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ABSTRACT 

 The TRIM5α protein from rhesus macaques (TRIM5αrh) exhibits a remarkable 

ability to potently inhibit infection by Human Immunodeficiency Virus Type-1 (HIV-1). 

Extensive studies have shown that TRIM5α is capable of self-associating at many levels, 

eventually leading to the formation of a hexameric assembly that can superimpose on the 

hexameric lattice of the HIV-1 capsid. The mechanism underlying the self-association of 

TRIM5α and the molecular determinants of self-association remain to be completely 

understood. In this study, we show that the Linker 2 (L2) region of TRIM5rh is important 

for dimerization and higher order self-association, both of which are independent 

processes. Additionally, fluorescence resonance energy transfer (FRET) analysis suggests 

that an antiparallel dimer configuration is the basic unit of TRIM5α, consistent with the 

recently published crystal structure of the CCL2 region of TRIM25 by Sanchez et al. We 

propose a homology model of the CCL2 fragment of TRIM5α based on the structure of 

the TRIM25 CCL2 region. In this model the Helix 3 of the L2 region folds back onto 

Helix 1 (CC domain), possibly ensuring correct binding of the SPRY domain to the HIV-

1 core. These studies reveal previously unknown determinants in the L2 region that 

govern self-association of TRIM5α.
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CHAPTER 1 

INTRODUCTION 

 Acquired Immunodeficiency Syndrome (AIDS) has taken over thirty-six million 

lives since its discovery in 1981, and an additional 33.4 million people are currently 

infected worldwide (CDC). AIDS, an immune system disease of humans, can be 

characterized by a below average CD4
+
 T cell count. Once this occurs, the immune 

system can no longer fight off infections and the body can succumb to opportunistic 

pathogens.  Human Immunodeficiency Virus Type 1 (HIV-1) is a lentivirus that can lead 

to AIDS by infecting a variety of critical immune cells; including CD4
+
 T cells, dendritic 

cells, and macrophages. This generally leads to fatality by overpowering the immune 

system leading to AIDS.  

HIV-1 Structure and Genome  

HIV-1 is a lentivirus belonging to the retroviridae family that predominantly 

infects CD4
+
 T helper cells as well as other immune cells such as macrophages. 

Lentiviruses manifest slowly into disease and are capable of integrating into the host cell 

genome as a provirus that can remain dormant for years in resting CD4
+
 memory T cells. 

HIV-1 virions are about 100 nm in diameter and generally spherical, coated with a viral 

envelope or membrane composed of phospholipids (Figure 1b). The virus carries two 

copies of positive single-stranded RNA, approximately 10 kilobases in length, which 

code for nine open reading frames (ORFs) and fifteen proteins (Figure 1a). The three



polyproteins, which can then be cleaved by the viral protease encoded within the Pol 

polyprotein. Env is cleaved by the viral protease into two glycoproteins: the 

transmembrane gp41 (TM) and gp120 (SU) located on the surface of the virion. These 

function to bind to receptors on the infected cell to facilitate fusion of viral and cellular 

membranes. During viral maturation, the viral protease cleaves Pol away from the Gag-

Pol precursor and then further cleaves the Pol polypeptide into three proteins: protease 

(pro, p10), reverse transcriptase (RT, p50), and integrase (IN, p31). Pro is required to 

cleave Gag and Gag-Pol polyproteins during virion maturation. RT makes a double-

stranded DNA copy of the two genomic RNA strands, and encompasses RNase H activity 

to eliminate the RNA strand from the first DNA strand, permitting generation of a 

complementary strand of DNA (cDNA). IN mediates the insertion of the HIV-1 provirus 

into the host cell genome through three critical functional enzymes: exonuclease, 

endonuclease, and ligase. Gag is cleaved into four proteins: matrix (MA, p17), capsid 

(CA, p24), nucleocapsid (NC, p9), and p6 that make up the viral core. MA lines the 

interior of the viral membrane to increase virion stability. Assembled from 250 hexamers 

and 12 pentamers, CA forms a hexameric lattice composed of about 1500 copies of CA 

that help make up the conical core around the viral RNA[1, 2]. The NC forms a stable 

complex with the viral RNA for protection. All of the above mentioned structural 

proteins facilitate early events during infection. 

 In addition to structural proteins, HIV-1 also encodes regulatory proteins (Tat and 

Rev) and accessory proteins (Vpu, Vpr, Vif, and Nef) that interact with the human host. 

Tat is a transcriptional transactivator expressed early in infection that recognizes a 



transactivator response element (TAR) in the 5’ hairpin structure of the viral RNA to 

begin complex formation for transcription initiation. Rev is an RNA binding protein that 

binds to the Rev response element (RRE) to regulate splicing and transport of viral RNA 

by allowing unspliced transcripts to move from the nucleus to the cytoplasm for 

translation and packaging of the virus. Vpu helps weaken interactions between viral 

glycoproteins and host cellular receptors to assist in virus escape. Vpr has been shown to 

facilitate the movement of the viral genome into the nucleus upon infection. Vif destroys 

host cellular proteins to increase production of infectious virions. Finally, Nef is thought 

to serve many purposes including: CD4 expression downregulation, perturbation of T cell 

activation, and infectivity enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1: HIV-1 structure and genome. A) Genomic organization of the HIV-1 

genome. B) Structural organization of an HIV-1 virion. Reprinted with permission from 

[3]. 

 

 

 

 

 

 

 

 



HIV-1 Life Cycle 

 Viral Entry 

 The HIV-1 envelope spikes, gp41 and gp120, initiate viral entry into CD4
+
 T cells 

or other immune cells expressing CD4 (macrophages and dendritic cells). A primary 

interaction between gp120 and CD4 promotes conformational changes that expose 

binding sites on gp120 for a second cell surface molecule known as chemokine receptor 5 

(CCR5) (Figure 2-step 1)[4]. Subsequently, the fusion peptide that is part of the gp41 N-

terminus is inserted into the host cell membrane to allow fusion between viral and 

cellular membranes (Figure 2-step 2). 

 Uncoating 

 Uncoating is the process by which the viral core, which houses the 

ribonucleoprotein (RNP) complex, begins to dissociate allowing the viral RNA to enter 

the cytoplasm of the host cell (Figure 2-step 3). The exact details of uncoating remain 

somewhat unclear in the field of HIV, however uncoating is essential for reverse 

transcription to occur. 

 Reverse Transcription and Integration 

 The viral enzyme, RT, converts viral RNA into cDNA using host nucleotides 

(Figure 2-step 4). Since RT has very little to no proofreading ability, many errors result 

from this process. The end result from reverse transcription is the pre-integration 

complex (PIC). The PIC has been shown to be associated with the viral proteins NC, MA, 

RT, IN, and Vpr[5-7].  



 The nascent viral DNA can then be carried into the host cells’ nucleus through the 

nuclear pore complex (NPC) (Figure 2-step 5). Viral CA has been demonstrated to be a 

key determinant in nuclear import of the viral PIC, suggesting a connection between 

uncoating and nuclear import[8]. In addition, several cellular proteins (Nup153, Nup358, 

and TNPO3) have been shown to interact with HIV-1 CA to facilitate nuclear import of 

the PIC[9-12].   

 The viral IN facilitates the joining of HIV DNA with host cell DNA forming an 

integrated provirus (Figure 2-step 6). IN does this by essentially nicking the DNA to 

allow for HIV-1 to insert itself, establishing life-long infection. The provirus may ‘hide’ 

and remain inactive (or latent) in the host cell genome for extended periods of time. 

