
An Incremental Alteration Placement Algorithm for Macrocell Array Design

By

Tsz Shing Cheung

A Master Thesis

Submitted in partial fulfilment of the requirements

for the award of

Master of Philosophy

of the Chinese University of Hong Kong

Copyright by T. S. Cheung, September 1990.

,
A

r

y

4
 、「「〔：

 ̂
t
』
：
f

.
/
)
，
J

7
,

 7

c

4

 、、：
？

 ：

 /

7

f
/
:

 2

1
7

i
 I

5
 I
T

 N
 -

2
 --

 ̂

3
 C

 f

 一

V
\

 ？

/
、

/
 \

 、-•
 .

"
v
/
f
 ...

 .

 .V

J
f
>
,

.

-

\

-

ACKNOWLEDGMENT

I would like to thank my supervisor, Dr. C. S. Choy for his invaluable advice and
assistance throughout the course of the research program and his patient reading and
constructive comments in the preparation of this thesis. Dr. Choy is my supervisor since
I was in the final year of the undergraduate course in 1987. I would like to express my
gratitude for his hearty support and encouragement during this three years.

Special thanks are extended to my enlightening teacher, Dr. Y. C. Chan for his words
of encouragement and helpful advice since I was a freshmen in the university.

Special thanks also to Mr. W. K. Lam, my colleagues in the VLSI/ASIC Research
Laboratory of the Chinese University of Hong Kong, my girlfriend, Maggie, and Mr. C.
K. Chan, my roommate in the student dormitory for their patient listening to my ideas of
carrying out research and substantial suggestions on my work throughout my past two
years research.

Finally, I wish to express my deepest gratitude to my parents for their moral and
financial support throughout the course of my whole education.

T. S. Cheung M. Phil. Thesis

TABLE OF CONTENTS

Section 1

Introduction 2

1.1 The Affinity Clustering Phase 2
1.2 The Alteration Phase 3
1.3 Floorplan of Macrocell Array 3
1.4 Chip Model ‘4

1.4.1 Location Representation 4
1.4.2 Interconnection Length Estimation 6

1.5 Cost Function Evaluation 6
1.5.1 Net-length Calculation 6
1.5.2 Net-length Estimated by Half of the Perimeter of Bounding Box 7

1.6 Thesis Layout 8

Section 2

Reviews of Partitioning and Placement Methods 9

2.1 Partitioning Methods 9
2.1.1 Direct Method IQ
2.1.2 Group Migration Method 10
2.1.3 Metric Allocation Methods • 10
2.1.4 Simulated Annealing 11

2.2 Placement Methods 12
2.2.1 Min-cut Methods 13
2.2.2 Affinity Clustering Methods 13
2.2.3 Other Placement Methods 16

Section 3

Algorithm 17

3.1 The Affinity Clustering Phase 18
3.1.1 Construction of Connection Lists 18
3.1.2 Primary Grouping 21
3.1.3 Element Appendage to Existing Groups 23
3.1.4 Loose Appendage of Ungrouped Elements 25
3.1.5 Single Element Groups Formation 26

3.2 The Alteration Phase 27
3.2.1 Element Assignment to a Group 29
3.2.2 Empty Space Searching 30
3.2.3 Determination of Direction of Element Allocation 31

3.2.3.1 Cross-cut Direction of Allocation 32

T. S. Cheung M. Phil. Thesis

TABLE OF CONTENTS [continued]

Section 3 Algorithm [continued

3.2.3.2 Dynamic Determination of Path Based on Size Functions 34
3.2.3.2.1 Segmentation of Cross-cut 35
3.2.3.2.2 Partial Optimization of Segments 36
3.2.3.2.3 Dynamic Linking of Segments 38

3.2.4 Element Allocation 39

Section 4

Implementation 41

4.1 The System Flow 41
4.1.1 The Affinity Clustering Phase 43
4.1.2 The Alteration Phase 44

4.2 Data Structures . 47
4.2.1 Insertion of Elements to a Linked List 54
4.2.2 Dynamic Linking of Segments 56
4.2.3 Advantages of the Dynamic Data Structure 59

4.3 Data Manipulation and File Management 60
4.3.1 The Connection Lists and the Group List 60
4.3.2 Description on Programs and Data Files 62

4.3.2.1 The Affinity Clustering Phase 63
4.3.2.2 The Alteration Phase 64

Section 5

Results . . . 70

5.1 Results on Affinity Clustering Phase 84
5.2 Details of Affinity Clustering Procedure on Ckt. 2 and Ckt. 5 92
5.3 Results on Alteration Phase 97
5.4 Details of Alteration Procedure on Ckt. 2 and Ckt. 5 101

Section 6

Discussion 107

6.1 Computation Time of the Algorithm 107
62 Alternative Methods on the Determination of Propagation Path . � . 110

6.2.1 Method 1 110
6.2.2 Method 2 I l l
6.2.3 Method 3 114

T. S. Cheung M. Phil. Thesis

TABLE OF CONTENTS [continued]

Section 6 Discussion [continued]

6.2.4 Comparison on Execution Time of the Four Methods 117
6.3 Wiring Optimization 118

6.3.1 Data Structure 119
6.3.2 Overlapping and Separate Bounding Boxes 120

6.4 Generalization of the Data Structure 122
6.4.1 Cell Types : : : : �
6.4.2 Adhesive Attributes 124
6.4.3 Blocks Representation 124
6.4.4 Critical Path Adjustment 125
6.4.5 Total Interconnection Length Estimation 129

6.5 A New Placement Algorithm 130
6.6 An Alternative Method on Element Allocation 132

Section 7

Conclusion 136

Section 8

References

Section 9

Appendix I 142

9.1 Definition of the Problem … … 142
9.2 The Simulated Annealing Algorithm 142
9.3 Example Circuit I43
9.4 Performance Indices and Energy Value 144

9.4.1 Total Interconnection Length 144
9.4.2 Delay on Critical Paths 144
9.4.3 Skew in Input-to-Output Delays 146
9.4.4 Energy Value 146

9.5 The Simulation Program 146
9.5.1 The "function" Subroutines . 147

9.5.1.1 alise 147
9.5.1.2 max—delay I47
9.5.1.3 replace 147
9.5.1.4 total一length I47

9.5.2 The "procedure" Subroutines 148
9.5.2.1 init 一 weight 148

T. S. Cheung M. Phil. Thesis

TABLE OF CONTENTS [continued]

Section 9 Appendix I [continued]

9.5.2.2 inverse 148
9.5.2.3 initial 148
9.5.2.4 shuffle 148

9.5.3 The Main Program 148
9.6 Results and Discussion 149
9.7 Summary 155
9.8 References 155

Section 10

Appendix n 157

T. S. Cheung M. Phil. Thesis

LIST OF FIGURES
1-1. A Typical Layout of Macrocell Array and An Example of Clustering on it . . • . 4
1-2. Floorplan of a Macrocell Array 5
1-3. The Simplified Model of the Macrocell Array 5
1-4. Equivalent implementations for a four pin net 7
1-5. Half Perimeter of Bounding Box is the Minimum Length to a Net 8
2-1. Partitioning of a Graph with 10 Nodes 9
2-2. A Layout and its Graphical Representation I3
2-3. First Vertical Cut Line on the Chip 15
2-4. First Horizontal Cut Line on the Chip 15
3-1. Example of Incremental Layout Modification 17
3-2. A 4-bit synchronous counter I9
3-3. A circuit Segment Showing the Affinity Caused by Fan-out of a Logic Gate . . 20
3-4. Flowchart on the Alteration Phase 29
3-5. Determination of the Nearest Empty Space by Lee's Algorithm 31
3-6. Division of direction of cross-cut 33
3-7. Cross-cut Examples and Its Direction Classification 33
3-8. Examples on Path Determination 34
3-9. Examples on Segmentation of Cross-cuts 36
3-10. Path Templates on Manhattan Lengths of 4 and 5 37
3-1L Path Templates on Manhattan Lengths of 2 and 3 38
3-12. Linking of Segments on a Path 38
3-13. Examples on New Element Allocation 40
4 - 1 � T h e System Flow Diagram 42
4-2. Flowchart of the Affinity Clustering Phase . 43
4-3. Flowchart of the Alteration Phase 46
4-4. Structure of a Connection List Variable 47
4-5. The Link-related Connection List of the 4-bit Synchronous Counter 48
4-6. Structure of the compound pointer (cptr) and bulk pointer (bptr) 49
4-7. Group List of the 4-bit Synchronous Counter and the 7-bit Ring Register . … 5 0
4-8. A 7-bit Ring Register 51
4-9. Cluster Tree of the 4-bit Synchronous Counter and the 7-bit Ring Register . . . 53
4-10. List Insertion using Pointers 56
4-11. A Path Segment in the Array 55
4-12. Structure of a Map Variable 57
4-13. Map List of a Path Segment 57
4-14. Dynamic Linking of Path Segments 58
4-15. Manipulation on the Connection Lists and the Group List 61
4-16. Layout of the "fmolgrpT.pas" File 68
4-17. Layout of the "fmolasg7.pas" File • 69
5-1. Ckt. 1: A 4-bit synchronous counter 70
5-2. Ckt. 1: A 7-bit ring register 71
5-3. Ckt. 2: A 8-bit serial data sequencer 72
5-4. Ckt. 3: "Dividen", a module in a MPU circuit 74
5-5. Ckt. 3: "Div一5"�a module in "Dividen" 75

T. S. Cheung M. Phil. Thesis

LIST OF FIGURES [continued]
5-6. Ckt. 3: "ICTckt"�a module in a ICT archiving system 76
5-7. Ckt. 4: Low order serial data synchronizer/desynchronizer 77
5-8. Ckt. 4: "REG" in ckt. 4 : : : : : : 73
5-9. Ckt. 5: High order serial data synchronizer/desynchronizer 79
5-10. Ckt. 5: "CNT" in ckt. 5 : : go
5-11. Ckt. 6: A 4-bit binary full adder with fast cany 81
5-12. Ckt. 7: A 9-bit odd/even parity generators/checkers 82
5_13. Ckt. 8: A 9-bit odd/even parity generators/checkers (different numbering) . . . 83
5-14. Initial Placement and Affinity Clustering Results of Ckt. 1 to 6 . 8 5
5-15. Initial Placement and Affinity Clustering Results of Ckt. 7 and 8 86
5-16. Group List of Ckt. 1 86
5-17. Group List of Ckt. 3 : : : : : : : : 87
5-18. Group List of Ckt. 4 88
5-19. Group List of Ckt. 6 89
5-20. Group List of Ckt. 7 90
5-21. Group List of Ckt. 8 91
5-22. Affinity Clustering Procedure on Ckt. 2 93
5-23. Affinity Clustering Procedure on Ckt. 2 (com.) 94
5-24. Affinity Clustering Procedure on Ckt. 5 95
5-25. Affinity Clustering Procedure on Ckt. 5 (cont.) %
5-26, Results on Total Change in Cost 99
5-27. Results on Change in Cost Per Added Element 99
5-28. Results on Change in Cost Without Considering Added Elements 100
5-29. Alteration Procedure on Ckt. 2 103
5-30. Alteration Procedure on Ckt. 5 104
5-31. Final Results of Placement, Grouping and the Cluster Tree of Ckt. 2 . 105
5-32. Final Results of Placement, Grouping and the Cluster Tree of Ckt. 5 106
6-1. Computation Time of lAPA 109
6-2. Ranges for Exhaustive Search 110
6-3. Directions for Linking Propagation Path I l l
6-4. Path Segmentation of Method 2 112
6-5. Examples on Propagation Path 114
6-6. Examples on the Choice of the Next Start Point on Path Determination 115
6-7. Comparison on Execution Time of lAPA, Ml, M2 and M3 117
6-8. A Wiring Model on Macrocell Array 119
6-9. Data Structure Scheme for Modeling Chip Image 120
6-10. Case of Overlapping and Separate Bounding-boxes on Single Channels 121
6-11. Case of Overlapping Bounding-boxes on Two Channels 121
6-12. Generalized Record Structure 122
6-13. Cell Types in the Generalized Data Structure 123
6-14. Linkage to Adhesive Elements by the "adhe" Pointer 124
6-15. A 3-bit Synchronous Counter 125
6-16. Generalized Cluster Tree of the 3-bit Synchronous Counter 128
6-17. Flowchart of the New Placement Algorithm 130
6-18. Slots Among End Points in the Six Templates 132

T. S. Cheung M. Phil. Thesis

LIST OF FIGURES [continued]
6-19. Occurrence of the Six Templates 133
6-20. Plot of Ncom(n) of Medium Scale Arrays 134
6-21. Plot of Ncom(n) of Large Scale Arrays 135
9-1. A 3X3 cell array 142
9-2. A 4-bit Synchronous Counter 143
9-3. Manhattan Distance Among Slots 144
9-4. Connection Flow Diagram of the Synchronous Counter 145
9-5. An Example Connection Flow Diagram 145
9-6. The Initial Placement Configuration 149
9-7. The Best Placement Configuration Ever Found 149
9-8. 1st Simulation with c=0.72 151
9-9. 2nd Simulation with c=0.72 151
9-10. 3rd Simulation with c=0.72 �� i5 i
9-11. 4th Simulation with c=0.72 152
9-12. 5th Simulation with c=0.72 152
9-13. 6th Simulation with c=0.72 152
9-14, 1st Simulation with c=0.9 153
9-15. 2nd Simulation with c=0.9 . 153
9-16. 3rd Simulation with c=0.9 154
9-17. 4th Simulation with c=0.9 . 154
9-18. 5th Simulation with c=0.9 155
9-19. 6th Simulation with c=0.9 155

T. S. Cheung]

Title: An Incremental Alteration Placement Algorithm for Macrocell Array Design

Abstract

Most algorithms on Placement such as Min-cut algorithm and Simulated Annealing
algorithm tend to concentrate on completing the placement from scratch. Little concern
is put on minor placement adjustment due to small alteration made on the
circuit/schematic. However, there are many cases that the schematics are subject to
change throughout the design process owing to change of requirements on the
performance of the circuit or system. As a result, the placement phase is completely
re-done or manual adjustment is required to deal with these changes. In this thesis, a
placement algorithm for incremental layout alteration is proposed for macrocell array
designs algorithm. The algorithm composes of two phases: the first phase extracts
information from the schematic so as to facilitate analysis of the interconnections,
whereas the second phase makes the incremental alteration to the layout concerned.
The program takes reasonable time to run and it saves the designer from re-executing
the whole placement process or manually correcting the placement.

T. S. Cheung Implementation 2

1. Introduction

The layout process of integrated circuits involves placing devices (cells) in a two
dimensional finite space and interconnecting pins of these devices according to the
schematic of the circuit to be implemented [Sangiovanni-Vincentelli87]. The goal of
this process is to complete the placement and interconnection of a design in the
smallest possible area satisfying a set of design constraints (such as those based on the
positions and sizes of the cells to be placed and routed), a set of technological
constraints (such as those based on design rules and the number of layers that can be
used to route the cells), and a set of performance constraints (such as those based on the
timing of the logic to be implemented). In the case of macrocell arrays which are the
concern of this thesis, the major constraints are limited to design constraints (e.g.
positions and interconnections) and performance constraints (e.g. critical path delay and
total wire length).

