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CHAPTER I 

INTRODUCTION 

Among the first reports involving serum protein binding of drugs 

is one covering work done by Moore and Roaf {1904). They demonstrated 

that several volatile compounds, such as ether and chloroform, had a 

greater solubility in serum than in saline. This was attributed to 

"substance interaction with proteins". Historically, a significant 

advance in the era of modern drug-protein interaction was contributed 

by Davis (1942, 1943). His research related the binding of sulfonamides 

by plasma proteins to drug distribution in body fluids and indicated that 

the bound portions were bacteriostatically inactive. Within eight years, 

several investigations describing serum-drug interaction of sulfonamide, 

digitoxin, organic ions, penicillin, inorganic ions, and serum albumin 

binding sites were published {Derouax, 1943; Farwaz and Farah, 1944; . 

Klotz and Walker, 1947; Eagle, 1947; Scatchard, 1949, 1950; and Karush, 

1949 1 1950) • 

A classic review by Goldstein (1949) regarding drug and plasma 

protein interactions focused upon the consequences of drug binding on 

half-life, efficacy, distribution, and excretion of drugs. His statement 

that "the capacity of drug molecules to enter into specific combinations 

with proteins poses for pharmacology its most :f'undamental task - to 

comprehend the intimate nature of drug action in terms of these molecular 

interactions" summarizes the importance of drug-plasma protein inter­

actions. 
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The Goldstein publication contributed to an increased awareness 

and stimulated many researchers to investigate the protein drug binding 

phenomenon. Since 1949, many publications describing the binding of a 

variety of drugs by plasma proteins have appeared. Among the drug exam­

ined were anticoagulants, hypnotics, parasympatholytics, anti-infectives, 

CNS stimulants, cardiovascular agents, etc. (Meyer and Guttman, 1968). 

Weiner et al (1950) showed that several human protein fractions 

had different affinities for binding dicumarol. They found that beta and 

gamma globulins bound 20% of the drug while alpha globulin and albumin 

bound 50 and 99% respectively. The low free plasma level, slow rate of 

metabolism, slow rate of transformation, and low elimination rate of 

dicumarol were attributed to extensive plasma protein binding. 

Mark et al (1951) found that procaine amide was primarily 

localized in various tissues, i.e. kidney, liver, spleen, etc. To esti­

mate the extent of drug localization, it was necessary to determine the 

amount of procaine amide bound by plasma proteins. They found that 15% 

of the drug was bound to non-diffusible constituents of plasma. 

A report by Tonnesen (1956) stated that the slow elimination 

of atropine in man might be due to interaction with plasma protein. Em­

ploying ultrafiltration and ultracentrifugation techniques, he found that 

a~er the administration of a therapeutic dose of atropine, 50% was ab­

sorbed onto the plasma proteins. Tonnesen concluded that the plasma 

proteins served as a carrier by which atropine is transported to various 

organs. He also intimated that this binding may slow the elimination of 

atropine in man .• 
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In vivo results reported by Paul et al (1960) showed that 30% 

of the non-ionized nitro:fUrans (nitro:fUrazone) were bound to plasma pro­

teins, 50 - 90% of the anionic compounds (nitrofuran), while the cationic 

drugs (furaltadone) were not bound to any appreciable extent. The authors 

failed to establish any connection between the protein binding of these 

anti-infectives and their systemic effects. The relative binding power 

of the protein for the drug was not established nor was the possibility 

of displacement within the drug-protein complex. It is the consensus 

that most drug-protein complexes are therapeutically inactive. 

In 1960-1961, Anton, using equilibrium dialysis, confirmed that 

in vitro protein bound sulfonamides were devoid of antibacterial activity 

and that the binding activity varies greatly between mammalian species. 

He also presented in vivo evidence that the distribution of sulfonamide 

in the rat could be modified by competitive interference with its bind-

ing to plasma protein by other drugs, i.e. sulfinpyrazone, ethyl bis-

coumacetate, phenylbutazone, and iophenoxic acid. The total number of 

binding sites per molecule of human serum albumin for a sulfonamide was 

determined by Clausen (1966). Clausen also reported that other plasma 

proteins (prealbumin, glycoproteins, and alpha 2-macroglobulin) possessed 

secondary binding properties. 

Eichman et al (1962) demonstrated that xanthine molecules 

(caffeine, theopbylline, theobromine, etc.) formed drug-albumin complexes. 

Their results indicated that the extent of the binding was partially 

dependent upon the hydrogen ion concentration of the system, and the 

acid strength ot the drug. 
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The inactivation of penicillins F, G, K, and X by human and 

rabbit serum protein interaction was revealed by Eagle (1947). Keen 

(1965) found that the binding of these antibacterials showed considerable 

variation between oxen, goats, horses, sheep, and pigs. According to Keen, 

these differences may be accounted for by the average plasma concentra-

tions of albumin, differences in affinity for the drug molecule, and 

ionic constitution of the different plasmas. Temperature variation has 

been characterized as another factor operant in the binding of penicillins, 

calcium, and anionic dyes. In 1966, Keen reported that sulpb.a.methoxy-

pridazine, phenozmethyl penicillin, and phenol red could be displaced 

from serum albumin by several anionic drugs This displacement by agents 

such as phenylbutazone and salicylate showed specificity. Furthermore, 

Keen determined the number of binding sites for phenoxymetbyl penicillin 

and benzylpenicillin to bovine serum albumin. 

In 1954, Goldbaum and Smith investigated the in vitro binding 

characteristics of several barbituric acids to bovine serum albumin using 

ultrafiltration. Among the barbiturates studied were tbiopental, seconal, 

pentobarbital, phenobarbital and barbital. Their results showed that 

gradually increasing the length of the substituted alkyl side chain from 

two to six carbons increased the percent of the drug bound. Hence, those 

drugs having the shorter duration of pharmacological action bad the 

greatest fraction bound. Variation of pH, albumin concentration, and 

drug concentrations produced: 

1) maximum drug-albumin complex at approximately pH 7.8; 
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2) 

3) 

an increase in bound drug with increased albumin concen­
tration which plateaued near 4%; 

maximal and minimal·barbit}f'ate-albumin interaction at drug 
concentrations of 25 x 10- and 1 x lo-3 M respectively. 

They demonstrated that bound barbiturates could be partially displaced 

from the drug-albumin complex by addition of other barbiturates and 

dissimilar organic anions. In vivo distribution and in vitro tissue 

homogenate studies in the rabbit generally indicated the highest binding 

of the barbiturates occurred in plasma liver heart kidney lung brain 

muscle red cells. Finally, they estimated the number of binding sites 

on bovine serum albumin for the barbiturates. 

The work by Goldbaum and Smith provided evidence that barbi-

turate binding is "related to pH", drug concentration, and protein 

availability. Also, binding in vitro seems to be related in part to the 

distribution of drugs in vivo. 