 Transcription and Translation 

 The viral Tat protein is essential for successful transcription of the integrated 

provirus (Figure 2-step 7). Tat operates by recruiting host cellular factors such as RNA 

Pol II to the TAR element to facilitate transcription elongation. Once viral DNA is 

transcribed into mRNA, it is carried out of the nucleus by cellular proteins and the viral 

protein Rev (Figure 2-step 8). Short mRNAs can easily move out of the nucleus through 

the use of CRM-1, a host nuclear export protein, while longer mRNAs require Rev. 

These mRNAs then serve as templates for translation through the use of the host cell 

translation machinery (Figure 2-step 9).  

 Assembly and Budding 

 Viral proteins gather at the cell surface along with viral genome-length RNA for 

assembly of new viral particles (Figure 2-step 10). Particle budding, facilitated by the 



cellular endosomal sorting complex required for transport (ESCRT) machinery (Figure 2-

step 11), and release (Figure 2-step 12) is followed by maturation mediated by the viral 

protease (Figure 2-step 13) to create a new virion for infection to spread to other CD4
+
 T 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2: HIV-1 viral life cycle, antiretroviral therapeutics, and cellular restriction 

factors. Reprinted with permission from[4]. 

 

 

 

 

 

 

 

 

 



Antiretroviral therapeutic targets 

 The HIV-1 life cycle provides several points of intervention, however only four of 

the above-mentioned steps have been the targets of various drugs approved in the United 

States to administer to HIV positive individuals. Since the initiation of highly active 

antiretroviral therapy (HAART), morbidity and mortality accompanying HIV-1 infection 

and AIDS has dwindled[13]. HAART typically includes a combination of three drugs to 

suppress viral replication and reduce viral loads in the plasma to allow the immune 

system to rebuild[14-16]. The success of HAART results in part due to the diminished 

likelihood of choosing virus clones with several mutations and conferring resistance to a 

three-antiretroviral-drug regimen[17]. Nevertheless, as the virus continues to evolve and 

escape, novel HIV-1 treatments will continuously be desired. 

  There are currently twenty-four Food and Drug Administration (FDA)-approved 

drugs available that can be divided into six classes based on their mechanism of action: 

(1) nucleoside-analog reverse transcriptase inhibitors (NRTIs), (2) non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors, 

(5) fusion inhibitors, and (6) coreceptor antagonists[17]. The HAART regimen usually 

comprises an NRTI, NNRTI, and a protease inhibitor[4]. When only one of the viral 

proteins is targeted, the virus can simply attain mutations to acquire resistance to that 

drug. However, the use of combinational drug therapy targeting multiple viral proteins 

reduces the possibility that the virus will develop resistance. 

 Viral Entry and Fusion Inhibitors (Figure 2-Step 1 and 2)



 HIV-1 entry and fusion inhibitors work by inhibiting the interaction between 

envelope glycoproteins and the target cell. Crystallographic studies have suggested that 

upon CD4 receptor engagement, gp120 undergoes tremendous conformational 

modifications, and CD4 binds gp120 between the inner and outer domains in a conserved 

hydrophobic pocket[18]. Therefore, small molecule inhibitors that mimic CD4 and 

extend further into the conserved binding cavity on gp120 may increase the affinity for 

gp120 leading to the production of clinically suitable inhibitors[19].  

 Generally, antibodies against gp120 fail to neutralize HIV-1 and are strain 

specific. However, one group of researchers was able to redesign gp120 to disguise sites 

external to the CD4-binding site[20, 21]. Using this construct along with peripheral 

mononuclear cells from AIDS patients, Wu et al. isolated B cell clones that created 

antibodies capable of broad neutralizing activity by engaging the CD4-binding site. 

 Additionally, peptides derived from gp41 N- or C-terminal sequences that disrupt 

membrane fusion elicit antiviral activity[22, 23]. Enfuvirtide (Fuzeon) derived from the 

C-terminus has been approved for therapeutic use, however its use is restricted due to the 

requirement for multiple daily injections of the drug. Resistance mutations in gp41 have 

also limited the use of Fuzeon clinically. 

 Reverse Transcription Inhibitors (Figure 2-Step 4) 

 NRTIs and NNRTIs inhibit DNA polymerization and are a part of HAART. 

NRTIs mimic natural 2’-deoxyribonucleoside 5’-triphosphates (dNTPs) to become 

incorporated into the viral DNA by RT[4]. They act as chain terminators because NRTIs 

do not have the 3’-hydroxyl group required for successive nucleotide incorporation. 



Unfortunately, viral resistance to NRTIs is common. Thymidine analogues, such as 3’-

azido-3’-deoxythymidine (AZT), have allowed for mutant RTs to develop that acquired 

the capacity to eliminate the incorporated drug from the primer strand[24, 25].  

 NNRTIs act as allosteric inhibitors to induce conformational changes that form a 

flexible binding pocket in the RT active site[26, 27]. Drug binding likely arises as a result 

of interactions between aromatic side chains of Tyr181 and Tyr188 and the NNRTI, such 

as nevirapine[26]. Viral resistance has been associated with mutations that restrict the 

movement of Tyr188[4]. Newer NNRTIs, etravirine and rilpivirine, contain intrinsic 

flexibility that allows for high-affinity binding to the mutant RT that has evolved from 

first-generation NNRTIs[28]. 

 IN Strand Transfer Inhibitors (INSTIs) (Figure 2-Step 6) 

 Raltegravir is a clinically approved HIV-1 INSTI that inhibits DNA strand 

transfer activity[29]. INSTIs engage the bound metal ions in the IN active site to 

somewhat effect their positioning, and the halogenated benzyl groups of INSTIs interact 

with the viral DNA and IN to eject viral DNA from the active site[29, 30]. These types of 

inhibitors can also sterically prevent target DNA binding to the IN active site[31, 32].  

 Lentiviruses prefer to integrate within active genes because of an interaction 

between IN and LEDGF, a cellular chromatin-binding protein. Recently developed HIV-

1 IN inhibitors, known as LEDGINs, can mimic this interaction and impede protein-

protein binding[4, 33].  

 Protease Inhibitors (Figure 2-Step 13) 



PR inhibitors are competitive inhibitors because they can bind to the active site of 

PR and inhabit the inhibitor envelope[4]. These drugs are designed to bind explicitly 

within the PR binding groove and only make contact with residues absolutely required 

for PR function. The idea is that resistance mutations in the viral PR would be highly 

unfavorable because any mutation would abolish PR functional activity[4]. 

Cellular Restriction Factors of HIV-1 

 In addition to the clinically available drug therapies targeted at various steps of 

the viral life cycle, complex organisms have evolved a collection of dominant, 

constitutively expressed genes that suppress or block HIV-1 infection. These activities 

fall outside the established definitions of innate and adaptive immunity, but provide 

‘intrinsic immunity’ to allow effective defense from viral infection[34]. Restriction 

factors are largely responsible for this intrinsic immunity by acting as the front line of 

host defense against viral infection. The initial evidence of cellular restriction factors 

originates in mice when Friend virus susceptibility factor 1 (Fv1) was discovered as an 

inhibitor of murine leukemia virus (MLV)[35]. Eventually, similar activities were 

discovered in other mammals, including humans. In humans, restriction factor 1 (Ref1) 

was found to inhibit N-tropic MLV (N-MLV) infection in a manner very similar to Fv1-

mediated restriction of MLV in mice[36]. 

 A central idea to the biology of restriction factors is that HIV-1 usually escapes 

their strong inhibitory activities in human cells, thereby permitting virus replication to 

continue. In contrast, HIV-1 replication in nonhuman cells is generally limited by 

restriction factors, marking these proteins as vital elements to viral host range and cross-



species transmission[37]. Since their initial discovery, several restriction factors have 

been identified for HIV-1, such as TRIM5α, APOBEC3G, SAMHD1, and tetherin.  