Although IC layout process is a complex combinatorial optimization problem (NP-
completeness) [Garey79], automation is still possible. An automation of layout of
Integrated Circuit is usually divided into a series of tasks [Milford88], as follows:
1. Partitioning of a very large system into smaller sub-units which is group (or cluster)
of cells and single components.
2. Placement of the sub-units into absolute or relative locations on a chip to minimize
the overall area and to ensure that the final stage of finding the interconnections is
possible�
3. Routing of the interconnections.

In this project, the incremental alteration placement algorithm is divided into two
phases, namely . •
(1) Affinity Clustering (or Grouping) Phase, which is a phase similar to the first task
mentioned above, and ‘
(2) Alteration (Component Addition) Phase, which is the alteration of an existing
placement according to minor change(s) to the design so that re-execution of the second
task is not necessary.

1.1 The Affinity Clustering Phase

In the Clustering phase, the connections of the whole circuit are extracted into a
linked list from the netlist of the circuit. Then, groups will be classified through a
progressive affinity clustering approach. The feature of this approach is that all

T. S. Cheung Implementation 3

operations are performed on a dynamic data structure (i.e. a linked list). With this data
structure，elements can be inserted or deleted by random access method and no sorting
or re-construction of the data list is needed. Another advantage is that the alteration
algorithm can be implemented more conveniently on this data structure.

Criterion of the clustering is to ensure that cells within a group are well related and
cells belonging to different groups are well disconnected. Emphasis is on the density of
connection/relation between elements. In addition, a simplified model of the whole
schematic is built in which the primary and secondary adhesions can be easily accessed.
This model is a substantial representation of the graph of the schematic.

1.2 The Alteration Phase

If a component is to be added to the circuit, it would be assigned to a group to which
the component has most relation (i.e. connections to the group). Then, the component
would be added through the following steps:
1. An empty space (if any) around the group to accommodate the added component
should be identified for alteration. The empty space should be large enough for the
insertion of the added component.
2. If only one appropriate empty space can be identified，the component would be
placed to that space without further processing. If more than one empty space are
identified, the one with the minimum wiring length would be chosen.
3. If an adjacent empty space cannot be allocated, the nearest empty space to the group
would be identified by a method similar to the Lee's algorithm [Lee61]. Then, the path
with minimum perturbation to the original placement would be determined.
4. Finally, the group concerned is expanded towards the- empty space along the
pre-determined path in step 3. Each expansion on the path would be based on a
minimum perturbation criteria.

1.3 Floorplan of Macro cell Array

In figure 1-1 (a), a typical floorplan of a macroceli array is shown. The macrocells
are concentrated around the centre on the chip, while the I/O cells are around the
boundary. Between every two rows of macrocells are routing channels. Spaces between
the I/O cells and macrocells are also routing spaces for interconnections.

T. S. Cheung Implementation 4

I / O I / O
I / O I I I I I I 7 ~ 1 I / O I I I I I I

r o u t i n g c h o n n e l a 1

I / O I I I I I I n —— 131 I I M " 1 ——
r o u t i n g channa 1 s I / O

I Z o r o u t i n g channa 18 2

LIJU I I I I I I I/O 丨I I I I I l-J-J
I / O I / O I / O

(Q) 〔 b 〕

Figure 1-1 A Typical Layout of Macrocell Array and An Example of Clustering on it

Usually, cells belong to the same functional block (group) will be placed close
together on the chip. An example of clustering of cells are shown on figure 1-1 (b).
Group 1 consists of 7 elements and group 2 consists of 6. Group 3 consists of one
element only and is named a "single element group". These elements are usually
random logic components with few connections to other cells.

1.4 Chip Model

The chip model of this thesis is a nXn array of integers. There are two areas of
concern in the choice of the model: (1) location representation and (2) interconnection
length estimation.

1.4.1 Location Representation

Since the placement of cell is on a 2-dimensional plane, an appropriate
representation of the locations can facilitate the computation of cost functions (e.g.
interconnection length). The floorplan of a macrocell array is as follows:

T. S. Cheung Implementation 5

> X m
Y

y (J �
v I I I I I I I I I I

L 1 C h o n n o 1 1

I I \丄
C h a n n e l 2 L 2)

nI I I I I | b | I I I I �
L 3 C h o n n e 1 3 "TPT ~]

Figure 1-2 Floorplan of a Macrocell Array

The location of cells on the macrocell array is represented by the x-y coordinates.
Channel widths are different in values and are denoted by L(i), where i is the number of
channel. A matrix of real number is necessary to represent the location of cells and an
1-D array of real number is necessary to represent the channel width.

For a simplified model of the array, we use the nXn plane:

r — > X ⑴

v]/ r-

y � J : �

Q

b

Figure 1-3 The Simplified Model of the Macrocell Array

In the simplified model, the location can be represented by a 2-D array of integers.
It saves both the computation time and memory.

T. S. Cheung Implementation 6

1.4.2 Interconnection Length Estimation

Since the actual wiring path is not known until routing, the interconnection length
can only be approximated. Two assumptions are made on the programs:
1. interconnection from a module is assumed to start from the middle of the cell.
2. interconnection length between two cells measured in Manhattan Distance.

For a macrocell array, the length between two cells (Xa’ya) and (xb ,yb) is
L M a c A r y = I X g - X b l + 丨 Y a - y b 丨

=I ia-ibl*w + lja-jbl*h + sum of channel widths between the two cells
where x and y are real numbers,

w is the width of macrocell, h is the height.
To calculate the length between two cells in this array, we have to take into account the
channel widths, and the width and height of macrocell.

For the simplified array, the length between a and b is
LSmp = I i a - i b i + 丨 j a - jb丨

where i and j are integers.
Thus, the computation time on interconnection length is dramatically reduced by using
the simplified model.

1.5 Cost Function Evaluation

There are many methods to evaluate the quality of a layout. The most common one
is the measure of net length. Some of the techniques of net-length calculation are
described as follows:

1.5J Net-length Calculation

Net length estimation is difficult especially for multi-terminal nets, i.e. for nets that
have more than two pins. [Sangiovanni-VincentelliSV] Many different, but electrically
equivalent, ways of interconnecting a set of pins are possible. In Figure 1-2, three
equivalent implementations for a four-pin net are shown. In most VLSI chips,
interconnections are implemented exclusively with Manhattan geometries.

T. S. Cheung Implementation 7

9 o o
o o 6 6 6 o

o o o
(Q) (b) (c)

Figure 1-4 Equivalent implementations for a four pin net

Normally, the shortest wiring length is preferred if other considerations are ignored.
In fact, in general, shorter interconnections imply better electrical performance. The
length of an interconnection is measured according to the Manhattan distance (I^HT)�
with this metric, two points a and b with coordinates (xa ,ya) and (Xb’yb) have distance

d(a，b) = Ixa-xbl + lya-ybl. Eq. 1-1.
Finding a rectilinear interconnection path of minimum length for a single n-pin net at a
first glance seems quite simple, but it is in fact NP-hard [Garey79, Goto86], It is
referred to as the rectilinear Steiner tree problem.

1-5.2 Net-length Estimated by Half of the Perimeter of Bounding Box

The bounding box is defined as the smallest rectangle which encloses the signal set
between modules [Schwei76, Goto78]. In the works of Sechen [Sechen87], Elder,
Zenewicz and Alvarodiaz [Elder84], and Goto [GotoSl], the half perimeter length of the
bounding box is used as the estimation of the connection length. An example of the half
perimeters of two nets is shown in the Figure 1-5.

According to the simulation result on random and optimized placements by Sechen
[Sechen87], the estimation is within 5% of the actual value in the final layout.

T. S. Cheung Implementation 8

I n o I

Cell
C

I m__ J

MifllaaaJHLiM

Cell
fl

pi 1 Jr-|- —pu I I n, |
Cell Cell

� D

m M • � M
Bounding box •• Port

C o n n e c t i n g natal

Figure 1-5 Half Perimeter of Bounding Box is the Minimum Length to a Net

Since the connecting wires in a Macrocell Array are in a rectilinear grid system,
Manhattan distance is the most appropriate measure of net length. Hence, the
Manhattan geometries approach is used in the estimation of interconnection of circuits
in this project.

1.6 Thesis Layout

This thesis is organized as follows: in Section 2, the most common methodologies of
partitioning and placement will be summarized. In Section 3，the Incremental
Alteration Placement Algorithm will be described while in Section 4， its
implementation. In Section 5，results of the algorithm will be examined, while in
Section 6, the discussion. Then follows the conclusion in Section 7，list of references in
Section 8，and appendices in Section 9.

T. S. Cheung Reviews of Partitioning and Placement Methods 9

2. Reviews of Partitioning and Placement Methods

There are many developed methods on partitioning and placement of VLSI. Some of
their principles and idea are summarized as follows:

2,1 Partitioning Methods

The problem of partitioning is to divide a graph with n nodes so that each partition
cut the least number of edges which joins the nodes [Bames85].

Let G be an undirected graph having nodes N= {1，…，n) and edges set E. It is
often of interest to partition the nodes of G into a given number, say k, of disjoint
subsets Si , . Sk, of specified size ISil = mi > …> ISiJ � mk, in such a way to
minimize the number of edges joining nodes in distinct subsets of the partition.

For example, consider the problem of partitioning the nodes of the following graph
into two sets containing 5 nodes each. The partition N= {1,2,3,4,5} U {6,7,8,9,10} cuts 3
edges and appears to be optimal.

Figure 2-1 Partitioning of a Graph with 10 Nodes

Several heuristic algorithms have been proposed for solving graph partitioning
problems. We would like to mention here the works of Barnes [Bames82, Bames84],
Kemighan and Lin [Kemighan-Lin70].

T. S. Cheung Reviews of Partitioning and Placement Methods 10

There are four major partitioning algorithms [Preas88]:

2.1.1 Direct Method

The direct method starts with a seed node of (or set of seed nodes for) each cluster
and assigns a node at a time to one partition, using preferences to satisfy the constraints.
Various embellishments have been made to this method. For example, after the initial
partition is complete, the algorithm can be restarted by selecting new seeds for the
clusters; this may produce a better partition [Kodres72, MennoneTl].

In this project, the partitioning method used belongs to the direct method.

2.1.2 Group Migration Method

The group migration method, also known as the Kemighan-Lin algorithm, starts with
some partition, usually generated randomly, and then moves components between
partitions to improve the partitioning.

This algorithm not only is rather fast but also it often produces very good results.
[S angiovanni-Vincentelli87] The basic idea of the algorithm is again to interchange
module among the two elements of the partition to obtain a better solution. A scoring
function is used to evaluate the interchanges. This scoring function measures the
difference in cost between the solution before the interchange and the one after the
interchange.

2.1.3 Metric Allocation Methods

A family of metric allocation methods attempts to find a metric other than the
structure of the interconnection graph which in some way reflects the direct and indirect
connectedness of the nets. In these approaches nodes are put together on the basis of the
metric, not on the basis of their connectedness. Therefore, the number of connections is
only indirectly minimized. Several approaches for doing the actual partitioning exist
[Chamey68, Donath72�.

1. Horizontal Peak Congestion:

Horizontal peak congestion is defined as the maximum number of nets crossing a
single one of the equidistant vertical outlines across the chip. This is a lower bound on

T. S. Cheung Reviews of Partitioning and Placement Methods 1 1

the number of horizontal routing tracks needed.

2. Vertical Peak Congestion:

Vertical peak congestion is defined as the maximum number of nets crossing a
single one of the equidistant horizontal cutlines across the chip. This is a lower bound
on the number of vertical routing tracks needed.

3. Two-dimensional Peak Congestion:

Two-dimensional peak congestion is defined as the maximum number of net
bounding boxes overlapping a single one of the rectangles defined by equidistant vertical
and horizontal cutlines across the chip. This metric provides a measure of local
congestion.

4. Estimated Wire Length:

Estimated wire length is defined as the sum of all net bounding box half perimeters.

5. Actual Routing Completion and Wire Length:

The design is first routed with a router that uses a modified line search technique
and has performance that is linear in the number of connections. Any disconnects were
then attempted with a maze router.

2.1,4 Simulated Annealing

Simulated annealing is a process analogous the heat annealing of doped
semiconductor wafer or crystals. Since the natural formation of bondings among
molecules in these substances is always looking for a minimum potential energy, the
process can be imitated to find the global minimum in a multi-objective problem. The
algorithm of simulated annealing is as follows:

Start with some state, So;
T � T〇/
repeat -

while (not at equilibrium) do
begin

Perturb S to get a new state Sn/
E E(Sn) 一 E (S) /

T. S. Cheung Reviews of Partitioning and Placement Methods 12

if E<0 then
replace S with Sn

else
with probability exp(-E/kT) replace S with Sn

end/
T := c*T/ { 0<c<l }

until (frozen)/

k : kelvin constant,
T : temperature,
E(S) : Energy of state S,
c : proportionality constant (decrease rate of T).
Table 2-1. Algorithm of Simulated Annealing

The simulated annealing method is a non-convex optimization algorithm. The
partitioning problem is cast in two parts: a cost function, i.e. E(S), which classifies any
feasible solution, and a set of moves (i.e. Perturbation), which allow movement from
solution (S) to solution (Sn). The algorithm starts at a random solution (i.e. So) and
makes stochastically chosen moves to modify that solution. Initially the moves which
are accepted include a high proportion of moves which increase the solution's cost. As
the algorithm progresses, the proportion of such moves is decreased until finally almost
no moves that increase the cost are accepted.

2.2 Placement Methods

The problem of placement of Integrated Circuit is to place components with certain
shape and size on a plane such that the following purposes can be achieved:
(1) Total interconnection length be optimized.
(2) Delay on critical path should be small for proper performance of the circuit.
(3) The skews in propagation delays in the input-to-output paths should be as small as
possible so that problems like race and harzard would not occur.
(4) Power consumption be optimized and power distribution be even.

Constrained by these factors, placement becomes a very difficult problem (NP-hard).
In general, no algorithm is able to cope with the full complexity of placement
[Sangiovanni-Vincentelli87]. Approximations are used to reduce the computation of the
cost functions (e.g. total interconnection length and delay on critical path) and of the
constraints (e.g. area and timing constraints) so that the problem can be solved in
reasonable computer time.

T. S. Cheung Reviews of Partitioning and Placement Methods 1 3

There are many placement methodologies [Preas88]. Two of the most common ones
are introduced here:

2.2.1 Min-cut Methods [Russell85]

Rather than simply placing a number of modules, some methods attempt to partition
the network in a rational way, and the Min-cut algorithm [Lauther79] is one. Modules
are placed to the left or right of a cut line parallel to the y-axis in such a way as to
reduce the number of connections crossing the line to a minimum, with the difference in
area between the two halves not exceeding a certain threshold. The partitions are
themselves cut parallel to the x-axis and the process repeated recursively. The
development is illustrated in Figure 2-2, in which a graphical representation of the
design shows the modules as arcs in the graph and the channel between as n o d e s � S i n c e
the partitioning reduces the number of connections between modules, routing problems
should be eased.

