A Study of Memory Span with the Bernreuter Memory Test

Joseph Michael Angileri
Loyola University Chicago

Recommended Citation

Angileri, Joseph Michael, "A Study of Memory Span with the Bernreuter Memory Test " (1957). Master's Theses. Paper 1358.
http://ecommons.luc.edu/luc_theses/1358

A STUDY OF MEMORY GPAN
HITH THE BERNRUUTER MTMORX TEST
by
Joseph Michael Angileri

A Thesis Submitted to the Foculty of the Gradunte School of Loyola University in Pertial Fulfillment of the Requirements for the Decree of Naster of Arts

LIFE

Joseph Michael Angileri was boxn in Detroit, Michiten, August 6, 1932.

He was greduated from University of Detroit High School, Detroit, Michigan, June, 1950, and from the University of Detroit, June, 1954, with degree of Bechelor of Philosophy.

He begen his graduate studies st Loyoia University in September, 1954. He wes employed by the Loyola Center for Guidance and Payoholocical Service from February, 1055 to: Aucust, 1556, in the Bureau of Chila Study of the Chicaco Board of Elucation from September, 1956 to April, 1957. He is presently employed by the St. Vincent and Sareh Fisher Home for Children in Famincton, nichican.

ACKMONLEDGE ENTS

Very special thanis are due to RoDert G. Bernreuter, Frank J. Kobler, my advisor, and to the thesis reeders; without their kindness and assistance this project could not have been completed.

TABLE OF CONTEMES

Chapter

I. INTRODUCTION 1 statement of the Froblem
II. Revien of the litprature 3
III. THE Procmbure. 19
IV. ANALYSIS OF RESULSS AND DISCUSSION 24

Responses, cormections needed in the spans, and reasons for correotions
V. Sumpary and conclusion \because. 31
bIbliograthy 35
APPmDIX 37

LIST OE TABLES

TABLe
 Lharking Syliables mereaste hith ench Trial. 4
II. OBERLY'S BIUDY of proaress of hmorx bean RESULTS 7
III. TaST-RETEST DIPRERETOES OF THE ROUR SUBGROUPS STUDIED BY MALDOWSKY 14
 MALDOMSTY STUDY 14
V. SmAMDARD DEVIATIONS FOR NUTBESS, LETMERS,

CHARTER I

INTRODUCTION: STATEEEN OF THE PROBLEN.

Clinical prectice offers certain anomelles in the testing of auditory rote menory. Subjects are often inconsistent in Levels of rote menory for dicit spens, words and sentences; yet many clinicians in practice evaluate rote memory in terms of digit apan alone.

The memory apan for digits forwem test has a reliability only in the sixties. This means that a digit foward span test does not meanure memory span with a degree of reliability. This type of test also suffers from the fect that it does not lend itself to refinements of measurement. In the Temen-Merrill standardzetion, for example, an increase in'one dicit (from 4 to 5) is equivelent to two and one-half years of development, and an additional increese in one dieit (from 5 to 6) is'equivalent to three years of development. Thus, if a child tith a "true" memory span of five years vere, on one accasion, to repeat one fever than this, and on another occasion to repeat one more than this, the clinician would be forced to report an increase in memory spen from four and one-helf to ten yenrs. Such changes are to be expected frequently so long as the test hee a rellability in the sixties.

Bempeuter is now undertaine the develoment of memory san teating moterials, and $4 s$ studyinc the reliability of new testinc materials. He concluded that a memory spen teat cen be
constructed usine two forms of a number test and two foms of a letter test, which is rellable and sufficiently discrininatory to be used in individual diagnosis.

The hypothesis is that there is no significent difference between the performance of sixth grade students and Bernreuter's fourth grade students. The sixth grade students w111 perform better on number tests and letter tests than they will on syllable tests. Also, the combining of number tests and letter tests will further increase the reliability of a memory span test. Syllables will haveriftle or no effect on the reliability of a memory apan test.

Chaterer II

REVIEA OE THE LITERATURE

Before discussing the results of this investigetion, one must firgt look to othera who were interested in menory spen.

Men guch as David Hartley and Thomes Brown were interested in memory and contributed to the existins theories conceming memory. Both were concomed with memory as an sssocistive process, but did inttle to attempt to meesure this process.

Jamea Mills, in his Analysis of the Phenomena of the Fhmen Mind, published in 1329, reduced all the lews of association to contiguity in experience. He stated that memory in the form of recognition is an ides or inage of an object plus amareness of earlier experienoes.

It was not until the late eichteen hundreds that nev, meterials and procedures for mensuring memory span mere devised. In the monograph, Menory, Ebbinghaus broucht to Ilfit the results of his five years of self-study. Ebbinghus invented and used nonsense syllables in a study of his own memory processes. He used nonsense syllables - combinations of three letters, such as rof, guk, bep, rik, tid. Amome the meny oreas he investigated were those of meanine and riythm, He found thet meaningless meterial was nine times as aiplicult to learm as meaningful. In the area of mythr, he found thet no one type of rhyth is necessarily best for all individuals, becmse individual diferences are ereat.

He also found that if a memory tesk is made longer its learming time Incresses. Ebbinghaus discovered that he could recall seven or eicht nonsense syllables by reeding them once. To learn ten syllables required thirteen readings. The required time for each new item and for the whole list increesed, but not propontionctely. His findings eppear in the following table.

