
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

11-2006

Unit Testing Considered Useful
George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

Benjamin Gonzalez

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2006 George K. Thiruvathukal, Konstantin Läufer, and Benjamin Gonzalez

Recommended Citation
Thiruvathukal, George K.; Läufer, Konstantin; and Gonzalez, Benjamin. Unit Testing Considered Useful. , , : , 2006. Retrieved from
Loyola eCommons, Computer Science: Faculty Publications and Other Works, http://dx.doi.org/10.1109/MCSE.2006.124

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48603502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
http://dx.doi.org/10.1109/MCSE.2006.124
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

obvious reason that it’s awfully hard to rebuild a micro-
processor every time a bug pops up in the design stage—not
to mention the enormous headaches such bugs generate on
the software side. To that end, programmers use hardware
design languages such as the VHSIC Hardware Description
Language (VHDL) for field-programmable gate arrays
(FPGAs) and very large-scale integration (VLSI).

VHDL’s key advantage for system design is that it lets de-
velopers describe (model) and verify (simulate) system be-
havior before synthesis tools translate the design into real
hardware (gates and wires). If only software worked the
same way, the world would be a much better place. Instead,
users of virtually any operating system are the direct casu-
alties of the “unrecoverable application error” or the “un-
handled exception.” In such cases, a hexadecimal memory
address offers the only words of comfort, possibly with a tex-
tual explanation as well, although the address sometimes
makes more sense than the text.

Unfortunately, the scientific and engineering software
community is sometimes slow to adopt new development
ideas. This was especially true for object-oriented pro-
gramming (OOP), which is now used in several projects,
especially programming libraries. However, many compu-
tational efforts are still based on C or Fortran. Without
passing a value judgment—both can deliver great perfor-
mance—some aspects of programming in these languages
confound the notion of testing. The lack of a proper excep-
tion model, for example, means that error codes (often a
large list of them) are the mechanism for dealing with fail-
ure; this is okay for straightforward code, but it isn’t the stuff
of which good software engineering is accomplished.

In this installment of Scientific Programming, we’ll dis-
cuss the role of testing in the software development process

and examine ways to leverage automated unit testing in
your projects.

Testing’s Role in the
Software Development Process
Understanding a bit of history behind the software devel-
opment process can shed some light on why testing still isn’t
as prevalent today as it ought to be. In early software engi-
neering approaches, the model placed great emphasis on a
more or less sequential set of steps:

1. business requirements,
2. functional requirements,
3. detailed design,
4. coding/implementation,
5. testing, and
6. production (release).

(Incidentally, the IEEE has a recommended practice for
software requirements specifications, which appears to have
been updated as recently as 1998; http://ieeexplore.ieee.org/
xpl/tocresult.jsp?isNumber=15571.)

The process of constructing software per these early mod-
els was notoriously labor-intensive. In many real software
projects, teams got bogged down with the task of trying to
construct as complete a set of business requirements as pos-
sible. Once they understood the business requirements, they
had to map them to functional requirements. The team then
prepared a detailed design document, often based on the
technical expertise and technology preferences within the
company or organization, followed by coding and testing.
It might seem hard to believe that anyone would construct
a meaningful project this way, but the industry is replete
with complex software systems that still follow similar
processes—even for software written in modern languages
such as C# and Java.

Although we can’t blame these models for the lack of ad-
equate testing in most software applications, much of what
professional programmers learned from them over the years
might have conditioned them to think that testing comes at
the end. Even in the most enlightened organizations, test-

76 Copublished by the IEEE CS and the AIP 1521-9615/06/$20.00 © 2006 IEEE COMPUTING IN SCIENCE & ENGINEERING

UNIT TESTING CONSIDERED USEFUL

By George K. Thiruvathukal, Konstantin Läufer, and Benjamín González

T ESTING IS AN IMPORTANT PART OF AP-

PLICATION DEVELOPMENT. HARDWARE

ENGINEERS, IN PARTICULAR, HAVE A LONG

ESTABLISHED HISTORY OF TESTING FOR THE

Editors: George K. Thiruvathukal, gkt@cs.luc.edu

Konstantin Läufer, laufer@cs.luc.edu

S C I E N T I F I C P R O G R A M M I N G

NOVEMBER/DECEMBER 2006 77

ing teams conducted a few black-box tests prior to produc-
tion, but in the worst case, they left testing to the users, who
were more than happy to report “constructive” feedback af-
ter spending large sums of money.

In the mid-1990s, the dot-com bubble created pockets of
new thinking about the development life cycle. The Inter-
net not only made it possible to exchange information read-
ily and quickly, it also led to the notion of projects operating
on Internet time—a concept that’s even more prevalent to-
day with many people working on projects 24/7/365 (that is,
24 hours a day, seven days a week, 365 days a year) in mul-
tiple time zones. This sea change required a rethinking of
development processes in general because following a tra-
ditional life cycle could easily make even the most trivial of
projects take years to complete.

In the late 1990s, extreme programming (XP) explored
the seminal ideas for integrating requirements, coding, and
testing. Early proponents understood all too well that test-
ing and coding must go hand in hand to ensure that testing
actually happens. The deeper consequence of XP is that in-

tegrating the two can lead to a better understanding of re-
quirements and allow for the possibility of refining them on
the fly. Clearly, it’s a good idea to discover whether a subset
of requirements is feasible before writing a complete and
complex software system.

