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Anne Marie S. Niehaus,* Dionisios G. Vlachos,* Jeremy S. Edwards,y Petr Plechac,z and Roger Tribe§

*Department of Chemical Engineering, University of Delaware, Newark, Delaware; yMolecular Genetics and Microbiology, Cancer
Research and Treatment Center, University of New Mexico Health Sciences Center, and Chemical and Nuclear Engineering,
University of New Mexico, Albuquerque, New Mexico; zDepartment of Mathematics, University of Tennessee, Knoxville, Tennessee;
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ABSTRACT The current understanding of how receptors diffuse and cluster in the plasma membrane is limited. Data from
single-particle tracking and laser tweezer experiments have suggested that membrane molecule diffusion is affected by the
presence of barriers dividing the membrane into corrals. Here, we have developed a stochastic spatial model to simulate the effect
of corrals on the diffusion of molecules in the plasma membrane. The results of this simulation confirm that a fence barrier (the ratio
of the transition probability for diffusion across a boundary to that within a corral) on the order of 103–104 recreates the experi-
mentally measured difference in diffusivity between artificial and natural plasma membranes. An expression for the macroscopic
diffusivity of receptors on corralled membranes is derived to analyze the effects of the corral parameters on diffusion rate. We also
examine whether the lattice model is an appropriate description of the plasma membrane and look at three different sets of
boundary conditions that describe diffusion over the barriers and whether diffusion events on the plasma membrane may occur
with a physically relevant length scale. Finally, we show that to observe anomalous (two-timescale) diffusion, one needs high
temporal (microsecond) resolution along with sufficiently long (more than milliseconds) trajectories.

INTRODUCTION

Signal transduction is typically initiated when a ligand (i.e.,

epidermal growth factor or heregulin) binds to a receptor

(i.e., ErbB1 or ErbB2, respectively). The binding of a li-

gand to a receptor often leads to receptor dimerization and

higher-order receptor clustering. The clustered receptors then

initiate a signal transduction cascade (including receptor phos-

phorylation and recruitment of adaptor proteins, kinases, and

other signaling proteins), which controls cellular physiology.

For example, many signaling pathways lead to the activation

of transcription factors that control genes involved in regu-

lating cell division and differentiation (1,2). It has been shown

that deregulation of signaling pathways (i.e., ErbB, TNFR) is

involved in the ability of continuous cell division, evasion of

cell death, angiogenesis, and formation of metastases to cause

cancer (3). Specifically, studies of ovarian, cervical, bladder

and esophageal cancers show that patients with increased

expression of ErbB1 have lower survival rates than patients

with normal ErbB1 expression levels (4).

Receptor dimerization and clustering are critical for the

activation of signaling pathways of many growth factor

receptors (e.g., ErbB1). The receptor monomers are usually

incapable of signaling; it is dimerization that leads to the

phosphorylation events that trigger the signaling cascades

(such as the mitogen-activated protein kinase (MAPK) cas-

cade activated by ErbB1). To efficiently signal, the receptors

must be in a sufficiently high local concentration on the

membrane surface for dimerization to occur. The receptor

population is concentrated in small regions in the plasma

membrane (5). The clustering of receptors thus leads to sig-

nal amplification because they are close enough to dimerize

and share ligands (6). Due to the importance of receptor

interactions in the plasma membrane, understanding the

spatial-temporal dynamics of receptor diffusion is important.

Widely accepted for over 30 years, the fluid mosaic model

of the plasma membrane describes the phospholipid bilayer

in which globular proteins are suspended and can diffuse

freely within the plane of the membrane surface (7). Ex-

perimental data, however, yield two observations that are

inconsistent with the fluid mosaic model. Diffusion coeffi-

cients for proteins in artificial membranes are higher than

those in a natural membrane by a factor between 5 and 50

(8). Also, the diffusion rates of receptor dimers are signif-

icantly lower than those of receptor monomers (8), even

though doubling particle size should have only a small effect

on diffusivity (9). Insights into these discrepancies have been

provided by recent single-particle tracking experiments with

25-ms resolution, which have revealed that diffusion does

not follow a Brownian motion as earlier experiments with

33-ms resolution indicated (10,11). Receptors and other

membrane protein molecules are trapped within, and occa-

sionally hop between, compartments (also called ‘‘corrals’’

here), which are separated by barriers (hereafter also called

‘‘fences’’) (8,10–17). These compartments range in size

from 30 to 230 nm, and the average residence time of a

molecule within a compartment ranges from 1 to 17 ms, de-

pending on the cell type (11). It has been hypothesized that
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membrane corrals are formed by interactions between mem-

brane molecules and the cytoskeleton. Fences dividing

the corrals are created either by steric hindrance due to the

closeness of the actin cytoskeleton to the membrane (the

membrane-skeleton fence model) (14), or by membrane

proteins bound to the cytoskeleton between which diffusing

particles must pass to diffuse to an adjacent corral (the pro-

tein picket model) (8). These fences and corrals may be the

mechanism by which receptors are localized to specific areas

of the plasma membrane, and an understanding of how these

fences work could aid in designing new cancer therapies.

Due to the importance of the problem, stochastic Monte

Carlo (MC) simulations have been performed to address

various aspects of diffusion on corralled plasma membranes.

These simulations revealed that diffusion consisting of

infrequent intercompartmental hops can appear as slow

Brownian motion if results are analyzed at a low data col-

lection rate (10,18,19). Despite this knowledge, a theoretical

framework for predicting the diffusion of receptors on a

corralled plasma membrane is currently lacking. Several

questions about the meaning of the experimental results

remain unanswered. Are the microscopic (or macroscopic)

diffusivities of particles on the membrane actually measured

by single-particle techniques? Is the lattice model used in

simulations an accurate representation of the plasma mem-

brane? Can these membrane barriers lead to clustering of

receptors? Understanding what factors control the macro-

scopic diffusivity on corralled membrane surfaces could lead

to a more comprehensive analysis of the data.

In this work, we simulate diffusion on a membrane surface

and obtain diffusivity results similar to those of Ritchie et al.

(10). Furthermore, we derive an analytical expression for the

diffusivity of particles on a corralled surface. We investigate

the effect of the lattice constant on the diffusivity both in the

simulation and in the derived expression to understand how the

fences behave and explore various boundary conditions for

jumps over fences. Finally, the theoretical formula is applied to

diffusion data from single-particle tracking experiments to

compare the membrane fences from various cell types.

METHODS

Kinetic Monte Carlo (KMC) simulation

For the majority of the simulations reported here, the plasma membrane was

modeled as a square lattice with a lattice constant, a, which was chosen to be

6 nm, following the work of Ritchie et al. (10). The suitability of a lattice

model is assessed in Appendix A, and the effect of lattice constant is

thoroughly investigated below. Only a small portion of the plasma mem-

brane was modeled, and periodic boundary conditions were used to repre-

sent the entire membrane. On a square homogeneous lattice, the diffusivity

can be calculated from the equation (10,20)

D ¼ a
2
Gdð1� uÞ; (1)

where u is the coverage (fraction of sites occupied by receptors), a is the

lattice constant (lattice site-to-site distance), and Gd is the propensity or

transition probability per unit time for diffusion of a receptor in one di-

rection. The propensity is equal to the inverse of the average time step for

a given event for a single particle. For the parameters used here (D ¼ 9

nm2/ms; a ¼ 6 nm (10)), Gd ¼ 0.25 ms�1. The coverage was chosen to

be equal to 0.01 for the lattice constant of 6 nm, and the density of receptors

was kept constant for simulations with varying lattice constant.

To simulate systems with barriers at regularly spaced intervals, a fence

was added surrounding a simulated space, representing a corral. Diffusion

across the periodic boundary was given a lower propensity for occurrence

than normal diffusion. The ratio of the propensities for diffusion within a

corral (Gd) to the propensity for diffusion across a boundary (Gf) is termed

the fence barrier, Rb:

Rb ¼
Gd

Gf

: (2)

A large fence barrier (e.g., 109) indicates a strong fence, where receptors

rarely escape from their initial corral, whereas a smaller fence barrier (e.g.,

101) indicates a weak fence. At the lower limit, Gd/Gf ¼ 1, there is no fence

(the mesh is completely homogeneous). For most simulations, a fence

barrier value of 103 was used, corresponding to the hop probability of 0.0008

used by Ritchie et al. (10). Alternative boundary conditions are discussed in

Appendices B and C.