TABLE I ${ }^{1}$

Ebingheus' Findings on how the time For Learning Syllables Incpeases With each Trial			
Length Of Lhst	rumber of Readincs	Time for Lists in Seconds	Average Time per. Syllable in Seconds
7	1	3	. 4
10	13	52	5.2
12	17	32	6.8
16	30	196	12.0
24	44	422	17.6
36	55	792	22.0

These are just a few of the probleas investigated by Mbbinchaus in the field of memory. The other aspects of memory investicated by him are overlearning, spaced and unspeced leaming, whole versus part methods, and the curve of forgetting.

[^0]In 1871, T. L. Bolton conducted a reserch project to neasure the memory spen for dicits. Fifteen hundred subjecte, most of whom ranged in age from nne yeers to ilfteen years, cooperated in the study. A fev of the subjects were hich school students. Eech subject wes Eiven twelve sets of tests. The tests consisted of e five-place, a six-plece, a seven-place and an eight-place number span. Three sets of tests were presented orolly at one sittinc to the subjects. The digits were administered at the rate of two numbers per five seconds of time. After the experimenter read each number, the subject was required to give inmediate written reproduction. It was concluded that the memory span increases with age rather than With the growth of intelligence, as determined by the tests used in promoting pupils from one erade to another. 2

The answer to the question "How lerge a quantity of angen sort of material con be reproduced perfectly after one presentation?" was answered by Jacobs (1807). He devised a method using digit span series from three digits to twelve dicita. J wobs instructions are similar to those used in the StanfordBinet -
"I will say some numbers; when I have finished, you are to repeat the numbers in the same order."3

2T. I. Bolton, "Growth of Memory in School Children," American Journal of Peycholory, (1371), IV, 362-330.
3J. Jacobs, American Joumal of Paycholocy, (1923), LN, pp. 285-290.

The score in this experiment is the length of the 11 at which the subject con recall and recite perfectly after only one presentation.

Jacobs, in his research, found that 1) individual methods of grouping are used in memory span tests for the longer series; 2) attention span is a term who h setiaractorily describes the immediate reproduction of seperete descrete units; 3) e brier inspection indicates little difference in test results whether digits are presented in haphazard or serial order; 4) attention span, for most individuals, is short enough to cause grasping of units after the number five hes been passed; 5) the attention span ranges from 2.5 to 8 , while the memory span ranges from 6 to 3.5.

Overly's study brings out the fact the the individual memory span is not a fixed quantity, but varies from trial to trial. The following graph shows that the subjects of oberlin's experiment recited perfectly memory span lists of two dicta, three digits, four digits, and five digits, but after a span of
 declined gradually es the memory span lists were lengthened. 4
${ }^{4}$ H. S. Oberly, American Journal of Psychology, (1928),
XXXV, pp. $295-302$.

Procress of Memory Spen Recall

Length of List, Digits

An experiment was perfomed by Woodworth and Poffenberger, using liste of ten digits to determine percentage of erxoris in memory (serial) learning. The lists were read aloud by the experimenter, after which the eroup of twenty-six subjects Wrote their recollections of each list presented. The fewest errors occurred in the first seriel position. 5

Testing auditory menory is also a mejor part of the Revised Stanford-Binet, as wes it in the oricinal Binet senie.
$5_{\text {R. S. Woodworth and A. T. Poffenberger, Textbook of }}$ Experimental Psycholocy, Mineoc. ed., (New Yorir, 1920), pp. 71-72.

Accordins to Temen, the auditory memory for digits test do not measure pure memory because it is impossible to isolate any function for separate tosting. In any test, general ability is operative.

In the Stanford-Binet, a digit span test first appears at the two year-six month level. This is a span of two digits. Three digits are attaned by the average person at the theee year level. Four digits are repeated successfully by the average person of four years-six months and five digits by the average seven year old. The addition of one number to the rive digit span test on the Binet is equal to three years of mental development.

The digit span test has been retained in the Binet in spite of its tendency to arouse negativism in some children. It has a very good ineresse in the percent of children possing from one age to the next and its correlation with the composite score 1s.62.

The method of administration in the Stanford-Binet is for the examiner to say, "I om goinc to say some numbers, and when I am through. I want you to say them just the way I do. Listen cerefully and get them just richt." The digits should be pronounced distinctly and with perfectly unf form emphasis, at the rate of one per second. 6
${ }^{6}$ Levis M. Terman, The Measurement of $\frac{\text { Intellicence }}{\text { Haughton Miffin }}$ Company, (Cambrice, Mass. 1944 , pp. 194-199.

Unlike the Stanford-Binet method, Mechsler, in his Inteligence testg, hes grouped the digit spen tests. This was done for two reesons, One was becouse of the impted range of them when taken seperately. on memory spen for dicits forward, a score range of only four points includes about ninety percent of the adult population, snd about the same percentage for digits becwerds. By combining the scores obtainable on both into one test measure, it was possible to extend the test's range, as well as to close wide geps obtained between successive scores when teats are used singly. The second reason for groupine the tests was for the purpose of reducing the amount which each contributed to the totel score. It was found that the Dieit span Teat with a total score hes a rellability of .51. Wechsler concluded thit s. good rote memory is of practical value but correlates vert little with hicher levels of intelingence.

In Wechsier's tests, the digit spen tests begin with a span of three aigits and increases to nine dicits. The subjects are efven two attempts at suocess and after two successive failurea on one spen, the testing ceases on this item, Wechsler stated that he desired at one time to eliminnte the dielt span tests from his tests, but for the followinc reesons, they were retained.