Employing dosages approximately five to ten times that used 

therapeutically, Lous (1954) examined the fate of three barbituric acids 

in man. Using three to four normal subjects per drug, his work indicated 

that the highest plasma concentration of barbital (B), allypropymal (A), 

and phenobarbital (P), occurred between four to eight hours, three to 

nine hours, and twelve to eighteen hours, respectively. A~er adminis-

tration, the drugs were eliminated from plasma following an exponential 

curve with total urine excretion for B, A, and P being 75-95%, 9-18%, 

and 13-37% respectively. The renal clearance was shown to be "independent 

of plasma concentration but dependent upon urinary flow". Lous found, by 

ultrafiltration, experiments, that the percent of barbiturate bound to 
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plasma was 95% (88-104) for barbital, 50% (33-71) for phenobarbital, and 

60% (54-65) for allypropymal. 

Also, in 1954, Taylor et al investigated the binding of thio-

pental by rabbit plasma in vivo and in vitro. These data indicated that 

the amount of drug bound in vitro closely resembled the amount bound in 

vivo. They also demonstrated that as the concentration of the thiopental 

increased, the percentage of the thiopental bound decreased, resulting 

in an enhancement of the sleeping time duration. 

Waddell and Butler (1957) delved deeper into the distribution 

and excretion of·phenobarbital in dog, mice and man, stressing the effects 

of pH alteration upon the parameters studied. In contrast to the results 

obtained by Goldbaum and Smith, these authors presented in vitro pheno-

barbital binding data obtained by dialysis which indicated that the 

percentage of the drug bound was only slightly affected by pH within the 

normal physiological range found during acidosis and alkalosis. Further-

more, they stated that "in a 4 gm. per 100 ml. solution of albumin, the 

proportion of phenobarbital bound is almost independent of the pheno-

barbital concentration over the range of 20 to 100 mg. per liter". They 

also stated that binding by "human serum albumin did not differ signifi-

cantly from bovine albumin". In vivo experiments in dog, mice and man 

revealed that after precipitation of acidosis, induced by co2 inhalation, 

and alkalosis, by hyperventilation or intravenous infusion of NaHC0
3
, 

plasma phenobarbital concentrations fell as blood pH decreased. Experi-

ments measuring the effects of pH on phenobarbital -induced anesthesia 

in mice indicated that alkalosis lightens phenobarbital anesthesia by 
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decreasing drug concentration in the brain. Thus, tissue/plasma con-

centration varies reciprocally with blood pH. Finally, Waddell and 

Butler presented data showing that the renal clearance of phenobarbital 

was similar in man and dog; "The clearance of phenobarbital increases with 

increasing urine flow in acid or alkaline urine, but at any given rate 

of flow the clearance is much higher in alkaline than in acid urine." 

The work cited here indicates that the pharmacological action 

of many drugs is closely related to plasma protein binding and binding 

site availability. A number of these papers have reported that drug 

binding to these proteins, whether albumin, globulins, glycoproteins, etc., 

is a function of pH, drug or protein concentration. Duration of action 

and metabolic fate are apparently influenced by these phenomena. The 

investigations involving phenobarbital by Goldman and Smith, Lous, Waddell 

and Butler provide evidence showing that the drug is primarily bound by 

serum albumin. However, the effects of variation in drug concentration, 

serum albumin concentration, and pH upon phenobarbital binding are in 

some instances contradictory. Also, binding site availability on human 

serum albumin for phenobarbital has not as yet been established. 

Inconsistencies in previous reports on phenobarbital binding 

by serum albumin suggested the need for clarification in this area. The 

ratio of moles of drug bound per mole of albumin calculated by Goldbaum 

and Smith was determined, using a value of 14.5 x 10-5M for their bovine 

albumin concentration. On recalculation, it appears that. this value 

-5 
should have actually been 14.7 x 10 M. The larger value could have 

resulted in a lower binding site estimation. Waddell and Butler stated 
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that the binding of phenobarbital to human serum albumin was affected 

only to a slight degree by pH and that it was nearly independent of pH, 

whereas Goldbaum and Smith state that phenobarbital binding to albumin 

is related to pH. Waddell and Butler reported that alkalosis induced in 

mice increased the median anesthetic dose of phenobarbital. They also 

observed a decrease in phenobarbital plasma concentrations after inducing 

acidosis in the dog. These findings do not appear to be in concert with 

their in vitro data; although Waddell and Butler indicated that they 

performed some experiments involving the binding of phenobarbital to 

hu.~an serum albumin, they failed to present any data documenting their 

findings. The only direct data concerning the binding of phenobarbital 

to human serum proteins were reported by Lous. Lous estimated that in 

vivo binding of the drug concentration found in human serum ranged 

oe::;ween 33-71%. However, the upper and lower values were obtained in 

a si~gle individual. He did not determine the percent of protein in 

tLe serum nor the blood pH of his samples. Therefore, research involving 

tl:cse problems entailed a confirmation and clarification of the charac­

teristics exhibited by human serum albumin binding of phenobarbital sodium 

when drug concentration, albumin concentration and pH were varied. A 

second phase included the determination of the number of binding sites 

per molecule of albumin available to the drug. These data were further 

examined in regard to implications as to pharmacological effect in humans. 
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CHAPTER II 

MCl.TERIAI.S AND METHODS 

In this study, experiments were designed to determine the 

percentage of drug bound in vitro to human serum albumin (HSA) while 

varying specific physical and chemical conditions. However, all experi-

ments were conducted in an in vitro system approximating the normal in 

situ HS.A environment as closely as possible. 

The percentage of drug bound to HSA was determined by a modi-

fication of the equilibrium dialysis procedure of Anton (1960). Equili-

brium dialysis confines the protein component within a bag formed from 

a semi-permeable membrane. This membrane allows unbound drug molecules 

to freely diffuse into the solution surrounding the bag until equilibrium 

is attained. When unbound drug concentrations on both sides of the 

membrane become equal, any drug increment in the protein compartment is 

presumed to represent drug bound to protein. The concentration and 

percent of drug bound is determined as follows: 

l) Concentration of bound barbiturate = Concentration of barbiturate 
in the bag minus concentration 
of barbiturate in dialysate 

2) % bound barbiturate = Concentration of bound barbiturate x 100 
Concentration of barbiturate in bag 

The technique of equilibrium dialysis provided an uncomplicated method 

for the study of protein binding. It also allowed the convenience of an 

overnight binding reaction and easily controlled temperatures. 