The Design Space
Before we dive into the technical aspects of testing, let’s take
a brief look at what we call the design space (www.faqs.org/
faqs/software-eng/testing-faq/).

Granularity defines the part of the system we want to test.
Typically, we distinguish among unit testing, which tests the
smallest compilable component (a unit) in isolation by re-
placing its dependencies with stubs; integration testing, which
applies to a complex component that comprises multiple
atomic components; and system testing, which applies to the
entire system. Note that if we view the whole system as a re-
cursively composed unit, we can take advantage of unit-
testing techniques at any level of granularity.

Transparency indicates the level of knowledge of a compo-

LÄUFER’S LOUNGE

myLife Beyond iLife?
In June 2002, when I got my first Apple (an original Power-
Book Titanium running OS X), I had
primarily been a Windows user at
home and work for several years. I
managed my digital life with Mi-
crosoft Outlook, which integrates per-
sonal information manager (PIM)
functionality including email, address
books, calendars, to-do lists, and
notes. I didn’t see it as a problem that
I was tied to a particular desktop for
everything but email because I spent
most of my time at my desk at home
anyway. Because I had used IMAP for
a long time, I could already access my
email from anywhere, and I used the
unison file synchronizer to mirror my
documents bidirectionally with the file
server at the office. To switch my digi-
tal life to the PowerBook for a minimal
transaction cost, all I had to do was
migrate all the information from the
Windows version to the OS X version of Outlook, and I was
all set—well, for a while, at least.

Migration to iLife
Then I noticed how the integration of the OS X address book

with the rest of the system, especially iChat and the built-in
fax functionality, was really nice. And Apple Mail looked and
felt much slicker than the corresponding modules in Outlook.
I decided to jump into the iLife style all the way. As I remem-
ber, it was easy enough, and Apple provides lots of help.

Moving my IMAP email accounts was
trivial, and Outlook exported all my
contacts as vCards in a way my new
address book could understand with-
out problems. I also managed to mi-
grate my Outlook calendar and to-do
list information to iCal. Again, I was all
set and things worked very smoothly,
especially with the ability to carry the
PowerBook around between home,
work, and anywhere else. I even had
all my photos and music with me all
the time, which is great for traveling
and visiting relatives.

Multiple Computers
Things changed in late 2004: I got an
iMac G5 at work and set up a Gentoo
Linux storage/media server with
desktop functionality at home. I now
needed a way to work productively on

any of my three machines. I didn’t consider a .Mac account for
keeping them in sync because I didn’t expect it to work with
the Linux box, which had become my main machine. Besides,
I was reluctant to pay a recurring fee for something that I

continued on p. 78

78 COMPUTING IN SCIENCE & ENGINEERING

nent’s implementation with which we design the test cases
for that component. Typically, behavioral (black-box) test-
ing assumes knowledge only of the component’s specifica-
tion or public interface; structural (white-box) testing
assumes full knowledge of the component’s implementation
and might try to achieve test-quality metrics such as code
coverage. In practice, test suites often fall between these two
extremes, giving rise to the term gray-box testing, in which
the behavioral test’s design is informed by knowledge of
some of the component’s structural aspects—for example,
its internal states.

Automation describes whether we do the testing manually
or automatically. A key insight that emerged along with
lightweight approaches such as XP is that testing is less likely
to occur if it’s tedious. Conversely, if testing is automatic and
takes only the press of a button, it’s much more likely to oc-
cur. Nevertheless, real users must conduct certain types of
testing, such as user acceptance testing (UAT).

Unit Testing by Example
Because most of the craze for unit testing started with JUnit
(www.junit.org), the Java-based unit-testing framework,
we’ll give examples here in Java. That said, JUnit’s ideas are
available in just about every other major programming lan-
guage, including C/C++ (http://check.sourceforge.net),
Python (native support as of Python 2.4), Ruby, and C#.
Perhaps most important, we can use unit testing without
having native support for OOP.

Let’s start by looking at the built-in Java library support
for the notion of an array-based list (known as Array-
List). An array list is more or less what you’d think it is—
an expandable list structure that has an underlying array
representation. The Java software development kit’s
(SDK’s) documentation provides a paragraph that explains
it concisely:

Each ArrayList instance has a capacity. The capacity is the
size of the array used to store the elements in the list. It is always
at least as large as the list size. As elements are added to an
ArrayList, its capacity grows automatically. The details of the
growth policy are not specified beyond the fact that adding an
element has constant amortized time cost.

So what would be involved in testing this class? The class
itself provides several methods (do a Web search on
“ArrayList” to see a sample), but we’ll focus here on just a
few of them for the purpose of writing unit tests:

• boolean add(Object o) appends the specified element
to the end of this list.

• void clear() removes all the elements from this list.
• Object get(int index) returns the element at the

specified position in this list.
• Object remove(int index) removes the element at the

specified position in this list.
• int size() returns the number of elements in this list.

S C I E N T I F I C P R O G R A M M I N G

could recreate via a combination of standard services. But be-
fore I found a solution, I accepted a position in academic ad-
ministration and became office-bound for a year and a half.