1 2 3 4 5 6 7

y
5 '

(o 〕 （ b)

Figure 2-2 A Layout and its Graphical Representation

2.2.2 Affinity Clustering Methods [Elder84]

In the affinity clustering methods, circuits are clustered by the affinity (i.e. the
interconnection among each element of the circuits).

During clustering, individual circuits are grouped to form new placement entities. In
the first clustering pass, the clusters are individual circuits. As repetitive passes are
performed, the clusters may become groups of c i r c u i t s � T h e grouping algorithm uses the

T. S. Cheung Reviews of Partitioning and Placement Methods 14

pairwise Attractive Forces between current clusters, the external pulls on the clusters，
and their relative sizes. The strength of the attractive forces is a function of the number
of nets connecting the clusters being considered. Multiple passes are performed,
possibly producing new clusters and new strengths. The number of passes is a
user-controlled parameter. Limits are placed on the resulting cluster size. The
clustering procedure ends when no more clusters are formed or the preset number of
passes is reached. This process is similar to that of Feuer et aL [Feuer77] and Lallier
and Jackson [Lallier79:.

The clusters formed are used as objects for the zoning of placement. Clustering
tends to alleviate the local optimum problem, since closely coupled circuits are moved
together. This approach uses much less computer time because the number of objects is
drastically reduced.

Since the methodology used in the project is similar to the affinity clustering
methods, more procedure related to this method is described. One of the zoning
procedure, which is the next step to the affinity clustering procedure, is summarized as
follows:

The zoning step establishes cut lines, imaginary lines dividing the chip into sections
called zones. The first cut line is vertical and divides the chip into two equal zones.
The second is horizontal and divides these two zones into four, and so on. As each cut
line is introduced, zones become smaller. The first two cut lines are illustrated in
Figure 2-3 and 2-4. VI is the first vertical cut line, a chip bisector; HI is the first
horizontal cut line, a chip quadrasector.

T. S. Cheung Reviews of Partitioning and Placement Methods 15

V I

G } J ©

Figure 2-3 First Vertical Cut Line on the Chip

V I

Q I ®

Figure 2-4 First Horizontal Cut Line on the Chip

Clusters move across cut lines attempting to minimize the number of nets crossing
the line. Minimizing wiring congestion across a cut line also minimizes total wire
length for the design. A cluster assigned to a particular zone must remain in that zone
or a zone derived from its original zone.

The zoning process repeats until the designer-specified number of cut lines is made.
Each cluster is assigned to a chip area. The size of this area varies according to the

T. S. Cheung Reviews of Partitioning and Placement Methods 16

cluster size and number of cut lines. For example, when two cut lines are used
(quadrasection), the area of each of the four zones would equal one-quarter of the total
chip area. The zoning process is similar to that of Conigan [Conigan79] and Breuer
[Breuer77]; the major difference is that clusters are used, rather that individual circuits.
Lallier and Jackson [Lallier79] used clusters, but with a different interchange technique.

2.2.3 Other Placement Methods

Other placement methods like simulated annealing [Appendix I，Durand89], greedy
clustering approach [Sudo83], force-directed methods [GotoSl, Sudo83, Goto86],
eigenvalue approach [Sangiovanni-Vincentelli87], have been hot topics in the current
research and development of placement algorithms and softwares. However, due to the
limitation of space and time, these methods would not be discussed here.

T. S. Cheung Algorithm 4-0

3. Algorithm

The idea of the Incremental Alteration Placement Algorithm (lAPA) can be
illustrated by the example in Figure 3-1. In (a), there is an original placement on the
5x5 macrocell array. The design consists of five groups: A, B, C, D, and E. A new
element, I，is to be added to group B. The nearest empty space, X，to group B will be
found and element I will be added at an appropriate position along the direction from
group B to the empty space X. The final layout is shown in (b). It is noted that
modification in layout is limited to group B and group E. In other words, it will cause
the least degree of perturbation to the original layout.

/ Q P \ I I Q I [T P F S J T ^ T ^ S J ? ^

/ I 二 5 2 s ^：二二 y

k D ； k D J i n n

l v _ l J I U x | [v J J I d E j

(Q) (b)

Figure 3-1 Example of Incremental Layout Modification

The Incremental Alteration Placement Algorithm is mainly divided into two phases，
namely, the affinity clustering phase, and the alteration phase. The affinity clustering
phase carries out a simple partitioning task, while the alteration phase works out the
placement when there is minor change to the design. Details are described in the
following sections.

T. S. Cheung Algorithm 4-0

3.1 The Affinity Clustering Phase

The affinity clustering phase in this project is similar to a partitioning phase in the
automatic layout system of IC design. However, the main concern is to form clusters by
interconnections, while a general partitioning phase may also consider critical path
delays, fan-out distribution, and power distribution.

Starting from the netlist of a schematic, the interconnections of the whole circuit
will be found and stored in a linked list format. Clusters will be formed by counting the
affinity between each element. Element pairs with higher affinity will be clustered in
the first clustering pass while those with lower affinity in later passes. A minimum
number of connections should be satisfied for clustering. The clustering criteria in this
phase belong to the direct method discussed in Section 2. Rules of selecting seed nodes
and assignment of nodes are mainly based on the affinity (connectivity) among nodes
and/or groups.

The affinity clustering phase consists of five parts: (1) Construction of connection
list, (2) Primary grouping, (3) Element appendage to existing groups, (4) Loose
appendage of ungrouped elements, and (5) Single element groups formation.

3.1.1 Construction of Connection Lists

Construction of connection lists is for the analysis of the interconnections among
cells in the circuit. Primarily, four connection lists are obtained from the original
connection of the circuit. The original connection should be "directed connection" (with
direction from output port to input port), siiTce the netlist of a circuit should usually
contain the information on the direction of each net.

The procedure to obtain the connection lists is as follows:
(1) store the direction connections in an array (directed connection array).
(2) convert the directed connections into undirected connections and store the latter
ones in another array (undirected connection array).
(3) obtain the linked list (directed connection list) from the direction connection array.
(4) obtain another linked list (undirected connection list) from the undirected connection
array.
(5) extract the fan-out connection list from the directed connection list.
(6) merge the undirected connection list and fan-out connection list into the
link-related connection list.

T. S. Cheung Algorithm 4-0

Considering the following circuit:

Figure 3-2 A 4-bit synchronous counter

The counter has the following 'directed' connections:

c[l,5]=l, c[l，8]=l，c[l,9]=l, c[2，5]=l，c[2,8]=l，

c[2，9]=l，c[3,6]=l, c[3,9]=l, c[4,7]=l, c[5，2]=l，

c[6,3]=l, c[7，4]=l，c[8，6]=l., c[9,7]=L

Table 3-1. Connections of the 4-bit synchronous counter

One of the cell 1 connection which is fed back to itself is not counted because it can
be viewed as an internal connection, that is, the connection is inside the layout boundary
of the cell.

The connections in Table 3-1 are stored as an array in the computer. However, for
the convenience of calculation, the connection values are translated to data in a linked
l i s t

香 港 中 文 大 學 回 者 你 藏 I

I •丨—lU•丨• .••Ml i

T. S. Cheung Algorithm 4-0

Directed Undirected Fan-out Link-related

connection connection connection connection

list list list list

1,5: 1 1,5: 1 5,8: 2 1,5: 1

1,8: 1 1,8: 1 5,9: 2 1,8: 1

1,9: 1 1,9: 1 6,9: 1 1,9: 1

2,5: 1 2,5: 2 8,9: 2 2,5: 2

2,8: 1 2,8: 1 2,8: 1
2,9: 1 2,9: 1 2,9: 1

3,6: 1 3,6: 2 3,6: 2

3, 9: 1 3,9: 1 3,9: 1

4,7: 1 4,7: 2 4,7: 2

5,2: 1 6,8: 1 5,8: 2

6,3: 1 7,9: 1 5,9: 2

7,4: 1 6,8: 1

8,6: 1 6,9: 1
9,7: 1 7,9: 1

8, 9: 2

Table 3-2• Connection Lists on the 4-bit synchronous counter

The undirected connection list is obtained from the directed connection list by
sorting the data in ascending numerical order. Hence, ’directed, connections will
become 'undirected' connections. Duplicated values on a paired connection would
contribute to the scalar sum of the two values. For example，the c[2,5]=l and c[5,2]=l
connections in the directed connection list becomes the c[2,5]=2 in the undirected
connection list.

The fan-out connection list is also obtained from the directed connection list. It is
done by the assumption that cell with connection from the same source should be of
some affinity. The case is illustrated in the following circuit segment:

乂 B

Figure 3-3 A circuit Segment Showing the Affinity Caused by Fan-out of a Logic Gate

T. S. Cheung Algorithm 4-0

The cell 2 and 3, in some sense, should belong to the same group. That is, cell 2
and 3 have a virtual connection.

The link-related connection list is obtained by merging the undirected connection
list and the fan-out connection list. On this point, merging of two identical pairs from
the two lists may be weighted. The formula would have the form:

merged value 二 wl*(undirected c o n n e c t i o n) (f a n - o u t connection)

Eq. 3-1.

where wl and w2 are the weights of the undirected connection and

the fan-out connection respectively. They are constants to be

determined by the designer.

The weights are mentioned because it is meaningful to distinguish whether the
undirected connection or the fan-out connection is of more important.

3.1.2 Primary Grouping

In this phase, the groups are formed by progressively scanning through the
link-related connection list.

From the link-related connection list, there are several steps to form groups on the
circuit. The steps are as follows:
1. scanning the connection list, determine the maximum connectivity among cells.
2. starting from the maximum connectivity, search connection pairs with the largest
connectivity.
3. check if either of the two elements in the connection exists in the group list.
4. if exist then append the other element to the group and update the connectivity
attributes* of the two elements; if not exist then shift to the next connection pair.
5. if neither of the elements in the connection exist in the group list, create a new group
with these two elements; update the connectivity attributes.
6. if both elements in the connection exist in the group list, update only the
connectivity attributes.
7. if not end of connection list, goto step 2.
8. stop.

* Connectivity attributes include the two mostly connected elements and their
number of connections to the element.

T. S. Cheung Algorithm 4-0

In more programmable form, the algorithm is as follows:
determine the maximum一connectivity on the merged connection list;
for i:= maximum一connectivity downto lower_bound_for_clustering do
while not(end of merged connection list) do 一

begin

scan the merged connection list, finding connection with
connectivity i;

if the connection, Ip, found then
begin

if (both of the two elements on the connection exists in
a group G) then

update connectivity attributes of the two elements

else if (only one of the two elements on the connection

exists in a group G)

and (size of G <= upper—limit—of一group一size) then
begin ,

assign another element to G/

increment group size of G;

update connectivity attributes of the two elements

end

else

begin

create a new group, G', on the group list;

set group size of G' to 2/

create connectivity attributes of the two elements

end;

dispose(Ip)

end/ {if}

end/ {while}

Table 3-3. Algorithm of the Progressive Clustering Process from
the Connection List.

The algorithm is called progressive clustering process because the groups are formed
by appending elements on existing groups. And, those groups are formed by obtaining
information from progressively scanning along the connection linked list.

Through the above steps, the 4-bit synchronous counter will be grouped as follows:
The maximum connectivity is 2.
Starting from 2, the elements are grouped as N= {2，5，8，9}U{3，6}U{4，7} in the first
clustering pass.
The lower—bound_for一clustering is usually at least 2‘ Hence, after the first pass, the
procedure will stop. Hence, the element T is left as ungrouped element.

T. S. Cheung Algorithm 4-0

3丄3 Element Appendage to Existing Groups

Before introducing the procedure of element appendage to existing groups, we would
like to bring out the term "Belong Tendency". Belong Tendency (BT in short) is the
number of connection(s) of an element with respect to a group. For example, element 3
has the following connections in the circuit with 7 elements:

c[l,3]= 1， c[3，4]= 1, c[3,5]=l, c[3，6] 二 1， c[3，7] 二 1.
And, the partition of the circuit is N= {1,2,7} U {4,5,6}.
Then’ the BT of element 3 to the group {1,2,7} is 2，and that to {4,5,6} is 3.
Let's denote the Belong Tendency of an element, e, to a group, G, by BT(e，G)，

Hence, BT(3，{1，2，7}) = 2，and
BT(3，{4，5，6}) = 3.

Taking the 4-bit synchronous counter as example, the partition after the primary
clustering pass is N 二 {2，5，8，9}U{3，6}U{4，7}. The Belong Tendencies of the ungrouped
element T are:

BT(1，{2，5’8,9}) = 3’
BT(1，{3，6}) 二 0，and
BT(1,{4,7}) = a

The steps on the affinity appendage of elements are as follows:
L initialize the values of the belong tendencies.
2. starting from the first group,
3. count the belong tendency(-ies) of ungrouped element(s) which is connected to the
group.
4. determine the maximum value of belong tendencies to the group.
5. starting from the maximum belong tendency.
6. assign the element with the largest belong tendency to the group.
7. increment group size.
8. update connectivity attributes of the element.
9. if there is still related element(s), goto step 6.
10. if not end of group list, goto step 3.
11. stop.

In more programmable form, the algorithm is as follows:
start from the head of the group list;
while not(end of the group list) do
begin

G:= the current group/

T. S. Cheung Algorithm 4-0

if (size of G < upper—limit—of—group—size) then
begin

initialize values of belong—tendency/
start from the head of the connection list;
while not(end of the connection list) do
begin

lp:= the current connection/

if (one of the two elements of Ip belongs to G) then
begin

increment belong—tendency[another element];
store connectivity attributes;
dispose(Ip)

end/
end;

determine maximum value of belong—tendency

for bound:= max 一 value一of 一 belong—tendency downto

limit—〇f__belong do

for i:二 1 to max number of element do
‘ — . • _ _ •

begin

if (belong 一 tendency[i]>bound)

and (i not in group list) then
begin

assign i to G;

increment size of G;

update connectivity attributes of the two elements
end; {if}

end; {for}
end; {if}

end; {while}

Table 3-4 . Algorithm of Affinity Appendage by Measuring

Belong Tendencies of Ungrouped Elements.

The appendage of ungrouped elements to the existing group is through the measure of
Belong Tendency. These elements, with its loose connection with other elements
(connectivity<2), would not be grouped in the first pass of grouping (i.e. the primary
grouping pass). However, they may have more connections to a group instead of a single
element. Hence, this pass is necessary to cluster these elements.

Since the belong tendency of element 1 to the group {2，5，8，9} is the largest,
element 1 belongs to this group and the partition after this pass is N = {1，2，5, 8，9}U{3,
6}U{4,7}. ‘ ‘

T. S. Cheung Algorithm 4-0

Grouping Mathematics:

To limit the size of each group, the appendage of the element is constrained by the
following criterion:

sizel + size2 - connectivity < threshold Eq. 3_2(a)
OR

sizel + size2 < threshold + connectivity Eq. 3-2(b)
where sizel and size2 are sizes of the two groups,

connectivity is the number of interconnections between the two groups, and
threshold is a constant (by experience, 3n/4 is a suitable value for a expected

group size of n for large groups).