Phenobarbital was assayed by the ultraviolet, spectrophotometric 

method of Goldbaum (1952), and Goldbaum and Smith (1954). This procedure 
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~ combines precision, specificity, simplicity and sensitivity for the 

measurement of microgram quantities of phenobarbital in saline, blood, 

serum, and urine solutions. To minimize experimental variance due to 

pipetting errors, determination of data from standard curves, and other 

extraneous variables, each experimental point was established on the basis 

of three separate determinations. Ea.ch such determination was conducted 

in duplicate. The average and standard error of the mean for each set of 

phenobarbital values was calculated. Protein concentrations were deter-

mined by the procedure of Gornall et al (1948). 

Preliminary Experiments 

Pilot experiments were conducted to assure that no interference 

in binding or assay resulted from the cellulose dialysis tubing. In 

system one, 0.001 M phenobarbital Na in Sorensen's M/15 phosphate buf'fer 

solution was placed in the dialysis tube (outer phase) while the dialysis 

bag (inner phase) contained only the buf'fer. In a second system, the 

phases were reversed. A buf'fer solution containing phenobarbital equal 

in amount to that in the tube of system one was placed in the bag. This 

bag was then put into a dialysis tube containing only buf'fer solution. 

A~er 16 hours dialysis, the buf'fer solutions in the tubes and bags of 

both systems were analyzed for phenobarbital concentration. 

Additional experiments estimated the minimal amount of time 

necessary to attain system equilibrium. The above procedure was repeated; 

however, a three percent human serum albumin-buf'fer solution was placed 

into the dialysis bags. The dual systems were then dialyzed and assayed 

after eight, twelve and sixteen hours. Minimal equilibrium time was 

10. 
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determined to be twelve hours. 

Previous work by Goldbaum and Smith (1954) using ultrafiltra-

tion indicated that equilibrium values for barbiturate binding to bovine 

· ff t d b t t ranging from 4° - 4o0c. albumin was una ec e y empera ures Experi-
0 

ments were conducted at 37.5 c. and at room temperature, confirming the 

above results. Thus, for convenience, equilibrium dialyses were carried 

out overnight through a period of 16 to 17 hours at room temperature. 

A final set of preliminary experiments was conducted to confirm 

the sensitivity of the assay and the percentage of phenobarbital Na 

recovered. The partition coefficient was determined as described by 

Martin (1962) and employed to calculate the theoretical extraction and 

percentage recovery of the drug. 

RSA-Phenobarbital Binding Experiments 

To ascertain a picture of HSA binding capacity and estimate' 

the number of binding sites per molecule of albumin available to pheno-

barbital, the effect of drug concentration variation upon binding was 

studied. Concentrations ranging from that considered therapeutic to those 

causing toxic reactions were investigated as follows: 

a) -5 12.5 x 10 M e) 2 x lo-%1 

b) 25 x l0-5M f) 4 x 10-; 

c) 5 x l0-4M. g) 8 x lo-.\ 

d) 1 x 10-~ 

T::c: 12.5 x 10-5M concentration was employed in all other experiments. 

'l'his concentration was assumed to be therapeutically equivalent to that 

f .. ,_.._, ___________________________________ __ 
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found in a nonnal 70 Kg. individual after administration of 150 mg. of 

phenobarbital. 

The normal range of arterial blood pH is 7.35 - 7.45, "any pH 

below 7,35 or above 7.45 is generally defined acidosis and alkalosis 

respectively", (Woodbury, 1965). Many acute and chronic disease states 

clinically reveal an acid-base disturbance; therefore effects of pH 

variation (6.6 - 7.8) upon binding were investigated. A pH of 7.4 was 

maintained in all other experiments. 

The effects of varying concentrations of ,HSA (l to 6%) on 

binding were also examined since there are clinical conditions in which 

HSA variations from normal may occur. For all other experiments, 3.o'fo 

HSA was utilized. 

Finally, the number of binding sites per molecule of human 

serum albumin was estimated using the procedure described by Karush (1950). 

System Components and Procedure 

Unless specified, all solutions were made up using glass dis-

tilled water and employed at room temperature. All compounds were weighed 

on an analytical balance to the nearest 0.1 mg. 

Dialysis Bags (Scientific Products #Dl615-2) 

The dialysis bags were prepared from high purity, seamless, 

re~~enerated cellulose tubing (150 mm. in length and 28 mm. in width). 

T~2 tubing was rinsed in glass distilled water, then washed for 15 minutes 

0 in 90 C. glass distilled water, and finally rerinsed three times. Washing 

was done to eliminate any substances in or adhering to the cellulose 

which might interfere with the analytical procedure. The tubing was 
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double knotted and trimmed at the distal end while the proximal portion 

was tied securely to the end of a glass tube with blanched nylon thread. 

The dialysis bags measured aJ?proximately 4.5 cm. from the end of the 

glass tube to the :proximal end of the knot. All bags were tested for 

leaks by submerging the bags in water and blowing through the proximal 

end of the glass tube, absence of bubbles being indicative of positive 

closure. 

Dialyzer Container 

The dialyzer container consisted of a Pyrex (Corning ://9820) 

25x100 mm. culture tube, Bacti-Capall (Scientific Products #T-1395-4) 

and a one hole neoprene stopper (18x24 mm), through which was placed 

Pyrex glass tubing (6 mm I .D. x 55 mm lg.). The glass tube was fire 

polished at one end and blunted to form a lip at the distal end. The 

proximal end of the glass tube then provided a porthole used to admit · 

the HSA into the dialysis bag while the distal lip provided a ledge to 

which the bag was secured. 

The Dialysis System Assembly Procedure (Figure l) 

1. A dialysis bag was tied to the glass tube of the neoprene 

stopper and allowed to dry. 

2. Ten ml. of the appropriate phenobarbital Na/buffer solu-

tion concentration was pipetted into a culture tube and the base of the 

tube inserted into a Bacti-cap which :provided a standu:p platform. 

I 3. Three ml. of the appropriate BSA/buffer concentration was 

J pi:oetted into the dialysis bag through the glass tube insertion port. 
I 
~ L,-------------------------------------...a 13. 
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4. Tne neoprene-dialysis bag assembly was then inserted into 

the culture tube. The glass tubing at the proximal end of the stopper 

assembly was depressed until the HSA solution meniscus in the bag was 

at a level equal to that of the culture tube phenobarbital Na solution. 

5. A Bacti-cap was placed over the head of the entire assembly, 

sealing in the contents. The contents were dialyzed for 16 hours at room 

temperature in a metabolic shaker at 80 strokes/min. using a 1-1/2 inch 

stroke. 

6. At the end of this period, the contents of both the dialysis 

bag and dialysis tube were analyzed for phenobarbital and protein con­

centration. 

Human Serum Albu.min Solution (Calbiochem-Pentex Lot #17, 21, 23) 

Electrophoretically pure crystalline human albumin was dissolved 

in the appropriate M/15 buffer and refrigerated. The HSA solutions were 

used within 24 hours. 

