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ABSTRACT 

A series of experiments were undertaken to observe the effects of 

prostaglandin F2~ (PGF2o1, ), acetylsalicylic acid (aspirin), follicle 

stimulating hormone (FSH) and luteinizing hormone (IH) on estrogen bio­

synthesis in the ovary as revealed histochemically; also pursued were 

the histologic morphology of the ovary, and the gravimetric changes of 

the ovaries, adrenal glands and body weights of immature, female rats 

when given the aforementioned during the period of developing reproductive 

competency. 

Five major groups of thirty 22 day old female rats (one control group 

and four treatment groups) were given subcutaneous injections, twice daily, 

of either 75 micrograms of PGF2o<. , five milligrams of aspirin, 0.25 Armour 

Unit of FSH or 0.125 Armour Standard Unit of I.H. Sub-groups of ten rats 

in each major treatment category were necropsied at 27, 33 or 37 days of 

age. Body weights, ovarian weights and adrenal gland weights were re­

corded and statistically analyzed. Ovarian sections were prepared for 

histologic morphology, and for histochemical analysis,~-~·· dehydro­

epiandrosterone-3~-hydroxysteroid dehydrogenase (DHA-3¥-HSD) activity, 

which is indicative of the precursors of estrone and estradiol-17~ bio­

synthesis in the ovary. DHA-3p-HSD activity in the ovary, and adrenal 

gland weights were used as indices of the metabolic activity in these en­

docrine organs. 



The results indicated that systemic administration of PGF2o( or 

aspirin in the immature female rat caused a significant increase of 

steroidogenesis in the ovary and the adrenal gland, and that this steroido­

genic effect decreases over time when these compounds are chronically 

administered. Steroidogenesis in the ovary and adrenal gland of the UI-

or FSH-injected rats was consistently less than comparable control values. 

It was postulated that PGF2~ and aspirin, a specific prostaglandin an­

tagonist, exert their effects at different levels of hormone action; i.e. 

at the pituitary level, or at the ovarian or adrenal gland level, to 

produce generalized steroidogenesis in the rat. 
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INI'RODUCTION 

In recent years, prostaglandin compounds have attracted much 

research interest in their role as the second messenger system in hor­

mone action. Their intimate relationships with various reproductive 

parameters is well documented. One current problem which is being in­

vestigated, and reported herein, is the primary site of prostaglandin 

action. Several investigators have been trying to determine if prosta­

glandins exert their modifying action at the. pituitary level or at the 

level of an end organ. Recent studies, using the pituitary-ovarian 

axis, and using prostaglandin compounds and their antagonists, have 

indicated that prostaglandins may exert their effects at both the ovarian 

and pituitary level (Orczyk and Behrman, 1972; Kuehl, Humes, Tarnoff, 

Cirillo and Ham, 1970). 

It should be pointed out that much of the research to date on prosta­

glandins and their relationships with reproductive function has been ac­

complished in in vitro systems. ,!!:. ~experimentation with prostaglan­

dins has been limited to the short-term effects of prostaglandins. This 

situation has been partly due to expense and limited availability of 

prostaglandin compounds. Only recently have prostaglandin compounds been 

synthetically produced (Bagali, 1970; Pike, 1970). Also, in~ 

systems and short-term in vivo experiments allow a rigid control of 

variables, thus increasing the validity of observed results. Research 

with prostaglandins is relatively new and such rigid experimental systems 

1 
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have clearly established their importance in the biochemistry of a living 

system. Unfortunately, the aforementioned studies do not allow observa­

tions of the "dynamics" of prostaglandins. The true effects of any com­

pound on the body is the sum total of its interactions with all other com­

pounds, and in the end, must be evaluated from this standpoint in order 

to ascertain its true significance. For example, Horton and Marley (1969) 

found that long-term administration of PGE 1 increased fertility in mice 

as measured by litter size. Such a study illustrates the effect of a 

compound from the standpoint of total body interaction. 

Another area of prostaglandin research which has been neglected is 

the response of the sexually immature animal to prostaglandin compounds. 

To date, most work has been accomplished on their effects in the mature 

or gravid female, owing chiefly to the fact that prostaglandin compounds 

have great potential in the area of fertility control, and as relatively 

safe and effective abortifacient compounds (Duncan and Pharriss, 1970). 

A series of experiments was designed to investigate the effects of 

Prostaglandin F2o< (PGF2o<) on the sexually immature rat ovary and adrenal 

gland when given over a period of weeks during the critical stage of 

sexual maturation. Also, the effects of acetylsalicylic acid (aspirin), 

a specific prostaglandin antagonist, was studied. In addition, by con­

currently dosing other rats with luteinizing hormone (LR) and follicle 

stimulating hormone (FSH), the similarities and differences of PGF2o< and 
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aspirin response as opposed to gonadotropin response on inunature rats was 

compared. End-points for comparison were gravimetric data of the ovary 

and adrenal gland, and histologic morphology.and enzyme histochemistry 

(dehydroepiandrosterone-3p-hydroxysteroid dehydrogenase) data on the 

ovary. 



REvmw OF THE LrrERATURE 

A group of biologically active compounds, known as prostaglandins, 

were first alluded to in 1913 when Battez and Boulet found that extracts 

of human prostate had strong depressor action on blood pressure when in­

jected into the dog. The true significance of their findings was not rec­

ognized. Lacking sophisticated techniques for isolation and characteriza­

tion of biological compounds, this was not considered a startling finding. 

Extracts of just about any organ would elicit the same response due to 

the ubiquitous occurrence of su.ch compounds as acetylcholine and histamine. 

In 1930, two New York gynecologists, Kurzrok and Lieb, reported the 

actions of human seminal fluid on isolated human uterine muscle strips. 

They observed that seminal fluid produced both relaxation and contraction 

of uterine smooth muscle, and that this action was in some way correlated 

with past histories of pregnancy or sterility. This particular study is 

considered to be the first indication of differentiated, biologically 

active compounds in semen. Unfortunately, these actions were again at­

tributed to acetylcholine, and no further work was done to characterize 

the active principle. 

Approximately four years later, two independent researchers co-dis­

covered the existence of biologically active substances in seminal fluid 

that were pharmacologically different from known compounds previously 

described. Goldblatt (1933), from England, described a depressor sub-

4 
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stance in seminal fluid, but unfortunately reported his discovery, as a 

brief abstract, in the journal Chemistry ~ Industry, little read by 

biologists of that time. Without knowledge of Goldblatt's work, von Euler 

in Sweden, in 1934, reported essentially the same findings as Goldblatt, 

working with human seminal fluid. Subsequently, Goldblatt (1935) continued 

his studies and described a variety of actions of seminal fluid, including 

the finding that seminal fluid sensitized the seminal vesicle of the guinea 

pig to adrenaline. This furth~red the belief that the active principle 

was a new, but as yet, un~haracterized, biological compound. 

Dr. von Euler in 1935, with the help of Hugo T. Theorell, a chemist 

at the Karolinska Institute, used electrophoresis to separate the different 

fractions of seminal fluid and was able to characterize the active principle 

as an acidic lipid. Since the compound occurred in extracts of the prostate 

and seminal vesicles, and was a new and previously unknown chemical, the 

name prostaglandin was coined by von Euler. To quote Professor von Euler, 

"The ether and water soluble substance, which has the effects of lowering 

blood pressure and stimulating various isolated smooth muscle organs, is 

provisionally named prostaglandin" (von Euler, 1935). 

Shortly after publishing his second paper in 1935, Dr. Goldblatt died. 

Thus, all research on prostaglandins, for the next decade, was conducted in 

von Euler's laboratory at the Karolinska Institute. Dr. von Euler, in 1936, 

was able to show that the acidic lipid was hydroxylated, and in 1939, con­

cluded that the active principle was a lipid soluble, fatty acid that 
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probably contained a double bond and a hydroxyl group. 

Unfortunately, the Second World War halted any serious attempts at 

further elucidating the chemistry and physiology of prostaglandin, After 

the war, von Euler was preoccupied with his recent discovery of norepine­

phrine and passed on his work to Dr. Bergstrom, a physician in biochemistry 

at the Karolinska Institute. Dr. Bergstrom, in 1949, reported that further 

purification and characterization of sheep vesicular gland extracts showed 

that, indeed, the active principle was composed of unsaturated hydroxy acids. 

It was another seven years before any further work on prostaglandin, 

then considered a single chemical entity, was attempted. This circumstance 

was primarily the result of inadequate technology in the early 1960 1s 

needed to isolate and identify minute amounts of unstable compounds. 

Another factor was that the intestinal smooth muscle test used to assay 

their activity was so unspecific that many scientific people did not 

believe that prostaglandins were a new class of biologically active compounds. 

In 1956, an intensive investigation, led by Dr. Bergstrom, was ini­

tiated. Frozen sheep vesicular glands were collected in Iceland, Greenland 

and Norway. Eventually, enough active compound was extracted to obtain 

prostaglandin factor in pure crystalline form. This 'Prostaglandin Factor' 

was termed PGF. Bergstrom and Sjovall (1957), his co-worker, also reported 

that at least one other active acidic factor was present in the extracts 

of sheep vesicular glands. 
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In the next few years, further investigation by Bergstrom and his co-

workers (1962), using new isotopic, mass spectrometric, and chromatographic 

techniques, finally resulted in the isolation and elucidation of the struc-

tures of three of the primary prostaglandins, today known as Prostaglandin 

E, Prostaglandin F2o< and Prostaglandin F2~. But even at this point, fur­

ther biological testing was at a disadvantage since prostaglandin compounds 

could not be produced efficiently in adequate quantities. Finally, in 

1964-65, investigators at Karolinska Institute, Sweden, Unilever Research 

Laboratories in the Netherlands, and at the Up John Company in Kalamazoo, 

Michigan, (U.S.A.), independently discovered how to synthesize prosta-. 

glandins enzymatically by incubating essential fatty acid precursors with 

sheep vesicular glands (von Dorp, Beerthuis, Nugteren and vonkeman, 1964; 

Bagali, 1970; Bergstrom, Ryhage, Samuelsson and Sjovall, 1964). Finally, 

total synthesis of prostaglandins and their analogues was accomplished 

(Bagali, 1970; Pike, 1970). 