An Incomplete Migration to Linux
I once tried to migrate all my OS X PIM functionality to a
Linux equivalent such as KDE’s kontact (www.kontact.org)
or Gnome’s Evolution (www.gnome.org/projects/evolution),
but I ran into a few glitches. The worst is that the OS X ad-
dress book’s export functionality to vCard and other formats
is seriously broken (it has problems with foreign characters,
annotations, and so on). I could never get the information
out of my address book in a way that didn’t require a lot of
manual postprocessing, so I gave up. Migrating calendar
items from iCal was comparatively simple, but korganizer
(kontact’s calendaring module) kept crashing when it tried
to open calendar files from iCal.

Needing the PowerBook after All
Besides being quite incomplete, this state of affairs had other
shortcomings. For example, The photos on the Linux system
are organized in a way that’s incompatible with iPhoto, so

mirroring to the PowerBook doesn’t work, but simply keep-
ing the photos on the server and accessing them from the
PowerBook results in a huge lag when moving from one
photo to the next. Plus, what if I wanted to travel and take
my photos along? I’d still need them on the PowerBook. I
also found the user experience with Linux photo applica-
tions to be inferior to iPhoto, so I fell behind in keeping my
collection organized.

Then came the day we had a big party in our condo’s
hospitality room. I hadn’t played DJ for a while and wasn’t
keen on juggling lots of CDs, so I decided to use the Power-
Book as my principal music source. Because I organized my
music collection on the server, I had to migrate it back to the
PowerBook for the party, but things worked out really great.

What I learned from these two situations is that I need the
right tool for the job; otherwise, the job might not get done
promptly or at all. For the highest convenience and best ex-
perience, I prefer to keep my photos and music collections
organized on the PowerBook using iPhoto and iTunes and
back them up to the server. Furthermore, unlike Microsoft or
Linux, Apple has consistently delivered on a combination of
ergonomics and aesthetics that leads to a superior overall
user experience.

continued from p. 77

NOVEMBER/DECEMBER 2006 79

• Object[] toArray() returns an array
containing all the elements in this list in
the correct order.

Many more methods exist, but this selec-
tion captures the essence. As you’d ex-
pect, we can add or remove items from
the list; we can even clear out the entire
list by using a special (convenience)
method. We can also examine list state via
the get(int index), toArray(), or
size() methods.

The ArrayList class is a great example
for unit testing for two reasons:

• It’s easy to understand (virtually every
programmer knows it).

• Despite its simplicity, some interactions
can easily unveil bugs. A common mis-
take is when one method says something
different from another—for example, if
toArray() returns a different number of
elements than size().

So how do we test the ArrayList class?
Our goal is to have a sufficient number of test cases with
the hope that we test all the methods in one way or
another.

The first step to writing JUnit test cases is to create a sub-
class of TestCase. Figure 1 shows a boilerplate. The figure
also shows the test case’s basic anatomy:

import junit.framework.TestCase;

public class ArrayListTests extends TestCase {

public void testAdd() {

ArrayList<String> aList = new ArrayList<String>();

boolean result = aList.add(“A String”);

assertTrue(result);

Object[] arrayItems = aList.toArray();

assertEquals(1, arrayItems.length);

assertEquals(“A String”, arrayItems[0]);

}

public void testClear() {

// ...

}

/* and more */

}

Figure 1. Boilerplate of a JUnit test case. Our goal is to test all the methods
in one way or another, so the first step is to create a subclass of TestCase.

The Rest of the Migration
The remaining challenge was to restore the best possible
PIM functionality without getting tied to a particular com-
puter or needing a .Mac account.

The main showstopper continued to be the address book
export. I tried different settings and various tools purported to
help with this task, but nothing worked. Then I remembered
Plaxo (www.plaxo.com), an online address book that updates
itself when your contacts on the system change their informa-
tion. The basic Plaxo service is free; it has toolbars for syncing
with various PIMs, so I gave it a try—and it worked wonders!
Now I have my hundreds of contacts on the Web with the op-
tion to sync with desktop clients. Upon recommendation, I
switched to Gmail in June 2006, and I’m glad I did because of
Gmail’s superior organization, search, and spam control.
However, until it offers a proper import feature, I’m simply
keeping my old mail on our IMAP server at work.

George Thiruvathukal suggested that I try Google Calen-
dar, and I was happy to find that it imported all my iCal files.
I’m not currently using any centralized mechanism like the
one in Outlook for taking brief notes. Instead, I keep notes
on my Web site organized by content area and make them
public in certain cases. The only thing left to tackle was a

proper to-do list; I’m now using Toodledo (www.toodledo.
com) because it comes closest to my needs. I like to catego-
rize, prioritize, and date my to-do items, so I hope Google
soon adds an adequate service to its portfolio—preferably
with iCal import.

For writing longer documents, I was never much of a Mi-
crosoft Word fan because it forces you to work too much at
the visual level. For high-quality research papers, the gold
standard is still LaTeX, and for more than three years I’ve
used LyX (www.lyx.org), a graphical LaTeX front end that
follows the WYSIWYM paradigm (what you see is what you
mean). For most other writing, especially of the collaborative
type, I just started using Writely (www.writely.com), which
works extremely well. In fact, I used it to write this sidebar.
Writely is a prominent example of a new breed of slick Web
2.0 applications that make you feel like you’re using a local
desktop application, but it supports collaboration and keeps
your documents on their servers. A recent Red Herring article
(www.redherring.com/Article.aspx?a=18053) mentions 17
of these “MS Office killers,” including complete office suites
as well as single-purpose applications for presentations,
spreadsheets, and so on. I plan to evaluate some of them
very soon.