Phenobarbital Sodium (Mallinckrodt Chemical Works Lot #DET) 

The powder was dissolved in the phosphate buffer at the con­

centrations indicated on page ll. The drug was solubilized in HSA 

solution at a concentration of 0.001 M when determining system equilibrium. 

Borate Buffer 

74.554 @nS· of KCl, reagent grade, and 61.844 gms. of boric 

acid, reagent grade, diluted to one liter with water. It was then stored 

at room temperature for 24 hours and filtered. 
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Sorensen's M/15 Phosphate Buf'fer (Hepler, 1960) 

Sorensen's M/15 Phosphate Buf'fer was prepared by mixing the 

appropriate quantities from stock solutions of: 

l. M/15 Potassium Acid Phosphate (KH2Po4), 9.o8 gm. qs. 
to l liter. 

2. M/15 Disodium Phosphate (Na2HPo4), 9.47 gm. qs. 
to 1 liter. 

Sodium Hydroxide Solutions: 

Sodium hydroxide solutions were prepared by diluting a comm.er-

cially available lON Analytical Reagent Grade Sodium Hydroxide solution 

with glass distilled water. 1 N sodium hydroxide was used for washing 

the chloroform extracting solvent. Approximately 0.36 N was used in 

the phenobarbital analysis. The alkalinity of this solution was adjusted 

to a pH of 10.4 by adding NaOH and borate buffer in a 2:1 ratio as 

required. 

Chloroform 

Reagent grade chloroform was washed with 1 N sodium hydroxide 

followed by two rinsings with glass distilled water. For every liter of 

solvent, 100 ml. of wash solution was used. Only the volume necessary 

for daily use was washed because the chloroform tends to decompose upon 

standing. 

Biuret Reagent (Harleco Lot #70101} 

Tbe reagent was prepared in accordance with the procedure 

described by Gornall et al. The preparation consisted of a modified 

alkaline copper'tartrate stabilized with potassium iodide. 

16. 



(For a detailed description of the procedures quoted, see the Appendix). 
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CHAPTER III 

RESULTS 

Prior to commencing any experiments on the binding of pheno-

ba ::'!Jital, we attempted to validate the analytical procedure for barbi-

turates as described in 1952 by Goldbaum (see Appendix). The analytical 

procedure involved an initial series of four extractions of phenobarbital 

by CHC1
3 

from Sorensen's Buffer following addition of HCl. Following 

this step, the pooled CHC1
3 

extract was re-extracted by NaOH. Extraction 

of phenobarbital in this second phase was virtually complete. Using this 

procedure, the phenobarbital recovery was found to be approximately 

92-93'%· A theoretical recovery of 93.8% was calculated for phenobarbital. 

Thus the theoretical and actual recovery of the barbiturate were com-

parable. 

Employing a semi-log plot, Figure 2 illustrates the effects 

of varied barbiturate concentrations upon the percentage of phenobarbital 

bound by human serum albumin (HSA). The amount of drug bound increased 

while the percentage bound diminished as phenobarbital concentrations 

increased. Thus, at a concentration considered therapeutically effec­

tive, 12.5 x io·5M, a high fraction of the drug was bound. The percent 

of phenobarbital bound at 0.5 - 8 x 10-3 M, concentrations which would 

appear to be toxic or lethal were significantly less bound than at 

-5 12.5 x 10 M (Table 1). 

18. 
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TABLE I , 

Effect ot Varying Phenob&rb1tal Na Concentration 
on Percentage ot Drug Bound b1 HSA at pH 7.4 

Dru~ Concentration 
p_o-5 M) 

12.5 
25.0 
50.0 

100.0 
200.0 
400.0 
aoo.o 

'lo Drug Bound 
i:S.E.* 

53.0 !0.58 
56.9 to.54 
46.8 t0.40 
43.6 :o.66 
39.4 to.70 
37.4·t1;01 
27.7 tl-58 

Level of Significance 

0.01 
0.001 
0.001 
0.001 
0.001 
0.001 

* S.E. represents the standard error of the mean percentage of drug bound 

The changes in phenobarbi ta1 binding by human serum albumin 

{HSA) binding due to pH alterations are depicted in Figure 3. The 

fraction of barbiturate bound declined as the hydrogen ion concentration 

was increased. The sharpest decrease in binding occurred between pH 7.2 

and 7 .4. According to Woodbury {1965), any pH above 7 .45 or below 7. 35 · 

indicates alkalosis and acidosis respectively. Table II indicates tbat 

the amount of drug bound was significantly less at pH's representing 

acidosis than at normal physiological pH. Above pH 7.4, the percentage 

of drug bound began to plateau. However, at pH's represen~ing alkalosis, 

a slight increase in phenobarbital binding occurred which became signi­

ficant at pH 7 .8. In the pH range investigated, the drug binding affinity 

of the protein appeared to decrease as the pH was lowered. 
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EFFECT OF pH VARIATION ON 3% HSA BINDING 

OF 12.5 X 10-5 M PHENOBARBITAL Na 
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pH 



Acidosis 
7.2 
7.0 

Alkalosis 
7.6 
7.8 

TABLE II 

Effect of pH A~teration on 3% HSA Binding 
of 12.5 x io-5 M Phenobarbital Na 

% Drug Bound tS • E. 

53.0 ±0.76 

Level of Significance 

38.6 t0.23 
34.3 to.70 

53.2 to.30 
57.8 t0.24 

0.001 
0.001 

N.S. 
0.01 

Changes in the percentage of phenobarbital bound at various 

concentrations of human serum albumin are portrayed in Figure 4. A pro-

gressive increase in the portion of the drug bound occurred as the con-

centration of HSA was increased. The sharpest rise in binding occurred 

between two and three percent HSA after which percentage of drug bound 

began to plateau. Little difference in binding was observed between 

three and four percent protein concentration. When considering the moles 

of drug bound per mole of albumin, the fraction of phenobarbital bound 

was generally reduced as albumin concentrations increased (Table III). 
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% HSA 
Concentration 

1 
2 
3 
4 
6 

TABLE III 

Effeot of Val'lins HS.A Concentration on Binding 
of 12.5 x 10~.< M Phenobarbital at pH 7.4 . 

% Drug Bound 
-.t S.E. 

2i.8 +o.82 
32.1 ±0.74 
53.0 :to.58 
58.8 :t0.27 
63.5 :to.59 

Moles Drug_
5 Bound x 10 

2.72 
4.0l 
6.62 
7.35 
7.94 

Cone. HSA Fraction Drug 
Moles (10-5) Bound/Mole HSA* 

14.5 
29.0 
43.5 
58.0 
86.8 

0.19 
0.14 
0.15 
0.13 
0.09 

*Assuming a molecular weight of 69,000 for HSA 

The reduction in the fraction of phenobarbital bound per mole 

of albumin can be attributed to a dilution of the drug in the albumin. 

