An Analysis of Difficulties Encountered by Some Seventh and Eighth Grade Pupils in the Solving of Verbal Arithmetic Problems

Bessie H. Chambers
Loyola University Chicago

Recommended Citation

Chambers, Bessie H., "An Analysis of Difficulties Encountered by Some Seventh and Eighth Grade Pupils in the Solving of Verbal
Arithmetic Problems" (1955). Master's Theses. Paper 940.
http://ecommons.luc.edu/luc_theses/940

AN ANALYSIS OF DIFFICULTIES ENCOUNTERED BY

 SOME SEVENTH AND EIGHTH GRADE PUPILS IN THE SOLVING OF VERBAL ARITHMETIC PROBLEMS byBeasie H. Chambers, R.S.C.J.

A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirement of the Degree of Master of Arts

February

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . 1
II. REVIEW OF RELATED LITERATURE. 7
III. METHOD OF PROCEDURE OF EXPERIMENTAL STUDY...... 20
IV. ANALYSES OF INDIVIDUAL CASE STUDIES.................. 42
v. CONCLUSION. 76

BIBLIOGRAPHY. 87

LIST OF TABLES

Table Page

1. AGE - GRADE - I. Q. 21
II. STANFORD ACHIEVEMENT TEST: READING 24
II. STANFORD ACHIEVEMENT TEST: ARITHMETIC. 27
IV. ANALYSES OF THE INDIVIDUAL SOLUTIONS 43
V. MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS.. 78

CHAPTER 1

INTRODUCTION

When one of the formost authorities in the field of arithmetic calls for more research to be done along that line, it is ample season for choosing that field in which to do a thesis. There seems to be an unlimited supply of topics for research work, but the one that seems to have found the most interested following in that of problem solving. Probably that can be accounted for by the innumerable factor: which enter in when one considers success or non-succese in relation to the solving of verbal problems. One question which constantly came to the mind of the writer was why the children who can attain a grade level above their actual grade level in problem solving have auch an antipathy toward it. Why also do they claim that they are unable to solve verbal problems?

It was questions such as those mentioned which gave birth to the idea of this study. The author has attempted to find out some of the difficulties

1 Guy T. Buswell, Methode of Studying Pupils' Thinking in Arithmetic, Supplementary Educational Monographs, No. 70. Chicago Univeraity, 194 55-63.
which her students were having in the solving of word problems. During the study the following objectives were kept in mind:

1. To endeavor to discover the method which a child uses to solve a ver -
pal problem.
2. To note the improvement in the pupils'ability to solve verbal problems during the school year 1953-1954 by stressing various methods of olution.
3. To find out to what extent it is possible to teach children who have no definite method of their own for solving verbal problems, a technique which would be helpful in solving them.
4. To form an opinion as to which techniques have proved most helpful. The experimental study was carried on in two private school in the fity of Chicago. One school is a private girls' school in which the writer eaches the eighth grade arithmetic. She has also been allowed to include the eventh grade in this experimental work. Together the number of the children的 the two classes is twenty-five. The other school is a private boys' school n which the writer teaches the seventh grade arithmetic, and has included the ighth grade in her experiment. They totalled twenty-four boys in the se two фlasses.

The children in both schools come from families whose financial status for the mont part puts them in the upper income brackets. A few of the hildren come from homes where the income is average but sufficiently large
to give them a comfortable living. All of the children have traveled widely in the United States and some of them in foreign countries. This has given them a very broad general knowledge. These experiences eliminate many difficulties that come from being unable to visualize material around which a problem centers.

Since the writer of this study has taught in these two achools for the past four years, the children who took part in the experimental study were well known to her. She had taught them all previously - except thoae who were new to the schools this year - either arithmetic or some other core subject. As the classes are very small, the children from the beginning feel right at home and at ease which is so necessary for this type of study as Buswell says, "The first requirement is that the teacher establish good rapport with the pupil so that he will express his thoughts freely and fully as he does hia computations or his verbal problem. " ${ }^{2}$ Both schoola have a family atmosphere which gives the child the knowledge that he belongs and has a very important part to play in his class. There is rarely any reticence on the child's part in making known the difficulty he experiences. The children know that the teacher is willing to help them individually, and if they hesitate to ask during a class they have ample opportunity to ask in private.

$$
2 \text { Mbid. , } 58
$$

For the past three years in both schools, the children have been grouped for arithmetic, or taken individually, as their ability warrants. The pasts for this grouping is usually dependent on three things: (1) the attitude of the child toward the subject. This can be gathered chiefly from the teacher who had him in the past. She notes whether he is eager to learn. Does he want to get by with as little work as possible? Is he a plodder and willing to to all that is assigned? (2) The grade level attained on one of the reliable achievement tests. The children in both schools are tested at least twice a year, and usually an often as every quarter. (3) The child's I. Q. and ReadIng Grade Equivalent.

In the girls' school the arithmetic period is fifty minute: in length
daily. In the boys school the arithmetic period is sixty -five minutes in length daily. No teacher is obliged to take her entire group or groups any day. If she wants to take one child individually to clear up a difficulty, she may; while the remainder of the children with whom she is charged have sufficient work po continue on their own. The children, when not with one of the arithmetic teachers, are at a supervised study. There the one in charge reports to the arithmetic teachers when one in her group: ia not doing arithmetic. The cause pt his not doing arithmetic is discovered and remedied.

It is not obligatory for the teachers to assign homework. However, the teachers do assign homework, if not every night, at least three nights a week.

Given the freedom from usual classroom procedures in the arithmetic department of both schools, the writer was able to carry on her study a atudy which would have been more difficult to make in a more conventional school.

The schools have found this grouping very satisfactory. The dull child finds joy in going to class and understanding what he is doing. This sense of achievement is a great incentive to harder work. The average child can work to hie full ability without being held back by the dull child or constantly outatripped for the honors by the very bright child. It is the author's opinion that the keenest satisfaction is found on the part of the brigh; child. Arithmetic is presented to him as a challenge, something that is a little beyond his reach, but which he can attain by atretching. This goal whep reached gives him a aense of achievement and widens his horizons to see further goala. He loves to conquer the difficult, and this can be presented to a group of children of this type in such a way that it will be a apur to work harder. On the other hand, if the same type of work were presented to a mixed group, what would be difficult to the very intelligent child would become a nightmare to the average child and impossible to the dull, thus encouraging the latt two groupa to build up the feeling which so many have, "I could never do arithmetic - I never knew what I was doing." Morton expressed this idea when he aid:

Not the least important of the findings...is the fact that problem assignments should be varied to suit the greatly varying capacities of the children to be taught. What is suitable for average children is too easy for the gifted and too difficult for the dull. Providing a uniform assignment for all is likely to reault in a lose of interest on the part of the brighter children because the task are not a fit challenge to their abilities and an equal or greater loss of interest on the part of the duller because they fail to underntand what is required of them. Only by making the assignment conform to the different capacities and interests of the pupile in the class can we hope to accomplish a maximum of benefit for all. ${ }^{3}$

The school have found that not all teachers share these views on the group system. The teacher who is enthusiastic about his subject has been found to be completely in favor of it, but those who find no interest in the teaching of arithmetic have the strong objection that having groups at all different levels calls for much more work on the part of the teacher. That is very true. However, they are all unanimous in admitting that the actual teaching within the classroom is easier.

3 Robert Lee Morton, Teaching Arithmetic in the Elementary School, Vol. II, Chicago, 1938, 459.

CHAPTER II

REVIEW OF RELATED LITERATURE

Problem solving could undoubtedly claim to trace its history from the beginning of man, for with the existence of man problems came into being. However, written records as to the nature and essence of problem solving in arithmetic came before the public eye shortly after Rice's first published report in 1902. Rice's report was not dealing with problem solving but was his explanation of how to measure the progress in arithmetic scientifically. ${ }^{1}$ This gave an impetus to others in the field of arithmetic both in computation and problem solving. Though the ball began to roll with Rice, its progress wak low. In 1927 Buswell and Judd made a survey of all the literature which had been published concerning problem solving before 1927. ${ }^{2}$ This survey presents very concise summary of all articles written and gives a clear picture

1 Charles Judd and Guy T. Buswell, Summary of Arithmetic Investiationg (1926) Problem Solving, Chicago, 1927.

2 Ibid.
of the experimental work which had been done on problem solving up to that time.

Among the many studies that Judd and Buswell reviewed was Hydle and Clapp's ${ }^{3}$. Their work was concerned with mixth through ninth grades. They atudied the following element of difficulty as it concerne problem solving: (1) objective setting, (2) size of numbers, (3) unfamiliar objects, (4) arrangement of problems within a series, (5) non-essential terma, (6) experience and visualization, (7) the problem form of statement compared with the project form of statement, and lastly, (8) symbolic terms. They found that there wan a great difference in the solution of problems with and without the first five elements. With the sixth and seventh element they could not find any significant difference; with the eighth there was a ignificant difference for grades four and five, but not for the higher grades. They concluded that their atudy gave evidence that pupiln' thinking is merely a matter of visualization and that if we are to train the children to think, the probleme that they are given must not be too easy to visualize.

Another study that was published before 1927 was the experimental
work done by Lutes. He aimed to improve the problem solving ability of the

3 L. L. Hydle and Frank L. Clapp, Elementa of Difficulty in the Interpretation of Concrete Problems in Arithmetic, University of Wisconsin Bureau of Educational Research Bulletin, No. 9, Madison, Sept. 1927.
ixth grade classes in the large public achools in one of lowa's cities. In udging his results ${ }^{4}$ Lutes considered that the correlation between computa ${ }^{\text {a }}$ ion and reasoning low, being $0.439 \pm .035$ and 0.494 ± 0.033. He found that in the groups where the emphasis was laid on computational skill there were greater results to show in both computation and reasoning. However, in the peginning of his experiment he did not define problem solving ability as bility to reason but the ability to obtain correct mathematical answers.

It would seem that it might be well to keep in mind Lates' atress on computational practice, for, according to an article by Habel there is a sreat deficiency. "Examination of many articlea relating to arithmetic tests dministered to college freshmen has inexorably emphasized the unhappy fact hat thirty to forty percent of the freshmen in most sections of the country are nferior to the average eighth grade student in computational skill. "5 This fould mean that the atudents of the eighth grade today are better trained in fomputational skills. However, to have this ability last for the next five fears the present eighth graders will have to have a thorough understanding

4 Olin S. Lutes, An Evaluation of Three Techniques for Improving Ability to Solve Arithmetic $\overline{P_{r}}$ oblems, University of Iowa Monographs in Edu. Eation, No. 6, Iowa City, June, 1926.

5 E. A. Habel,"Deficiencies of College Freshmen in Arithmetic: Piagnozis and Remedy", School Science and Mathematics, 50: June 1950 180-481.
of the computational skills, or they will be among the freshmen whom next year's eighth graders surpase.

In 1929 Neulen did a study with three groups which had been divided on the I. Q. basis. Though there was non-overlapping on the point of $1 . Q$. in any of these groups, there was a decided overlapping in arithmetic ability. There were some pupils in each group who solved all twenty-five problems correctly and some in each group who solved none of the three-step problems correctly. He felt that it showed that homogenous grouping according to I. Q. did not necessarily produce homogeneity for problem solving. However, he did note that the per cent of pupils in the lower I. Q. groups which solved the problems incorrectly was greater than those in the higher groups; likewise, the per cent solving the greater number of problems correctly were to be found in the two higher groups. 6

Hanna has been much quoted for the experimental work which he carried on endeavoring to find out which of three methode was the most successful in teaching children to solve verbal problems. ${ }^{7}$ The methods were

6 Leon Nelson Neulen, Problem Solving in Arithmetic, The Lincoln School of Teachers College, Bureau of Publications, Columbia University, Hew York, 1929.

7 Paul R. Hanna, Arithmetic Problem Solving, The Linceln School of Teachers College, Bureau of Publications, Columbia University, New York 1929.
the dependencies, conventional and the individual method. He found out at the end of a aix weeks' trial that the conventional method was inforior to the other two, but that statistics thowed no significant difference between the dependencies and the independent methods.

A little less than ten years later, Sheerin carried on an experiment with forty-two clames from fourth through eighth grades in an attempt to evaluate which of the three methods was best for teaching problem solving. 8 she had the children use the conventional, equation and box technique. At the con cluaion of thi work she found that there was no technique which was eignificantly superior to another, but there was a significant trend in favor of the box technique.

Another means that has been employed to help children improve in problem solving ie that of estimating anowers. It is thought that if one could teach a child to give a reasonable entimate of the answer to a problem before the work is begun, it would eliminate much of the random guessing so harmful to real thinking. Dickey did an experimental atudy with a control group and an experimental group with which he worked for fifty daym, training them to estimate answers to both problems and examples. The end of the experiment there was mo significant difference between the control and experimental

8 Ethel M. Sheerin, An Evaluation of Arithmetical Problem-Solving

groups as to their ability to solve problems. This experiment was done with children in the sixth grade and Dickey said that he felt there might be a significant difference if the experiment was tried with older students with more mature judgment. ${ }^{9}$

Dieterle wa: in agreement with Dickey aa a result of an experiment which she carried on with a fourth grade. She felt that there wan no aignificant difference in the students' ability to solve verbal problems and noted furtheer that those of the class with lower intelligence found it confusing to have also the estimate of the answer besides doing the problem. At the end of the experiment they got more problems wrong than previously, while the brighter children made the better estimate and attained a higher score in problem solving. ${ }^{10}$

Where is the advantage of eatimating anawers if by itself it ia not considered the way to improve problem solving? It has been eaid by Shane and McSwain that one of the "Desired Outcomes in Problem-Solving" is "(3) Are the children able to approximate a reasonable answer before computing to

[^0]find the correct anawer?"ll it would seem, then, that if the ability to estimate the correct answer is a desirable outcome, it evolves from a real under standing of the problem. The ability to eatimate answers is one of the effects of the ability to solve problems and not the foundation upon which this ability may be built.