1. While memory apen for dicits is, on the whole, a poor aeasure of intellicence, it is nevertheless a good one at the
lower levels. Except in coses of special defects or orgenic diseased adults who can retain only five dicita forwerd and three backwards will be found, in nine ceses out of ten, to be feebleminded.
2. Speciel difficulty with the repetition or digita forward or beckward is orten of diegnostic significence. 7

Klugman's study is restricted to the establishing of the best placement of the Dlgits Test in the Wecholer-Bellvue Scale.

These are the hypotheses to be investigeted: 1) The digits test should be "given first when the applicant is relatively free from fatigue." 2) The beat placenent may be In the middle of the battery folloving a warming-up period before the effects of fatigue are felt. 3) It may be that the end position in the battery is the beat one because of the "better adjustwent of the testee to the testing situetion" as the examination proceeds.

Three hundred white native-born psycho-neurotic returnees referred by medical officers for W - examination were tested. The men were tested in random order and no effort wes mode to control the order of the other tests in the battery.

In order to detemine wether the dicits scores were

7 Devid Weohsler, The Moasurement of Adult Intelligenoe, The N111ams and Filk 1 ns Company, (Baltimore, 1944), p. 83-85.
affected by position in the scale, three method variations were employed. The dicita vere edministored at the beginning, In the midale, and at the end of the bottery.

There are several practical reasons why an answer to thle problem would be desirable. First, if method differences exist a subject would not be penalized by getting a lover IQ score. Second, diagnostic and clinical procedure would give more certain and meanincful date. Third, calculation of deterioration would yield more accurate scores. Fourth, the dicits test could be included or onfted. from a shorter form of the Wechsler-Bellvue with Ereater validity.

Hlugnan drew the following conclusions from his investigation.

1. The mean digit results of. Forward 6.05, Backward 4,33, and Total 10.43, are in agreenent with those found by another investigator.
2. The order of desirability of position in the soale appears to be Middle, Beginning, and End.
3. The Digits Bockword were not affocted differently from D1cits Forward.
4. To what extent the obtalned results are due to the uncontrolled factor of whet tests preceded and followed the caministretion of the Dicits sub-test is not mown.
5. Whether these results are true only for psychoneurotic individuals under the given circumatances or for the
population as a whole, remains for future research. similarly, Whether the same type of findings exist for other sub-tests shall depend on results obtained from other studies. 8
R. I. Newton did a comparative study of two methods of administration of the Digit Span Test. A comparison of two methods of administration of the digit aspen test of the Weohsler-Bellvue Intelligence Scale, Form I, whee made using twenty-eight hospitalized patients at the V. A. Hospital in Aspinwal, Pemaylvania. The following results were obtained. 1. The pitch of the voice on the list digit of a series signipicently affected the results obtained in the subject's score. If the pitch of the voice was lowered, the subject recalled more digits accurately.
6. The pitch of the voice bienificantiy affected the digits forward, but did not have a significant effect upon the digits reversed. 9

Stanley Maldowsiy and Patricia Corcoran Maldowbly conducted on experiment to decide whether the dict open was an anxiety indicator. The experiment was designed to test the hypothesis that anxiety will function so as to cause a Significantly greater decrement in Digit Span scores than in Vocabulary Scores.
${ }^{8}$ Samuel F. Klugman, Journal of Consulting Psychology: (1940), XII, pp. 345-348.

Thurty-two college students acted as subjects. These students previously tested on the Full Scale Wechsler-Bellvue Were retested with the Vocabulery and Digit Syan gub-tests. One-half of the subjects received the usum clinical raporteatablishinc procedure, These subjects wore called Control Groups I and II. The other half of the subjects recelved the anxiety-inducinc procedure. These subjects were labeled Experimental Groupa I and II.

Control Group I and Experimental Group I recedved Digit Span firgt and Vocabulary second. Control Group II and Experimental Group II received the opposite order of presentetion. The groups were matched according to Verbel I. Q.

The results supported this hypothesis. They would tend to reinforce the clinicians confidence in the Dictt Spen subtest as being sengitive to situational anciety and in the Vocabulary sub-test as belng reletively impervious to 1 . 70

The means of the welghted acores for both sub-teets are presented in Table III.

Teble IV represento the mean differences in the tests. The menn reaults of the Control Groups were combined, as were the results of the Experimental Groups, in Table IV.
${ }^{10}$ Stanleg Maldowsity and Patricia Corcoran Maldowsty, Journol of Gongultins Pgycholory. (1952), XVI, 2p. 115-118.

TABLE IIIII
Test-Retest Diferences of the Four Sub-Groups Studied by Moldovsiay

TABTE IVI2
Mean Test - Re-test DiPferences Of Group Studied by Meldowsly

Test	Controls	0	Experimentals	
	Mean	0	0	
Vocabulery Dielt Span	+.562	.622	+.437	.747
	+.375	0.234	-1.125	8.859

111b1d., D. 116.
12 Ibla.

