all the arterioles was sufficiently rapid 

so that individual blood cells could not be identified. Changes of red 

cell velocity in the capillaries .were irregular and unpredictable. The 

capillaries studied were all of the steady type in which individual red 

cell velDcity measurements fluctuated randomly around a stable mean. Changes 

in the direction of. movement, as well as in the number of capillaries with 

an active circulation were seen. The effluent flow by way of the post

capillary venules had a steady continuous forward movement with no evidence 

of retrograde oscillation. 

Eiperiments conducted on control animals were interspersed with 

those conducted on diabetic animals. The microvessels studied in all the 

animals were taken from the same general area of the mesentery. The same 

criteria for assessing the initial viability of the preparations and the 

degree of deterioration were used id all the experiments. It is unlikely 

that bias in the selection of vessels or differences in the viability of 

the preparntions are responsible for the dLfforences observed in reel cell 

velocity. 

C. INFLUENCE OF STREPTOZOTOCIN ON RED CELL VELOCITY 

The.red cell velocity constitutbs a good index of blood flow velocity 

which faithfully ieflects all n~tural or induced changes of flow as shown 
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in the studies of 'A)ayland and Johnson [117] and Intagl:letta et. al. [46]. 

The red cell velocity in the arterioles, capillaries ~nd venules of the 

control animals (Figure 3) \vas 0.60 ± 0.10 mm/sec, O.Lf5 :!: 0.09 mm/sec and 

0.34 ± 0.07 mm/sec, respectively. These results are comparable to those 

reported in the literature [10, 46, 83, 84] and with previous results 

obtained in this laboratory (unpublished observations). 

The short-terre diabetic animals served as hyperglycemic controls. 

Blood sugar levels per se have been demonstrated to have no effect on blood 

rheology [13]. Therefore, no difference in red ce11 v~locity was expected 

to be found between the control and short-term diabetic animals. As antici

pated, there was no significant difference between the red cell velocity 

measured in the microcirculation of the control animals and the red cell 

velocity measured in the arterioles (0.68 ± 0.12 mm/sec), capillaries 

(0.24 ± 0.03 mm/sec) and venules (0.30 ± 0.04 mm/sec) of the short,..-term 

diabetic animals: 

The red cell velocity in all segments of the microcirculation of 

the long-term diabetic animals was greater than that measured in either 

the control or the short-term diabetic animals. The red cell velocity 

in the arterioles (1.22 ± 0.15 mm/sec) was more than twice that of the 

control anim~ls and 1.8 times greater than that of the short-term diabetic 

animals. In the capillaries of the long-term diabetic animals, the red 

cell velocity (0.60 :1: 0.12. mm/scc) was 1.3 times th:1t of the non-diabetic 

ailinnls and 2. 5 t imcs that o( the short-term diabetic antmals. Slmilar 

incteases of red cell velocity were seen in the venular segment. The red 

ce-ll velocity in this segment of the microvascualture was 0.70 ± 0.08 mm/sec 

in the long-term diabetic ariimals. This was·more than double the red cell 
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velocity in the vessels of the non-diabetic animals and 2.4 times that 

of the short-term diabetic animals. 

Since an increased red cell velocity was observed in the mesentery 

after one ·month of diabetes, it is a log-ical assumption tha·t this happens 

in other vascular beds as well. More importantly, the changes in red cell 

velocity took place before thickening of capillarybasement membranes has 

been reported to occur in chronically streptozotocin diabetic rats [12]. 

The increased red ~ell velocity observed in this study also is 

consistent \vith ·the l,lyperemic conditions observed in various tissues of · 

diabeti~ patients [2, 11, 18, 36, 38, 40, 55]. Blood flow to an organ can 

be increased by only three mechanisms. These are: (1) an increase in 

blood pressure, (2)' an increase in the cross-sectional area of the resistence 

vessels, and (3) a decrease in viscosity. As these variables were not 

measured in the.diabetic patients, it is not possible to define clearly 

the mechanism responsible for their elevated flow. 

D. SUGGESTED HECHANISMS FOR THE INCREASED RED CELL VELOCITY FOUND IN 
STREPTOZOTOCIN RATS 

Becau~e the blood pressure of the long-term diabetic animals was 

not greater than that of the control or short-term diabetic animals, the 

increased red cell velocity found in the long-term diabetic rats cannot 

be explained on the basis of this parameter. In order to account for the 

increased reel cell. vcloci ty on the basis of' Vl'ssel dimensions alone, the 

IHL'<IStll"l'd d Llmt'Lt•rs 1mul.d have to Ill' 'i lt1 B micron~; .I aq~ct·. ( 1 ·:q tl<l u 0 11 ,, • 7 

on page 136 of Charm and Kurland [14] was used to make this calculation.) 

In none of the microvascular segments did the outside diameter differ 

sign'ificantly from group to group. An increase of the inside radius of the 
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blood vessel net reflected in a larger outside di~meter could account for 

a portion of the increased red cell velocity in the long-term diabetic 

group. The magnitude of the diameter change required and the thickness 

of the vessel walls'at.this level of the microcirculation makes this 

unlikely. 

A decrease in viscosity to half of normal values would result in 

a: doubling of blood flow. In vitro rheological studies of blood an.d serum 

have demonstrated that the viscosity of blood and serum i"s elevated in 

diabetics with evidence of micr6angiopathy [19, 45, 67, 69, 70, 95], and 

more so at low shear rates [45]. There has been one report of decreased 

serum viscosity in a group of diabetic patients [75]. Although the Ostwald 

viscometer 'employed-by Mosora et. al. [75] appears to be a simple device, 

its use is subject to a number of errors [15] that make it inappropriate 

for quantitative biorheological measurements. This observation of decreased 

serum viscosity must be discounted until a more detailed report is published 

clearly defining the metabolic condit~on of the patients and the,presence 

or absence of microangiopath~. 

The relationship between the viscosity and the shear rate of blood 

is such that viscosity.increases as the shear rate is reduced towards zero 

(shear thinQing) and viscosity at high shear rates is essentially independent 

of shear [17}. A wide range of shear rates exist within the vascular 

compnrtmL'nts of the circul.:1t:lon. Tt ls ost: im;ll:c'd tliat tlw lowest ~;h<':lr 

rates arc to lw [otllid Jn the posl-caplllary vcnul.cs ['!6, WJ]. lf the shear-

dependent region is encountered in the V<'ntd.es, then the viscosity of 

blood would be preferentially elevated in this vascular compartment. The 

expected response in the venules to a shear-dependent increase in viscositv 
' " 
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would be sluggish flow. Such a response in tl1e post-capillary venules 

would be even more pronounced if the degree of siiear-dependence of blood 

viscosity is enhanced [45]. 

As blood traverses the microcitculation it does not flow as a 

homogeneous suspension as it does in larger vessels; rather, it flows as

a two phase system--cells and plasma. Plasma alone is the liquid phase 

and plasma viscosity is ~he significant viscosity parameter. Blood vi~cosity, 

per se, is of little importance when considering microcirculatory flmv-

[14, 47]. Chien [17) has developed a theory of blood viscosity that is 

especially applicable to the microvasculature where flow is of two distinct 

phases (cells and plasma) rather than bulk flow is taking place. This 

theory of blood viscosity is based on the concept of effective cell volume, 

which is defined as the sum of the cell volume-and the volume of the 

surrounding fluid that behaves as if it were a rigid. extension of the cell. 

Red cell velocity exceeds plasma velocity in blood flow through 

small diameter vessels [106]. The difference between the velocity of plasma 

and the velocity of red cells. is accentuated by inc~eases of blood [85] 

or plasma [86] viscosity. Rosenblum [85, 86] observed that when the 

fluorescein transit time through the cerebral microcirculation ~f mice 

was lengthened because of increased plasma viscosity, erythrocyte velocity 

measured by ultra-high microcinematography was within normal limits or 

elevated. Rosenblum's results are consistent ;v-ith Chien's theory of blood 

rheology [17]. According to the concept of effective cell volume, an increase 

in plasma viscosity would increase cell deformation and therehy decrease 

the e~fective cell volume. This would result in a decrease in the relative 

apparent viscosity of blood. An increase in red cell velocity would resnlt. 