Though there is a wide divergence of opinion as to the beat method of teaching problem solving, there is conaiderable unity on some stumbling blocks in the way of successful problem solving. The first of these is the ability to read probleme and by that is not meant simply the general skill of reading, but the ability to read and comprehend detailed, technical reading. Parker gives an example of a mathematics teacher faced with a student who would say that he didn't understand a problem. The teacher would then ask if not any of the problem was understood. Then he would tell the student to look at his book and read the first few words. The pupil would be stopped with the question, "Do you understand that?" This method would go on for each phrase. The teacher affirmed that frequently thia detailed attack was all that was necessary to enable a student to understand a problem. ${ }^{12}$ Cole backs

IIH.G. Shane and E.T. McSwain, Evaluation and the Elementary Curriculuy, New York, 1951, 198.

Chicago, 12 Samuel C. Parker, Types of Elementary Teaching and Learning,
up this idea by otating that the difficulty with children is that they read problems as they would read fiction. They will read aproblem quickly mising many of the details easential to solving the problem. 13 This same reading difficulty is stated by Morton, 14 Lutes, 15 Haynea, 16 John, 17 Brueckner, 18 and Spencer and Brydegard. 19

Closely allied to the reading difficulty is the hurdle of vocabulary. It is necestary for authors when writing arithmetic text booke to correlate the vocabulary of the books with the standard vocabulary list for each grade. Thi has not alwaye been done, and in consequence, problem were frequently incorrectly solved by children. Yet those identical problema were easily oolved by the ame children when the vocabulary was changed to meet their level.

13 Luella Cole, The Elementary School Subjecta, New York, 1946, 373.

14 Mprton, Teaching Arithmetic. 454.
15 Lutes, An Evaluntion, 12.
16 Jesaie P. Haynes, Problems of a Supervisor of Arithmetic in the Elementary Schoole, 2nd Yearbook, National Council of Teachers of Mathematics. 94.

17 Lenore John, "Difficulties in Solving Problem" in Arithmetic," The Elementary School Journal, XXXI, Nov. 1930.

18 Leo J. Brueckner and Foster Grosanickle. How To Make Arithmette Meaningful, Chicago, 1947.

19 Peter Lincoln Spencer and Marguerite Brydegaard, Building Mathematical Concepta in the Elementary School, N.Y., 1952, 311-312.

There are many who claim that the difficulty of vocabulary is one of the main factors for inability to solve problems. A few of these are Hildreth ${ }^{20}$ Bell, Coston and Gates, ${ }^{21}$ Gesling, 22 Stevenson, ${ }^{23}$ Buswell ${ }^{24}$ and Foran. 25

Questions have arisen as to whether the difficulty of the problem depends on the process involved within the problem. Becker did atudy along that line and came to the following conclusions:

1. The sequences of processes are elements in determining the difficulty of concrete problems.
2. The processes aside from their sequence do not appear to be element which determine the difficulty of concrete problems. Sub-traction-division and division-subtraction include the same processes but are at opposite extremes of the scale of difficulty.
3. Those concrete problems in which the first step is addition or or subtraction are generally less difficult than those problems in which the first step is multiplication or division.
4. Concrete problems in which the first step is division are

20 Gertrude Hildreth. Learning the Three R's, Minneapolis, 1947,

21 Elizabeth Bell, Arleta Coaton and Elizabeth Gates, "Solving Youf Arithmetic Problems", National Educational Association Journal, Vol. 41, Nov. 1952, 477-8.

22 P.R. Stevenson, Difficulties in Problem Solving", Journal of Ed. ucational Research, XXV, May, 1932, 253-260.

23 Guy T. Buawell, Curriculum Problems in Arithmetic, The National Council of Teacher of Mathemstics, 2nd Year Book, N. Y. 1927.

24 Thomas G. Foran, "The Reading of Pxoblems in Arithmetic", Catholic Educational Review XXXI. Dec. 1933, 601-612.
decisively more difficult than those in which the second step is division. 25

This experiment which Becker did was carried on with eighth grade pupils. A similar study by Berglund-Gray reached the ma me conclusion. The position of a process in a problem is a factor in the degree of difficulty of the problem. "The ascending order of difficulty of the prosesses when used as the first step in the solution is as follows: addition, multiplication, subtraction, division. "26

In the past ten years Brueckner has made some interesting observations on the teaching of problem solving. He atates that in many casea the verbal problems turn out to be nothing more than a disguised drill; he, as others in the past, stresses that the problems which the children are given to solve should come from direct experience. He apecifies, though, that problems containing vicarious experiences will be helpful to the child if from real experience the child knows the material with which the problem deals. 27

The necessity of experience in the situations with which the word

25 Fredericka M. Becker, Effect of the Procesaes and Their Order Upon the Difficulty of Arithmetic Problems, Unpublished Master's Thesis, Oniveraity of Pittsburg, 1943, 31.

26 Gunborg Berglund-Gray, "Difficulties of the Arithmetic Processes". The Elementary School Journal, XL, Nov. 1939, 198-203.

27 Brueckner and Grossnickle, How to Make, 197.
problems deal was also conclusion drawn by Lazerte ${ }^{28}$ after several studies in problem solving. This same conclusion was drawn by White as a result of her experiment; the also found that the more steps there are in a problem the greater is the necessity for experience in the situation. ${ }^{29}$ Bowman expressed the idea that interest in a problem would be built up if the children were given problems which represented genuine childhood situations. ${ }^{30}$

One of the more recent studies which should prove a valuable aid to the teachers of arithmetic was Sutherland's work in problem patterns. ${ }^{31}$ She examined the textbooks from third to sixth grade inclusive, of four differ ent series, analysing all the one-step, two-step and three-step problems and categorized them according to patterns. She found thirty-eight problem patterns which were divided as follows: sixteen of division, ten of subtraction,

28 M.E. Lazerte, The Development of Problem Solving Ability in Arithmetic, Toronto, 1933, 136.

29 Helen M. White, "Does Experience in the Situation Involved Affect the Solving of a Problem", Education, LIV, April, 1934, 451-455.

30 Herbert L. Bowman, "The Relation of Reported Preference to Petformance on Problem Solving", Journal of Educational Psychology, XXIII, April, 1932, 266-276.

31 Ethel Sutherland, One-Step Problem Patterna and Their Relationto Problem Solving in Arithmetic, Teacher: College, Bureau of Publications, Xew York, 1947.
eight of multiplication and four of addition. As it wam necessary to limit the scope of her work, she omitted certain types of problems in her clasaification. If these also had been examined, the number would be greater. Her jdea is not to have the patterns as such presented to the children, but the teacher, knowing these patterne, will be able to give the children enough problems of one pattern to facilitate recognition of them. This should be a remedy for the confugion of mind that many children feel because of different types of problems.

The above named study muat not be judged to be aimilar with a tudy by McEwen where the children were trained to recognize cues in odder to decide how to work the problem. ${ }^{32}$ Some of the common cues were words as: in all, both, difference between, share equally, times, needed, products. At the end of hia experimental study he concluded that cues were more uaed by children of the younger grades, and that within each grade the children of a low rank in problem solving achievement were more affected by the verbal cue than those with a higher rank. As a result of his study he felt that it was not advisable to teach children to molve problems by means of verbal cue for they "interfere with sound progress in quantitative thinking." 33 This

32 Noble Ralph McEwen, The Effect of Selected Cues in Children's Solutions of Verbal Problems in Arithmetic, Unpublished Doctor' Dissertation, Durham, 1941.

$$
33 \text { Ibid, } 171 .
$$

study differed from Sutherland'a work for though she pointed out cues that could be found in the different patterns, she doesnot advocate drill on them as an aid to problem solving.

In reviewing the IIterature concerned with problem aolving no studies were encountered where the experimenter worked individually with the studente having them do their work orally. It is in that way that this study differs from previous works. Many pointe of the study are similar to earlier experiments, but the manner of procedure differs.

CHAPTER III

METHOD OF PROCEDURE OF EXPERIMENTAL STUDY

It was decided that to have a basis for comparison for the atudenta' mprovement in problem solving, an achievement test in arithmetic would be given. The investigator administered to both schools within the first week of he opening of the chool year, 1953-1954, the Stanford Achievement Test, dvanced form Jm , the revised 1953 edition in both reading and arithmetic. She results are listed in Table IL and III.

From the results of these teats it can be seen that the majority of he students have a higher grade level in problem solving than in computation. That seemed an important factor in considering what type of word problem: to choose in compiling a test which would consist of twelve verbal problems to be dven to each child individually.

The problems which were chosen were selected on the basis that they resented a problem to be solved, and in all casee the computations needed Pere only the four fundamentals which should not be a atumbling block to the eventh and eighth grader. These problems were entirely new to them and it

TABLEI

$$
A G E-G R A D E-1 . Q
$$

Name	Age: Sept. 1953	Grade	1. Q.
Annie	13:2	8	113
Janice	13:2	8	127
Jody	13:0	8	116
Pat	12:3	8	134
May	12:11	8	104
Joanne	13:1	8	106
Mickey	14:0	8	96
Dotty	12:10	8	124
Cathy	12:1	8	112
Charlene	12:0	8	127
Eloise	13:7	8	125
Agnes	13.6	8	126
Eileen	13:0	8	109
Marie	13:0	8	101
Dot	13:4	8	111

a Otis Self-Adminiptering Teste of Mental Ability: Form A

TABLEI
AGE - GRADE - I. Q. (Continued)

Name	Age: Sept. 1953	Grade	I. Q .
Candee	12:0	7	99
Teresa	11:4	7	107
Nonie	12:9	7	126
Penny	11:0	7	106
Jackie	12:0	7	121
Lindy	11:8	7	136
June	12:1	7	112
Lila	12:2	7	125
LIz	11:8	7	118
Sugie	11:11	7	116
Dan	12:9	8	129
Paul	12:5	8	133
Gerald	13:3	8	104
Dick	12:6	8	122
Walter	12:9	8	108

> TABLE I
> AGE - GRADE - I.O. (Continued)

Name	Age: Sept. 1953	Grade	1.8.
Fred	14:4	8	111
Bud	13:4	8	95
Bill	13:9	8	101
Roy	12:9	8	118
Lester	13:11	8	99
Ted	14:3	8	95
Lloyd	13:4	8	90
Chrie	12:5	7	94
Matthew	12:0	7	119
Henry	11:9	7	124
Ralph	12:9	7	109
Clark	11:4	7	117
Tony	12:2	7	126
Bob	12:3	7	129
Ed	11:1	6	132
Benedict	11:1	6	134

TABLE II

STANFORD ACHIEVEMENT TEST : READING

Name	Form Jm (Sept.)		Form Km (May)	
Annie	10.4	10.4	8.2	10.4
Janice	12.9	12.4	12.8	12.4
Jody	10.4	10.6	10.6	11.6
Pat	10.4	12.9	11.7	12.9
May	12.8	11.6	11.7	11.9
Joanne	11.5	10.6	11.4	11.4
Mickey	8.1	8.0	6.3	8.4
Dotty	11.1	10.8	11.4	11.9
Cathy	10.8	9.3	8.5	10.6
Charlene	12.9	11.9	10.9	12.4
Eloise	12.9	12.7	12.9	12.2
Agnes	11.8	12.4	11.7	12.9
Eileen	11.5	10.4	10.9	10.6
Marie	8.1	7.6	7.9	7.7
Dot	7.2	10.4	8.5	11.9

TABLEII

STANFORD ACHIEVEMENT TEST: READING (Continued)

Name

$$
\begin{array}{ll}
\text { Form Jm } & \text { (Sept.) } \\
\text { Comp. Vocab. }
\end{array}
$$

Form Km	(May)
Comp.	Vocab.

Candee
6.2
6.3
8.2
6.5

Teresa
5.8
9.3
7.0
8.4

Nonie
9.3
8.4
8.5
8.8

Penny
9.8
10.1
9.0
9.6

Jackie
11.8
10.1
11.7
11.6

Lindy
12.8
12.2
12.5
11.9

June
8.9
11.9
10.9
11.4

Lila
12.1
11.6
12.0
12.2

Liz
9.8
10.8
12.0
11.1

Suaie	10.1	10.4	11.4	10.6
Dan	10.4	11.9	11.3	11.3
Paul	12.1	12.7	11.6	12.2

Gerald
7.8
8.2
8.5
7.6

Dick
11.5
10.1
12.0
11.6

Walter
6.2
9.1
7.7
10.4

TABLE II

STANEORD ACHIEVEMENT TEST : READING (Continued)

Name	Form Jm Comp.	(Sept.) Vocab.	Form Comp	(May) Vocab.
Fred	11.8	11.1	12.0	11.9
Bud	8.9	8.2	8.5	9.1
Bill	8.1	7.1	5.5	7.0
Roy	8.5	11.4	11.0	11.0
Lester	5.6	6.8	6.0	9.1
Ted	8.5	8.2	8.0	7.6
Lloyd	6.2	8.8	4.8	8.2
Chrie	5.8	6.1	5.5	7.2
Mathew	8.9	10.4	7.1	7.6
Henry	9.3	9.8	8.9	9.1
Ralph	7.8	6.3	6.5	6.1
Clark	10.1	8.4	8.9	9.1
Tony	8.1	7.1	8.5	7.9
Bob	10.4	9.3	10.3	10.7
Ed	9.0	8.9	9.7	8.9
Benedict	10.4	7.7	9.7	8.7

TABLE III

STANFORD ACHIEVEMENT TEST: ARITHMETIC

Name	Form Jm Comp.	(Sept.) Reas.	Form Km Comp.	(May) Rean.
Annie	10.9	11.7	11.3	12.1
Janice	11.2	11.7	12.3	12.1
Jody	8.4	10.0	11.6	11.7
Pat	12.4	12.7	11.6	11.7
May	8.7	7.9	10.7	12.1
Joanne	9.9	9.7	11.0	10.3
Mickey	6.4	6.4	6.9	8.3
Dotty	9.0	9.7	10.7	11.1
Cathy	6.9	7.4	9.4	9.8
Charlene	8.2	8.5	8.7	11.1
Eloise	10.6	11.7	11.0	12.1
Agnes	10.9	10.8	11.3	10.0
Eileen	7.1	8.8	8.5	10.8
Marie	7.9	8.5	6.8	9.0
Dot	7.7	7.4	10.3	9.4