 APOBEC3G (Figure 2-Step 4) 

 The discovery of Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-

like 3G (APOBEC3G or A3G) arose as a result of understanding the function of the viral 

protein Vif, which is required for HIV-1 replication in primary cells. Comparative 

transcriptomics revealed that the human gene APOBEC3G could suppress the replication 

of vif-deficient HIV-1[38]. A3G has cytidine deaminase activity that edits cytidines to 

uridines to manipulate the nucleotide sequence[37]. In the absence of Vif, A3G becomes 

packaged into nascent HIV-1 virions and is transported to new target cells by associating 

with the viral RTC to deaminate cytidine residues in newly synthesized viral cDNA, 

causing guanosine-to-adenosine hypermutation of the viral positive strand[39].  

 The molecular ‘arms race’ between virus and host allowed HIV-1, and other 

lentiviruses, to acquire Vif, which counteracts A3G activity by recruiting A3G for 

proteasomal degradation. This action results in the inability for A3G to be packaged into 

newly assembling virions. The species-specific regulation of A3G by HIV and simian 

immunodeficiency virus (SIV) Vif proteins is attributed to differences in amino acid 

sequence of human and African green monkey (AGM) A3G, thus permitting recognition 

by SIVAGM, but not HIV-1, Vif[40, 41]. It remains a challenge to tackle if disparity in 

APOBEC3 can impact the course of HIV-1 infection in humans, however some findings 

have proposed that higher levels of A3G, and the less potent APOBEC3F (A3F), 

expression are associated with medical advantages[40]. 



 SAMHD1 (Figure 2-Step 4) 

 The inhibition of HIV-1 infection in myeloid cells involves the cellular sterile 

alpha motif domain HD domain-containing protein 1 (SAMHD1)[42, 43]. SAMHD1 is 

highly expressed in myeloid-lineage monocytes, such as macrophages and dendritic cells. 

SAMHD1 limits viral replication by hydrolyzing and reducing intracellular dNTPs, 

which are essential for viral DNA synthesis[44]. Vpx and Vpr proteins of HIV-2 and SIV 

from macaques (SIVMAC) and African green monkeys (SIVAGM) have been shown to 

offset SAMHD1-mediated restriction of HIV-1 by targeting SAMHD1 for ubiquitin-

proteasome-dependent degradation[44-47]. HIV-1 does not contain a protein that can 

antagonize SAMHD1, however HIV-1 can still replicate, although less efficiently, due to 

the capacity of its RT to function under environments of low dNTP availability[44]. HIV-

1 stealthily and slowly replicates in non-cycling myeloid cells and sufficiently allows for 

further transmission to activated cells[48]. This covert replication might avoid 

recognition by the immune system. 

 Tetherin (Figure 2-Step 12) 

 Tetherin (also known as CD317 and BST2) was identified based on studies of the 

Vpu accessory protein. In the absence of Vpu, HIV-1 is sensitive to a tethering 

mechanism that traps nascent virions on the surface of infected cells and internalizes 

them into endosomes[49-51]. Tetherin is astonishingly tolerant of mutations, including 

replacement of entire tetherin domains with protein domains parallel in structure but not 

sequence[52]. Tetherin has also been found in virions suggesting that either or both 

membrane anchors are inserted into the lipid envelope of budding virions as they appear 



from infected cells. Additionally, tetherin colocalizes with virions on the cell surface[52-

56]. The tetherin antagonist, HIV-1 Vpu, lessens the level of tetherin at the cell surface 

by causing its internalization or delaying its advancement through the secretory 

pathway[51, 57, 58]. Studies have also shown that Vpu can decrease the overall steady-

state level of tetherin in cells when overexpressed[59]. The HIV-1 Vpu is species-specific 

in that it is unsuccessful against tetherins from other animals, such as monkeys[60, 61].  

 TRIM5α (Figure 2-Step 3) 

 TRIM5α is an ~500 amino acid protein that is in the tripartite motif (TRIM)-

containing family of proteins[37]. It restricts by acting, in a species-specific manner, on 

retroviral capsids following their entry into the cytoplasm. Generally, TRIM5α proteins 

weakly hinder retroviruses in the same host species but not other species. For example, 

human TRIM5α (TRIM5αhu) can inhibit N-MLV but not HIV-1, whereas TRIM5α from 

old world monkeys can inhibit HIV-1[62-65]. At its C-terminus, TRIM5α has a 

B30.2/SPRY domain that directly binds the retroviral capsid. Variable loops within the 

SPRY domain have been shown to be vital determinants of antiretroviral specificity, and 

even single amino acid substitutions in one of these segments of primate TRIM5α can 

modify the capability to identify HIV-1 and SIV strains[66-69]. Retrotransposition events 

have placed cyclophilin A (CypA) into the TRIM5 locus, replacing the SPRY domain, of 

owl monkeys creating TRIMCyp[70-72]. TRIMCyp also potently inhibits HIV-1 

infection through capsid binding and disruption[73-76].  

 Due to limited availability of experimental techniques to study the post entry 

phase of HIV-1 where TRIM5α acts, it remains poorly understood how TRIM5-mediated 



restriction occurs mechanistically. What is known is that TRIM5α directly binds 

incoming HIV-1 capsids within fifteen minutes after the virus enters the cell[66, 77]. 

TRIM5α forms hexameric crystalline arrays in the presence of a higher-order six-fold 

lattice of HIV-1 capsid[78]. This capsid-patterned oligomerization may trigger HIV-1 

restriction by rhesus TRIM5α (TRIM5αrh) through a pattern recognition mechanism[79]. 

TRIM5α 

 Protein Domains and their function 

 The human genome contains roughly seventy genes of the TRIM family[80-83]. 

Most TRIM proteins are defined by the presence of the tripartite motif: a really 

interesting new gene (RING) domain, one or two B-Box domains, and a coiled-coil (CC) 

domain[81]. The tripartite motif is highly conserved, so the functional differences 

amongst TRIM proteins can be accredited to their C-terminal domains. The most 

common C-terminal domain is the PRY/SPRY, or B30.2 domain[81]. A depiction of 

TRIM5αrh is shown in figure 3. 

 The RING domain is present at the N terminus of TRIM5α that contains a 

putative E3 ubiquitin ligase activity essential for TRIM5α autoubiquitination and HIV-1 

restriction[84]. The RING finger motif is a zinc-binding domain and defined by a 

distinctive linear sequence of conserved cysteine and histidine amino acids[85][84, 86]. 

Substitution of alanine for the conserved cysteine15 in the RING-finger domain to 

generate a C15A TRIM5α mutant depleted in vitro self-ubiquitination activity of 

TRIM5α[84, 87]. Removal of the RING domain has been shown to affect proteasome 

interactions by postponing the block in virus replication until after reverse transcription



has happened[88].   

 The B-box domain is another zinc-binding motif that occurs in two similar 

orientations (B-box 1 and B-box 2) except for a distinct pattern of cysteine and histidine 

residues[81]. TRIM5α only contains the B-box 2 domain, which is unique to members of 

the TRIM protein family[81]. The B-box 2 domains of numerous TRIM proteins, 

including TRIM5α, have been linked to protein-protein interactions, multimerization, and 

subcellular localization[89]. Disruption of TRIM5αrh or TRIM5αhu B-box 2 domain 

antagonizes the ability of these proteins to mediate retroviral restriction[66, 90, 91]. The 

B-box domain of TRIM5α promotes cooperative CA binding by mediating TRIM5α self-

association[89]. 

 The coiled-coil (CC) domain has been identified as important for the formation of 

homo-oligomers, which is essential for antiviral activity[92]. The CC domain is chiefly 

comprised of alpha helices and is necessary for the development of TRIM5 dimers, which 

form the building blocks for higher order assembly[81, 93]. Deletion of the CC region 

has also been shown to avoid stable binding of the retroviral CA protein[77]. 