It is possi~Jlc that a shear-clcpcnclent increase -In plasm<1 viscosity 

occurred in the long-term diabetic animals. The increased red cell velocity 

in the arterioles and venules of the long-term diabetic animals is con~istent 

with Rosenblum's observation of normal or elevated erythrocyte velocity in 

animals with an elevated plasma viscosity. Valid conclusions ab~ut plasma 

viscosity, the influence of plasma viscosity on red cell deformation and 

red cell velocity cannot be reached by measuring red cell velocity alone. 

An in vitro assessment of the viscosity of plasma withdrawn from animals 

in which the red cell velocity has be~n measured is necessary in order to 

r~ach such conclusions. 

The red cell velocity in the venules of 3 of the 9 short-term 

diabetic animals was less than 60% of the group mean (0.30 ± 0.04 mm/sec). 

In only one of these animals was. intravascular eiythrocyte aggregation 

observed when the preparation was still considered viable. The a'ggregates 

were observed only in the venular segment of the microcirculation. They 

were small, consisting of only ~hree or four cells clumped together. They 

did not distort or plug the vessel. Aggregation not related to preparation 

deterioration was observed in only one other short-term diabetic animal. 

The red cell aggregates were distinctly visible in the venular segment. 

They did not distort or plug the venules. The velocity of the red cells 

in the venules of this preparation averaged 0.38 rnrn/sec, slightly faster 

than the average velocity for this group. 

Nn ar,gn•g:1Llons or red cc.lls not :1ttrJhutabl.e to pr<'p;n·atlon 

deterioration wc="re observed in the microcirculation of tl1e long-term dl.abetic 

anim'als. This may be due to the disa.ggregating shear forces of the· blood 

flmv being greater than the adhesive forces acting between red cells. 
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Therefore aggreg-ates were never formed. It may also be that· aggregates 

were formed, but because of their velocity and the flicker-fusion 

characteristics·of the human eye, they were not distinctly visible. Use 

of an optical recording system with sufficient resolution that permits 

review of the observations is necessary in order to adequately determine 

the extent of red cell aggreg~tion under conditions of increased red cell 

velocity in these animals. 

In the post-capillary venules with diameters slightly larger than 

the major diameter of red blood cells, red cell aggregation can only .he in 

the form of linear rouleaux with its axis aligned with flow. Under such a 

geometric limitation, the theory of blood flow presented by Chien [17] 

predicts a reductiori in effective cell volume and a decrease in the apparent 

viscosity of bl6od. If aggregates did form in the post-capillary Venules, 

the expected response would be an increase in velocity. The elevated red 

ve.loc_ity measured in the post-capillary venules of the long-term diabetic 

animals is consistent with this micro-rheological theor'y of Chien. 

Both increased plasma viscosity and enhanced intravagcular aggre

gation l1ave been related to chang~s in plasma protein composition [27, 68, 

69]. There is a decline in the plasma concentration of albumin and a 

concomitant increase in that of a-glycoproteins. These proteins are produced 

by liver p~renchymal cells. Thus a change in the liver protein synthesis 

pattern appears important in the development of diabetic microangiopathy. 

The clcgrcl' of dlabctes rcquired.to disrupt liver mctabol.Lsrh is not knm.,rn [69]. 

It may be that the diabetes mellitus in the animals used in these experiments 

was not severe enough and/ or of long enough duration to result in 'the 

disruption of liver metabolism and produce these changes in plasma proteins. 

I 



Stteptozotocin has been used to produce diabetes mellitus of 

graded severity in laborator~ animals [49, 50]. A streptozotocin diabetic 

animal can be used to analyze the relationship between depleted pancreatic 

immunoreactive insulin, alterations in liver protein synthesis patterns 

and deranged carbohydrate me·tabolism. Such an animal model would give 

information about the duration and severity of diabetes necessary to disrupt 

·~ 

liver metabolism. This animal model would give information about the degree 

of diabetes necessary to produce changes in the rheological properties of 

blood and plasma. An in vitro assessment of blood and plasma viscosity 

could be made and compared with alteration~ in the composition of the 

plasma proteins. 

The fluid ~echanical processes which occur during the movement of 

an erythrocyte through the lumen of a capillary are very complex. They 

include the interaction of a deformable red ceil with the luminal surface 

of the capillary wall. The nature of the endothelial layer and its possible 

effects on the determination of microcirculatory flow dynamics have not 

been determined [37]. 

The blood in the microcirculation is not in direct contact with 

the endothelial cells, but rather with the layer or film adherent to them. 

Luft [117] has electron micrographic ~vidence for the existence of a layer 

lining the lumen of blood vessels. Copley and others [20, 22, 77, 109] 

have postulated the endo-endothelial linin)S of b.lood vessels consists of a 

fibrin film \vld ch is clynamlcally 111~1i.nt<Ji ned and con trolled hy fibrinolytic 

processes in the marginal plasm·a layer. 

It h<ls been observed that tubes coated with fibrin offer less 

resistance to blood and plasma flowthan uncoated tubes [20]. The physical 

mechanism responsible for the·decreased resistance to blood flow in fibrin 
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coated tubes is not known [ 37]. 0n~ possibility is the effect of the 

electric ~barge on the red cell and vessel wall. Most cells are negatively 

charged and the negatively charged tubing affords lower flow resistance to 

red cells [15]. Oka has ~uggested that the apparent viscosity of blood 

and pJasma will always show a decrease when blood is in contact with 

negativ~ly charged substances [77]. 

Electrokinetic phenomena arise when movement occurs along the. 

solid/liquid interface of a charged system [90, 91]. This condition is 

duplicated in the blood vessels of all living animals .. The role of· electrical 

forces in the vascular system has not· been readily accepted exc'ept for 

potentials measured in connection with contraction of the he~rt and of 

vascular smooth mu~cle. _The hemodynamics of the vascular system have over

shadowed the electrical properties of the surfaces of blood cells and of 

the endothelial lining of blood vessels. The in vivo and in vitro data 

relative to the negative charge on the components of the vascular system 

suggest that electrokinetic phenomena are significant ~.,rheri. flow in. the 

microcirc~lation is being considered ·[15, 41, 87]. Alterations in the 

charge carried by any of the components of the vascular system may be of 

significance as regards the interactions which occur between components 

of the system. 

There is no reason to believe that reactions which alter the base

ment meniliranc will not ltave a compatable adtion on the layer lining the 

lumen of blood vessels. The usc of ruthenium red to stain the cndo

endothelial layer would show whether the fine structure of this l<tyer 

is altered in diabetes [21, 61]. The importance of changes in the erido

endothelial layer for microcirculatory hemodynamics co~ld be obtained from 
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cross-perfusion studi~s. A segment of intestine and mesentery could be 

-isolated from a streptozotocin-diabetic animal and perfused with blood 

from a non-di.abetic animal. The red cell velocity could be measured in 

such a preparation, 

It is conceivable that a change in the electrical characteristics 

of the vessel wall could influence transcapillary fluid exchange via 

electro-osmotic processes. Such changes ~ould also result in the collection 

of fibrin at the luminal surface of the endothelium. The net effect would 

b~ the increased deposition of fibrin and other plasma proteins in the 

walls of the blood vessels. These fibrinous deposits, being remot~ from 

fibrinolytic processes in the vessel wall, undergo ageing changes and 

eventually come to.stain as collagen [59, 60]. It is interesting to note 

that on the basis of its amino acid composition, Spiro [105] has suggested 

that the basement membrane belongs to the collagen family of proteins. 

The thickening of the basement membrane that occurs in diabetes 

is not continuous along the entire capillary b~t is segmental in nature 

[53, 124]. If the excessive accumulations of basement membrane material 

were the ~onsequence of a generalized disorder in productiori or removal~ 

a more uniform thickening would be anticipated. The patchy and irregular 

thickening is more consistent with localized filtration and deposition. 