As the albumin concentration was increased, the number of binding sites 

was increased while the barbiturate concentration remained constant. 

To estimate the number of binding sites per molecule of 

albumin, the moles of drug bound per mole of albumin (r) was determined 

for several concentrations of the drug (see Appendix). These ratios were 

then related to the molar concentration of_ free drug present (c) by 

making a lineal plot of r/c vs. r. To minimize experimental error which 

might have resulted due to techniques employed and to improve the accuracy 

of binding site estimation, the percentages of drug bound used to calcu-

late r were determined from Figure 2, as indicated in Table rv. The 

semi-log plot allowed the determination of values from a straigh"l:; line. 

The molecular weight for human serum albumin was assumed to be 69,000 

(Phelps and Putnam, 1960). The ionic strength of the phosphate buffer 

at pH 7.4 was calculated at 0.17 arbitrary units (Martin, 1962). The 
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TABLE IV 

Values Utilized for Characterization of 
Phenobarbital Binding Sites 

Initial Final Free Amount Moles Bound 
Drug Cone. <f, Drug Drug Cone. (c) Drug Bound Drug/mole 3 3 (10-5 M) Bound (10-5 M) (10-5 M) HSA (r) r/c x 10 r/c x 10 (f) 

12.5 53.7 5.8 6.7 0.15 2.59 1.44 
I\) 

12.4 12.6 2.33 Vl 25 50.3 0.29 1.35 . 
50 46.9 26.6 23.4 0.54 2.03 1.15 

100 43.2 56.8 43.2 0.99 1.74 l.o4 

200 39.9 120.0 79.8 1.83 1.52 0.91 

400 36.8 253 147.0 3.38 1.34 0.87 

8oo 33.3 534 266.0 6.ll 1.14 0.85 



concentration of human serum albumin was 43.5 x 10-5 M (3%). 

Figure 5 presents the graphical estimation of phenobarbital 

binding sites per molecule of albumin. According to Karush (1950), 

Scatchard (1949, 1950), and others, homogeneity of binding sites produces 

a straight line plot. When the line is extrapol.ated to the ordinate and 

abscissa, the intercepts equal nK and n respectively (see Appendix). If 

the r/c vs. r relationship produces a curved line, two alternatives are 

present. The deviation from the straight line may be due to electro-

static factors or the binding sites are heterogeneous. 

The plot of these data produced a curved line, Figure 5. 

Therefore, we replotted the data using the electrostatic interaction 

correction factor. The formula for electrostatic interaction is r/c (t) 
2w(Zp+r) · 

where f equals e (Keen, 1966). The factor (e) is the loglO of 

the natural logarithm and (w) is the electrostatic parameter taken as 

0.025, extrapolated from Tanford et al (1955). According to Goldstein 

(1949), the isoelectric point of albumin is 4.9 and carries a net nega­

tive charge at pH 7.4. Consequently, the charge on the protein (Zp) is 

taken as -12 (McMenamy, 1968). A plot of r/ c (f) vs. r, Table 'IV, 

produced a curved line, Figure 6. 
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Since we failed to demonstrate the presence of homogeneous 

binding sites, an aesuiiwtion ot heteroseneous binding sites for pheno­

barbital was made (see Appendix). Resolution of the binding curve 

(Figure 5) indicated two components corresponding to sites, n1 and n
2

• 

Table V shows the values obtained for the albumin molecules binding sites 

and their association constants for phenobarbital. 

TABLE V 

Values Detennined for the Number of 
Phenobarbital Binding Sites (n) on the 
Human Serum Albumin Molecule and Their 
Association Constants (K) for Phenobarbital 

Sites 

Primary binding sites 

Secondary binding sites 

Total binding sites 

.n 

0.95 

14.05 

15 

nK 

950 

1750 

2700 

K 

1000 

124 

The relationship between free and bound drug concentration for 

these groups of sites is expressed by an equation calculated by Karush (1950 

1 + ~c 

When the above values were substituted in the equation, the 

broken line in Figure 5 was plotted. This curve approximates that ob-

tained with the experimental data. Extrapolation of both curves estimates 

the total number of binding sites to be approximately 15. The data suggest 

a primary group .of sites w1 th a greater affinity for phenobarbital and a 



pt L T 

~ 
I 

' ~ 
se.::onda.ry more numerous group with a lesser affinity as indicated by the 

differences in the group association constants. 
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DISCUSSION 

The response of living systems to chemical stimuli such as drugs 

is often widely varied between and within the species and frequently with-

in an individual organism. 11Most of the variation attending the use of 

drugs, especially in therapeutics, lies in the wide ranges of physical, 

biochemical, and pathological conditions that con:f'ront the drug when it 

is administered to a living organism" (Condouris, 1965). Plasma-protein 

binding of drugs, particularly by serum albumin, demonstrates a notable 

involvement in drug-response variation. Drug binding by albumin can alter 

therapeutic effectiveness, delay metabolic transformation or excretion, 

and participate in drug interaction. The slow release of a bound drug 

may prolong drug blood levels, resulting in sustained therap~ or the 

bound complex may act as a protective carrier system by which a drug can 

be transported to or removed from its site of action. (Tonnesen, 1956; 

Anton, 1960; Keen, 1966; Meyer and Guttman, 1968; Goldstein, 1949.) The 

binding of drugs by albumin is related to environmental pH, albumin con­

centration, and drug concentration (Goldstein, 1949; Goldbaum and Smith, 

1954). Consequently, variations in the physical, biochemical, or path-

ological condition of an organism which change pH or albumin concentra-

tions can influence drug binding and alter therapeutic effectiveness. 

In 1954, Lous estimated the percentage of phenobarbital bound 

in vivo by serum proteins. He employed three normal human subjects and 

repeated the experiment in one of the subjects to obtain four values. 
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Each subject received 750 mg. of the barbiturate orally. Using ultra-

filtration, he found that s~~ proteins bound phenobarbital at a level 

of 33 - 71% (50 :t8%). Unfortunately, Lous did not report the blood pH 

or serum protein content for any of the subjects. Nevertheless, the 

calculated average of 50'/o was fairly close to results we reported. Our 

data indicated that approximately 43 - 47% of a comparable in vitro con-

-4 -3 ccntration, between 5 x 10 and 1 x 10 M, was bound to albumin alone. 

Th"-.:.s, there appears to be some relationship between in vivo and in vitro 

phl:~nobarbi tal binding. It has been reported that minor secondary binding 

und sometimes primary binding occurs with other serum proteins such as 

preaJ.bumin, alpha and gamma globulins, and glycoproteins (Goldstein, 1949; 

Clausen, 1966; Meyer and Guttman, 1968). However, album1n is considered 

the primary binding entity for most drugs including phenobarbital. 