 The C-terminal SPRY domain of TRIM5α plays a crucial role in retroviral 

restriction by identifying certain determinants in the retroviral capsid and directly binding 

the capsid[65]. The SPRY domain has three variable loops evolved to recognize specific 

sites in the retroviral capsid[67, 68, 94, 95]. This results in species-specific retroviral 

restriction. Yap et al. demonstrated that a single amino acid change in the SPRY domain 

of TRIM5αhu is sufficient to gain restriction of HIV-1 in a similar manner as TRIM5αr



Figure 3: Schematic representation of TRIM5αrh. (Above) Representation of the 

various domains of TRIM5αrh: the RING, BBox, coiled-coil (CC), and B30.2/SPRY with 

the indicated amino acid positioning of the Linker 2 (L2) region  (amino acids 234-296). 

A zoomed in portion of the L2 region (amino acids 263-278) represents the site of triple 

alanine mutagenesis. (Below) The abilities of the indicated WT or L2 mutants to elicit 

cytoplasmic body formation and mediate HIV-1 restriction. 

 

 

 

 

 

 

 



 Cytoplasmic Bodies and the Linker 2 Region 

 TRIM5α has been shown to localize to cytoplasmic growths of protein termed 

‘cytoplasmic bodies’[65, 96], which functionally, in terms of restriction, remain relatively 

unclear. Two previous studies have found that cytoplasmic body localization is not 

required for restriction[66, 97]. In contrast to these studies, Campbell et al. has observed 

that cytoplasmic bodies are dynamic, trafficking on microtubules, and form around 

individual HIV-1 virions in restricted cells[96, 98]. These studies would alternatively 

propose that cytoplasmic bodies are significant for interactions between TRIM5α and 

incoming retroviral capsids during restriction.  

 Sastri et al. utilized a variety of TRIM5α truncation mutants to locate regions 

required for cytoplasmic body localization[99]. From these studies the region between the 

CC and SPRY domains, the linker 2 (L2) region, were found to contain residues that 

mediate cytoplasmic body formation. Additionally, deletion of the L2 region of full-

length TRIM5αrh inhibited the formation of cytoplasmic bodies and HIV-1 

restriction[99]. Furthermore, as shown in figure 3, scanning alanine mutagenesis 

identified two segments of amino acids, KPK266-268AAA and RRV275-277AAA, in the 

L2 region that cause a diffuse localization of TRIM5α and are unable to restrict HIV-1 

compared to WT TRIM5αrh[99]. The other two mutants, TFH269-271AAA and 

HKN271-273AAA have recently been shown by our lab to form more cytoplasmic 

assemblies per cell than wild-type TRIM5αrh[100]. It appears that residues within the L2 

region facilitate self-association of TRIM5αrh, and this ability to self-associate is 

important for restriction. Indeed, previous studies have demonstrated that the L2 region 



affects the ability of TRIM5αrh to multimerize in biochemical crosslinking 

experiments[76, 90, 92, 101]. 

 Self-association of TRIM5α 

 Self-association of TRIM5α involves dimerization, higher-order multimerization, 

and assembly[78, 92, 101], all of which are necessary for retroviral restriction mediated 

by capsid recognition.  

 Initially, it was thought that TRIM5α forms trimers[101], however more recent 

studies suggest that dimerization is more likely[102]. These studies utilized a 

recombinant TRIM5αrh protein (TRIM5-21R) containing the RING domain from the 

related TRIM21 protein to demonstrate that chemically cross-linked dimeric TRIM5-21R 

bound HIV-1 CA-NC assemblies better than monomeric TRIM5-21R[102, 103]. This 

direct binding to retroviral capsid-like complexes occurred in the absence of other 

mammalian proteins. The CC domain is required for the formation of TRIM5α 

dimers[66, 81], contributing to the avidity of TRIM5α for the HIV-1 CA[62, 64, 70, 71, 

104]. Deletion of the TRIM5αrh CC disrupts the interaction with HIC-1 CA-NC 

assemblies and loses the ability to act as a restriction factor[77]. 

 The B-box 2 domain has been shown to promote higher order self-association 

between preformed TRIM5α dimers that is required for retroviral CA binding and 

restriction[76, 89-92, 102, 103, 105-107]. Indeed, it has been shown that mutations in the 

B-box 2 region of TRIMα decreased binding to HIV-1 CA suggesting that these 

modifications affect capsid recognition by positioning or conformation of the SPRY 

domain[106]. On the other hand, B-box 2 mutations in TRIMCyp abrogated HIV-1 



restriction and CA binding compared to wild-type TRIMCyp[106]. Furthermore, a 

recombinant protein containing the cyclophilin A domain from owl monkey TRIMCyp in 

place of the SPRY domain of TRIM5αrh was created to determine if CA recognition 

differences between TRIM5α and TRIMCyp was due to alterations between the 

TRIMdomains[106]. B-box 2 domain mutations were introduced into this chimeric 

protein however these did not affect the ability to bind HIV-1 CA-NC assemblies[106]. 

CypA has a higher affinity for the HIV-1 CA as compared to the SPRY domain, 

suggesting that the B-box 2 domain is required to increase the interaction between the 

SPRY domain of TRIM5αrh and HIV-1 CA. Additional studies have identified a 

hydrophobic patch on the B-box 2 domain, and changes in this patch or the flanking 

arginine 121 inactivated TRIM5αrh-mediated HIV-1 restriction[105]. The loss of 

restriction observed in this study was linked with higher-order self-association and HIV-1 

CA binding affinity. The RING domain has also been shown to be required for TRIM5α 

higher-order self-association; ∆RING-TRIM5αrh can form dimers but cannot self-

associate in co-immunoprecipitation assays with wild-type TRIM5αrh[108]. Additionally, 

the L2 region may contribute to the effectiveness of higher-order self-association since 

multiple L2 mutations were found to dimerize well but had diminished efficiencies in 

higher order association with wild-type TRIM5αrh[108]. The SPRY domain is not 

required for higher order self-association[89].  

 The role of CC and L2 regions in TRIM5α Assembly 

 The finding that scanning alanine mutagenesis of the L2 region of TRIM5α can 

increase or decrease assembly proposes that these mutations may be changing secondary 



structural elements. Our lab has recently demonstrated that the α-helical content of the L2 

region correlates to the ability to form cytoplasmic assemblies and restrict HIV-1[100]. 

The above-mentioned L2 mutations that displayed heightened cytoplasmic body 

formation compared to wild type had higher α-helical contents than wild type[100]. In 

contrast, mutations with decreased cytoplasmic body formation showed lower α-helical 

contents than wild type. These findings were based on Circular dichroism (CD) studies of 

both the CC and L2 regions. CD analysis utilizing synthetic peptides comprising only the 

L2 region did not reveal α-helical secondary structure except in the presence of 10% 

trifluoroethanol (TFE), which can stabilize α-helical structures, where the α-helical 

content of L2 peptides correlated with their ability to assemble and restrict infection, 

similarly to CCL2[100]. This implies that the L2 region of TRIM5αrh is not inherently α-

helical in the absence of the CC domain, proposing that the presence of the CC domain 

somehow stabilizes the helical content of the L2 region.  

 Further studies examining and assessing the L2 region α-helices in the context of 

a helical wheel diagram (Figure 4), demonstrated that the N-terminal region displays a 

distinct amphipathic α-helix with a hydrophobic face[100]. Indeed, the N-terminal 32 

amino acids of the L2 region comprise a primary sequence consistent with the existence 

of an amphipathic α-helix with a hydrophobic surface.  