TABLE III

STANEORD ACHIEVEMENT TEST: ARITHMETIC (Continued)

Name	Form Jm Comp	(Sept.) Reas.	Form Km Comp.	(May) Reas.
Candee	6.8	7.7	7.7	7.1
Teresa	6.6	6.8	7.0	8.0
Nonie	6.6	6.6	6.8	7.3
Penny	8.1	6.8	9.4	9.8
Jackie	7.9	7.4	7.0	8.3
Lindy	8.4	8.5	12.0	12.7
June	9.3	9.3	11.3	11.1
Lila	8.4	8.1	8.1	9.4
Liz	7.2	7.4	9.1	9.4
Susie	7.5	8.1	7.9	7.1
Dan	10.6	10.8	9.9	12.9
Paul	12. 1	12.7	12.3	12.7
Gerald	9.5	8.5	7.9	8.5
Dick	6.9	8.8	8.2	11.1
Walter	6.9	7.0	7.9	9.0

TABLE III

STANFORD ACHIEVEMENT TEST: ARITHMETIC (Continued)

Name	Form Jm Comp.	(Sept.) Reas.	Form Km Comp.	(May) Reas.
Fred	7.5	6.8	8.5	9.0
Bud	8.4	7.2	8.2	7.8
Bill	8.5	7.7	9.9	11.7
Roy	9.0	7.7	8.5	9.8
Lester	7.9	6.4	7.1	7.0
Ted	8.4	10.0	11.3	11.7
Lloyd	5.2	5.4	6.6	4.2
Chris	5.2	5.8	6.3	7.0
Matthew	8.2	6.6	7.3	8.5
Henry	6.9	6.1	7.3	8.8
Ralph	7.5	7.4	9.1	8.8
Clark	6.3	7.7	9.1	9.4
Tony	9.3	8.5	11.0	11.1
Bob	9.9	10.5	10.3	12.1
Ed	8.4	7.9	10.2	10.6
Benedict	8.6	8.8	9.2	10.0

would offer an opportunity to show how they tackled a new and strange problem,
It was hoped that it would show if they had any method or if they were simply making random guessen.

If a child is given a problem as the following: "During a vacation Jim Hall worked in a atore. He could buy anything in the store at a 20% discount. Find what a $\$ 1.25$ box of fancy soap would have cost. ${ }^{11}$ In spite of the wording which makes the problem, in reality it is not more than percentage computation. One can do the problem if one knows percentage; if not, one can not. The aim of this thesis was not to find out in what fundamentals the children were weak, but why they could not solve verbal problems. Also as many of the conventional type word problems easily found in many text books are often nothing more than "a disguised drill"2 for some form of computation, It was judged better to take the problems from some other source. It was hoped that the problems which were chosen would give a clearer picture of the child's ability to think.

Both the schools open late in September, and after they had been un-
derway for a month, the individual testing of each child was begun. The inves Mgator felt that a clearer insight into the child's thinking could be gathered if

IF.B. Knight, J.W. Studebaker, Glady: Tate, Study Arithmetics, aok 7, Chicago 1948, 156.

2 Brueckner and Grossnickel, How to Make, 450.
while doing the problems on the individual teat, the child did his work out loud.

Another reason for this decision was that in doing the preliminary research necessary for this study it was found that many well known educators, for example, Osburn, Morton, Lutes, Hall and Wilson had done work in the field of problem solving stressing the analysis of the child' work or his answers, but apparently had not stressed having the children do their work orally. ${ }^{3}$ The succes: of the study made by Bloom and Broder and their opinion that

Until the educator knows and understands the relations between the solutions given by the students to academic problems and the thought processes which led to the solutions, he is unable to determine when and under what conditions such good habits are established. Present emphasis on accuracy of solutions undoubtedly gives a misleading picture about the nature of the student's thinking. ${ }^{4}$
also encouraged the author to have her students do their work orally. Buswell also praised the method of having students do their work orally as it would give inmight into pupils' difficulties and thinking. ${ }^{5}$

3 Hildreth, Learning, 787.
4 Benjamin S. Bloom and Lois J. Broder. Problem-Solving Prog$\frac{\text { Cesses }}{\text { No. } 73} \frac{\text { of }}{} \frac{\text { College }}{}$ Students, Illinois Supplementary Educational Monograph, No. 73, 1950, 3 .

5 Guy T. Buswell, Meth of of Studying Pupils' Thinking in Arithmetic, Supplementary Educationsl Monographs, No. 70, 1949, 58.

Each problem of the test was typed, separately on a slip of paper and handed to the child one at a time. He could ask any questiona that did not have to do with the direct alving of the problems. One of the most current questions was in connection with problem two. "What are A and B?" The children were not aure if it was a mistake in typing or if it wat something which they had not heard about.

When a child felt that he had olved a problem, he would tell the one conducting the test what his answer was, how he arrived at it and why he chose the method he didin alving the problem. All the convereation between she pupil and the one administering the test was being taken down on the wire pecorder.

At first the wire recorder presented a difficulty as it was not hought that the children would speak naturally if they were aware that what they aid was being taken down. At it was imposelble to hide the recorder, 1t was left on the denk of the teacher in full view of all the pupile some two: week before the testing, and from time to time it was put on during clase, and to the amusement of the children they were allowed to listen to themselven after school. Thif made them lose their self-coneciousncse and they soon pald no attention at to whether the recorder wat on or not.

As there was not a time limit, the otudent could epend as much lya an be wanted over the problem. Some of the children took an hour and a
half trying to work out the problems. This part of the thesif took the mont time for the individunl teste lasted from the middle of October to the end of November. While they were conducted, no apecial help other than what would ordinarily come up about work with word problems was given to the children.

As the teating was epread over euch a long period of time, it was thought that perhap: the children who came toward the end of the period would have been told what to expect by the other children. However, there did not seem to be any evidence of it. Each child an he was given the test wae adked as favor not to mention what the problem: were about to any companion.

The inveatigator Iurther explained to the child no mark would be given for the test and no report of it would go home, but it was being given aimply for the investigator's knowledge. The children were most co-operative.

As the resulta of these testa are taken up in Chapter IV no more mention need be made of them here.

After the period of tenting wa passed, class was organized for the purpose of problem solving. This clase was held twice a week during the regular arithmetic tirne and it lasted for twenty minute on each day. At that Ume both the seventh and aghth grades were taken together in both the boys" and the girls' schools. As the children had been told that they would be
 Croted to each of the twelve problemplel When obing the teet many of the chilArm vere positive that they didingh mongifow to do problemsten and eleven.
and they particularly asked if they would be taught how to do them. The ee children were very eager to have the problem solving claen.

At the beginning of the class the inatructor would read one of the problem: which had been given on the individual test. She would point out the almost general error - If there was one - as in problem one. "If two pounds of candy cost $\$ 1.20$, what would $1 / 2$ pound cost at the ame rate?" The children made their mistake in reading the problem incorrectly. Instead of finding the price of a half pound, they found out the price of half the given quantity thus, finding out the price per pound.

When the inatructor read the problem out loud, she asked the children what they were to find. One of the children whom she knew had done the problem incorrectly was called on to anewer. The student said, "You are to find out what a half cost, $s 0$ you divide the $\$ 1.20$ by two." The child was told to listen carefully while the problem was read a second time and then asked again if he was sure what the problem was aking. The miatake was seen readily and the answer came, "They don't want half the price, but the price of half a pound so yon would divide by four."

A minute or two of the period was epent discuseing how the mistake was made from miareading the problem trying to impress on the children thet that could be one source of their errors. Then similar problems were Aren with no particular reapect as to the difficulty of the numbers, but care
to have them the same general pattern. A few. like these were: "Nuts sell for 4 pounds for $\$ 1.60$. At that rate what is the cost of $1 / 4$ pound?"
"Two dozen dolls can be bought wholesale for $\$ 48$. What would one pay to buy only $1 / 2$ dozen wholesale?"
"The price of ribbon is 90 cent for a boit of three yards. At the same price what will be paid for $1 / 3$ of a yard?"

For problem one the misreading was the only type of mistake made, put on problem two there was more than one type, but that mistake which the majority made was to divide by four rather than by five. The problem was: 'Two men caught 60 trout. A caught 4 times as many as \mathbf{B}. How many trout did B catch?" The words " 4 times" caused the trouble for the firet reaction was to divide 60 by 4, saying that A caught 45 fish and B caught 15. The children were asked what four times any number meant. They explained it was to multiply a number by four. Then, it was asked if the answer that B ot fifteen fish was reasonable? Some aid it was claiming that four times ifteen is sixty; while others saw the fallacy without aeeing how to do the probem correctly. The problem was illustrated on the board showing A's four (th and B'a figh and that altogether there were five. At that point the greater momber of atudents saw that you would divide by five; but several of the duller mes could not comprehend the reason.

It was at thi point that one boy interrupted to ask if he might explain way that he saw the problem. He had worked it correctly on the
individual test. His explanation was this: "I always see this type of problem like a card game. You are the dealer and the fellow you play with gets four carda while the dealer get: one, and that is one round; the next sound it is the same thing. Now in each of the rounds that you deal, you have dealt out five cards. So the simple thing is to divide the total number of cards - which in this problem would be sixty fish - and you get twelve. That means you can go twelve rounds in the dealing, so the fellow who only gets one card each time will have twelve cards, and the one that got four cards each round will get four times twelve or forty-eight. Add the twelve and forty-eight together and it checke to be sixty."

Probably because all the children can play cards and do it often the explanation had an appeal to many of them and they seemed to have the idea clearly in mind. Then many problems of the same type were given. Some of these were: "May and Jean had 20 dolls together, but of that number May owned 4 times as many as Jean. How many belonged to each girl?"
"Fred and Dick pooled their supplies of marbles totaling seventy -
two. Before they pooled them, Fred had six times as many as Dick. How many had Fred?"

After the original teat problems were explained, on the average - five to eight other problems of the same type were given. These were not a alip: of paper, but were read by the inetructor. A different child was
called on each time to explain how he had done the problem. For the problemp where there was more than one way to work it, it would always happen that the children who had the right anawer but had done it differently than the way that was being explained, would want to explain their way. They were allowed to do this.

To explain problem four, "A man drove 84 miles in 3 hours. At that rate how many hour" will it take him to dive 126 miles?" It was taken as two separate problems. The firat question was to ask how one would figure out how far a man could drive in one hour if in three houra he could traved eighty-four milen. Most of the children saw that it was a question of finding the average, which they linked immediately with division. Then the second problem was presented to them thus: if a man can drive twenty-eight miles in one hour, how many houre will it take him to cover a distance of 126 mile ? To help the children see this, a road whose length repreaented 126 miles was drawn on the board and divided up into sections of twenty-eight miles each. That way they could picture the procese of diviaion. However, after that Was explained a child asked if he might explain the way he aw the problem.

Thia child said that he could not see the problem as two projleme but that it was all one. The total distance that had to be covered was 126 milles and the one thing that you know is that you are able to cover eightyforer miles in three hours; therefore you cut the 126 miles into groups of
of eighty-four. It is contained only once in 126 miles; that once is equal to three hours. There is a remainder of forty-two. By putting the remainder over your divisor the fraction equals one-half. That isn't half an hour, but half of eighty-four miles. Thus it would take one-half the time tt took to go the eighty-four miles, which is one and a half hours. The total length of time is four and one-half hours. As this method was shorter, it appealed to the more intelligent children of the class. The children that found it complicated could not see that the one-half remainder was equal to one and a half hours. They said that the time should simply be three and a half hours. When more problems similar to this one were given and the explanations were asked for, it was easily seen that the duller children held to the first explanation and did not venture to try the second way.

Besides calling on the children for correct explanations the children who got a problem wrong were called on to explain where they made their mistake if they could explain it easily, then the instructor was able to see what the trouble had been. As for example in the sixth problem: "At the rate of $\$.35$ for the first half mile and $\$.10$ for each additional $1 / 2$ mile, how much would it cost to ride 5 miles in a taxicab?" After the manner of doing the problem was explained a similar one was given. As with the others, the first problem to be given after the original was almost identical, as, "at the rate of $\$.45$ for the first half mile and $\$.10$ for each additional $1 / 2$ mile how much would it cost to ride 6 miles in a taxicab ?"

One child said that his anower was ninety-five cents and explained that it wan forty-five cents for the first half mile, which left five miles at ten cents each; therefore, fifty cents and forty-five cents are ninety-five cents. As the child was reading the problem to explain his work, he atopped and ald "I didn't do what they said. The problem gave the price per half mile and I took it for a mile." He stopped and thought and said, "Well, it should have been forty-five cents plus \$1. 10 or $\$ 1.55 . "$

Then another child raised his difficulty, "I did the problem correctly, but I come out with the wrong anewer and I can't explain why for I don't ace it." He mald thim was what he did: "It is forty-five centa for the fira half mile; that leaves five and one-half miles still to be paid for. There are eleven halves in five and one-half, so 1 multiplied it by ten cents and got an answer of fifty-five cents. That added to forty-five gives me $\$ 1.00$: 1 It was then explained to the child that when he multiplied eleven halves by ten cente that he took eleven halves of ten cent which was really multiplying the ten cents by eleven half mile and then dividing the anawer in two. Thia waa a common mistake.

When a child wae able to explain her difficulty, the inatructor noted that the child usually waa able to get the very next problem. When a child could not explain how to do a problem or could not see what his difficulty was, then the instructor helped that child individually.

After a clase period had been epent on each of the twelve original
problems, the class time was given to problem: of all different types. In each period there were alway problems which were aimilar to the original twelve, but there were many others. There were mistakes frequently in the different types. If these mistakes were general, the problem was explained to the entire class, but if the mistake was on the part of one or two, it was cleared up individually for them,

At the close of April the problem solving class ended and the retesting of each child began. A test of twelve problems was made out which was thought to be similar to the original twelve problems. The question arose that these probleme might be easier or more difficult and that there hould be some basis of comparison between the problems for the last individual test with the problema used for the first individual test. It was decided that preliminary tests, one for each type of problem, consisting of five problems would be given to the freshmen in one of the large public high schools of the city. The first aix teste were given to freshmen who were taking general mathematics; the other six test were given to an algebra clase. Copies of these tests are in the Appendix III. The first problem on each test was taken from the firet individual test and the other four were thought to be Similar to it.