This criterion is only a preliminary one. It means that two groups with sizes "sizel"
and "size2" will not be grouped unless .their sum of-sizes minus their number of
interconnections is less than a threshold. The formula will prevent the formation of any
loosely connected group with extra large size. For example, if the sizes of G1 and G2
are 6 and 7 respectively. Then, the value on the left hand side of Eq. 3-2(b) is 13. If we
expect the size of a large group should be 8，we have to choose a "threshold" value for
the grouping of G1 and G2 because their sum sizes is much larger than what we
expected. By experience*, the three-fourth of this expected value is suitable for the
threshold (i.e. 6). Then, the number of interconnections of the two groups should be at
least 7 for their grouping to become a group of size 13. However, if G1 is with size 2, a
"connectivity" of 3 is enough for the formation of a group of size 9. In other words, the
strictness of the constraint is lowered if the sum of sizes of G1 and G2 is not too larger
than the expected group size for a large group.

3丄4 Loose Appendage of Ungrouped Elements

The loose appendage phase is to group elements which have only loose connectivity
to other elements (e.g. no. of connection = 1). The steps on this part is:
1. starting from the first connection pair in the connection list,
2. if only one element of the connection pair is in the group list,

(i) search the group, G, to which the element belongs,
(ii) check the size of G,
(iii) append the other element of the pair to G,
(iv) update the connectivity attributes.

* Author's experience in digital circuit design, referring to circuits in�ChencT89 Cheung88]. ^ ，

T. S. Cheung Algorithm 4-0

3. if neither of the elements exists in the group list,
(i) create a new group with these two elements,
(ii) set the connectivity attributes.

4. if not end of connection list, goto step 2.
5. stop.

The algorithm in programmable form is as follows:
start from the head of the connection list/
while not(end of the connection list) do
begin

Ip:二 the current connection;

if (only one element of Ip is in the group list) then
begin

start from the head of the group list/
while not(end of the group list) do
begin

G:= the current group/

if (size of G < upper—limit—of—group—size) then
begin

identify the element in Ip which belongs to G/

locate where the element should be inserted,.

append another element to G;

update connectivity attributes;

dispose(Ip)

end; {if}

end/ {while}

end {then}

else

begin

create a new group, G', on the group list;
set group size of G' to 2/

create connec-tivity attributes of the two elements
end; {else}

dispose(Ip)
end/ {while}

Table 3-5. Algorithm of Loose Appendage of Elements

3.1,5 Single Element Groups Formation

If there is still any elements which cannot be appended to any existing groups (that
means they are elements with small connectivity to other elements), they will be
classified as single element groups. The steps in this procedure is:
1. starting from the first connection pair.
2. find element which does not appear in the group list.

T. S. Cheung Algorithm 4-0

3. if such element is found,
(i) create a new group (single element group) with this element,
(ii) set the connectivity attributes.

4. if not end of connection list, goto step 2.
5. stop.

The algorithm in programmable form is as follows:
start from the head of the connection list;
while not(end of connection list) do
begin

Ip:二 the current connection pair/

if (any element of Ip not in the group list) then

begin

create a new group, G', in the group list;
set size of G' to 1/ {since it is single element group}

add connectivity attributes of the element;
end; {if}

shift to the next connection pair/
end; {while}

Table 3-6. Algorithm of Creating Single Element Group

3.2 The Alteration Phase

The aim of this phase is to find out a solution on an existing placement according to
minor change to the design. The change pin-pointed in this thesis is the addition of
element(s) to an original design. There are two main reasons:
(1) the addition of element(s) or component(s) to a logic circuit or system is relatively
common as compared to the removal of component(s).*
(2) removal of components is relatively straight-forward to carry out by simply omitting
the components. Since the original design already have enough space, no alteration is
necessary. Even if compaction of components is necessary, the process can be done by
traditional shrinking algorithms [Dunlop85，LaPotin86]. However, in the case of element
addition, no published method is available.

* Examples are available in the design work of the author in ”Serial Data
Synchronizers/Desynchronizers implemented on Macrocell Arrays", BSc Thesis, Dept. of
Electronic Engineering, The Chinese University of Hong Kong, 1988.

T. S. Cheung Algorithm 4-0

The alteration phase consists of four steps, namely, (1) Element Assignment to a
Group，(2) Empty Space Searching, (3) Determination of Direction of Element
Allocation, and (4) Element Allocation.

Step 1 is to determine which group the added element belongs to. The measure is
by number of connections.

Step 2 is to find the nearest empty space to the assigned group of the added element.

Step 3 is to determine the optimal path joining the group and the nearest empty
space which satisfies two criteria (will be stated in section 3.2.3).

Step 4 is the placing of the added element to the array.

However, execution of step 3 and 4 depends on the result of step 2. The case is
shown in the Figure 3-4.

In Figure 3-4，ES denotes Empty Space. In the step "Empty Space Allocation", if
any ES on the neighbourhood of the group determined in step 1 is identified, direct
addition of the new element to the empty space will be executed. However, if such an
ES cannot be identified, step 3 and 4 will be executed.

T. S. Cheung Algorithm 4-0

C S t o r O

^

Elenen t flss ignnen t

to o Group ^
E m p t y S p a c e

S e a r c h i n g

T
< R d j Q c e n

1 I

Deterni no t i on of

Direction of

Elenent R11 oca t ion

^ ^

D i r e c t E l e m e n t
R d d i t i o n R 1 l o c o t i o n

(S t o p J

Figure 3-4 Flowchart on the Alteration Phase

3.2.1 Element Assignment to a Group

The assignment of an added element to a group is mainly based on measure of the
belong tendency of the element to the groups. That is, an new element is assigned to a
group with most connection to the element.

In mathematical form (algorithmic form),

T. S. Cheung Algorithm 4-0

e e Gi in the case that BT(e，Gi) > BT(e，Gj) V G j g GS, Gi e GS.
where e is the added element,

GS is the group set, and
Gi, Gj are groups in GS.

BT(e,G) is the belong tendency of e to G.

The new element will be included in the appropriate group and its connectivity
attributes will be updated,

3.2.2 Empty Space Searching

After assignment of the new element to a group, an empty space should be identified
for the addition of the element. Firstly, an empty space around the group to
accommodate the added component should be identified. This step is termed
"Neighbour Search". That means we are attempting to find out an empty space in the
neighbourhood of the assigned group.

If only one appropriate empty space can be identified, the component would be
placed to that space without further processing. However，if more than one empty space
are identified, the one with the minimum cost would be chosen.

If an adjacent empty space cannot be allocated, the nearest empty space is allocated
by applying the Lee's Algorithm [Lee61]. The group to be connected is the source and
the empty space is the target, ^ . The source cells are marked with an integer. Then, in
scanning through the whole matrix, the neighbour cells to source cells are marked with
the next integer. Subsequently, more cells next to these marked cells will similarly be
marked with increasing integer numbers. The process is repeated until an empty space
is found

T. S. Cheung Algorithm 4-0

… 3 1 31 31 Q| Q| Q| l | g f ^ f T

J ^ t t t t t t ^ T T T T T T
T T T T T T T T T ^ Q ^ I T T T T
工 I 卫 工 M T T T T T T T
I 工工 H I T T T T T T T " "
T T T T T T T T T T L T T
^ ^ f r I 丨

w i n

• E n p t y S p a c e

• E l e m e n t s (s〕 w h i c h is c l o s e s t to the e n p t y s p a c e (s

Figure 3-5 Determination of the Nearest Empty Space by Lee's Algorithm

In some occurrence, there will be more than one empty space in the plane. An
example of twin empty space is shown the Figure 3-5. In these cases, the empty space
with least "potential energy" will be selected in the following procedure. The term
"potential energy" will be defined by Eq. 3-4 in section 3.2.3.2.

After identifying the empty space, it is also necessary to determine which
element(s) in the assigned group is/are closest to the empty space, ^ . It is because
there may be more than one element with the smallest Manhattan Distance to the empty
space. As in the examples in Figure 3-5，the elements encircled are with same
Manhattan Distance to t These elements are termed "indicator cells" since they
indicate the location and direction to place the added element. However, up to this
stage，it is still not possible to determine which cell is the most appropriate one to the
added element. Hence, all the combinations of these nearest elements will be tried and
their cost values as stated by Eq. 3-4 (section 3.2.3.2) will be calculated in the next
step. The indicator cell with the lowest cost value will be chosen.

3.2,3 Determination of Direction of Element Allocation

Although the empty space(s) and the indicator cell(s) with smallest distance are
located, the path which joins the two points with the optimal cost should also be found.
The optimal cost in this sense is judged by two criteria:

T. S. Cheung Algorithm 4-0

1. the number of groups on the path should be optimized. Cri. 1
2. the accumulated size of the "passing groups" should be optimized. Cri. 2

The term "optimization" is used instead of "minimization" since algorithmic
calculations usually find out the "optimal" solution instead of the "minimal" one
[Sangiovanni-VincentelliSV, Bames85；.

This step is composed of two parts: (1) Cross-cut Direction of Allocation, and (2)
Dynamic Determination of Optimal Path by Size Functions. This step will be done on
each "indicator cell" to the empty spaces (Figure 3-5) and the one with the least cost is
selected.

3.23,1 Cross-cut Direction of Allocation

In a 2-dimensional coordinate plane, the line joining (xi ,yi) and (x2,72) can be
represented by the geometric equation:

y = (y2-yi)/(x2-xi) + c Eq. 3-3.

where c = (xiy2-x2yi)/(xi-x2).

However, in a 2-dimensional grid plane, such line cannot be represented by
geometric equation. Hence, the approximation named "cross-cut’, is introduced.

The cross-cut between two points is defined as the shortest path which terminates at
the two points and is closest to the straight line joining them.

The direction of cross-cut is determined by the line joining the indicator cell, c, and
the empty space, ^ . And, the classification of direction is shown in Figure 3-6. The
direction is determined to be in the increasing i and j direction for the simplicity of
calculation. This criteria is determined by the a-axis , which has the equation: i+j 二 0.
As a single value in the range is mapped to several value in the domain, it is necessary
to interchange the positions of range and domain. The cases are shown in Figure 3-6 (b)
and (c): in (b)，a single value of i is mapped to two j values, hence j should be the range
and i be the domain, while in (c), vice versa. To classify these two cases, the quadrants
are divided again by the p-axis. Hence, for slope magnitude greater than one, j-axis is
the abscissa and i-axis is the ordinate, while for slope magnitude less than or equals
one, i-axis becomes the abscissa and j-axis the ordinate.

T. S. Cheung Algorithm 4-0

a -Qxie

\ / r - > l 广 1

\ / i 1 _ _ _ _ _

\ / J I T N J 丨中|x| I :
c Z Z Z Z I X

/ \ 王三三三三
Z \ (b) (c)

. 3 -oxis
(a) J Figure 3-6 Division of direction of cross-cut

As a value lays on a or p-axis, it is necessary to set bounds on these axes such that
we can determine to which region the value belongs. Hence, closed bounds and open
bounds are set on the a-axis and P-axis, where a closed bound includes values on the
bound while an open bound excludes such values. In figure 3-7，the square bracket,[，
denotes the closed bound, while the parenthesis, (，denotes the open bound

~ X X e p ^ X c X 0 p - > X y ^ a - o x i s

J I 卞 I U % X
I XI x| gj X e p— X c X 7 Xc —X e p

^ 3 = = = c
I = = = = Z = = X 8 p - > X c Xc — X 8 P

= : I = = = = I — 丫 8 P 丫 c 一 丫
R -ox 18

y

J

Figure 3-7 Cross-cut Examples and Its Direction Classification

This whole procedure on determining the shortest path joining the indicator cells and
the empty spaces are termed "Cross-cut Determination".

T. S. Cheung Algorithm 4-0

3.2.3.2 Dynamic Determination of Path Based on Size Functions

Although the shortest path joining c and ^ is found by the above method, it is
necessary to locate the optimal path which satisfies the two criteria stated in section
3.2.3.

In short, the determination of the path of expansion depends on two functions:
Fi = no. of group passing through
F2 = D size of "passing" groups

and the cost function is defined by
Cost Function = wl*Fi + w2*F2 Eq. 3-4.

Since there are many connections among elements within a group, the total length of
interconnections should be increased if there is change to the original placement of any
element in a group. Hence, it is more advantageous to change the placement of as little
number of groups as possible. On the belief that move of several elements in the same
large group will cause less perturbation to the placement than move of elements in
several small groups, it is reasonable that wi should be greater than W 2 � S i n c e Fi is by
nature a smaller number than F2，the ratio wi : W2 = 5 is proposed

^ > L- ^^^
— V

一 f — ^)

— —

二二 ‘ 二
一 . — —

— — — — i — = = = = _ ! _ = = =

(Q〕 〔b〕

Figure 3-8 Examples on Path Determination

In Figure 3-8 (a), the path with circles is the cross-cut and it passes through three
groups. However, if the circle closest to the empty space, t is replaced by the cross,
the number of "passing" groups would be reduced to 2. Thus, the latter path is preferred.

T. S. Cheung Algorithm 4-0

However, if the number of groups cannot be reduced, it is better to choose a path which
passing through groups with smaller sizes. As in Figure 3-8 (b)，if the path with crosses
is chosen, the accumulated size of the crossing groups would be minimized.

To determine the optimal path, the following three steps are proposed. They are:
step 1: Segmentation of Cross-cut,
step 2: Partial Optimization of Segments, and
step 3: Dynamic Linking of Path Segments.

3.2.3.2,1 Segmentation of Cross-cut

This step is to divide the cross-cut into ^gments with Manhattan Lengths (LMHT)

less than or equal to 5. A value of 5 is chosen because there will be too much variety
on a path segment with L M H T larger than 5. On the other hand, a small value of L M H T

would result in exhaustive search on the plane which is not appropriate for an applicable
algorithm. Some of the examples are shown in Figure 3-9.

In Figure 3-9 (a), L M H T between c and ^ is 4’ and there is one segment only.
However, in figure (b) to (d), Manhattan Lengths of the cross-cuts are greater than 5.
For simplicity of calculation, they are divided into segments. Optimal path of each
segment will be found in step 2 and the linking of segments will be done in step 3,

T. S. Cheung Algorithm 4-0

C X X X X X ^

C X

— = = n = = = = = = = = =

(° � L M H T = 4 � B � L M H T = 6

c
=======. 7 c 7

厂 1

！L 丄 — 乙二 —
X X X

y ^ ^ ―

L z 广
7

I I I I I I I I I 丨“
(c) L M H T = 8 (d) L M H T = - 1Q

Figure 3-9 Examples on Segmentation of Cross-cuts

3.2.3,2.2 Partial Optimization of Segments

In the previous step, cross-cut is divided into segments. Since the LMHT of these
segments is less than or equal to 5，the templates in Figure 3-10 are used to find the
optimal paths with LMHT of 4 and 5. The template with appropriate shape will be fitted
on a path segment and the cost of each path will be found Combining these path
segments will form the whole path. The combination of path segments with the least
cost function (Eq. 3-4) will be chosen in the next section.