Barbiturates in sedative or hy:pnotic doses act principally at 

the level of the thalamus and the ascending reticular formation, inter­

fering with impulse transmission to the cortex (Cutting, 1967). These 

drugs are capable of depressing many biological :f'unctions and are con-

sidered unspecific in their effects. Although little is known about 

their mechanism of action, barbiturates are only partially ionized at 

biological pH's. Available information indicates that the free acid 

(undissociated) form is responsible for the depressant effects. (Hardman 

et al, 1959; Sharpless, 1966). "Moreover, the drugs cross the cellular 

membrane only in the form of undissociated molecules" (Maynert, 1965). 

Examination of our pH data indicates a sharp increase in 

phenobarbital bound as the pH is increased, 35% at pH 7.2 to 53% at 7.6. 
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As the hydrogen ion content decreases, the fraction of the barbiturate 

bound substantially increases and the amount of drug available to produce 

an effect is diminished. 

Waddell and Butler reported a 6~ difference in the fraction of 

phenobarbital bound by albumin in vitro between pH 7.2 and 7.6. They 

stated that "binding is affected only to a small degree by pH", and that 

"the binding is nearly independent of pH". Nevertheless, their in vivo 

experiments in mice indicate a 20% increase in the median anesthetic dose 

of phenobarbital after NaHC03 induced al.kalosis. Waddell. and Butler also 

observed a decrease in plasma phenobarbital concentration when acidosis 

was induced by 002 in dogs. Assuming that the drugs cross cellular mem­

branes only in the fonn of undissociated molecules and that the bound 

fonn is inactive (Goldstein, 1949; Maynert, 1965), the in vivo and in 

vitro· results and conclusions of Waddell. and Butler appear to be incon­

sistant. On the other hand, our results and those of Goldbaum and Smith 

correlate nicely with the in vivo data of Waddell. and Butler. The in­

fonnation reported above indicates that phenobarbital binding as well 

as drug response are apparently pH dependent. 

The binding of an anionic drug molecule by albumin can be 

ascribed to the availability of the free imidazole,f-amino, and guanido 

groups of the basic amino acids - histadine, lysine, and arginine, res­

pectively. 

The dissociation constants for phenobarbital and the amino 

acids are represented by their pKa values. The pKa for phenobarbital, 

a weak acid, is. 7.4 (Martin, 1962). The pKa's for the imidazole group 
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of histadine, the f -amino group of lysine, and the guanido group of 

arginine are 5.6 - 7.0, 9.4 - 10.6, and ll.6 - 12.6 (White, Handler, and 

Smith, 1964). The acidic and basic dissociation constants may be cal.cu-

lated by substitution in the following equations: 

pKa = pH + log non-ionized acid 
ionized acid 

ionized base pKa = pH + log --------non-ionized base 

(l) 

(2) 

Examination of the pKa, pH and the equation involved provides a basis for 

determining the extent of drug or amino acid ionization. 

As the hydrogen ion concentration in a solution containing 

phenobarbital is decreased, the amount of the drug ionized is increased 

(equation l). Thus, the anionic form of the phenobarbital molecule be­

comes more available for binding as the pH is increased from 6.6 - 7.8. 

In contrast, this alteration of pH results in a positive charge on the 

free groups of the basic amino acids {equation 2). The presence of 

increasing amounts of the anionic and cationic charged molecules in the 

solution provides for increases in the drug-protein binding. Since the 

imida.zole group las the lowest pKa, it is likely that this is the group 

primarily responsible for the binding of phenobarbital to human serum 

albumin. 

Like Goldbaum and Smith, many researchers have reported a 

reversal of the fraction of drug bound above pH 7.8. This decrease in 

association above pH 7.8 is rationalized by Eichman et al (1962). They 

assume: 1) the occurrence of a specific interaction between a 
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"proteinated site" on the albumin and the drug, or 2) a change in the 

configuration of the binding sites "resulting from the neutralization of 

a proteinated group on the protein". Either or both may result in a 

disruption of the drug-protein complex. They point out that ~--a.mine groups 

dissociate in the pH range where binding reversal transpires, and tbat 

"it is quite possible tbat neutralization of such groups is related to 

the marked decrease in the interaction". 

Our pH data and that of Goldbaum and Smith suggest tbat change 

in the blood hydrogen ion content may affect the dosage at which pheno­

barbital and other barbiturates a.re therapeutically effective. Binding 

differences over a nonnal pH of 7.35 - 7.45 amount to approximately 4.5~ 

in vitro. Disease states evoking disturbances in acid-base metabolism 

leading to acidosis or alkalosis such as renal disorders, respiratory 

disorders (tuberculosis, emphysema), types of adrenocorticism, or diabetes 

mellitus, provoke significant pH alterations. Although barbiturates may 

often be contraindicated in these conditions, sedative and hypnotic doses 

o:f' phenobarbital are administered to relieve insomnia and anxiety prior 

to knowledge of their etiology. Undissociated phenobarbital availability 

appears to be a :factor in drug dose-response relationship. Consequently, 

aey disease states evoking pH changes would contribute to the problems 

of drug dosage variability between and within patients. 

The concentration o:f' albumin in serum between individuals is 

highly varied. Altman and Dittmer (1961), using reports published in the 

1950' s, compiled a table showing a range of 2. 0 - 4. 5 g/100 ml. Other 

sources suggest .an average concentration of 3.5 g/100 ml. The consensus 
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places the average HSA concentration between three and four percent. Little 

difference in binding was observed (5 percent) between HSA concentrations 

of 3 to 4 percent. A sharp decrease in the amount of drug bound was ob­

served below 3 percent. Our work supports the findings of Goldbaum and 

Smith. We all observed that 3 percent albumin bound approximately 43~ 

of the phenobarbital. Differences between human serum albumin and bovine 

serum albumin seem small and many drugs are bound to approximately the 

same extent by both. "In general, however, the complete unpredictability 

of species differences and variation of relative binding power with 

different drugs dictate caution in transferring interaction data between 

species 11 (Goldstein, 1949; Tanford, 1955). The results obtained appear 

to indicate that HSA expresses its greatest influence upon the drug binding 

at concentrations below 3 percent. More subtle binding changes occur 

above 4 percent. Conditions such as dehydration, renal disease, liver. 

disease, and malnutrition, lead to HSA alterations. Changes in albumin 

concentration could be a participating factor in the regulation of pheno-

barbital dose-response by controlling the number of albumin molecules with 

available binding sites. 

Given a specific pH and HSA concentration, increasing pheno-

barbital concentrations provide a larger quantity of undissociated drug. 

