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ABSTRACT

 Traumatic brain injury (TBI) is a leading cause of morbidity and mortality 

globally and often results in long term disability.  Unfortunately, the success of 

rehabilitation techniques as therapy for TBI is limited, which may be due to the growth 

restrictive environment of the adult central nervous system (CNS).  This environment is 

thought to result from glial scars, lack of neurotrophic factors, and the presence of an 

array of growth-inhibitory molecules.  One such growth-inhibitory molecule is the 

protein Nogo-A.  Our laboratory has shown that neutralization of Nogo-A with anti-

Nogo-A immunotherapy after ischemic stroke results in improvement in functional 

recovery in the skilled forelimb reaching task and is correlated with an increase in axonal 

plasticity.  In the present study, we sought to determine whether anti-Nogo-A 

immunotherapy following TBI produces similar recovery as with ischemic stroke.  

Therefore, we hypothesized that anti-Nogo-A immunotherapy following TBI in the adult 

rat will result in enhanced axonal plasticity and improved recovery of motor function.  

Accordingly, adult rats were trained in the skilled forelimb reaching task and received 

either a TBI via controlled cortical impact (CCI) or no TBI.  One week later, rats that 

received a TBI were administered anti-Nogo-A antibody (11C7), control antibody, or no 

treatment and tested for seven more weeks on the skilled forelimb reaching task to assess 

functional recovery.  Once behavioral testing was completed, an anterograde 

xiv



neuroanatomical tracer was injected into the sensorimotor cortex contralateral to the TBI 

lesion to assess axonal plasticity.  Behavioral analysis did not demonstrate whether or not 

there was recovery of skilled forelimb function since control animals significantly 

recovered by week two and almost fully by the end of the study.  Subsequent 

neuroanatomical analysis revealed no increased neuroplasticity at the level of the red 

nucleus in animals treated with mAB 11C7 at week eight post-TBI.  To determine if anti-

Nogo-A antibodies increase functional recovery and axonal plasticity following TBI, 

future studies should aim to produce TBI lesions that induce lasting deficits.
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CHAPTER I

INTRODUCTION

 Traumatic brain injury (TBI) has long been a leading cause of morbidity and 

mortality globally.  It is typically caused by a blunt or penetrating trauma to the head 

resulting in decreased level of consciousness, amnesia, skull fracture(s), intracranial 

lesion(s), and/or death.  It is estimated that approximately 1.7 million people in the U.S. 

are either hospitalized, visit the emergency department (ED), or die as a result of TBI 

every year (Faul et al., 2010; Coronado et al., 2012).  Overall, TBI has contributed to a 

third of all injury-related deaths in the U.S. (Faul et al., 2010).  In areas of conflict, TBI 

has become a signature wound resulting from a blast or blunt force trauma.  From 2000 to  

2012, the Department of Defense estimated that at least 250,000 service members 

suffered a TBI (DoD, 2012).  However, these numbers do not include mild TBIs that go 

unreported or those that receive no medical care.  Thus, it is likely these statistics are a 

substantial underestimate. 

 As for the survivors of TBI, many are plagued with disabilities.  Currently, about 

5.3 million Americans or 2% of the U.S. population suffer from disabilities resulting from 

TBI (Thurman, 2007).  Annually, of the estimated 275,000 Americans hospitalized 

following TBI, about 80,000 of these develop longterm disability (Coronado et al., 2012).  

Severely injured patients may need surgery to repair or remove ruptured blood vessels 
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(hematomas) or bruised brain tissue (contusions).  Depending upon the severity and 

location of the injury and the age and health of the individual, disabilities that can result 

include cognitive difficulties, problems with sensory processing, difficulty 

communicating, and behavioral or mental health problems.  Even more serious TBIs can 

result in an unresponsive state with brief responsiveness by a strong stimulus, coma, a 

vegetative state, or a persistent vegetative state (PVS). 

 The treatment of TBI depends on the severity of the injury.  While mild TBIs 

typically require no treatment other than rest and pain relief medication, moderate to 

severe TBIs are more complicated and involve increasing oxygen and blood supply to the 

brain and limiting further damage by relieving inflammation.  Typically, however, 

receiving treatment is delyed and thus, neuroprotection is vastly diminished.  Because of 

this, attention has been focused on rehabilitation as a means to enhance functional 

recovery.  Specifically, these therapies aim to increase neuroregeneration and 

neuroplasticity.  Neuroregeneration refers to the brain’s ability to regrow or repair 

damaged neural tissues, cells or cell products, while neuroplasticity refers to the brain’s 

ability to reroute neural circuitry.

 Unfortunately, the success of rehabilitation techniques is limited and is thought to 

be due to glial scars, lack of neurotrophic factors, and the presence of an array of growth-

inhibitory molecules like chondroitin-sulfate proteoglycans (CSPGs) (Davies et al., 1999) 

and myelin-associated proteins (Filbin, 2003).  These molecules include the CSPGs 

Versican V2 (Schweigreiter et al., 2004) and Brevican (Schmalfeldt et al., 2000), 
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oligodendrocyte myelin glycoprotein (OMgp) (Wang et al., 2002), myelin-associated 

glycoprotein (MAG) (McKerracher et al, 1994; Mukhopadhyay et al., 1994), and Nogo-

A (Schwab, 2004).

! Nogo-A is an inhibitory protein initially seen as primarily expressed on the 

surface of oligodendrocytes and their product myelin, but has also been seen in neuronal 

cell bodies, neurites, and intracellulary associated with the endoplasmic reticulum (ER) 

of neural cells (Huber et al., 2002; Wang et al., 2002b; Josephson et al., 2001; Voeltz et 

al., 2006).  Two regions of the Nogo-A protein have been attributed to axon-growth 

inhibition.  The first region contains the inhibitory domain Nogo-66 and is located in the 

C-terminal RTN area, while the second region contains the inhibitory domain Nogo-A 

Δ20 and is located in the Nogo-A specific area towards the N-terminus (Oertle et al., 

2003b).  Nogo-66 is an extracellular 66-amino acid sequence common to all isoforms of 

Nogo, while Nogo-A Δ20 is a Nogo-A specific domain (Oertle et al, 2003).

 Recently, neutralization of Nogo-A by treatment with monoclonal antibodies 

(mAb) have been of great interest in promoting axonal outgrowth for treatment of CNS 

injuries.  The mAb IN-1 in particular has been shown to regenerate corticospinal tract 

fibers after adult CNS lesions (Schnell & Schwab, 1990; Schnell et al., 1994) and cause 

functional recovery in adult rats after spinal cord injury (Bregman et al, 1995).  Although 

the role of Nogo-A in axonal regeneration is under active investigation, the investigation 

of its role in neuroplasticity has shown that treatment with anti-Nogo-A immunotherapy 

enhanced new axonal growth from uninjured pathways that projected to areas denervated 
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by the lesion (Thallmair et al., 1998; Kartje et al., 1999; Wenk et al., 1999).  Some lesion 

models that have been used to assess neuroplasticity following treatment include 

unilateral pyramidotomy, cortical aspiration lesion, and ischemic stroke.  In these models, 

administration of anti-Nogo-A antibodies have resulted in axonal plasticity of intact fiber 

tracts, brain reorganization (Kartje et al., 1999; Wenk et al., 1999; Emerick et al., 2003), 

and improved functional recovery of skilled movements in adult and aged rats (Thallmair 

et al., 1998; Z’Graggen et al., 1998; Emerick & Kartje, 2004; Papadopoulos et al., 2002; 

Tsai et al., 2007; Markus et al., 2005).  However, it has also been shown in rats given a 

TBI that cognitive function (spatial memory) had been enhanced without an improvement 

in functional recovery (reaching) with anti-Nogo-A antibodies administered 24 hours 

after brain injury (Marklund et al., 2007; Lenzlinger et al., 2005).  There are several 

factors that may have contributed to the observed lack in functional recovery.  For 

example, these studies utilized the lateral fluid percussion model of TBI which, in 

comparison to the controlled cortical impact model, may produce more variability in 

lesion location and size.  Also, they were only conducted up to four weeks.  It is possible 

that more time is necessary for functional recovery to occur.  Thus, the focus of this study 

is to examine whether anti-Nogo-A immunotherapy induces neuronal plasticity that leads 

to improved motor recovery eight weeks after receiving a TBI by controlled cortical 

impact.
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CHAPTER II

HYPOTHESIS AND SPECIFIC AIMS

HYPOTHESIS:

Anti-Nogo-A immunotherapy following traumatic brain injury (TBI) induced by the 

controlled cortical impact model (CCI) in the adult rat will result in enhanced 

axonal plasticity and improved recovery of sensorimotor function.

Specific Aim 1 will determine whether anti-Nogo-A immunotherapy given one week 

post-TBI results in improved motor recovery.  This will be assessed using a behavioral 

test, the skilled forelimb reaching task to assess forelimb dexterity. 

Specific Aim 2 will determine if functional recovery is correlated with axonal plasticity.  

Biotinylated dextran amine (BDA), an anterograde tracer, will be used to examine 

whether new axonal pathways develop from the opposite, spared cortex in adult rats post-

TBI to re-innervate the deafferented red nucleus. 
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CHAPTER III

REVIEW OF LITERATURE

TBI INJURY PROCESS: PRIMARY AND SECONDARY INJURY

Primary Injury

 Primary injury from TBI refers to the immediate tissue damage caused by the 

biomechanical forces exerted on the brain at the instant of impact and can be focal, 

diffuse, or both (Miller et al., 2001).  Often, epidural/extradural hematomas (pooling of 

blood between the skull and meninges), subdural hematomas (pooling of blood between 

the dura and arachnoid), and/or subarachnoid hemorrhages and intracerebral hematomas 

(pooling of blood within and around the brain) result from head injury (Moore, 2005; 

Morales et al., 2005).  