The relation~hip of the basement membrane thickening to the increased 

dinmetcr of the intr-ncellular cleft in diat;ctes [113] requires more study. 

f{egional variatlons in muscle capll L[1ry b;u;.emcnt membrane thickness 

have he-en reported 1n normaL subjects [92, J 15, 125, L26]. Electron 

~icroscopic studies of diabetic capillaries have demonstrated that the 

basement membrane of most, if not all, tissues is thickened, although 
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perhaps not to the same extent [92, 125]. 
( 

Electron microscopic examina-

tion of th~ capillary basement membrane in the glomerulus~ retina and 

skeletal muscle of chronically streptozotocin-diabetic rats has shown 

that the basement membrane thickens at different rates in these tissues 

[12]. In addition to'longitudinal permeability gradients [128], there 

are regional differences in capi1lary permeability [ 42, 64, 108]. It 

would be wprth irivestigating the relationship between the regional 

differences in capillary ~ermeability and the thickness of the capillary 

basement membiane. If the function of the capillary basement membr~ne 

is eventually defined, this information would be one of the important 

pieces of the puzzle. 

As a result of the interaction between hydrostatic and colloid 

osmotic pressures, the amount of fluid leaving the microcirculation 

rqdial to the blood flow is of the order of 0.1% of the local blood flow 

[47]. In the glomerular capillary, the filtration fraction is of the 

order of 20% of the renal plasma flow. The glomerular capillary with 

the greatest filtration volume of any capillary in the body has a basement 

membrane 10 to 20 times thicker than that of any other capillary. In 

diabetes, not only does the basement membrane thicken, but the capillary 

permeability also increases. This suggests that the basement membrane 

may, in addition to its role as a molecul~r sieve, function as an osmotic 

imbiber of W;lter and COntribute to the tissue 011COtic pressure in the 

Starlit~g equation for tLmscapillary fluid ·exchange. • 

The 'physiologic role of the lymplwt ic system in m.'lintaining 

interstitial fluid volume has become more appreciated in recent years 

[42, 43, 45, 47]. Pertubations of the Starling paramefers that result 
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in an incr~ased transcapillary filtration would cause an increase in the 

interstial fluid volume unless compensated for by adjustments in lymph 

flow. The increase in capillary permeability of diabetic patients 

suggests that lymphatic activity would have to be enhanced in order to 

maintain interstial fluid volume. 

Without injection of a 1-2% solution of Evan's blue dye in 

physiological saline, the lymphatic terminations do not show up against 

the translucent grtiund substance of the mesentery [129]. Collecting 

lymphatics are prominent. They are distinquished by the pr~sence of 

valve leaflets and show spontaneous contractions. 

Lymphatics were rarely seen in the mesentery of non-diabetic 

animals. They were obseured from view by the heavy deposits of fat in 

the mesentery. The same decrease in fat cell size that exposed the 

complete distribution and branching pattern of the termi.nal microvasculature 

also exposed the mesenteric lymphatics in the diabetic ani~als. 

On.Ly collecting lymphatics were seen in this series. of experiments. 

The contraction-relaxation cycles \ifere most rapid in the Luger collecting 

channels (150-250 microns). The periodicity of the contractions (7-33/min) 

' ' . 
cover a broader range than the 15-18 contractions per minute repoTted by 

Zweifach and Prather [129] for lymphatics of this size. The qualitative 

evidence accumulated in this study does not give any definitive anS\ifer 

concerning enhanced lymphatic activity in diabetic animals. 



CHAPTER VI 

SUMMARY 

The microvascular manifestations.of diabetes mellitus present 

. a serious clinical problem .for the diab'etic patient, far more so than 

do the derangements in carbohydrate metabolism. LJttle is knmm about 

the basic pathogenesis, of diabetic microangiopathy. Alterations in 

blood flow to various organs appear before pathological lesions. The 

purpose of this study was to qualitatively examine the effects of diabetes 

mellitus on circulatory dynamics within a microvascular netw6rk. This 

was achieved by m~asuring the red cell velocity in the mesenteric micro-

circulation of an animal mod~l of diabetes mellitus. 

The red cell velocity in the arterioles, capillaries and venules 

of the control animals was 0.60 ± 0.10 ~n/sec, 0.45 ± 0.09 mm/sec and 

0.34 ± 0.07 mm/sec, res·pectively. These results are comparable to those 

reported in the literature and with previous results obtained in this 

labdratory. The red cell velocity measured in the arterioles (0.68 ± 

0.12 mm/sec), capillaries (0.24 ± 0.03 mm/sec) and venules (0.30 ± 0.04 

* 
mm/ sec) of the short--term diabetic: animals do not differ significantly 

from ~ontrol values. The red cell veloci~y in all segments of the 

microcirculation of the long-term diabetic ::mimnls was gre.1ter th<tn 

that mc:Jsurcd .Ln t•lthcr the control or short-term dinbclic :m.lmrll s. For 

the long-term diabetic :mlmals the values for the red cell velocity i_n 

the arteriole's, capillaries and venules were 1.22 ±. 0.15 mm/sec, 0.59 ± 

0.12 mm/sec and 0.70 ± 0 .. 08 mm/sec, respectively. 

-51-
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The increase in red cell velocity in the long-term diabetic 

animals is not due .to an increase in blood pressure or outside diameter 

bf the blood vessels. The increased red cell velocity may be due to 

either an increase in the .inside radius to wall thickness ratio, a decrease 

in the effective cell volume due to moderate rouleaux formation and/or 

increased plasma viscosity, or a change in the interaction of red cells 

with the endo-endothelial lining of blood vessels such that re~istance 

to flow is lessened. 



BIBLIOGRAPHY -

1. Aagenaes, 0. and H. Hoe. Light and electron microscopic study 
of skin capillaries of diabetics. Diabetes 10:253-259, 1961. 

2. Alpe_rt, J.S., J.D. Coffman, H.C. Balodimos, L. Koncz and J.S. 
S~eldner. Capillary permeability and blood flow in skeletal 
muscle of patie~ts with diabetes mellitus and genetic prediabetes. 
N. Engl. J. Med. 286:454-460, 1972. 

3. Arison, R.N., E~I. Ciaccio, M.S. Glitzer, J.A. Cassaro and M.P. 
Pruss. Light and electron microscopy of lesions in rats rendered 
diabetic with streptozotocin. Diabetes 16:51-56, 1967. 

4. Ashton, N.,·D'A. Kok and H.S.J. Foulds. Ocular pathology in 
macroglobulinemia. J.·Path. Bact. 86:453-461, 1963. 

5. Beisswenger, P.J. and R.G. Spiro. Human glomerular basement membrane: 

6. 

ChemicaL alteration in diabetes mellitus. Science 168: 
596-598, 1970. 

Beisswenger, P.J. and R.G. Spiro. Studies on the human glomerular 
basement membrane: Composition, nature of the carbohydrate 
units and chemical changes in diabetes mellitus. Diabetes 22: 
180-193, 1973. 

7 .. Bergstrand, A. and H. Bucht. Electron microscopic investigstions 
on the glomerular lesions in diabetes mellitus (diabetic 
glomerulosclerosis). Lab. Invest. 6:293-300, 1957. 

8. Bloodworth, J.M.B., Jr., Diabetic retinopathy. Diabetes 11: 
1-22, 1962. 

9: Bradley, R.F. Cardiovascular Disease. in A. Marble, P. l\Thite, 
R.F. Bradley and L.P. Krall (eds.). Joslin's Diabetes Mellitus. 
11th Ed. Philadelphia: Lea and Febiger, 1971. 

10. Burton, K.S. and P.C. Johnson. Reacti~e hyperem~a in individual 
capillaries of skeletal muscle. ' Am. J. Physiol. 223:517-524, 
1972. 

11. Butterfield, \V.J.II. and H.E. Holling. Peripheral glucose metabol-ism 
in fasting control s~bjects and diabetic pa~ients. Clin. Sci. 
18:147-174, 1959. 