Robert G. Bemreuter, in an unpublished erticle on the "Improvement of Nemory Testa," geve the results of the experimentation being done with his new memory spen test. He used the dicit span test, the letter span test, and the nonsense syllable span test. A total of 190 fourth grede chilaren were tested. The method of presentation and scoring mas sirilar to that used on the Stanford-Binet. There were two forms to the tests and each wes given to each child in twelve difeerent sequences in order to control the effect of any possible difference in difficulty between the foms and to control the effect of practice and fatigue. An anolysis of variance was then made which showed that the effect of practice and fatigue wes negligible. It also showed thet the forms were well oqualled. 13

The results show that for the number spen test the mean lencth wes 5.83, and for letters 4.89 and for nonsense * syllables 3.71 .

The extent to which the sceling of the test could be refined can be shom by ratios of the scoring unit to the standerd deviation. Nen numbers, form A were edmintstered, a standard deviation of .94 was obtained, but when both Forms of numbers were administered to the subjects, atandard

13Robert G. Bernreuter, "Improvement of Menory Spon Tests," APA Meeting, (Septenber, 1953) Umpublished article, p. 3 .
deviation of .53 was obtained. Letters, Form A, had 1.12 standard deviation end when From A and B were combined, .63 was obtained. Syllables, Form A led e 1.47 standard deviation and a . 89 for For A plus B. Combining Numbers and Letters gave a. 31 standard deviation wile the combining of the three tests gave a .25 standard deviation.

The lenctheninc of the test not only improved its discriminatory value, it also. Increased the reliability. His can be show by the reliability coerilicients. The reliability of Numbers Form A vs. Form B woes. 59, but when they were combined, the rellebility was raised to .32 . The reliability of Letters alone was .51, but when combined, .68. A simple Syllables test had a reliability of . 44 , but the two forms together had a reliability of . 61. When both forms of numbers and letters were combined, a reliability coefficient of .87 was obtained. The addition of syllables did not further raise the rellshility.

Bernreuter concluded that a memory span test can be constructed using two forms of a mummer test and two forms of a letters test, which would be reliable and sufficiently discriminatory to be used in individual diagnosis. 14

In the latest study on the Bernreuter rest, forty children in kindergarten and nursery school were given the test. Twenty-aix children enrolled in a kindergarten, ranging in age

[^1]from 5-0 to 6-0 years, and fourteen children in nursery school, from 3-8 to 5-0 were used. The mean age for the groups was approximately 5-5 and 4-6, respectively. In spite of the difference of almost a year, the ranges differed by only one point, and the difference between the means of the two groups wes only .2. For this reason, the scores were combined. It is suspected that the groups were hichly selected in regerd to Intelligence. Twelve of the subjects had been given the stanford-Binet, and their scores varied from 115 to 140. The inindergarten children were tested at two separate times; the mursery children all in one session. The order used wes $N, L, S-A, N, L, S-B$. The average time of testing ren about ten minutes each, with about half the time spent in the actual testinc, and the rest. in raport buildine procedures. Intermptions to discuss dogs, covboy boots, etc. were rmequent.

Six edditional children were seen but not tested dile to negativism or intermptions. The vast majority seemed to enjoy the "game" and tried to do well. There seems to be evidence of fatigue or monotony on Form B, which at this age level seems to offset any practice effect. of the forty ohildren, twenty-four scored one or two points hicher on Form A, six one point hicher on B, and ten the sane. There wes 2 tendency for the children to begin to repeat the longer series before the examiner had finished.

The scores range from 16 to 31 , and are fairly normally

Alstributed. The N ronce veries from 3 to 5 , L from 2 to 6 , and s from 1 to 5. The mean for N is slichtly higher then 4 , for L slightly less than 4, and almost 3 for 5.

It was possible to secure twelve Stanford-Binet Iq's and so to compare M . A.'s and the test scores. The velidity of the M. A.'s is not guarenteed since most of them were practice tests. However, there seens to be a rough correlation. 15

15Joen Fagan, Report on the Bernreuter Menory Span Test, Spring, 1955. Unpublished study at Pennsylvania. State College made under direction of Robert Bernreuter.

CHPPER III

THE PROCEDURE

In order to investigete the reliability of Bermreuter's Memory Spen Test the followinc procodure wes used.

THE SUBJECTS. The subjects of this experiment were 114 children in the sixth grade in perochial schools of Chiceco, ranging in age from eleven to thirteen years. Forty-aight were boys and sixty-bix were girls. The meen age wes 11.4 years and a ataniard deviation wos .49. Each child wos tested Individually by the experimenter; Each child recelved the Bernreuter Mewory Span Test.

THE MATERLALS. The materiels that were to be leamed consisted of two distinct and seperate forms of the Bermeuter Memory Gpan Test, Form A and Form B.

A pilot study was undertaken by Robert G. Bernreuter and Pennsylvania stete College in 1953. At this time new testing materials were developed and an attempt was mede to detemine the reliability and ifneness of scallne of these new materials

In the first study, letters and nonsence syllobles vere substituted for digits. It wes found that confuston wess created when letters ending in an "ee" sound were used. A sequence such as "b, p, d, c, ε," would often be ropeated as "b, p, e, d, c," even by children whose memory spen wes considerobly longer than five units. As a consequence all such
letters were onitted. The letters " f, h, k, l, n, r, s, and $q^{\prime \prime}$ Were finally selected.