Secondary Injury

 Following and initiated by the primary injury is a complex process involving 

microscopic changes known as secondary injury.  This leads to blood brain barrier 

damage, edema, increased intracranial pressure, altered cerebral blood flow, ischemia and 

hypoxia, increase in lactate, and energy deficits.  Ultimately, brain damage characterized 

by cell death, axonal injury, brain atrophy, and demyelination occurs and results in 

functional deficits.  The microscopic changes involved in secondary injury include 
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excitotoxicity, oxidative stress, reduction in adenosine triphosphate (ATP) levels and 

proinflammatory cytokine and chemokine release, as discussed in more detail below.  

Excitotoxicity

 Under homeostatic conditions, all cells, including neurons and glia, regulate a 

Ca2+ gradient where the concentration of Ca2+ extracellularly exceeds the concentration 

of Ca2+ intracellularly.  Cell damage, as induced by TBI, disrupts this gradient by 

impairing the re-uptake of the neurotransmitter glutamate.  High concentrations of 

glutamate in the extrasynaptic space can then overstimulate N-methyl-D-aspartate 

(NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, 

leading to an influx of calcium ions and subsequent excitotoxicity (Szydlowska and 

Tymianski, 2010; Baines and Hall, 2012).  When calcium ions in the cytoplasm reach 

non-physiological levels, mechanisms in the cell are activated to remove the excess.  

However, Ca2+ concentrations intracellularly as a result of excitotoxicity are too high to 

be cleared, inducing the activation of signaling pathways that lead to apoptotic or necrotic 

cell death.  Specifically, high levels of intracellular Ca2+ can lead to the activation of 

caspases, endonucleases, and kinases, causing cell damage.  In turn, this damage can lead 

to the overproduction of free radicals, malfunction/damage of mitochondria and 

endoplasmic reticula, acidosis, cell swelling, cell membrane disruption, and DNA 

fragmentation, causing cell death (Szydlowska and Tymianski, 2010).
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Oxidative Stress

 Following TBI, the oxygen loss caused by blood loss in addition to the disruption 

of cells’ chemical gradients leads to a decrease in available ATP.  Decreases in available 

ATP causes a disruption in protein synthesis and subsequent antioxidant enzyme 

synthesis.  The disruption of antioxidant production leads to an increase in partially 

reduced oxygen and nitrogen products.  It has been established that following a cortical 

injury, an abundant amount of hydroxyl radicals are produced (Smith et al., 1994).  Since 

carbon is also a target for oxidation by reactive oxygen species (ROS), lipids, nucleic 

acids, and proteins are vulnerable to the effects of free radicals.  The cells experiencing 

an excess of free radicals/ROS are undergoing oxidative stress.  Importantly, in a 

homeostatic state, ROS are essential in clearing invading pathogens and are also involved 

in intercellular and intracellular signaling functions as mitogens.  Under these conditions, 

potential toxicity of ROS is regulated by mechanisms that reduce oxidant levels by 

repairing damage and producing enzymatic antioxidants (superoxide dismutases, 

catalases, and glutathione peroxidases) and non-enzymatic antioxidants (vitamin E, 

vitamin C, and glutathione).  These mechanisms after TBI, however, can become 

overwhelmed, subsequently causing cellular dysfunction and cell death (Bains and Hall, 

2012).

 Neurons and glia are not the only targets of damage induced by ROS.  The brain’s 

main vascular filtering system, the blood-brain-barrier (BBB), is also affected (Smith et 

al., 1994).  The BBB contains a network of capillaries that selectively supplies nutrients 
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to the brain.  The difference between these capillaries and those found throughout the 

body lies within tight junctions that are formed between endothelial cells.  These tight 

junctions, composed of transmembrane proteins like occludin, claudins, and junction 

adhesion molecules (JAMs), allow the restriction of microscopic objects (i.e. bacteria) 

and large or hydrophilic molecules into the cerebral spinal fluid (CSF), while allowing 

the diffusion of small hydrophobic molecules (i.e. O2, CO2).  Along with tight junctions, 

pericytes, smooth muscle, and astrocytic endfeet surround these endothelial cells and 

strictly regulate what enters the brain from the circulatory system (Chodobski et al., 

2011).  Following TBI, the BBB is known to transiently break down (Chodobski et al., 

2011).  This result may be due to lipid peroxidation, where unsaturated fatty acids present 

in membrane phospholipids are targeted for peroxidation in a chain reaction, since 

blocking this reaction reduces BBB permeability post-TBI in a dose dependent manner 

(Smith et al., 1994).  

Reduction in ATP Levels

 Blood loss as a result of vascular damage in the primary injury reduces oxygen 

levels delivered to the brain and that are necessary for oxidative phosphorylation to 

produce energy (Hall et al., 2010).  Consequently, protein functionality and production is 

vastly diminished.  To begin, the reduction in ATP levels as a result of oxidative 

phosphorylation being compromised subsequently causes a reduction in Krebs cycle 

activity by impairing the active transport of pyruvate into mitochondria (Hall, 2012).  

This causes a shift in cells from consuming glucose aerobically to anaerobically, known 
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as the Pasteur shift, leading to lactic acidosis, a buildup of lactic acid (Hall, 2012).  As the 

buildup of lactic acid continues, cellular pH decreases leading to protonation of amino 

acid side groups.  This can lead to changes in protein conformation, thus affecting protein 

functionality.  Lastly, the reduction in ATP levels causes a reduction in transcription of 

new proteins as ATP is necessary for this process.  With transcription also being 

compromised, the production of proteins, like antioxidants necessary for overcoming and 

surviving injury, is diminished.  

Proinflammatory Cytokine and Chemokine Release

 Cerebral inflammation following TBI is characterized by glial activation, 

leukocyte recruitment, and up-regulation and secretion of mediators like cytokines and 

chemokines (Morganti-Kossmann et al., 2001).  The disruption of the BBB allows the 

entry of circulating neutrophils, monocytes, and lymphocytes to the injured site (Bye et 

al., 2007; McIntosh et al., 1998; Clark et al., 1994; Kato & Walz, 2000; Kubes & Ward, 

2000).  Activated immune cells within the parenchyma release mediators including 

prostaglandins, free radicals, complement factors, and pro-inflammatory cytokines 

(Werner & Engelhard, 2007), inducing chemokine and cell adhesion molecule expression, 

mobilizing immune and glial cells to the injured site (Lucas et al., 2006).  

 Importantly, the inflammation process is complex and has both beneficial and 

detrimental effects.  Following TBI, elevated cytokines thought to provide beneficial 

effects are interleukin-6 (IL-6), interleukin-10 (IL-10), and granulocyte colony-

stimulating factor (GCSF).  IL-6 plays an important role in host defense (Hammacher et 
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al., 1994) and repair as seen in a study where mice deficient in IL-6 that sustained a TBI 

exhibited increased oxidative stress, decreased cell survival, and delayed wound healing 

(Penkowa et al., 2000).  IL-10 is known to have neuroprotective characteristics including 

suppression of microglia and astroglia activation, as well as decreased production of 

proinflammatory cytokines (Knoblach & Faden, 1998; Kremlev & Palmer, 2005) and 

ROS (Csuka et al., 1999).  Lastly, GCSF has been shown to be antiapoptotic (Schneider 

et al., 2005) and promote neurogenesis (Sehara et al., 2007).  

 On the other hand, cytokines elevated following TBI that are thought to provide 

detrimental effects include interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), Fas 

ligand (FasL), interleukin-8 (IL-8), and monocyte chemoattractant protein 1 (MCP-1/

CCL2).  IL-1 has been seen to exacerbate neuronal injury (Rothwell, 1999), while TNF-α  

induces cerebral inflammation, BBB breakdown, and leukocyte recruitment (Ramilo et 

al., 1990; Kim et al., 1992).  Inhibition of TNF-α has been shown to reduce BBB 

dysfunction and edema (Shohami et al., 1997).  Additionally FasL has been implicated in 

neuronal apoptosis (Grosjean et al., 2007), IL-8 promotes neutrophil infiltration (Whalen 

et al., 2000) and increases BBB dysfunction (Morganti-Kossmann et al., 1997), and 

MCP-1/CCL2 promotes macrophage infiltration (Stirling et al., 2004; Xu et al., 2004; 

Maier et al., 2005).  

INJURY SEVERITY

 TBI can be categorized as either mild, moderate, or severe based on the patient’s 

extent of tissue injury and functional capabilities.  Using the Glasgow Coma Scale 
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(GCS), the severity of TBI can be determined by assigning a score from 3 to 15 (from 

most severe to least severe) based upon functional capacity/symptom severity (O’Phelan, 

2011).  A score is designated as a result of a series of tests including an eye examination 

and verbal and motor assessments.  

 Patients sustaining a mild TBI may be disoriented and have difficulty localizing 

painful stimuli, but are conscious and responsive to verbal communication.  This type of 

TBI may be invisible on CT scans and symptoms may evolve over several weeks, making 

this the most difficult to diagnose.  Mild TBIs constitute a score of 13-15 on the GCS  

(O’Phelan, 2011). 

 On the other hand, patients sustaining a moderate TBI display a greater degree of 

disorientation than those with mild TBIs and find difficulty in communicating verbally.  

Much like with mild TBIs, however, these patients are also conscious.  A GCS score of 

9-12 is assigned to these patients (O’Phelan, 2011).  

 Lastly are those patients sustaining severe TBIs.  These patients are typically 

unconscious and unable to open their eyes or communicate in any way.  Severe TBI is 

characterized by a GCS score of 3-8 (O’Phelan, 2011).  

MODELS OF TBI

 Modeling TBI in experimental animal models is especially difficult due to the fact 

that TBI severity in human patients is evaluated based upon three different criteria: eye, 

verbal, and motor functionality.  While the GCS scores appear to be positively correlated 

with the extent of tissue damage, the brain’s complexity makes it difficult to produce a 
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lesion that causes deficits in each of these three areas simultaneously in animals.  