T. S. Cheung Algorithm 4-0

S F M
(0】pottern 0 (d) p a t t e r n 3

(b) p a t t e r n 1 (eJ p o t t e r n 4

“ I I 2 I 1 1
^ ^

【c) p a t t e r n 2 (f) p a t t e r n 5 Figure 3-10 Path Templates on Manhattan Lengths of 4 and 5
In the figure, o and x denote the end-points of a s egmen t�Number ing of paths

indicates the preference of selection, shorter path with higher priority. The above
templates are invariant to axes transformation. That is, the templates can be applied to
path segments with x-y coordinates t rans formed . , . , .

In Figure 3-9，it is noted that some segments are of LMHT=2 ORLMHT=3. Templates
for these segments are as follows:

T. S. Cheung Algorithm 4-0

2

f T T T H ， • ^ 广

困 ^^^
3

(o) pot tern G (c) p a t t e r n 2

〔b) p a t t e r n 1 (d) p a t t e r n 3

Figure 3-11 Path Templates on Manhattan Lengths of 2 and 3

For segments with LMHT of 1, o and x are adjacent and thus template is not
necessary.

3.2.3.2,3 Dynamic Linking of Segments

To link the segments, we aim to find the path with the least cost function.
However, there are many combinations of the segments as the distance between c a n d �
is large. To facilitate the calculation, it is constructive to introduce the Dynamic
Programming (DP) approach [Denardo82, Bertsekas87]. To illustrate the principle of DP,
let's analyze the following flow d iagram:- "‘ ‘

Q 丄 c

2
Figure 3-12 Linking of Segments on a Path

T. S. Cheung Algorithm 4-0

Nodes are denoted by alphabets and the costs in the path are indicated by the
integer. The calculation process is shown in the following table. Pxy denotes minimum
cost between x and y.

Cost Pxy

ce : 1 一 一 > Pee

de : 3 一 一 > Pde

ae: ace : Pee + 1 = 2 ——> Pae

ade : Pde + 1 = 4

be: bee : Pee + 2 = 3 -一> Pbe

bde : Pde + 2 = 5

se: sae : Pae + 1 = 3 ——> Pse

sbe : Pbe + 1 = 6

Hence, the minimum cost is 3 and the optimal path is (s,a,c,e)•

Table 3-7. Calculation of Shortest Path by Dynamic Programming

The algorithm of Dynamic Programming [Denardo82] is:
L Set Vj to infinity for j = 1,2,…，N.
2. for i:= 1 to N-1 do

3. for j:= i+1 to N do
Vj:= min{Vj, Vi + Cij)

where Vx is the minimum cost from x to the terminal node, and
Cxy is the cost between x and y.

Table 3-8. Algorithm of Dynamic Programming

3,2.4 Element Allocation

After locating the optimal path of element allocation, there are two steps to place
the added element to the array:
1. shift the cells along the optimal path towards the empty space until the empty space
is adjacent to the indicator cell, c.
2. place the added element at the evacuated space.

Two examples on the process of element allocation are shown in Figure 3-13.

T. S. Cheung Algorithm 4-0

- -

==工：=== = = I = = = =
2 - > 3 1 2 â

^ 么 ^ 丄

i . c e l l s h i f t p a t h 1 i . o f t e n s h i f t i n g

(Q)

= 1 = C
ig 3->U 2 3

^ ^

i . c e l l s h i f t p a t h 1 i . a f t e r s h i f t i n g

(b〕

Figure 3-13 Examples on New Element Allocation

Integers on the slots identify the cells to be shifted. Figure (a)ii and (b)ii are the
placements after the first step. The new positions of the shifted cells are shown. In
these placements, the empty spaces are adjacent to the indicator cell, c. Then, the
added element will be placed in these empty spaces.

Finishing the Element Allocation step in the Alteration phase, the addition of an
element is completed. To add another element, it is necessary to start at the step
"Element Assignment to a Group". After the completion of placement alteration, the
connectivity attributes and the placement database will be updated so that further
processing is possible. In the next section, the implementation of this algorithm will be
described.

T. S. Cheung Implementation 4]

4. Implementation

The program is mainly composed of two parts: (1) the affinity clustering phase, (2)
the alteration phase. The programs are written in Pascal.

The programming language Pascal was chosen in the implementation of the
algorithm because of the following reasons:
Pascal's features: [Holden87]
1. Designed to support predominantly numerical, sequentially executed algorithmically
based problem model.
2. Block Structuring.
3. Scope variables, i.e. variables with ranges of validation.
4. Procedure/Function Block Definitions.
5. Facilities for forming complex data types using records and arrays.
6. Pointer and record facility useful for forming linked list and transferring of data,
7. Data structures can be dynamic to some extent, (useful for implementing dynamic
functions and procedures)
8. Number and Set manipulation facilities, (useful for numerically based decision
making)

However, Pascal do not easily support symbolically represented entities such as
strings and coordinates. This can be overcome by using data structures like records and
dynamic variables.

4J The System Flow

The system flow diagram of the Incremental Alteration Placement Algorithm is
shown in figure 4-1. The pre-layout simulation phase is done before the placement
phase. If there is change in the design after the placement is completed, the
Incremental Alteration Placement Algorithm (lAPA) is executed. Another possible way
to obtain the clusters (or groups) is by inheriting the hierarchical division from the
original schematic. That means the clusters are classified by the functional blocks of
the design. However, in some cases, some components, especially interface elements
and random logics gates, may not belong to any functional block. Thus, the affinity
clustering phase is also applicable in these cases.

T. S. Cheung Implementation 42

P r e - L o y o u t

S1 n u 1 a 11 on

F i n a l I z e d

P1 Q c e n e n t

îL： 乂
A f f i n i t y H l e r o r c h i c o l

C l u s t e r i n g C l u s t e r i n g

J/nI/NL^ iĴ \1/
R 1 t a r o t i o n : W i r i n g / c r o s s i n g C r 1 t I c o 1 - p o t h

A d d / R e d u c t i o n O p t l n l z o t l o n fldjuatnent

~ - P o e t - a l t e r a t i o n w o r k

A n n o to 11 on

\L/
「 E n d)

Figure 4-1 The System Flow Diagram

The function of the affinity clustering phase appears in three forms:
1. partitioning for the alteration phase.
2. to minimize wiring congestion across cut lines.
3. to adjust element placement along critical paths.

In this thesis, the main concern is the construction of the affinity clustering phase
and the alteration phase. Wiring optimization and critical path adjustment will be
discussed in section 6.

For a complete CAD system, the new placement is checked in the Back-annotation
phase in which the simulation is done on the actual layout.

T. S. Cheung Implementation 4]

4.1.1 The Affinity Clustering Phase

In this phase, clusters are formed by progressively gathering elements with high
connectivity. The method is to construct connection lists from the connection array and
then to obtain information by scanning through the connection lists. The flow of the
program is shown in figure 4-2. At the beginning of the program, the "placement" and
"connectivity" files are read. The "placement" file contains result of the design on a
simulated annealing placement program (fplace77.pas).

(START)
P r o g r e s s l w e

^ C l u s t e r i n g

Raed
P l o c e n a n t F i l e ^

P r 1 n o r y

Group ing ^
Read

C o n n a c t i v i ty File

E l e m e n t R p p a n d o g a

C o n s t r u c t i o n of to E x i s t i n g G r o u p i

C o n n e c t i o n L i s t s
—I

^ I ^
C r a o t a D l r a c t e d L o o s e flppendoga o ‘

C o n n e c t i o n L i s t U n g r o u p e d E l e n e n l t

^ I ±
C r e o l e U n d i r e c t e d S i n g l e E l e m e n t

C o n n e c t i o n List G r o u p F o r n o t i o n

d i e t 1) r
I

^ ^

C r e a t e F a n - o u t ^

C o n n e c t i o n L i s t Creota Group

(1ist 2】 R e c o r d File

山 ±
Merga list 1 C r a o t e E l e m e n t

ond list 2 Record File

• _ _ _

y
(S T O P ;

Figure 4-2 Flowchart of the Affinity Clustering Phase

T. S. Cheung Implementation 4]

The construction of connection lists is composed of four parts: (1) create directed
connection list, (2) create undirected connection list (list 1)，(3) create fan-out
connection list (list 2)，and (4) merge list 1 and list 2 to form the link-related
connection list. All the information on connection among cells are summarized in the
link-related connection list.

The progressive clustering is composed of four parts: (1) primary grouping, (2)
element appendage to existing groups, (3) loose appendage of ungrouped elements, and
(4) single element group formation. From data on the link-related connection list,
clusters are built and stored in a group list. Data of the group list is stored in two files:
"group record file" and "element record file". Group record file contains information on
the groups while the element record file contains information on every elements.

In the group list, each element belonging to a group are linked by pointers. The
structure of the connection lists and the group list are represented exclusively with
dynamic variables, that is, the size of the lists are flexible. In addition, the variables
are in order according to their values. Therefore, no sorting procedure is necessary when
the database is updated.

4.1.2 The Alteration Phase

In this phase, a new placement solution is found when there is minor change to the
design. The flowchart of this phase is shown in figure 4-3. At the beginning of the
program, "group record file" and "element record file" are read from the disk. Then, the
clusters are restored from data on the two files. In this program, since the structure of
clusters is different from that in the previous program, they are named "tree". The "tree"
are constructed by two subroutines: build—tree and link_tree. The fill_in_set subroutine
updates a set which includes all the elements with group and location assigned. The
list—assign subroutine converts information on new elements to the link-related
connection list.

The element—assign subroutine assign a new element to the group with the most
number of connections. The group is called the "attached group". Element—append
includes the new element to the "tree" and update the connectivity attributes. Database
setting prepares the two-dimensional planes for finding nearest empty space to the
attached group. Then, we will try to find am empty space in the neighbourhood of the
group. If found, the placement is done by simple location assignment. The Detail
procedure is by computation of the total interconnection lengths and to find the empty

T. S. Cheung Implementation 4]

space with the least value. The FCFS procedure means First-Come-First-Serve. That
is，the new element is placed to the first empty space found. The user can choose
between these two procedures.

If an empty space on the neighbourhood cannot be found, we are trying to locate the
nearest one. Then, the shortest path joining the empty space (ES) and the indicator cell
(C) is found by the Cross一cut subroutine. Size一determine finds out the cost function of
the "passing groups" in each path joining ES and C. Path—determine select the path with
the least cost function. Expansion is the placement of the new element in the array. If
there is another new element, the step returns to the Element—assign subroutine.

T. S. Cheung Implementation 4]

C StarT^

^ 丄
REHD GROUP
RECORD FILE FILL_IN_5ET

^ 丄
READ ELEMENT

RECORD FILE LIST_PSSIGN

^ 丄
BUILD—TREE ELEMENT—ASSIGN

^ vL

LINK 一 T R E E ELEMENT—APPEND

^

•flTA已A5E

SETTING

^

FIND

CNEIGH/PNEIGH

FOUND ^

_ _ [I Z I

匚 R055 一CUT 乂
COMPUTE FCFS

LEAST LENGTH ASSIGNMENT

iJL；
SIZE ^

D E T E R M I N E LOCATION LOCATION

ASSIGN ASSIGN

：̂
尸 flTH

D E T E R M I N E '

EXPANSION

^^TERFITION^ 7

C stop)

Figure 4-3 Flowchart of the Alteration Phase

T. S. Cheung Implementation 4]

4,2 Data Structures

The variables like arrays and records are static variables. This means that all
necessary memory is allocated for that variable at the time the program containing the
variable declaration is about to begin execution. It remains in existence as long as the
program is executing. This approach contrasts sharply with the class of variables we
used mainly in the program -- the dynamic variables.

A dynamic variable is created and destroyed dynamically during the execution of a
program [Schneider82]. Unlike static variables, dynamic variables are not referenced
indirectly by pointers to the newly created variable.

In the first program, namely the affinity clustering phase, there are mainly two
variables: connection list and group list. The data structure of the connection lists is
represented by the declaration in Table 4-1.

Iptr = "-listrec/ {list variable}

listrec = record

next : Iptr; {pointer to the next variable}

first : integer; {first element}
second : integer/ {second element}

con : integer; {connectivity}
end;

Table 4-1. Declaration on the connection list

In a connection list variable, "first" and "second" are the elements in a connection,
and "con" is the number of connection between "first" and "second" elements, "next" is
the pointer to the next variable.

Graphically, the structure is shown in figure 4-4.

"D
c

w o
X L O C
CD — CD O
C C4- (0 O

Figure 4-4 Structure of a Connection List Variable

T. S. Cheung Implementation 4]

The link-related connection list of the 4-bit synchronous counter example is as
follows:

r o o t

1 丸 I j I ~ D > , , , , • _ , . , ,
1 I 1 | 5 | 1 | h i 2 | 9 | 1 | h | 5 | g | 2

1 1 I 8 � 1] U I 3 | 6 | 2 | k I 6 I 8 I 1

V 去 去
1 I l | 9 | l | h I 3 | 9 | l | k I 6 I 9 I 1

V W 去

� 2 | 5 | 2 | U I LI I 71 21 I ' I 71 91 1

V W 去
1 I 2 | 8 | 1 | h I 5 | 8 | 2 | |_AJ 8 | 9 | 2

Figure 4-5 The Link-related Connection List of the 4-bit Synchronous Counter

From the above connection list, clusters are formed and stored in the group list. The
data structure of the group list are represented by pointers with the following
declarations (Table 4-2):

cptr = ^cmpdrec; {compound variable}

cmpdrec = record {compound record}
inst : integer; {instance name (in number)}
c〇〇x : integer; {coordinate in x—axis (i—axis)}
c〇〇y : integer; {coordinate in y-axis (j-axis)}
pri : integer; {primary adhesive element}
pc : integer; {primary adhesive connectivity}
sec : integer; {secondary adhesive element}
sc : integer; {secondary adhesive connectivity}
ep : cptr {next-element pointer}

end;

bptr = ^bulkrec; {bulk variable}

bulkrec 二 record

T. S. Cheung Implementation 4]

size : integer; {molecule size}

molecule : bptr; {next-molecule pointer}

atom : cptr {pointer to the first

element (atom)}
end;

N.B. coox and cooy are used because of their relative ease of identification in
program statements.

Table 4-2. Declaration on the Group List in the Affinity Clustering Phase

In the declaration, the "compound variable" refers to the element's variable, while
the "bulk variable" is the group's variable. In the "compound variable", "inst" denotes
the instance name of the element; the name being represented by integer (number),
"coox" and "cooy" are the x and y coordinates of the element in the macroceli array,
"pri" is the element (in integer) with the largest number of connections to the instance,
and "pc" is the corresponding number of connections, "sec" is the element with the
second largest number of connections to the instance and "sc" is the corresponding
number of connections. Only the two most related elements to the instance is recorded
because the fixed structure of the pointer variables can save both computation time and
memory, "ep" is the pointer to the next element variable.