Consequently, toxicity results when a sufficient amount of the free acid 

becomes available. As the phenobarbital concentration increased, the 

moles of drug bound per mole HSA ratio increased proportionately until 

-5 concentrations approximating toxic levels were attained. At 100 x 10 M, 

this proportionality began to decrease. Although the percentage of drug 
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bound at 8oo x l0-5 M was low, the ratio indicates that approximately 40 

times more drug was bound per molecule of BSA at this concentration than 

at 12.5 x l0-5 M (Table IV).· .. It would appear that the presence of pheno-

barbital may affect the affinity of the protein for the barbiturate. The 

decrease in proportionality may be attributed to binding site saturation 

and/or a distortion of binding site configuration due to saturation. 

When the environment of the albumin is altered, the response 

of the' organism to phenobarbital can become quickly magnified. Higher 

concentrations of the drug not only provide more of the free acid fonn 

but can cause depressed respiration leading to respiratory acidosis. This 

decrease in pH would result in a further magnification of the phenobarbital. 

response. 

Karush together With Goldbaum and Smith have stressed the im­

portance of the number of binding sites per molecule of protein (n) in. 

the drug-protein complex. It was estimated from these results that human 

serum albumin has a totai n of 15 for phenobarbital. There was a primary 

class of sites (n1 = 0.95) and a more numerous secondary class (~= 14.05). 

Goldbaum and Smith determined that bovine serum albumin (BSA) had 22 n. 

The BSA sites consisted of a primary group with a smaller n1 (0.3) and 

a larger secondary n2 (21.7). Moreover, the~ association constant was 

extremely high when compared with ours (287,000. vs. 1000). A comparison 

between secondary association constants showed some agreement, 90 vs. 124. 

Thus, BSA not only had more binding sites per molecule albumin than BSA 

but the overall affinity for binding phenobarbital was stronger. 

Given .constant physiological and biochemical conditions, it is 
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tempting to attribute species differences in phenobarbital response to 

the number and character of the binding sites found on serum albumin. 

However, binding data such as"reported in this disse~ation have not be­

come available for albumin of species other than bovine. 

In conclusion, a comparison between these data and results ob­

tained by Goldbaum and Smith, Taylor et al (1954), Waddell and Butler, 

and Lous, provides a correlation between in vitro and in vivo binding of 

phenobarbital by serum albumin. The drug-protein complex is a :f'unction 

of the number of binding sites available. But the extent of phenobarbital 

binding is dependent upon pH and related to the serum albumin concentra­

tion and the drug concentration. Any disease states altering these para­

meters alter phenobarbital binding by HSA and may produce variations in 

the drug dose-response relationship. 

SUMMARY 

1. Phenobarbital binding is related to hydrogen ion concentration, being 

maximal at about pH 7 .8. The percent of drug bound sharply decreased 

below pH 7.35. 

2. At a given concentration of phenobarbital, the fraction of drug bound 

approaches maximum with increasing albumin concentration. However, 

the fraction of bound drug per mole HSA diminishes. 

3. As the phenobarbital concentration increases, the fraction bound 

decreases; however, more drug is bound per molecule of HSA. 

4. A total number of 15 binding sites per molecule of HSA is estimated 

for phenobarbital. Two classes of sites were determined, a primary 

eroup with high affinity and a secondary group with much less af':f'inity. 
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5 • The percentage of phenoba.rbi tal bound by HSA in vitro was found to be 

similar to previously published results obtained in vivo. 

6. Alterations in physical, '~d chemical conditions, are related to the 

binding of phenobarbital by HSA. In the opinion of this author, 

alterations in these para.meters which ca.use changes in phenobarbital 

binding can contribute to drug dose-response variations. 
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CHAPTER V 

APPENDIX 

Phenobarbital Detennination: Method of Goldbaum (1952) 

This procedure has its basis in the fact that barbiturates have 

one absorption band in strong alkali and another in solutions between 10.2 

a:nC: 10.6 showing characteristics of two different resonance forms. The 

optical density difference between the two forms is greatest at 260 mu 

"for alkaline solutions containing 2-30 mcg. of barbiturates/ml." These 

differences follow Beers Law and are used to quantitiatively measure 

pb~nobarbital concentrations. From a survey of the literature, it is 

concluded that ultraviolet, spectrophotometric techniques are the most 

sensitive for quantitative and qualitative identification of barbiturates • 
.. 

The Goldbaum method provides a highly specific identification for barbi-

turates. It also allows for differentiation between many of the barbi• 

turates. 

Reagents: Borate buffer, 0.36 N sodium hydroxide, washed 
chloroform, glass distilled water, and the 
appropriate M/15 Sorensen's pH buffer. 

Decant solutions from dialysis bag and tube into separate test 

tubes. Pipette a portion of each solution into separate volumetric flasks 

and dilute to a concentration approximating 50 mcg./ml. Place 5 ml. of 

each diluted solution into separate, dry, 125 ml. polypropylene-stoppered 

separatory funnels. Acidify each solution with 3 drops of 6 N HCl. The 

pH should be between 1-2 using pH paper. 

Add 15 ml. of chloroform to each funnel and shake vigorously 

for 1 minute. Drain the chloroform layer through a #1 Whatman filter paper 
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containing approximately 10 gms. of Na2so4 into a dry separator:y funnel. 

Repeat the extraction with aliquots of 15, 10 and 10 ml. of chlorofom • 
.. 

Collect the filtered extracts in the second separator:y tunnei. Finally', 

rinse the filter with 10 ml. of chloroform. 

Pipette 10 ml. of 0.36 N NaOH into the separator:y funnel con-

taining the chloroform extracts and shake for 10 min. on a mechanical 

shaker to extract the phenobarbi ta.J. into the NaOH layer. After shaking, 

drain and discard the chloroform layer and collect the aqueous alkaline 

layer in a 12 ml. centrifuge tube. Centrifuge for 2-3 min. at 2000 rpm 

to precipitate any chloroform. 

Transfer approximately 3 ml. of the alkaline extract to matched 

quartz cuvette and determine the optical density at 260 mu. in a Beckman 

DU spectrophotometer against a water blank. Pipette 4 ml. of the alkaline 

extract into a tube containing 2 ml. of the Borate buffer. Pour 3 ml. •. of 

this solution into a clean cuvette and determine the optical density at 

260 mu. 

The appropriate Sorensen's buffer is carried through the same 

procedure as a reagent blank. 

The optical density of the alkaline-borate solution is corrected 

for dilution by multiplying by 1.5, and then it is subtracted from the 

optical density of the alkaline extract. The difference is employed to 

determine the phenobarbital concentration after appropriate dilution 

corrections. 

A standard curve is plotted of the optical density differences 

obtained from s~veral known concentrations of phenobarbital Na extracted 



using the above procedure. The experimental phenobarbital concentrations 

were determined from the standard. curve. 
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Protein Determination 

The method described by Gornall et al (1948) is based on the 

formation of a violet color ~hen copper sulfate in a strongly alkaline 

solution reacts with proteins or polypeptides having peptide or amide 

linkages. 