Moreover, motor/behavioral function can be assessed in animal models following TBI, 

but eye and verbal functions, whether there is a deficit or not after TBI, are difficult to 

determine.  Thus, modern animal models of TBI aim to create a motor and/or cognitive 

deficit that can be tested with known motor and cognitive function assessments like the 

skilled forelimb reaching task and the Morris water maze (MWM).

 Currently, there exists three commonly used animal models of TBI: the weight 

drop model (WD), the lateral fluid percussion model (LFP), and the controlled cortical 

impact model (CCI) (Figure 1a-d).  Each model aims to emulate the primary and 

secondary injury processes as well as the motor and sensory functional deficits seen in 

humans.  

 As the name suggests, the WD model involves a weight of a chosen mass and size  

being dropped from a defined height either onto the skull or directly onto the brain.  

Unlike other models, this model is non-penetrating, and depending on kinetic variables,  

leads to a mild to moderate TBI.  TBI can even be severe and lead to spacial memory 

deficits if the weight of the chosen mass is great enough.  The WD model is not typically 

useful for evaluating persistent behavioral deficits because deficits that arise do not 

usually last more than a week (Morales et al., 2005).  Thus, this model is not very useful 

in evaluating the effects of a given treatment since the animal recovers whether a 

treatment is given or not.
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 Another TBI model, the LFP model, is produced by rapidly injecting saline into 

the brain.  In this model, a pendulum is swung into a syringe-like device around a 

craniotomy, hitting the end of the syringe and forcing saline into the brain.  As a result, 

the mortality rate seen in this model is the greatest due to brainstem herniation, 

subarachnoid hemorrhage, and intrapetechial hemorrhage (Morales et al., 2005).  This 

model has been used frequently to evaluate treatments of TBI, including anti-Nogo-A 

immunotherapy (Lenzlinger et al., 2005; Marklund et al., 2007).

 Lastly, the CCI model is obtained by rapidly extending a piston at a defined 

velocity and duration directly into the brain.  To produce this, an incision is made over 

the skull, a craniotomy is performed, and the pneumatic or magnetic piston is angled over 

the cortex and extended into the brain.  This injury model appears to most closely mirror 

human TBI, leading to both focal and diffuse injury as well as decreasing variability 

between animals (Hall et al., 2008; Morales et al., 2005).  Along with the LFP model, the 

CCI model has also been used frequently to evaluate treatments of TBI.  However, this 

model has not yet been used in conjunction with anti-Nogo-A immunotherapy until now.

Other Models of TBI

 Recently, blast injuries as a result of the current war conflicts and repetitive 

sports-related head injuries have suggested that current models of TBI either need to be 

modified or new models of TBI need to be generated to replicate these types of injuries 

for further study.  In the current conflict, TBI as a result of blast injury produced by 

improvised explosive devices (IEDs) has become quite common.  The damage caused by 
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a blast injury is produced by a rapid pressure wave moving through the brain tissue 

(Risling and Davidsson, 2012).  As a result of a blast, however, additional blunt force 

trauma may arise from shrapnel or environmental structures (Sundaramurthy et al., 2012).  

Currently, rodent models of blast injury do exist and consist of a shock-blast wave 

generator that sends a pressurized wave through a metallic tube where an anesthetized 

animal receives the blast (See Figure 2).  This model leads to diffuse brain damage, 

intracranial hematoma, and brain edema (Svetlov et al., 2010).  Animal behavior in these 

models, however, has not been as extensively studied as in other models, thus it is likely 

modifications will need to be made to make this model an accurate reflection of human 

blast injury.

 As of yet, repetitive sports-related TBI models in animals are infrequent but are 

being developed.  Recently, concussions sustained from sports have been of increasing 

interest and thought to be more serious than previously believed.  Although concussions 

of this kind are considered to be mild TBIs, they often occur multiple times and can lead 

to changes in personality, sleep problems, cognitive impairments, increased risk for 

suicide, post-traumatic stress disorder (PTSD), depression, and anxiety.  In more serious 

cases, these injuries can result in chronic traumatic encephalopathy (CTE).  Because 

sports are a large part of many childrens’ lives and the lives of professional athletes, it is 

important to develop a model for this type of TBI to fully understand its effects and how 

to effectively treat it (Peskind et al., 2013).
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ANATOMY OF CORTICO-RUBRAL-SPINAL MOTOR SYSTEM

 The projection of neurons in different motor tracts originate and end in specific 

areas and follow distinct pathways.  Corticospinal tract (CST) neurons originate in lamina 

V in two distinct cortical areas as small to large pyrimidal neurons and end in the spinal 

cord contralaterally.  The origin of neurons for the corticopontine (CP) and corticorubral 

(CR) tracts are also localized in cortical lamina V.  However, these fibers end ipsilaterally  

in the pontine nuclei and magnocellular red nucleus, respectively.  As for the 

corticostriatal (CS) tract, neurons originate again in lamina V, but also in laminae III and 

VI, ending ipsilaterally in the striatum.  It has been shown that CP, CR, and CS cortical 

neurons occupy one large cortical area, including parts of the medial (AGm) and lateral 

(AGl) agranular corticies and the primary (SI) somatosensory cortex.  Interestingly, it 

appears that there is considerable overlapping of the cortical neurons of origin for the 

four different motor fiber systems.  However, each individual neuron projects axons to 

only one of the four motor associated nuclei and rarely to more than one (Akintunde and 

Buxton, 1992).

 Like the CST, the rat rubrospinal tract (RST) is a contralateral pathway.  It 

primarily originates in the caudal 2/3 of the magnocellular portion of the red nucleus, 

follows through the central tegmental decussation and dorsolateral funiculus of the spinal 

cord, terminating in laminae V, VI, and VII of the spinal cord gray matter.  It has been 

shown that RST fibers directly project to specific populations of motoneurons in forelimb 

areas of the cervical spinal cord (Kuchler et al., 2002).  In this study, RST axons were 
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seen in close apposition to distal (paw) and intermediate (forearm) muscle motoneurons, 

but absent with regard to motoneurons projecting to proximal (upper arm) muscles 

(Kuchler et al., 2002).  Thus, there appears to be a specific role of the RST in distal 

forelimb muscle control.  It has also been seen that the CST is involved in precise rat 

limb movements (Hyland, 1998) much like the RST.  However, the difference between 

these two fiber tracts may lie in the context of the movement, where the CST is primarily 

involved when a new movement is being learned and the RST is active when automated 

movements are being executed (Kennedy, 1990).  

CURRENT TBI TREATMENTS

 The severity of TBI dictates treatment.  Mild TBIs typically require no treatment 

other than rest and pain relief medication.  Moderate to severe TBIs are more complicated 

and involve stabilizing the individual to prevent further injury, increasing oxygen and 

blood supply to the brain, controlling blood pressure, limiting further damage by 

relieving inflammation, and allowing the body to rest (Traumatic Brain Injury, 2013; 

NINDS Traumatic Brain Injury Information Page, 2013).  In many incidents, however, 

there is delay in receiving treatment and thus, neuroprotection is vastly diminished.  

Because of this, attention has been focused on rehabilitation as a means to enhance 

functional recovery.  Rehabilitation techniques are tailored to the individual’s needs and 

may include physical therapy, occupational therapy, speech/language therapy, physiatry, 

psychology/psychiatry, and social support (NINDS Traumatic Brain Injury Information 

Page, 2013).  Specifically, these therapies aim to increase neuroregeneration and 
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neuroplasticity.  Neuroregeneration refers to the brain’s ability to regrow or repair 

damaged neural tissues, cells or cell products.  This includes, but is not limited to, the 

generation of new glia, myelin, and dendritic and axonal tracts.  Neuroplasticity refers to 

the brain’s ability to reroute neural circuitry, as can be done around damaged tissue 

resulting from TBI.

ANTI-NOGO-A IMMUNOTHERAPY

Introduction

 Unfortunately, the success of rehabilitation techniques after TBI is limited.  This 

is thought to be due to the environment in which adult neurons reside--limiting the 

capacity for neuronal plasticity in the adult CNS.  Glial scars, lack of neurotrophic 

factors, and the presence of an array of growth-inhibitory molecules like chondroitin-

sulfate proteoglycans (CSPGs) (Davies et al., 1999) and myelin-associated proteins 

(Filbin, 2003) are part of this growth-limiting environment.  These molecules include the 

CSPGs Versican V2 (Schweigreiter et al., 2004) and Brevican (Schmalfeldt et al., 2000), 

oligodendrocyte myelin glycoprotein (OMgp) (Wang et al., 2002), myelin-associated 

glycoprotein (MAG) (McKerracher et al, 1994; Mukhopadhyay et al., 1994), and Nogo-

A (Schwab, 2004).  Of these, Nogo-A is the most studied inhibitory molecule. 

Genetic and Protein Characterization

 By differential splicing or alternative promotor usage, the nogo gene can give rise 

to three isoforms: Nogo-A, -B, and -C (Chen et al., 2000; Dodd et al., 2005; Huber et al., 

2002; Oertle et al., 2003b; Prinjha et al., 2000).  The C-terminus of all three isoforms 
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shares a 180 amino acid (aa) sequence with two highly conserved hydrophobic stretches 

(Dodd et al., 2005).  In particular, Nogo-A is a transmambrane protein of about 1200-aa 

and contains two inhibitory domains: Nogo-66 and Nogo-A Δ20 (Oertle et al., 2003b).  

Nogo-66 is located within the C-terminal 200-aa reticulon (RTN) region while the 160-aa 

Nogo-A Δ20 domain is located within the Nogo-A specific region closer to the N-

terminus (Oertle et al., 2003b; Chen et al., 2000; GrandPre et al., 2000; Schwab et al., 

2006) (See Figure 3).  

Expression of Nogo-A

 Nogo-A was initially seen to be primarily expressed by oligodendrocytes in the 

adult CNS, with the highest levels present in the innermost adaxonal and outermost 

myelin membranes (Huber et al., 2002; Wang et al., 2002b).  This localization allows 

direct interaction between axons and oligodendrocytes, further substantiating its role as a 

myelin-associated growth inhibitor (Filbin, 2003).  