The first syllables tried were the typical three letter nonstase syllebles consistinc of two consonants and an intervening vowel, which were similex to those constructed by Ebblnghaus, This type of syllable wes found to be useful in memory tests when presented visually, but they were found to be very confusing when presented orally. Instead, nonsense syllables were constructed by adding an "aw" sound to the letters b, d, f, g, h, i, m, and t. The result was that the following syllables were formed; "baw, dev, faw, cew, haw, maw, and taw*"

On the besis of the ifirst study conducted by Bernreuter, gix new menory span testa were constructed. The six new, memory span tests were divided into two groups. These groups were classified as Form A and Form B. Eech form" consisted of a number span test, a letter span test, and a nonsense syllable span test. The difference between Form A and Form B does not rest on a difference in sequence or presentation, but simply a dirference in the spens thenselves. For exemple, in form A, in the number span test, the first series of three digits $1 s$ 385, and the first series of three digits in Form B beging with 528.

Care was taken by Bermeuter in the construction of the test to avoid starting a series with the sane symbol with
which the imnodiately precedine series had started or ended. This means that all series which might follow immediately after the series " F Q H^{1} could not start with elther F or H. Care was also used to avold repeating peire of letters in the series imediately following. Thus, efter "F S Q H ," the combinations FS, BQ , and QH could not be used. These precoutions were found necessary, according to Bernreuter, to keep the series opproximately equal in difficulty.

In administering the Bermreuter Memory Span Test, the child was first given the number gpan test of Form A. The experimenter began with one digit span and as soon as the child pessed a span of one length, the experimenter moved to the next longer span. Thus, if he correctly repeated 385 , the next open given wes 2947. If the child falled 395 m but pessed the next spen, 197, the experimenter would go on to 2947. If the child falled 385 and failed 197, but passed 624, the experimenter went on to 2947. However, if the child falled 335, 197 and 624, the experimenter atopped the adrinistration of the muber apan test and went on to the letter span teat. This procedure was used for both Form A and Form B, and for each span test - numbers, letters and nonsense syllables.

The nethod of presentation and scoring was asmiler to that used on the Stenford-Binet. Success vas based on the
correct repetition of one of three tripls.
The Nemory Bpen Teste were administered in the folloving order -

Number Span - Form A
Letter Spen - Form A
Syllable Span - Form A
As soon as the three sequences were completed, the experirenter administered Form B.

> Number Span - Form B
> Letter Spen - Form B
> Syllable Span - Form B

Both forms of each test were administered to each child in the above sequences. The purpose of administering. the sequences in this order was to control the effect of eny possible differences in difficulty between the forms and to control the effect of practice and fatigue.

In the following experiment, numbers will appeor os N, Letters as L, syllables as s, and when the forms are combined, the results w111 appear as 7; ec. NT would stand for Wumbers, Form A and Form B.

The followine instructions were fiven to each subject before the teat begen:
"This is to see how vell you can listen. I am coine to say something. I want you to listen and, when I an through, I want you to tell ree what I said. We Mill stert with mumbers."

If there wes no response, the experinenter said "You toll me wat I gaid."

The subject ves encouraced to try, in necessary. only the sincle lettexs, numbers, and ayllables could be repeated; the loncer series could not. The letters, numbers, on syllebles were read at the rate of one per second. When the subject tried and passed, the first series on the next higher level was eiven. A success was considered if only one of the series of three was passed. If the subject passed the first sorien of the totel series, the examiner imedistely went to the next Heher series. When the subject tried, and ralled, the next series of the same level was given. This was continued until there had been three consecutive failures in a level.

Each subject was examined in a amall room in the school. The room was set away from the sohool classrooms. Eech child was seated in an arm chair with a table in front of him. The examiner was seated directiy across from the subject.

The lichting was plorescent. The noise was at a * minimum. In order to control faticue, each child was tested in the moming. It was impossible to control the tone of the exminer's voice when each test was edministered, but he spoive in normal conversation pitch. It was also impossible to control the possibility of a heering defect or loss in the subjects.

GHAPTER IV

AMALYSIS OF RESULIS AND DISCUSSION

Each subject's successes and fellures vere exemined carefully and the totel score for ench subject was obteined for each test of both forms. These results will be discussed in relation to a) the frequency responses on the different syens; b) the differences in means for the various tests; c) the ranges of spans; () the extent to whish the test cen be rersned; e) its diferiminatory value and reliobility; f) whether the three types of tasks utilize three kinds of memory.

In Appendix I, the frequency of responses for the letters, numbers, and ayllables span tests are shown. The resulta represented by this appendix indicate the highest guccesses obtained by subjects before three consecutive fallures.

It should be noted that in Appendix I, the scores for both forms clustered eround the five and six letter spons. On Form B there was a slight improvement in length of span repeated over Form A. Eleven boys repeated the six letter span test perfectly in Form A, whereas fourteon repeated it perfectiy in Form B. The same percentage incresse happened for the seven letter span test. This increase could possibly be due to proctice and femilicrity with the letters. But before any derinite concluslon could be made, further investication would be needed to detemine the reason for the increase from Fom A to Form B.

From the results in Appendix I, it should be noted that performance chanced very little. The only notable change was in the increase of subjects basing at the four letter span length in Form B.

The boys' results on the numbers test indicate little or no improvement from Form A to Form B. For four subjects there was regression to a lower spen level. For one subject, there was an increase in span length*

The girls' results on the numbers test are rather interesting. In Form A, the results were more sonttered from the moan, and spen length was higher. But in Form B, the subjects' scores clustered more around the mean of 6.46. In Form A, four subjects obtained scores of nine and fourteen scores of five, but In Form B, six of the subjects that obtsined a score of five moved closer to the mean as did the four individuals that scored nine on Form A.