The propensity for each event to occur must be normalized to a Gmax

value such that the total probability of an event occurring for any given

receptor at any given site is #1. In the case of diffusion only, Gmax¼ 4 3 Gd.

In this algorithm, the probability of a specific event occurring (Pj) is

Pj ¼
Gj

Gmax

; Gj ¼
�

Gd; not crossing a fence

Gf ; crossing a fence

�
: (3)

We use a modified null-event algorithm for the KMC simulations (21,22),

which is briefly described next. In each iteration, a receptor is selected at

random. A random number (from a uniform distribution) between 0 and 1 is

used to select an event, in this case a direction for diffusion. If the random

number is between 0 and P1 ¼ G1/Gmax, then direction 1 is selected; if the

random number falls between P1¼ G1/Gmax and P1 1 P2 ¼ (G1 1 G2)/Gmax,

then direction 2 is selected, and so on for all four possible diffusion

directions. In this way, the probability of a receptor diffusing in a given

direction is weighted by the propensity for the given diffusive event to occur.

If the site adjacent to the selected receptor in the randomly chosen direction

is empty, the receptor is moved and the clock is incremented by an average

time step of (the actual time increment is given from an exponential

distribution)

Dt ¼ 1

����Gtotal; (4)

where

Gtotal ¼ +
n

j¼1

+
4

i¼1

Gj;ið1� uj;iÞ: (5)

For our simulations, Gj,i is either Gd or Gf, depending on whether or not

receptor j would cross a boundary by diffusing in the ith direction; n is the

number of receptors; and uj,i is the occupancy of the ith neighbor site of

receptor j (uj,i ¼ 0 if the site is empty, uj,i ¼ 1 if it is full). If the adjacent site

is full or the random number is greater than the total of all the probability

values, the event ends with no movement of receptors and the clock is not

incremented (i.e., a null event occurs). After the execution (or nonexecution)

of an event, a new receptor is selected, and the process repeats. Despite

having null events for which the time clock is not updated, it can rigorously

be shown that the null-event algorithm is equivalent to the more common

rejection-free algorithm, where all events are successful and the time clock is

updated at each event (23).
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Diffusivity calculations

Locations of all receptors were recorded at regular intervals, with the interval

chosen as the resolution of the simulation, similar to the time resolution of

experimental data (8,10,11,17). From these positions, the mean-squared

displacement (MSD) was calculated and averaged over all particles and

starting times. The diffusivity is given by

D ¼ 1

4
lim
t/N

Æx2æ
t
: (6)

The diffusivity was calculated by fitting points 2–4 on the MSD versus time

(t) plot to a straight line, similar to the D2–4 described by Kusumi et al. (24).

In the timescale of long simulations, the slope reached a constant value,

which was assumed to be equal to the infinite time limit of MSD/t. There-

fore, the long-timescale (macroscopic) diffusivity was calculated by dividing

the slope by 4.

EFFECT OF BARRIERS ON DIFFUSIVE
BEHAVIOR OF MEMBRANE RECEPTORS

Simulations of 100 receptors (1% coverage) diffusing within

a 600 3 600 nm corral with a lattice constant of 6 nm, were

run for fence barriers (Rb) between 109 and 1. The MSDs for

these simulations are shown in Fig. 1. In the absence of a

fence, the MSD varies linearly with time. An increase in Rb

causes the MSD to decrease from this linear limit. In the limit

of a zero probability of crossing a boundary (Rb/N), the

MSD reaches a maximum value and remains constant there-

after, making the diffusivity equal to zero.

At short times, the diffusivity is relatively unaffected by

the presence of the barriers, as shown near the origin of Fig. 1.

On the other hand, the barriers decrease the long-time diffu-

sivity by several orders of magnitude. Fig. 2 shows the trends

in both the short- and long-time diffusivity calculated from

the slopes in Fig. 1. The short-time diffusivity changes only

slightly with changes in the fence barrier, whereas the long-

time diffusivity decreases as the fence barrier increases. At

short times, the receptors diffuse within the corral and do not

interact with the barriers. As a result, the short-time diffu-

sivity is close to the microscopic value of 9 nm2/ms. At an

Rb value of 103, the long-time diffusivity is 0.80 nm2/ms, a

factor of ;11 lower than the microscopic value. This ratio

falls within the experimentally determined range of 5–50 for

the difference in diffusivity between natural and artificial mem-

branes (8). At very large values of Rb, the diffusivity is very

low, and there are too few intercompartment hops in the sim-

ulation time used to accurately calculate the exact value. As a

result, the diffusivity appears to plateau for Rb . 106, but as

discussed later, this behavior results from poor sampling.

The KMC simulations of corralled diffusion recreate the

appearance of Brownian motion at low frame rates, as was

found experimentally (8,10,11,17), even though the diffusion

is not Brownian.

Fig. 3 a shows the trajectory results from a simulation of a

single receptor particle with a time resolution of 33 ms (cor-

responding to a video-rate experimental resolution) over a

course of ;1 s; the motion of the particle appears to be

Brownian. Fig. 3 b shows the results of the same simulation

with a resolution of 25 ms. The hop-diffusion behavior of the

receptor is evident from the boxes (representing corrals) created

by the trajectory.

The results in Fig. 3 show that the two-timescale diffusion

will only be observed if the time resolution of the trajectory

is sufficiently high, of the order of microseconds, and the

trajectory is sufficiently long. A lower resolution will yield a

FIGURE 1 Mean-squared displacement curves for simulations of recep-

tors diffusing on a membrane with a lattice of 600 3 600 nm corrals and

fence barriers ranging from 1 to 109. (Open circles) Rb¼ 1 (no fence); (open
squares) Rb¼ 10; (open diamonds) Rb¼ 100; (solid circles) Rb¼ 103; (solid

squares) Rb ¼ 104; curves with higher Rbs are indistinguishable from each

other on this plot. Increasing the fence ratio (Rb) decreases the MSD at

moderate to long times.

FIGURE 2 Long- and short-time diffusivities for simulations at various

fence barrier values and a corral size of 600 3 600 nm. Short-time

diffusivities are calculated at the first ;103 ms, and long-time diffusivities

are calculated from simulation data collected between 2 3 104 and 1 3 105

ms. The theoretical diffusivity is obtained from Eq. 13. The deviation

between the long-time diffusivity and the theoretical diffusivity is due to

poor statistics of the KMC for large fence barriers.
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trajectory that appears as Brownian motion at the macro-

scopic diffusivity (see Fig. 3 a, Appendix D, and Figs. 13

and 14). This finding is consistent with experimental results

at low resolution (at the millisecond timescale), where diffu-

sion appears often to be simple (25–27). The results of Fig.

1 show that the trajectory must be followed for at least 5 ms

to show hop diffusion. A shorter trajectory will appear as

Brownian motion at the microscopic diffusivity. Appendix D

provides more details about these time thresholds. The com-

bination of high resolution and long trajectories means that

simulations will be computationally expensive. For most sim-

ulations described in this work, simulations were run for a

total time of 20 times the time resolution. The MSD was cal-

culated for 10 time points from each simulation. For simu-

lations where results for multiple timescales are given, the

simulation was run for each timescale separately; then the

results were compiled to complete the MSD (or diffusivity)

plot. In this way, the high time resolution was used at short

times, where it was required to compute the microscopic dif-

fusivity within a corral, and to improve computational effi-

ciency, a lower time resolution was used in creating trajectories

long enough to show diffusion between corrals.

As is evident from the fact that not every ‘‘box’’ in Fig. 3

is full, the particle does not visit every site within a corral

before moving to another corral, making it difficult to deter-

mine the exact size and shape of the corrals. This is also true

in experimental systems (17). However, there is a relation-

ship between the number of sites visited in a corral and the

residence time (18). Because of these complications, the area

visited by a receptor between intercompartment jumps must

be assumed to be a lower limit on the size of a corral, not the

actual size and shape of the corral.