 Nogo-A has also been found to be expressed in neuronal cell bodies and neurites 

(Huber et al., 2002; Josephson et al., 2001).  Additionally, it has been seen to be strongly 

expressed by developing and immature neurons and, counterintuitively, persists at a high 

level in plastic (constantly changing and reshaping) regions of the CNS like the cortex, 

hippocampus, and dorsal root ganglia (Huber et al., 2002; Peng et al., 2011).  Because of 

this observation, it is likely that Nogo-A has additional functions in plastic areas of the 

CNS unrelated to axonal plasticity.  It has also been seen that, although Nogo-A is 

expressed in nearly all neurons (Hasegawa et al, 2005; Huber et al., 2002), the Nogo-66 
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receptor NgR1 is not (Hasegawa et al., 2005).  In areas where neurons illustrate a high 

capacity for regeneration, no NgR1 mRNA is found (Hasegawa et al., 2005), suggesting 

that the lack of this receptor may be a reason why these neurons are so highly 

regenerative.

 Lastly, Nogo-A is found intracellularly, associated with the endoplasmic reticulum 

(ER) of neural cells.  Because of Nogo-A’s 200-aa C-terminus, it belongs to the reticulon  

(RTN) protein family, which is composed of four members (RTN1, RTN2, RTN3, RTN4) 

present in eukaryotes (Oertle et al., 2003a).  These proteins have been found to influence 

the curvature of the ER and appear as structural regulators for the subcompartment 

“tubular ER” (Voeltz et al., 2006).  

Nogo-A Expression after CNS Injury

 Following CNS injury, Nogo-A expression has been found to be increased directly 

within or proximal to the site of injury.  This has been observed in spinal cord injury 

(Hunt et al., 2003), ischemia (Zhou et al., 2003), and optic nerve damage (Hunt et al., 

2003).  More recently, an up-regulation in Nogo-A levels in a subpopulation of retinal 

ganglion cells with larger soma sizes was observed following axonal severing in the optic 

nerve (Pernet et al., 2011).  Furthermore, following ischemic stroke, an increase in Nogo-

A expression was seen even 28 days post-MCAO in the pyramidal neurons and 

interneurons of the perilesional cortex (Cheatwood et al., 2008).  To our knowledge, 

Nogo-A expression following TBI has not been examined.  These results suggest 
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additional functions of Nogo-A unrelated to axonal plasticity, however these functions are 

currently unknown.  

 Along with observing an increase in Nogo-A expression after CNS injury, it is 

important to note that this increase has not always been observed.  It has also been seen 

that the high endogenous expression of Nogo-A by oligodendrocytes shows little increase 

around a spinal cord injury site (Huber et al., 2002).  Whatever the case, it appears that 

following injury in the CNS, Nogo-A expression does not decrease, but rather either 

increases or stays the same.  

Molecular Mechanisms of Nogo-A

Cell Surface Nogo-A

 To understand how Nogo-A mediates axonal growth inhibition, it is important to 

first understand the structure and organization of the growth cone--an extension of a 

developing axon that dynamically seeks its synaptic target.  The growth cone contains 

two domains: a microtubule-containing central domain and an actin-containing peripheral 

domain.  It is within the peripheral domain that actin assembles and disassembles to 

dynamically extend the axon’s filopodia in search for its synaptic target (See Figure 4a).

 As mentioned, there are two domains that have been shown to exert inhibitory 

effects on neurite outgrowth in the Nogo-A protein: the Nogo-66 sequence in the C-

terminal RTN region and Nogo-A Δ20 in the Nogo-A-specific region (Oertle et al., 

2003b).  Nogo-66 in particular has a clear receptor complex and mechanism of action.  

Along with other myelin inhibitors exhibited on the oligodendrocyte cell surface (MAG, 
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OMgp), Nogo-66 binds to and stimulates the NgR1 receptor complex.  This complex 

includes a glycosyl-phosphatidylinositol-linked leucine-rich repeat protein (Fournier et 

al., 2001) and the NgR1-associated proteins Lingo (Mi et al., 2004) and p75 (Wang et al., 

2002a) or Troy (Shao et al., 2005).  The interaction of Nogo-66 with this complex passes 

through the neurite and activates the RhoA/ROCK pathway.  Downstream in this 

pathway, cofilin is inactivated by LIMK/Slingshot, stabilizing actin, subsequently 

preventing actin cytoskeleton depolymerization in the growth cone and thus blocking 

dynamic extension and retraction of the neurite (Nash et al., 2009) (See Figure 4c).  It 

appears that RhoA’s activation by myelin-associated inhibitors may occur by the 

phosphorylation and inactivation of GSK3β, subsequently allowing CRMP4 and RhoA 

interaction (Alabed et al., 2010).

 More recently, an additional receptor has been identified for Nogo-66, MAG, and 

OMgp known as paired immunoglobulin-like receptor-B (PirB) (Atwal et al., 2008).  

Blocking of PirB in primary neuron cultures partially relieved myelin-protein-induced 

inhibition of axonal outgrowth (Atwal et al., 2008).  However, genetic deletion of PirB in 

vivo after corticospinal tract transection (Nakamura et al., 2011), TBI (Omoto et al., 

2010), or optic nerve crush (Fujita et al., 2011) failed to increase axonal growth.  Thus, 

how PirB contributes to neurite outgrowth inhibition is not yet well understood.  

 As for the inhibitory domain in Nogo-A of particular interest in this study, Nogo-

A Δ20, the mechanisms it triggers in neurons is less well-known.  Unlike with Nogo-66, 

Nogo-A Δ20’s receptor(s) has(have) not been identified until very recently and has been 
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shown to be the G-protein coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 

(S1PR2) (Kempf et al., 2014; Arzt et al., 2013; Theide-Stan et al., 2013).  S1PR2 belongs 

to a subfamily of five S1PRs, which are known to be activated by sphingosine 1-

phosphate (S1P) (Kempf et al., 2014).  Nogo-A Δ20 has been shown to also bind S1PR2 

via extracellular receptor loops 2 and 3, which are distinct from S1P’s binding site 

(Kempf et al., 2014).  Once bound, Nogo-A Δ20 signals through the G protein G13, 

leukemia-associated Rho guanine exchange factor (RhoGEF), LARG, and RhoA (Kempf 

et al., 2014).  In addition to Nogo-A Δ20’s interaction with S1PR2, it appears that it also 

interacts with Tetraspanin-3, a 4-transmembrane-spanning protein that organizes a 

functional membrane scaffold for the ligand-receptor interaction between Nogo-A Δ20 

and the GPCR (Theide-Stan et al., 2013).  It is now believed that the rapid endocytosis of 

Nogo-A Δ20, subsequently leading to RhoA activation, cytoskeleton destabilization, and 

neurite retraction seen in in vitro experiments (Joset et al., 2010) is dependent upon this 

specific, spatiotemporally coordinated Tetraspanin protein scaffold (Theide-Stan et al., 

2013).  Upon endocytosis, it has been shown that the Nogo-A Δ20/receptor complex, via 

a pincher-dependent mechanism, is retrogradely transported in signalosomes to the 

neuronal cell body where it activates RhoA and negatively regulates phospho-CREB 

(cAMP response element-beinding protein), subsequently attenuating neuronal growth 

(Joset et al., 2010) (See Figure 4c).   

 Along with Nogo-A, other signaling molecules, including neurotrophic factors, 

Wnt (a group of signal transduction pathways made of proteins that pass signals from 
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outside of a cell through cell surface receptors to the inside of the cell), semaphorins, and 

netrin, contain more than one active site that interacts with more than one subunit of a 

multi-subunit receptor complex (Schwab, 2010).  It is possible the two inhibitory 

domains of Nogo-A may contribute to growth repression and plasticity differently.  

Where Nogo-66/NgR1 may be able to cause acute/short-term growth cone collapse and 

neurite growth inhibition, Nogo-A Δ20 may induce short-term along with chronic/long-

term inhibitory mechanisms at the cytoskeleton and gene expression level (Chivatakarn et 

al., 2007).  Thus, it is possible that these two domains, upon receptor complex activation, 

together contribute to both acute and chronic impairment of axonal plasticity.  

Intracellular Nogo-A

 Nogo-A belongs to the RTN protein family, which is composed of four members 

in eukaryotes (Oertle et al., 2003a).  Several functions have been described for RTNs, 

including influencing ER curvature, structurally regulating the subcompartment “tubular 

ER” (Voeltz et al., 2006), and interacting with the anti-apoptotic intracellular proteins 

Bcl-2 or Bcl-XL (Tagami et al., 2000; Wan et al., 2007).  The latter has eluded to RTNs’ 

role in cell death regulation (Tagami et al., 2000; Wan et al., 2007).  

 Although Nogo-A and its inhibitory domains are known to induce growth cone 

collapse and subsequent neurite outgrowth inhibition, Nogo-A may also act as a 

neuroprotective molecule, possibly explaining its upregulation of expression in areas of 

CNS injury.  One more recent report has shown that Nogo-A knockout (KO) or the acute 

blockade of Nogo-A with antibodies 24 hours before focal cerebral ischemia decreased 
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neuronal survival after middle cerebral artery occlusion (MCAO) (Kilic et al., 2010).  It 

has also been seen that transfection of Nogo-A Δ20 in cortical neurons is protective 

against hydrogen-peroxide-induced cell death in vitro by possibly interacting with 

peroxiredoxin 2, which scavenges ROS (Mi et al., 2012).  Therefore, Nogo-A and timing 

of its bloackade may have multiple downstream effects on neurons that are as of yet not 

well understood.  

Anti-Nogo-A Immunotherapy after CNS Injury

 To date, several antibodies targeted against Nogo-A exist including IN-1, 7B12, 

and of particular interest in this study, 11C7.  The reactivity of IN-1 and 11C7 to Nogo-A 

has been well-characterized both in vitro and in vivo (Chen et al., 2000; Buffo et al., 

2000; Schnell et al., 2003; Wiessner et al., 2003; Oertle et al., 2003b; Baumann et al., 

2008).  