12. Cameron, D.P., M. Amherdt, P. Leuenberger, L. Orci and 1.J. Stauffacher. 
Microvascular alterations in chroriically streptozotocin
diabetic rats. Adv. Metab. Disord. Suppl. 2:257-264, 1973. 

-53-



-54-

13. Castle, J.R. ·The rheology of abt10rnwl human blood.· (Sc. D. Thesis). 
Cambridge, t1ass.: H.I.T., 1964; cited in E.H. Herri·ll. 
Rheology of blood. Physiol. Rev. 49:863-888, 1969. 

14. Cha;rm, S.E. and G.S. Kurland. Blood rheology. in.D.H. Bergel (ed.). 
Cardiovascular Fluid Dynamics. New York: Academic Press, 1972. 

15. Charm, S.E. ~nd G.S. Kurland. Blood Flow and Microcirculation. 
New York: John Hiley and Sons, 1974. 

16. Chien, S. Blood rheology and its relation t~ flow resistance and 
transcapillary exchange, ~ith special yeference to shock. 
Adv. Microcirc. 2:89-103, 1969. 

17. Chien, S. Present state bf blood rheology. in K. Messmer and 
H. Schmid-Schonbein (eds.). Hemodilution: Theoretical Basis 
and Clinical Application. Basel: Karger, .1972. 

18. Christense~; N.J~ A reversible vascular abnormality associated 
with ·diabetic ketosis. Clin. Sci. 39:539-548, 1970. 

19. Cogan? D.G., L. Merola and P.R. Laibson. 
hexosamine and diabetic retinopathy. 

Blood viscosity, serum 
Diabetes 10:393-395, 1961. 

20. Copley, A.L. Apparent viscosity ~nd wall adherence of blood systems. 
in A. L. Copley and G. Stains by (eds.). Flow Properties .of Blood 
and Other Biological Systems. Nehr Y"ork: Pergamon Press, 1960. 

21. C6pley, A.L. and B.M. Scheinthal. Nature of the endothelial layer 
as demonstrated by~ruthenium red. E~p. Cell Res. 59~491-492, 
1970 .. 

22. Copley, A.L. Hemorheological aspects of the endothelium-plasma 
interface. Microvas. Res. 8:192-212, 1974. 

23. Diegenbach, P.C. Statisl2,· a statistical package for the PDP-12. 
Decus program #12-148. 

24. D~tzel, J. Morphologic and hemodynamic changes in the smaller 
blood vessels in diabetes mellitus. I: Considerations based 
on the literature. N. Engl. J. Med. 250:541-546, 1954. 

25. ·Dit'ze1, J. and U. Sagilcl. trorpholopic nne! hemodynamic changes -tn 
In till' sm;fi.Lt'l- blood VL'f;!;t'ls ln dl;thl'lt'H 'mellitus. rl: Till' 
dt'g('tll'Ltll Vt' ;md hcnH1dyn;llnlc cil;mgt'S In the huJhnr conjunct Lvn 
of nnrmotenslve diabetic patients. N. Eng)_. J. Ned,. 250·:587-594, 
1954. 

26. Ditzel, J .. Relationship of blood pr6tein composition to intravascular 
aggregation (sludged blood). ~eta Med. Scand. Suppl. 343: 
11-63, 1959. 



r 
-55-

27. Ditzel, J. and P. Moinat. Changes in serum proteins, lipoproteins, 
and protein-bound carbohydrates in relation to pathologic 
alterations in the microcircualtion ~f diabetic patients. 
J. Lab. Clin. Med. 54:843-859, 1959. 

28. Ditzel, J. The in vivo reactions of the small blood vessels,to 
diabetes mellitus. Acta Med. Scand. Suppl. 476:123-134, 1967. 

29. Ditzel, J. Whole blood viscosity and related components in diabetes 
mellitus. Dan. Med. Bull. 15:49-53, 1968. 

30. Ditzel, J. Functional microangiopathy in diabetes mellitus. 
Diabetes 17:388-397, 1968., 

31. Ditzel, J. and E. Standi. The problem of tissue oxygenation in 
diabetes mellitus. I: Its relation to the early functional 
changes in the microcirculation of diabetic subjects. Acta 
Med. Scand. Suppl. 578:49-58, 1975. 

32. Fahey, J.L. Serum protein disorders causing clinical symptoms in 
malignant neoplastic disease. J. Chron. Dis. 16:703-712, 1963. 

33. Farquhar, M.'G., J. Hopper, Jr. ·and l!.D. Moon. Diabetic glomerulo
sclerosis: electron and light microscopic studies. Am. J. 
Pathol. 23:721-753, 1959. 

34. Friedenwald, J.S. A new approach to some problems of retinal vascular 
disease. Am. J. Ophthalmol. 32:487-498, 1949. 

35. Friedenwald, J. S,. .Diabetic retinopathy. Am. J. Ophthalmol. 33: 
1187-1199, 1950. 

36. Greeson, T.P., R.I. Freedman, N.E. Levan and H.H. Wong. Cutaneous 
vascular responses in diabetics. Microv~s. Res. 10:8-16, 1975. 

37. Gross, .J.F. and J. Aroesty. Mathematical models of capillary flow: 
A critical review. Biorheolo_gy 9:225-264, 1972, 

38. Gunderson, H.J.G. Peripheral blood flow and metabolic control in 
juvenile diabetics. Diabetologia 10:225-231, 1974. 

39. Hagg, E. On the pathogenesis o( glomcruLu lesions in the alloxan 
diabetic rat. 0.!.:.tn ~~c~!_~_J)c;~~ Suppl. 558:1-31., l971t. 

40. Haggcndal, E., B. Steen and A. Svanhorg. Blood flmv in subcutaneous 
fat tissue in patients with diabetes mellitus. Acta Med. Scand. 
187:49-53, 1970. 

41. Harshaw, D.H., Jr. and P.N. Sawyer. Electroosmotic characteristics 
of mammalian aorta and vena cava. in P.N. Sawyer (ed.). 
Biophysical Nechanisms in Vascular Homeostasis and Intravascular 
Thrombosis. Ne1J York: Appleton-Century Cro,f ts, 1965. 



-56-

42. Hauck, G. Physiology of the microvascular system. Angiologia 8: 
236-260, 1971. 

43. Hauck, G. New aspects of mechanisms responsible for the fluid 
balance in the tissue spaces. Acta Cardiologic-a Stippl. 19: 
29-41' 1974. 

44. Hauck, G. and H. Schroer. Importance of lymph drainage for the 
fluid balance in the tissue spaces. in J. Ditzel and D.H. 
Lewis {eds.). 6th E1.:1r. Conf. on Microcirculation. Basel: 
Karger, 1971. 

45. Hoare, E.M., A.J. Barnes and J.A. Dormandy. Abnormal blood viscosity 
in diabetes mellitus and retinopathy. Biorheology 13:21-25, 1976. 

46. Int~glietta, M., W.R. Tompkins and D.R. Richardson. Velocity 
measurements in the microvasculature of the cat omentum by an 
on-line method. Microvas. Res. 2:462-473, 1970. 

4 7. Intaglietta, M. and B. W. Zweifach. Hicrocirculatory basi·s of fluid 
exchange. Adv. ·Bioi. Med. Phys. 15:111-159, 1974. 

48. Johnson, P.C. ~nd H.A. Henrich. Metabolic and 
local regulation of the microcirculation·. 
2020-2024, 1975. 

myogenic factors in 
Fed. Proc. 34: 

49. Junod, A., A.E. Lambert, L. Orci, R. Pictet, A. E. Gonet and A. E. 
Renold. Studies of the diabetogenic action of streptozotocin. 
Proc . .Soc. Exp. Biol. Hed. 126:201-:-205, ·1967. 

SO. Junod, A., A. E. Lambert, W. Stauffacher and A.E. Renold. Diabetogenic 
action of streptozotocin: Relationship of dose to metabolic 

.. response. J. Clin .. Invest. 48:2129-2139, ·1969. 