EFFECT OF RECORDING RESOLUTION ON
ESTIMATED DIFFUSIVITY

Current experimental techniques limit the time resolution of

single-particle tracking to 25 ms. Murase et al. measured a

diffusivity of ;5 nm2/ms for particles diffusing within 200-nm

corrals and estimated the diffusivity of liposomes to be ;10

nm2/ms (11). Therefore, even at a 25-ms resolution, the mea-

sured short-term diffusivity appears to be approximately half

of the true value. This introduces the question of what the

measured short- and long-time diffusivities really mean and

whether, as experimental techniques improve, the true micro-

scopic diffusivity of particles on a corralled membrane surface

can ever be experimentally measured.

Simulations at varying timescales were carried out to

estimate the potential capabilities of higher-resolution tech-

niques. The diffusivity at a given resolution was calculated

from the slope of the MSD at time points 2–4, as done by

Murase et al. (11). Fig. 4 a shows the calculated diffusivities

from these simulations for three different corral sizes.

All three curves in Fig. 4 a exhibit the interesting char-

acteristic of an asymptotic limit at each end. At very short

timescales, the measured diffusivity value is relatively con-

stant and of the same order of magnitude as the microscopic

diffusivity, because the receptors are unaffected by the pres-

ence of fences at these short timescales. In the transition

region, the receptors are moderately affected by the fences.

The ‘‘bouncing’’ of receptors back into their initial corrals

decreases the rate of displacement from their initial positions.

At long timescales, the receptors interact with the fences mul-

tiple times and the effective motion appears as a hop mecha-

nism with a macroscopic diffusivity.

Fig. 4 b shows the MSD/4t at each data point from the

simulation. The MSD/4t versus time plot appears similar to

the diffusivity plot for the same corral sizes. At short times, the

MSD is of the same order of magnitude for all corral sizes.

However, at longer times, the results are affected by the corral

size. The MSD/4t values deviate from each other more

quickly for small corrals (42 nm) because the diffusing

particles feel the effects of the boundaries sooner.

As expected, results from simulations taken at low re-

solution yield calculated diffusivities between 0.070 and 0.78

nm2/ms (depending on the corral size), one or two orders of

magnitude lower than the microscopic diffusivity of 9 nm2/ms

(see Table 1 for calculated diffusivity values). At these slow

video rates, the diffusivity measured corresponds roughly to

the macroscopic (infinite time) value (this is not exactly the

case for large corrals, as Fig. 4 indicates). At the fast resolution

rate of 25 ms, calculated diffusivities are between 0.46 and 7.1

nm2/ms, on the same order of magnitude as the microscopic

self-diffusivity, which supports the experimental evidence

mentioned above. It is interesting that as the time resolution is

improved, the diffusivity approaches an asymptotic limit less

FIGURE 3 Single-particle trajectories from sim-

ulations with resolutions of (a) 33 ms and (b) 25 ms

over a period of 1 s. Corral size is 240 nm 3 240

nm and barrier height is Rb ¼ 103. The diffusion in

a appears to be Brownian, whereas in b it is

corralled.
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than the value of the microscopic diffusivity (Fig. 4 a, inset).
Therefore, no matter how much the data collection rate for

single-particle tracking improves, the measured diffusivity

may be slightly less than the actual microscopic diffusivity.

The reason for this is addressed below.

The short-timescale limit is closer to the microscopic

diffusivity for larger corrals than for smaller corrals. This is

expected, because as corrals become smaller, receptor move-

ments more frequently sample the corral boundaries. Fig. 5 a
shows the calculated diffusivity from simulation resolutions

of 0.1 and 25 ms and varying corral sizes, along with ex-

perimental results from Murase et al. (11), whereas Fig. 5 b
shows the MSD/4t for the same simulations. As corrals be-

come large, the diffusivity approaches the microscopic diffu-

sivity of 9 nm2/ms. The agreement between the simulation

and experimental data is fairly good.

AN ANALYTICAL EXPRESSION FOR THE
MACROSCOPIC DIFFUSIVITY

In the simulations, for Rb¼ 103, there is a difference between

Gd and Gf of three orders of magnitude (10). Thus, for every

intercompartmental hop, there are many events where a re-

ceptor is held in its corral by the boundary and even more

events where a receptor merely diffuses from one mesh site

to another within the corral. Therefore, most of the com-

putational time is spent on fast events, and only a few slow

events (hops over the fences) actually occur. As a result, it

takes several hours to obtain results for diffusion of a single

receptor over a time period of 10 s. It is clear that to effi-

ciently simulate these systems, i.e., to treat the separation of

timescales, coarse-graining is necessary. Coarse-graining will

also be needed for incorporating more complexity, such as

reactions, into the model and simulating an area of the cell

surface larger than a few corrals. Therefore, a coarse-grained

propensity must be derived that yields the same diffusivity

results as the microscopic lattice simulations. An analytically

derived expression for the coarse-grained diffusivity will

also enable easy extraction of information from experimental

data and a better understanding of the dependence of diffusivity

on parameters, such as the corral size.

In our simulations, a coarse-grained lattice site was defined

as the collection of all (q2) microscopic lattice sites within a

single corral (q is the size of the corral in each direction in

lattice units). Several methods of coarse-graining on a two-

dimensional lattice exist. A probability-weighted Monte Carlo

simulation (22) determines the probability of leaving a coarse

site by adding the propensities of all possible events and find-

ing the fraction of events that lead to a coarse-grained event.

The coarse-grained diffusion propensity can also be calcu-

lated by an equation derived by Chatterjee et al. (20) using

nonequilibrium statistical mechanics coarse-graining theory

for a uniformly coarse-grained lattice. Another method is to

treat the boundary as a partially permeable membrane (28).

Although all of these methods lead to a reasonable expression

FIGURE 4 (a) Initial calculated diffusivity from points 2–4 taken at the intervals indicated. The average is taken over 10 simulations of 10,000 corrals with

1% coverage of receptors and a fence barrier value of Rb ¼ 103, Dmicro ¼ 9 nm2/ms. (Open symbols and lines) diffusivities calculated from simulation results;

(circles) 42-nm corrals; (squares) 120-nm corrals; (diamonds) 240-nm corrals; (solid triangles) data from Murase et al. (11) for the measured diffusivity of

particles on FRSK cells (average compartment size, 41 nm) at resolutions of 25 ms (fast resolution) and 33 ms (video rate). The inset is a blowup (in linear

scale) of the short-term diffusivity. (b) Plot of MSD over four times the time (MSD/4t) for the same simulation results.

TABLE 1 Short-time and long-time resolution diffusivity values

from simulations with various corral sizes

Corral

size

(nm)

0.01-ms

resolution

D (nm2/ms)

25-ms

resolution

D (nm2/ms)

1000-ms

resolution

D (nm2/ms)

33-ms

resolution

D (nm2/ms)

42 7.6 0.46 0.07 0.063

120 8.5 5.4 0.18 0.17

240 8.6 7.1 0.78 0.34

33 ms was the video resolution rate.

Diffusion on Corralled Membrane Surfaces 1555
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for the macroscopic diffusivity in some suitable limit, the

equation derived using nonequilibrium statistical mechanics

coarse-graining theory (20) gave the closest match to simu-

lation results, and will be discussed here. The derivation below

relies on the mathematically rigorous coarse-graining theory

of microscopic processes on lattices we have been developing

in recent years. A parity graph, discussed below, provides a

visual assessment of the accuracy of our theoretical work.