 Original studies of Nogo-A blockade by in vivo administration of anti-Nogo-A 

antibodies focused on the use of mAb IN-1 after spinal cord injury.  This resulted in an 

enhancement of CST regeneration in adult rats (Schnell and Schwab, 1990; Bregman et 

al., 1995).  Additionally, significant functional improvements in locomotor function were 

observed in adult spinal cord injured rats following treatment with mAb IN-1 (Merkler et 

al., 2001).  

 Aside from spinal cord regeneration studies with anti-Nogo-A immunotherapy, 

anti-Nogo-A antibodies have been implicated in neuroanatomical plasticity.  Work in this 

area has shown that after unilateral pyramidotomy (severing of the corticospinal tract 
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immediately rostral to the pyramidal decussation) in rats treated with mAb IN-1, a 

significant increase in axonal sprouting was observed from the non-lesioned side into the 

deafferented red nucleus, basilar pontine nuclei, and spinal cord (Thallmair et al., 1998; 

Z’Graggen et al., 1998; Bareyre et al., 2002).  Moreover, this increase in neuroplasticity 

correlated to a significant improvement in functional recovery as observed through 

qualitative analyses of skilled forelimb reaching in lesioned rats treated with mAb IN-1 

compared to control rats (Thallmair et al., 1998; Z’Graggen et al., 1998).

 Work examining the increase in neuroplasticity in the context of anti-Nogo-A 

immunotherapy extended further to adult cortical lesions.  Following unilateral aspiration 

lesion in the sensorimotor cortex, it was observed that projections were sent from the 

opposite intact motor cortex into the deafferented dorsolateral striatum (Kartje et al., 

1999), red nucleus, basilar pontine nuclei (Wenk et al., 1999), and spinal cord (Emerick 

and Kartje, 2004).  Again, behavioral recovery was observed with a full recovery in 

forelimb reaching and a significant improvement in the skilled ladder rung walking test in 

adult rats treated with mAb IN-1 following unilateral sensorimotor cortex aspiration 

lesion (Emerick and Kartje, 2004).  

 Studies continued further in the area of cortical lesions treated with anti-Nogo-A 

immunotherapy to experimental stroke.  In adult rats treated with mAb IN-1 following 

middle cerebral artery occlusion (MCAO), significant functional recovery was observed 

in the skilled forelimb reaching task along with new cortico-efferent projections from the 

opposite, unlesioned hemisphere (Papadopoulos et al., 2002).  In one particular study, a 
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different monoclonal anti-Nogo-A antibody, 7B12, was administered 24 hours following 

two different models of stroke--photothrombotic cortical injury (PCI) and MCAO.  In 

both experimental stroke models, significant improvement in behavioral outcomes was 

observed along with a significant increase in midline crossing corticospinal fibers 

originating in the unlesioned sensorimotor cortex in animals treated with mAb 7B12 

following stroke (Wiessner et al., 2003).  Even when adult rats had obtained a MCAO 

and were treated with anti-Nogo-A antibody 11C7 nine weeks after stroke, significant 

functional improvement in the skilled forelimb reaching task was observed along with 

significant enhancement in corticorubral axonal sprouting from the contralesional 

forelimb motor cortex to the deafferented red nucleus in comparison to control rats (Tsai 

et al., 2011).  

 In yet another cortical lesion model, unilateral medial agranular cortex lesion, rats 

were treated with anti-Nogo-A antibodies IN-1, 7B12, or 11C7 immediately following 

injury.  This injury was used to model neglect--a human cognitive spatial disorder 

typically induced by damage to prefrontal or posterior parietal association cortices.  Each 

group of adult rats treated with either IN-1, 7B12, or 11C7 showed significant behavioral 

recovery from neglect compared to control rats (Brenneman et al., 2008).

 Given the vast amount of work that has been done on anti-Nogo-A 

immunotherapy following CNS injury and the overwhelming evidence that this therapy 

induces behavioral recovery as a result of neuroplasticity, research in this area is now 

expanding to TBI.  To date, there are two major studies that have looked at the results of 
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anti-Nogo-A immunotherapy following TBI.  Interestingly, these studies have not seen 

any differences in neurological motor function between rats treated with an anti-Nogo-A 

antibodies and control rats (Lenzlinger et al., 2005; Marklund et al., 2007).  Furthermore, 

rats treated with mAb 11C7 did not show an increase in the extent of axonal sprouting 

from the uninjured corticospinal tract related to control rats (Lenzlinger et al., 2005).  

Both studies, however, used the lateral fluid percussion model (LFP) of TBI and tested 

neurological motor function for only four weeks post-TBI.  Therefore, in this study, we 

chose the CCI model of TBI (produces less variability in lesion size and location than the 

LFP model) and tested functional recovery for much longer (eight weeks post-TBI) since 

all studies showing functional improvement post-ischemic lesions saw significant 

recovery at five and six weeks after treatment with anti-Nogo-A antibodies.
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Figure 1.  Commonly used models of TBI.  A. Feeney’s weight drop model; a weight of 

a given mass is dropped directly onto the exposed dura. B. Marmarou’s weight drop 

model; a weight of a given mass is dropped  directly onto the exposed skull.  C. Lateral 

fluid percussion model; saline is pushed through a reservoir at a given velocity by a 

pendulum into the brain.  D. Controlled cortical impact model; a piston at a given 

velocity is forced by air pressure into the exposed brain to a given distance.  Adapted 

from Xiong et al., 2013.
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Figure 2.  Blast injury model of TBI.  An anesthetized rodent is placed inside a metallic 

tube where a pressurized wave is sent through by a shock-blast wave generator.  Adapted 

from Xiong et al., 2013. 
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Figure 3.  Schematic of human Nogo-A. Nogo-A contains two inhibitory domains

(red): Nogo-A544-725 (Nogo-A Δ20) and Nogo-66 which result in axon-growth inhibition. 

Adapted from Schwab et al., 2006.
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Figure 4.  Molecular mechanisms of Nogo-A-mediated axonal growth inhibition.  A. 

Organization of the growth cone.  B. Growth cone inhibition.  C. Nogo-66 and other 

myelin inhibitors on the cell surface of oligodendrocytes binds to and stimulates a 

common neuronal receptor complex on neurons while Nogo-A Δ20 binds to and 

stimulates a GPCR via Tetraspanin-3 (transmembrane protein shown in red).  Image 

adapted from Pernet & Schwab, 2012.
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CHAPTER IV

MATERIALS AND METHODS

Animals.  Adult male Sprague Dawley rats (40, 200-300g, ages 8-10 weeks) (Harlan, 

Indianapolis, IN) were divided into four experimental groups: (1) TBI only (n=12); (2) 

TBI plus control antibody (n=8); (3) TBI plus mAb 11C7 (n=10); (4) no TBI or treatment 

(n=10) (See Table 1).  To ensure investigators were blinded to treatment groups, the 

animals were number- and color-coded.  Experiments were approved by the Institutional 

Animal Care and Use Committee of Hines Veterans Affairs Hospital.  

Skilled Forelimb Reaching Task.  Animals were placed in a transparent Plexiglas 

chamber (30 x 36 x 30 cm) with a rectangular opening (1.5 x 3 cm) in one wall 

containing a Plexiglas shelf attached and underneath the opening.  Animals were food 

restricted to 95% of their normal body weight to encourage reaching; this diet was 

maintained throughout the testing period.  This task was used according to previous work 

to assess skilled motor functional recovery via forelimb dexterity following ischemic 

stroke  (Papadopoulos et al., 2002) and other injuries to motor pathways governing 

forelimb function (Z’Graggen et al., 1998).  Small round sucrose pellets (45 mg; 

Research Diets, Frenchtown, NJ) were placed one at a time onto the shelf about 1.5 cm 

from the opening.  Animals reached through the opening for the pellet until a total of 20 

attempts and/or 5 minutes had passed. During the training period it typically takes 
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anywhere from 2-5 weeks for each rat to successfully obtain 16 or greater pellets out of 

20 attempts per session. A successful attempt was characterized by the animal locating 

the pellet, reaching with its preferred forelimb through the opening, grasping the pellet, 

and bringing to pellet to its mouth (Figure 5). The preferred forelimb was determined 

once the animal had been consistently reaching with only one forelimb. Once the animal 

was successful 16 or more times for three consecutive sessions, the animal had reached 

baseline.  The baseline value was an average of the last three sessions.  After baseline was 

established, each animal received a TBI as described below and was then tested the next 

day and daily 3-5 times a week for eight weeks.  The timeline of this experimental design 

is shown in Figure 6.  Following TBI, reaching success in the first seven days after TBI 

was examined for considerable variability.  To minimize variability between the groups, a 

set of exclusion criteria was incorporated and any animal that met one of the two criteria 

was excluded from statistical analyses.  These animals were part of a group called 

“included only”.  Animals were excluded based on the following criteria: (1) does not 

successfully obtain a pellet within seven days following TBI and (2) successfully obtains 

a pellet eight or more times during one or more sessions within seven days following 

TBI.  For completeness and comparison, all animals were also analyzed.  These animals 

were part of a group called “all animals”.  