51. Kefalides, N.A. Biochemical properties of human glomerular basement 
membrane in normal and d,iabetic kidneys. Adv. He tab. Disord. 
Suppl. 2~167-177, 1973. 

52. ·Kilo, C., N.J. Vogler and J.R. \Villiamson. Basement membrane 
thickening in diabetes. in S.S: Fajan and K.E. Sussman (eds.). 
Diabetes Mellitus: Diagnosis and Treatment. Vol. III. New 
York: Am. Diabetes Assoc., 1971. 

53. Kilo, C., N.J. Vogler and J.R. Williamso11. Huscle capillary 
basement membrane changes related to aging and to diabe~es 
mellitus. Diabetes 31:881-905, 1972. 

54. Kolmer, E. H. Dynamic changes in the microcirculation of diabetics 
as related to diabetic microangiopathy. Acta Hed. Scand. 
Suppl. 578:41-47, 1974. 



-57-

55. Kohner, E.H., !L~1. H~rnilton, S.J. Saunders, B.A. Sutcliffe and 
C.J. Bulpitt. the retinal blood flow in diabetes. 
Diabetologia 11:27-33, 1975. 

56. Kopp, W.L., G.J. Beirne and R.O. ·Burns. Hyperviscosity syndrome 
in multiple myeloma. Am. J. Med .. 43:141-146, 1967. 

57. Lazarow, A. and E. Speidel. The chemical composition of the 
glomerular basement membrane and its relationship to the 
production of diabetic complications. in M.D. Siperstein, A.R. 
Colwell, Sr. and K. Meyer (eds.). Small·Blood Vessel Involvement 
in Diabetes Mellitus. Hashington D.C.: Amer., Inst. Biol. 
Scl., 1964. 

'58. Leeson, T.S. and C.R. Leeson. Histology. 2nd Ed. Philadelphia: 
W.B. Saunders Co., 1970.-

59. Lendrum, A.C. The hypertensive diabetic kidney as a model of the 
so-called collagen diseases. Canad. Med. Assoc. J. 88:442-452, 
1963. 

60. Lendrum, A.C. Deposition of plasmatic substances in vessel walls. 
~athol. Microbial. 30:681-684,. 1967. 

61. Luft, .J.H. Fine structure of capillary and endocapillary layer 
as revealed by ruthenium red. Fed. Proc. 25:1773-1783, 1966. 

62. Marks, H.H. and L.P. Krall. 
in diabetes mellitus. 
and L.P. Krall (eds:); 
Philadelphia: Lea and 

Onset, course, prognosis and mortality 
in A. Marble, P. m1ite, R.F. Bradley 
Joslin's Diabetes Mellitus. 11th Ed. 

Febiger, 1971. 

63. Mausolf, F.A. and J.H. Mensher. Experimental hypetviscosity 
retinopathy. Ann. Ophthalmol. 5:205-209, 1073. 

64. Hayerson, H.S., C.G. Holfram, ·H.H. Shirley, Jr. and K. Wasserman. 
Regional differences in capillary permeability. Am. J. Physiol. 
198:'155-160, 1960. 

65. HcMillan, D.E., Breithaupt, H. Rosen~u, J.C. Lee, and P.H. Forsham. 
Forearm skin capillaries of diabetic, potential diabetic and 
nondiabetic subjects. Diabetes' 15:251-257, 1966. 

66. Hd1ill~n, D.E. Ch~mgcs jn serum proteins and protc:in~bound 
carbohydrntes in diabetes mellitus. Diabetologia_ 6:597-604, 
1970. 

67. McMillan, D.E. Serum protein changes causing a disturbance ~f blood 
flow in diabetics. Diabetes 20 (Suppl. 1):330, 1971. (Abstract). 

68. McMillan, D.E. Elevation of glycoprotein fucose in diabetes mellitus. 
Diabetes 21:863-878, 1972. 



r 
-58-

69. McMillan, D.E. Serum glycoprotein disturbances and tbeir 
rheolqgical effects in diabetes mellitus. Adv. Netab. Disord. 
Suppl. 2:155-165, 1973. 

70. McMillan, D.E. Disturbance of serum viscosity in diabetes mellitus. 
J. Clin .. Invest. 53:1071-1079, 1974. 

71. McNillan, D. E. Deterioration of the microcirculation in diabete's. 
Diabetes 24:944-957, 1975. 

72. Mogensen, C.E. The permeability of the glomerular capillaries as 
studied by renal dextran ~learance in normal and diabetic 
subjects. in C. Crone and N.A. Lassen (ed~.). Capillary 
Permeability. New York: Academic Pres~, 1970. 

73. Hogensen, C.E. ·Kidney function artd glomerular permeability to 
· macromolecule's in early juvenile diabetes. Scand. J: Clin. 

Lab. Invest. 28:79-90, 1971. 

74. ~1ogensen, C.E. Glomerular filtration rate and renal plasma flow 
in short-term and long-ter~ juvenile diabetes mellitus. 
Scand. J. Clin. Lab. Invest. 28:91-100, 1971. 

75. Mosora, N., J. Tr. Baciu and J. Vincze. 
serum, hematocrit and fibrino·gen in 
~elationship with· diabetes mellitus. 
(Abstract). 

The viscosity of the 
diabetes mellitus and their 

Diabetologia 8:59, 1972. 

76. Hurphy, t!.E. and P.C. Johnson. Possible COI).tribution of basement 
membrane to the structural rigidity of blood capillaries. 
Microvas. Res~ 9:242-245, 1975. 

77. Oka, S. Theoretical approach to the effect of wall surface. 
condition in hemorheology. in A.L. Copley (ed.). Hemorheology. 
Proc. 1st Int. Conf. Oxford: Pergamon Press, 1968. 

78. Osterby-Hansen, R. A quantitative ~stimate of the peripheral 
glomerular basement memebrane in recent juvenile diabetes. 
Diabetologj.a 1:97-100, 1965. 

79. Osterby-Hansen, R. and K. Lundbaek. The basement membrane 
morphology in diabetes mellitus~ in M. Ellenberg and H. Rifkin 
(eels.). D!:i~~t:..e_f2_!~('~1.cUc~~!..:~:_-~~}1~~1_1Y_~,~tLri-''1..~~~-icc_~- New York: 
~kCJ·;JW-11 i I I Book Co., I [)70. 

80. Parving, 11.-11. ;1nd N_- Rossing. Simultnncous determinat.ion of the 
·transcapillary escape rate of albumin a'nd IgG in normal and 
long-term juvenile diabetic subjects. Scand. J. Lab. Invest. 
32:239-244, 1973. 

81. Pearse, A.G.E. Histochemistry: Theoreti~al and Applied. 3rd. Ed. 
Vol. I. Boston: Little, Brown and Co., 1968. 



-59-

82. Pometta, D., M. Amherdt, C. Rufener and J.R. Scherrer. Capillary 
basement membrane thickness in early diabetes. Adv. Metab. 
Disord. Suppl. 2:357-361, 1973. 

83. Richard~on, D.R. and F. Coates. Effects of norepinephrine infusion 
(iv) on microvascular pressures and capillary blood flow in 
the mesentery. Microvas. Res. 9:166-181, 1975. 

84. Richardson, D.R., F. Coates and R. Horton. Early effects of tobacco 
smoke exposure on vascular dynamics in the microcirculation. 
J. Appl. Physiol. 39:119-123, 1975. 

85. Rosenblum, hT. I. The differential effect of elevated blood vJ scostty 
on plasma and erythrocyte flow in the cerebral microcirculation 
of the mouse. Microvas. Res. 2:399-408, 1970. 

86. Rosenblum, W.I. Erythrocyte velocity and fluorescein transit time 
in the cerebral microcirculation of macroglobulinemic mice: 
Differential effect of a hyperviscosity syndrome on the passage 
of erythrocytes and plasma. Microvas. Res. 3:288-296, 1971. 