The transition probability for diffusion along the x axis for

a uniformly coarse-grained lattice from region (corral) k to

region (corral) l is (20)

Gcoarseðk/lÞ ¼ Gx

2q
2e
�bU

hkð1� ulÞ; (7)

where hk equals the number of receptors in region k, q is the

number of microscopic sites along one side of a corral, Gx is

the propensity for diffusion from one microscopic site to a

neighboring site, and ul is the coverage within region l, de-

fined as the number of receptors in the region divided by the

number of microscopic lattice sites. The exponential term is

an energetic term representing the activation energy required

for a particle to move between adjacent energy minima due to

receptor-receptor interactions and is ignored hereafter because

of the law density of receptors. Assuming a constant coverage,

u, from one corral to another (in the equilibrium limit), the ex-

pression simplifies to

Gcoarse ¼
NGx

2q
2 ð1� uÞ ¼ N

2

1

t
ð1� uÞ; (8)

where N is the number of receptors in a single corral. The

timescale for a single receptor to diffuse from one coarse

lattice site to another depends on the coarseness and the

transition probability, as follows:

t }
q2

Gx

: (9)

This expression applies to a uniform surface with no corrals

or fences. To move from the center of one coarse region to

the center of another, a receptor must make q steps in one

direction. In a system with a fence at every coarse-grain

boundary, q � 1 of these steps are within a corral, and one is

a jump across a barrier. This must be incorporated into an

expression for t as a function of q, Gf, and Gd in such a way

that the original expression is retained in the limit of Gf¼ Gd.

The timescale is split into two components, one corre-

sponding to diffusion within a corral and the other to diffu-

sion across the boundary between corrals. To accomplish this,

one factor of q (representing the size of the corral in the direc-

tion of the fence hop) is separated into q � 1 and 1, whereas

the other factor of q (representing the size of the corral in the

perpendicular direction) is left alone. The following expres-

sion meets the aforementioned requirements:

t }
qðq� 1Þ

Gd

1
q

Gf

¼ Gfqðq� 1Þ1 Gdq

GdGf

: (10)

Note that in the limit of Gf ¼ Gd, the original expression for

the timescale of diffusion on a uniform coarse-grained sur-

face is recovered. Using this expression, the transition proba-

bility for diffusion from one corral to another is calculated

from Eq. 8:

Gcoarse ¼
1
=2GdGf

Gfqðq� 1Þ1 Gdq
3Nð1� uÞ: (11)

The general equation for the diffusivity on a lattice is

D ¼ ðaqÞ2Gð1� uÞ: (12)

FIGURE 5 (a) Diffusivity calculated from simulation points 2–4 at a given resolution for receptors with a self-diffusivity of 9 nm2/ms diffusing on a lattice of

corrals with a fence barrier, Rb, of 103. Diamonds are experimental data from Murase et al. (11) measured by single-particle tracking with a resolution of 25 ms.

(b) MSD over four times the time, MSD/4t, at each data point taken during simulations.
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Inserting the expression for Gcoarse into Eq. 12 yields

Dcoarse ¼
a

2
qGfGdð1� uÞ

Gfðq� 1Þ1 Gd

: (13)

This equation can be rearranged to express the coarse diffu-

sivity, Dcoarse, in terms of the microscopic diffusivity instead

of the microscopic transition probability. Equation 14 is the

result of such a rearrangement:

Dcoarse ¼
Dmicroq

ðq� 1Þ1 Rb

; (14)

where Dmicro ¼ a2Gd(1 � u) is the microscopic diffusivity

and Rb is the fence barrier. The corralled diffusivity varies

directly with the microscopic diffusivity, and in the limit of

very large q, it approaches Dmicro. In other words, if the

barriers are sufficiently far apart, diffusion is practically un-

affected by barriers.

Fig. 6 compares the values for the diffusivity calculated

using Eq. 13 to values obtained using KMC simulations (a

parity graph) for a total of 19 simulations. The corral size (q),

coverage (u), frequency of diffusion (Gd), and frequency of

jumping over a fence (Gf) were each varied to assess the

accuracy of the theoretical expression on each parameter. The

results show an almost exact correlation between the theoret-

ical values and the simulation values.

The derived analytical expression for the macroscopic

diffusivity shows that the diffusivity varies with R�1
b when

Rb� q. In the Rb range of interest, there is a difference be-

tween Rb and q of an order of magnitude or more, so this limit

applies. The solid line in Fig. 2 shows the theoretical result for

long-time diffusivity decreasing with increasing Rb. The

theoretical result is indistinguishable from the simulation at

small to moderate fence barriers. The deviation between sim-

ulation and theory for large values of Rb is caused by the poor

statistics (infrequent jumping over barriers) of the simulation.

The derived expression (Eq. 14) accurately explains the pre-

viously determined macroscopic diffusivity.

This expression holds only for large timescales (e.g.,

.10,000 ms). This is because the coarse-graining produces

an average of events occurring at short timescales and lumps

them into a single diffusion event. This theoretical expression

therefore does not capture the short-timescale microscopic

and transitional diffusivities seen in Fig. 4 a. KMC simula-

tions are necessary to compute diffusivities at short times.

EFFECT OF LATTICE CONSTANT
ON DIFFUSIVITY

The expression for coarse-grained diffusivity derived above

includes the parameter q, which is the number of lattice sites

along the edge of a corral. This parameter depends on both

the length of a corral and the length of a single lattice site

(q ¼ L/a, where L is the corral size, and a is the lattice con-

stant). Kusumi’s group chose a lattice constant of 6 nm so that

the time step for a diffusive move would be 1 ms (10). How-

ever, the effect of the lattice constant on diffusivity is unclear.

A characteristic of the simulation results is the difference

between the microscopic diffusivity value and the diffusivity

calculated from the short-time simulation results (Fig. 4 a,

inset). The smallest corrals contain only a few points and finite

size effects can be important. For example, a lattice constant

of 6 nm means that a 42-nm corral is modeled as a 7 3 7

square of lattice sites.

To determine whether the expression’s dependence on the

lattice constant is an artifact of the derivation or an actual

representation of the simulation, simulations were run in

which the lattice constant varied from its nominal value of

6 nm down to 0.01 nm. Diffusion propensities were recalcu-

lated from Eq. 1 for these simulations. The propensity for

diffusion across a corral boundary (Gf) was chosen to keep

Rb constant at 103. Therefore, the probability of a receptor next

to a boundary jumping over a boundary rather than diffusing

back into the same corral is the same for all simulations.

Physically, this represents a fence with the same width as a

lattice site, where the propensity for diffusing across it de-

pends on its width. Diffusivity values calculated from these

simulations are shown in Fig. 7. The results from short times

indicate that decreasing the lattice constant does indeed bring

the diffusivity closer to the microscopic limit of 9 nm2/ms. The

long-time diffusivity is highly dependent on the lattice con-

stant. The theoretical and simulated diffusivity values are given

in Table 2.

Our simulation results are in good agreement with the

theoretical diffusivity. As the lattice constant decreases, the

FIGURE 6 Parity plot comparing diffusivities obtained by simulation and

calculated theoretically by the coarse-grained method. Results are averaged

over 100,000 iterations for a single corral with periodic boundary conditions.

Except for the parameter being varied, parameters are as follows: corral size,

240 nm 3 240 nm; coverage, 0.01; Gd ¼ 0.25; and Gf ¼ 0.00025. Circles

show variation in corral size (120–600 nm2); squares show variation in

coverage (0.01–0.1); diamonds show variation in Gd (0.0005–0.25); and Xs

show variation in Gf (0.25 3 10�6 to 0.25).
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diffusivity increases. In the limit of a/0 (q/N), Dcoarse

approaches the microscopic diffusivity:

lim
q/N

Dcoarse ¼ lim
q/N

Dmicroq

ðq� 1Þ1 Rb

¼ Dmicroq

q
¼ Dmicro: (15)

This is because a hop from one corral to another is q� 1 hops

within a corral and one hop across a corral boundary. As the

lattice constant decreases, q becomes large, and the time for

the many hops within a corral dominates over the time required

for the single boundary hop. This occurs even though a bound-

ary hop takes orders of magnitude longer than a single hop

within a corral.