To highlight a few of the recent advances in prostaglandin research, 

one of the most startling findings is the ubiquitous occurrence of these 

compounds. Although first isolated from seminal fluid and extracts of 

male accessory sex glands, physiologic amounts have been recognized in 

female sex organs, lung tissue, iris, the central and peripheral nervous 

system, liver, pancreas, intestine, skeletal muscle and kidney (von Euler 

and Eliasson, 1967). In fact, they are probably found in physiologic 
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amounts in numerous tissues of the body. It has recently been recognized 

that prostaglandins are not strictly a manunalian compound. Prostaglandins 

have been identified in the skin and spinal cord of the frog, and more sur­

prising, in living coral from the sea •. 

Mysterious substances isolated in the past have recently been identified 

as prostaglandins. For example, "irin", first reported by Dr. N. Ambache 

in 1957; "darmstoff", described in 1949 by Dr. w. Vogt as being a biologic­

ally active substance produced in the intestines; Dr. V.R. Pickles' (1957) 

"menstrual stimulant", which is reseased by the endometrium during men­

struation; and "medullin", isolated from rabbit kidney in 1965 by Dr. James 

Lee, have all been recognized as prostaglandins (von Euler and Eliasson, 

1967). There is recent evidence that a prostaglandin may be the "long­

searched-for" mediator of the inflammatory response (Donovan and Traczyk, 

1962). 

The biggest reason for the "explosion" of prostaglandin research 

and interest in these chemicals by scientists in universities, clinics 

and in pharmaceutical companies around the world is their potential 

therapeutic usage. Already the medical uses of prostaglandins include 

induction of labor, therapeutic abortion, contraception, treatment of 

dysmenorrhea, male sterility, prevention and therapy of peptic ulcer 

and thrombosis, control of hypertension, bronchodilation in asthma and 

nasal congestion. Another broad field of investigation in pharmaceutical 

companies is prostaglandin antagonists which may have widespread medical 



9 

usage. At the 1970 New York Academy of Sciences Conference on Prostaglan­

dins, a paper on SC-19220, a dilienzo-x-azepine hydrazide derivative, a spec­

ific inhibitor of PGF2o< was presented by Sanner (published in 1971). 

possible therapeutic uses of prostaglandin inhibitors include inflammation, 

premature labor and dysmenorrhea. 

At the present time, there are 14 naturally occurring prostaglandin 

compounds, 13 of which have been found in man. Prostaglandins are abbrevi­

ated as PG and naming of the different PG's is based on a hypothetical 

molecule, prostanoic acid. 

9 7 5 3 1 COOR 

10 

11 13 15 17 19 

Prostanoic Acid 

From the above structure, the chemical nature of prostaglandins are 

c-20 fatty acids containing a cyclopentane ring (Bergstrom, Ryhage, Samuels­

son and Sjovall, 1962). The different structures of the cyclopentane ring 

subdivide the prostaglandins into four major groups: PGE, PGF, PGA and PGB. 

The degree of unsaturation of the alkyl and carboxylic side. chains is 

denoted by a subscript numeral after the group designation. i"hus, subscript 

1 denotes a double bond between C-13, 14; subscript 2 denotes two double 
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bonds between C-13, 14 and C-5, 6; and subscript 3 indicates three double 

bonds which include the two already mentioned and a third in the C-17, 18 

position. 

A further classification using subscript alpha or beta denotes the 

stereo position of substituents on the cyclopentane ring. If substituents 

are on the same side of the ring as the carboxyl group, they are in the 

alpha position; and those on the same side as the alkyl group are in the 

beta position (Anderson, 1971). 

The biosynthesis of the natural prostaglandins involves the precursors 

c-20 essential fatty acids. These essential fatty acids undergo cyclization 

and introduction of molecular oxygen in the enzyme microsomal fractions of 

the cell. The primary precursors are Eicosartrinoic Acid (linolenic acid), 

Eicosatetraenoic Acid (arachidonic acid) and Eicosapentaenoic acid (Berg­

strom, Carlson and Weeks, 1968). These three precursor fatty acids form 

the six primary prostaglandin compounds (PG.El, PGE2, PGE3, PGFl<X' PGF2o(, 

and PGF3o{)~ Thus, all the primary prostaglandins are in the PGE and PGF 

groups. All six are designated as primary because none are a precursor 

of the others. By a series of enzymatic steps the other known naturally 

occurring prostaglandins (PGA.1, PGA.2, PGB1, PGB2, and their 19-hydroxy 

analogues) are derived from the six primary prostaglandins (Spero££ and 

Rarnwell, 1970), 

The mechanisms of action of the prostaglandins is, at this point, a 

matter of controversy. Pharmacologically, the prostaglandins mimic actions 
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of hormones and neuro-hormones, modify hormonal actions, or inhibit the 

hormonal actions depending on the tissue and specific prostaglandin 

studied. It is known that the PG's are biologically active in extremely 

small amounts. Dosage is measured in nanograms of prostaglandin per gram 

tissue. 

The theory which is backed up by the most scientific data is that 

prostaglandins exert their effect by either inhibiting or increasing the 

rate of cyclic AMP metabolism intracellularly. It is also thought that 

hormones have this same mechanism of action of exerting their effect 

through cyclic AMP and adenyl cyclase systems; but prostaglandins, unlike 

the hormone concept, display an extraordinary lack of tissue specificity 

and modify cyclic AMP levels in many tissues (Butcher and Baird, 1968). 

Recent evidence suggests that prostaglandins probably mediate their action 

on cyclic AMP formation by modifying calcium levels within the cell (Shio, 

Shaw and Ramwell, 1971). 

The need for an intact cell membrane for PG effects to be exerted, 

and the fact that prostaglandins bind to plasma proteins and cell membranes 

in a manner analagous to that of free fatty acids, suggest that possibly 

the site of action is in the plasma membrane itself (Shio, Shaw and Ramwell, 

1971). Another avenue of prostaglandin research in the area of action 

mechanisms is the effects of prostaglandins in modifying cyclic AMP 

control of RNA, and possibly DNA. Previous evidence shows that exogenous 

cyclic AMP modifies RNA and protein synthesis (Postan and Perlman, 1970). 
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The implication toward cancer research is obvious. 

The mechanism of prostaglandin release is another area which is 

receiving considerable interest. Studies have shown that manunalian cells 

apparently will secrete prostaglandin with a variety of mild, to severe, 

but non-specific stimuli. Examples include release of PGE1 into splenic 

venous blood of the dog when the splenic nerve was stimulated (Davis, 

Horton and Withrington, 1968); PGE2 and PGF2 o< release in lung tissues 

during anaphylaxis in guinea pigs (piper and Vane, 1969); release of 

PG's by the mere infusion of colloidal suspensions into the dog isolated 

spleen (Gilmore, vane .and Wyllie, 1969). One important feature of prosta­

glandin release has definitely been established: the sequence is prosta­

glandin biosynthesis followed by release, rather than prostaglandin storage 

followed by release. Lungs, adrenal glands, stomach, intestine and spleen 

have all been shown to release more prostaglandin when stimulated than 

they contained (Ramwell .and Shaw, 1970). The theory relating to the 

specific mechanisms of prostaglandin release which is favored today was 

first advanced by Bennett in 1967, who proposed that PG release, in 

general, was associated with distortion or activation of cell membranes 

(Bennett, Friedman and vane, 1967). 

Piper and Vane (1971) have worked extensively on this problem and have 

forwarded two possibilities which suggest the local hormonal action of 

prostaglandins and their function as a basic "defense mechanism" of the 

body. The first theory examines prostaglandin release as a function of 
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the cellular need to resist change. The example of smooth muscle stretching 

correlated with an active increase in tension is given. They feel this 

physiological response is mediated by local prostaglandin release which 

prevents over-distention and rupture or distortion of muscle fibers. 

Another example related to the fact that PGE2 inhibits noradrenaline 

release in the spleen, and that PGE2 is released in the spleen following 

splenic contraction mediated via nerve stimulation with noradrenaline 

release. Thus, a negative feedback mechanism exists whereby the muscle 

tissue can reduce a stimulus that causes its contraction. Both examples, 

·according to Piper and vane, 1971, show that prostaglandins can both 

reduce the stimulus and minimize the potential injury. The other theory 

suggests that prostaglandin release facilitates tissue adaptation to dis­

turbing stimuli. For example, smooth muscle storage organs, such as the 

bladder and stomach, will stretch without an increase in the muscle cell 

tension. Prostaglandins have a relaxing effect on these tissues. 

Prostaglandin Action and the Ovary 

The highest concentration and greatest number of different prosta­

glandins have been found in human seminal fluid. Indeed, the discovery 

of prostaglandins now known to be seemingly ubiquitous in the body were 

first isolated and identified in human seminal fluid. Since that time, 

pharmacologically active prostaglandins have been demonstrated in menstrual 

fluid, umbilical cord, amniotic fluid, decidua, proliferative and secretory 
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(progravid) endometrium, semen and vesicular glands (Speroff and Ramwell, 

1970). Since they occur in all reproductive tissues, and were first dis­

covered in secretions of the male reproductive tract, most investigation 

of prostaglandins has been in conjunction with their role in reproductive 

physiology. 

Research on prostaglandin and the ovary have centered around three 

central theses. One is the role of prostaglandin in promoting luteolysis. 