87. Sawyer, P.N. and E.H. Himmelfarb. Studies of streaming potentials 
in large mammalian blood vessels in vivo. in P.N. Sawyer (ed.)~ 
Biophysical Mechanisms in Vascular Homeostasis and Intravascular 
Thrombosis. Ne1-.r York: Appleton-Century Crofts, 1965. 

88. 

89. 

90. 

91. 

Schertenleib, F. and E.F. Tuller. 
proteins in diabetic patients. 

Paper electrophoresis of serum 
Diabetes 7:46-52, 1958~ 

Schmid-Schonbein, H. Microrheology ~ erythrocytes, blood viscosity 
and the distribution of blood fl in the microcirculation. 

. in A.C. Guyton and A.W. Cowley ( s.). Cardiovascular 
Physiology II. Baltimore: Univ sity Park Press,, 1976, 

Seaman, G.V.F. Electrokinetic methods in the study of biological 
surfaces. in H.H. Hartert and A.L~ Copley (eds.). Theoretical 
and Clinical Hemorheology. New York: Springer-Verlag, 1971. 

Sennett, P. and J.P. Oltver. Colloidal dispersions, electrokinetic 
effects and the concept of zeta potential. inS. Ross (ed.). 
Chemistry and Physics of Interfaces. H'ashington, D.C.: Am. 
Chern. Soc. Pub., 1965. 

92. · Siperstein, M.D., R.H. Unger and L.L. Hadison. Studie-s of muscle 
capillary basement membranes in normal subjects, diabetic and 
prediabetic patients. J. Clin. Iavest. 47:1973-1999, 1968. 

93. Siperstein, M.D. The relationship of carbohydrate 
the mic{oangiopathy of diabetes. . in E. Cerasi 
Pathogenesis of Diabetes Mellitus. New York: 
Sons Inc., 1969. 

derangements to 
and R. Luft (eds.). 
John Wiley af).d 



-60-

94. Siperstein, M.O., P. Raskin ~nd 11. Burns. Electron microscopic 
quantification of diabetic microangiopathy. Diabetes 22: 
514-527, 197_3. 

95.· Skovborg, F., Aa. V. Nielsen, J Sc~lichtkrull and J. Ditzel. Blood 
viscosity in diabetic patients. Lancet 1:129-131, 1966. 

96. Smith, C.W., Jr. The etiology of diabetic microangiopathy--a review 
of the recent literature. N.C. Med. J~ 35:354-355, 1974. 

97. So,kal, R. R. and F .J. Rohlf. Biometry: The Principles and Practice 
of Statistics in Biological Research. San Francisco: W.H. 
Freeman and Co., 1969. 

98. Sosula, L., P. Beaumont, F.C. Hollmvs and K.H. Jonson. Dilatation 
and endothelial proliferation of retinal capillaries in 
streptozotocin-diabetic rats: Quantitative electron microscopy. 
Invest. Ophthalmol. 11:926-935, 1972. 

99. Spiro, R.G. Glycoproteini and diabetes. Diabetes 12:223~230, 1963. 

100. Spiro, R.G. Glycoproteins: Their biochemistry, biology and role 
in human' disease. N. Engl. J. Med. 281:991-1001, 1043-1056, 
1969. 

101. Spiro, R.G. Chemistry and metabolism of the basement membrane. 
in. M. Ellenberg and H. Rifkin (eds.). Diabetes Mellitus: Theory 

· and·Practice. New York: HcGrnw-Hill Book Co., 1970. 

102: Spiro, R.G. and M.J. Spiro. Effect of diabetes on the biosynthesis 
of the renal glomerular basement membrane: Studies on the 
glucosyltransferase. Diabetes 20:641-648, 1971. 

103. Spiro, R.G. Biochemistry of the glomerular basement membrane in 
diabetes. Adv. Metab. Disord. Suppl 2:179-187, 1973. 

10.4. Spiro, R.G. Biochemistry of the renal glomerular basement membrane 
and its alteration in diabetes mellitus. N. Eng. J. Ned. 288: 
1337-1342, 1973. 

10~. Spiro, R.G. Search for a biochemical basis of diabetic microangiopathy. 

106. 

Diabetologia 12:1-14, 1976. 

Starr, N.C. nnd hl.G. Frasher, Jr. 
velocities in ~icrovesscls of 
_J(.c_:~ 10:102-106, 1975. 

In v{vo celluLu ;:mel plasma 
the c;, t mese?ntery. Hicrov;~ 

107. Stary, H.C. Diseases of the smrrll blood vessels in diabetes mellitus. 
i\m. J. Hc_<:J_. ~_!_:_ 252:357-:-374, 1966. 

108. Studer, R. and J. Potchen. The radioisotopic assessment· of regional 
microvascular permeability_to macromolecules. Microvas. Res. 3: 
35-48, 1971. 



-61-

109. Todd, A.S. Endothel~um and fibrinolysis. Bibl. Anat. 12:98-105, 
1973 . 

. 110. Trap-Jensen, J., J.S. Alpert, G. del Rio and N.A. Lassen. 
Capillary diffusion capacity for sodium in skeletal muscle in 
long-term juvenile diabetes mellitus. Acta Med. Scand. Suppl 476: 
135-146' 1967. 

111. Trap-Jensen, J. and N.A. Lassen. Increased capillary diffusion 
capacity for small ions in skeletal muscle in long-term diabetics. 
Scand. J. Clin. Lab. Invest. 21:116-122, 1969. 

112. Trap-Jensen, J. Increased capillary permeability to 131-iodide 
and [51-Cr]EDTA in the exercising forearm of long-term diabetics. 
Clin. Sci. 39:39-49, 1970. 

113. Trap-Jensen, J. ·and N.A. Lassen. Capillary permeability for smaller 
hydrophilic tracers in exercising skeletal muscle in normal 
man_and in patients'with long-term diabetes mellitus. 
in C. Crone .and N.A. Lassen (eds.). Capillary Permeability. 
New York: Academic Press, 1970. 

114. Trap-Jensen, J. Permeability of small vessels in diabetes. 
Acta Diabet. Lat. 8(Suppl 1):192-200, 1971. 

·115. Vracko, R. Skeletal muscle capillaries in diabetics: Quantitative 
-analysis. Circulation 41:271-283, 1970. 

116. Vracko, R. Skeletal muscle capillaries in non-diabetics': 
Quantita~ive analysis. Circulation 41:285-297, 1970. 

117. Wayland, H. and P.C. ·Johnson. Erythrticyte velocity measurement 
in microvessels by a two-slit photometric method. J. Appl. 
Physiol. 22:333-337, 1967. 

118. Wa~land, B. Photosensor methods of flow measurement in the micro
circulation. Microv~s. Res. 5:336-350, 1973. 

119. 'Wells, R. Syndromes of hyperviscosity. N. Engl. J. Med. 283: 
183-186, 1970. 

120. Westberg, N.G. and A.F. Michael, H~man glomerular basement membrane: 
Chemica} composition in dJalwtcs nwllitus. Acta No.d. Sc<1ncl. 194: 
3 9 -lf 7 ' l 9 7 3 . 

-----. ---~---

121. Hhi tmorc, R. L. !Zh<iology of the Circulation. Oxford: Pergamon 
· Press, 1968. 

122. Williams, ~.H. and D. Porte, Jr. The pancreas. 
(ed.). Textbook of Endocrinolo_g~ 5th Ed. 
W.B. Saunders Co., 1974. 

in R. H. Williams 
Philadelphia: 



-62-

123. Williamson, J.R., N.J. Vogler and C. Kilo. Estimation of vascular 
b~sement membrane thickness. Diabetes 18:567-578,. 1969. 

124. Williamson, J.R. and C. Kilo. 
the mystery of diabetes. 

Basement membrane thickening and 
Hosp. Practice 6:109-117, Jan. 1971. 

125. \villiamson, J.R., N.J. Vogler and C. Kilo. · Hicrovascular disease 
in diabetes. Hed. Clin. N. Amer. 55(4):847-860, 1971. 