The dependence of the diffusivity on the lattice constant

leads to the question of whether the lattice model accurately

describes the plasma membrane system. Another model for

the corrals is described in Appendix B, where the propensity

for crossing a fence is kept constant (a fixed timescale for

diffusion across a fence) when changing the lattice constant,

and Rb is allowed to change. Off-lattice simulations, described

in Appendix A, yield results matching those of lattice-based

simulations for properly scaled values of time steps/lattice

constant. Comparisons of the fence models in the main text

and Appendix B with the off-lattice model in Appendix A

possibly indicate that the plasma membrane has a physically

relevant length scale over which particles diffuse. Instead of a

membrane protein or phospholipid being able to diffuse to any

point on the surface of the membrane, the membrane consists

of a lattice of likely positions. Diffusion behavior on the

plasma membrane could take the form of phospholipids of

finite size exchanging places with each other according to the

milling crowd model (29). Because the membrane is crowded

with phospholipids, the phospholipids themselves form a sort

of lattice structure on the surface of the membrane. Although

this lattice may be somewhat fluid, because the phospholipids

are free to diffuse, it is no less capable of defining the length of

individual diffusive events.

These results raise the question of whether it is mathemat-

ically possible to develop a lattice model (more specifically,

suitable boundary conditions) in which, in the limit of the

lattice constant going to zero, one gets the correct biological

behavior, or whether the aforementioned milling crowd model

is, conclusively, the only option. A third lattice model for dif-

fusion simulations is described in Appendix C. In that model,

the probability of a receptor at a fence boundary crossing into

the next corral is proportional to the lattice constant. Such a

method successfully models a macroscopic diffusivity that is

independent of the lattice constant. In any event, the precise

physics does not affect the analysis in our article, since the

barrier remains within an order of magnitude as the lattice

constant varies (see Fig. 10).

ANALYSIS OF EXPERIMENTAL DATA

The analytical expression for macroscopic diffusivity, de-

rived above, was shown to closely describe the dynamics of

the lattice-based simulation. To determine what insights can

be gained from this analytical expression, it was applied to the

experimental data obtained by Kusumi’s group (11). Table 3

shows experimental data for the diffusivity and average

FIGURE 7 Diffusivity calculated at various timescales from simulations

of receptors diffusing over 42-nm corrals with a fence barrier of Rb¼ 103 on

a lattice of 0.1-, 1-, and 6-nm sites.

TABLE 2 Theoretical diffusivity and simulation diffusivity

with a resolution of 1000 ms for a 42-nm corral length and

a fence barrier of 103

Lattice

constant, a (nm)

q ¼ L/a
(L ¼ 42 nm)

Theoretical

diffusivity (nm2/ms)

Simulation

diffusivity (nm2/ms)

6 7 0.0626 0.0623

1 42 0.363 0.361

0.1 420 2.66 2.65

0.01 4200 7.27 4.99

Theoretical diffusivity was calculated from Eq. 13.

TABLE 3 Diffusivity, compartment size, diffusion propensity,

and fence barrier data of different cell types

Cell type

Diffusivity

(nm2/ms)

Compartment

size (nm)

Gf 3 104

(1/ms)

Fence

barrier, Rb

NRK 1.1 230 9.05 276

T24 0.17 110 2.62 953

HeLa 0.21 68 5.26 475

Hek293 0.38 68 9.69 258

PtK2 0.48 43 19.50 128

FRSK 0.19 41 7.87 318

HEPA-OVA 0.21 36 9.92 252

CHO-B1 0.24 32 12.78 196

Experimental data are from Murase et al. (11). Diffusivity was determined

by single-fluorescent-molecule video imaging of Cy3-DOPE, and compart-

ment size by single-particle tracking of gold-DOPE. A lattice constant of

6 nm and a microscopic diffusivity of 9 nm2/ms were used. Gf was obtained

using the coarse-grained diffusivity calculated according to Eq. 13. The

average fence barrier is equal to 3.57 3 102.
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compartment size in various cell types obtained by single-

particle tracking techniques (11). Assuming a constant micro-

scopic diffusivity allowed us to calculate Gf. This assumption

implies that the structure of the plasma membranes of dif-

ferent cell types is similar except for the corrals. The Gf values

calculated for each cell type’s diffusivity and compartment

size, according to Eq. 13, are given in Table 3.

All fence barriers are between 100 and 103, corresponding

to the hop probability of 0.0008 used by Kusumi’s group (10).

Since the fence barriers are all of the same order of magnitude,

it is concluded that the corrals are created by the same mech-

anism in all the cell types tested. The differences in cyto-

skeletal structure among the different cell types yield different

compartment sizes due to actin filaments being closer together

or farther apart; however, the fences themselves are probably

similar in structure.

Given the dependence of the diffusivity on the lattice con-

stant, the effect of the lattice on the analysis of Kusumi’s ex-

perimental data was investigated. The calculated values of

Rb for three values of the lattice constant are given in Table 4.

The fence ratio, Rb, is seen to be inversely proportional to

the lattice constant, a. Since the fence barrier is equal to the

average number of times a molecule bounces off a barrier

before passing through one, decreasing the lattice constant in

simulations causes the receptors to hit and bounce off the

barriers more often. If the fence barrier, Rb, has a physically

meaningful value, there must also be a physically relevant

value for the lattice constant, a, for the lattice model of the

plasma membrane to be meaningful.

CONCLUSIONS

In this work, a stochastic spatial model was developed to

describe the corralled diffusion behavior of molecules on the

plasma membrane. These simulations confirm the hypothesis

that corrals created by the actin cytoskeleton (or membrane

proteins bound to it) can rationalize the difference between

diffusivities in natural cell membranes and those in artificial

membranes.

A theoretical expression for the diffusivity of corralled

particles on a membrane surface as a function of corral size,

microscopic diffusivity, and fence barrier was derived using

coarse-graining principles. This expression allows the pre-

diction of macroscopic diffusivities at various values of the

parameters, and an estimation of the fence barrier from ex-

perimental data of various cell types. Since similar values for

the fence barrier were calculated for all cell types tested, it

can be concluded that the physical basis of these fences is

probably universal. What differs between cell lines is the

structure of the overall cytoskeleton within the cell, and the

distance between its filaments. This leads to the conclusion

that cytoskeletal design is important not only for defining the

structure of the cell as a whole, but also for controlling the

diffusion of molecules on its surface.

The lattice constant has a great effect on the magnitude of

the macroscopic diffusivity and the fence barrier. Both on-

and off-lattice (Appendix A) models with constant fence

barrier, Rb, and on-lattice models with constant timescale for a

fence hop, G�1
f (Appendix B), showed a strong dependence of

the macroscopic diffusivity on the lattice constant. This could

indicate that the plasma membrane actually behaves as a lat-

tice with almost regularly spaced sites. The milling crowd model

suggests that membrane particles diffuse by exchanging places

with one another (29) and supports the idea of a lattice. This

would mean that all diffusive moves are on the length scale

of a single phospholipid molecule (;0.5 nm). Only the con-

stant crossing probability per lattice size model (Appendix C)

yields a diffusivity independent of the lattice constant. Al-

though the exact nature of a fence is still unclear, it appears

that the probability of moving across fences is 103–104 lower

than moving within corrals. Further work is needed to eluci-

date details of the ‘‘fence structures’’ and obtain an even more

atomistic view of such complicated diffusion phenomena.

Finally, our simulations indicate that to observe anomalous

(two-timescale) diffusion, one needs high temporal (e.g., mi-

crosecond) resolution along with sufficiently long (e.g., much

greater than a millisecond) trajectories.

APPENDIX A: COMPARISON OF ON-LATTICE
AND OFF-LATTICE SIMULATIONS

Since lattice simulations revealed that the lattice constant affects the

macroscopic diffusivity, an off-lattice simulation was used to assess whether

this behavior is a peculiarity of the lattice model. An algorithm for two-

dimensional diffusion on a surface with regularly spaced fences was devel-

oped based on work by Higham (30) on Brownian motion (continuous in

space and discrete in time).