In the "bulk variable", "size" denotes the number of elements in that group,
"molecule" is the pointer to the next group (molecule) and "atom" is the pointer to the
first element (atom) in the group‘ "molecule" and "atom" are used to represent group
and element respectively because a group of elements seems to be a molecule
containing a few atoms. In addition, there are connections among the elements in a
group, just like the attractive forces among atoms in a molecule.

Graphically, the structures are as shown in Figure 4-6:

①
I—I

D
O

— X ID 0) ① E
CO O O --H O N r—i o
C 〇 〇 C _ • ① O C L o ^
一 • O a C L C O C O C D CO £： (D

c p t r : I I I I I I r I I b p t r : [_ ! _ [_

Figure 4-6 Structure of the compound pointer (cptr) and bulk pointer (bptr)

T. S. Cheung Implementation 4]

The group list of the 4-bit synchronous counter and the 7-bit ring register (Figure
4-8) after the Primary Grouping step of the Affinity Clustering phase is shown in the
following figure:

了 I ^ LO

1 T T
00 [n

^ 3

I 1 T in 2 O
二 T
^ X a

一 一

cn

y f L �
厂~1 r~i i n
"T ~ —
* a X
01 =r

一 3
~ ~ 一
CL Q. f̂ a
^ 3) o
* X U «
03 (n — •»

3 ra 0 [h m
_1 T T
O) 7 7

_ - 3
o U "~o"

d CI a Q« 二
fvj n a • 二

一 一 一 一 _flv 3 3 3 00 * * X "IT ~
B

in CD 卜 ru

hp ^ ^

� 1 r ~ l r-i r - i r i - i
1 z z z ^

7 T T" ~ o ~~o" "IT IT — Q. a a a ^ in UJ r- ~ O
— — g
^ 3 3 3 (O
X X * ~ ~

c
cvj cn 3> 二 之 ^ L L L

； 三 0 三 1> 三 O 1 — 0 3* rj

Figure 4-7 Group List of the 4-bit Synchronous Counter and the 7-bit Ring Register

T. S. Cheung Implementation 4]

二 DFFP,
0 LJ I r

c o F ~ ~^
二 DFFP^

^ Q U

3

Lf—>4 L—vj
LJ J L]|, I ~ -Lnp~~^

二 DFFP,
^ a o

1 L__

二 DFFP,

a u c n p ~ ^
二 DFFP^

I L
C N J F n -DFFP ^ a g
I ~ ~ f = > Q l l

二 DFFPt
I E!_

i in：：
J
CJ

Figure 4-8 A 7-bit Ring Register

T. S. Cheung Implementation 4]

The pointer variables in the first column are the "bulk variables". Elements in each
row belongs to a group. They are linked by the "ep" pointers. The "molecule" pointers
of "bulks" point to the first elements in the groups. The elements are arranged in
increasing order of the ,丨inst丨,values. The "nil" pointer variable is denoted by the symbol
八 . T h a t means the pointer variable is not pointing to anything.

In the second program, namely the alteration phase, there are also two main kind of
variables: cluster tree and map list. The data structure of the cluster tree is similar to
that of the group list in the first program. However, instead of recording primary and
secondary adhesive elements with integers, they are linked to the instance by the pointer
variables "pri" and "sec". Declaration on the Cluster Tree is as follows:

tptr = ^treerec; {tree element variable}

treerec = record {compound record}

inst : integer; {instance name (in number)}

coox : integer; {coordinate in x-axis (i—axis)}

cooy : integer; {coordinate in y-axis (j一axis)}

pri : tptr; {primary adhesive element pointer}

pc : integer; {primary adhesive connectivity}

sec : tptr; {secondary adhesive element

pointer}
sc : integer; {secondary adhesive connectivity}
ep : cptr {next-element pointer}

end;

zptr = ^zisprec; {cluster variable}
zisprec = record

size : integer; {molecule size}

molecule : zptr; {next-molecule pointer}

atom : tptr {pointer to the first

element (atom)}
end;

N.B. 1. "pri" and "sec" are pointer variables instead of integer variables.
2. "zisp" is the name of cluster used in the program; a variable with special

name is more easy to be identified in the program.

Table 4-3. Declaration on the Cluster Tree in the Alteration Phase

In the above declaration, most of the attributes are similar to that in the group list.
The differences are the two variables "pri" and "sec".

The cluster tree of the 4-bit synchronous counter and the 7-bit ring register after the
Primary Grouping step of the Affinity Clustering phase is shown in figure 4-9.

3

5
 r

B

s

.
S
3

e

1
—
 /
/

 R

 — AT
 .

 F

n
u
 M
\

 .

 M
M
/
/
^
/

 /

 ̂

/

 -

I

 :
 I

…

I -

 A
 -

 r

 •

 •

 /
/
/
/
/

 ̂

X

 n
|

 |
o
d
|

 r
—
—
^

 k
 o
a

.

 •
二
二

 2

二
 o
d
\

一
 S
I

 q

 ̂

 0
1
一

 x
|
 o
d
j

 |

 O
B
f
v
-
一

^

^
 --

 ̂

 /
/

 V

^
/
J
 -
-
-
-
-
-

 I

出

一
 /
—
\

 /.
—
-
,
/
/

 M

「

I

 」
u

 I

飞

:

:

y

y

如

•

\

时

s
 \

 O
d

 n

 X

 A

 1

 3
«

 \

 o
d

 n

 X

 £
I

 A

 1

 s
 \

 l
o
d
i

 \
z
x
 T
 •

 O
S

 I
 \

l

。

d

l

-

X

 r

 I

 .
 T
i
g

 I

 §

no

 A
U
M

 /
P
U
M

 ̂n
u
v
-

 -

 f
J
L
 ̂

_
 -

 \
\
)
y

 _

肌

K

l

。

h

了

 l
<
j

—
^

 |
0

 K
M
、
I
"
 -
X

了

 ！
<
}
—fry

 ̂

e

——————————

 ̂

 N

 £

 »

 c

V
 j
t
l

 ̂

m

 /

 \

 s

I
 t

:
一

1
 -、
<
r
r
r
>

！

v
|
0

 f
v
l

I
"

 h
 h
 A

 -
 0

 v
 o
d

 \

 T
^
x
【
E

一

.
 I

 I
 I

 4

I

广

 v
v

 I
J
^

 出

I

.

/

---,

 I

 /
 /
/

 \

 ̂

\
 /
\

 A

 ̂
I
M
/

 /

o
e

]
—
\

 —_
 _—
飞

^

飞

•

,

: •

,

耽

V
"

 一
。
"
I

 M
l

 \

 "
 h

 <
3

 o
«

 。
d

 R

 X

 g

 A

 L

 I
s

 1
/
 l

。
d

 I
 \

 I
 n

 I
 X

 I
 s

 I

 l
。
o

 1
/

 T
 -
3

 T
 -
 ̂

 ̂
 1
*
1

一

7

1

 T

e

 —-
\
\

 9

h
 l
o
o
L

 L,

c
 ̂

 4

.
 e

s

瓜

..
 g

1
 R

T. S. Cheung Implementation (/[

Pointer variables in the first column are the "cluster variables". Elements in each

row belongs to a cluster. They are linked by the "ep" pointers. The elements with

"primary" and "secondary" adhesion to the instance are linked by the "pri" and "sec"

pointers respectively.

Advantage of using "pri" and "sec" pointers in the cluster tree is that information on

the two most related elements can be easily accessed. For example, if "tp" is the record

of instance "2",

1. the primary adhesive element is tp"^ .pri、inst = "5"

with number of connections tp".pc = pc

and coordinates (tp'^ .pri^ .coox, tp-^ .pri^ .cooy).

2. the secondary adhesive element is tp、.secT .inst = "8"

with number of connections tp".sc = sc

and coordinates (tp、.secT .c〇〇x, tp-\ sec"•c〇〇y) •

where p c and sc are integers and pc > sc.

Elements of the same group are referenced by the "ep" pointers until the end of the

row. It is noticed that elements with a group have the most number of interconnections.

4.2.1 Insertion of Elements to a Linked List

There are mainly three basic operations on a linked list: (1) creation of root, (2)

insertion of element, and (3) deletion of element. Since the mostly used one in the

programs is the insertion of element, w e would like to introduce its operation.

Taking the following linked list element as example:

ptr" = ptr—record;

ptr—record = record

inst : integer; {instance}

n e x t : p t r {pointer to next element}

end/

Table 4-4. Declaration on the Element of a Linked List.

A proposed procedure [Schneider82] on the insertion of element(s) to the linked list

is shown in Table 4-5. Its advantages are that least variable is need in the operation

and the elements can be sorted in ascending (or descending) order.

T. S. Cheung Implementation (/[

procedure insert(var head : ptr; newinst: integer);
{this procedure will insert a new element (newinst) into the

linked list at the correct place (with ascending order). }
var

p , q : ptr; {temporary variables used to search the linked

list}
newp : ptr; {new node inserted in the list}
found : boolean;

begin

found ：二 false;
p:= head; {start searching at the head of the list}
q:= head;

while (p o n i l) and (not found) do
begin

if (p^.inst<newinst) then
begin

P； {save a pointer to this element}
p:= p^.next {move to the next}

end
else

found true {we found where it belong}
end; {of while loop}

{when we arrive here we know where the element properly goes—
between the node pointed to by q and p . This is the situation
depicted in Figure 4-10. }

new(newp)；

n e w p \ inst := newinst;

{now let's insert the new node into the list by adjusting the
pointers}

newp \ next := p;
if q o p then

q".next:= newp
else
head := newp
{this last test was needed for the case where we are
inserting the head of the list. }

end; {insert}

Table 4-5. An Algorithm on Insertion of Element to
a Linked List.

Graphically, the operation is shown in figure 4-10.

T. S. Cheung Implementation

h e a d

2 ‘ ^ 5 ^ 9 ~ r ^ > ‘ • •

I q J q p

h e a d

\ I 一 . ,
2 I »~I ^ 5 I -\ I 丨 9 I • • • r/

8 I �
(b] newp

Figure 4-10 List Insertion using Pointers

In the above figure, (a) is the situation upon finding the correct location to insert the

element, while (b) is the situation after inserting the new element into the linked list

4.3.2 Dynamic Linking of Segments

In section 3.2.3.2.3, segments of the path joining c and (are linked by Dynamic

Programming approach. Implementation of the approach is done by operations on linked

lists.

Consider the following path segment:

— i 1 2 3 4 5 6 7

J M I I I
2 c c : i n d i c a t o r e e l 1
3 X X
yt “

5 = = = = = 厂
6
？！ I I I I I ~

Figure 4 - 1 1 A Path Segment in the Array

T. S. Cheung Implementation (/[

It can be represented by the sequence: { (2,2), (3,3), (4,3), (5,4) }. The Manhattan

Distances of the above locations to the indicator cell are { 0, 2, 3, 5 } respectively. In

addition, each location m a y belong to a group with group number and address in the

cluster tree. To effective record the data, the map variable is declared (Table 4-6).

The structure is shown graphically in figure 4-12.

mptr = ^maprec; {map variable}

maprec = record

next : mptr; {pointer to the next variable}

dist : integer; {Manhattan Distance from

the indicator cell, c.}

X : integer; {coordinate in x-axis (i-axis)}

y ： integer; {coordinate in y-axis (j-axis)}

gpnum : integer; {group number}

cator : zptr {indicator to the zisp tree

(cluster tree)}
end;

Table 4-6. Declaration on the map variable

E C_

X CO c
①— CL O
c -a X ZD o) o

Figure 4-12 Structure of a M a p Variable

Hence, the path segment in figure 4-11 is recorded as follows:

1 I ^ n p o i n t i n g t o
> g r o u p b i n

1 2 3 3 b I 1>) c l u s t e r t r e e

1 I ̂ I ̂ I ̂ M R p o i n t i n g t o

？ g r o u p d i n

5 5 ^ d I O J c l u s t e r t r e e

Figure 4-13 M a p List of a Path Segment

where b and d are group numbers.

T. S. Cheung Implementation (/[

T o link the segments, w e have to join the segments and select the combination with

the least cost. The cost is defined as Eq. 3-4 in section 3.2.3.2. A n example on the

linking of the path segments is illustrated in figure 4-14. All the segments are recorded

in list form.

丨1 M M 丨 I I I

L e ^ e 1 1 itl I M r^|TTT1

r^l I I I K I I I I

r S \ \
�

I-] I I M J I I-] I I I I 乂 、 l - | I I M

L e ^ e l 2 fexr ^ ^ ^

1 ^ 1 I I i t I I I I i|i I I I

\ K I I I I

/ I ^

1-1 I I M J I h I I M h I I I I

L e ^ e l 3 [j T r r T W n /

l - M I I 丨〜I I 1 、 I 丨

Figure 4-14 Dynamic Linking of Path Segments

In the above figure, each segment m a y link to more than one segments. The bold,

solid and dashed lines distinguish among the linkages. The dynamic linking is by a

top-down approach. Linking starts from level 1，i.e. segments oriented from the

indicator cell, c. Once the best combination among two levels determined, it will

propagate down to link the segments in the next level until the path reach the empty

space, t It is noticed that the end of each segment will point to the second m e m b e r in

the next segment. It is because the first m e m b e r of a segment is duplicated with the

last m e m b e r in the previous segment, as shown in the segmentation of cross-cut (section

3.2.3.2.1). The "nil" pointer is represented by the symbol 一.

T. S. Cheung Implementation (/[

�2.3 Advantages of the Dynamic Data Structure
The linked list data structure is chosen for the following reasons:

Features of linked list:

1. Flexible (random access, insertion and deletion).

2. Fast access in information (e.g. x-y coordinates and connectivity attributes of a cell).

3. Easy implementation of critical path information (by fixing "pri" and "sec").

4. Substantial graph representation (compared with molecular and attractive force

model).

M e m o r y allocated:

minimized, especially compared with matrix/array representation.

Computation Time:

0(n)

compared with 0(n2) in the matrix structure,

n is the number of cells in the circuit.

T. S. Cheung Implementation (/[

4.3 Data Manipulation and File Management

Since the computation on dynamic variables and management of files with this

structure are relatively complicated as compared with those with formatted structure, w e

would like to describe some of the most important procedures and the layout of the

programs.

4.3.1 The Connection Lists and the Group List

In the affinity clustering phase, information on the connections among nodes is

stored in the connection lists. Clusters are formed by obtaining data on these lists. The

procedure is illustrated in Figure 4-15. The directed connection list is originated from

the connection array. Then, the undirected connection list and fan-out list is obtained

from the directed connection list. Merging the fan-out list and the undirected

connection list, the link-related list is formed. The group list is then, extracted from the

link-related list (Primary Grouping), and updated by the remained connection list

(Element Appendage to Existing Groups). After final appendage (Loose Appendage of

Ungrouped Elements and Single Element Group Formation), the adjusted group becomes

completed group list The completed group list can be further updated for adjustment of

number of groups in the group list。This last procedure is optional

The completed group list is constructed for the Alteration phase. Together with

information in the new element array, computation goes to Element Assignment and

finally Element Addition. The completed group list can also be used in the wiring

optimization or critical path adjustment phase (Section 6).