The syllable span tests were the only ones in which there was a marked regression in span lencth. The boy that scored seven on Form A recelved a score of five on Form B.

The regression for the girls on the syllebles spen test was not quite so noticeable as the boys, but there was still regression. The girls tended to cluster more closely around the mean than the boys. But the deviation between the two croups was minute.

The mean memory span length for the 114 subjects on each
test are shom in Toble V. As can be seen, the mean length of memory span when numbers were used wes approximately six for both forms, separately and combined. When letters were used, the mean lencth wes appoximately five; and, when syllables were used, the mean lencth was approximately four.

The mean lencth of menoxy apan for mubers and letters combined was approximately six, but then syllables were aded the spen lencth aropped to approxtnately five.

Whthout further investigation, it would be inadvisable to reverse the test items in the administration of the Bempeuter Test. There would perhaps be need to investigate other factors Which might be operating when a shift in presentation of materials occurs; orientation which involves presenting what appesrs to be nore diffioult tems before presenting those Which are apperently simple may have bearing on the success or, inversely, lack of success with the test items. Therefora, it would be umise to drav any conclusion or defend any position conoerning the reversal of test items without further inveatigetion.

The renges of span for mumbers are 4-9, letters 3-8, and syllebles 2-7. This indicates thet numbers are easier to repeat than letters or ayllables, and thet letters are eesler to repeat than syllables.

Means and Standerd Deviation for Numbers, Letters, and Monsense Syllables

Teat Span	Means Form A	Form A	Neans Form $A+B$	Form $A+B$
N	6.4	1.17	6.38	1.17
L	5.41	.93	5.41	.93
S	3.91	.98	3.84	.88
$N+L$	5.9	.	5.87	1.15
$N+L+S$	5.24		- 5.19	1.38

The above table presents the standard deviations of the distributions of Form A and Form A plus Form B. Table V shons that a chenge of one digit in the Form A numbers equals 2.17 standard deviations. This, of course, is very coarse scaling. When the forms are combined, the stendard deviation did not change at all. The same held true for letters when compined. As shown, a change of one letter in Form A equalled .93 standard deviation with no change in standard deviation when tests were combined. On the Form A syllables, a change of one syllable equals .93 standard deviation. However, the situation changed slightly when the syllable tests were combined, showing that the chance of one syllable equalled. 88 standard deviation.

The above results indicated that Form A and B of the number tests were comparable. The seme could be sold of the letters and syllables.

Wen the number and letter testa were combined, the standard deviation was 1.15, indicating that the group vas not as homeogenous as Bernreuter's group. When he combined the two tests, the standard deviation was 31 , Indicating a rather homeogenous group. This held true when the three tests were combined.

The lengthening of the test increased the reliability of the test. This is shown in Table VI.

Reliability Coefficients of Parallel Forms

The reliability of a single form of the numbers test was found to be .58. This is about what is generally reported in the literature. The digit span test in the Wechsier-Bellvue Intelligence scale for Adults has a reliability of .51 .

When form A and Form B of the number span test were combined, the reliability for Parallel Forms using the

$$
1_{\text {Bernreuter, }} \text { op, cit., p. } 3 .
$$

Spearman-Brown Formula was increased to .73 . When letters were edded to numbers, the reliablisty for Parellel Forms wes raised to .83. The adding of syilables to the other two tosts did not further increase the rellebility. It decreased slightly.

The fact that series of letters are easier to repeat than are series of syllables, end that series of numbers are still easler to repeat. reises the question of whether the three types of tests utilize three different finds of memory. Intercorreletions give only a partiel anwer to this question.

The correlations vary from . 63 to .79 . Men letters, Form A and B were correlated with ayllables, Fom A and B, the correlation obtained was .63. Thie was somewhet different than the results obtained in a previous otudy. The Iovest comelem tion obtained ves between numbers and sylinbles. The correlation between mubers and letters wes .79 , indiceting that letters and mubera, besides incressing the relisblility of the test, probably are measuring a common eleaent. From the results it can be stoted thet it is uncertain whether the syllables teat involves sone adational factors.

When the new correlations were corrected for attenuation, the results obtained gave further indication that mubers and letters measure a comon element and that syllables do not.

The above resulta indicate this clearly. Then Nubers, Form A and B were combined to Letters, Form A and B, the
correlation was .79. When these new correlatione were comected for attenuation, the reliebility was incressed to .95. Wenever numbers were comblned to syllables and letters comblned to syllobles, the reliability was roised to . 74 and .75 respectively. This indicates that these forms are not as relinble as the combinine of numbers and letters and do not measure a common element.

OHAPTER V

SUMMAR AND CONCLUSION

The only type of menory span test in which there has been much research is the muber span test. Binet roported that children of ten years should heve a span of six disits. The results obtained confimed this, since a mean of 6.38 wes obtained. The average for the 114 subjects was 11.4 years, Which would indicate a memory spen of alichtly above six dicits; this was arrived at by ueine the Terman-Merrill method of standardization on the Stanford-Binet. In their standardIzation, the repetition of alx digits is characteristic of the ten year old child.

Little or no research has been done concemine letter or syllable span tests. From indacations, it seems that Individuals of eleven years repeat one leas letter than number and two less nonsense syllebles than numbers.