Continuous-space algorithm

Higham’s simulation method for Brownian motion uses a fixed time step

for each event. Then, the displacement during that time step is normally

distributed with a mean value of zero (27). The variance of the displacement

is calculated from the microscopic diffusivity of the particles. Equation 6

gives the relationship between the MSD of a particle as a function of time

and its diffusivity. Rearranged,

MSD ¼ 4Dt: (16)

TABLE 4 Values of the fence barrier (Rb) calculated for various

lattice constant values

Cell type a ¼ 6 nm a ¼ 1 nm a ¼ 0.1 nm

NRK 276 1650 16,500

T24 953 5710 57,100

HeLa 475 2850 28,500

Hek293 258 1540 15,400

PtK2 128 764 7630

FRSK 318 1900 19,000

HEPA-OVA 252 1510 15,100

CHO-B1 196 1170 11,700

Experimental data used are from Murase et al. (11). Calculations were made

using the coarse-grained expression for diffusivity (Eq. 13).
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Since diffusion is isotropic, the displacement can therefore be separated into

its components as follows:

MSD ¼ ÆDX
2æ 1 ÆDY

2æ ¼ 4 3 D 3 dt: (17)

Since the x and y displacements have the same distribution,

ÆDX
2æ ¼ 2 3 D 3 dt: (18)

For a distribution with mean zero, the expected value of x2 is equal to the

variance of the distribution. Therefore, the standard deviation is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3 D 3 dt
p

: (19)

Simplified, the position of a receptor based on its previous position in one

dimension is given by

Xn 1 1 ¼ Xn 1 ð2D 3 dtÞ
1
=2 Nð0; 1Þ; (20)

where N(0,1) is the normal distribution with zero mean and variance 1.

Receptors are initially placed at random positions within a single corral

using a uniform random number generator. In these off-lattice simulations,

receptors are not affected by the presence of other receptors. Multiple

receptors are used to obtain statistics.

During each time step, each receptor is moved once. For each move, two

normal random numbers are generated with mean zero and variance as

described above. These values determine the displacements in the x and y
directions. If one of the random values is greater than the length of a corral

(which occurs for ,0.001% of events for 42-nm corrals if dt , 6.1 ms), the

displacement in the corresponding direction is set equal to the length of a

corral. The randomly generated displacements are added to the position of

the receptor. If no fence is encountered in this displacement, the new

coordinates of the receptors are saved, and the simulation moves to the next

receptor.

When a receptor reaches a fence, the probability of jumping over it is

Pcross, and the probability for bouncing away from it is equal to 1 � Pcross.

During a time step in which a particle encounters a wall, it moves a distance

(2D 3 dt)1/2N(0,1) with Prob. ¼ Pcross, which corresponds to moving

through the fence into another corral, or it moves a distance Xwall � Xn

toward the wall and a distance (2D 3 dt)1/2N(0,1) � (Xwall � Xn) back from

the wall with Prob. ¼ 1 � Pcross, which corresponds to bouncing off the

fence and back into its current corral. Displacements in the x and y directions

are treated independently, so a receptor could encounter two walls in a given

time step.

As in the lattice simulations, positions are recorded at predetermined time

intervals and used to calculate the MSD over the time frame of the

simulation. The slope of the MSD provides the diffusivity of the receptors.

Comparison between on- and off-lattice
simulation results

Off-lattice simulations of diffusion of receptors on the corralled surface were

run. Values of the time step were chosen so that the results could be directly

compared to those of the lattice simulations. Results can be compared under

the condition that the average distance traveled in a single time step is the

same. In the off-lattice simulation, the average distance traveled during the

time step dt is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3 D 3 dt
p

Þ2 1 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3 D 3 dt
p

Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 3 D 3 dt
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D 3 dt
p

:

(21)

In the on-lattice simulations, the distance traveled by a receptor in a single

event is designated a. Therefore, simulations where a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
D3dt
p

can be

compared to each other. This correlation can also be calculated from the

equation for diffusivity on a lattice, D ¼ a2Gdð1� uÞ: If the coverage term

is ignored (valid since the coverage is ;0.01), solving for the lattice constant

gives:

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=Gd

p
: (22)

In this case, Gd is equal to the inverse of the timescale for diffusion over a

distance a in each of the four possible directions. Therefore, the timescale for

diffusion in a single direction is equal to (4Gd)�1. Thus, the lattice constant

and timescale for a single event are related according to the expression

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=Gd

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ð4dtÞ�1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D3dt
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
D3dt
p

:

(23)

This is the same expression derived above for the average step size for the

off-lattice simulations.

In the lattice simulations, the fence barrier was used to define the

probability of a receptor crossing a fence rather than remaining in its current

corral. If a receptor is at a site next to a fence, the probability that the receptor

leaves the corral and crosses the boundary is equal to Gf/(Gd 1 Gf), and the

probability that the receptor remains in the same corral is equal to Gd/(Gd 1

Gf). Since Gf is two to three orders of magnitude less than Gd, the probability

of a receptor at a boundary crossing the fence can be simplified to Pcross ¼
Gf/Gd ¼ R�1

b .

In the off-lattice simulations, the probability of a receptor that encounters

a fence crossing the fence, Pcross, is an input to the simulation. On- and off-

lattice simulations can represent the same strength of the fence if the

parameters are such that Pcross (off-lattice probability) is equal to R�1
b (on-

lattice fence barrier).

The diffusivities calculated from the off-lattice simulations are plotted

together with the previously given results from lattice simulations in Fig. 8.

All of these results are for a corral size of 42 nm and a fence barrier of 103.

The off-lattice results match those of the lattice simulations for correspond-

ing a and dt values. Also, decreasing the time step for a single event, like

FIGURE 8 Diffusivity calculated from simulations of receptors diffusing

on a surface with 42-nm corrals having an Rb value of 103. Symbols are

results from lattice simulations with varying lattice constants, and lines

represent results from off-lattice simulations with different time steps. Time

steps of 1 ms, 0.0278 ms, and 0.000278 ms correspond to average step sizes

of 6 nm, 1 nm, and 0.1 nm, respectively.
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decreasing the lattice constant, increases the value for the macroscopic

diffusivity.

Decreasing the time step for Brownian dynamics corresponds to de-

creasing the lattice constant for lattice random walk. Again, the number of

steps needed to reach the fence increases, but the probability of jumping over

the wall, Pcross, is kept constant. Since the time to move from one fence to the

next remains constant, whereas dt for jumping across a fence decreases, the

effect of fences on diffusivity also decreases. These simulation results show

that discretizing in time rather than space does not change the effect of the

step size on the calculated diffusivity.

APPENDIX B: AN ALTERNATIVE FENCE MODEL
OF CONSTANT HOPPING TIME

In the above simulations, it has been assumed that the fence barrier remains

constant. Another possibility is that the timescale for a fence hop is constant

and independent of diffusion events within the corral. In this case, there

would be an inherent length scale of the fence (its width), and the probability

of crossing a barrier should depend on the lattice constant.

To implement this different concept of the timescale for diffusing across

the fence, the propensity for diffusing within a corral is changed according to

the lattice constant, with the propensity for diffusing across a boundary kept

constant. Given that q ¼ L/a, Rb ¼ Gd/Gf, and Gd ¼ Dmicro/a2, Eq. 14 can be

rewritten as

Dcoarse ¼
DmicroLaGf

ðL� aÞaGf 1 Dmicro

: (24)

In the limit of a / 0, the numerator of this expression approaches zero while

the denominator approaches Dmicro. Therefore, the coarse-grained diffusivity

approaches the microscopic diffusivity for constant Rb or zero for constant

Gf.

Lattice-based KMC simulations were carried out with varying lattice

constants and a constant value of Gf. Parameter values were chosen such that

the simulations with a lattice constant of 6 nm are the same as those

described earlier. The results from lattice-based simulations, where the

propensity for crossing a barrier is held constant while the lattice constant

changes, are shown in Fig. 9.

As in other simulations, the diffusivity at short timescales is close to the

value of the microscopic diffusivity of 9 nm2/ms. The diffusivity approaches

a macroscopic value asymptotically at long timescales. Unlike the results for

constant Rb, as the lattice constant is decreased, the macroscopic diffusivity

decreases and approaches zero. The simulation results shown in Fig. 9

indicate that the derived expression for macroscopic diffusivity is accurate in

its description of the system’s behavior at limiting values of the lattice

constant. The results from this alternate model, together with the model

presented in the text of this article, indicate that a characteristic length scale

may exist in these systems or, possibly, that another physical model for

fences is needed (see Appendix C).