Traumatic Brain Injury via Controlled Cortical Impact (CCI).  TBIs were induced 

via controlled cortical impact as previously described (Dixon et al., 1991).  Rats were 

anesthetized with 2% isoflurane with oxygen.  Directly above the forelimb sensorimotor 
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cortex opposite of the preferred forelimb, a 4 mm craniotomy was performed at a position 

of 0.5 mm anterior and 4 mm lateral to bregma.  The cortical impact was delivered by a 

controlled cortical impact injury device consisting of a small bore and double acting, 

pneumatic piston cylinder with a 40 mm stroke mounted on a stereotaxic 

micromanipulator.  Accurate determination of the piston coordinates was performed by 

placing a sharp concentric tip on bregma and moving it to the above coordinates.  The 

concentric tip was then replaced by the impactor tip (3 mm diameter).  The pneumatic 

piston cylinder was angled 22.0 degrees away from vertical so that the flat impactor tip 

was perpendicular to the surface of the brain.  The impactor tip penetrated the brain at 2.5 

m/sec at a depth of 2.0 mm below the cortical surface for 250 msec.  After impact, the 

bone fragment removed from the craniotomy was replaced, and the scalp was sutured 

closed.  During surgery, the animal’s body temperature was maintained at 37 degrees 

celsius.  The animal was then returned to its home cage.  (See Figure 7)

Antibodies.  The anti-Nogo-A antibody used for this study, 11C7, is an IgG1-isotype 

monoclonal antibody that recognizes an epitope of rat Nogo-A corresponding to amino 

acids 763-820.  The control antibody, mouse anti-bromodeoxyuridine (BrdU), is also an 

IgG1-isotype monoclonal antibody.

Osmotic Pump and Cannula Placement and Removal.  One week following TBI, 

animals were anesthetized with 2% isoflurane with oxygen and pumps containing either 

11C7 or control antibody were inserted into a subcutaneous pocket surgically created in 

the midscapular area.  The Alzet osmotic pump (model 2ML) is manufactured for 
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delivery of factors to the brain ventricles of rats that are between 250 g and 300 g in 

weight.  The pumps are 5.1 cm in length and 1.4 cm in diameter and are regulated by a 

flow moderator with a pumping rate of 5.0 uL/hr (±0.75 uL/hr).  Once the pump had been 

placed, a catheter connected to the pump was led subcutaneously to the cranial site for 

cannula placement.  A burr hole was made contralateral to CCI injury to receive the 

cannula.  The cannula was placed 1.3 mm lateral, 0.8 posterior, and 3.8 dorsoventral, 

relative to bregma into the lateral cerebral ventricle.  Both incisions, for pump insertion 

and cannula insertion, were sutured, and the animal was placed in a recovery cage and 

monitored until awake.  

	
 Two weeks following pump insertion, the animals were anesthetized with 2% 

isoflurane with oxygen, and the pump and cannula were removed.  After removal, the 

amount of antibody left in the pump was assessed to determine adequate antibody 

distribution.  Once again, the incisions were sutured and the animal was placed in a 

recovery cage and monitored until awake. 

Biotinylated Dextran Amine (BDA) Tracing.  Following behavioral testing and data 

collection (8 weeks post-TBI), all rats were anesthetized with 2% isoflurane with oxygen 

and placed in a stereotaxic instrument for the anterograde tracer/BDA injection.  

Contralateral to the TBI lesion, a craniotomy was made exposing the forelimb 

sensorimotor cortex.  Using a 5 µL Hamilton microsyringe, 1 µL of a 10% solution of 

BDA (Molecular Probes, Eugene, OR) in 0.01 M phosphate buffer (pH 7.4) was injected 

at two sites (1-3 mm lateral to bregma at a depth of 1.5 mm from the cortical surface) in 
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the unlesioned forelimb motor cortex as previously described (Neafsey et al., 1986) 

(Figure 8).

 After a survival period of two weeks after BDA injection to allow for adequate 

transport of BDA, animals were deeply anesthesized with sodium pentobarbital (150 mg/

kg; i.p.) and perfused transcardially with Ringer’s solution followed by fixitive (4% 

paraformaldehye in 0.1M phosphate buffer, pH=7.4).  The brains were removed, post-

fixed overnight, and then transferred to a 30% sucrose solution in 0.1 M phosphate buffer 

(pH=7.4) for 3 days.  The tissue was blocked and then embedded in optimal cutting 

temperature (OCT) compound and immediately frozen by immersion in cold isopentane 

and preserved in a -80ºC freezer.  50 micron sections were cut coronally on a cryostat and 

sections were collected in a solution of 50 mM Tris-buffered 0.9% saline (pH=8.0) with 

0.5% Triton X-100 (TBST-X).  Sections were washed in TBST-X and incubated 

overnight with an avidin-biotin-peroxidase complex (ABC complex) diluted in TBST-X 

(4 drops avidin:4 drop biotin:10 mL TBST-X).  The sections were washed again and 

preincubated for 10 min with 0.4% ammonium nickel sulfate (0.4 g/100 mL TB, pH=8.0) 

followed by a second preincubation with 0.4% ammonium nickel sulfate and 0.015% 3.3-

diaminobenzidine (DAB).  The tissue was then reacted in 0.4% ammonium nickel sulfate, 

0.015% DAB, and 0.004% hydrogen peroxide in 50 mM Tris buffer (pH=8) for 1-10 min. 

until staining is visible.  Once reacted, sections were mounted on slides.  Additional 

alternate sections were taken and processed for Nissl stain used to analyze lesion volume.
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Crossed Projections Quantification.  All BDA-positive fibers at the level of the 

parvocellular red nucleus crossing the midline on seven consecutive sections were 

counted.  A 2500 µm2 grid was placed in an eyepiece to ensure that fibers counted 

actually did cross the midline (Figure 9).  To correct for the inter-animal tracing 

differences, the values were divided by the number of labeled CST fibers in the cerebral 

peduncle and expressed as fibers crossing the midline per ten thousand labeled CST 

axons.  

TBI Lesion Analysis.  The lesion volume of each animal was quantitatively analyzed on 

Nissl stained sections +4.7 to -5.2 mm from bregma (Paxinos & Watson, 1998).  All 

slides containing Nissl-stained sections were scanned at high resolution (1200 dpi) to a 

computer in TIFF file format.  Once scanned, each hemisphere was cut and pasted (using 

Adobe Photoshop CS5) onto a high resolution template.  Each section was corrected for 

artifacts and colored black (Figure 10).  Using a script in Photoshop, all black pixels were 

counted for each section, allowing lesion volume and location to be easily calculated.  

This novel method adapted the method described previously that the area of the intact 

contralateral hemisphere minus the area of the lesioned hemisphere is multiplied by the 

total distance between sections to obtain lesion volume (Kawamata et al., 1997).  Lesion 

volume was expressed as a percentage of the intact contralateral hemispheric volume. 

Statistics.  Analysis of all data was performed with SPSS version 20.0 (SPSS, Inc.).  For 

behavioral data, a repeated measures analysis of variance (ANOVA) with a Tukey HSD 

post hoc test was used to test for overall significance, differences in initial deficits, and to 
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determine the times points at which the predicted recovery differed among the groups.  

Additionally, a repeated measures t-test was used to determine the significance of 

differences between time points for each group, and a paired samples t-test was used to 

determine the significance between baseline reaching success scores and the success 

scores at each week post-TBI.  For anatomical data, a oneway ANOVA was used to 

compare the mean lesion volume percents along with the mean number of axonal fibers 

crossing the midline per 10,000 cerebral peduncle fibers among the different groups 

along with post hoc Tukey HSD tests.  For all analyses, p < 0.05 was considered 

significant.  All data are presented as mean values ± standard error of the mean (SEM).  

Correlation between lesion volume and reaching success was evaluated using the Pearson 

product-moment correlation coefficient (PPMCC).
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Table 1: Experimental Groups
40

GroupsGroups

Treatment Histology n

TBI Only BDA/Nissl 12

TBI/Control 
Antibody

BDA/Nissl 8

TBI/11C7
Antibody

BDA/Nissl 10

No TBI BDA 10

Total 40



Identifies sucrose pellet with olfaction cues.

Reaches with preferred forelimb (left in this 
case) for pellet through the window.

Grasps pellet with digits.

Brings pellet back through the window to 
mouth without dropping.

Figure 5. Skilled forelimb reaching task.  A rat is shown successfully obtaining a 

sucrose pellet.
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Timecourse of Experimental Design for Aims 1 and 2

Figure 6.  Timecourse of experimental design for Specific Aims 1 and 2.
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A.              B.

Figure 7. The controlled cortical impact procedure produces a lesion in the forelimb 

sensorimotor cortex.  A.  Dorsal view of a rat brain animation depicting approximate 

location of the forelimb sensorimotor cortex (FL in black circle) with cortical injury 

(shown in black) and corresponding impaired forelimb.  MI = primary motor cortex, SI = 

primary somatosensory cortex.  Image adapted from http://homepage.psy.utexas.edu/

HomePage/Faculty/Jones/JonesBio/Joneslab/ressum.html.  B.  Photograph of a rat brain 

that sustained a controlled cortical impact (CCI) lesion (arrow).
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Figure 8. Schematic illustration of the BDA procedure.  Corticofugal fibers from the 

contralesional forelimb motor cortex to the termination areas in the red nucleus are 

represented.  The BDA tracer injection site is contralateral to the TBI lesion (gray shaded 

area).  Red lines indicate possible sprouting fibers.  Image adapted from Papadopoulos et 

al., Annals of Neurology, 2002.
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Figure 9.  Schematic for counting BDA-positive fibers crossing the midline.  A 

circular glass grid was placed inside the left eyepiece of the microscope.  At 20X 

magnification, the edge of the grid was placed along the midline of the section, and any 

BDA-positive fibers crossing that edge were counted.
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Figure 10.  Traumatic brain injury lesion analysis.  Brain sections were stained with 

Nissl, scanned, and placed digitally using Photoshop CS5 onto a high resolution template.  

Sections were then colored black and the pixels were used to obtain lesion volume data.
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CHAPTER V

RESULTS

Animal body weight post-TBI.  All animals (Figure 11a) and “included only” animals 

(Figure 11b) gained weight consistently post-TBI.  One TBI/11C7 animal lost weight for 

two weeks after TBI, but then regained that weight and continued gaining weight to the 

end of the study (Figure 11a,b).  Another animal in the TBI/Control Ab group gained 

weight consistently through week three, but then passed away due to an infection as a 

result of cannula insertion during antibody pump placement (Figure 11a).