Another area of research concerns the relationships, if any, between cyclic 

AMP, gonadotropin and prostaglandins. Finally, steroidogenesis of different 

hormones and prostaglandins has been investigated. 

It has been known for several years that hysterectomy in different 

pseudo-pregnant laboratory species will result in a prolonged life-span 

of the corpus luteum. Thus, it was speculated that a substance, luteolysin, 

was produced in the uterus and caused this luteolytic effect. Current 

research into the problem has resulted in three candidates for "luteolysin", 

PGF2o< , PGF1o<., and PGE 1, which have been found to cause irreversible de­

struction of luteal tissue, in~' in the guinea pig (Blatchley and 

Donovan, 1969; Gutknecht, Cornette and Pharriss, 1970), rabbit, rat and 

hamster (Gutknecht, Pharriss and Wyngarden, 1971), and rhesus monkey 

(Kirton, Pharriss and Forbes, 1970). 

Pharriss, of Alza Corporation in Palo Alto, California, has summarized 

his and other's investigations of this problem (Pharriss, 1971). He sum­

marizes five theories of possible mechanisms of PGF2o( in luteolysis: 1) 
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direct feedback on the pituitary gland; 2) "anti-gonadotropic" effect; 3) 

stimulation of uterus to produce luteolysin; 4) direct toxicity on the 

corpus luteum; and 5) constriction of the utero-ovarian vein. The most 

plausible mechanisms seem to be gonadotropin antagonism and restriction 

of ovarian blood flow. It is known that PGF2o(, injected DJ, will reduce 

utero-ovarian venous blood flow without affecting flow in the kidney 

(Pharriss, 1971). It is further speculated that, although the mechanism 

of luteolysis is, as yet, unclear, it is known that prostaglandins cause 

pregnancy termination in laboratory animals, and that this is probably a 

result of luteolysis. 

Investigation into steroidogenesis of ovarian hormones and prosta­

glandins has resulted in conflicting information in light of the !!!_ vivo 

luteolytic role of PGFzo( • Several scientists have shown that in vitro 

incubation of luteal slices with PGFz« causes a stimulation of proges­

terone synthesis (Pharriss, Wyngarden and Gutknecht, 1968; Speroff and 

Ramwell, 1970). It may be that in~ luteolytic characteristics of PG's 

exert a chronic action on local hemodynamics while ~ ~ PG's exert 

cellular changes. It is known that steroidogenesis is promoted in the 

adrenal gland perfused with PGE 1 , PGEz, PGF1oe, (Flock, Jessup and Ramwell, 

1969). Also, urinary cortisol levels are increased when PGF2 ~ is ad­

ministered intravenously in man (Wentz, Jones and Bledsoe, 1973). 

The mechanism of prostaglandin mediation of cyclic AMP, and the re­

lationship between cyclic AMP and hormonal actions has been previously 



16 

described. This cyclic AMP-prostaglandin relationship may very well be 

the underlying mechanism in all observed prostaglandin actions involving 

the ovary. It has been shown that the effect of LH on steroidogenesis is 

mediated via cyclic AMP (Marsh, 1968). Recent papers on prostaglandins 

and the ovary have established a relationship between luteolysis and 

ovulation and PGF2o( in the utero-ovarian blood of guinea pigs pre-treated 

with estrogen (Blatchley, Donovan, Poyser, Horton, Thompson and Los, 1971). 

Prostaglandin interaction and interrelationships with gonadotropins 

has also proven to be a fruitful area of investigation. Significant in 

these investigations is the work by Pharriss (1971). Using immature rats, 

in vivo experiments showed that PGF2 Q( inhibited the effects of PMS and 

HCG by decreasing ovarian weight, and ovulation. Labhsetwar (1971) in 

studying the in ~effects of PGF2 c:i( in the adult female rat found a 

luteolytic activity but could not pinpoint the location of primary prosta­

glandin activity <i·~·' central or local). Horton and Marley (1969), using 

mice as the experimental animal, found that long-term administration of 

PGE 1 increased fertility as measured by litter size. 

Orczyk and Behrman (1972) found that administration of the prostaglan­

din antagonists, aspirin and indomethacin, blocked ovulation in the rat and 

postulated that prostaglandins play a functional role in regulating the 

release of LH necessary for ovulation in the rat. Luehl, Humes, Tarnoff, 

Cirillo and Ham (1970), using the prostaglandin ant~gonist prostynoic 

acid, and PGF2v.; and LH, postulated that prostaglandin compounds exert 
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their effect at both the pituitary and ovarian level. A study by Behrman, 

orczyk and Greep (1972) determined that the effects of aspirin and indometha­

cin, both antagonists of prostaglandin compounds, accomplish their bio­

pharmacologic effects at different levels of hormone action. Aspirin 

blockage of ovulation was reversed by LH administration, but the ovulation 

blockage by indomethacin could not be reversed by either LH or gonadotropin 

releasing hormone. 

It should be emphasized that very little work has been accomplished 

on the effect of prostaglandins, or their antagonists, on the reproductive 

maturation of an inunature animal.. In view of this, experimentation was 

instituted to observe the effects of PGF2°' and acetylsalicylic acid, a 

prostaglandin antagonist, on the immature rat ovary.and adrenal gland when 

given over a prolonged period of time. 



MA.TERIAI.S AND METHODS 

I. Animals Fnd Housing 

A total of 190 innnature (21 day old), Sprague-Dawley derived female 

rats (Locke-Erickson Laboratories, Inc., Maywood, Illinois) were separated 

into nineteen experimental groups. Rats were housed five to. a unit in 

clear plastic "shoe-box" type caging on San-i-cel bedding (Paxton Labora­

tories, Paxton, Illinois). caging was cleaned and sterilized once weekly. 

Feed and water were given ~ libitum. Feed was a standard laboratory rat 

.diet (Purina Lab Chow). They were all housed in the same room which was 

environmentally controlled, i.e. temperature: 72° F. +two degrees, con­

stant humidity 53% ± 5%, 12 hour light-dark cycle. 

II. Treatment categories 

Five different treatment categories were defined in this experiment 

on the basis of the type of drug or hormone given. All drugs or hormones 

were delivered subcutaneously using a 1.00 cc tuberculin syringe and a 26 

gauge needle. All drugs and hormones were given twice daily (BID), one 

injection at 8.a.m. and the other at 4 p.m. 

A. Controls. Two major groups of controls were designated. One 

group of controls was injected with 0.25 cc of 10% ethanol. This group 

was necessary to establish any variable that may be introduced using al­

cohol as a delivery vehicle for acetylsalicylic acid in another test group. 

Another control group was not injected with any substance and was compared 

18 
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to the alcohol controls and other treatment groups. One subgroup of 10 

non-injected controls was necropsied at 22 days in order to establish 

base-line values. Subgroups of ten rats from the non-injected control 

group and ten rats from the alcohol-injected control group were necrop­

sied on days 27, 33 and 37, giving a total of 70 rats .. 

B. The prostaglandin group was divided into three subgroups of ten 

rats. All were injected with 0.075 mg of PGF2o< twice daily (0.075 cc) 

from day 22 through the day prior to necropsy. The three subgroups were 

necropsied on days 27, 33 and 37, respectively. The prostaglandin compound 

was delivered frozen at a concentration of 10 mg/ml in phosphate buffer 

(G.D. Searle Company, Skokie, Illinois). This was diluted down to a con­

centration of 0.1 mg/ml with phosphate buffer solution at a pH of 7; and 

then divided into 1.0 cc aliquots and frozen at -60° C. until use (Karim, 

Devlin and Hillier, 1968). Previous work by Labhsetwar (1972) has estab­

lished that 75 micrograms BID, given subcutaneously is a physiologic dose 

in the rat. A total of thirty rats was assigned to this group. 

c. Another treatment group was given acetylsalicylic acid (aspirin) 

which was put into solution with 10% ethanol and injected at a dosage of 

5.0 mg twice daily (0.25 ml, BID). This dosage level is active in the 

rat (Behrman, Qrczyk and Greep, 1972). As in the prostaglandin group, 

three subgroups of ten rats each were necropsied on days 27, 33 and 37, 

respectively, and received injections of aspirin from day 22 until the 

day necropsied, thus giving a total of thirty rats. 
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D. 'The LR (Luteinizing Hormone) (Schwarz-Mann, Orangeburg, New York) 

injected rats were given 0.125 Armour Unit (LH-ovine, Armour 277-80, equiva­

lent to N.I.H. LH S-1) (Riddle, Bates and Dykshorn, 1933) of LH twice 

daily from day 22 until the day of necropsy. Three subgroups of ten rats 

were sacrificed on days 27, 33 and 37, respectively, for a total of thirty 

rats in this major treatment category. The LH was received lyophilized 

and was reconstituted with physiologic saline to deliver a dose in 0.05 

cc. 

E. The FSH (Follicle Stimulating Hormone) (Schwarz-Mann, Orangeburg, 

New York) was also received lyophilized and reconstituted with physiologic 

saline and injected at a dosage of 0.25 Armour Standard Unit (FSH-porcine, 

Armour 264-151X, equivalent to 0.5 N.I.H. FSH S-1) (Steelman and Pohley, 

1953) twice daily (0.05 cc, BID). In this treatment category, also, three 

subgroups of ten rats were necropsied on days 27, 33 and 37 (i·~· a total 

of thirty rats), and were on a treatment schedule identical to the LR 

group. 

The age of the experimental rats (21 to 37 days of age) was chosen as 

an appropriate interval to study the effects of these compounds on the 

immature female rat during the period of vaginal canalization and the 

development of reproductive competence (K.asprow, 1969). 