80 COMPUTING IN SCIENCE & ENGINEERING

• Each test case is a method that begins with the prefix
“test” and returns void (nothing). Newer versions of JUnit
don’t require this naming convention but do require some
knowledge of metadata. We’ll stick with the slightly older
syntax here (it’s still fully supported and works across dif-
ferent languages).

• Test-case creation requires us to derive the test class from
the TestCase base class. The JUnit framework will ex-
amine only classes that extend TestCase for test methods.

• Test cases aren’t guaranteed to be called in any particular or-
der, so we assume that each test is completely independent.

• The test cases can call any code in the language as long as
the appropriate library code has been imported (or
#included for our C++ readers).

Let’s take a close look at the testAdd() method. We’ll
focus just on its body:

public void testAdd() {

ArrayList<String> aList =

new ArrayList<String>();

boolean result = aList.add(“A String”);

assertTrue(result);

Object[] arrayItems = aList.toArray();

assertEquals(1, arrayItems.length);

assertEquals(“A String”, arrayItems[0]);

}

We can construct a test case simply by thinking about
what ought to happen. As we’ll see in later examples,
though, what ought to happen doesn’t always imply suc-
cess. For now, let’s assume that we’re talking about what
it means to add() an element to an array list under nor-
mal circumstances:

• The simplest case is to add an item to an empty list.
• Per the Java documentation, when an item is added using
add(), the result should also be true (meaning that the
ArrayList collection increased by one—that is, it went
from 0 to 1).

• One way of testing whether it was successful is to look at
the actual array of objects, which should have a length of
1; the only item in the array (at index 0) should be the item
we added.

Although this test case is simple, it shows what actually goes
into it.

The key to writing effective test cases is to understand

what should happen and then to make assertions along the
way. An assertion (a construct that comes from formal logic
systems) is a statement that must be true or else the entire
method (list of statements) is false. In practical terms, how-
ever, a false assertion really means that something we ex-
pected didn’t occur. The flaw could be in the test case, the
code under test, or both (which is very rare).

The testAdd() case is just one way of testing the add()
method. We can also test the add() method by using
size() and get(int index), which let us examine the
number of items in the list and an item at a particular posi-
tion, respectively:

public void testAddUsingSizeAndGet() {

ArrayList<String> aList =

new ArrayList<String>();

int aListSize = aList.size();

boolean result = aList.add(“A String”);

assertTrue(result);

assertEquals(aListSize + 1, aList.size());

assertEquals(“A String”, aList.get(0));

}

Now we see the art involved in testing. Here, we’re testing
the size() method results by looking at the size() before
and after an item is added to the list. You might be tempted
to check that the size() == 1 instead of size() == “the
old size” + 1. Although both are fine to a certain extent,
the example shown here doesn’t fully depend on the size()
method’s correctness. All we truly know about add() is that
the list size should increase by one from its old size. In addi-
tion, testing that the size() result increases by the number
of items added also allows us the possibility of creating a
stress test in which we add a huge number of items to the list.
Then we can just check every so often to see that the list has
the correct size.

So far, our basic examples have focused on testing the ex-
pected, but equally important is the need to test the unex-
pected. Let’s consider the following test to get() an item
from an empty list:

public void testGetFromEmptyList() {

ArrayList<String> aList =

new ArrayList<String>();

try {

aList.get(0);

fail(“an expected exception did not” +

“ occur”);

S C I E N T I F I C P R O G R A M M I N G

NOVEMBER/DECEMBER 2006 81

We’ve constructed an empty list here: when the test method
attempts to access an item from the list, it can’t possibly suc-
ceed, thus proving the power of unit testing and working
with a language that has true exception handling. If the ex-
ception isn’t generated, therefore leaving the catch block un-
executed, the code will continue through to the fail(),
which is another type of assertion method that guarantees
false. (In case you’re curious, no success() method exists
because success would have the effect of an NOP [no oper-
ation] when it comes to testing; it would be an assertion
that’s always true, meaning that test-case processing would
continue.)

It might not be obvious yet, but writing good test cases re-
quires imagination. As you start writing test cases, you start
learning more about how the class might be used because
you use it yourself. We believe testing isn’t just a part of un-
derstanding requirements and creating reliable software—
it’s also a key ingredient in creating usable software.

How to Run Test Cases
The JUnit framework provides a TestSuite class for run-
ning multiple test cases together. For each TestCase, you
can even choose which test methods should be included in
the suite. The framework also provides TestRunners for
textual and graphical user interfaces (see the “Can I Do this
Stuff in C/C++?” sidebar).

If you use Eclipse, you won’t have to worry about Test-
Suites or TestRunners because this functionality is built
into its JUnit support. To run all JUnit TestCases within a

package or file, simply right-click on the package or file in
the Package Explorer view and choose Run As > JUnit Test.
You can run all test cases in the project this way.