APPENDIX C: AN ALTERNATIVE FENCE MODEL
OF CONSTANT CROSSING PROBABILITY PER
LATTICE SIZE

In previous sections, two models of hopping were studied. The first model in

the text of this article included a constant fence barrier model, which gave a

diffusivity approaching the microscopic diffusivity as the lattice constant

became small. The second model (Appendix B) employed a constant

propensity for fence hopping, which gave a diffusivity approaching zero

as the lattice constant became small. In this appendix, we consider an

alternative model in which a variable a, where

a ¼ Pcross

a
; (25)

is held constant. a is related to the permeability parameter described by Powles

et al. (28). Here, Pcross is the probability of a receptor at a fence boundary

crossing into the next corral and a is the lattice constant. By definition,

Pcross ¼
Gf

Gf 1 Gd

: (26)

A constant value of a means that the probability of a receptor crossing a

fence into another corral is proportional to the size of the microscopic lattice

sites. This scaling makes sense, because the time between microscopic

moves decreases with the decreasing lattice constant. The specifics of

the scaling are chosen in such a way that lattice constant independence is

achieved in the limit where the lattice constant approaches zero. Thus, the

smaller the distance between lattice sites, the more times a receptor will

alternate between being next to the fence and being one lattice site away.

Comparison to other models

In the constant fence barrier model, Rb (Gd/Gf) is held constant. At the Rb

value of interest (103 for a ¼ 6 nm),

Pcross ¼
Gf

Gf 1 Gd

� Gf

Gd

¼ 1

Rb

: (27)

Thus, in our previous model, holding Rb constant is the same as holding

Pcross constant. In the new model, a is inversely proportional to the lattice

constant. This implies that as the lattice constant becomes small, Pcross is

disproportionately large.

In the case of the constant fence hop propensity model, Gf is held con-

stant. The variable a can be estimated using

a ¼ Pcross

a
¼ 1

a
3

Gf

Gf 1 Gd

ffi 1

a
3

Gf

Gd

¼ 1

a
3

Gf

Dmicro=a
2 ¼

Gfa

Dmicro

:

(28)

Since Dmicro is constant and Gf is held constant, a is proportional to the

lattice constant. Therefore, a decreases as the lattice constant decreases, and

FIGURE 9 Diffusivities calculated from lattice-based simulations of re-

ceptors diffusing on a 42-nm corral with a constant propensity for crossing a

barrier of 2.5 3 10�4 with Dmicro ¼ 9 nm2/ms.
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the diffusivity would be expected to decrease to zero as the lattice size

becomes infinitely small, in agreement with our simulations.

Parameter selection

The starting point for these simulations was a system with a lattice constant

of 6 nm, a corral size of 42 nm, a microscopic diffusivity of 9 nm2/ms, and a

fence barrier of 103. This leads to a Gd of 0.25 ms�1 and a Gf of 0.00025

ms�1. The value of a calculated from these parameters is 0.000167 nm�1

and is hereafter used so that mapping with the other models is possible.

For each value of the lattice constant a, Gd and Gf are recalculated. The value

of Gd is defined from the microscopic diffusivity and the lattice constant:

Gd ¼
Dmicro

4a
2 : (29)

Gf is then calculated using Eqs. 25 and 26:

Gf ¼
Gdaa

1� aa
: (30)

This expression was used to select the value of Gf for the simulations

described below. Note that as the lattice constant changes, Gd and Gf vary

according to Eqs. 29 and 30, respectively. The fence barrier in this case

decreases with an increasing lattice constant, as shown in Fig. 10. However,

for the changes in the lattice constant considered here, the fence barrier is

within the range considered in the rest of this article.

Results

To assess whether this model actually yields diffusivity results independent

of the lattice constant, simulations were done at decreasing lattice constants,

with 42-nm corrals and a simulation space that is a square of 100 3 100

corrals with a total of 4900 receptors. This is equivalent to 1% coverage

in the 6-nm lattice constant system. Diffusivities given are averaged over

100 runs.

Simulations were first run for a total time of 0.1 ms, and a data collection

resolution of 0.01 ms. The results are shown in Fig. 11. A series of t-test

analyses indicates that the diffusivity at each lattice constant is significantly

different (P , 0.01). As the lattice constant decreases, the calculated

diffusivity increases toward the microscopic value.

Similar simulations were run with a total time of 250 ms and a 25-ms

resolution, equivalent to the resolution of fast single-particle tracking

techniques. These results are shown in Fig. 12. At this time resolution, there

is not a statistically significant difference between the diffusivities for lattice

constants between 0.6 nm and 3 nm (a t-test yields P values .0.1).

From these results, it is concluded that deviations from the microscopic

diffusivity in extremely short-time simulations are a consequence of finite

size effects (large lattice constant with respect to the corral size). For longer

time intervals, the diffusivity is fairly unaffected from the lattice constant.

Mathematically, this new model gives a coarse diffusivity that is indepen-

dent of the lattice constant as one passes to the continuum limit. It indicates

that the boundary condition crossing the fence is an important issue that

needs further work; for example, a more atomistic understanding of the fence

structure and of the diffusion across a fence will be valuable in elucidating

the mechanisms by which spatial self-organization may occur.

Coarse diffusivity

These results are compared to the previously derived expression for the

coarse diffusivity on a corralled surface. Inserting the expression for the

FIGURE 10 Variation of the fence barrier (Gd/Gf) with the lattice constant.

Gd is calculated from Eq. 29 and Gf is calculated from Eq. 30.

FIGURE 11 Diffusivity calculated at a time resolution of 0.01 ms versus

the lattice constant. Error bars are standard deviations (.100 samples of

4900 receptors).

FIGURE 12 Diffusivity calculated at a time resolution of 25 ms versus the

lattice constant. At this timescale, the diffusivity is independent of the lattice

constant. Error bars are standard deviations (.100 samples of 4900

receptors).
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propensity for a receptor to jump across a fence in terms of Gd, a, and a,

the expression for the diffusivity is

Dcoarse ¼
Dmicro La

La� aa 1 1� aa
¼ Dmicro La

La� 2aa 1 1
: (31)

In this expression, the lattice constant appears only in the denominator. In

the limit of a � L, the dependence of diffusivity on the lattice constant

becomes negligible. This relation also explains the results in Fig. 12, which

show that the diffusivity with a lattice constant of 6 nm is slightly higher than

the other diffusivities (with a lattice constant of 6 nm and a corral size of 42

nm, the lattice constant is less than an order of magnitude smaller than the

corral, and the limit of a� L does not apply).

APPENDIX D: TIME RESOLUTION NECESSARY
FOR OBSERVATION OF HOP DIFFUSION

Figs. 13 and 14 show trajectories and MSDs for different time resolutions for

our nominal simulation conditions. In Fig. 14, estimates of the diffusivity are

also depicted. It is apparent that above a certain resolution threshold (;10

ms for our simulated conditions), there is no evidence in the trajectories of

FIGURE 13 Trajectory plots for identical conditions

with (a) 25-ms, (b) 1-ms, (c) 10-ms, and (d) 33-ms resolu-

tions. Each trajectory is for a total time of 1 s.

FIGURE 14 MSD plots for identical conditions with (a)

25-ms, (b) 1-ms, (c) 10-ms, and (d) 33-ms resolutions. (a)

The diffusivities are given for time near zero and at 1.5 ms.

(b–d) The diffusivities given are calculated from the slope

of 3 points (indicated by lines) at time near 0, at ;200 ms,

and at ;400 ms. The initial diffusivities are all calculated

from points 2–4 in the plot. Only the data for 25 ms yield a

diffusivity close to the microscopic value of 9 nm2/ms.
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two-timescale diffusion. In addition, only microsecond time resolution can

provide a diffusivity that is close to the intrinsic microscopic one. Even at the

1-ms time resolution, the initial diffusivity is far from the actual one (lower

by an order of magnitude). In addition, the estimated value of the initial

diffusivity depends somewhat on the resolution employed. These threshold

values will change somewhat depending on the specific cells, i.e., the exact

values of the diffusivities, but are not expected to be drastically different

from what has been found here for many cells.