After the tests were corrected the problems that rated the same numler of correct answers as the first problem were chosen to be in the Unal test. For example in the preliminary test one: problem one had
thirty-three correct answers; problem two had one correct andwer; problem three had thirty-two correct answers; Problem four had thirty-four correct answers; and problem five had fourteen correct answers. It was decided that in the final test either problem three or four could be used for they seemed to be the same level of difficulty as problem one. For preliminary tent six the differences in the anewere were as followe: problem one had eight; problem two had none; problem three had twelve; problem four had three and problem five had aeven. It seemed obvious that problem: two and four were too difficult to be used while problem three was too easy. Problem five seemed close to problem one only varying by one correct answer; it wat chosen for the final test. In this way all the probleme for the final individual test were decided upon.

The individual re-teating took much shorter time at the second testing. Perhapa this could be accounted for in that the child knew what to expect, hence, the lownese which characterized his encounter with an unfamilier luation was gone.

The last step in the experiment watio to administer to the children In both echools the Stanford Achievement Test, idvanced form $\mathbf{K m}$, the revieed 1953 edition, in both reading and arithmetic. The reault can be aeen fa the tables.

CHAPTER IV

ANALYSES OF INDIVIDUAL CASE STUDIES

Each individual is unique in creation, a masterpiece of Cod. That is why the investigator found that working with the child alone proved so interesting and the mont attractive part of this study.

To explain the method the children used to solve word problems, it seems beat for the most part to let them speak for themselves. In this chapter each explanation of a problem which is enclosed in quotation marks is the words of the child taken down by wire recorder. The name for each record is fictitious.

It was thought advisable to take the problems in order, giving for each problem any molutions which contained interesting factors whether of correct or faulty reasoning, although the latter case ia more likely to be a atab-in-the-dark gueasing. After the solutions for any problem from the firs individual test are given, the colutions for the problem similar to it from the May test will be discussed. A general analyses of the children' solutions are thown in Table IV.

For the firat problem, which read, "If two pound of candy cont

TABLEIV

ANALYSES OF THE INDIVIDUAL SOLUTIONS
Problem Computation Reading Reasoning Correct Didn't Try

1 a	0	24	3	18	0
1 b	1	9	2	33	0
2 a	1	0	37	7	0
2 b	2	1	21	21	0
3 a	0	0	33	11	1
3 b	0	0	19	24	2
4 a	10	0	19	14	2
4 b	0	0	17	26	2
5 a	0	0	33	9	3
5 b	3	0	14	18	10
6 a	1	0	28	16	0
6 b	2	0	16	27	0
7 a	0	6	23	11	5
7 b	3	3	10	27	2
8 a	2	0	34	9	0
8 b	1	0	21	20	3
9 a	1	0	32	10	2
9 b	0	0	30	7	8
10 a	0	0	45	0	0
10 b	7	0	23	6	9
11 a	1	0	35	9	0
11 b	0	0	23	18	4
12 a	0	0	37	8	0
12 b	0	0	4	36	5

1.20, what would $1 / 2$ pound cost at the same rate?" the most common mistake was dividing the total cost in half instead of finding the price of a half pound. Over half the group made this mistake, while the other solutions括ered.

Lloyd's explanation was, "You change one-half to ite per cent equiva
lent, fifty per cent, and that is your answer." He had no further explazation and the investigator could not ace any reasoning behind what he had said.

After frequently re-reading the problem Bud aaid, "One pound is $\$ 1.20$ and it says that a half pound is the same price, so the answer is $\$ 1.20$.

Lester was very sure of his explanation which was, "I've got this one. There are sixteen ounces in a pound and you are given the price of two pounds and you want the price of a half pound, so that would be eight ounces. You multiply eight by five-tenths, which is your half pound. That comes out to be forty cents." Lester is always atisfied with any answer he gives if he can find some relation between words in the problem and something he knows, never thinking whether that is what is asked for or not! It seems that it is not a matter of reamoning but of recognition of terme with the lack of ability to know what to do with them.

Henry: "Well, you have two pounds and you cut that in half. That gives you a pound in each pile. Next you cut each of the piles in half, which given four pllea each of a half pound. Well, if you have four piles, divide the $\$ 1.20$ by four and you have the price of a half pound, which is thirty. cente."

In the second teat for the first problem only nine of the students made the mistake of dividing the total cost in half. There were, however, come varied solutions. The problem stated:"If two dozen oranges cost $\$ 1.80$, What would a half dozen cost at the same rate?"

Jackie did not read the problem accurately as can be seen from her own words. "It's easy. They ay at the same rate, so the answer is the same, \$1.80."

Two children gave thi for their explanation. "As you are to find out the price of a half dozen, that is equal to six. You divide the total cost by six and you find that thirty cents is the price for a half dozen." The reasoning for the problem wat correct, but the mistake was in mixing the units with dozens which caused them to arrive at their solution.

Chria made his miatake in reading. "They want to find out how much one-twelfth of a dozen will cost. One-twelfth in equal to one orange and that would cont fifteen cents, for one dozen cost $\mathbf{\$ 1 . 8 0 . "}$

Bud worked his problem correctly this time but did it in a manner that was different from the others. "The price of two dozen or twenty-four oranges is $\$ 1.80$. I divided by twenty-four and found out that the price of one orange is seven and one-half cents. As you want the cost of aix of them, I multiplied six by seven and one-half and got forty-five cents."

All the other students did the work correctly and did it either by dividing $\$ 1.80$ by four or dividing $\$ 1.80$ by $t w o$, and then dividing ninety cente by two.

Very few of the students were able to work the second problem ©rrectly. Ae it appears, the computation ie not difficult, but the majority of
the children did not underatand how to arrive at the correct answer. They could tell what the problem was asking, but they did not see how to obtain their answer. The problem was: "Two men caught 60 trout. A caught 4 times as many as B. How many trout did B catch?" As wail pointed out in Chapter III, the common mistake wat dividing by four and saying that B caught fifteen fish. Several children were unable to figure out what A and B were. The investigator alwaya told them that A and B were persone.

Paul did the entire test in twenty minutes. All his work in characterized by apeed, and usually with a high rate of accuracy. He was sure when he knew a problem and did it immediately, and when he came to those he got wrong, he was just as aure they were wrong for he would alay in giving his work, "I know this isn't right for the answer isn't reasonable, but I can't see how else to do it." He had no difficulty with problem two and his solution wat: "A caught four fish and B caught one and altogether that would make five. So divide five into sixty and that is twelve which would be the number B caught. To prove my work I multiply four by twelve and that is forty-eight and add on the twelve and it comes out to be sixty. So it' right."

Susie kept puasling over the problem and finally anked, "What is meant by B?" When that was cleared up, she worked the problem and gave th following explanation. "First I divide the number of fish that they caught into two parts, one part for each man. Therefore, one man catches thirty fith Cad the other catches four times that number which would be 120 fim. " There
was apparently no question in her mind about the reasonablenese of her answer. She felt that the had done the problem correcty aince her numbere fulfilled the condition of having one number four times the other.

Annie worked her problem as Dot whose solution was as follows: "Firat divide the aixty into two parta. Thirty is what A got; then divide the other thirty by four and the answer is seven and one-half, which is what B got." Dot did not seem to realize that she had accounted for only thirty-seven and half fith when the gave her final anower. Nor did it seem strange to her that one could catch half fiahl As can be aeen from her olution, whe, too, was not clear on the idea that the number of fish which A had was four times that which B had.

Several children gave solutions which were identical with that of Mickey's. "If one had four times as many an the other then you aimply multiply four by sixty and you get 240 for the answer." This explanation how a complete lack of underetanding of what wae given in the problem. They mise the fact that sixty fish was the total amount caught. In their anewer it is apparent that they did not realize that the number of fish which B caught would be lese than those caught by A. They, too, fixed their attention on the one thought, "four timen as many". but they did not eee it in relation to the rest O the problem.

Janice's molution wa not clearly expressed, but she did underatand
problem. "B gete only one-fourth of what A gets. The only numbers in
sixty which would work are forty-eight and twelve for twelve is one-fourth of forty-eight, therefore, that is how many fish that B caught. I can prove that it is right by adding the two numbers together and getting sixty." When the had finished her work, the investigator asked her how she got the forty-eight. She said, "You just know that those numbers are the ones that will work." She stopped and thought for a moment and continued, "You could get the same numbers by dividing the sixty by five, but I didn't. Does that matter?" She was given the assurance that she could solve the problems anyway she wanted and that there was no set way for doing them. Janice is a slow and very thorough worker. She apent over an hour and a half doing the teat. Every problem she knew how to do, she would prove to be sure that she was right. Those that she could not do, she did not want to leave without auccess, but she had to atop knowing that there were some thinge which she did not under stand about the problema.

Several children gave for their answers that A caught forty fioh and B caught twenty. Some said that they could not explain 1t, but that they knew it was right, however, the following is Lester's solution: "If two men eaught wixty trout and if A got four time as many as B, then I multiply four by sixty and get 240 . Then divide that (240) by sixty and I get forty, so A caught forty and B caught twenty fish." This the investigator thinke ie a per tect example of random guessing. He thought that the answer should be twenty and forty and there is apparently no connection between his explanation
and what is asked for in the problem. His division is incorrect, and that is not because he couldn't do it correctly, but he felt that the answer should be forty for four would be too small, so he simply added a zero to his quotient. He could explain that he had no right to change an answer, but also he would defend what he had done on the principle that he needed forty. With the other children that arrived at the same answer the universal explanation was that they "just felt" that was the answer. One child said that forty was four times ten and when you subtract that from sixty you would get twenty.

Ralph: "I multiplied four by twelve and abbtract the product from sixty and that is twelve which is what B caught." When the investigator asked him where he got the original twelve which he multiplied by four, he said, "I don't know, but I knew that was the number that would work, and it did."

When the second individual test for problem solving was given, there was a greater number of students who got the second problem correct, as can be seen from Table IV. The problem read: "Bob and Jim earned \$3936 together. Jim's share of the money was three times Bob's. What did they both get?"

As on the first test several students made the mistake of dividing by three saying that since Jim^{\prime} 's share was three timen Bob's then you divide the total by three and the quotient, which is \$1312, is Bob's share and Jim's is $\$ 2624$, which is the difference between Bob'a and the total amount.

Fred underatood the problem as can be seen from his explanation,
but his answer was incorrect owing to a computation mistake. "Jim' share is three-fourthe of the total amount which is $\$ 3936$, so his share is $\$ \mathbf{2 9 7 4 . 5 0 .}$ When that is subtracted from $\$ 3936$, one finds Bob's share is $\$ 991.50 .1$

A mistake in reading is evident from the solution given by Ted. "It says: 'What did they both get'and it tells you in the problem that they earned \$3936, so that is the answer." Ted completely missed the fact that Jim got three times what Bob got.

The children who solved the problem corredtly reasoned as Dotty, though only a few spoke of shares. Instead others used the words piles, partp or pieces. "There are four shares, so I divided four into the total amount and that was \$984. That equalled Bob' share which I subtracted from the total amount and got $\$ 2952$ which was Jim's ohare."

A few children olved the problem incorrectly in a manner nimilar to Dick. "I divided two into $\$ 3936$ and I got $\$ 1968$. Then I divided $\$ 1968$ by three and got \$656, which is Bob' share, and Jim's, of course, is the other \$1968." No child weemed to worry over the \$1312 not accounted for, nor the fact that according to their anowers Jim's share was not three times as big at Bob's.

The remark made by many children as they came to problem three was, "The problems get harder a you continue the test." On the first test, problem three read, "If $31 / 2$ yards of silk cont $\$ 21$, what will $71 / 2$ yarde cost?" The difficulty in that problem is breaking down the total price so tha:
the price of one-half yard can be determined. The greater number of children got the problem wrong for that reason, or from not knowing what to do as is shown from the following explanation.

Susie: 'I have an answer that doesn't make sense. It says three and one-half yerds cost twenty-one dollars and for my answer I have seventeen dollars. The investigator did not see how she got the answer, so she asiced. "You subtract three and one-half from the twenty-one and it is seventeen, " - she did not notice that she had made a computation mistake "but it should be more than twenty-one for it doesn't make sense to have seven and one-half yards cost less than three and one-half." She spent more time on the problem and asked if she could do it over for she knew where her mistake was. She was told that she might. "I multiplied three and one-half by two and that was seven; so I multiplied two by twenty-one and that is fortytwo dollars and that is the answex." She apparently forgot about the one-half that was not accounted for, but she was tired of working with the problem and was satiafied that this answer sounded reasonable.

Though Susie did not know how to obtain the price of the extra half yard, her answer differed greatly from the following as it was characterized by good sense.

Lester: "Three and one-half yards is worth twenty-one dollars, so I added the three and one-half and the seven and one-half and got eleven dollars. Then I added the twenty-one dollars and the eleven dollare and I have
thirty-two dollars which is the total cost of seven and one-half yards of silk." It is all the mame to Lester whether he adds yards to dollars or dollars to dollars, for by his way of doing the work he will come out with dollars anywayl He seems to follow the theory that if there are numbers in the problem, the answer is bound to come if you combine the numbers often enough! The interesting fact is that he assured the investigator each time that, "This is simple." "I've got this onel" and "Is this ever easyl"

However, there were others who could solve the problem, as June. "The first thing that I did was to find out that three dollars was the price for a half yard. I did that by dividing twenty-one dollars by seven halvea. Then I multiplied my three dollars by the seven add one-half yards and the price was forty-five dollars."