Figure 4: Helical wheel diagram of residues 263-285 of the N-terminal region of L2 

on TRIM5αrh. This depiction illustrates two interfaces in the L2 region. One interface 

principally comprises positively and negatively charged amino acids. The second 

interface consists of uncharged polar and non-polar amino acids. The N-terminal region 

displays a distinct amphipathic α-helix with a hydrophobic interface. Hydrophobic 

residues are shown in green, acidic residues are shown in red, basic residues are shown in 

blue, and polar residues are shown in yellow[100].  

 

 

 



Proposed Models of TRIM5α Assembly 

 The Ganser-Pornillos Model (Figure 5) 

 Ganser-Pornillos et al. studied TRIM5 higher-order assembly using a TRIM5-21R 

chimeric protein where the RING domain of TRIM21 replaces the RING domain of 

TRIM5αrh because it effectively restricts HIV-1 replication and is simpler to purify than 

wild-type TRIM5α[78]. This chimera spontaneously assembled into two-dimensional 

hexagonal arrays corresponding in symmetry and magnitudes to retroviral capsids, and 

this lattice formation does not require the SPRY domain[78]. However, TRIM5-21R 

assembly did require protein dimerization mediated by the CC domain as well as the 

surface exposed residue Arg121 in the B-box 2 domain[78]. Based on these results, the 

author’s proposed a model for TRIM5α-mediated retroviral CA recognition that includes 

CA binding to the SPRY domain, TRIM5α dimerization, and assembly of a hexagonal 

lattice complementary to the CA lattice for avidity enhancement. Furthermore, this model 

proposes that the L2 regions of neighboring parallel dimers self-associate to organize 

TRIM5α assembly around the retroviral core.  

  

 

 

 

 

 



Figure 5: The Ganser-Pornillos model of TRIM5α assembly. Recombinant TRIM5-

21R spontaneously assembles into two-dimensional paracrystalline hexagonal lattices. 

Binding to hexagonal arrays of the HIV-1 CA lattice triggers this assembly. TRIM5-21R 

assembly does not require the SPRY domain, however, it does require an Arg121 residue 

in the B-box 2 domain as well as protein dimerization. Additionally, the L2 regions of 

neighboring parallel dimers self-associate to facilitate assembly around the HIV-1 core. 

Reprinted with permission from[78].



 The Sodroski Model (Figure 6) 

 Li et al. performed studies to further elucidate TRIM5α higher order self-

association. Utilizing co-immunoprecipitation (CO-IP) assays, preformed TRIM5 dimers 

were able to CO-IP with homologous dimers forming higher order complexes, however 

this result diminished when the RING or RING-L1 domains were deleted, suggesting that 

the RING domain is required for higher order assembly but not dimerization[108]. In 

addition, TRIM5 dimers were able to CO-IP with heterologous dimers of closely related 

TRIM proteins (TRIM6 and TRIM34) although these interactions were weaker than their 

initial studies solely examining interactions of homologous dimers implying that higher 

order assembly of TRIM5 is governed by determinants in TRIM5 dimers[108]. Similar 

results were obtained when examining the role of the B-box 2 domain on higher order 

self-association. Disruption of the CC domain or elimination of the L2 region abolished 

TRIM5 higher order complex formation, which would support the idea that the formation 

of dimers must occur for further TRIM5 self-association[108]. Notably, Li et al. revealed 

that the SPRY domain of TRIM5α is not required for higher order complex formation as 

deletion of the SPRY domain had only very minimal effects on higher order assembly. In 

contrast, deletion or alteration of residues in the L2 region proximal to the CC domain 

elicited efficient dimerization but not higher order assembly of TRIM5αrh[108]. The 

author’s proposed a model suggesting that TRIM5 dimers, oriented in a parallel manner, 

form higher order complexes through RING and B-box 2 interactions at one end of the 

dimer and L2 regions at the other end of the dimer. The model suggests that TRIM5 

forms a trimer of dimers that would allow for the formation of hexagonal arrays. 



Figure 6: The Sodroski model of TRIM5α assembly. This model proposes that 

TRIM5α forms trimeric associations with parallel symmetry. Higher order self-

association appears to be mediated by interactions between the RING (yellow) and B-box 

2 (red) domains at one end of the dimer, and the L2 (green) region facilitates the 

formation of higher order complexes at the other end of the dimer. The SPRY (orange) 

domain appears dispensable for higher order self-association. The CC domain is shown in 

blue as a parallel dimer. Adapted from[100]. 

 

 

 

 

 

 

 

  



 The Sanchez et al. Model (Figure 7) 

 Despite the findings mentioned above, the molecular details of TRIM 

oligomerization and high-order assembly are still poorly understood. A recent report by 

Sanchez et al. utilized biochemical and crystallographic analysis to determine that 

TRIM25 forms an elongated antiparallel dimer[109], in contrast to the model proposed 

by Ganser-pornillos et al. Human TRIM25 was used since it doesn’t tend to form high-

order assemblies, allowing for simpler use in biochemical assays. Crystallographic 

analysis of the TRIM25 CC domain and N-terminal half of the L2 region allowed 

visualization of a symmetrical dimer folding back into a hairpin configuration, in which 

the L2 region folds back and packs against alpha helix in the CC domain[109]. CC 

residues appeared to form a long arm of each subunit, indicated as helix H1, while the L2 

residues appeared to form a short arm (containing helix H2 and H3) where H3 packs 

against an amphipathic platform formed by dimeric H1 interactions creating a 4-helix 

bundle[109].  

 Sanchez et al. also analyzed secondary structures across TRIM family members 

and determined that the presumed CC domains are fixed within an adjoining helix 

roughly 110 residues in length throughout the TRIM protein family, suggesting that the 

dimeric CC domain structure of other TRIM proteins (including TRIM5α) is conserved. 

Structural comparisons between TRIM5α and TRIM25 through disulfide crosslinking 

experiments determined that these two proteins have similar dimer constructions[109]. 

Through the experiments performed by Sanchez et al., it appears that each side of the 

TRIM5α hexagon is one CC dimer implying that the threefold symmetry of the hexagon 



resembles the RING and B-box 2 domains, and the twofold symmetry of the hexagon 

corresponds to the SPRY domain[109]. These data suggest that the L2 region may 

stimulate the formation of cytoplasmic bodies and restriction by a previously 

unacknowledged mechanism.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7: The Sanchez et al. model of TRIM5α assembly. Two potential arrangements 

of domain connectivity at the three-fold axes of the TRIM5α hexagonal lattice as 

observed by the TRIM25 crystal structure. (A) Three dimers with loops (magenta) 

connect the CC helices (green) and L2 (gray) by a fold-back mechanism. (B) Three 

dimers where the adjacent subunits have swapped their short arms. RING and B-box 

domains are not pictured. Reprinted with permission from[109]. 

 

 

 

 

 

 



Hypothesis 

 Proposed models of TRIM5α assembly, while speculative in nature, insinuate that 

the L2 region increases self-association and capsid binding. Our lab sought out 

conceivable mechanisms by which the L2 region might position the domains of 

TRIM5αrh. We hypothesized that if the L2 region does not contribute to TRIM5αrh self-

association, then the Bbox2 domain must contribute all of the self-association activity of 

TRIM5α, and the only way in which a hexagonal assembly is intuitively possible in this 

case is in the setting of an antiparallel dimer[100]. We envisioned that the amphipathic 

helix in the N-terminal portion of the L2 region might fold back onto itself to form 

favorable interactions with other hydrophobic residues in the L2 region[100]. 