T. S. Cheung Implementation (/[

Z conneclion
or roy

y ^
f directed

connec 11on_l 1s t

/ >

y 1 / ^ 1
‘ fon-out r undirected

list connec 11 on一1 1s t

merging ^

MX
, 1 Ink-reloted
connection̂ ! 1st

Z \ ax troc 11ng
\ 【Prlnory
\ Grouping)

y ~ ^ 1
^ (renoIned) / group

connec ti on—1 i s t list

refInlng
^ Element

/ refined Appendage
connec ti an_l ist to

\ I Existing
\ Groups

teporo te \

\
conplex / connection v. updating
list list \

— ^ ^ \ .
\ . — —

. f odJ us ted
further upd̂ ê IP neccessory group一list

\ ~ ~
final oppendage / \ / —^

conpleted ^ / completed
group.llst e "77pti。r>。l) — 9r。up_n8t

(optional) ^ ^

,new—elenent . ELEMENT
of-'̂oy ^ ASSIGNMENT

^
ELEMENT
RDOITION

Figure 4-15 Manipulation on the Connection Lists and the Group List

T. S. Cheung Implementation (/[

4.3.2 Description on Programs and Data Files

There are 11 program files in the system. Their functions are described in the

following list:

1. fplace77.pas - an initial placement phase based on simulated annealing

algorithm. Details are discussed in Section 9: Appendix.

2. fmolgrpT.pas - the affinity clustering phase

3. fmolasgT.pas - the alteration phase

4. smpladdT.pas - a program on calculation of the total metal length on addition

of new element without using the Incremental Alteration

Placement Algorithm (lAPA)

* 5. portion.pas - program segment of the alteration phase.

* 6. segments.pas - library 1 and library 2 for the path segmentation procedure in the

alteration phase.

7. rst—base.pas - concluding the placement result of test circuits

8. grp_base.pas - concluding the clustering result of test circuits

* 9. conninit.pas _ connection data of test circuits

*10. addlist.pas - connection data of new elements to test circuits

11. fnLbase.pas - concluding the final results on both placement and clustering of

the test circuits.

In the above list, files with * are program segments to be included. The following

programs will include the files during compilation.

program included file(s)

1. fplace77.pas 9

2. fmolgrpT.pas 9

3. fmolasgT.pas 5, 6，9，10

4. smpladdT.pas 9，10

There are 8 types of data file in the system. They are classified as follows:

1. xxxxrstT.dta - ascii file on result from the initial placement in "fplace77.pas"

2. xxxxbulk.dta - record file on the attributes of groups (bulks) resulting from

"fmolgrpT.pas"

3. xxxxatom.dta - record file on the attributes of elements (atoms) resulting from

T. S. Cheung Implementation (/[

"fmolgrp7.pas"

4. xxxxgrp7.dta - ascii file on group numbering resulting from "fmolgrpT.pas"

5. xxxxrstT.fnl - final result of placement from "fmolasgT.pas"

6. xxxxbulk.fnl - record file of final result of groups (bulks) resulting from

"fmolasgT.pas"

7. xxxxatom.fnl - record file of final result of elements (atoms) resulting from

"fmolasg7,pas"

8. xxxxgrp7.fnl - final result of group numbering from "fmolasgT.pas"

xxxx is the n a m e of test circuit.

Layout of the programs on the affinity clustering phase and alteration phase is

discussed in the following two sub-sections.

4,3.2.1 The Affinity Clustering Phase

Layout of the "fmolgrpT.pas" program is shown in figure 4-16. There are 26

subroutines. Subroutines under a tree is procedures or functions to be called by the

parent. The following is a brief description on the subroutines. Connectivity attributes

refers to "pri"’ "sec"，”pc"，and "sc" (details in Table 4-2).

1. convert : procedure; convert the directed connection array into an undirected

connection array.

2. array一assign : procedure; assign the connections into a group array. This

subroutine is for manual data check.

3. list—assign : procedure; assign data of the undirected connection array into the

undirected connection list.

4. determ : procedure; to obtain the fan-out connection list from the directed

connection list.

5. merge : procedure; merge the undirected connection list and fan-out connection

list to form the link-related connection list.

6. fill一in—set : procedure; fill in element to the group set which contains element in

the group list.

7. separate : procedure; to separate the grouped elements and ungrouped elements in

the undirected connection list.

8. plant—1 一 r o o t : procedure; initializes the root of a connection list with the list

pointer variable "Iptr".

9. constructive一build : procedure; to build the group list from the link-related

香 港 中 文 大 學 阅 你 威 贵

T. S . Cheung Implementation (/[

connection list. The group list is constructed with header

indicating size of each group in the list and element variable

with connectivity attributes.

10. locate—and—link : procedure; to find the location in the group list on which an

element should be placed and to link the element in the location.

11. cmpd一adhesion : procedure; to adhere an element to the group list and create the

connectivity attributes.

12. cmpd—activate : procedure; to activate a new element variable and set the

coiresponding x-y coordinates in the record.

13. affinity_group : procedure; this subroutine corresponds to the "Element Appendage

to Existing Groups" in the algorithm (Table 3-4). It appends an

element to the group list by measuring its belong tendencies to

each group and justifying the values.

14. cmpd—append : procedure; it appends an element to the an existing group and

update the connectivity attributes, (c.f. cmpd_adhesion)

15. loose_group : procedure; this subroutine corresponds to the step "Loose Appendage

of Ungrouped Elements" in the algorithm (Table 3-5). It groups

elements with loose connectivity to other elements (no. of

connection = 1).

16. loose—attachment : procedure; this subroutine corresponds to the step "Single

Element Group Formation" in the algorithm (Table 3-6). It

forms "single element groups" on elements which do not

belong to any group.

4.3.2.2 The Alteration Phase

Layout of the "fmolasgT.pas" program is shown in figure 4-17. There are 26

subroutines. Subroutines under a tree is procedures or functions to be called by the

parent. The following is a brief description on the subroutines. Connectivity attributes

refers to "pii", "sec", "pc", and "sc" (details in Table 4-3).

1. build_tree : procedure; builds the cluster tree from the group list read from the

"xxxxbulk.dta" and "xxxxatom.dta" files. It constructs the skeleton of

the tree as shown in figure 4-9，i.e. "pri" and "sec" pointers not yet

linked. The linking of these pointers is done in the following

subroutine,

2. link—tree : procedure; links the "pri" and "sec" pointers of each element in the

cluster tree. It obtains the integer values of ”pri" and "sec" in the group

1 . S. Cheung Implementation

list and links the corresponding elements, with assistance from the

following subroutine.

3. search—for—link : procedure; obtains the instance no. of an instance and then

searches for its location in the cluster tree.

4. fill—in—set : procedure; fills in elements to the group set which contains elements in

the group list.

5. list一assign : procedure; assign data of the undirected connection array into the

undirected connection list.

6. element—assign : procedure; determines to which group should an added element

belongs to. The measure is by belong tendency. The connectivity

attributes are also determined.

7. element—append : procedure; appends an element to the cluster tree, linking the

"pri" and "sec" pointers and update "pc" and "sc" values as well.

8. ink一brd_setting : procedure; initializes the values of a 7X7 boolean chessboard.

9* board-dbase : procedure; fills in the data in the boolean chessboard.

10. find—cneigh : procedure; to find an empty space for new element addition at the

contacting neighbourhood of a group. A contacting neighbour of

(x，y) is defined as one of the four adjacent neighbours to (x，y).

11. find—pneigh : procedure; to find an empty space for new element addition at the

position neighbourhood of a group. A position neighbour of (x,y)

is defined as one of the four comer neighbours to (x，y).

12. fcfs一element—linking : procedure; to place a new element to the first empty

found fcfs means First-Come-First-Serve.

13. location—assign : procedure; assigns the coordinates to an element in the

cluster tree.

14. prdim_path一determine : procedure; determines the shortest path(s) joining a

group and the nearest empty space(s) found (figure 3-4).

15. map—list—filling : procedure; fills data into a m a p list to represent the path

determined in "cross_cut".

16. cross_cut : procedure; determines the shortest path joining the indicator cell and

an empty space, epsilon (ep in short). Algorithm in

Section 3.2.3.1.

17. update—distance : procedure; updates the "dist" values of a m a p list (Table 4-6).

18. present—conn—len : function; calculates the interconnection length of an element

to the two mostly connected cells in the circuit by accessing

connectivity attributes in the element's record (tree element

variable in Table 4-3).

1. S. Cheung Implementation

A. detail—element—linking : procedure; to find the empty space with the least cost

to fill the added element and to place the element in the

space.

19. total—length : function; to compute the total increased connection length due to

the addition of the new element.

20. dynamic—conn—len : function; to calculate the interconnection length of an

element to the two mostly connected cells in the circuit

if it is placed at an assigned location (x,y).

B. path—segmentation : procedure; to find the optimal path joining the indicator cell

and the empty space, epsilon by segmenting the cross-cut

and then linking by Dynamic. Programming approach.

Algorithm in Section 3.2.3.2.

21. regular一path—determination : procedure; determine the path segments as shown

in figure 3-9. The path templates is created in

the following library, Library 1.

22. Library 1 : a library of subroutines (path templates in figure 3-9) called by

subroutine 21: regular_path_determination. The library is

summarized in the following table:

s一0 一a s_l_a s_2_a s_3_a 4_5_common_s

s—0—b s—1—mid s_2_b s_3_b [s一linear]

s 一〇—c s _ l _ c s _ 2 _ c s _ 3 _ c

s 一 3—d

s for "segment"; integer for pattern no.;

a,b,c,d corresponds to path 1,2,3,4;

s—1—mid for pattern 1,2,3 of pattern 1 template (figure 3-9)/

s—linear* is a subroutine called by 4 5 common s.
‘ • — •矚

Table 4-7. Path Template Library of regular 一 path—determination

23. map一root—plant : procedure; called by both Library 1 and Library 2. It creates

the root of a map list (variable type in Table 4-6).

24. 1—linking : procedure; called by both Library 1 and Library 2. It links variable

to a map list (Table 4-6).

25. remained一path—determination : procedure; determine the path segments as

shown in figure 3-10. The path templates is

T. S. Cheung Implementation (/[

created in the following library, Library 2.

26. Library 2 : a library of subroutines (path templates in figure 3-10) called by

subroutine 25: remained—path—determination. The library is

summarized in the following table:

sh一 0 sh_l 2_3_common_sh [s_linear]

sh for "short—segment"/ integer for pattern no.;

s一linear is a subroutine called by 2—3__c〇_〇n—s.

Table 4-8. Path Template Library of remained 一 path—determination

27. attached一path—determination : procedure; determines the path segments with

Manhattan Distance of 1 (case discussed in

Section 3.2.3.2.2).

28. segment一concatenation : procedure; links the path segments obtained in the

above procedures. The mechanism is shown in

figure 4-14.

29. gp—cost—calculate : function; calculates the cost of two path segments if they

are joined. The cost function is defined in Eq. 3-4 in

Section 3.2.3.2.

30. accumulation : procedure; accumulates the group count number of a path

segment. It is a subsidiary routine to the ”gp一cost一calculate"

function.

31. concatenate : procedure; to concatenate two path segments. It is called as

the best combination of two path segments is determined.

0
0

6

e
1

二
 1

。
l
p
d
u

。
©

 em
—
p
d
u
,

。
©

 e

R

,
1

 I
s

U
O
J
S
q
p
c
l
p
d
u
o

 ©
)
0
O
J
-
l
J
U
O
I
d
©

二

 s
l
u
r
-
二
二

 ©
 u
o

二
 e
4
p

。
l
p
d
5

 ©
 ̂

I

妒

>
|
U

一 I
I
P
}
U
Q
I
e
)

。
。
O
I

 ©
 e
e
j
e
u
©

 f
J
u
e
d
d
Q
I

刀

 d
u
o
©
 i
u

 j
 f
-
I
D
C
O
l
e

】

 c
o
o

一
 ©
 ̂

.
咖

 I

 I

-

励

 ̂U
J
I
J
^
J

W

 a
-
J
O
J
O
d
a
s

 e
-
^

 o
n

 j
 】
U
O
I
I
D
d
u
o

 T

1

©

©

©

©

g

 r
^

 I

 I

 I

 I
 I
S
—
U
I
I
二

 r
©

 U
6
J
S
。
J
£
©

^
 】sio。-n。—es”

 ；
。
h
I
J
U
C

一 d
 」6
:
s
—
？
」
」
。
>

 m

h

 ©

 ©

€
 ©

 ̂

d
n
o
L
0
-
6
3
o
o
l

 ©
 d
n
o

」
e
-
f
1
二
C
G
J
O
©

 p

 二
n
q

—
e
r
>
二
 a
n
二

 s
u
s

 ©
 u

」
e

】
e
p

 二
5
C
S

 ̂

0

 ©

 0

 ̂

”

 p———1

 L

 -

4

§

H

匚
 J

 C
U
J

u

T
-

H

. c/3
no 1 n Q a

广

(JQ
O © 0 © ® ®
bulld_tro6 liet_oB8lon 1 n11 Jbrd_ee111ng flncLjjnelgh detall_e 1enent_l1nk1ng paIh.eegraoto11 on

lnk_troe ^e 1 enen t_os8 1 gn b̂oord.dbose O f cf s_e 1 enan t_l 1 nk 1 ng ^pra 1 1 n_pQ th_de tern 1 ne

^ ③ Q 倾 ©pr8sont_conn_lon
fx f I 1 l_in_8»t el enQnl_oppend V-X f 1 nd_cne 1 gh

' ®

二 Q loco tlon_o88lon ^^

eeorch_for_llnk nop一11 at_f111Ing

口 ® croa»_cut H

g (Q updQto_dlatonco 与
- (B) ^

Q̂ ^^ polĥ aognonto lion g
— detol 1 onent_l Ink Ing O o ^
- ‘ I • f-^ •

^ o
o I @ 口
昏 C D roguldr^poth一 。t tached__poth—

品 ⑩ totol一length detern1no11 on • delernlnQtlon
r̂ reno i nod_pQ th_ ^^ c © g rt o n t_c oncotenotlon
"p @ dunonlc一conn一len @ da te「n 1 no 11 on
oô ILlbroru 1)

loootlon—oeeign i 1 1

二 © ^
^ O (Library 2) ^ gp.cos t_co 1 cu 1 c te

nop一roo t_pl on t
ft n concotonotIon

©LHnKlng J — — _
occunulotIon

^ ^ Mop_roo t_p 1 on t
@ l_llnklnQ

C>、

T. S. Cheung Results 70

5. Results

Eight test circuits were used for evaluation. They are circuits of different

characteristics so that the result obtained can be more generalized. Some of them are

random logic circuits. S o m e of them are synchronous processing units. They are

summarized as follows (the cell counts are shown in parentheses):

Ckt. 1 : A 4-bit synchronous counter and a 7-bit ring register (18 cells)

Ckt. 2 : A 8-bit serial data sequencer (46 cells)

Ckt. 3 : "Dividen", a module in a M P U circuit and "ICTckt", a module in a ICT

(Integer Cosine Transform) archiving system (47 cells)

Ckt. 4 : L o w order serial data synchronizer/desynchronizer (44 cells)

Ckt. 5 : High order serial data synchronizer/desynchronizer (46 cells)

Ckt. 6 : A 4-bit binary full adder with fast carry (42 cells) [Texas87:

Ckt. 7 : A 9-bit odd/even parity generators/checkers (48 cells) [Texas87]

Ckt. 8 : A 9-bit odd/even parity generators/checkers, with different numbering on

instances (48 cells) [Texas87]

Ckt. 7 and Ckt. 8 are identical except the numbering on instances. This is to test the

validation of the programs on different arrangement of the same circuitry. The circuit

diagrams of Ckt. 1 to Ckt. 8 are shown in figure 5-1 to 5-13 respectively.