Eclipse shows test results in the JUnit view as a tree you can
drill down into. For each test method, you see three possible
outcomes: success (indicated by a green checkmark), failure
(indicated by a black x), or error (indicated by a red x). The
difference between the two is that failure indicates a failed
JUnit assertion: the test ran but didn’t pass, whereas error in-
dicates that some other exception occurred to preclude the
test from running properly. Figure 2, for example, shows a
NullPointerException in the testMultiplyBy method.

An Extended Example: Dimensional Analysis
Array lists are interesting, but they aren’t exactly a real and
meaningful application to CiSE readers. Recently, we’ve
been thinking about modern programming language design,
which has made significant progress in the past few decades
by introducing higher levels of abstraction for concepts
(such as OOP) and new refinements (such as aspect-oriented
programming [AOP]). However, something’s eerily unset-
tling about the way they do calculations—particularly how
they handle scalar data. Within recent memory, scientific
“computing” was a victim of miscommunication, as de-
scribed in this Wikipedia entry for “Exploration of Mars”
(http://en.wikipedia.org/wiki/Exploration_of_Mars):

Following the success of Global Surveyor and Pathfinder, an-
other spate of failures occurred in 1998 and 1999, with the

CAN I DO THIS STUFF IN C/C++?

A s we mention in the main text, unit testing is available
for virtually any language, including C/C++, which has

multiple frameworks that can fit almost every need it has
(see www.opensourcetesting.org/unit_c.php). In our specific
case, we use CppUnit (http://cppunit.sourceforge.net/), an
open-source framework designed for unit testing in C++. We
can construct a brief example using the STL vector class,
which is the closest we can get to a Java ArrayList with-
out doing our own implementation.

The program’s structure is very similar to the JUnit equiva-
lent, as we can see here:

class StringVectorTest

: public CPPUNIT_NS::TestFixture {

private:

vector<string> *aList;

public:

void setUp()

{

aList = new vector<string>;

}

void tearDown()

{

aList->clear();

delete aList;

}

void testAdd()

{

string testString = “A String”;

aList->push_back(testString);

CPPUNIT_ASSERT(aList->size() == 1);

CPPUNIT_ASSERT((*aList)[0] == “A String”);

}

}

However, because C++ doesn’t have reflection (or intro-
spection) capabilities like Java, setting up the test suite takes
a little extra work. Specifically, we need to use CppUnit’s
TestSuite class to keep track of which methods to call

continued on p. 82

82 COMPUTING IN SCIENCE & ENGINEERING

Japanese Nozomi orbiter and NASA’s Mars Climate Orbiter,
Mars Polar Lander, and Deep Space 2 penetrators all suffering
various fatal errors. Mars Climate Orbiter is infamous for Lock-
heed Martin engineers’ mixing up the usage of imperial units
with metric units, causing the orbiter to burn up while entering
Mars’ atmosphere.

It’s a bit strange that this could ever happen in the sciences,
but this isn’t an isolated incident (think, too, of how often it
goes unreported). The odd part is that scientists pioneered
units of measurement and dimensional analysis as a tech-
nique. Why doesn’t code involving scalar and array mathe-
matics universally carry units of measurement and allow for
automatic dimensional analysis?

We decided to tackle this question by showing that the
idea (in its essential form) is achievable. Although we
wanted to teach testing ideas with something meaningful
from CiSE, we ended up with the beginnings of a dimen-
sion-aware calculator, which in turn led us to an even bet-
ter example of how testing applies at multiple levels. The
core idea of dimensional analysis is that we maintain an ex-
pression in reduced product form at all times. For exam-
ple, we can rewrite meters, meters/second, and kg
meters/second in product form as meters (already in the
right form), meters * seconds^-1, and kg * meters *
seconds^-1.

We start our example code with the Dimension interface
for building unit expressions:

public interface Dimension {

void multiply(String unit, int power);

void multiply(String unit);

void divide(String unit, int power);

void divide(String unit);

void multiply(Dimension another);

void divide(Dimension another);

int getLength();

boolean hasUnit(String unit);

int getPower(String unit);

boolean hasUnits();

Collection<UnitPower> getUnits();

}

The heart of manipulating unit expressions via dimensional
analysis is symbolic manipulation. The nice thing about in-
terfaces (which are intentionally free of implementation de-
tails) is that they can capture the essence of how something
might be used (in this case, a given dimension); Figure 3 shows
the code for the class OrderedDimension, which implements
the interface. At this point, you might want to download the code
from our Web site (http://snapshots.cs.luc.edu/etl/). We can now
build up an expression for kg meters per second as follows:

Dimension d=new OrderedDimension();

d.multiply(“kg”);

d.multiply(“meters”);

d.divide(“seconds”);

S C I E N T I F I C P R O G R A M M I N G

when we run that suite. Each test also requires a test name
string along with a function pointer to the actual method.
Finally, if we want to run our tests from the command line,
we must add the suite to a TestRunner object and invoke
its run method:

class StringVectorTest

: public CPPUNIT_NS::TestFixture {

public:

static CppUnit::Test *suite()