Quantification of TBI Lesions in the Forelimb Sensorimotor Cortex.  All TBI lesions 

were localized in the forelimb sensorimotor cortex in the hemisphere opposite of the 

preferred forelimb (Figure 12a-c).  Analysis of TBI lesion size showed no lesion volume 

differences between groups for all animals in the study (TBI Only = 13% ± 6%, n = 10; 

TBI/Control Ab = 17% ± 9%, n = 7; TBI/11C7 = 12% ± 5%, n = 9; p > 0.05; Figure 13a) 

and “included only” animals (TBI Only = 9% ± 5%, n = 3; TBI/Control Ab = 19% ± 6%, 

n = 4; TBI/11C7 = 13% ± 5%, n = 8; p > 0.05; Figure 13b).  However, there is a trend 

that the control antibody TBI lesion volume was greater than TBI only lesion volume in 

“included only” animals. 

Functional Recovery in Animals Treated with mAb 11C7 One Week after TBI.  To 

determine whether blocking the neurite inhibitory protein Nogo-A one week after TBI 
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resulted in functional recovery, rats were tested on the skilled forelimb reaching task.  By 

design, all animals achieved the same success score in grasping pellets at baseline testing 

prior to TBI with no significant differences between groups (p > 0.05).  Within the first 

week after TBI, all three groups showed a severe deficit in pellet grasping (mean of 3 

pellets, or 

17.5% of baseline), with no significant differences between groups (p > 0.05).  At weeks 

three and six, TBI/11C7 animals had significantly less success in pellet grasping than TBI 

only animals (p < 0.005 and p < 0.05, respectively).  However, at every other time point, 

no significant differences in pellet grasping were seen between the groups (p > 0.05).  In 

comparison to week one post-TBI, all groups achieved significant recovery by week two 

(TBI Only, p < 0.0005; TBI/Control Ab, p < 0.005; TBI/11C7, p < 0.05).  All groups 

showed even more recovery at week eight with TBI only animals successfully grasping a 

mean of 13 pellets (76% of baseline), TBI/Control Ab animals successfully grasping a 

mean of 11 pellets (67% of baseline), and TBI/11C7 animals successfully grasping a 

mean of 11 pellets (65% of baseline).  (See Figure 14a)

 “Included only” animals achieved the same success score in grasping pellets at 

baseline testing prior to TBI with no significant differences between groups (p > 0.05).  

Within the first week after TBI, all three groups showed a severe deficit in pellet grasping 

(mean of 2.25 pellets, or 13.5% of baseline), with no significant differences between 

groups (p > 0.05).  Throughout the completion of testing, no significant differences in 

pellet grasping were seen between the groups (p > 0.05).  In comparison to week one 
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post-TBI, all groups achieved significant recovery by week two (p < 0.05).  All groups 

showed marked recovery at week eight with TBI only animals successfully grasping a 

mean of 11.6 pellets (70% of baseline), TBI/Control Ab animals successfully grasping a 

mean of 12.5 pellets (74% of baseline), and TBI/11C7 animals successfully grasping a 

mean of 10.6 pellets (64% of baseline).  (See Figure 14b)  

Correlation between Lesion Volume and Reaching Success.  No correlation between 

lesion volume and reaching success was seen in any treatment group for all animals 

(Figure 15a; TBI Only, r = 0.47, p > 0.05; TBI/Control Ab, r = 0.36, p > 0.05; TBI/11C7, 

r = -0.05, p > 0.05) and “included only” animals (Figure 15b; TBI Only, r = 0.90, p > 

0.05; TBI/Control Ab, r = 0.17, p > 0.05; TBI/11C7, r = -0.44, p > 0.05).

Corticorubral Axonal Plasticity in Animals Treated with mAb 11C7 One Week after 

TBI.  The cortico-rubral projections crossing the midline from the unlesioned hemisphere 

were examined with the anterograde tracer BDA in order to relate behavioral changes to 

the development of new cortico-efferent pathways.  In the undamaged CNS, the cortico-

rubral pathway primarily involves ipsilateral projections with minor contralateral 

projections.  Thus, axonal fibers crossing the midline of an intact brain is sparse.  The 

parvocellular region of the red nucleus on the BDA-injection side showed dense BDA-

positive fibers ipsilateral to the injection site (Figure 16a-d).  No significant differences in 

the amount of fibers crossing the midline between treatment and control groups for all 

animals and “included only” animals were seen (p > 0.05) (Figure 17a,b).  
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Figure 11.  Animal body weight consistently increased over time post-TBI.  Animals 

were food-deprived to encourage reaching.  All animals (A) and “included only” animals 

(B) increased body weight consistently post-TBI over time.  
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 A.                      B.    C.

Figure 12.  Representative photomicrographs of TBI lesions in the sensorimotor 

cortex.  (A) TBI Only brain.  (B) TBI/Control Ab brain.  (C) TBI/11C7 brain.  Location 

of the TBI lesion is indicated by arrows, Nissl stain. 
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Figure 13.  Average lesion volume per treatment group. No significant differences in 

lesion volume were seen between groups for all animals (A) or “included only” animals 

(B) (Oneway ANOVA; p > 0.05; error bars indicate SEM).
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Figure 14.  The skilled forelimb reaching task.  By design, all groups had a success 

score around 16 pellets at baseline; one week post-TBI, all groups had a significant 

deficit with no difference between groups; and all groups significantly improved by week 

two post-TBI and continued improving through week 8 post-TBI for all animals (A) and 

“included only” animals (B) (Repeated measures t-test; * = p < 0.05, ** = p < 0.005, *** 

= p < 0.0005).  At weeks three and six, TBI/11C7 animals were significantly less 

successful than TBI only animals for all animals (A), and no significant differences were 

seen between the groups at any time point for “included only” animals (B) (Repeated 

measures ANOVA, post hoc Tukey HSD Test; * = p < 0.05, ** = p < 0.005 and p > 0.05, 

respectively; error bars indicate SEM).
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Figure 15.  Correlation between lesion volume and reaching success score per 

treatment group.  No significant correlation between lesion volume and reaching 

success score was seen per treatment group for all animals (A) and “included only” 

animals (B).  The Pearson correlation coefficients (r values) are shown with 

corresponding significance (PPMCC; p > 0.05).
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A.                TBI Only                 B.                TBI/Control Ab

 

C.    TBI/11C7      D.                       No TBI

Figure 16.  Representative histological images of BDA-positive fibers at the level of 

the red nucleus.  BDA-positive fibers in TBI only rats (A), TBI/control Ab rats (B), TBI/

11C7 rats (C), and No TBI or treatment rats (D).  Dense BDA-positive fibers are seen 

ipsilateral to the injection site for all animals (indicated by arrows).  The number of fibers 

crossing the midline (indicated by dotted lines), however, did not differ significantly 

between groups (p > 0.05).
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Figure 17.  Rats treated with mAb 11C7 one week after TBI demonstrate no change 

in cortico-rubral plasticity, compared to controls.  The final fiber index (FFI), or the 

number of axonal fibers crossing the midline per 10,000 cerebral peduncle fibers, did not 

significantly differ between treatment groups for all animals (A) and “included only” 

animals (B) (Oneway ANOVA; p > 0.05; error bars indicate SEM).
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CHAPTER VI

DISCUSSION

 Our results do not conclusively demonstrate whether intracerebral treatment with 

the mAb 11C7 to neutralize Nogo-A following TBI in adult rats promotes functional 

recovery or not as measured by the skilled forelimb reaching task requiring fine digital 

dexterity.  Furthermore, cortico-efferent plasticity was not observed.  Specifically, our 

results showed a consistent TBI lesion in the forelimb motor cortex that led to a 

significant decrease in skilled reaching success one week post-TBI with all groups 

showing significant recovery by week two.  For the remainder of the study, all groups 

increased in skilled reaching recovery with no significant differences in reaching between 

groups.  Furthermore, no correlation between lesion volume and reaching success was 

seen along with no significant differences seen in the number of axonal fibers crossing 

the midline at the level of the red nucleus between the treatment groups.  Although it may 

appear that anti-Nogo-A immunotherapy following TBI may not be effective in 

promoting functional recovery through axonal plasticity, several factors, including low 

number of animals per group and significant recovery in control animals, may have 

contributed to these findings, making it impossible to conclude this at this time.

 Previous studies that utilized anti-Nogo-A immunotherapy following ischemic 

stroke have shown significant recovery in the skilled forelimb reaching task 
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(Papadopoulos et al., 2002; Seymour et al., 2005).  Specifically, animals that received 

anti-Nogo-A mAb IN-1 following stroke first showed significant recovery at week 6 with 

a success of approximately 80%, while controls remained around 45-50% for the 

remainder of the study (Papadopoulos et al., 2002).  When animals received delayed 

treatment with mAb IN-1 following stroke, similar results were seen.  At week 5, animals 

that received mAb IN-1 following stroke were significantly more successful in the skilled 

forelimb reaching task than controls, with a success of approximately 47% as compared 

to 23% for controls (with respect to baseline success score) (Seymour et al., 2005).  At 

the end of this study (week nine), stroke animals that received anti-Nogo-A 

immunotherapy had a success of about 76% while controls had a success of about 30% 

(Seymour et al., 2005).  Furthermore, these studies have shown a significant increase in 

cortico-efferent plasticity in stroke animals that received mAb IN-1 as compared with 

stroke controls (Papadopoulos et al., 2002; Seymour et al., 2005).  Because of the success 

of anti-Nogo-A immunotherapy shown in these and other studies, a substantial precedent 

had been set that this therapy may be beneficial in other CNS injury models like TBI.  

 However, an increase in functional recovery in the skilled forelimb reaching task 

in adult rats that received anti-Nogo-A immunotherapy following TBI was not seen.  

Interestingly, by week eight all animals, including control animals, recovered to 

approximately 70% of baseline.  This is unlike the stroke studies that showed that control 

animals had significantly lower recovery than stroke animals treated with anti-Nogo-A 

immunotherapy from weeks five and six through the end of the studies (Papadopoulos et 
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al., 2002; Seymour et al., 2005).  In fact, marked recovery of all animals in the present 

study was seen from week two through the end.  Therefore, it is impossible to say 

conclusively that anti-Nogo-A immunotherapy following TBI did or did not cause an 

increase in functional recovery since all animals recovered quickly and almost fully.  