126. Williamson, J.R., N.J. Vogler and C. Kilo. Regional variations 
in the width of the basement membrane of muscle capillaries 
fn man and giraffe. Am. J; Pathol. 63:359-367, 1971. 

127. Winzler, R.J. Plasma glycoproteins and mucopolysaccharides. 
. in M.D. Siperstein, A.R. Colwell and K. Meyer (eds.). 

~mall Blood Vessel Involvement in Diabetes Mellitus. 
Washington, D.C.: Am. Inst. Biol. Sci., 1964. 

128. Zweifach, B.W. and H. Intaglietta. Hechanics of fluid movement 
across single capillaries in the rabbit. Microvas. Res: 1: 
83-101, .1968. 

129. Zweifach, B.'W. and J.\V. Prather. Hicromanipulation of pressure 
in terminal lymphatics in the mesentery. Am. J. Physiol. 228: 
1326-1335, 1975. 



APPENDIX A 

HETABOLIC INFORHATION 

-63-



CONTROL ANIMALS 

Preparation Age of Duration Weight Plasma 
Number Rat of Diabetes Glucose 

(days) (days) (grams) (mg/dl) 

1 90 0 430 
2 85 0 53 
4 81 0 300 73 

. 7 82 0 330 99 
10 95 0 350 57 
11 97 0 400 
16 117 0 400 120 
19 81 0 290 108 
21 114 0 365. 109 
22 101 0 335 74 
23 101 0 332 
31 93 0 320 74 
32 97 0 330 60 
35 98 0 350 102 
37 110 0 410 60 

N 15 15 14 12 
Total 1442 0 4942 989 
He an 96.13 0 353 82.42 
Standard Deviation 11.43 0 42.47 23.70 
Variance 130.64 0 1803.70 561.69 
S.E.H. 2.95 0 11.35 6.84 
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SHORT-TERH DIABETIC ANIHALS 

Preparation Age of Duration · Weight Pia.sma 
Number Rat of Diabetes Glucose 

(days) (days) (grams) (mg/dl) 

3 85 3 325 183 
5 m 7 310 211 
6 82 8 310 170 

12 97 7 300 
13 98 8 260 229 
18 81 8 250 
20 82 9 227 430 
24 82 7 300 24.0 
25 97 7 270 
26 98 8 260 332 
27 99 9 260 278 
28 84 9 246 384 

N 12 12 12 9 
Total 1066 90 3318 2457 
:t-iE~ an 88.83 7.5 276.5 273. 
Standard Deviation 8.01 1.62 31.11 90.87 
Variance 64.16 2. 62 967.83 8257.36 
S.E.H. 2.31 0.47 8.98 30.29 
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LONG-TERM DIABETIC ANIMALS 

Preparation Age of Duration Weight Plasma 
Number Rat of Diabetes Glucose 

(days) (days) (grams) (mg/dl) 

8 96 14 300 222 
9 95 21 240 147 

14 112 30 280 434 
15 117 35 280 409 
17 118 36 290 500 
29 90 14 250 269 
30 104 14 293 107 
33 97 21 230 292 
34 98 22 230 217 
36 111 23 280 419 
38 110 35 220 401 
39 112 37 300 346 

N 12 12 12 12 
Total 1262 302 3193 3556 
He an 105.17 25.17 266.08 296.33 
Standard Deviation 9.63 9.03 29.92 125.19 
Variance 92.74 81.54 895.21 15672.54 
.S.E.M. 2.78 2.61 8.64 36.14 
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ARTERIOLES: CONTROL ANIMALS 

Preparation Red Cell Vessel Average Mean 
.Number Velocity Diameter Systemic Pressure 

(mm/sec) (microns) (mm/Hg) 

4 0.401" . 15 156 
0.478 15 157 
0.649 12 147 
0.244 18 130 

16 0.219 10 153 
19 0.51 10 160 

0.42 10 -145 
21 0.30 10 170 

0.27 15 160 
32 1. 47 15 150 

0. 55. 10 150 
1.10 15 150 
0.83 10 115 
o. 93· 10 165 

N 14 14 14 
He an 0.5979 12.5000 150.5710 
Standard Deviation 0.3660 2.8488 14.0697 
Variance 0.1340 8.1154 191.9560 
S.E.H. 0.0978 0.7614 3.7603 
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ARTERIOLES: SHORT-TERM DIABETIC ANIMALS 

Preparation Red Cell Vessel Average Hean 
Number Velocity Diameter Systemic Pressure 

(mm/sec) (microns) (mm/Hg) 

3 0.021 30 120 
0.049 25 107 
0.169 20 95 

5 1. 268 12 122 
6 0.884 12 120 

1.794 15 130 
0.695 10 120 

12 . o. 323 10 151 
0.514 9 127 
0.426 20 115 
0.'264 30 107 

13 0.893 25 135 
0.357 15 150 

20 0.45 12 150 
0.79 10 150 
2.34 10 156 

26 0.15 10 155 
0. 30 10 14.8 

27 0.43 14 145 
0.36. 12 150 
1. 39 22 147 

28 1.07 12 142 
0.53 9 141 
0.86 11 145 

N 24 2.4 24 
Mean 0.6800 15.2083 134.5000 
Standard Deviation 0.5664 6.6983 17.5774 
Variance 0.3208 44.8677 308.2610-
S.E.M. 0.1156 1. 36 7 3 3.5839 
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ARTERIOLES: LONG-TERH DIABETIC ANU!ALS 

Preparation Red C.ell Vessel Average Mean 
Number Velocity Diameter Systemic Pressure 

(mm/sec) (microns) (mm/Hg) 

14 0.387 18 100 
30 1. 08 10 144 

0.64 9 144 
1.99 10 144 
0.80 9 144 
0.41 10 144 
0.52 9 128 

33 2.66 10 144. 
1.06 10 115 

34 1.45 8 150 
2.45 15 148 
0.86 9 148 

36 0.81 9 135 
1. 57 18 ,135 
0.89 9 135 
1. 74 18 139 
2.16 18 120 

38 0.97 12 135 
39 0.83 "15 147 

1.12 15 148 

N 20 20 20 
He an 1.2200 12.0500 137.3500 
Standard Deviation 0.6702 3.7060 12.9097. 
Variance 0.4491 13.7342 166.6600 
S.E.N. 0.1499 0.8287 2.8867 
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CAPILLARIES: CONTROL ANIMALS 

Preparation Red Cell Vessel 'Average Mean 
Number Velocity Diameter Systemic Pressure 

(mm/ sec) (microns) (mm/Hg) 

1 0.26 .10 167 
4 0.136 7 138 

Q.084 7 113 
7 0.574 8 120 

1.288 8 .120 
0.708 5 95 
0. 677 8 133 

16 0.166 6 148 
0.293 . 7 153 
0.15 9 155 

19 0.15 10 160 
0.66 8 160 
0.23 8 160 

21 0.21 7 164 
0.23 7 164 

32 0.59 11 158 
0.46 5 160 
1. 21 11 155 

N 18 18 18 
He an 0.4489 7.8889 145.7220 
Standard Deviation 0.3589 1. 7786 21.0120 
Variance 0.1288 3.1634 4!11. 5060 
S.E.M. 0.0846 0.4192 4.9526 
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CAPILLARIES: SHORT-TERH DIABETIC ANIMALS 

Preparation Red Cell Vessel Average Hean 
Number Velocity ·Diameter . Systemic Pressure 

(mm/ sec) (microns) (mm/Hg) 

3 0.091 10 117 
6 o. 239 6 112 

0.066 8 112 
12 0.395 7 150 

0.380 6 151 
0.520 10 151 

20 0.075 8 147 
0.25 9 157 
0.10 9 144 
'0.129 8 140 
o. 23 8 140 
0.27 8 150 
0.21 4 150 