{

CppUnit::TestSuite *suite =

new CppUnit::TestSuite(

“StringVectorTest”);

suite->addTest(

new CppUnit::TestCaller

<StringVectorTest>(“testAdd”,

&StringVectorTest::testAdd));

suite->addTest(

new CppUnit::TestCaller

<StringVectorTest>(“testEmptyList”,

&StringVectorTest::testEmptyList));

suite->addTest(

new CppUnit::TestCaller

<StringVectorTest>(“testErase”,

&StringVectorTest::testErase));

suite->addTest(

new CppUnit::TestCaller

<StringVectorTest>(“testClear”,

&StringVectorTest::testClear));

return suite;

}

}

int main(int argc, char **argv)

{

CppUnit::TextUi::TestRunner runner;

runner.addTest(StringVectorTest::suite());

runner.run();

return 0;

}

As you can see, although it takes some extra work, you
can set up unit tests for your C++ application in a very
straightforward manner.

continued from p. 81

NOVEMBER/DECEMBER 2006 83

Now we have a symbolic expression kg meters/seconds.
We call it an “ordered” dimension because the goal is to

keep the units in the order in which multiply() and
divide() calls are made, subject to term cancellations
(which happen automatically, on the fly). For example, if an
expression is built for kg meters/second, we really don’t
want it rewritten as seconds^-1 kg meters. Although it’s
still correct, we erred on the side of keeping the terms in the
user-specified order, which we believe is more of a usability
issue than a design issue.

Our basic implementation strategy is to keep an
ArrayList of UnitPower objects, which is a generic col-
lection. (As of Java 1.5, we can write all Java collections as
collections of some type, which means we don’t need to
work with the Object class unless we really want to.) The
UnitPower class is simply a wrapper for keeping a unit and
its exponent together. It has several set*() and get*()
methods that we can use to set or get the unit of measure-
ment and its exponent. Let’s look at the multiply()
method, which has most of this class’s guts:

public void multiply(String unit,

int power) {

int unitPos = findUnit(unit);

if (unitPos < 0) {

if (power != 0)

unitExpr.add(

new UnitPower(unit, power));

} else {

UnitPower unitFound =

unitExpr.get(unitPos);

unitFound.setPower(

unitFound.getPower() + power);

if (unitFound.getPower() == 0)

unitExpr.remove(unitPos);

}

}

Quite a bit of work is involved in multiplying a new term
into the unit expression:

• We must see whether we can actually find the unit of mea-
surement elsewhere in the expression.

• If we can’t find the unit, we add the (unit, power) to
the current expression, if power != 0. In dimensional
analysis, terms with a 0 power vanish right away.

• If we find the unit, we add the powers of the old and new
to form a new (unit, power) pair. As in the previous

bulleted item, if the sum of the powers adds to 0, the unit
vanishes. In this case, we must remove() the unit.

Clearly, this short piece of code demonstrates testing’s
potential. We can see, for example, that several things can
go wrong:

• When multiplying by a term already in the expression, we
should combine the new term with an existing one and ad-
just its power.

• When a term vanishes, we should reduce the expression’s
length (by 1).

• Adding a term that has a power of 0 shouldn’t affect the
unit expression.

Other multiply() and divide() methods exist, but
they’re special cases of this particular multiply()
method. In all cases, the work of actually doing the mul-
tiply() or divide() is delegated—for example, multi-
ply(String unit) calls multiply(unit, 1) to do its
work; divide(String unit, int power) calls multi-
ply(unit, -power) to do its work, and so on. For com-
pleteness, we can also multiply() or divide() by
another Dimension instance, but these, too, are delegated
to the multiply(String unit, int power) method.

Figure 4 shows a few test cases. Again, for brevity’s sake,
we consider only a few here and leave the rest to the full ver-
sion of these test cases for self-study.

These test cases are all independent of each other but
increase in complexity from the top of the figure down.
Table 1 summarizes by listing the tests (without the “test”
prefix in the name) along with an explanation of the gen-
eral strategy and expectations for each. Many tests exist
besides those described in Table 1—in fact, in terms of
code size, much more testing code exists than actual im-
plementation code.

Figure 2. Test results in Eclipse JUnit view. Three possible
outcomes exist for each test method: success, failure, or
error.

84 COMPUTING IN SCIENCE & ENGINEERING

Testing at the GUI Level
The JUnit approach handles successive levels of integration
testing as long as the test methods interact with the com-
ponents under test only through method invocation. This
is no longer the case for certain situations, such as system
testing a GUI or Web-based application. (Luckily, several

JUnit extensions can handle these cases; in a future issue,
we’ll explore how to test Web applications at various archi-
tectural levels.)

Let’s get back to the GUI level by using an extension of
JUnit called jfcUnit (http://jfcunit.sourceforge.net). Our ex-
ample is a dimensional calculator based on the dimensional

S C I E N T I F I C P R O G R A M M I N G

public class OrderedDimension implements

Dimension {

private ArrayList<UnitPower> unitExpr;

public OrderedDimension() {

unitExpr = new ArrayList<UnitPower>();

}

private int findUnit(String name) {

int pos = 0;

for (UnitPower item : unitExpr) {

if (item.getName() == name)

return pos;

pos++;

}

return -1;

}

public void multiply(String unit,

int power) {

int unitPos = findUnit(unit);

if (unitPos < 0) {

if (power != 0)

unitExpr.add(

new UnitPower(unit, power));

} else {

UnitPower unitFound =

unitExpr.get(unitPos);

unitFound.setPower(

unitFound.getPower() + power);

if (unitFound.getPower() == 0)

unitExpr.remove(unitPos);