III. General Procedures 

After completion of the different dosage regimes, all rats were 
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necropsied after recording body weight to the nearest gram on a direct 

reading torsion balance and euthanizing by ether anesthesia followed by 

decapitation. The ovary and adrenal glands were dissected free from 

adhering fat and other tissue and weighed to the nearest 0.2 mg on a 

Roller-Smith type torsion balance. After weighing, the ovaries and 

adrenals were either fixed in neutral formalin for histological study 

or quick frozen in liquid nitrogen and stored at -600 c. for histochemical 

analysis. In each subgroup of ten animals, the ovaries and adrenal glands 

of five rats were formalin-fixed; the ovaries and adrenal glands from 

the other five rats were frozen. 

The formalin-fixed adrenal glands and ovaries were then washed, 

dehydrated in alcohol, cleared with xylene and embedded in paraffin. The 

adrenal glands and ovaries were cut at six microns and stained with Harris 

hematoxylin and eosin for histological examination. Photomicrographs 

were taken using Polaroid type 107 film and a Wild microscope. Both 

40X and lOOX magnification photomicrographs were made of each ovary for 

comparison purposes. 

The ovaries that were frozen were sectioned at eight microns and in­

cubated for 3~ hours in a media containing 1.0 ml of 2.0 (10-4) M dehydro­

epiandrosterone (DHA), 1.0 ml propylene glycol, 1.0 ml of 5.0 (10-4) M 

nicotinamide-adenine dinucleotide (NAD) and 1.0 ml of 1.6 (10-4 ) M nitro 

blue tetrazolium chloride (Nitro-BT), all in 4.0 ml of phosphate buffer 
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solution (pH-7.4). A set of companion ovarian sections were incubated in 

media without DHA and served as control groups. Polaroid photomicrographs 

of the incubated sections were used to measure semi-quantitative reactions. 

This particular technique allows the localization and semi-quantification of 

the enzyme dehydroepiandrosterone-3B-hydroxysteroid dehydrogenase (DHA-3p­

HSD), which is indicative of active estrogen biosynthesis (Kalvert and 

Bloch, 1968). The reaction was rated on a scale of 0 to +3, depending on 

the degree of monoformazan or diformazan precipitate deposited on ovarian 

tissu~ sections. Plate I illustrates the semi-quantitate scale used. 



EXPERIMENTAL RESULTS 

A. Control Female Rats 

In an effort to provide some rigid base-lines for rigid comparisons, 

a number of controls were studied in extenso, thus providing highly stan-

dardized bases for comparison, i·~·, controls at 22, 27, 33 and 37 days of 

age, cf. Tables I and V, and accompanying photomicrographic documentation. 

Body weights, ovarian weights and adrenal gland weights of the non-

injected controls and the alcohol-injected (vehicle for aspirin) controls 

were essentially identical (Tables I-IV). Adrenal gland weights, when com-

pared on a milligrams per 100 grams body weight basis, showed a marked lin-

ear decrease from day 22 to day 33, of approximately 40% (from 20.5 mg% to 

12.7 mg%),* and then plateaued (Table I and Text Figure 2). This weight 

decrease of adrenal glands in immature rats, before vaginal opening is con-

sistent with the findings of Kasprow (1969). 

Semi-quantitative histochemical estimates of average dehydroepiandro-

sterone-3~-hydroxysteroid dehydrogenase (DHA-3p-HSD) activity in ovarian 

sections of the non-injected control groups revealed little DHA-3¥-HSD act­

ivity in the 27 and 33 day old groups. DHA-3p-HSD activity in the 37 day 

old non-injected controls was significantly greater (approximately 33% 

greater) and more variable (+2.00 ± O. 71), 'J(* than the 27 day old and 33 day 

* All organ weights are expressed in milligrams per 100 grams body 
weight (mg%), unless otherwise indicated. 

** Average and standard deviation from the mean. Represents average of 
estimates derived from the follicular, luteal and interstitial components 
of the ovaries. 
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TABLE I 

GRAVIMETRIC DATA ON THE BODY, OVARJES AND ADRENAL GIANDS OF THE NON- INJECTED CONrROL GROUPS OF 
22, 27, 33 AND 37 DAYS OF AGE 

-

, 

!l(ll) Body Weight Ova ria ~ Weight Adrena-1 Gland Weight Age in Days Item 
g, mg(b) 22 10 41 .± 5.3(c) 15.4 8.5 
range 36-51 10.3-18.9 5.5-11.6 

'%(d) 37,6 + 4.3 20.5 + 4.9 mg o 

range 28.6-42.2 14 8-26.6 -- 27 10 59 + 7. 5 22.7 9.4 -----·-g, mg 
range 51-73 16.8-30.6 8.3-13.1 . 
mg% 38.2 + 5.1 15. 7 + 1. 9 
range 32 .2-47 .8 13.4-18.5 

33 9 g, mg 92 + 6.4 26.0 11.8 
range 84-l02 20.9-33.6 8.0-15.3 

mg% 28.2 + 5.0 12. 7 + 2 .4 
range 22.7-38.0 8.7-15.2 

37 10 g, mg 123+12.3 35.1 16.3 
range 111-149 23.5-57.2 11. 7-23.0 

mg% 28.3 + 7.0 13.3 + 1.9 
range 19.8-40.9 9.9-15.o 

a 
Number of rats in group. 

b 
Body weights expressed in grams, organ weights are combined weights of both ovaries/adrenal 
glands expressed in milligrams. Data represents average values 

c 
Standard deviation from the arithmetic mean. 

d 
Organ weights expressed in milligrams per 100 grams 

N 
body weight. ~ 
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old subgroups (41..50 ± 0.55 and-tl.40 ± 0.55, respectively; cf. Table V, 

Text Figure 3 and Plate II, figures 5 and 6). It should be noted that 

values of DHA-3B-HSD activity represent averages of estimates or enzyme 
I 

activity derived from the follicular, luteal and interstitial tissue com-

ponents of the ovaries (Kovarik, 1972). 

B. Prostaglandin F2o< -Injected Female Rats. 

Body weights and ovarian weights of the Prostaglandin F2c< -injected 

rats showed no significant variation from the weights of the 27, 33 and 37 

day old non-injected controls. Average ovarian weights, on a mg% basis, 

were 37.3 at 27 days, 29.9 at 33 days and 26.0 at 37 days (Tables II-IV and 

Text Figure 1). Adrenal gland weights were significantly greater than 

control values in the 27 and 33 day subgroups (P = <0.01 and <0.10, re-

spectively;*** cf. Tables II-IV and Text Figure 2). In the 27 day old 

PGF2 ol subgroup, there was an approximate 33% increase in average weight 

of the adrenal glands over control values. The average weight of, the 

adrenal glands at 27 days of age was 19.0 mg% in the PGF2o( -injected rats 

compared to 15.7 mg% average adrenal gland weight in the 27 day old non-

injected control rats. At 37 days of age, the average adrenal gland 

weight when compared to controls was not significantly different (P = 

<0.20). 

Average DHA-3p-HSD, as estimated semi-quantitatively in ovarian sec-

tions, revealed elevations and patterns similar to the changes in average 

*** P = probability of differences when compared to the non-injected 
control values ("student's" t-distribution). 



TABLE II 

GENERALIZED AND SUMMARIZED GRAVIMETRIC DATA ON THE BODY, OVARIES AND ADRENAL GIANDS OF THE 
27 DAY OID TREATMENf GROUP 

Treatment n (a) Item Bodl Wei~ht Ovarian Wei~ht Adrenal Gland Wei~ht 

I. Alcohol 10 g' mg(b) 60+7.6(c) 22.4 9.4 
(0.2S cc of 10% range so -:: 71 17.1-31.0 7.0-12.9 
ethanol, BID) 

mg%(d) 37.5 ±S.O_ 15. 7_:t2.0, 

ran~e 31.1 - 46 .3 13.2 - 18.6 
p(e 

II. Pros tag land in F 2 oc 10 g, mg SS + S.S 20. 7 10.S 
(7S micrograms, range 49 -:: 69 16. 9 - 28.7 9.2 - 14.3 
BID) 

mg% 37 .2 + 4.4 19.0 + 1.1 
range 16. 9 -:: 2 8. 7 16.4 -:: 20. 7 
p <0.20 <0.001 

III. Aspirin 8 .g, mg S4 + 4. s 20.9 10.0 
(S.O milligrams, range 47 -:: 62 
BID) 

16.2 - 24.0 8.7 - 12. 3 

mg% 38.9 + 4.8 18. 9 + 2. 7 
range 29.S -:: 4S.6 lS.S-:: 22.4 
p < 0.20 <0.01 

- Contuned -

\. . 

N 

°' 



Treatment n Item 

IV. Follicle Stimu- 10 g, mg 
lating Hormone range 
(0.025 Armour Unit, 
BID) mg % 

range 
p 

v. Luteinizing Hormone 10 g, mg 
(0.125 Armour Stan- range 
<lard Unit, BID) 

mg% 
range 
p 

aNumber of rats in group. 

TABLE II (continued) 

Body Weight 

68 + 8.1 
56 -:: 84 

<0.02 

65 + 3.6 
60 -:: 71 

<0.01 

Ovarian Weight 

26. 9 
20.9 - 41. 7 

39.0 + 8.6 
30.8-:: 57.9 

32.0 
16.5 - 41.8 

48.8 + 11.2 
2 7. 5 -:: 64. 3 
<0.02 

Adrenal Gland Weight 

9.4 
7.8 - 11.4 

13 .8 + 1.8 
11. 1 -:: 16. 0 
<0.05 

9.6 
8.0 - 11.3 

14.8 + 1. 9 
11.3 - 16.9 

bBody weights expressed in grams, organ weights are combined weights of both ovaries/adrenal 
glands expressed in milligrams. Data represents average values. 

cStandard deviation from the arthmetic mean. 

d Organ weights expressed in milligrams per 100 grams body weight. 

eProbability of differences of average body weights in grams or average ovarian/adrenal gland 
weights in mg% when compared to non-injected control values ("student's t-distribution). Probabilities 
of <0.20 or less reported. 
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weights of adrenal glands in the PGF2 ~ subgroups at comparable days of age 

(Table V). There was high DHA-3p-HSD activity at day 27 (P=<0.05) and at 

day 33 (P=<0.10) when compared to control values; but at day 37, enzyme 

activity was similar to control values (Table V and Plate III, Figures 7 

and 8). Average semi-quantitative estimates of enzyme activity were +2.40 

± 0.55 at 27 days of age, +2.20 + 0.80 at 33 days of age and +1.75 ± 0.49 

at 37 days of age for the PGF2~ subgroups. 