Biochemical cross-linking and fluorescence resonance energy transfer (FRET) analysis 

were utilized to distinguish between established models of TRIM5α assembly. 
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CHAPTER II 

MATERIALS AND METHODS 

Plasmids 

 The wild type TRIM5αrh plasmid was a kind gift from Dr. Joseph Sodroski 

(Harvard school of Public Health). Polymerase chain reaction (PCR) utilizing primers 

specific for the CCL2 region, and the PCR product was digested with BamHI and XhoI to 

insert into pECFP-N1, pECFP-C1, pEYFP-N1, pEYFP-C1 (Clontech), which were also 

digested with BamHI and XhoI (Figure 8). The resulting constructs included: YFP-

CCL2, CCL2-YFP, CFP-CCL2, and CCL2-CFP (Figure 13). A similar approach was 

taken in order to generate the CFP and YFP fused to the CC or L2 regions alone. All 

constructs were verified by sequencing and western blot to confirm expression of YFP 

and CFP. 

Clone Vector Enzymes 

YFP-CCL2 pEYFP-C1 BamHI/XhoI 

CFP-CCL2 pECFP-C1 BamHI/XhoI 

CCL2-YFP pEYFP-N1 BamHI/XhoI 

CCL2-CFP pECFP-N1 BamHI/XhoI 

 

Figure 8: Plasmid Cloning for FRET.  

Western blotting 

 Cell lysates from transfected 293Ts were prepared by lysing cells in 1X NP-40 

lysis buffer containing a protease inhibitor cocktail (PIC) on ice for 15 minutes. This was 
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followed by the addition of sodium dodecyl sulfate (SDS, final concentration of 1X SDS 

and boiling of samples at 100°C for 10 minutes to allow for protein denaturation. 

Equivalent amounts of protein were loaded onto a 10% polyacrylamide gel and subjected 

to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) at 100V. Subsequently, proteins 

were transferred onto nitrocellulose membranes and probed with an anti-GFP primary 

antibody and an IgG horseradish peroxidase (HRP) secondary antibody. Western blots 

were identified using SuperSignal West Femto chemiluminescent substrate and a BioRad 

Chemidoc system[100]. 

Coomassie Staining 

 Purified protein samples were prepared by adding 2X SDS (for a final 

concentration of 1X SDS) and boiled at 100°C for 10 min. Equivalent amounts of protein 

were loaded onto a 10% polyacrylamide gel and subjected to SDS-PAGE at 100V. 

Afterwards, gels were fixed in a colloidal Coomassie fixative (45% methanol and 1% 

acetic acid in Milli Q water) for 1 hour and exposed to Coomassie stain (170 g 

ammonium sulfate, 1 g Coomassie G250, 0.5% acetic acid, and 34% methanol in Milli Q 

water) overnight. The following day, gels were washed with deionized water to remove 

excess stain and imaged with a BioRad Chemidoc system[100]. 

Glutaraldehyde Crosslinking 

 Cell lysates from transfected 293Ts were prepared by adding 100 µl of 1X lysis 

buffer + PIC to each sample and incubated on ice for 30 minutes. The samples were then 

spun down at 3,000 rpm for 1 minute to eliminate cellular debris and divided into 20 µl 

aliquots for cross-linking. Lysates were incubated with 0, 1, 2, and 4 mM glutaraldehyde
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 at room temperature for 5 minutes followed by saturation through the adding 2 µl of 1 M 

glycine to each sample (including samples that did not contain glutaraldehyde). Then, 20 

µl of 2X-SDS was added to each sample and boiled at 100°C for 10 minutes. The cross-

linked proteins were then loaded onto 4%-to-15% gradient Tris-HCl gels for SDS-PAGE 

and western blot analysis as described above. Purified proteins were treated in a similar 

manner but without 1X lysis buffer + PIC, and Coomassie staining was used instead of 

western blot analysis[100].  

Fluorescence Resonance Energy Transfer (FRET) 

 Human embryonic kidney 293T cells were split into DeltaT dishes at 50% 

confluency and transfected, utilizing polyethylenimine (PEI), with 375ng total of YFP- or 

CFP-tagged CCL2 TRIM5αrh in various combinations (discussed later). After 24 hours, 

FRET efficiency (E) was measured with a DeltaVision microscope equipped with a 

CoolSNAP HQ digital camera using a 60x objective lens.  FRET efficiency was 

calculated by analyzing forty or more individual regions for each FRET pair using the 

following equation: 

                                                      E = IDA – a (IAA) – d (IDD) 

      IDA – a (IAA) + (G-d)(IDD) 

where IDD is the intensity of fluorescence emission detected in the donor channel (470/30 

nm) with 438/10 nm excitation; IAA is the intensity of fluorescence emission detected in 

the acceptor channel with 559/27 nm emission and 513/12 nm excitation; IDA is the 
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intensity of fluorescence emission detected in the “FRET” channel with 559/27 nm 

emission and 438/10 nm excitation. The “a” and “d” cross-talk coefficients were 

determined from acceptor-only or donor-only samples, respectively. The crosstalk 

coefficients were calculated utilizing the following equations:  

a = IDA 

      IAA 

 

d = IDA 

      IDD 

We obtained a “d” value of 0.393 for CFP and an “a” value of 0.275 for YFP. G was 

calculated using a construct generously provided by Dr. Seth Robia, which contains 5 

glycines flanked by CFP and YFP. YFP was progressively photo bleached while 

measuring the increase in CFP intensity. Once YFP was completely photo bleached, we 

measured the amount of donor recovery and determined G as the ratio of sensitized 

emission to the corresponding amount of donor recovery, which was 3.02[100].
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CHAPTER III 

RESULTS 

Mutations in the L2 region that enhance the formation of cytoplasmic assemblies 

and HIV-1 restriction do not affect TRIM5α self-association 

 Previous data generated by Ganser-Pornillos et al. have revealed that TRIM5α 

assembles into 2-dimensional hexagonal arrays as described above[78]. However, the 

orientation of TRIM5α dimers in these hexagonal arrays remains poorly understood. 

Various models of TRIM5α assembly, illustrated in figure 9 (left and middle), suggest 

that the dimers are oriented in a parallel fashion. These models further suggest that the L2 

regions of TRIM5α dimers make contact with the L2 regions of opposing TRIM5α 

dimers in a manner that could enhance assembly by mediating the self-association of 

TRIM5α dimers. These findings along with our previous data, led us to hypothesize that 

mutations in the L2 region that enhance or reduce assembly would also affect the 

capability of TRIM5αrh to self-associate. To test this hypothesis, we utilized biochemical 

cross-linking experiments to measure the self-association of TRIM5αrh dimers and 

determine if the L2 region can mediate self-association in vitro.  Both purified CCL2 

peptide and CCL2 YFP or CFP fusion proteins were utilized in these experiments. 

 At low concentrations of glutaraldehyde (1 mM), a dimer was readily detectable 

with the CCL2 peptide (Figure 10). The dimer was also detected with TFH-AAA CCL2, 

RRV-AAA CCL2, and HKN-AAA CCL2 peptides and displayed striking similarities to 



WT CCL2 peptide (Figure 10), suggesting that the ability of L2 to facilitate CC 

dimerization and the ability of L2 to affect TRIM5αrh assembly are fundamentally 

independent of each other. As increasing concentrations of glutaraldehyde were used (2 

and 4 mM), a laddering pattern emerged, consistent with nonspecific cross-linking of 

TRIM5α proteins. In all cases, and at all concentrations, we did not visualize any 

development of the tetrameric and hexameric species that would be suggestive of 

intrinsic self-association of CCL2 dimers[78, 108].  

 We also performed similar experiments with CCL2 fused to YFP, as described in 

the materials and methods. Here, we transfected 293T cells with the various constructs, 

collected the cell lysates, and subjected them to cross-linking experiments for western 

blot analysis. The CCL2 fusion proteins were cross-linked into a dimeric form in the 

presence of glutaraldehyde, similarly to recombinant CCL2 peptide experiments 

mentioned above (Figure 11).  