}

}

public void multiply(String unit) {

multiply(unit, 1);

}

public void divide(String unit, int power) {

multiply(unit, -power);

}

public void divide(String unit) {

multiply(unit, -1);

}

public void multiply(Dimension another) {

for (UnitPower term : another.getUnits()) {

multiply(term.getName(), term.getPower());

}

}

public void divide(Dimension another) {

for (UnitPower term : another.getUnits()) {

divide(term.getName(), term.getPower());

}

}

public int getLength() {

return unitExpr.size();

}

public boolean hasUnit(String unit) {

return findUnit(unit) >= 0;

}

public int getPower(String unit) {

int unitPos = findUnit(unit);

if (unitPos < 0)

return 0;

UnitPower unitPower = unitExpr.get(unitPos);

return unitPower.getPower();

}

public boolean hasUnits() {

return unitExpr.size() > 0;

}

public Collection<UnitPower> getUnits() {

return Collections.

unmodifiableCollection(unitExpr);

}

/* Some details omitted for conciseness, such as

the toString() method to dump the internal

representation */

}

Figure 3. The OrderedDimension class. It implements the Dimension interface.

NOVEMBER/DECEMBER 2006 85

public class TestOrderedDimension extends

TestCase {

public void testNoUnits() {

Dimension u = new OrderedDimension();

assertFalse(u.hasUnits());

}

public void testMisingUnit() {

Dimension u = new OrderedDimension();

assertFalse(u.hasUnit(“meters”));

assertEquals(0, u.getPower(“meters”));

}

public void testBasicMultiply() {

Dimension u = new OrderedDimension();

u.multiply(“meters”);

assertEquals(1, u.getLength());

assertTrue(u.hasUnit(“meters”));

assertEquals(1, u.getPower(“meters”));

}

// ...

public void testMultiplyDivide() {

Dimension u = new OrderedDimension();

u.multiply(“meters”);

u.divide(“seconds”);

assertEquals(2, u.getLength());

assertTrue(u.hasUnit(“seconds”));

assertTrue(u.hasUnit(“meters”));

assertEquals(-1, u.getPower(“seconds”));

assertEquals(1, u.getPower(“meters”));

}

// ...

public void testMultiplyUnitsTerm

Cancellation() {

Dimension u = new OrderedDimension();

Dimension v = new OrderedDimension();

// create meters/seconds

u.multiply(“meters”);

u.divide(“seconds”);

// create seconds

v.multiply(“seconds”);

u.multiply(v);

// expect meters only in the result

assertEquals(1, u.getLength());

assertTrue(u.hasUnit(“meters”));

assertEquals(1, u.getPower(“meters”));

}

Figure 4. Test cases. These test cases independently test the correctness of different capabilities in the OrderedDimension
class.

Test case Description Testing strategy

NoUnits Has no units whatsoever No terms are added via multiply() or other calls. We check
whether the expression has any terms by calling hasUnits(),
which should be false. JUnit provides assertFalse() so we
needn’t negate what we’re trying to test.

MissingUnit References a unit not in We start with much the same code as NoUnits but check for a
the unit expression term that we know isn’t part of the expression. Although the

expression doesn’t have the unit “meters,” we should still ask
for unit power because any unit taken to the 0th power is 1.

BasicMultiply Multiplies a single unit into an This test ensures that we can add at least one term to the
existing unit expression expression. Here, we’re simply forming an expression for

“meters” whose length should be 1; the expression should
have the unit “meters” in it (regardless of power); and the
power itself should be 1.

MultiplyDivide Mixes multiply() and We carefully crafted this test to ensure that the divide() call
divide() calls results in a unit with a negative exponent (meters / seconds

== meters^1 * seconds^-1).
MultiplyDivide Involves Dimension instances, Testing builds confidence; recognizing that the core machinery
UnitsTerm in which each contains its own is working correctly, we thus exercise the core multiply() and
Cancellation unit expression divide() methods and have two Dimension instances interact

via a multiply(), resulting in some unit terms dropping out of
the result.

Table 1. Summary of test cases shown in Figure 4.

86 COMPUTING IN SCIENCE & ENGINEERING

analysis classes we previously discussed. First, we need a
simple class, IntQuantity, to tie a value and a unit of mea-
surement together to a dimensional quantity. To keep
things simple, we’ll limit the discussion to integer values
(see Figure 5).

Next we’ll build a simple dimensional calculator that adds
the ability to attach units of measurement to quantities and
consider them in its calculations. Figure 6 shows the di-
mensional quantity of 66 m/sec entered by pressing the fol-

lowing keys: 6, 6, m, /, s, and =. As with other infix calcula-
tors, ours can keep track of a left operand, an operator, and
a right operand, and then compute the result when we press
another operator or the equal sign. Both operands and the
result are instances of IntQuantity.

Using jfcUnit, we can write JUnit-style test cases that in-
teract with the calculator at the GUI level just the way a hu-
man user would—by pressing buttons and reading the
display. Figure 7 shows a couple of auxiliary methods on top
of jfcUnit. Below these methods, you can see actual test cases
for a dimensionless addition, an addition of square meters,
an incompatible addition (failure is expected—the calcula-
tor shows Dim Err), and a division.