REFERENCES

1. Johnson, G. L., and R. R. Vaillancourt. 1994. Sequential protein kinase
reactions controlling cell growth and differentiation. Curr. Opin. Cell
Biol. 6:230–238.

2. Saez-Rodrigues, J., A. Kremling, H. Conzelmann, K. Bettenbrock, and
E. D. Gilles. 2004. Modular analysis of signal transduction networks.
IEEE Contr. Syst. Mag. 24:35–52.

3. Holbro, T., G. Civenni, and N. E. Hynes. 2003. The ErbB receptors and
their role in cancer progression. Exp. Cell Res. 284:99–110.

4. Nicholson, R. I., J. M. W. Gee, and M. E. Harper. 2001. EGFR and
cancer prognosis. Eur. J. Cancer. 37:S9–S15.

5. Jorissen, R. N., F. Walker, N. Pouliot, T. P. J. Garrett, C. W. Ward, and
A. W. Burgess. 2003. Epidermal growth factor receptor: mechanisms
of activation and signaling. Exp. Cell Res. 284:31–53.

6. Ichinose, J., M. Murata, T. Yanagida, and Y. Sako. 2004. EGF
signalling amplifications induced by dynamic clustering of EGFR.
Biochem. Biophys. Res. Commun. 234:1143–1149.

7. Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the
structure of cell membranes. Science. 175:720–731.

8. Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H.
Murakoshi, R. S. Kasai, J. Kondo, and T. Fujiwara. 2005. Paradigm
shift of the plasma membrane concept from the two-dimensional contin-
uum fluid to the partitioned fluid: high-speed single-molecule tracking
of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34:351–378.

9. Saffman, P. G., and M. Delbruck. 1975. Brownian motion in biological
membranes. Proc. Natl. Acad. Sci. USA. 72:3111–3113.

10. Ritchie, K., X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A.
Kusumi. 2005. Detection of non-Brownian diffusion in the cell
membrane in single molecule tracking. Biophys. J. 88:2266–2277.

11. Murase, K., T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H.
Yamashita, M. Sait, H. Murakoshi, K. Ritchie, and A. Kusumi. 2004.
Ultrafine membrane compartments for molecular diffusion as revealed
by single molecule techniques. Biophys. J. 86:4075–4093.

12. Edidin, M., S. C. Kuo, and M. P. Sheetz. 1991. Lateral movements of
membrane glycoproteins restricted by dynamic cytoplasmic barriers.
Science. 254:1379–1382.

13. Edidin, M., M. C. Zuniga, and M. P. Sheetz. 1994. Truncation mutants
define and locate cytoplasmic barriers to lateral mobility of membrane
glycoproteins. Proc. Natl. Acad. Sci. USA. 91:3378–3382.

14. Kusumi, A., and Y. Sako. 1996. Cell surface organization by the
membrane skeleton. Curr. Opin. Cell Biol. 8:566–574.

15. Sako, Y., and A. Kusumi. 1995. Barriers for lateral diffusion of trans-
ferrin receptor in the plasma membrane as characterized by receptor
dragging by laser tweezers: fence versus tether. J. Cell Biol. 129:
1559–1574.

16. Sako, Y., A. Nagafuchi, S. Tsukita, M. Tateichi, and A. Kusumi. 1998.
Cytoplasmic regulation of the movement of E-cadherin on the free cell
surface as studied by optical tweezers and single particle tracking:
corralling and tethering by the membrane skeleton. J. Cell Biol. 140:
1227–1240.

17. Suzuki, K., K. Ritchie, E. Kajikawa, T. Fujiwara, and A. Kusumi.
2005. Rapid hop diffusion of a G-protein-coupled receptor in the
plasma membrane as revealed by single-molecule techniques. Biophys.
J. 88:3659–3680.

18. Saxton, M. J. 1995. Single-particle tracking effects of corrals. Biophys.
J. 69:389–398.

19. Gheber, L. A., and M. Edidin. 1999. A model for membrane
patchiness: lateral diffusion in the presence of barriers and vesicle
traffic. Biophys. J. 77:3163–3175.

20. Chatterjee, A., D. G. Vlachos, and M. A. Katsoulakis. 2004. Spatially
adaptive lattice coarse-grained Monte Carlo simulations for diffusion of
interacting molecules. J. Chem. Phys. 121:11420–11431.

21. Lin, S. L., and J. N. Bardsley. 1978. The null-event method in
computer simulation. Comput. Phys. Commun. 15:161–163.

22. Reese, J. S., S. Raimondeau, and D. G. Vlachos. 2001. Monte Carlo
algorithms for complex surface reaction mechanisms: efficiency and
accuracy. J. Comput. Phys. 173:302–321.

23. Chatterjee, A., and D. G. Vlachos. 2007. An overview of spatial
microscopic and accelerated kinetic Monte Carlo methods. J. Comput.
Aided Mater. Des. 14:253–308.

24. Kusumi, A., Y. Sako, and M. Yamamoto. 1993. Confined lateral
diffusion of membrane receptors as studied by single particle tracking
(nanovid microscopy). Effect of calcium-induced differentiation in
cultured epithelial cells. Biophys. J. 65:2021–2040.

25. Vrljic, M., S. Y. Nishimura, S. Brasselet, W. E. Moerner, and H. M.
McConnell. 2002. Translational diffusion of individual class II MHC
membrane proteins in cells. Biophys. J. 83:2681–2692.

26. Wieser, S., M. Moertelmaier, E. Fuertbauer, H. Stockinger, and G. J.
Schutz. 2007. (Un)confined diffusion of CD59 in the plasma membrane
determined by high-resolution single molecule microscopy. Biophys. J.
92:3719–3728.

27. Lenne, P.-F., L. Wawrezinieck, F. Conchonaud, O. Wurtz, A. Boned,
X.-J. Guo, H. Rigneault, H.-T. He, and D. Marguet. 2006. Dynamic
molecular confinement in the plasma membrane by microdomains and
the cytoskeleton meshwork. EMBO J. 25:3245–3256.

28. Powles, J. G., M. J. D. Mallett, G. Rickayzen, and W. A. B. Evans.
1992. Exact analytic solutions for diffusion impeded by an infinite array
of partially permeable barriers. Proc. R. Soc. Lond. A. 436:391–403.

29. Eisinger, J., J. Flores, and W. P. Petersen. 1986. Milling crowd model
for local and long-range obstructed lateral diffusion. Biophys. J. 49:
987–1001.

30. Higham, D. J. 2001. An algorithmic introduction to numerical
simulation of stochastic differential equations. SIAM Rev. 43:525–546.

1564 Niehaus et al.

Biophysical Journal 94(5) 1551–1564


	Microscopic Simulation of Membrane Molecule Diffusion on CorralledMembrane Surfaces
	INTRODUCTION
	METHODS
	Kinetic Monte Carlo (KMC) simulation
	Diffusivity calculations

	EFFECT OF BARRIERS ON DIFFUSIVEBEHAVIOR OF MEMBRANE RECEPTORS
	EFFECT OF RECORDING RESOLUTION ONESTIMATED DIFFUSIVITY
	AN ANALYTICAL EXPRESSION FOR THEMACROSCOPIC DIFFUSIVITY
	EFFECT OF LATTICE CONSTANTON DIFFUSIVITY
	ANALYSIS OF EXPERIMENTAL DATA
	CONCLUSIONS
	APPENDIX A: COMPARISON OF ON-LATTICEAND OFF-LATTICE SIMULATIONS
	Continuous-space algorithm
	Comparison between on- and off-latticesimulation results

	APPENDIX B: AN ALTERNATIVE FENCE MODELOF CONSTANT HOPPING TIME
	APPENDIX C: AN ALTERNATIVE FENCE MODELOF CONSTANT CROSSING PROBABILITY PERLATTICE SIZE
	Comparison to other models
	Parameter selection
	Results
	Coarse diffusivity

	APPENDIX D: TIME RESOLUTION NECESSARYFOR OBSERVATION OF HOP DIFFUSION
	REFERENCES

	ADP124.tmp
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