MorphOlogic examination of histologic sections. revealed corpus luteal 

formation at day 37 in the PGF2 ~ treatment category. This finding is in­

consistent with the short-term effects of PGF2o( administration, i·~·' PGF2o( 

will cause irreversible destruction of luteal tissue !.!!, ~ (Blatchley and 

Donovan, 1969). 

c. Aspirin-Injected Female Rats. 

There was a marke~ similarity between the effects of acetylsalicylic 

acid (aspirin) a.nd PGF2 o( on the ovarian weights, adrenal gland weights and 

average DHA-3p-HSD activity in the ovaries. Adrenal gland weights were in­

creased significantly at day 27 over control averages (P=<O. 01). Average 

adrenal gland weight was 18.9 mg% in the 27 day aspirin subgroup compared 

to 15.7 mg% in the 27 day non-injected control subgroup (Tables I and II, 

and Text Figure 2). At days 33 and 37, adrenal gland weights were compar­

able to those of the controls. Average adrenal gland weight was 13.9 mg% 

at both 33 and 37 days of age in the aspirin-injected rats, compared to 



TABLE III 

GENERALIZED AND SUMMARIZED GRAVIMETRIC DATA ON THE BODY, OVARIES AND ADRENAL GLANDS OF THE 
33 DAY OLD TREATMENT GROUP 

Treatment 

I. Alcohol 

II. 

III. 

(0.25 cc of 10% 
ethanol, BID) 

Prostaglandin F2 o< 
(75 micrograms 
BID) 

Aspirin 
( 5. 0 milligrams 
BID) 

n(a) Item 

10 

10 

7 

g, mg(b) 
range 

mg%(d) 
range 
p(e) 

g, mg 
range 

mg% 
range 
p 

g, mg 
range 

mg% 
range 
p 

Body Weight 

93 + 7 .4(c) 
80 :- 105 

90' + 11.2 
76-103 

89 + 12.7 
63-98 

- Continued -

Ovarian Weight 

26.2 
19.3 - 33.1 

28.5 + 6.3 
20.8 -:: 41.4 

26.5 
19.5 

29.9 + 8.8 
22.1-:: 49.l 

25.6 
20.3 - 45.0 

28.4 + 6.4 
20.4 :- 40.2 

Adrenal Gland Weight 

11.6 
8.2 - 15.1 

12. 5 + 2 .2 
8.8 --15.6 

13.2 
9.8 - 19.6 

14. 7 + 1. 9 
12.6-:: 18.0 
<0.10 

12.4 
10.6 - 17 .4 

13.9 + 1. 5 
11.8 :- 15.5 



Treatment n Item 

IV. Follie le Stimu-
lating Hormone 10 g, mg 
(0. 02 5 Armour range 
Unit, BID) 

mg % 
range 
p 

v. Luteinizing Hormone 9 g, mg 
(0.125 Armour Stan- range 
dard Unit, BID) 

mg% 
range 
p 

8 Number of rats in group. 

TABLE III (contined) 

Body Weight 

103 + 12.2 
89 - -125 

<0.05 

101 + 16.2 
64 --117 

<0.20 

Ovarian Weight 

39.9 
29.4 - 50.6 

38.4 + 5.5 
32._0 - 46.6 
<0.001 

44.1 
29.4 - 55.6 

43.8 + 6.2 
36 . 4 ::- 54 . 5 
< .001 

Adrenal Gland Weight 

12.5 
9.9 - 18.9 

12 .1 + 1.3 
9. 9 --14.1 

13.2 
10.5 - 15.3 

13.3 +2.5 
9.5-18.3 

bBody weights expressed in grams, organ weights are combined weights of both ovaries/adrenal 
glands expressed in milligrams. Data represents average values. 

cStandard deviation from the arthmetic mean. 

dOrgan weights expressed in milligrams per 100 grams body weight. 

eProbability of differences of average body weights in grams or average ovarian/adrenal gland 
weights in mg% when compared to non-injected control values (''student's "t-distribution). Probabilities 
of <0.20 or less reported. 

w 
0 
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12.7 mg% at 33 days and 13.3 mg% at 37 days for the controls (Tables I-IV 

and Text Figure 2). At 37 days of age, ovarian weight was not increased 

significantly over control values, 30.9 mg% compared to 28.3 mg% for con­

trols. Interestingly enough, all rats were cycling at this period, and 

such variations in ovarian weights can be expected normally, as previously 

shown earlier by Kasprow (1969). 

Average DHA-3p-HSD activity in the ovaries of the aspirin treated rats 

increased markedly and significantly (approximately a 67% increase, P=<0.025) 

at day 33 when compared to controls, but was unchanged from control values 

at days 27 and 37. Average semi-quantitative estimates of DHA-3p-HSD 

activity was +l.50 ± 0.58 at 27 days, +2.50 ± 0.91 at 33 days and +2.00 at 

37 days for the aspirin treated rats. Comparable control values were +l.50 

+ 0.58 at 27 days, +1.40 + 0.55 at 33 days and +2.00 ± 0,71 at 37 days 

(Table V and Plate IV, Figures 9 and 10, and Text Figure 3). Histologic 

sections of the ovaries of the aspirin treatment group revealed luteal 

formation at 27 days of age, while no control ovaries showed corpus luteum 

formation until 37 days. 

In the 37 day old aspirin subgroup, gross body weight was significantly 

less (P=<0.05) than comparable control body weights. Average body weight 

of the 37 day control rats was 123 grams, while the 37 day aspirin-injected 

subgroup had an average body weight of 110 grams (Tables I and IV). Chronic 

salicylate intoxication could account for this weight difference. 



TABLE IV 

GENERALIZED AND SUMMARIZED GRAVIMETRIC DATA ON THE BODY, OVARIES AND ADRENAL GIANDS OF THE 
37 DAY OID TREATMENf GROUP 

Treatment n(a) Item Bodi Weight Ovarian Weight Adrenal Gland Weight 

I. Alcohol 10 g, mg(b) 122 + 13.9(~) 35.8 15.8 
(0.25 cc of 10% range 109 :- 155 23.3 - 61.0 12.0 - 21.4 
ethanol BID) 

mg%(d) 28.9 + 71. 13.0 + 1.9 
range 20.0 :- 39.4 10.3 :- 15.9 
p(e) <0.01 

II. Pros tag landin F 2 co( 9 g, mg 120 + 15.6 30.1 15.4 
(75 micrograms range 88 - -139 21.0 - 44.4 12.3 - 21.4 
BID) 

mg% 26.0 + 7.2 12. 9 + 1. 7 
range 18.1 :- 37.5 10.1:: 15.4 
p 

III. Aspirin 8 g, mg 110 + 12 .1 34.2 15.2 
(5. 0 milligrams range 85 - -122 20.0 - 47.8 11.8 - 17.3 
BID) 

mg% 30.9 + 7.6 13. 9 + o. 8 
range 19.6 :- 39.5 12. 7 :- 14. 9 
p., <0.05 

- Continued -

I,..) 
N 



Treatment n 

J!.l. Follicle Stimu-
lating Hormone 10 
(0.025 Armour 
Unit, BID) 

V. Luteinizing Hormone 10 
(0.125 Armour Stan­
dard Unit, BID) 

aNumber of rats in group. 

Item 

g, mg 
range 

mg% 
range 
p 

g, mg 
range 

mg% 
range 
p 

TABLE J!.l (Continued) 

Body Weight 

127 + 8.1 
115 :- 142 

126 + 9.3 
110 :- 144 

Ovarian Weight 

43.1 
28.6 - 52.4 

34.0 + 6.8 
24.0 :- 43.1 
<0.10 

48.4 
32.3 - 63.0 

38 .4 + 6 .1 
29. 3 :- 48. 1 
<0.005 

Adrenal Gland Weight 

16.9 
12.7 - 22.8 

13 .2 + 1. 7 
11. 0 :- 16 .1 

16.1 
13.7 - 20.6 

12 .9 + 1.8 
10. 5 :- 16. 0 

bBody weights expressed in grams, organ weights are combined weights of both ovaries/adrenal 
glands expressed in milligrams. Data represents average values. 

cStandard deviation from the arthmetic mean. 

dorgan weights expressed in milligrams per 100 grams body weight. 

eProbability of differences of average body weights in grams or average ovarian/adrenal gland 
weights in mg% when compared to non-injected control values ("student's" t-distribution). Probabil­
ities of <0.20 or less reported. 
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D. Follicle Stimulating Hormone-Injected and Luteinizing Hormone-Injected 
Female Rats. 

Follicle Stimulating Hormone (FSH) at the dose levels used in this 

experiment caused a significant increase in average body weights of the 

27 day old (P=<0.02) and 33 day old (P=<0.05) FSH rats when compared to 

those of the controls. Body weight averages were 68 grams compared to 59 

grams, and 103 grams compared to 92 grams for controls, respectively 

(Tables I-III). The 37 day old FSH subgroup was also heavier than controls 

(127 grams vs. 123 grams for controls), but the difference was not statis-

tically significant. Luteinizing Hormone (LR) also caused significant 

body weight increases in the 27 day old LR subgroup (P=<0.01). Average 

body weight was 65 grams compared to 59 grams for the 27 day control sub-

group (Tables I and II). Body weight increases in the 33 and 37 day LR 

subgroups was also recorded, but was not significantly changed from control 

values. Average body weight for the 33 and 37 day LH subgroups was 101 and 

126 grams respectively (Tables III and IV). An explanation of these weight 

increases in both the FSH and LR groups could be possible contamination of 

the gonadotropin preparations with Growth Hormone (GH). 