I f you were in doubt, we hope this article has convinced
you of the virtues of testing. Even if you don’t plan to do

more testing on your own code, consider asking someone
to write test codes for you. Writing test cases is a great way
to learn how code works and whether it does what it’s sup-
posed to do. Be careful, though—testing can be addictive.
You might find yourself wanting to write up test cases be-
fore actually doing the implementation. You might also find
that you write much more test code than library or appli-
cation code. Perhaps that’s why JUnit’s authors speak of
programmers as being “test infected”! We believe testing
can make the world a much better place—especially the

Figure 6. Simple CiSE calculator. This screenshot shows the
dimensional quantity of 66 m/sec.

public class IntQuantity {

private int value;

private Dimension units;

// constructors and accessors omitted for brevity

public void increment(IntQuantity another) throws DimensionAnalysisException {

if (units.equals(another.units))

value += another.value;

else

throw new DimensionAnalysisException(units, another.units);

}

public void decrement(IntQuantity another) throws DimensionAnalysisException { /* ... */ }

public void multiplyBy(IntQuantity another) {

units.multiply(another.units);

value *= another.value;

}

public void divideBy(IntQuantity another) { /* ... */ }

}

Figure 5. IntQuantity class. This class ties a value and a unit of measurement together to a dimensional quantity.

NOVEMBER/DECEMBER 2006 87

world of scientific and engineering computing, where we
go out of our way to be precise but still make mistakes just
like everyone else.

George K. Thiruvathukal is an associate professor of computer sci-

ence at Loyola University Chicago. His research interests include pro-

gramming languages, operating systems, distributed systems,

architecture and design, computing history, and enhancing science

and computing education with emerging technologies. Thiru-

vathukal has a PhD from the Illinois Institute of Technology. He is a

member of the ACM and the IEEE Computer Society. Contact him

at gkt@cs.luc.edu or http://people.cs.luc.edu/gkt.

Konstantin Läufer is a professor of computer science at Loyola Uni-

versity Chicago. His research interests include programming

languages, software architecture and frameworks, concurrent and

distributed systems, mobile and embedded computing,

human–computer interaction, and educational technology. Läufer

has a PhD in computer science from the Courant Institute at New

York University. He is a member of the ACM. Contact him via

http://people.cs.luc.edu/laufer.

Benjamín González is a software developer intern at Hostway

Corporation. He also works as a research assistant at Loyola Uni-

versity Chicago. His research interests include distributed systems,

artificial intelligence, software architecture, operating systems,

and Web development. González has an MS in computer science

from Loyola University Chicago. Contact him at bgonzalez@cs.

luc.edu

/** Reads the text displayed by the calculator. */

protected String getDisplayText() {

JLabel display = (JLabel)

new ComponentFinder(JLabel.class).find();

return display.getText().trim();

}

/** Presses the button with the given label. */

protected void clickButton(String label) {

JButton b = (JButton)

new AbstractButtonFinder(label).find();

getHelper().enterClickAndLeave(

new MouseEventData(this, b));

}

/** Presses all buttons with the given labels. */

protected void clickButtons(String... labels) {

for (String label : labels) {

clickButton(label);

}

}

public void testButtonPlus() {

assertEquals(“0”, getDisplayText());

clickButtons(“3”, “3”, “\\+”);

clickButtons(“6”, “6”, “=”);

assertEquals(“99”, getDisplayText());

}

public void testDimensionAdd() {

assertEquals(“0”, getDisplayText());

clickButtons(“3”, “3”, “m”, “m”);

assertEquals(“33 m^2”, getDisplayText());

clickButton(“\\+”);

clickButtons(“6”, “m”, “6”, “m”);

assertEquals(“66 m^2”, getDisplayText());

clickButton(“=”);

assertEquals(“99 m^2”, getDisplayText());

}

public void testDimensionAddFailed() {

assertEquals(“0”, getDisplayText());

clickButtons(“3”, “3”, “m”, “m”);

assertEquals(“33 m^2”, getDisplayText());

clickButton(“\\+”);

clickButtons(“6”, “m”, “6”, “m”, “m”);

assertEquals(“66 m^3”, getDisplayText());

clickButton(“=”);

assertEquals(“Dim Err”, getDisplayText());

}

public void testDimensionDiv() {

assertEquals(“0”, getDisplayText());

clickButtons(“1”, “3”, “2”, “m”, “m”, “s”);

assertEquals(“132 m^2 s”, getDisplayText());

clickButton(“/”);

clickButtons(“1”, “m”, “1”, “s”, “kg”, “kg”);

assertEquals(“11 m s kg^2”, getDisplayText());

clickButton(“=”);

assertEquals(“12 m kg^-2”, getDisplayText());

}

Figure 7. Testing a dimensional calculator with jfcUnit. The three convenience methods at the top are for reading the
calculator’s display and pressing one or more buttons. The remaining test methods use convenience methods to test
dimensionless addition, an addition of square meters, an incompatible addition (failure is expected—the calculator
shows Dim Err), and a division. The test methods use assertions to make sure the calculator produces the expected
results.

	Loyola University Chicago
	Loyola eCommons
	11-2006

	Unit Testing Considered Useful
	George K. Thiruvathukal
	Konstantin Läufer
	Benjamin Gonzalez
	Recommended Citation

	untitled