Furthermore, we assessed the ability of L2 to facilitate self-association in the presence or 

absence of the CC domain. Again, this was done by cloning CC and L2 fragments alone 

into a YFP vector and subjected to glutaraldehyde cross-linking experiments. These 

experiments did not reveal any self-association activity of the L2 region alone, and no 

dimerization of the CC domain alone was visualized at any concentration of 

glutaraldehyde used (Figure 11). Therefore, it seems that the L2 region is not capable of 

intrinsic self-association, but it does seem to influence the ability of the CC region to 

dimerize. However, the ability of L2 to influence CC dimerization appears independent 

from its ability to affect assembly, since mutations previously described to affect 



assembly of TRIM5αrh formed dimers and higher-order multimers in cells. These data 

suggest that the L2 region is imperative for CC-mediated dimerization, which has also 

been demonstrated in previous studies[101]. 

 In data generated previously in our lab, the RRV-AAA L2 mutant, which is 

unable to form cytoplasmic assemblies or restrict HIV-1, was shown to bind to in vitro-

assembled HIV-1 capsids as efficiently as WT[100]. This proposes that the L2 region 

does not directly increase the self-association properties of TRIM5αrh essential for capsid 

binding, implying that the L2 region does not directly contribute to the self-association of 

TRIM5αrh dimers[100].



Figure 9: Published models of TRIM5 assembly. The various models of TRIM5α 
assembly are color-coordinated with the illustrated domain organization of TRIM5α. 

(Left) The Ganser-Pornillos model suggesting a parallel dimer assembly where the L2 

regions of opposing dimers make direct contact. (Middle) The Li and Sodroski model 

also suggesting a parallel dimer assembly, however this model suggests the formation of 

a trimer of dimers. (Right) The Sanchez et al. model suggesting antiparallel dimer 

assembly where the L2 region folds back on itself to form favorable interactions between 

the amphipathic helix at the N-terminus of the L2 region and hydrophobic residues 

further downstream in the L2 region[100]. 



 

Figure 10: L2 mutations that enhance TRIM5αrh assembly and HIV-1 restriction do 

not affect the ability of TRIM5αrh to self-associate. The indicated CCL2 peptides were 

cross-linked at room temperature by using increasing amounts of glutaraldehyde for 5 

min. The glutaraldehyde was saturated by the addition of 1 M glycine, and cross-linked 

peptides were visualized by SDS-PAGE and Coomassie staining[100]. 

 

 



 

Figure 11: The L2 region influences the ability of the CC domain to dimerize. 293T 

cells were transfected with the indicated constructs and cell lysates were cross-linked in 

the presence of increasing concentrations of glutaraldehyde. The samples were then 

saturated with 1 M glycine and subjected to SDS-PAGE and western blot analysis using 

an anti-GFP primary antibody and IgG-HRP secondary antibody. 
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CHAPTER IV 

RESULTS 

FRET analysis reveals that TRIM5α forms antiparallel dimers 

 Consistent with our previous findings that demonstrate that the L2 region does not 

directly affect self-association of TRIM5α dimers, a recent study by Sanchez et al. 

reported the crystal structure of the TRIM25 CCL2 domain, which revealed that TRIM25 

forms an elongated antiparallel dimer in which the L2 regions fold back along the helix 

of the CC dimer[109]. Additionally, structural and biochemical data have revealed that 

the CC domain and L2 region of both TRIM25 and TRIM5α form comparable 

structures[109]. We therefore tested the possibility that the CCL2 fragments of TRIM5αrh 

similarly form antiparallel dimers (Figure 9, right) using FRET analysis. 

 FRET efficiency measurements are utilized to determine if two fluorophores are 

within a certain distance of each other. In order for these types of experiments to be valid, 

the distance between fluorophores must be smaller than 10 nm. A general depiction of 

how FRET operates is shown in figure 12[110]. The basic phenomenon of FRET is that a 

donor group is excited at a specific wavelength (unable to excite the acceptor) and 

absorbs the energy from this excitation. If the acceptor group is less than 10 nm away 

from the donor, then the energy from the donor will be transferred to the acceptor. This 

energy transfer leads to decreased donor fluorescence intensity and increased acceptor 



emission fluorescence intensity. In order energy transfer to occur, the excitation 

wavelength spectrum of the acceptor group should overlap the emission wavelength 

spectrum of the acceptor group. The most commonly used fluorescent protein FRET pair 

is cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) since the CFP 

emission spectrum significantly overlaps the YFP excitation spectrum, supporting a 

strong FRET interaction. 



Figure 12: A general depiction of the molecular FRET mechanism. Two proteins (X 

and Y) are fused to YFP and CFP. The donor (CFP) is excited at the appropriate 

wavelength, and if the acceptor (YFP) is in close enough proximity, measurable energy 

will be transferred from donor to acceptor causing an increase in FRET efficiency. 

Reprinted with permission from[110]. 

 

 

 

 



 To distinguish between the various models of TRIM5α assembly, we created 

CCL2 fusions to fluorescent YFP and CFP FRET pairs shown in figure 13. Both N- and 

C- terminal CFP and YFP fusions to CCL2 were generated since FRET efficiency 

displays a sixth-order dependence on the separation distance between fluorophores. By 

producing all four possible CCL2 fluorescent protein constructs (YFP-CCL2, CFP-

CCL2, CCL2-YFP, and CCL2-CFP) we were able to investigate the relative orientation 

of fluorophores in CCL2 dimers using ensemble FRET measured in 293T cells 

transfected with various combinations of CCL2 CFP and YFP FRET pairs. The FRET 

efficiency was then calculated, as described in materials and methods, and compared 

amongst the various combinations of CCL2 YFP/CFP FRET pairs to differentiate 

between parallel and antiparallel dimer orientations of the CCL2 domain from TRIM5αrh. 

 A schematic of the projected FRET efficiencies based on proposed models of 

TRIM5α dimerization is illustrated in figure 14. In the case of a CCL2 parallel dimer, the 

expected highest FRET efficiency would occur in the presence of CFP-CCL2 and YFP-

CCL2, and the expected lowest FRET efficiency would occur in the presence of CCL2-

CFP and YFP-CCL2. However, if CCL2 forms an antiparallel dimer, the highest FRET 

efficiency would occur in the presence of CCL2-CFP and CCL2-YFP, and the lowest 

FRET efficiency would occur in the presence of CFP-CCL2 and YFP-CCL2.  

 



Figure 13: Schematic of constructs generated for FRET analysis. Constructs 

containing N-terminal and C-terminal YFP and CFP fused to CCL2 of TRIM5αrh were 

created. The generation of all four conceivable constructs allowed us to differentiate 

between possible CCL2 domain orientations through analyses of all combinations of 

FRET pairs[100]. 

 

 

 



 

Figure 14: Expected FRET efficiencies based on the proposed models of TRIM5α. 

(Left) A parallel dimer orientation, as proposed in the Ganser-Pornillos and Sodroski 

model of TRIM5α, would be expected to give the highest FRET efficiency when CFP 

and YFP FRET pairs are on the N-terminus of the CCL2 domain and the lowest FRET 

efficiency when CFP and YFP are on the N- and C-terminus. (Right) An antiparallel 

dimer orientation, as proposed by Sanchez et al., would be expected to give the highest 

FRET efficiency when CFP and YFP FRET pairs are on the C-terminus of the CCL2 

domain and the lowest FRET efficiency when CFP and YFP are on the N-terminus[100]. 



 When the FRET efficiencies of all possible CCL2 CFP/YFP FRET pairs were 

compared, they suggested a pattern consistent with an antiparallel dimer that has been 

previously described for TRIM25[100, 109]. The calculated FRET efficiencies are shown 

in figure 16. At about 20%, the highest FRET efficiency corresponded to an orientation 

where both fluorophores were at the C-terminus of CCL2 (CCL2-CFP and CCL2-

YFP)[100]. In contrast, the lowest FRET efficiency (at about 2%) was observed when 

both fluorophores were at the N-terminus of CCL2 (CFP-CCL2 and YFP-CCL2)[100]. 