The adrenal glands of the FSH and LR groups showed weight decreases 

when compared to control values at 27, 33 and 37 days of age. The weight 

of the adrenal glands of the 27 day FSH subgroup was significantly less 

(P=<0.05) than average control values. The average adrenal gland weights 

of the 27, 33 and 37 day FSH subgroups were 13.8 mg%, 12.1 mg% and 13.2 mg%, 



TABLE V 
GENERALIZED AND SUMMARIZED DATA BASED ON THE SEMI-QUANTITATIVE HISTOCHEMICAL ESTIMATES OF AVERAGE 
DEHYDROEPIANDROSTERONE-3~-HYDROXYSTEROID DEHYDROGENASE (DHA-3j3-HSD) ACTIVITY IN OVARIAN SECTIONS 

OF THE CONTROL AND TREATMENT GROUPS 

8 Number of rats in group. 

bAverage and standard deviation from the mean. Represents average of estimates of DHA-3 -HSD 
activity derived from the follicular, luteal and interstitial components of the ovaries. 

Cprobability of differences when compared to the non-injected controls ("student's" t-distribution). 
Only probabilities of <0.20 or less reported. 
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respectively, 14.8 mg%, 13.3 mg% and 12.9 mg% for the I1i subgroups, respect-

ively, and for the non-injected control subgroups, 15.7 mg%, 12.7 mg% and 

13.3 mg%, respectively (Tables I-IV and Text Figure 2). 

Ristologic sections of the ovaries of the FSR group revealed multiple 

follicular development with early luteinization when compared to control 

sections. Also in this experiment, the FSR group showed statistically 

significant increases in average ovarian weights in the 33 day old subgroup 

(P=<0.001). Average control weight for the 33 day ovarian weights was 28.2 

mg%; while comparable FSR ovarian weight average was 38.4 mg%. The 27 day 

and 37 day average ovarian weights were comparable to control values, f.·~· 

39.0 JI€;% vs 38.2 mg% for control ovaries at 27 days, and 34.0 mg% vs 28.3 
' --- . ---

mg% for the controls at 37 days, (Tables I-IV and Text Figure 1). Velardo 

(1958) reported that FSR, when given subcutaneously in inunature rats, 

resulted in ovarian weight increases and luteinization when given over a 

period of days. 

Ovarian weights were greatly increased in the LR group when compared 

to the non-injected control animals. The average ovarian weights of the 

LR subgroups was of a greater magnitude than comparable FSH values. This 

weight increase was significant, when compared to controls, in the 27-

(P=<0.02), 33- (P=>0.001) and 37- (P=<0.005) day old LR subgroups. 

Recorded ovarian weight averages were 48.8 mg%, 43.8 mg% and 38.4 mg%, 

respectively (Tables I-IV and Text Figure 1). Also, histologic sections 



37 

of the ovaries in the LH group revealed luteinization at day 27, much 

earlier than comparable control sections which did not reveal luteinization 

until day 37. Pure IH preparations will cause formation of corpora lutea 

in inunature female rates if prior growth of graafian follicles is stimulated 

by FSH (Greep, van Dyke and Chow, 1942). 

Average DHA-3p-HSD activity was decreased when compared to control 

values at 27, 33 and 37 days of age for both the IH and FSH subgroups. 

This decrease was significant (P=<0.05) in the 37 day LH subgroup.. The 

average semi-quantitative estimates of enzyme activity were +1.20 ± 0.45, 

+1.20 ± 0.45 and +1.40 ± 0.55 for the 27-, 33- and 37-day old FSH subgroups, 

respectively, and were +1.40 ± 0.55, +l.50 ± 0.58 and +1.20 ± 0.45 for the 

27-, 33- and 37-day old IH subgroups, respectively. very little diformazan 

deposits were observed in any ovarian sections from either the FSH or LR 

groups. Most ovarian sections in both the FSH and LH groups showed only 

monoformazan deposits (Table V, Text Figure 3 and Plate V, Figures 11 and 

12). 



TEXI FIGURE i 

GRAPH SHOWING GRAVIMETRIC DATA ON THE OVARIES OF IMMATURE FEMALE RATS WHEN EXPOSED TO THE DIFFERENT 
TREATMENT REGIMES INDICATED (DATA BASED ON COMBINED WEIGHTS OF BOTH OVARIES CONVERTED INTO MILLIGRAMS 
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TEXf FIGURE 2 

GRAPH SHOWING GRAVIMETRIC DATA ON THE ADRENAL GIANDS OF IMMATURE FEMALE RATS WHEN EXPOSED TO THE 
DIFFERENT TREATMENT REGIMES INDICATED (DATA BASED ON COMBINED WEIGHTS OF BOTH ADRENAL GIANDS CON­

VERTED INTO MILLIGRAMS PER 100 GRAMS BODY WEIGHT, i.e. MG %) 
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TEXf FIGURE 3 

GRAPH SHOWING DATA BASED ON THE SEMIQUANTITATIVE HISTOCHEMICAL ESTIMATES OF AVERAGE DEHYDROEPIANDRO­
STERONE-3 f3 - HYDROXYSTEROID DEHYDROGENASE (DHA-3~ -HSD) ACTIVITY IN OVARIAN SECTIONS OF THE CONTROL 
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DISCUSSION 

It is postulated that prostaglandins exert their effects by regulating 

intracellular levels of adenosine 3 1
, 5 1 -monophosphate (cyclic AMP). Cyclic 

AMP is considered to be the second messenger of hormone action (Sutherland 

and Rall, 1960; Shaw and Ramwell, 1968). Studies with prostaglandins and 

their effect on hormone action have revealed that prostaglandins (PG's) 

can serve in both a positive and a negative feedback role in hormone 

action (Steinberg, Vaughan, Nestel, Strang and Bergstrom, 1964). The 

prostaglandins, as a group, will mimic actions of hormones and neuro­

hormones, modify hormonal actions, or inhibit the hormonal actions de­

pending on the tissue and specific prostaglandin studied, ~ Y.!.Y£. studies 

compared with in vitro actions of the same prostaglandin compound sometimes 

reveal conflicting end results. In vitro incubation of luteal slices with 

PGFzo(cause a stimulation of progesterone synthesis (Pharriss, Wyngarden and 

Gutknecht, 1968), while Labhsetwar (1971) found that in~ PGFzo( in the 

adult female rat causes irreversible luteolysis. Aspirin will inhibit 

prostaglandin synthesis in~ (Vane, 1971). Prostaglandins will increase 

steroidogenesis in in vitro preparations of rat adrenal glands (Flock, 

Jessup and Ramwell, 1969) and salicylates in the !,!l vivo system will also 

cause an increase in adrenal steroidogenesis (Done, Ely and Kelly, 1958). 

It appears that there are several pronounced contradictions insofar 

as the biological actions of the prostaglandins are concerned. One explana­

tion for these apparent contradictions is the importance of recognizing 
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different levels of prostaglandin action. In the case of f.!!. ~ PGF2 o( 

~varian steroidogenesis, a cellular phenomena is a possible explanation 

while the ~ vivo luteolytic activity of PGF2o{ may represent a chronic 

action on local hemodynamics of the ovary (Pharriss, 1971). Aspirin in­

creases ACTH levels in the body which results in adrenal steroidogenesis 

(Done, Ely and Kelly, 1958). Thus, aspirin may exert its effect at the 

pituitary level by pituitary stimulation of ACTH release while PGF2 CI( may 

exert its effect at the adrenal level to cause steroidogenesis, resulting 

in the identical end result of increased steroidogenesis. 

In an effort to ascertain some critical lines of data on the biological 

actions of the prostaglandins, several experiments were undertaken. First, 

a series of controls were thoroughly assessed, so as to provide rigid 

baselines on comparisons. Secondly, a four part experimental procedure was 

undertaken: (a) Rats of 22 days of age were given 0.075 milligrams of PGF2o< 

twice daily (B]J)) and necropsied at 27, 33 and 37 days of age; (b) 5.0 

milligrams of aspirin B]J) were similarly given, and the rats were necropsied 

according to the aforementioned schedule; (c) Likewise, 0.025 Armour Unit 

of FSH were similarly studied; and finally (d) LH (0.125 Armour Standard 

Unit) was assessed as per the experimental schedule. Two distinctive 

parameters were pursued: (1) the gravimetrics of the endocrine organs, 

with specific notes on reproductive events, and (2) the changing nature of 

DHA-3p-HSD co-incident with maturity and treatment with each of the sub­

stances named, ~·a· PGF2o( , aspirin, FSH and UI. 
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In this study, DHA.-3~-HSD activity in the ovary was used as an indi-

cation of specific steroidogenesis in the ovary. DHA-3p-HSD is required 

for biosynthesis of estradiol 17-p and estrone in the ovaries of rats 

(Kalvert and Bloch, 1968). Adrenal gland weights (on a mg% basis) were 

used as supportive of metabolic activity in this endocrine organ. Injected 

ACTH will cause steroidogenesis in the rat adrenal with a concomitant 

increase in weight; hypophysectomy will cause a decrease in steroidogenesis 

and, also, a decrease in adrenal weight (Kitchell and Wells, 1952). In 

Cushing's syndrome in man, there is hypercortisolism and enlarged, hyper­

plastic adrenal glands (Anderson and Cleveland, 1969). The ovarian weight 

is not a good indication of steroidogenesis in the ovary since ovarian 

weight is more dependent on morphologic components present,!·~·' follicles, 

corpora lutea (Kasprow, 1969). 