Several children aw that they would have to find the price of a half yard, but they could not see clearly the relation of the price given for three and one-half yards to a half yard, and in consequence, they solved it in a manner similar to Jody: "I multiplied twenty-one dollars by two for that would be the price of seven yards. Then I added ten dollars and fifty centa, which is the price of a half yard, to my product, and I found that the total cost was fifty-two dollars and fifty cents." She explained that she got the ten dollars and fifty cents by dividing the twenty-one dollars in half to find the price of a half yard.

I could do it if he only bought seven yards, but I can't find the price if he is going to buy that extra half yard." That was aettled and she went to the next problem.

An explanation which was as brief as Lindy' but correct was that of
Eloise. "Double twenty-one dollars and it is forty-two dollars, the price of seven yards. Divide twenty-one by seven and you have three dollars for a half yard. The total price was forty-five dollara."

Pat confused the price of a yard with that of a half and that caumed her trouble. "Three and one-half and three and one-half are seven which equals forty-two dollars. Then 1 divide forty-two by seven and I have aix dollars, the price of a half yard. I add that to the forty-two and my total cost is forty-eight dollar(.):

One lat solution to this third problem shows inventiveness. This was given by Dan. "I can't do it the way it should be done, but I can figure out the answer. It i forty-five dollars." The investigator asked him to explain what he had done, if it wasn't the usual way, "Well, I drew three linea the bame aize and one line which would be just half the size of one of the others. Then I cut the three linea in half. That showed me I had aeven parte to deal with and they sell for twenty-one dollare; then one part would cost three dollara. Then I drew the other line and cut them in half, which would equal the Wen and one-half yards. So when I went to count them up, I counted each

The investigator asked him why he didn't just multiply and he explained that he could never figure out if he should multiply by fifteen halves or just by the fifteen, but that if he did it his own way he wouldn't make a mistake.

Between the first test and the last, Dan was taken for individual work in fractions, and his difficulty was cleared away. In May he solved the third problem, which wast" If $41 / 2$ feet of rope cost $\$.45$, what will $91 / 2$ feet cost?" in the following way: "You find out the cost of one-half foot by dividing forty-five cents by nine and that is five cents. Next you multiply five by nineteen for there are nineteen halves in nine and one-half. That gives the total cost to be ninety-five cents."

Many of the students who solved the third problem correctly did it as Dan, but some differed.

Ted: II first found out the price of one foot by dividing forty-five cents by nine halves. That was ten cents per foot. Then multiply ten cents' by nineteen halves and you come out with the total cost of ninety-five cents."

Paul: "I did it by proportion and the other way and they check. The
answer is ninety-five cents. By proportion you say four and one-half is to nine and one-half as forty-five cents is to X. The X, which is the price, comes out to be ninety-five cents."

However, the impression that all got this problem should not be diven. There were still repetitions of earlier mistakes. When the problem was incorrectly solved, it was always easy to see that the difficulty was in
finding the price of the half yard.
Roy: "I can't seem to get this. First I add four and one-half and four and one-half and that equala nine feet which cost ninety cents. But now I have to find the cost of the half yard. It is one-fiftieth." The investigator stopped him to ask what it was one-fiftieth of. "It is of the forty-five cents. Oh, I don't know what it is, and I am stuck and don't know what to do next. " He stopped working there. It seemed the more he worked with the numbers of the problem the more confused he got, and at the end of his work he couldn't even remember what he wa: looking for.

Benedict used decimals in his solution which he gave very briefly. "I divided four and five-tenths into forty-five cente and I got ten cente which 1 the price per foot; therefore, the answer is ninety-five cents."

The fourth problem of the test dealt with diatance. It was: "A man drove 84 miles in 3 hours. At that rate how many hours will it take him to drive 126 miles $?^{\prime \prime}$ The difficulty which presented itaelf in this problem was that the children could not see how to eatablish a relationship between the eighty-four miles and the one hundred twenty-six. Some would atart the prob lem correctly, but would not know how to carry it through to completion. The following is an example of that.

Cathy: " I divided three into eighty-four and that gave me twentylight and I got nine and one-third hourn." She completely omitted work with Ahe 126 miles which if evidence that there was little thought in her solution.

Another common error of thi problem, previously pointed out in Chapter III, was that of not being able to interpret the fractions. As Agnes' work hows this, it is quoted here. "Eighty-four goes into 126 one and a half times; the one is equal to three hours and the one-half is equal to onehalf hour. The total amount of time is three and one-half hours." She missed the idea that the one-half was equal to one half of the three hours, or one and one-half hours.

Nonie made a computation mistake, but she had reasoned it correctly in spite of her feeling of insecurity. She said, "I don't get it." She re-read it again. "First I divided three into eighty-four and that went twenty six times. So that meant he drove twenty-six miles each hour. Then twenty. six goes into 126 to find out how many hour it took him, but it comes out an uneven number, so that can't be right. I don't know what else to do so I guess this must be the answer. It took four hours and twenty-two minutes, but it seems like a funny answer to me." During the course of this experiment the investigator found that it was often characteristic of a girl to say that the answer wat wrong and give as a reason that the number was uneven. One wonders if it is part of the nature of a girl to want things amooth and even. The boys never gave that reason.

Another example of this type of work was found in Penny's solution "Well, first I multiplied and it gave me a funny answer, so I know that isn't right. Then I tried to divide, but it doesn't turn out even, so that can't be it.

I don't know what to dol' She had no need to add that last remark for the had given adequate proofl

Two of the children had no idea what to do with the fourth problem and would do nothing, saying, "I can't get thim one." A higher percentage of the children made computation errore on this problem than on any previous problem.

Some solutions which gave the correct answer were as unique as some of those which were incorrect. The following solution is awkward and involves the boy in more work than is necessary.

Dick: " I added eighty-four and eighty-four and that makes 168. That is twice the amount of eighty-four, so then I subtract 126 from 168 and that gave me forty-two. I put forty-two over eighty -four and reduced it and it was equal to one-hali, so that made one and one-helf hours extra. Thus the answer is four and one-half hours."

The work of some children is characterized by brevity, an, for example, Eloise'. She does the greater part of the work in her head for she can see the relation of numbers clearly. Her explanation was as follows: " 126 is one and a half timen eighty-four, so it would take one and a half times as long, or four and one-half hours."

Pat gave the more common solution used by the children who did the work correctly. She aid: "I divide three into eighty-four and get twentyUifht miles. Then I divided that into 126 miles and I get four and one-half
hours."
The fourth problem on the May test was: "A hip can travel 112 knots in 4 hours. How long will it take to travel 280 knots?" The word knots had been used in many of the problems in the classes, but probably owing to absence one child did not know what the word meant. She, however, worked the probelm correctly.

Lindy: "I don't know what a knot is, but I just supposed that it must be some kind of a measure of distance, so I did the problem in just the way I would have done it had the word been miles. That is, I divided 112 into 280 and it goes in two and one-half times, therefore, that equals ten hours."

In apite of the many problem: involving distance and time which had been done in the problem solving classes, it still presented the obstacle of seeing the relation between the number of knote traveled and the time that it took. Matthew is one that didn't see the relation clearly as can be judged from his solution: "I divided 112 into 280 and it went in two and one-half times. So I added the two and one-half on to the four hour and it gave the total time of six and one-half hours."

A clumsy way to do the problem is the following solution given by
Marie." Divide four into 112 knots and you get twenty-eight knot per hour. I multiplied ten by twenty-eight and it comes out to be 280 and so the right answer is ten hours." The investigator asked her how she knew that she should multiply by ten. She answered that she had tried all kinds of numbers first to
see which one would work, as multiplying twenty-eight by eight, by twelve, by nine and finally by ten and that was the number which gave 280

Most of the children solved their problem in the following way which is the solution given by Charlene. "I divided 112 knots by four and that was twenty-eight knots per hour. Then I divided twenty-eight into 280 knote and the time was ten hours."

Jody started her work correctly, but she lost her trend of thought in the problem. She gave the following solution: " 112 knots will go into 280 two times and that was equal to eight hours. Then there was fifty-six knots left over which I put over 280 and that was one-fifth. So it took the ship two and one-fifth hours."

Most often in class when a problem was solved in an unusual way it would be done by Tony. He had his own way for almost every problem. This is his solution for the fourth problem. "Divide four into 112 and that is twenty-eight knots an hour. Then divide four into 280 and you get seventy. Add twenty-eight and twenty-eight and that is fifty-nix, and it needs fourteen to make the seventy. Now fourteen is half of twenty-eight mo that would be equal to two hours. Thus the total time would be ten hours."

The fifth problem ranks in difficulty with the aecond if one may judge by the number of correct answers obtained. One would expect a comparison as the reasoning in both problems is aimilar. The problem stated: H man died leaving $\$ 1200$ to be divided among his wife, hia son, and his
daughter. For every dollar the daughter got, the mother got $\$ 5$ and the son \$2. How much did the daughter get?" The most common mistake is dividing the total by seven and saying that the daughter's share is \$171. Seemingly they even overlooked the cents which rightly go with the $\$ 171$.

Dot spent approximately twenty minutes trying to do the problem and she filled a sheet of paper with numbers in that time. This was her explanation: "I multiplied $\$ 175$ by five and then I multiplied $\$ 175$ by two and I added the two products which gave a total of $\$ 1125$. So the daughter got $\$ 175 . "$ The investigator asked her where she got the $\$ 175$. She explained she had picked many numbers and tried multiplying them by five and then by two and adding the products, but none of them came out to be $\$ 1200$, but that the closest to that was $\$ 175$, so she thought that was what the daughter got. Dot did not realize that the total number of shares could be divided into $\$ 1200$ to give her the daughter's share, but she did realize the relationship between the daughter's share and that of the mother and the son, though she did not know how to find it.

Eileen came out with the correct answer through long hard work. She in a very slow worker, and it took her over an hour and a half to do the teat. She must have spent fifteen minutes on this problem. "It seems so simple, but I just can't seem to get it. I divide seven into $\$ 1200$ and then I multiply the quotient by five and that gives me what the mother got and then I do it by two and that is what the son got, but then there is nothing left for the girl.

Fo that can't be right. There has to be nome money left for the daughter - oh, naybe that's it You add her mare in and then you divide by eight. The laughter would get $\$ 150$, which doesn't seem very fair, but if you add it to the son's and the mother's it checks, so perhaps it is right." Virginia went one step further than mont of the children. She reasoned that when she had divided py seven that there was not any money left for the daughter, whereas the other phildren were not bothered about that.

Lindy was disturbed trying to explain her problem for she felt that t was involved, and that no one would understand her explanation. "This is nont unexplainable; couldn't I just give you my answer?" The inventigator said hat she would like the answer, but that she would also like Lindy to explain ho The did it for it didn't matter what method was uned. "I didn't use any method. pretended that I had the $\$ 1200$ and I gave five dollere to one of my friends and hen I gave two dollars to another friend and I kept one dollar for myself. That mounted to eight dollare. Now if I kept on doing that I would give to my friends and myself as many times as eight will go into $\$ 1200$. So I divided by he eight and it meane that I will do it $\$ 150$ times, and the person who is only geting one dollar each time will have a sum of $\$ 150$. Therefore, I think that " what the daughter got."

One of the children who did it most efficiently was Janice. She could mplain it clearly, as is seen from the following: " I put eight into $\$ 1200$ for if mother got five times as much as the daughter and the son two times as
much as the daughter, then it means that the daughter got one-eighth of the money and that is $\$ 150$. Then I checked my work by multiplying $\$ 150$ by five and by two and I added the producte to $\$ 150$ and the sum was \$1200."

In the May teat the problem was "A carnival wheel run by three girla brought in $\$ 1296$. For every $\$ 5$ Connie took in, Joan took in $\$ 4$ and Betty $\$ 3$. How much did each girl take in?" The mistake prevalent among the children was that shown in the work of Mickey. "I divide five into $\$ 1296$ and I lound that Connie got $\$ 259$; then I divided 4 into $\$ 1296$ and found that Joan had taken in \$324. Then when I divided the total by three I found that Betty had taken in \$432." There was no thought on the part of the children who solved the problem that way that the sum of the amounts they assigned to each girl did not equal the total amount, neither did they recognize that the one who was taking in the least came out with the greatest amount. It seems to be another example of guessing.

Ed's solution was the same as the one juat given, but he went on; "This can't be right for it just doesn't make sense. If I am right I should be able to prove it and I can't." A he was about to give up, the idea came to him to divide the total by twelve and then multiply by each girl's share. He dd it correctly and was quite elated to have found his error.

Several of the children had solutions similar to Penny's. "I divide the oum by twelve and I got $\$ 108$. Then I multiply $\$ 108$ by five and I got $\$ 540$ Which is Connie's; then I multiplied it by four and I got $\$ 432$ and that is Joan'a

Fo altogether they got: Connie, \$540, Joan $\$ 432$ and Betty $\$ 108 . "$ They evidently forgot that they had to multiply by three to find out Betty's share.

Chrin' explanation showed little ability to carry through his reasoning. "I divided $\$ 1296$ by twelve and 1 came out with $\$ 108$. Since there were three girls I divided by three and came out with aixty dollars for each girl." He missed the point that the shares for the girls were not to be equal.

Many of the children solved it correctly as did Ted. "I added the kive, four and three dollars for that way how much each girl got and that came put to be twelve. I divided that into the total and that came out to be $\$ 108$. I multiplied that by what the girls each received to find the individual share, and that came out to be $\$ 324$ for Betty, $\$ 432$ for Joan and $\$ 540$ for Connie."

Another solution that was correct was that of Bob's. He was the pnly child that did his with fractions. "Connie got five-twelfthe of $\$ 1296$ and hat is $\$ 540$; and Joan's wan four-twelfths which is $\$ 432$; Betty had threewelfthe and that is $\$ 324$. "

The sixth problem of the test seemed very simple; in the reading t was, but in the working it did not prove to be so. It read: "At the rate of . 35 for the first half mile and $\$ 10$ for each additional $1 / 2$ mile, how much rould it cost to ride 5 miles in a taxicab?"

The mistake that Charlene made was evidently one of reading,
hading from her own words. "I got $\$ 4.35$ for my answer. I multiplied four
Lten and that gave me $\$ 4.00$ and then 1 added the thirty-five cents for the
first mile and I ended with a total cost of $\$ 4.35 . "$ She had the mile confused with the half mile.