Looking at the span ranges, it would indiante that numbers are easier to repeat thon letters, and letters easier thon syllables. But to state that an individual has a mean memory span length of $6.33,5.41$, or 3.34 and a range lencth from four to nine, is meanincless and useless unless reference is mede to the type of material utilized.

Addinc syllables to letters and numbers seems somewhet pointloss since there is no increase in the reliability to any significant extent. For this reason, it would seen that to
delete the syllable test in the constmation of new memory span meterial would be adviseble.

One may wonder why an anmysis of variance was not undertaken to deterane what effect practice and fatigue had on the subjectg. Thie was undertaien in three previous studies with the Bermreuter Memory Span Test and the results indicate thet the effect of practice and fatigue were necligible. This could be understandable since the test is administered in under ten minutes and the subjects nevex pepeat the same meterial.

The final analysis of the test results and introspections sugsest three apecific chances in the letter spen tests. The first change is the elimination of the letter "K." Forty percent of the subjects, at one tine or other, repeated this letter as "A." hen this was first noticed, the . experimenter took extra precautions in emunciating this letter. It made little difference since the letter ${ }^{\mathrm{K}} \mathrm{K}^{\prime \prime}$ was still repeated as "A."

Another improvement in the letter spen tests is the elimination of " Q." It seems thet the youngaters tested hed been drilled in their reading clesses that " Q " never is alone. "U" alwoys follows it. This error wes repeáted by twentyseven percent of the subjects, For example, in this span,

Another frequent error repeated by rany subjects was the
substitution of "M" for "N." This 19 due to the rartsed similarity in their sounds.

If a letter span test is to be formed with these eliminations, new letters are to be found. An example of such a span knight be F, H, L, R, B, T, and W. This would eliminate letters ending in en "E" sound. The only exception to this would be "r," but this letter is rarely misunderstood. It would also eliminate vowels and letters sounding similar to other letters.

This experiment was conducted in order to investicete methods of improving memory span testa.

Three tests containing two form of a number span test, a letter span test, and a nonsense syllable test were presented once to 114 sixth grade subjects. individually. The recall of the items was required to be mede in the original order. All errors were recorded on the prepared blanks.

The general conclusions are es follows:

1. Memory span length varies with the type of material used.
2. It was found feasible to construct new tests substituting letters for numbers. The attempt to use nonsense syllables seems not to be very satisfactory.'
3. It also could be concluded that a memory open test could be constructed using two forms of a nuferfothe wo forms of a letter test. These would be sufficientivinelicble
end sufficiently deseriminetory to be used in individuel diagnosis of memory spon.
4. It becomes spperent that some corrections would be adviamble in the letter span test. Eliminntion of K K , a , and N^{4} is one possibility.
5. It seems that further work is needed to detemine Whether the syllables test involves some aditional foctor not yet recognized.
6. It becones evident that the intempetation by cinicions besed on a sincle form of a digits forwerd momory span test is not justirled.
7. Pnolly, it is apperent that further investisetion concerming a shift in method of presentation is advisable. This is needed in onder to discover what foctors are involved when supposedly more difficult materiols (syllebles) se, presented first and simple materials following in presentation.

Bemreuter, Robert G. "Improvement of Nemory Span Tests," Unpublished article given at the Pennaylvanie Stete. College, (September, 1953).

Bolton, T. L. Anerican Journal of Peychology. IV, 1891. Mobinghaus, Hermen. Memory. Trans, by Henry Ruzer and Clare R. Bussenue, Nev Yont, 1913.

Fagen, Joan. Unpublished report on the Bermeuter Memory Spen Test, (Spring, 1955).

Guilford, J. P. Fundamental Btatistics in Paycholomy and Education. New York, 1950 .

Guthrie, R. R. The Psychology of Lomminc. 1935. Hull, C. L. American Joumal or Pgycholocy. VLs. 1935. Jacobs, J. Ameajen Journel of Poycholont. VL, 1922. Klugmen, Semuel F. Journal of Consulting Deveholocy. XII,
1940 . Lindquist, E. F. A Mrst Course in gtatistics. Boston, If33. Maldowblky, Stenley and Maldowsky, Petricie Corcoran. Journal of Consultinc Poyrcholoct. XVI, 1952.

MoGeoch, John A. and Irion, Arthur L. The Esveholocy of Humen Learning. New York, 1952.

Nevton, R. L. Joumal of Glinicel Parcholory. VI, 1950.
Oberly, H. S. Amerion Journal of Esyoholow. KKNV, 1928.
Sergent, S. Stenfeld. Basic Teachincs of the Greet PspcholoES5t9. New Yort, 1954.

Tommen, Levis 2. The Leesurement of Inteluisence. Combridge, hass., 1944.

Wechsier, Devid. The Meesurement of Mhlt Intellirence. Beltimore, 1944.
Moodiorth, Robert S . Contemporary Bchoole of Esycholory. New Yort, 1948.
Woodnorth, R. S. and Poffenbercer, h. T. Sextiboot of Experimental Psycholocy. Mimeoc. ed., 1920.
Woodworth, Robert s. and Schlosberc. Experymentel Psycholory. Revised ed., New York, 1054.