This thesis reports similar end-results of increased estrogen synthesis 

in the ovary, and increased adrenal weights in immature female rats, when 

given either PGF2o{ or aspirin over a period of weeks. Possibly aspirin is 

working at the pituitary level and PGF2o( , when given systemically, works 

at the end organ level to produce a generalized steroidogenic effect in the 

body with either compound. Another possible explanation is that aspirin 

only effects PG synthetase and not formed prostaglandins. In view of the 

apparent .!:!!. vitro antagonism of aspirin and PGF2o( , it is interesting to 

note their similarity in promoting increased steroidogenesis in the ovary 

and adrenal glands in the i:!!, ~ system. Also in comparing the actions 
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of the PGFzo( and aspirin, after approximately two weeks of chronic admin­

istration, their effects on steroidogenesis in the adrenal gland and ovary 

is insignificant when compared to the non-injected controls. Perhaps the 

~ ~ system adapts to these high levels of PGF2 ~ and aspirin, or perhaps 

a drug insensitivity or tolerance phenomenon occurs. This apparent insensi­

tivity is also illustrated in the 37 day PGF2 o( group which showed luteal 

tissue in histologic sections of the ovary. Short-term~~ PGF2o( 

administration in the adult female rat causes irreversible luteolysis (Labh­

setwar, 1971). Another explanation could be deterioration of the PGFzo( 

and aspirin solutions, and, thus, loss of biologic activity over time. 

Also, one should consider the fact that dose remained constant over time 

while body weight increased markedly over this time period of rapid growth, 

thus effectively decreasing dose per unit weight levels. 

Vogt (1957) and Kasprow (1969), using bilaterally ovariectomized rats 

injected with estradiol 17-~, reported uterine weight increases and signifi­

cant increases in adrenal weights. In this study, increases in estradiol-

17p synthesis in the ovary, as measured by DHA-3¥-HSD activity in the 

ovary, resulted in comcomitant increases in adrenal weights. Perliaps the 

same mechanism is operating in both instances to increase adrenal steroido­

genesis. Estradiol-17p synthesis could directly influence adrenal steroido­

genesis by providing the chemical precursors for adrenal steroid hormones 
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(Hechter, Solomon, Zaffaroni and Pincus, 1953). Another possibility is an 

estradiol-17p feedback mechanism on the pituitary to influence tropic hor­

mone release (Vogt, 1957). 

Investigations utilizing prostaglandins and prostaglandin inhibitors 

(aspirin, indomethacin and prostynoic acid) and comparing their modifying 

action on gonadotropin response have indicated that the level of prosta­

glandin action is an important variable when considering prostaglandin 

action in the in ~ system.. Orczyk and Behrman (1971) reported that both 

aspirin and indomethacin will block ovulation in the rat. Aspirin and in­

domethacin reduced PGF2o( plasma concentrations and pituitary and hypothala­

mus PGF2~ concentrations. Utilizing gonadotropic releasing hormone and LR 

to reverse the effects of ovulation blockage in the rat with aspirin and 

indomethacin, the site of ovulation blockage of these drugs was elucidated 

(Behrman, Orczyk and Greep, 1972). It was determined that aspirin blocked 

ovulation at the pituitary level, while indomethacin probably exerted its 

effect at the ovarian level. LR reversed aspirin ovulation blockage, but 

not indomethacin ovulation blockage. Thus, prostaglandins probably act at 

both the pituitary and ovarian levels to influence hormonal actions on the 

ovary. 

Evidence also suggests prostaglandin interaction at the level of the 

hypothalamus. PGE 1 will stimulate ACTH release when placed in the rat 

hypothalamus, but has no effect when placed directly in the pituitary of 

the rat (Hedge, 1971). 
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The exact relationship between prostaglandins, gonadotropins and cyclic 

AMP, is another area of current investigation. Prostaglandin E1 and LH will 

cause cyclic AMP production when incubated with mouse ovary; this effect is 

blocked with the addition of prostynoic acid, a specific prostaglandin in­

hibitor (Kruehl, Humes, Tarnoff, Cirillo and Ham, 1970). Grinwick, Kennedy 

and Armstrong (1972) reported a dissociation of ovulatory and steroidogenic 

properties of LH by studying indomethacin effects on rabbit ovaries. Indo­

methacin blocked ovulation but did not prevent luteinization. Such studies 

indicate possible multiple interactions between gonadotropins and prosta­

glandins at the cellular level. It should be emphasized that there are 

many conflicting reports of prostaglandin action in the literature. Much 

work must be accomplished to establish the valid role of prostaglandin­

gonadotropin interactions. 

Another interesting observation was the decrease in growth rates 

of the a~pirin-treated rats. This observation could simply reflect the 

generalized toxic effects of salicylates but also could indicate interfer­

ence or antagonism of various pituitary hormones which influence growth. 

Vaginal opening was also delayed; but early luteinization of the ovary was 

observed in the aspirin group. 

Also in this study, there was a consistent decrease in DHA-3p-HSD 

activity in the ovarian sections of the LR and FSH groups. Ovarian histo­

morphology revealed early luteinization when compared to control ovarian 

sections. FSH, when given without LH, causes follicular development, but 
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without LH, estrogen synthesis is minimal (Turner, 1971). Histologic 

sections of the ovaries in the FSH group revealed multiple follicular de­

velopment with early luteinization. Velardo (1958) reported that FSH, when 

given subcutaneously in immature rats resulted in ovarian weight increases 

and luteinization when given over a period of days. Fevold (1941) indicated 

that relatively pure preparations of FSH are inefficient in inducing biosyn­

thesis of estrogen in the immature rat ovary. Lack of estrogen synthesis 

was apparent in this study by the lack of DHA-3p-HSD activity in the ovary. 

Fevold (1941) also reported that LH, when given alone, does not stimulate 

estrogen synthesis. Both LH and FSH, in the proper ratio, are necessary to 

stimulate estrogen biosynthesis (Velardo, 1958 and 1960). 

Also of note in this study was a consistent decrease in adrenal gland 

weight of the FSH and LH group when compared to control values. Earlier 

in this discussion it was noted that estradiol-17p will cause adrenal gland 

weight increases when injected subcutaneously in rats (Kasprow, 1969). DHA-

3p-HSD activity in the ovaries of the rat is indicative of estradiol-17p 

synthesis (Kalvert and Bloch, 1968). In the LH and FSH subgroups, it was 

previously noted that DHA-3~-HSD activity was less, on the average, than 

control DHA-3p-HSD activity. The decrease in estradiol-17p synthesis 

could explain the decrease in adrenal gland weights in the LH and FSH groups. 

Companion studies not reported in this dissertation did not show any 

significant uterine weight increases within the aspirin or PGF2o( subgroups. 

DHA-3p-HSD studies on these same ovaries did show significant increases 
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in estrone and estradiol-17p synthesis. Estradiol-17p· will cause significant 

uterine weight increases at a dosage of 0.1 microgram (Kasprow, 1969). DHA-

3p-HSD activity in the ovary apparently is a more sensitive indicator of 

estrogen synthesis than uterine weight changes in the rat. 

Regarding the dynamic role of the prostaglandins in the body, much 

remains for future study. The literature is replete with contradictions 

and vague generalities concerning these biologically active compounds. Their 

ubiquitous occurrence in many tissues of the mammalian body, and the pos­

sibility of species differences somewhat tend to confuse experimental 

design and results. Invest.igations into the area of endocrine physiology 

of the reproductive tract and prostaglandin interaction have only resulted 

in speculation of the roles of prostaglandin in reproductive functions. 

It may very well be that prostaglandins are the long recognized, 

but previously unknown, luteolytic agents, initiators of parturition and 

agents responsible for ovum transport and sperm capacitation. Some such 

evidence for the latter exists. Therapeutic applications of the PG's have 

been surprizingly successful up to this point. The intensity of research 

in the area of prostaglandin biochemistry and physiology will undoubtedly 

shed new light on their true significance in the mammalian body in the near 

future. 



SUMMA.RY AND CONCLUSIONS 

1. A series of experiments were undertaken to observe the effects of 

prostaglandin F2o( (PG1"2 o(), acetylsalicylic acid (aspirin), follicle stimu­

lating hormone (FSH) and luteinizing hormone (LH) on estrogen biosynthesis 

in the ovary as revealed histochemically; also pursued were the histologic 

morphology of the ovary, and the gravimetric changes of the ovaries, adrenal 

glands and body weights of immature, female rats when given the aforemen­

tioned drugs during the period of developing reproductive competency. 

Five major groups of thirty 22 day old female rats (one control group 

and four treatment groups) were given subcutaneous injections, twice daily, 

of either 75 micrograms of PG1"2o( , give milligrams of aspirin, O. 25 Armour 

Unit of FSH or 0.125 Armour Standard Unit of LH. Sub-groups of ten rats 

in each major treatment category were necropsied at 27, 33 or 37 days of 

age. Body weights, ovarian weights and adrenal gland weights were recorded 

and statistically analyzed. Ovarian sections were prepared for histologic 

morphology, and for histochemical analysis, i·~·' dehydroepiandrosterone-

3p-hydroxysteroid dehydrogenase (DHA-3¥-HSD) activity, which is indicative 

of the precursors of estrone and estradiol-17p biosynthesis in the ovary. 

DHA-3p-HSD activity in the ovary, and adrenal gland weights were used as 

indices of the metabolic activity in these endocrine organs. 

2. Both PGF2o( and aspirin significantly increased (at the 0.05 level 

of predictability or less) the dehydroepiandrosterone-3p-hydroxysteroid 
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dehydrogenase (DHA-3p-HSD) activity in the ovary over comparable control 

values in the 27 and 33 day PGF2o{ subgroups and the 33 day aspirin sub­

group. Activities of DHA-3p-HSD in the LR- and FSH-injected rats were 

consistently below control levels throughout the experimental procedures. 