Another common mistake was that shown in the work of Cathy. "I added thirty-five cente and ten centa together for that would be the price of the irst mile. As there were four more miles to be accounted for, I multiplied our by the forty-five cents and I got $\$ 1.80$ for the total cost of the taxi-cab ide." She did not distinguish between the cost of the first mile and each sucfessive mile.

It was worked correctly by Agnee who said, "There are ten halvea in ive miles. The first half is worth thirty-five cents and to find the cost of the pther nine, I multiplied nine by ten cents and it was ninety cents. I add the pinety cents and the thirty-five cents and the total cost was \$1.25."

One who did it correctly but did unnecessary work was Joanne. "As
he first half mile cost thirty-five cents, I put thirty-five cents on my paper, and underneath it I listed a dime for each of the nine half miles. Then I added t all up and it came out to be $\$ 1.25^{\prime \prime}$.

Another mistake that was made by more than one child was forgetfing that once they had added the thirty-five cents they no longer had that half palle to think about. Gerald shows that mistake in his solution. "It is thirtyive cents for the first half mile. Then it is ten cents for each additional half hile. There are five miles which means ten half miles, so ten times ten cents Q one dollar and I add the thirty-five cent and the total cont of the ride in
\$1.35."
The problem in the May test read, "If a car can be rented at $\$ 10$ for the first hour, and $\$ 1.50$ for each additional $1 / 2$ hour, what does it cost to rent a car for 5 1/2 hours?"

Annie did most of her work without using pencil and paper. She wrote down the ten dollar: and then ald, "It ia ten dollars for the first hour and that leaves four and one-hall hours. At that rate it is three dollars an hour, so that would be three, gix, nine, twelve, thirteen dollax and fifty cent and then I add on the first ten dollars and the answer ie $\$ 23.50 . "$

Gerald made a miatake in multiplying by fractione for he multiplied by nine halves instead of by nine. He said, "It is ten dollars for the first hour and then there are four and one-half hours left. That is equal to nine halves which I multiplied by $\$ 1.50$ and it came out to be $\$ 6.75$ and that gave me a total cost of $\$ 16.50 .{ }^{\prime \prime}$

Teresa'a mistake could be accounted either to reading or forgetfulnesm. Her solution was, "You multiply four by one dollar and fifty cente and you get six dollars and fifty cente. It was ten dollar: for the first hour so I added the two together and the answer is $\$ 16.50$." She did not seem to notice that there was one-half hour not accounted for.

One mistake which if definitely a reading miatake was that of Candee's. She interpreted the problem to say that it was ten dollare per hour and
follows: "I multiplied ten dollars by five and that is fifty dollars; I added one dollar and fifty cente and I got my total cost of \$51.50".
"A woman had 30 oranges to sell at 3 for a nickel, and 30 to sell at
2 for a nickel. She sold them at 5 for a dime. How much did she lone?", wan the seventh problem given on the first test. The greatest difficulty was that many of the children forgot what they had read once they had finiehed reading the problem. This problem was re-read more than any of the others. Several of the children simply did nothing, saying that they did not know what the problem was asking for. One example of this state of confusion was the solution of Marie's.
"I don't know what they are akking for. What are they looking for their money? I can't explain this problem for it is all mixed up. You divide two into thirty and you get fifteen and then you divide three into thirty and you get fifteen, no, I mean ten. Add them together and that gives you twenty-five. Subtract the ten cente which is how much she sold five for and you get fifteen cents and that is how much she lost."

Another way of mis-reading the problem is shown in the solution given by Annie. "She sold them at three for a nickel and two for a nickel which is the same al aying that they were sold five for a dime and so of course she doesn't lose, but she breake even."

The problem was correctly solved by Paul who gave the following, Lolution. "First you find out the cont of the oranges which were sold two for
a nickel and then the amount she made at selling them three for a nickel. Then find out how much she made by selling them at five for a dime. Subtract the sum of the first two costs from the third and you find out that she loses a nickel."

There were no other kinds of solutions for that problem. It seemed that those who could read it and asw clearly what it was asking for, solved it as Paul, otherwise their work was a state of confusion.

In the May test the problem read: "A man had 40 candy bars to sell at 2 for 15 cents, and 60 to sell at 3 for 10 cents. He selle them at 5 cents each. How much does he gain or lose?"

The number of children who did this problem correctly was double the number that had done the problem of the oranges correctly.

Roy: "I divided forty by two and that left twenty bar for fifteen cents each, or a total of $\$ 3.00$. Then I divided $\begin{aligned} & \text { eixty by three and that is }\end{aligned}$ twenty to sell at ten cents each or a total of $\$ 2.00$. However, he sells the forty and sixty, which is 100 , at five cents each, so that equals $\$ 5.00$, So there was no gain or loss."

Some of the children made a computation mistake and said that the firat half of the problem totaled six dollars and thus they came out with a loss of a dollar.

Cathy' solution showed a reading mistake. "I took half of forty and
one-third of aixty and I got twenty which I multiplied by ten cente and I got $\$ 2.00$, so the amount that he made was \$5.00." She completely missed the last part of the problem.

Another one who missed the point of the problem was Jackie. She aaid, "Well, it ayss that he finally decided to sell them all for five cents each and an there were one hundred bars to sell, he made \$5.00."

The following problem the inveatigator thought was going to present no difficulty unless some child would make a computation mistake, but she was quite surprised to see how few of the children could do the problem cor rectly. The eighth problem wan, "Helen' grades in 4 teats are 82, 76, 80 and 70. What grade must the get on the 5th test to raise her average to 80?"

One of the answers that showed how little a child underatood the problem was that given by Walt. He said, "You add all the marke up and diride by four and it comes out to be seventy-seven. It is a cinch to get an eighty average at that rate for all she has to get on the next test is three per zent."

Some of the children who nolved the problem correctly did it as June
Hid. "I added all the numbers together, it was 308. Then I multiplied eighty py five and it is $\mathbf{4 0 0}$. So 1 aubtracted 308 from the 400 and I found the differpace to be 92 which is the mark she will need on the next test."

Some not knowing how to do it the way just named, but who had the
Afht idea, did it in the following manner.

Pat: "I don't know how to find the right number so I kept adding diferent numbers on to my original four and then dividing the aum by five. I finally found that ninety -two would work and that I would get an average of eighty."

The problem in the May test the investigator now feels was more difficult for the children than the one on the original test. It reads: "Northwestern averaged 15 point for each home game. What wae her score in the fifth game, if in the other four the scores were 18, 20, 6 and 19?"

Clark was one of the studente who did the problem correctly. His nolution was, "I first multiplied fifteen by five and that is seventy-five. Then I added all the points the team had already made and that equaled sixty-three. Then I subtracted that from the seventy-five and I found out that she needs twelve pointe."

Chris did not see how to reason through the problem as can be seen from his solution. "I added all the scores together and divided by four and that is fifteen and three-fourths, so they don't need to play the fifth game for they already have an average score of fifteen."

Chris' solution was similar to all the children who did not do the problem correctiy. It was a general mistake to divide by four and so the conclution that they came to was that the fifth game need not be played, or that they could get zero in the next game. Some, however, forgot about the fifth fame and said that the average was fifteen and three-fourthe.
"A freight train running 20 miles an hour is 120 miles ahead of an exprese train running 50 miles an hour. In how many hours will the express train overtake the freight?" is the ninth problem on the first test. It ranked among the most difficult problems on the test.

Bob had his own way of doing it. "The trains are twenty miles apart so to the 120 I add twenty miles and that is 140 miles, but then I subtract fifty and it makes them only ninety miles apart; then I add twenty again and it brings it to 110 miles apart, but I can still subtract fifty miles which makea sixty miles between the two trains. I've used two hours. Well, I add twenty to sixty and it makes eighty, but when I aubtract fifty and add another twenty, they are just fifty miles apart. I subt ract the final fifty and that means that the trains are now together and it took four hours." That manner of doing the problem could certainly be criticized on the basis of lengthiness, but one can easily see that the boy understood the problem and was able to reason it out.

Once he was taught how to do the problem so as to save himself work, he abandoned hia former method.

Likewise it can be seen from the following solution that the boy was not able to reason out how to do the problem.

Fred!'I divide twenty into 120 and 1 got six." There was a long
pause. "Well, now that I got the six I don't know what to do with it; perhap: that is the answer."

Candee's solution was another example of the inability to see the
problem clearly and to be able to work through to a solution. She atid. "I multiply 120 by twenty and then I multiply 120 by fifty and then 1 subtracted the first product from the second and that gave me an answer of thirty-six, so, it took thirty-six houra." It seems to be a case of doing the most convenient thing with the numbers.

Though Benedict's alution was not correct, it does ahow that he
reasoned out the problem. He made hie mistake in thinking the two traina were coming toward each other ingtead of going in the same direction. His solution was: "They would be going geventy miles an hour together, therefore, it would take them one and five-sevenths hours until they meet."

An improvement can be seen from the chart in the number of children who got the ninth problem right on the first test compared to the May test. In May's test the problem read"A French Ocean Liner leaves New York aliling 40 miles an hour. Eight hour: later an American Liner leaves aailing 80 miles an hour. In how many hours will they be together?"

Though the following solution will show that Roy did not know how to colve the problem, it can be noted that he knew more about boat than the percon who made up the problem! "When is this going to take place?" The inves deator anked him what hemeant. "There is no boat in 1954 that can go eighty milien an hour if it is an ocean liner. If there was a boat, it would take two pours. The eighty is twice as fast an the forty, so it would take two hours to batch up." Roy saw only the relation between the two speed: and none between
the speeds and the distance apart.
Dan worked it out briefly and accurately as can be seen from his solution. "The American Liner picke up forty miles every hour, so simply divide that into the distance apart from the French Liner, which is 320 miles, and it is eight hours."

One could hardly call the following solution an example of reasoning; rather it shows a lack of understanding of numbers.

Liz: 'I multiplied eighty by eight and it was 640. Then I subtracted forty for that would give me 600. Then I crossed out the two zeros and the time would be six hours."

One of the common mistakes was to solve the problem as Susie did. She said, "In four hours the French Liner will go 320 miles. Four times eighty is also 320 miles, so it will take four hours." She, as the others, forgot that the French Liner was not docked but moving.

The common correct solution can be seen from what Tony said. "In the first eight hour: the first liner has gone 320 miles and in another eight hours it will have gone 640 miles, while the second liner will cover 6e miles in eight hours. Therefore, it will only take eight hours for them to be together."

The most difficult problem on the test was the tenth which aaid, "A can do a piece of work in 4 hours, and B in 6 houra. How many houra will it take them if they work together "" No child was able to solve the
problem correctly. There is no need in quoting their solutions for they all solved it in a similar manner which was adding the four and six and dividing the sum by two and giving for the final answer five hour s; or multiplying four by aix and giving an entire day for the answer; lastly, by subtracting four from six and then adding the remainder to four and giving six hours as the answer.

The investigator found that problems amilar to the tenth were very difficult to teach and that the majority of the children were not able to grasp the idea. It wat not urprising to find in the eecond test very few correct solutions. The mistakes were the ame as those mentioned above. However many of the children simply said they could not do it. The problem was "Jim mows a lawn in 5 hour while it takes Walter 8 . If they mowed the lawn together, how long would it take them?"

The few children who solved the problem correctly did it in the manner that Tony did his. "Walter will do five-fortieths of the lawn in one hour and Jim will do eight-fortieths of the lawn. If they work together they can do thirteen-fortieths in one hour, therefore, it will take them three and one-thirteenth of an hour to do the entire lawn."

It might be a matter of interest to know that the investigator gave this problem to eighty-four high school students ranging from freshman to *enior year and that from that group only two were able to do the tenth probLem correctly.

The universal reaction to the eleventh problem which read, "In a fort there are sixty men, and enough food to keep the 60 men for 20 days. If 20 new men come and 40 of the first go, how many days will the food last?" was that they had no idea how to alve the problem. There were many effots but these consisted mainly in aeeing what numbers were easiest to combine. None of the solutions of that type showed any thought, nor could any student give a reasonable explanation for his work.

Janice worked the problem correctly and gave for her solution!'
" The fort loses forty men and now has a total of forty men. I multiplied twenty by sixty to see how much food there was for one man. Then I divided the forty men into the 1200 days and came out with thirty days."

It was not difficult to teach that type of problem and the children could easily understand the solution; therefore, they did not have any great difficulties in doing the eleventh problem in the final tent. It read, "If a stable has enough oats to last 10 horses 8 days, how many days will the oats last 4 horsea?"

Many of the children solved the problem in a way that was similar to Janice's solution on the first test. However, Dotty did it a different way. "Ten is two and one-half times bigger than four so I took five halves times eight and I got twenty. That is the number of daya."

Another solution which was correct but differant was that of Dan's
"I set up a proportion - greater to least, and then multiplied extremes and
the means. That brought four X to equal eighty, so the answer is twenty days.

The twelfth problem was difficult only in the ability to read it correctly. In consequence there were just two common solutions, one was right, the other wrong. The problem read, "A man sold a motorcycle for $\$ 80$, bought it back for $\$ 100$, and sold it for $\$ 120$. Did he gain or lose on the trangaction and if he did, how much?" The majority of the children aid that he broke even, having neither a gain or a loss. A few who reasoned it correctly said that he made $\$ 100$.

In the May test the majority of the children got the twelfth problem correctly solved. It read, "A watch gains at the rate of 30 seconds per day of 12 hours. If the watch is set at 12 noon, how fast will it be at six P.M. the same day?"

The answer given by Blll was that of most of the children. "In six hours it will gain only fifteen teconds, since six hours is half of twelve hours.

The children who did not get the problem right said that they could not underatand it, or they did not know what they were to do.

CONCLUSION

When the investigator started this experimental atudy, she had in mind four aims. Now that the etudy has been completed, it would be well to see if those aims have been realized.