Reagents: Biuret reagent of GornaJ.l et al contains l.5 gm. 

cupric sulfate (CuS04.5H20), 6.o gm. potassium tartrate (NaKC4H4o6 .4~0) 
dissolved in approximately 500 ml. of distilled water to which is added 

300 ml. of 10% naOH. qs. to 1 liter. 

The dialysate, the HSA solutions, and the appropriate Sorensen's 

Buffer (reagent blank) are diluted 1:10 with water and one ml. of each is 

pipetted into separate test tubes. 4 ml. of the reagent is pipetted into 

each tube and the mixture allowed to stand for 30 minutes at room tempera­

ture. The optical densities of the solutions were determined in a Beckman 

DU with one cm. cells at 540 mu using a blank of glass distilled water. 

Human serum albumin standards were used as controls and various 

concentrations were employed to plot standard curves from which protein 

concentrations were determined. 



Partition Coefficient (Pc) and Per Cent Theoretical Extraction 

The Pc of phenobarbital Na and its extraction was determined 

using the method described by,Martin, (1962). 

The Pc is based upon the distribution of a solute between immis-

cible solvents. When a substance is added to the immiscible solvents in 

a quantity insufficient to saturate the solutions, it becomes distributed 

between the two solvents in a definite ratio. If c1 and c2 are the equi­

librium concentrations of the substance in solvent 1 and solvent 2, then 

the equilibri~ constant (k) = 

Pc = concentration of Phenobarbital 
concentration of Phenobarbital 

in Sorensen's Buffer (C1) 
in CHCl3 (c2) 

Once the Pc is determined, it is employed in the following formulas to 

calculate the theoretical extraction and percent recovery. 

, 

2. x mg./cc. theoretically extracted "" wl + w2 

Percent theoretical recovery = X ~ 
concentration in original solvent x lOO~ 

Where W = theoretical number of milligrams of solute extracted repeatedly 

from v1 ml. of one solvent (Sorensen's buffer) with successive portions of 

v2 ml. of a second immiscible solvent (CHc1
3
), w1 "" amount of solute left 

in original solvent after the first extraction, and w2 = the amount of 

solvent remaining in the original solvent after repeating the extraction 

procedure using v2 number of ml. of solvent. 

The Pc procedure was as follows: 

l. Dilute 500 mg. of phenobarbital Na to 100 ml. with Sorensen's pH 7. 4 
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buf'fer ( c1 ) • Pipette 20 ml. of this solution into a separatory funnel and 

add 20 ml. washed CHC13 (pipette). Add 3 drops ot 6 N HCl and shake for 

1 minute. Pipette 10 ml. of"the CHC1
3 

layer into a tared beaker. Evapor­

ate CHC13 to dryness and weigh beaker to determine the phenobarbital 

residue gravimetrically (c2). 

2. a) Dilute 500 mg. of phenobarbital Na to 100 ml. w1 th Sorensen's 

buf'fer. Pipette 40 ml. of this solution into a separatory funnel and 

add 40 ml. CHC13 (pipette). Add 3 drops of 6 N HCl and shake one minute. 

Remove 10 ml. CHc1
3 

and repeat step #1, me.king the dilution correction. 

This serves as a control CHc1
3 

extraction of phenobarbital and confirms 

step #l. 

b) Using a pipette, remove 20 ml. of the CHc1
3 

layer remaining in 

the separatory funnel from (a) and place into a second separatory funnel. 

Pipette 20 ml. 0.36 N NaOH into the funnel. Shake the contents on a 

mechanical shaker tor 10 minutes. Pipette 10 ml. of the CHc1
3 

layer into 

a tared beaker and repeat (a). 

c) Subtract (b) from (a) to determine the amount of phenobarbital 

extracted by NaOH from CHc1
3

• 

The partition coefficient for 

Concentration of Phenobarbital in Sorensen's Buf'fer 
Concentration of Phenobarbital in CHC13 

was calculated to be l.226. 



Estimation of Protein Binding Sites - Method of Karush (1950) 

The mathematical analysis of binding data has been thorougbl.y 

discussed by Scatchard. (1949), Scatchard et al (1950), Karush and 

Sonenberg (1949)~ Karush (1950), Eichman et al (1962), and Keen (1966). 

These investigators estimated the number of binding sites per molecule 

of albumin for various drugs as follows: 

1. The moles of drug bound per mole of albumin (r) is deter­

mined for several concentrations of the drug. 

2. Then (r) is related to the molar concentration of the free 

drug present (c) by preparing a linear plot of r/c vs. r values. 

3. The curve resulting from the r/c vs. r relationship is 

extrapolated to the ordinate and the abscissa. The authors state that 

the values at the intercept points on the ordinate and abscissa equal nK 

and n respectively. "K" is equal to the association constant and "n" 

equals the number of binding sites. 

According to these authors, a plot of the r/c vs. r values 

produces a straight line when a single, homogeneous group of sites is 

responsible for drug binding. Scatchard. points out that the relationship 

between the concentrations of bound and free drug is expressed by the 

formula: 

r/c = nK - nr 

Should the r/c versus r plot produce a curved line, the deviation from a 

straight line may be due to electrostatic interaction. Electrostatic 

interaction is attributed to the repulsion of approaching drug ions by 

those already bound. An electrostatic correction factor may be applied 
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by plotting r/c (f) versus r, when f equals e2w(Zp+r). "e" is the natural 

log, "w" the Debye-Huckle parameter, and Zp is the net charge on the pro-
" tein. The relationship between the concentrations of bound and free drugs 

are represented by the formula (Keen, 1966): 

r/c (f) = nK - rK 

If a curved plot persists a~er r/c correction for electro-

static interaction, heterogeneity of binding sites is assumed. The experi-

mental plot is extrapolated to graphically estimate the total number of 

binding sites, the number of binding site groups, and their affinity for 

the agent being studied. "Assuming that there are n binding sites.of two 

types, n and n2 with association constants K1 and !<21 and A is the limiting 

value of r/c as c approaches zero", the equation for the relationship 

between free and bound drug concentrations is: 

n1 IS_ n2 ~ 
r/c = + __ _ 

l + IS_ c 1 + K
2

c 

where n = n1 + ~, and line r/ c = n1 K1 + ~ = A (Karush, 1950; Goldbaum 

and Smith, 1954). The association constant (K) for each class of sites 

is determined by dividing the class nK value by its n value. 

The graphically determined n and K values are substituted into 

the appropriate equation to solve for r/c. The calculated r/c ratio vs. 

r values are plotted. This plot should produce a curve similar to that 

originally drawn and extrapolated (Keen, 1966) • 

The estimation of the number and character of phenobarbital 

binding sites per molecule of human serum albumin was determined in the 

manner described. 
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