An intermediate FRET efficiency (5-10%) was revealed when fluorophores were at 

opposite ends of CCL2 (CCL2-YFP/CFP-CCL2 or CCL2-CFP/YFP-CCL2)[100]. These 

data are consistent with the expected FRET efficiency pattern of an antiparallel dimer 

illustrated in figure 14. If a parallel dimer were predominant, then we would have 

expected to see the highest FRET efficiency in the presence of the N-terminal fusions to 

CFP and YFP. However, this was not observed suggesting that the CCL2 dimer has 

antiparallel symmetry allowing the L2 region to fold back down the CC helix giving the 

closest FRET pair configuration and, therefore, FRET efficiency[100]. 

 

 

 

 

 

 



Figure 15: Representative Images from FRET Experiments. Human embryonic 

kidney 293T cells were split into DeltaT dishes at 50% confluency and transfected, 

utilizing polyethylenimine (PEI), with 375ng total of YFP- or CFP-tagged CCL2 

TRIM5αrh in various combinations. After 24 hours, FRET efficiency (E) was measured 

with a DeltaVision microscope equipped with a CoolSNAP HQ digital camera using a 

60x objective lens.  FRET efficiency was calculated by analyzing forty or more 

individual regions for each FRET pair. The scale bars are shown in the first row.



Figure 16: FRET analysis reveals that TRIM5α forms antiparallel dimers. The 

indicated combinations of CCL2 FRET pairs were transfected into 293T cells, and 

ensemble FRET efficiency was measured at 24 hours post-transfection. At least forty 

different regions were analyzed for each FRET pair to determine the fluorescence 

intensity of the donor, acceptor, and FRET channels. A P value of less than 0.001 was 

determined*. Results are representative of three independent experiments.[100]. 
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CHAPTER V 

DISCUSSION 

 The FRET experiments described above support the observation that TRIM 

proteins, specifically TRIM5αrh, form antiparallel dimers. Based on our studies and the 

studies performed by Sanchez et al. we developed a homology model of the CCL2 

fragment of TRIM5αrh utilizing the recently reported structure of the TRIM25 CCL2 

dimer. As illustrated in figure 17, our molecular modeling of the CCL2 region reveals 

intramolecular contacts critical for assembly and restriction[100]. Sanchez et al. 

described three helices (H1, H2, and H3) in the L2 region: 

 Helix 1: H1 covers the complete CC domain and a small portion of the L2 region. 

 This appears to form the ‘long arm’ of each CCL2 subunit. 

 Helix 2: H2 interacts with H1 to create a hairpin or ‘kink’ in the L2 region that 

 mediates the folding back of the L2 region onto the long arm of the CCL2 dimer. 

 Helix 3: H3 docks against H1 of the CC domain to form a 4-helix bundle. H2 and 

 H3 appear to form the ‘short arm’ of each CCL2 subunit. 

Similarly, our homology model indicates the presence of three α-helices in the L2 region 

of TRIM5αrh that partake in important interactions in the antiparallel dimer (see figure 

17). Mutations that abrogate assembly and restriction (KPK266-268AAA and RRV275-

277AAA) are shown in figure 17 in red, while mutations that enhance assembly and 

 



increase restriction (TFH269-271AAA and HKN271-273AAA) are depicted in green. 

Our biochemical cross-linking studies of purified recombinant WT CCL2 and the L2 

variants showed no differences in dimerization, and none of the four peptides produced 

any species higher than a dimer (Figure 10). Additionally, cross-linking of just the L2 

region or CC domain alone abolished dimerization (Figure 11). Interestingly, CD analysis 

of the L2 region alone, performed previously in our lab, revealed that the L2 region is 

disordered. Collectively, these data propose that the abilities of residues within the L2 

region to facilitate CC domain dimerization and affect higher order self-association of 

TRIM5αrh are fundamentally independent.  

We believe that restriction and assembly mediated by TRIMαrh essentially 

depends on H3 docking to H1 of the CC domain to form a 4-helix bundle. This is 

supported by previous studies in our lab that revealed that the TFH and HKN mutations 

display increased α-helical content in CCL2 dimers, while the RRV mutation had 

decreased α-helical content[100]. Our studies looking at the dynamics of the RRV mutant 

compared to the WT CCL2 dimer suggest that H3 is stabilized by interaction of the RRV 

motif with H1[100].    

 These data support our idea that there are three separate aspects of TRIM5αrh self-

association: 

Dimerization: An antiparallel dimer is the basic unit of TRIM5α self-association. 

Formation is governed by interactions in the  center of H1 of the CC domain 

(forming an amphipathic platform) and also by some elements of the L2 region.  



This is supported by our inability to visualize dimeric species when just the CC 

domain or L2 region alone are cross-linked 

Higher order self-association: This component of TRIM5αrh self-association is 

facilitated by the B-box 2 domain. This is consistent with structural studies 

performed by Sanchez et al. along with our FRET analysis revealing that TRIM 

proteins form antiparallel dimers[100, 109] because, in the context of an 

antiparallel dimer, the only way to promote development of higher order 

complexes of TRIM5αrh required for assembly of a hexameric lattice is if the B-

box 2 domain is situated at either end of the antiparallel dimer. Our observation 

that L2 mutations do not alter higher order self-association in cross-linking 

experiments further support this notion[100]. 

Assembly: Assembly is mediated by C-terminal elements in the L2 region, which 

could have an influence on proper spacing of SPRY domains to recognize the 

HIV-1 core. Indeed, Ganser-Pornillos et al. and Sanchez et al. have previously 

suggested this idea. Previous data published from our lab further supports this by 

showing that alterations of the L2 region affected assembly without affecting 

capsid binding[99, 100]. These data suggest that the L2 region has a previously 

unappreciated step in assembly of TRIM5αrh prior to binding the HIV-1 

capsid[100]. 

Shortly after we published our findings that the L2 region contains determinants 

important for antiparallel dimer formation and assembly, a study by Goldstone et al. was 

published showing that TRIM5α forms an antiparallel dimer that permits binding to the



HIV-1 capsid lattice[111]. Their group determined the crystal structure of the B-box2 and 

CC domain displaying the elongated antiparallel dimers of CC domains. As previously 

hypothesized, the crystal structure reveals that the B-box2 domains can be positioned at 

either end of the CC domain through interactions with a helix in the L2 region of the 

opposing monomer[111]. From these structural studies, Goldstone et al. concluded that 

the antiparallel symmetry of TRIM5α facilitate the proper positioning of N- and C- 

terminal domains, which promotes stable binding to the hexameric lattice of the HIV-1 

viral core. 

 Based on the studies performed by our lab, Sanchez et al. and Goldstone et al., it 

appears that the new ‘dogma’ of TRIM5α self-association is in the context of an 

antiparallel dimer. This would argue against the models proposed by Ganser-Pornillos et 

al. and Li et al. described earlier. Continued studies are important in order to understand 

the molecular mechanism of L2-mediated self-association events, which may provide 

insight into the precise mechanism of TRIM5αrh-mediated HIV-1 capsid disassembly to 

allow for restriction process. 



Figure 17: Model of the TRIM5αrh CCL2 dimer. The CC domains are colored orange. 

The L2 regions are depicted in blue. Assembly- and HIV-1 restriction-disrupting 

mutations (as previously described) are shown in red. Assembly- and restriction-

enhancing mutations are illustrated in green. The three proposed helices, based off of 

studies performed by Sanchez et al., are also indicated. The opposing monomer is a 

lighter shade for simplicity[100]. 
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