The first was 'To endeavor to discover the method which a child uses to solve a verbal problem.' It is easily seen from the different solutions which were quoted, that the children did not have a definite method for attacking their problems. The children who knew how to do the problems simply stated the relationships found within the problems and did the computation work accordingly. Those who could not work the problema, did any random manipulation with the number: that came to them. There was one incident which clearly shows this. In the space of an hour's work a boy solved a problem incorrectly one way, and because he was not doing the problems in order, he forgot that he had solved that problem and did it again. This time the solution contained no reasoning either, and the manipulation of the numbers was the opposite of the first trial.

The second aim was 'To find out to what extent it is possible to
keach children, who have no definite method of their own for solving verbal problems, technique which would be helpful in solving them.' This was carried out during the problem solving classes and in the individual contacts with the children. During the clasaes the conventional method, diagram method, analysis, and the estimating of answers were presented to the children as helps toward solving the problems. To all these methoda the inveatigator found two universal reaction. The brighter children would ask why they had o do the work required by a method when they simply could do the problem. The duller children would get so involved in the method that they could not renember what they were to do with the problem. For them, method seemed pnly a burden added to their state of confusion. However, there were some points taken from the different methods that many children, though not all, put o use, and the investigator asw this in the lant individual test. The individual mprovement from the first to last test may be noted in Table V.

The firat idea which aome of the children adopted came from estinating anawers, and it was simply judging if the answer within their work was feasonable or not. They did not bother to estimate an answer before working he problem, but afterwards, they would look over their work to see if their nawer was reasonable in the light of what was atated in the problem or what ras required. This idea prevented some of the children from doing random fessing and giving alutions which were completely lacking in sense.

TABLE V

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS

TABLE V

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS (Cont.)

Name	Test	1	2	3	4	5	6	7	8	9	10	11	12
Cathy	1	c	x	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	x	x	\mathbf{x}
	II	C	x	x	X	x	\mathbf{x}	x	\mathbf{x}	\mathbf{x}	x	X	x

$\begin{array}{llllllllllllllll}\text { Charlene } & \mathbf{I} & \mathbf{x} & \mathbf{C} & \mathbf{X} & \mathbf{x} & \mathbf{X}\end{array}$ $\begin{array}{lllllllllllll}\mathbf{I I} & \mathbf{X} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{X}\end{array}$
$\begin{array}{llllllllllllllll}\text { Eloise } & I & C & \mathbf{X} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{X} & \mathbf{x}\end{array}$ $\begin{array}{lllllllllllll}I I & C & C & C & C & C & X & C & C & X & X & C & C\end{array}$

Agnes I
$\begin{array}{llllllllllll}\mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{X} & \mathbf{C} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x}\end{array}$

$\begin{array}{lllllllllllllllll}\text { Marie } & \mathbf{I} & \mathbf{X} & \mathbf{X}\end{array}$

$\begin{array}{lllllllllllllll}\text { Dot } & \mathbf{I} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{C}\end{array}$
$\begin{array}{lllllllllllllll}I I & x & x & C & C & x & C & x & X & X & x & C & c\end{array}$
$\begin{array}{lllllllllllllllllll}\text { Eileen } & \mathbf{I} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{C} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X}\end{array}$
$\begin{array}{llllllllllllll}\text { II } & C & C & x & x & C & x & x & C & x & x & X & x & C\end{array}$
$\begin{array}{lllllllllllllll}\text { Candee } & \mathbf{I} & \mathbf{X} & \mathbf{X}\end{array}$
$\begin{array}{lllllllllllll}\mathbf{I I} & \mathbf{x} & \mathbf{x}\end{array}$

TABLE V

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS (Cont.)

TABLEV

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS (Cont.)
$\begin{array}{llllllllllllll}\text { Name } & \text { Test } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
$\begin{array}{llllllllllllllll}\text { Susie } & \mathbf{I} & \mathbf{X} & \mathbf{X}\end{array}$ $\begin{array}{llllllllllllll}\text { II } & \mathbf{C} & \mathbf{X} & \mathbf{X}\end{array}$ $\begin{array}{llllllllllllll}\operatorname{Dan} & I & C & C & C & C & C & C & C & C & C & X & X & C\end{array}$ $\begin{array}{llllllllllllll}\text { II } & C & C & C & C & C & C & C & C & C & C & x & C & C\end{array}$

 $\begin{array}{llllllllllllll}\text { Gerald } & \mathbf{I} & \mathbf{X} & \mathbf{X}\end{array}$ $\begin{array}{lllllllllllll}\mathbf{I I} & \mathbf{X} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C}\end{array}$

Dick I
$\begin{array}{llllllllllll}\mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{C}\end{array}$ $\begin{array}{llllllllllllll}\text { II } & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{C}\end{array}$

Walter I

$\begin{array}{lllllllllllll}\mathbf{I I} & \mathbf{X} & \mathbf{X} & \mathbf{C} & \mathbf{X} & \mathbf{x} & \mathbf{X} & \mathbf{C} & \mathbf{x} & \mathbf{X} & \mathbf{x} & \mathbf{X} & \mathbf{C}\end{array}$
Fred
I $\begin{array}{llllllllllll}\mathbf{x} & \mathbf{X} & \mathbf{X} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{C} & \mathbf{X} & \mathbf{X} & \mathbf{x} & \mathbf{X} & \mathbf{x}\end{array}$ $\begin{array}{llllllllllllll}\text { II } & C & C & \mathbf{X} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{C}\end{array}$

Bud
I
$\begin{array}{llllllllllll}\mathbf{C} & \mathbf{x} & \mathbf{x}\end{array}$ $\begin{array}{llllllllllllll}\text { II } & \mathbf{C} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C} & \mathbf{C} & \mathbf{x} & \mathbf{C} & \mathbf{x} & \mathbf{x} & \mathbf{C}\end{array}$

TABLE V

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS (Cont.)
$\begin{array}{lllllllllllllll}\text { Name } & \text { Test } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Bill	1	C	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	X	X	X	X	X	\mathbf{X}	C
	11	C	C	C	C	C	C	C	C	X	X	C	C
Roy	I	\mathbf{X}	X	\mathbf{X}	C	X	C	\mathbf{X}	\mathbf{X}	C	\mathbf{X}	\mathbf{X}	\mathbf{X}
	II	C	X	X	X	X	C	C	\mathbf{X}	X	X	X	C

$\begin{array}{llllllllllllllll}\text { Leater } & \mathbf{I} & \mathbf{X} & \mathbf{x}\end{array}$

$\begin{array}{llllllllllllllll}\text { Lloyd } & \mathbf{I} & \mathbf{X} & \mathbf{X}\end{array}$ $\begin{array}{lllllllllllllll}\text { II } & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{C} & \mathbf{X} & \mathbf{X}\end{array}$
$\begin{array}{llllllllllllllll}\text { Chris } & \mathbf{I} & \mathbf{X} & \mathbf{C} & \mathbf{X}\end{array}$

 $\begin{array}{lllllllllllllll}\text { II } & \mathbf{C} & \mathbf{x} & \mathbf{C}\end{array}$

TABLE V

MEASURE OF ACCURACY ON INDIVIDUAL PROBLEM TESTS (Cont.)

Name	Test	1	2	3	4	5	6	7	8	9	10	11	12
Henry	I	C	x	c	C	X	X	X	x	X	\mathbf{x}	X	x
	II	C	C	C	X	X	C	C	X	X	x	X	C
Ralph	1	x	C	X	X	X	\mathbf{x}	X	X	\mathbf{x}	X	C	\mathbf{x}
	II	C	X	X	x	X	C	X	X	X	\mathbf{x}	X	C
Clark	I	X	\mathbf{x}	x	x	X	x	X	x	\mathbf{x}	x	\mathbf{x}	x
	II	c	C	c	C	X	C	X	C	\mathbf{x}	\mathbf{x}	X	C
Tony	1	c	C	c	c	\mathbf{x}	C	c	x	X	\mathbf{x}	x	X
	II	c	C	c	c	C	C	c	C	C	C	C	c
Bob	1	C	C	C	C	X	C	c	C	C	X	\mathbf{x}	\mathbf{x}
	II	C	C	C	C	C	C	c	C	X	x	x	C
Ed	I	x	x	x	c	X	x	x	x	X	\mathbf{x}	C	X
	II	C	C	C	c	C	C	c	x	x	X	C	c
Benedict	1	C	x	c	X	C	C	c	X	x	x	C	x
	II	C	C	c	c	C	x	c	C	C	C	C	c

Many children held on to the idea of diagramingthe problems, and this was especially true in problems of distance. They did not seem to find it helpful always and therefore only used it with certain types of problems. In the final test the investigator noted that in doing both problems four and nine many children drew a diagram for themselves.

Lastly, there were some children who kept the basic idea of the conventional method. Though they did not state out loud that they wanted to know what the problem asked for, this seemed implied in the answers of the children who said, "Now the problem wants you to find. . ."

When the investigator aw that a few children clung to one idea, and a few to another while others tried ideas entirely different, it re-enforced her own thought that each child thinks differently and what will appeal to one child will not appeal to another. For that reason it seems that no one method will prove best for solving verbal problems.

The investigator feels that in problem solving, as with any
other type of mental activity, there should be freedom accompanied by guidance. Those that are completely lost and know not where to turn may lean more heavily on the guidance than others, while those who have an idea where they are going will use the guidance only where it will help them to reach their destination more aurely and quickly.

The third aim set down by the investigator was 'To note the
improvement in the pupils' ability to solve verbal problema during the echool year 1953-1954 by stressing various methods of solutions.' The investigator deliberately chose the worde "to note" ingtead of to prove, for she knew that the experimental atudy was set up in such a way that it would be difficult to give proof of the improvement of the group with which the worked. Undoubtedly it could be questioned, when the investigator says that the feels there in an improvement, on the basis that this improvement might be owing to other factore which were not held constant during the experiment. That would be granted, and for that reason the investigator it only offering the scores on the Stanford Achievement tests and the individual tests for the interest of the reader and to let him draw his own conclusions.

However, there are a few point which mean more to the writer of this atudy in the line of improvement than atatistical significant proof. They are:

1. The general change in attitucie of both boys and girla toward problem solving. By the end of February the dread of problem nolving had been replaced by an actual liking for it. This wa often awn by the number of requests the investigator received for extra ciames in problem solving, and from pereonal remark which showed the children now found pleasure in solving problems.
2. Many had accepted the idea that probleme are not just a
matter of chance where one tries something with the numbers given hoping this will be the lucky time; they came to understand that problems represent real situations and can be reasoned out, even if they, do not see how.

The last aim was 'To form an opinion as to which techniques have proved most helpful.' This the writer thinks has already been answered in explaining the results of the second aim. However, it may be added that, though no one technique aeemed more helpful than others, the persistent work with problem solving proves very helpful to the children.

In conclusion the investigator may state that she has learned from this experimental study:

1. The technique of working with the child individually and having the child do his work out loud pays rich dividends. In that way one can se what is the fundamental cause of the child's failure.
2. That there is no set technique which can be taught to all the children to assure success in problem solving.
3. That stress should be laid upon presenting a variety of prob lems to the children rather than on any particular method to be used.
4. That both the bright and the dull children are helped by wort in problem solving.
5. That the stigma attached to problem solving can be removed if the teacher herself is convi nced that it can be intereating.

BIBLIOGRAPHY

SECONDARY SOURCES

A. BOOKS

Bloom, Benjamin S. and Broder, Lois J., Problem-Solving Processes of College Students, Illinois Supplementary Educational Monograph, No. 70, 1950.

Brueckner, Leo J., and Grossnickle, Foster, How to Make Arithmetic Mean ingful, Chicago, 1947.

Buswell, Guy T., Methods of Studying Pupils' Thinking in Arithmetic, Supplementary Educational Monograph, No. 70, 1949.

Cole, Luella, The Elementary School Subjects, New York, 1946.
Hanna, Paul R., Arithmetic Problem Solving, The Lincoln School of Teacherp College, Bureau of Publications, Columbia Univerity, New York, 192%.

Hildreth, Gertrude, Learning the Three R's, Minneapolis, 1947.
Judd, Charles, and Buswell, Guy T.; Summary of Arithmetic Investigations (1926) Problem Solving, Chicago, 1927.

Knight, F.B., and Studebaker, J. W., and Tate, Gladys, Study Arithmetics, Book 7, Chicago, 1948.

Lazerte, M.E., The Development of Problem Solving Ability in Arithmetic, Toronoto, $1 \overline{933}$.

Lutes, Olin S., An Evaluation of Three Techniques for Improving Ability to Solve Arithmetic Problems, University of Iowa Monographs in Education, No. 6, Iowa City, June, 1926.

Morton, Robert Lee, Teaching Arithmetic in the Elementary School. Vol. II, Chicago, 1938.

Neulen, Leon Nelson, Problem Solving in Arithmetic, The Lincoln School of Teacher: College, Bureau of Publications, Columbia Univernity, New York, 1931.

Parker, Samuel C. Typea of Elementary Teaching and Learning, Chicago, 1923.

Shane, H.G., and McSwain, E.T. Evaluation and the Elementary Gurriculum. New York, 1951.

Spencer, Peter Lincoln, and Brydegaard, Marguerite, Building Mathematical Concepte in the Elementary School. New York, 1952.

Sutherland, Ethel. One-Step Problem Patterne and Their Relation to Problem Solving in Arithmetic, Teachers College, No. 925, Bureau of Publications, New York, 1947.

B. ARTICLES

Bell, Elizabeth, Coston, Arleta and Gates, Elizabeth, "Solving Your Arithmetic Problem", National Educational Aseociation Journal, Vol. 41, Nov. 1952.

Berglund-Gray, Gunborg, "Difficulties of the Arithmetic Processes", The Elementary School Journal, XL, Nov. 1939.

Bowman, Herbert L. "The Relation of Reported Preference to Performance on Problem Solving', Journal of Educational Poychology, XXIII, April, 1932.

Buswell, Guy T. "Curriculum Problems in Arithmetic", Curriculum Problems in Teaching Mathematics, The National Council of Teachers of Mathematics, Second Yearbook, New York, 1927.