Frequency of Span Length on the Letter, Number, and Syllable Span Tests, Form A and Form B Obtained by Boys and Girls

	2	3	4	5	6	7	8	9
Lettors, Form A Boys Girls	0 0	0 0	9	$\begin{aligned} & 23 \\ & 32 \end{aligned}$	$\frac{17}{18}$	4 -8	$\frac{1}{2}$	0
Letters, Form B Boys Girls	0 0	1	6 8	$\begin{aligned} & 20 \\ & 33 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	7	1	0 0
Numbers, Form A Boys G1rls	0 0	0 0	3	11	$\begin{aligned} & 18 \\ & 22 \end{aligned}$	8 14	11	$\frac{1}{4}$
Numbers, Form B Boys Girls	0 0	0 0	6 1	$\frac{9}{8}$	16	27	7 10	2 2 0
$\begin{aligned} & \text { Syllables, } \\ & \text { Form A } \\ & \text { Boys } \\ & \text { Girls } \end{aligned}$	0 1	33	$\begin{aligned} & 29 \\ & 42 \end{aligned}$	5 10	0	1	0	0
$\begin{aligned} & \text { Syllables, } \\ & \text { Form B } \\ & \text { Boys } \\ & \text { Girls } \end{aligned}$	0 0	20	$\begin{aligned} & 23 \\ & 38 \end{aligned}$	5 7	0	0 0	0 0	0

APPENDIX II

Bernreuter Memory Span Test Letters; Form A

R
$\underset{F}{L}$
05
HN
KR
WKH
GLE
HRN
TKNRL
FSQH
RNKS
RQMHF
NLHQS
QENHF
HSQFRL QLRLINS PHFKIL

NQLSREK
KRLFNSH SLHIPRNK

QNFLRUHS
KHGNRLSE
PRSHNKQL
MHKOLRWSA RWQSKHNF KFHLRMSQL

LHERUSGKRH MRFSHLKQER GNKHETHLSK

Nane
School
Grade
Birthdate
Date
Age
Sex
Order of presentation . . .
Examiner
Score
Remarle:

APPENDIX III
Bernreuter Memory Span Test Numbers, Form A
4
3
86
72
59
$\begin{array}{lll}3 & 8 & 5 \\ 1 & 9 & 7 \\ 6 & 2 & 4\end{array}$
$\begin{array}{llll}2 & 9 & 4 & 7 \\ 3 & 1 & 5 & 8 \\ 4 & 6 & 1 & 3\end{array}$
$\begin{array}{lllll}9 & 2 & 5 & 7 & 4 \\ 1 & 4 & 6 & 3 & 8 \\ 7 & 9 & 5 & 2 & 6\end{array}$
$\begin{array}{llllll}4 & 6 & 1 & 8 & 5 & 2 \\ 9 & 3 & 8 & 1 & 4 & 2 \\ 5 & 8 & 2 & 4 & 7 & 3\end{array}$
$\begin{array}{lllllll}5 & 7 & 1 & 3 & 6 & 2 & 4 \\ 6 & 1 & 7 & 4 & 2 & 9 & 5 \\ 8 & 5 & 4 & 9 & 2 & 6 & 1\end{array}$
$\begin{array}{llllllll}9 & 1 & 3 & 5 & 2 & 7 & 4 & 8 \\ 7 & 4 & 1 & 5 & 3 & 8 & 2 & 9 \\ 3 & 8 & 6 & 2 & 4 & 7 & 1 & 5\end{array}$
$\begin{array}{lllllllll}2 & 5 & 7 & 1 & 9 & 6 & 4 & 8 & 3 \\ 6 & 1 & 4 & 9 & 3 & 7 & 2 & 5 & 8 \\ 1 & 8 & 3 & 6 & 2 & 4 & 9 & 5 & 7\end{array}$

Name
School
Grade
Birthdate
Date
Age
Sex
Order of presentation
Examiner
Score
Remarks:

APPENDIX IV
 Bernreuter Memory Span Test Syllables, Form 4

APPENDIX V

Bermreuter Memory Span Test
Letters, Form B

S	LA	Name
H	LB	
R		School
	NA	
NK	NB	Grade
Qr		
LS	SA	Birthdate.
	S8	
FSQ		Date . . .
KQS	LT	
NHL	NT	Ase
LQKR	57	Sex
FISH	AT	
gRLK	BT	Order of presentation.....
NLHFS		Examiner . .
RLINHQ	LANAT	Mxaminer
HRNQF	$\begin{gathered} \mathrm{LBNBT} \\ \mathrm{LNT} \end{gathered}$	Score
LNSFQK		Remerizs :
SLFKHR		
NHQFSES		
Qumincs		*
LKFREFEN		*
SLRQNFK		

NHLKRFQS
QKHFSRNL
FOFFUSLQK
ENLFHSRQL
SRNTHLAEFK
HKPPRUSLQF
RIUSHOFLNK
SNHIKPFQLRH
GFHSKIRLSF

APPROVAL SHEET

The thesis submitted by Joseph Michael Angileri has been read and approved by three members of the Department of Psychology.

The final copies have been examined by the director of the thesis and the signature which appears below verifies the fact that any necessary changes have been incorporated and that the thesis is now given final approval with reference to content, form, and mechanical accuracy.

The thesis is therefore accepted in partial fulfillmont of the requirements for the Degree of Master of Arts.

7rantitar signaturebof Adviser

[^0]: $I_{\text {Herman mbinghous, Memory, Trens, by Henry Fuzer and }}$ Clara E . Bussemus, (Tev Yort, 1913).

[^1]: ${ }^{14 \text { Ibid. . p. } 4 .}$