DHA-3p-HSD ovarian activity in the PGF2o( and aspirin injected rats appro­

ached control values after 16 days of continuous injections of these com-

pounds. Average semi-quantitative ovarian DHA-3p-HSD activities on a 11011 

to "+3" scale were: +1.50 ± 0.58, +1.40 ± 0.55 and +2.00 ± 0.71 for the 27, 

33 and 37 day old non-injected control subgroups, respectively; +2.40 ± 0.55, 

+2.20 ± 0.80 an:l +1.75 ± 0.49 for the 27, 33 and 37 day old PGF2oc -injected 

subgroups, respectively; +l.50 ± 0.58, +2.50 + 0.91 and +2.00 + 0.82 for 

the 27, 33 and 37 day old aspirin-injected subgroups, respectively; +1.20 

+ 0.45, +1.20 + 0.45, and +1.40 + 0.55 for the 27, 33 and 37 day old FSH-- - -
injected subgroups, respectively; and +1.40 ± 0.55, +l.50 + 0.58 and +1.20 

± 0.45 for the 27, 33 and 37 day old LR-injected subgroups, respectively. 

3. Ovarian weights were not significantly different, when compared 

to controls, for the PGF2 o( and aspirin treatment groups. The FSH and LR 

groups showed statistically significant ovarian weight increases throughout 

the experimental procedure. Statistically significant average ovarian 

weight increases were recorded in the 33 day old FSH subgroup, and in the 

27, 33 and 37 day old LR subgroups. 

Recorded average ovarian weights, on a milligrams per 100 grams body 

weight (mg%) basis were: 38.2, 28.2 and 28.3 for the 27, 33 and 37 day old 
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non-injected control subgroups, respectively 37.3, 29.9 and 26.0 for the 

27, 33 and 37 day old PGF2 o(-injected control subgroups, respectively; 38.9, 

28.4 and 30.9 for the 27, 33 and 37 day old alcohol-injected (vehicle for 

aspirin) subgroups, respectively; 39.0. 38.4 and 34.0 for the 27, 33 and 

37 day old FSR-injected subgroups, respectively; and 48.8, 43.8 and 38.4 

for the 27, 33 and 37 day old LR-injected subgroups, respectively. 

4. Ristomorphologic comparisons of ovarian sections revealed early 

luteinization in the LR, FSR and aspirin groups, but the ovaries of the 

PGF2 0( -injected rats resembled control sections, 

5. Adrenal gland weights in the PGF2 o( and aspirin treatment groups 

were significantly increased over control values in the 27 and 33 day old 

PGF2 o{ subgroups, and in the 27 day old aspirin subgroups. This increase 

in average adrenal gland weights over control values paralleled DHA-3p-RSD 

activity in the ovary for th~ PGF2 o( and aspirin groups. Again, as with 

DHA-3p-RSD activity, adrenal weights were comparable to control values 

after 16 days of continuous injections of either PGF2o( or aspirin. FSR­

and IJI-injected rats showed consistent decreases of adrenal weight, but this 

decrease was not statistically significant, when compared to controls. 

Average adrenal gland weights, on a mg% basis, were 15.7, 12.7 and 

13.3 for the 27, 33 and 37 day old non-injected controls, respectively; 

19.0, 14.7 and 12.9 for the 27, 33 and 37 day old PGF2o( -injected subgroups, 

respectively; 18.9, 13.9 and 13.9 for the 27, 33 and 37 day old aspirin­

injected subgroups, respectively; 13.9, 12.1 and 13.2 for the 27, 33 and 37 
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day old FSR-injected subgroups, respectively; and 14.8, 13.3 and 12.9 for 

the 27, 33 and 37 day old LR-injected subgroups, respectively. 

6. Body weights in the FSR and LR groups were consistently and sig­

nificantly increased over body weights of comparable control groups. It 

was postulated that possible growth hormone contamination of the LR and FSR 

preparations could account for this weight increase. Aspirin-injected rats 

showed a significant decrease in body weight at 37 days when compared to 

controls. It was postulated that this weight decrease in the aspirin 

group could reflect interference with pituitary hormones which influence 

growth, or could simply reflect the generalized toxic effect of the sali­

cylates. 

Recorded average body weights in grams were: 59, 92 and 123 for the 

27, 33 and 37 day old non-injected control subgroups, respectively; 55, 90 

and 120 for the 27, 33 and 37 day old PGF2o(-injected subgroups, respect­

ively; 54, 89 and 110 for the 27, 33 and 37 day old aspirin-injected sub­

groups, respectively; 68, 103 and 127 for the 27, 33 and 37 day old FSR­

injected subgroups, respectively; and 65, 101 and 126 for the LR-injected 

subgroups, respectively. 

7. It was concluded, from the aforementioned observations, that both 

PGF2 o( and aspirin, a specific prostaglandin antagonist, will increase 

ovarian and adrenal steroidogenesis in the immature female rat; and that 

this steroidogenic effect decreases over time when these compounds are 

chronically administered. It was postulated that aspirin and PGF2 o{ 
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may exert their effects at different levels of hormone action; i·~·' at 

the pituitary level, or at the ovarian or adrenal level. 
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Introductory Note to Plates 

All photornicrographs are of cross sections of ovaries. Photornicro­

graphs were taken using Polaroid type 107 film and a Wild microscope. 

All photomicrographs are at lOOX magnification. 
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Photomicrographs of sections of ovaries from rats which were incubated 
with dehydroepiandrosterone (DHA) showing the semi-quantitative histo­
chemical scale of DHA-3~-hydroxysteroid dehydrogenase (DHA-3~-HSD) activity 
in ovarian sections. 

Fig. 1. Control section of ovary incubated without DHA. Represents 
a "0" reaction (lOOX). 

Fig. 2. Represents a "+l" reaction. Very little diformazan deposits 
are in evidence, and DHA-3~-HSD activity is evidenced by rnonoform­
azan deposits (lOOX). 

Fig. 3. Represents a "+2" reaction. Discrete diformazan and mono­
formazan deposits are in evidence (lOOX). 

Fig. 4. Represents a "+3" reaction. Confluent areas of diformazan 
deposits are in evidence (lOOX). 
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Photomicrographs of sections of ovaries from the non-injected 
contol rats which were incubated with dehydroepiandrosterone (DHA) 
to localize the sites of estrogen biosynthesis,i·~·' DHA-3p-hydroxy­
steroid dehydrogenase (DHA-3~-HSD) activity. 

Fig. 5. Ovarian section from a 33 day old non-injected control rat 
showing moderate (+2) DHA-3~-HSD activity in the interstitial 
tissue and the theca interna of the tertiary follicles. The antrum 
shows a typically negative reaction (lOOX). 

Fig. 6. Ovarian section from a 37 day old non-injected control rat 
showing strong (+3) DHA-3~-HSD activity in the interstitial tissue 
and in the theca interna of the follicles. Moderate (+2) DHA-3~­
HSD activity is seen in the granulosa cells of the follicles (lOOX). 
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Photomicrographs of sections of ovaries from the PGF2 ~ -injected 
rats which were incubated with dehydroepiandrosterone (DHA) to localize 
the sites of estrogen synthesis, i·~·' DHA-3p-hydroxysteroid dehydro­
genase (DHA-3p-HSD) activity. 

Fig. 7. ovarian section from a 27 day old PGF2 ~ -injected rat showing 
moderate (+2) to strong (+3) DHA-3~-HSD activity in the interstitial 
tissue and in the theca interna of the follicles (lOOX). 

Fig. 8. Ovarian section from a 37 day old PGF2 x -injected rat showing 
moderate (+2) to strong (+3) DHA-3~-HSD activity in the inter­
stitial tissue and weak (+l) to moderate (+2) DHA-3~-HSD activity 
in the theca interna of the follicles (lOOX). 
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Photomicrographs of sections of ovaries from the aspirin-injected 
rats which were incubated with dehydroepiandrosterone (DHA) to localize 
the sites of estrogen synthesis, i·~·' DHA-3p-hydroxysteroid dehydrogenase 
(DHA-3~-HSD) activity. 

Fig. 9. Ovarian section from a 27 day old aspirin-injected rat 
showing weak (+l) DHA-3p-HSD activity in the interstitial tissue, 
and in the theca interna and granulosa cells of the follicle. 
Some diformazan deposits are in evidence in the interstitial 
tissue (lOOX). 

Fig. 10. Ovarian section from a 33 day old aspirin-injected rat 
which shows strong (+3) DHA-3~-HSD activity in the subcapsular 
interstitial tissue and moderate (+2) DHA-3~-HSD activity in the 
theca interna of the follicles (lOOX). 
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Photomicrographs of sections of ovaries from the FSH- and lll­
injected rats which were incubated with dehydroepiandrosterone (DHA) 
to localize the sites of estrogen biosynthesis, i·~·' DHA-3B-hydroxy­
steroid dehydrogenase (DHA-3B-HSD) activity. 

Fig. 11. Ovarian section from a 37 day old FSH-injected rat showing 
weak (+l) DHA-3p-HSD activity in the interstitial tissue, and in 
the theca interna and granulosa cells of the follicles (lOOX). 

Fig.· 12. Ovarian section from a 37 day old Lll-injected rat showing 
weak (+l) DHA-3p3-HSD activity in the corpus luteum, interstitial 
tissue, and in ~he theca interna and granulosa cells of the 
follicle (lOOX). 
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Fig. 13. ovarian section from a 37 day old non-injected control rat 
cut at eight microns and stained with Harris hematoxylin and eosin. 
Both follicular and corpus luteal structures are evident (lOOX). 
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