Dickey, John W., "The Value of Estimating Answers to Arithmetical Probleme and Example⿻", The Elementary School Journal, XXXV. Sept. 1934.

Foran, Thomas G., "The Reading of Problems in Arithmetic", Catholic Educational Review, XXXI, Dec., 1933.

Habel, E.A., "Deficiencies of College Freshmen in Arithmetff: Diagnosis and Remedy", School Science and Mathensatics, 50: June 1950.

Haynes, Jessie P., "Problems of a Supervisor of Arithmetic in the Elementary Schools", Curriculum Problems in Teaching Mathematics, The National Council of Teachers of Mathematics, Second Yearbook, New York, 1927.

John, Lenore, "Difficultie in Solving Problems in Arithmetic", The Elementary School Journal, XXXI, Nov. 1930.

Stevenmon, R.P., "Difficulties in Problem Solving", Journal of Educational Research, XXV, May, 1932.

C. UNPUBLISHED MATERIALS

Becker, Fredericka M., Effect of the Processes and Their Order Upon the Difficulty of Arithmetic Problems, Unpublished Master's Thesis, University of \bar{P} ittsburgh, 1934.

Dieterle, Louise E., The Effect of Estimating Answers in Advance to Solving Word Problems in Arithmetic on Achievement in Arithmetic in Grade 4B, Unpublished Master's Thesia, Loyola Univeraity, Chicago, 1953.

McEwen, Noble Ralph, The Effect of Selected Cues in Children's Solutions of Verbal Problems in Arithmetic, Unpublished Doctor's Dissertation. Durham, 19416

Sheerin, Ethel M.. An Evaluation of Arithmetical Problem-Solving Technique Unpublished Doctor's Dissertation, New York University, 1937.

APPENDIX I

FIRST HNDIVIDUAL PROBLEM SOLVING TEST

1. If two pounde of candy cost $\$ 1.20$, what would $1 / 2$ pound cost at the ame rate?
2. Two men caught 60 trout. A caught 4 times as many as B. How many trout did B catch?
3. If $31 / 2$ yards of silk cost $\$ 21$, what will $71 / 2$ yards coat?
4. A man drove 84 mile. in 3 hours. At that rate how many houra will it take him to drive 126 miles?
5. A man died leaving $\$ 1,200$ to be divided among his wife, hia son, and his daughter. For every dollar the daughter got, the mother took $\$ 5$ and the son \$2. How much did the daughter get?
6. At the rate of $\$.35$ for the firat half mile and $\$.10$ for each additional $1 / 2$ mile how much would it cost to ride 5 mile in a taxicab?
7. A woman had 30 oranges to mell at 3 for a nickel, and 30 to aell at 2 for a nickel. She sold them at 5 for a dime. How much did she lose?
8. Helen's grades in 4 testa are $82,80,76$ and 70 . What grade must she get on the 5 th teat to raiue her average to 80 ?
9. A freight train running 20 miles an hour is 120 miles ahead of an express train running 50 miles an hour. In how many hours will the exprese over take the freight?
10. A can do a piece of work in 4 hours, and B in 6 hours. How many hours will it take them if they work together?
11. In a fort there are 60 men, and enough food to keep the 60 men for 20 days. If 20 new men come and 40 of the first go, how many days will the food last?
12. A man sold a motorcycle for $\$ 80$, and bought it back for $\$ 100$ and sold it for $\$ 120$. Did he gain or lose on the transaction and if he did, how much

APPENDIX II

SECOND INDIVIDUAL PROBLEM SOLVING TEST

1. If two dozen oranges cost $\$ 1.80$, what would a $1 / 2$ dozen cost at the same rate?
2. Bob and Jim earned $\$ 3936$ together. Jim's share of the money was three times Bob's. What did they both get?
3. If $41 / 2$ feet of rope cost $\$.45$, what will $91 / 2$ feet cost?
4. A ghip can travel 112 knote in 4 hours. How long will it take to travel 280 knote?
5. A carnival wheel run by three girls brought in $\$ 1296$. For every $\$ 5$ Conni took in, Joan took in $\$ 4$ and Betty $\$ 3$. How much did each girl take in?
6. If a car can be rented at $\$ 10$ for the first hour, and $\$ 1.50$ for each additional 1/2 hour, what does it cost to rent a car for $51 / 2$ hours?
7. A man had 40 candy bars to sell at 2 for 15 cents, and 60 to sell at 3 for 10 cents. He selle them at 5 cents each. How much does he gain or lose?
8. Northweatern averaged 15 pointe for each home game, What was her score in the fifth game, if in the other four the scores were $18,20,6$ and 19 ?
9. A French Ocean Liner leaves New York sailing 40 miles an hour. Eight hour later an American Liner leaves aailing 80 milea an hour. In how many hours will they be together?
10. Jim mows a lawn in 5 hours while it takes Walter 8 . If they mowed the lawn together, how long would take them?
11. If a stable hae enough oats to last 10 horses 8 days, how many days will the oate last 4 horses?
12. A watch gains at the rate of 30 seconds per day of 12 hours. If the watch is set at 12 noon, how fast will it be at gix P. M, the same day?

APPENDLX III

TWELVE PRELIMINARY TESTS GIVEN TO TWO HIGH SCHOOL CLASSES

Test 1

1. If two pounds of candy cost $\$ 1.20$, what would $1 / 2$ pound cost at the same rate?
2. A box of aix Easter eggs, each $1 / 4$ pound, sells at $\$ 1.89$. At the ame rate what if the cost of a pound Easter egg?
3. If two dozen oranget cost $\$ 1.80$, what would a $1 / 2$ dozen cost at the ame rate?
4. Fige sell at 5 pounds for a dollar, at that rate what will 2 pounds cost?
5. If three pounds of nuts cost $\$.90$, what would $1 / 3$ pound cast at the same rate?

Test 2

1. Two men caught 60 trout. A caught 4 times as many as B. How many trout did \mathbf{B} catch?
2. Bob and Jim earned $\$ 3936$ together. Jim' share of the money wat three times Bob's. What did they both get?
3. Betty and Jean bought Christmas presents amounting to forty. Jean bought seven times as many as Betty. How many did Betty buy?
4. Fred and Ralph have collected match covers of 96 different types. Fred collected eleven times as many as Ralph. How many did Fred collect?
5. Steve and hif cousin walk 10 miles to chool if you add their walks together. Separately Steve walks 4 times as far as his cousin. How far is that?

Test 3

1. If $31 / 2$ yards of silk cost $\$ 21$, what will $71 / 2$ yards cost?
2. A costume containing $21 / 4$ yarda of cotton felt cost \$6.12. At the same
rate what would a costurne cost which needed 4 and $3 / 4$ yards?
3. If $41 / 2$ feet of rope cost $\$.45$. what will $91 / 2$ feet cost?
4. If $51 / 4$ pounde of walnute cost $\$.84$, what does 1 pound cost?
5. Carmels are selling at $21 / 2$ pounds for $\$ 2.25$. What is the cont of $61 / 2$ pounds?

Test 4

1. A man drove 84 miles in 3 hours. At that rate how many houre will it take him to drive 126 miles?
2. A hip can travel 112 knote in 4 hours. How long will it take to travel 280 knote?
3. If a hip can travel 96 knote in 4 hours, how long will it take to travel 240 knots?
4. Mother uaes 24 apples in baking 4 pies. How many papples will she use to bake 14 pies?
5. A fast train can travel 450 miles in 5 hours. How long will it take to cover a distance of 720 miles?

Teat 5

1. A man died leaving $\$ 1200$ to be divided among his wife, his son, and his daughter. For every dollar the daughter got, the mother go $\$ 5$ and the son $\$ 2$. How much did the daughter get?
2. May, Ann and Sue divided 420 jelly beane among themselves. For every 2 which May received, Ann received 5 and Sue 7. How many did each receive?
3. A carnival wheel run by three girla brought in $\$ 1296$. For every $\$ 5$ Connie took in, Joan took in $\$ 4$ and Betty $\$ 3$. How much did each girl take in?
4. Three basketball teams gained a total of 240 pointe. On every 3 points of which Team A made, Team B gained 4 points and Team 65 pointe. How many points did each team make?
5. An estate of $\$ 2400$ was divided among three children. For every doller Rows got, Dick got $\$ 5$ and Bill got $\$ 2$. How much did Rose get?

Test 6

1. At the rate of $\$.35$ for the first half mile and $\$.10$ for each additional $1 / 2$ mile, how much would it cost to ride 5 miles in a taxicab?
2. The distance between two cities is 510 miles . At the rate of $\$ 5$ for the firat hundred miles and $\$ 1$ for each additional 25 miles, what would be the
cont to go from one city to the other?
3. Canoes are rented at $\$.45$ for the first hour and $\$.15$ for each additional $1 / 2$ hour. How much would it cost to rent a canoe for 6 hours?
4. At the rate of $\$.45$ for the first half mile and $\$.20$ for each additional $1 / 2$ mile, how much would it cost to ride 10 miles in a taxicab?
5. If a car can be rented at $\$ 10$ for the first hour, and $\$ 1.50$ for each additional $1 / 2$ hour, what does it cost to rent a car for $51 / 2$ hours?

Test 7

1. A woman had 30 oranges to sell at 3 for a nickel, and 30 to sell at 2 for a nickel. She sold them at 5 for a dime. How much did she lose?
2. A store has a supply of $30 \$.40$ cartons of 7 -Up. (6 bottles per carton) and $25 \$.35$ cartons of Coca Cola. However the grocer sells them for seven cents a bottle. Does he gain or lose and how much ?
3. A man had 40 candy bars to sell at 2 for $\$.15$, and 60 at 3 for $\$.10$. He sells them at five cents each. How much does he gain or lose?
4. A little boy has 60 ballons to sell at 3 for five cents, and 30 to sell at 2 for five cents. He sells them at 5 for $\$ 10$. How much does he gain or lose?
5. A grocer had 75 cans of peas to sell at 3 for $\$.57$ and 120 cans of corn to sell at 2 for $\$.25$. How much did he lose if he sold all at 15 cents a can?

Test 8

1. Helen's grades in 4 tests are $82,80,76$ and 70 . What grade must she ge on the 5 th teat to raise her average to 80 ?
2. What must the temperature be on the seventh day of the week to make an average of 87 degrees, if on the other days the temperature was: 86, 92, $90,80,83,87$.
3. To maintain a 95% average what mark would Fred have to get in his fifth subject if his other marks were 98, 90, 94 and 98 ?
4. During the weekly spelling tests in April David received 72, 82, 78 and 84 What must he get in the last test to have an average of 82 ?
5. Northwestern averaged 15 point for each home game. What was her score in the fifth game, if in the other four the scores were $18,20,6,19$?

Test 9

1. A freight train running 20 miles an hour is 120 miles ahead of an express train running 50 miles an hour. In how many hours will the express over take the freight?
2. A French Ocean Liner leaves New York sailing 40 milen an hour. Eight hours later an American Liner leaves eailing 80 miles an hour. In how many hours will they be together?
3. Bob's motorcycle going 30 miles an hour is 130 miles ahead of Al's which is making 60 miles an hour. In what time will Al overtake Bob?
4. An airplane takes off from Chicago traveling at 110 miles an hour. Five hours later another takes off traveling 150 miles an hour. In how much time will they meet?
5. In going to Seattle Mrs. Jones has a 500 mile lead on her son. She is driving at 40 miles an hour while her son is driving at 70 miles an hour. In how many hours will they meet?

Test 10

1. A can do a piece of work in 4 hours, and B in 6 hours. How many hours will it take them if they work together?
2. It takes Emmett 5 hours to mow a lawn, while it takes Walter 8. If they mowed the lawn together, how long would it take them?
3. Jean can do the house cleaning in 3 hours while it takes Betty 7 hours. How many hours will it take them if they work together?
4. Jim can trim the shrubs in his yard in 5 hours which is the same time it takes his father, How long would it take them if they worked together?
5. Ellen can make a formal in 2 hours, while Nancy is just learning and it takes her 8 hours. How long would it take if they worked together?

Teat 11

1. In a fort there are 60 men and enough food to keep the 60 men for 20 days If 20 new men come and 40 of the first go, how many days will the food last?
2. If a stable has enough oats to last 10 horses 8 days, how many days will the oats last 4 horses?
3. A store of provisions would last 2100 men for 16 days. How long will it last 2800 men ?
4. If 50 Boy Scouts packed enough food to last them 10 days on a camping trip, and only 30 of the boys take the trip, how long will the food last?
5. Usually a shipload of food will last a regiment of 5500 men 30 days. As the shipload arrived $1 / 2$ of the regiment is released. How long will the food last the remainder of the regiment?

Test 12

1. A man sold a motorcycle for $\$ 80$ and bought it back for $\$ 100$ and sold it
for $\$ 120$. Did he gain or lose and if he did, how much?
2. A watch gains at the rate of 30 seconds per day of 12 hours. If the watch is set at 12 noon, how fast will it be at six P.M. the same day?
3. If apples cost one-fourth as much as oranges and oranges cost twice as much as bananas, how much will twenty apples cont if the price of bananas is $\$.30$ per dozen?
4. If Mary had $\$ 25$ more than she spent today she would have $\$.70$. How much did she spend?
5. How much more will a dozen books cost at $\$ 6$ a dozen than 12 pencila at 5 cents each?

APPROVAL SHEET

The thesis submitted by Bessie H. Chambers; R.S.C.J. has been read and approved by three members of the Department of Education.

The final copies have been examined by the director of the thesis and the signature which appears below verifies the fact that any necessary changes have been incorporated, and that the thesis is now given final approval with reference to content, form, and mechanical accuracy.

The thesis is therefore accepted in partial fulfillmont of the requirements for the Degree of Master of Arts.

[^0]: 9 John W. Dickey, "The Value of Estimating Answers to Arithmetical Problems and Examples". The Elementary School Journal XXXV, Sept. 1934, 25-31.

 10 Louise E. Dieterle, The Effect of Estimating Answers in Advanca to Solving Word Problem: in Arithmetic on Achievement in Arithmetic in Grace 48. Unpublished Master's Thesis, Loyola University, Chicago, 1953.