26 0.35 7 150 
0.16 8 140 
0.12 10 137 
0.24 8 130 

27 0.10 5 150 
0.15 10 140 

28 0.55 6 141 
0.27 8 144 
0.38 6 145 

N 22 22 22 
He an o. 2404 7.6818 140.8180 
Standard Deviation 0.1400 1.6729 12.5911 
Variance 0.0196" 2.7987 158.5360 
S.E.H. 0.0299 0.3567 2.6844 
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CAPILLARIES: LONG-TERM DIABETIC ANIMALS 

Preparation Red Cell Vessel Average Mean 
Number Velocity Diameter Systemic, Pressure 

(mm/ sec) (microns) (mm/Hg) 

14 0.344 .8 135 
0.168 6 103 
0.104 ' 10 130 
0.086 8 128 

30 0.84 4 144 
0.53 10 144 
0.48 8 .144 

33 0.20 7 120 
0.37 5 115 

34 1. 7·5 5 140 
2.34 6 148 
0.42 5 146 

36 Q.47 10 133 
0.21 10 132 
0.26 10 137 
0.57 10. 139 

38 0.78 8 118 
0.94 8 142 

39 0.53 9 123 
0;45 7 130 
----

N 20 20 20 
He an o. 5920 7.7000 132~5500 
Standard Deviation 0.5570 2.0026 11.9229 
Variance 0.3102 4.0105 142.1550 
S.E.H. 0.1245 0.44.78 2.6660 
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VENULES: CONTROL ANIMALS 

Preparation Red Cell Vessel Average Hean 
Number Velocity Diameter Systemic Pressure 

(mm/ sec) (microns) (mm/Hg) 

1 0.075 15 164 
0.307 20 173 

4 0.055 30 123 
0.727 30 138 
0.129 35 133 

7 0.761 28 100 
16 0.390 15 143 
21 0.140 11 170 

0.190 20 170 
32 0;49 20 150 

0.28 25 145 
0.49 25 145 

N 12 12 12 
He an 0.3375 22.8333 146.1670 
Standard Deviation 0.2399 7.2216 21.5526 
Variance. 0.0575 52.1515 464.5150 
S.E.H. 0.0693 2.0847 6. 2217 
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VENULES: SHORT-TERM DIABETIC ANUIALS 

Preparation Red Cell Vessel Average Mean 
Number Velocity Diameter Systemic Pressure 

(rnrn/ sec) (microns) (mm/Hg) 

3 0.122 40 90 
6 0.031 25 135 

0.047 28 130 
0.267 9 120 
0.018 15 120 

12 0.349 17 151 
0.413 11 127 

13 0.599 35 140 
20 0.60 10 155 

0. 26 . 13 150 
0.45 1"5 150 
0.30 20 150 
0.38 12 150 

26 0.11 12 148 
0.19 8 148 

27 0.15 15 150 
0.23 14 150 
0.37 20 140 

28 0.61 18 140 
0.45 14 137 
0.'29 25 141 

N 21 21 21 
He an o. 2971 17.9048 139.1430 
Standard Deviation 0.1832 8.4552 15.2685 
Variance 0~0336 71.4904 233.1280 
S.E.H. 0.0400 1.8451 3.3319 
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VENULES: LONGrTERl1 DIABETIC ANIHALS 

Preparation Red Cell Vessel Average Mean 
Number Velocity Diameter ·systemic Pressure 

(mm/ sec) (microns) (mm/Hg) 

14 0.124 30 103 
30 0.69 20 144 

0.97 11 144 
0.69 15 140 
0.38 20 135 

33 0.94 12 115 
. 0.53 10 118 

0.96 18 100 
34' 0.48 16 150 

1. 37 10 148 
36 0.26 25 135 

o. 72 13 139 
0.49 13 129 
0.68 25 140 
0.48 25 111 

38 o. 72 12 122 
0.63 25 127 
1.48 10 135 
1.11 20 139 
1.08 13 140 

39 0.43 28 152 
0.17 15 124 

N 22 22 22 
Mean 0.6991 17.5455 131.364'0 
Standard Deviation 0~3606 6.3899 14.7440 
Variance 0.1300 40.8311 11.2238 
S.E.M. 0.0769 1. 3623 3.1434 
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STATISTics· 
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RED CELL VELOCITY 

ARTERIOLES: 

ANOVA 
Source of 
Variation 

Between Groups 
Within Groups 

Total 

SCHEFFE CONTRAST 

Control 
Short-tetm 

CAPILLARIES: 

ANOVA 
Source of 
Variation 

Between Groups 
Within Groups 

Total 

SCHEFFE·CONTRAST 

Control 
Short-term 

VENULES: 

AN OVA 

df Sum of 
Sguares 

2 4.3209 
55 17.6534 ---
57 21.9743 

Short-term 
0.19 

df Sum of 
Sguares 

2 1.3163 
57. 8.4956 
59 9. 8119 

Short-term 
2.89 

Source of df Sum of 
Squares 
1.9922 
4.0344 
6.0266 

Variation 
Between Groups . 2 
Within Groups. 52 

Total 54 

He an F 
Sguares 
2.1605 6.7310 
0.3210 

Long-term 
9.93 
9.91 

Mean .F 
Sguares 
0.6581 4.4156 
0.1490 

Long-term 
1.30 
8.69 

Mean 
Sguares 
0.9961 
0. 0776 

F 

12.8386 

SCHEFFE CONTRAST 
~~--------------------------Short-term 

Control 
Short-term 

0.16 

_:_78-

Long-term 
13.08 
22.38 



ARTERIOLES: 

ANOVA 
Source of df 
Variation 

Between Groups 2 
Within Groups -55 

Total 57 

SCHEFFE CONTRAST 

· Contro"l 
Short-term 

·cAPILLARIES: 

ANOVA 
Source of 
Variation 

Bet\..reen Groups_ 
Within Groups 

Total 

SCHEFFE CONTRAST 

Control 
Short-term 

VENULES: 

ANOVA 
Source of 
Variation 

Between Groups 
Within Groups 

-
Total 

df 

2 
57 
59 

df 

2 
52 
54 

DIAHETER 

Sum of 
Squares 
126.0230 

1398.4100 
1524.4330 

Short-term 
2.55 

Sum of 
Squares 

0.4990 
188.7500 
189.2490 

Short-term 
0.13 

Sum of 
Squares 
246.5980 

2860.9300 
3107.5300 

He an 
Squares 

63.0117 

F 

2.4783 

Long-term 
0.08 
4.28 

He an 
Squares 

F 

0.2495 0.0753 
3. 3114 

Long-term 
0.11 
0.001 

He an F 
Squares 
123.2990 2.2411 

55.0178 

-'~CHEFFE CONT~V\ST --,---~-------------,
Short-term 

Control 
Short-term 

3. 71 
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Long-term 
1.09 
3.95 



AVERAGE MEAN SYSTEMIC PRESSURE 

ARTERIOLES: 

ANOVA 
Source of df 
Variation 

Qetween Groups 2 
Within Groups 55 

Total 57 

SCHEFFE CONTRAST 

control· 
Short-term 

CAPILLARIES: 

ANOVA 
Source of 
Variation 

Betw,een Groups 
Within Groups 

Total 

df 

2 
57 

. 59 

SCHEFFE CONTRAST 

Control 
Short-term 

VENULES: 

ANOVA 
Source of 
Variation 

Between Groups 
Within Groups 

Total 

SCIIEFFE CONTl~i\ST 

df 

.2 
52 
54 

Sum of 
Squares 
2407.25 

12830.00 
15237.20 

Short-term 
9.79 

Sum of 
Squares 
1701. 25 

13535.80 
15237.10 

Short-term 
1. 06 

Sum of 
Squares 
1786.25 

14337.30 ---
16123.60 

F Mean· 
Squares 
1203.63 

233.272 
5.1597 

Long-term 
6.17 
0.38 

F He an 
Squares 
850.625 
237.471 

3.5820 

Long-term 
6.92 
3.-02 

F He an 
Squares 
893.125 
275.718 

3.2393 

------------------------------------· 

Control 
Short-term 

Short-term -------
1.37 
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lJong_:=-Ertn 
6.17 
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