Additionally, no increase in axonal plasticity was seen in anti-Nogo-A antibody treated 

animals.  Interestingly, animals that received a stroke and IN-1 treatment had a final fiber 

index (FFI) around 500, which is what “included only” animals in all groups except TBI 

only in this study had (Papadopoulos et al., 2002).  However, it is again difficult to say 

these results illustrate what really occurred due to the low number of animals in the TBI 

only, TBI/Control Ab, and TBI/11C7 groups for these animals.  This low number of 

animals can be attributed to improper injection of BDA by the investigator, thereby not 

allowing the anterograde tracer to travel through the red nucleus for subsequent 

visualization of fibers crossing the midline.  When we looked at the FFI for all animals, 

no significant differences were seen between the groups.  Although, it does appear an 

opposite trend from the “included only” animals occurred.  It could be possible that if 

even more animals are studied, this trend may become statistically significant, indicating 

that TBI with addition of antibodies increases axonal plasticity to normal levels (as seen 

by the No TBI group).

 Other studies conducted utilizing anti-Nogo-A immunotherapy as a means to 

improve functional recovery as related to an increase in axonal plasticity following TBI 

had also failed to produce similar results as seen with stroke and anti-Nogo-A 

59



immunotherapy.  To date, two studies have been conducted to assess functional recovery, 

cognitive recovery, and axonal plasticity following TBI and anti-Nogo-A immunotherapy 

(Lenzinger et al., 2005; Marklund et al., 2007).  Although both studies had shown that 

anti-Nogo-A immunotherapy does not alter functional recovery as measured by 

composite neuroscore and an increase in axonal plasticity between TBI/anti-Nogo-A Ab 

and TBI controls was not seen, several factors may have played a role in the 

discrepancies seen between these studies and those conducted with stroke and other CNS 

injury models (Lenzinger et al., 2005; Marklund et al., 2007).  First, these studies used 

the lateral fluid percussion (LFP) model of TBI, possibly producing more variability in 

lesion size and location than the more direct controlled cortical impact (CCI) model of 

TBI.  Second, and most importantly, these studies were conducted only up to four weeks 

post-TBI.  As seen in the stroke studies above, significant functional recovery was not 

observed until five and six weeks post-injury.  Thus, these studies may have concluded 

before recovery could occur.  In the present study, we addressed these issues by using a 

different model of TBI (CCI) and extending the study to eight weeks post-injury.  

 Although we strongly believe the CCI model coupled with the skilled forelimb 

reaching task is one the best ways to reproduce TBI and effectively test functional 

recovery, it is impossible to make thoughtful conclusions in any study utilizing this 

procedure if the deficit produced by the CCI model is not a lasting one.  All animals in 

this study recovered to about 70% of baseline--around the same amount stroke animals 

that had received anti-Nogo-A antibodies had recovered.  The difference is that stroke 
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controls consistently had significantly less success (30-45% of baseline) than stroke/IN-1 

animals.  In order to say conclusively that anti-Nogo-A immunotherapy is not effective in 

enhancing functional recovery in animals that sustained a TBI, success in the skilled 

forelimb reaching task for the control animals would have to start and remain low 

(30-45% of baseline) for the whole study.  Because all animals recovered so quickly (by 

week two), the TBI lesion produced by the CCI model is more than likely not large 

enough.  To produce a lasting deficit, the parameters of this model need to be reworked, 

i.e. the depth at which the piston penetrates the brain and/or velocity of penetration need 

to be increased.

 Once the parameters of the CCI model have been improved and a lasting deficit is 

produced, it is still possible that anti-Nogo-A immunotherapy may not enhance functional 

recovery.  Thus, it is important to understand the cellular differences between stroke and 

TBI that may lead to conflicting conclusions.  Similar to ischemic stroke, focal or global 

cerebral ischemia occurs frequently following TBI (Bouma et al., 1992; Coles et al., 

2004; Inoue et al., 2005; Overgaard & Tweed, 1983) leading to the ischemic cascade 

involving excitotoxicity, oxidative stress, and apoptosis.  Cerebral hypoperfusion and 

subsequent poor neurological outcome suggest that ischemic stroke and TBI share the 

same fundamental mechanisms.  While this may be accurate to an extent, substantial 

differences lie in the primary injury between ischemic stroke and TBI.  For example, 

irreversible tissue damage occurs when the cerebral blood flow (CBF) in patients 

sustaining a TBI is 15mL/100g/min while in patients sustaining an ischemic stroke, it is 
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5-8.5mL/100g/min (Cunningham et al., 2005).  Ischemic stroke leads primarily to 

metabolic stress and ionic perturbations.  However, in TBI the ischemic cascade is a 

result of the structural damage produced by the shear forces of the injury to neuronal cell 

bodies, astrocytes, microglia, and cerebral microvascular and endothelial cells (Bramlett 

& Dietrich, 2004; DeWitt & Prough, 2003; Rodriguez-Baeza et al., 2003).  

Mechanistically, post-traumatic ischemia occurs because of morphological injury, i.e. 

vessel distortion as a result of mechanical displacement, hypotension in the presence of 

autoregulatory failure (McIntosh et al., 1996; Rodriguez-Baeza et al., 2003), inadequate 

availability of nitric oxide or cholinergic neurotransmitters (DeWitt & Prough, 2003; 

Scremin & Jenden, 1997), and potentiation of prostoglandin-induced vasoconstriction 

(Armstead, 2006).  Additionally, in the early stages of injury, TBI patients may develop 

cerebral hyperperfusion (CBF > 55mL/100g/min) and subsequent hyperaemia 

immediately following post-traumatic ischemia (Kelly et al., 1996; Martin et al., 1997; 

Sakas et al., 1995).  Increases in CBF beyond matching metabolic demand (hyperaemia) 

can cause even more damage by leading to vasoparalysis with subsequent increases in 

cerebral blood volume and intracranial pressure (ICP) (Kelly et al., 1997).  Therefore, 

while cerebral ischemia and its cellular cascade is involved in both ischemic stroke and 

TBI, additional injury as a result of the mechanical forces that create TBI causes an 

increased risk of poor neurological outcome.

 Another important difference between stroke and TBI involves the timing of 

injury.  TBI occurs very rapidly in comparison to stroke, involving a quick mechanical 
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force causing immediate trauma to the brain.  Ischemic stroke, on the other hand, is an 

evolving brain injury that occurs over a period of hours to days with an infarct core (the 

area exposed to the most dramatic blood flow reduction) and a surrounding zone 

(ischemic penumbra) of less affected metabolically active tissue that is functionally silent 

(Majno & Joris, 1995; Broughton et al., 2009).  It is in this ischemic penumbra where 

injury evolves slowly and therapeutic intervention is focused.  Because injury evolves 

over a greater amount of time in ischemic stroke than in TBI, it is possible that anti-

Nogo-A immunotherapy may be working through growth factors or cytokines that are 

released over a prolonged period of time in ischemic stroke that are not present for as 

long or at all in TBI.  Consequently, while anti-Nogo-A immunotherapy is effective in 

restoring functional activity and increasing neuroplasticity in ischemic stroke, this 

therapy may not have the opportunity to provide the same effectiveness in TBI.

 Additionally, the animal models of TBI and ischemic stroke produce CNS lesions 

in two very different ways.  TBI is produced by a mechanical force penetrating the brain 

in three commonly used models: a weight of a given mass and velocity is dropped on the 

exposed skull or brain tissue (weight drop model), a saline solution is forcefully injected 

into the brain (lateral fluid percussion model), or a piston penetrates the brain tissue at a 

given velocity and depth (controlled cortical impact model).  On the other hand, ischemic 

stroke is commonly produced by middle cerebral artery occlusion in animals.  This model 

involves occlusion of one or more branches of the middle cerebral artery for a period of 

minutes to hours.  Therefore, even if both injuries are considered CNS lesions, the way 
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these two injuries are produced may shed light on the true differences between them and 

why anti-Nogo-A immunotherapy may be beneficial for one and ineffective in the other.

 Overall, even though this study did not produce significant results that anti-Nogo-

A immunotherapy improves functional recovery and increases axonal plasticity, it also 

did not disprove the idea that anti-Nogo-A antibodies could play a positive role in 

functional recovery and axonal plasticity.  In particular, this study pointed out areas in 

procedures that need to be fine-tuned to produce a model which can effectively be tested 

and produce reliable results from.  In the future, the CCI model parameters needs to be 

refined to produce TBI lesions that cause lasting deficits in reaching in order to 

effectively determine whether anti-Nogo-A immunotherapy aids in improving functional 

recovery and increasing axonal plasticity.  Also, special care needs to be taken throughout 

the histological processes in order to keep the number of animals that can be used to a 

maximum.  Furthermore, it is possible that the skilled forelimb reaching task is not the 

best assessment of functional recovery following TBI.  Thus, it may be beneficial to use a 

battery of additional sensorimotor assessments in conjunction with the skilled forelimb 

reaching task.  Once the CCI model parameters have been refined, the number of animals 

for each procedure is large enough to obtain meaningful statistical conclusions, and 

additional sensorimotor assessments are used, it is still possible that anti-Nogo-A 

immunotherapy will not increase functional recovery in comparison to control animals as 

related to an increase in axonal plasticity.  This may be due to the idea that ischemic 

stroke and TBI are much more different types of CNS injury than originally thought.  
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Thus, while anti-Nogo-A immunotherapy appears to be effective in increasing functional 

recovery as related to an increase in axonal plasticity in ischemic stroke, specific 

differences between TBI and ischemic stroke that are as of yet unknown may be playing a 

pivotal role in anti-Nogo-A antibodies’ effectiveness.  Although no conclusive results 

were obtained, this study has brought us one step closer to understanding the pathology 

of TBI and how to produce an effective model to test potential treatments of TBI.
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