1

CKE>

9] i l ~ 4

Figure 5 - 1 Ckt. 1 : A 4-bit synchronous counter

T. S. Cheung Results 71

I~[-""""

fDFFPt
Q o

] C__

t o p n

二 OFFPz
Q u
n Ti__

OD []

Uf—U*—

U J Hi'

I ~ - " " " ^ Q 1 5

i n F ~ ~ ^
二 DFFP^

Q u

I E._

二 DFFP,
n c _

c o p ^
二 DFFPt
n [__

o j p ^
:OFFP.

a u

n ~ t _

I ~ ^ t = > Q i i

二 DFFPt
n r

？ A

i
ic：
_J
CJ

Figure 5 - 2 Ckt. 1 : A 7-bit ring register

C>53B ，

O S 2 B

_ _ E L O S 1 巳 …

-CK ^S3b]ZJ P
£ S2 , . U 3 8 U 3 9 2
Ŝ2B J I 0 ̂ ^ p

「f l S T g S l ^ C ^

U35 V 5

g R S T D 1 ^
CD 5 5

43 ENB

^ DflTnO-i _ _ ^ u. us U6 U7 .B US u.e uu
n , ”乂 ——DLfiTCf^ — 』 F ~ 3 p~~a |r~3——F~B-—
y L A T O ~ ^ - L Q B - Y o i l ^ l 「Ql^^n 「ckOB"! rcKQ^n 「(：代口日“]「CKQETT^CK^Bn 「CK̂ 已n
；̂ C O L D ~ 1— 1 _ ^ Z _ _ _ L — - - J ~
“ 4 5 C K U a i U 3 2

I 5 CP

£
rt »

r • f 4 M jk - ‘ • ”

00 ‘ ‘ ‘ ‘ • • f * on

目.
in inQ

PL J _ I J _ I J__I J _ I J _ I
^ 11 12 [n " " " I I 12 11 12 II 12 II 12 II 12

二 N1 o ^ - n 。 锅 ： ； o x 。二. 。 二 ” 二 ax
01 J 3 _ _ _ 1 3 _ _ 1 3 _ _ 1 4 13 m 13 lU 13 11 13 lU 13 IH
^ I 1 I~I I~\ I ' i I ' ' i I ' ' 1 I ' ' [I '
C
O ；：3
O
a»
叫

Ugl ___！̂ _ _ ^ _ _ _ _ U 2 5 U26 】8B U27

46 l y f B = [H = [B = [=B= r S = f S = | S = } B ~ [" "
R O N O ^ I

5

�

T . S. C h e u n g References 7 3

C O

[a ~ ~ m l

- # I

Q C J Ccl ^ ― ^ ⑴

C Q

I _ _

I p ^ ^ c n
^ [o — m n

CJ CZ5 _ 、 r \

Q C J QZ| ^ C O

C Q

c o p m

c=] C J d

O

A A
^ I ~

C_J C O

c c

Figure 5-3 (a) Ckt. 2: " C O U N T E R " in ckt. 2

H

C/v

Q a 二
p aq

a
空

V̂ DIV_B 丫—5
^

n t
tX VDDPflO ？ QQ
• ^ rn V s
OJ GNDPflD rp — n,
•• — CP 01 CKLiOQK 尸 RD
l-i DIV_5_Q2 ^ 1 8 . d
, 1：：：̂ I C K _ K C K t l G Q K
pL 0 尸 0 2

3 U17 PHIPRD ^
u 二 U15 U16 f2Q inphi hxU19 K. f1~ ^
P III) U13 UUl r p ^ ^ “ 尸 HI B
I C K 4 M r U = 舰FP^ 圆 p•叩

口 INITPRD IPHQ L J
P ~ U N I T Ull RSTB 0 尸

^ INIT CK2MPflD

C； W D ICK2M~ CK2M
0 P D 2 O

二 .

丨M U 2 丨lo n
U 1 FiQ r \ U 8 g"

„ 1 0 Q — o h q ^ •> Q G 巨
rPOT^ n t T T D ^ aq

[「 • > _ _ c . c 叩 F F R

3 沉 pr?
eg u 7
「 flNlQ 广 _
. D O T (RND2
^ n 3 I •> • - ——— J V ~ ~
n „
江 O

^ ULl
= U 3 F2Q r v M 9

2 m。L0 Q f HBU^ •> Q 1 ^
PCL2 N3 ^

：̂ — : ！ — — - D F F R f 測 Z i
p CK 汗 Q[^

3
I '' II 口 r \ U 1 0

U b _ H B ^ •> Q 2
^ • flN2Q

d (RND2
< v £
S U6
= F3Q

D Q

C K D F F R
—ui ‘ F3QB

CK 汗 Q

1

V

COLO ,‘
in

U7 37 vcc _ , , o
^ n 。《 r r x 丁 r-4-1 UQ)—— b-
^ B OB —4 8 ba d J\ Hi

HH VCC ^ c Qc w — n r ^ c r\3B m ^ — 二

-T- ^ 0 叩 1 """ ® 29 b P D ox 一 CLK ® 5

空 一——^⑶广 B= L L ^ — U ^ I

3 LRTO = - _ F ! ^ T 目
(LOflQ 0

Ln ~< CLR ® N.

& ^ ― ^ �
P I l T l W . ^ I 一

y C L K H O ~ ,甚 Eil- OCLK4 一 W
Q I 1 rn R

； r ^ …
H 卜 ， r - l J P l 平

~~i 厂
.= Z ®
^ CLKUD— po
3 O)
o Z l l l l l l Z Z i m c
o. 〜 已
a ^ p. „ 33 ORCOL一W ĉ
o SCLKBO ^ ri rf^ ORDR_RCOL
—• Z 2 HI g

口 ——-CLK « 1 3 5 ra

vcc e H - O I O W』

o T r 县 l|—-cTk 8 cTk • r ~ ~ i un
^ SCLKO L ^ I Y OflDRIOW
O I * I o
二 . q I

lowo — I

的 rm 「 o i o f o
lORC^ E T ^ - OflDRIOR ^ 8 1 n s

o iV" Jl^S A OCRTCLK』
3 VCC Q̂Eo m [―g

丁 y r ^ _.CTK 目 ^ ，• 「 ^ ^ ^ 5
PQ£>_ ！̂ ^ f s V s OflDRCRTCLK
T ^ T T L ，

CRTCLKO-
-J
CN

U39 」

ua d

DRTfl 3 ILJ
\=J INPD _
iNPD ^ D

_ W I LJ] U28 ^

方 I, — f ^ UyQ U41 ^ ^ ^

巷 ^ ― 么 」 ^ m 了
3 U18 ^ y CK-O B- OPDU ^
n IT tx — — — — r ^ i
' r ^ ^

q O gL. « » nn
U12 ^

广 ；Pt^ 1 RR
O WR W 4- R

“Z Z 1 B -

a us … 1 ' ^ - - - - —

00 II ”‘ U22
Q INPD „ ""1 — f ^ ：- — ". pa
>-> • J "n CD
P . ciT^ir- C/O

二 !!：==----：, ^ ^ B
^ -ff^~~11 ^

^ cK^ff- ~T：：：：：：：̂ y] U3G

^ - f f V - l '

3 上：：!̂"̂ — r-^ ^ . (Tl
N ^ ^ 一 丄 - ^ t ： ^ uaa r - f ^ S T F

^ ule bi^-^XH：；：：^__ till- 隨 u
P L ~ t —
s 二- r
O 匕：：：̂̂ Lff^l—— o —— p >—'• N
^ 05/21/90 I REV. 0 I Cheung Tez Shlnp S T N D E S . C K T

M O T O R O L A flSICs L-synchronlzer
MACROCELL ARRAY / STANDARD CELL OPERATIONS /Deaynchron 1 zor

Copyrlohl 190 //1988 Holorolo Inc.
I h u n«t l0« dvM net In^lu » u b l i o « l i a n .

T‘ S‘ Cheung Results

I ~ ~ R - ^ q s

c 1。 L J ^
CD DFFP QSB
U- J_^

I n . _

r J —
o |o

DFFP^
叫了 7 I ^ Q 5 B

A
r-
Li_ I J

3

U J

O lo

I —

I⑴ DFFP^
〒 I

O \C3

~ — I ^ Q l

叫，〒 I ^ ^ Q I B

i
—I
CJ

Figure 5 - 8 Ckt. 4: "REG" in ckt. 4

9

7

r
 e

z

•

 1

1

 n

—
—
 P

I
 &

 P
5

 ̂

c

s
d
o
 I

 t
a
 P
5
 D

 J

 ̂

i

 F
 们
！
t
l

 N.

 ̂
m
j

 v
y

J
I
S

 U
A
—
E

 L

 r
3
-
r
s

 J

 s

—
 g
2
”
I

 t

 s
u
i

 ̂

s
s

 0

肝
 a
l

 f—-——

1

 •—̂—<

 f

 p
i
H

 J

 c

—̂—̂
 f
i

O
d
O

 I

 ̂
 P
S
 I

幻
科

 I
 v
^
c
g

卞

 z

w
 一；̂
v-—ê
fj

 ̂

^

 n
e
,

①

 5

 .^
^
T
^
^
b
i
q
.
.

 ̂

，

务

 -
f
P
l

 nn
^
—

 I
s

 ̂

^

 i

 O
T

；

 r
k
^
E
—

 S
I

沈

I

—

i

 ̂

.
3
M
.
 2

卢

如

3
s
—

 ̂

 /
 -

」

 K

—
广
。
丨
」

丄
0

 D
o
l

—
 (
，
e
a
i

 o

：
⑴
⑴
 z
d
J

 u
f
e
r

 ̂
w
r

 I
I

 ̂

L

 f
f

 l
a
p
s

 N

 •
巧

u
 •。

 l
a
p
s
—

 r
^
^

 “

 {
£
a
i

 —̂—

吐

i

n

x

T

E

•
 ̂

i

 ̂—
f
^
-
-

^

虹

a
d
z
l
 H
 ̂

 —-
0

 yf
—
^

 —

 f
f

M

 Z
I
O
 c

J

 S
I

 ru

 9

5

e
s

 r
e

g

 g

a

s.

T.

T. S. Cheung Results 卯

C Q m CQ
— d O J C\J CO CO
CZ5 a a C 3 C 3 a

A A A A A A

讲 D F F P 沿 D F F P 4 A D F F P

H I o ’ I h | • I i g I ^ L g j

in
^ 口
H-H Z

CE

A

C J

Figure 5-10 Ckt. 5: "CiNT" in ckt. 5

T.S.Cheung Results M

H =»• m

A Y CNi

Y f f I s
}•• mm

A A
l*==d

CO ** ens?
A U -

CM /-S- o.
((n]

T r A f ^
• ® ①垂 （•譽 (B锤 __ _ _

^ » • ^ ^ ^ ^ ^ " ^ v ^ ^ ^ _ • • ^ J k ^ ^ J L ^ ^ j L ^ J-,'**

^ I f CO] f cn A (I {<\i \ I cn 1 f =r 1 (\ii I r--] f co 1 f ji i f z) * coQ *

— 一 一 一 一 A 〜 CNJ CM C\J A CM OJ S S S A

S i * ' - (\ i l — cn I—
A A A A

0 k fi k R A s k±
^ ^ ^ CO “ f^ - o
^ ^ C Q C E m cc cn cc o

Figure 5-11 Ckt. 6: A 4-bit binary full adder with fast carry

T. S. Cheung References 82

a S
a >
O LU

0 A

卜 丄 • • QQ a>a>

A A

I"® BID

/''to

1® • ® • »<D «CD a>«

卜 ® cn I CD I I ̂ J f c\j I f en 1 (^

^ c n c n z T r f r J - r J - n *

Ĵ* i** in I»® CO

A A i

一 ^ if[-
• • SOB 由 •

二 ^ I tn 1
(n (D cn 1 (G3 I f ̂ 1 I fcr)if=5'HLni[toi fr^] I d i f i / o 1 — o j o j c u oj ru CM c\j OJ ru c\j {Tj

'-r-* Lpl

CJJ (D® ̂ rvj •• CO •>» m cO >ia> O* 03 mm

A A A A A A A A A
' —* _i ‘—* I

林本• 材林本•
i i i hah 6 Q 6
^ OJ cn in 10 卜 COOT —

Figure 5-12 Ckt. 7: A 9-bit odd/even parity generators/checkers

T‘ S. Cheung Results 83

z 口 LU a >
O LlI

5 A

r- CD ®®

A i

in f CO 1

J®* 1®" 1®® CDS oas mm moo

^ I 12 1 f ̂ I I (I f OJ 1 f CO 1 f ̂

in ®® CD

A i i
'哪“ • ‘ I T “ ‘ • 1 _•••_】

/ O / O r S
= 〜 cn

<n (T)

• • €B a> «D • m m m m is • m oi • • _ _

r̂ 00 I cn 1 f ̂ 1 (r^ifcDjfcnjfoi ff^ifcolfcnifCD 一 —一 — c\j OJ OJ od cn

L-f-l LfJ

AAA A A A z \ A i
—' —' —J

‘—* ~ * —I

i i i i i i h h k

i i i i i i i i i — a* in CO m OT
—>>-* 1-. .-I _

Figure 5-13 Ckt. 8: A 9-bit odd/even parity generators/checkers (different numbering)

T. S. Cheung References 84

5./ Results on Affinity Clustering Phase

The results obtained after the affinity clustering phase are shown in figure 5-14 and

5-15. Matrices on the left are the placements of the instances, indicated by the

numbers, resulting from a simulated annealing placement program. Matrices on the

right show the location of individual groups by their respective group numbers. A zero

group number indicates an empty space.

The group lists, together with the connectivity attributes of elements, of the ckt. 1, 3，

4，6，7，and 8 are shown in figure 5-16 to 5-21 (the group lists and details of affinity

clustering procedure of ckt. 2 and ckt. 5 will be discussed in the Section 5.2). In the

group list, "n" is the number of elements in the group (group size); "i" indicates element

instance •Inst"; "p" and "s" corresponds to the "pri" and "sec" attributes respectively.

Integers in front of the slash 7" are the connected element instance while that behind

are the connectivity "con" (format at Table 4-2).

It is worth mentioning that the results of clustering on ckt. 7 and ckt. 8 are the same

(refer to Figure 5-20 and Figure 5-21). It proves the validation of the algorithm on

different ordering of the instances.

\...~

0
0

b
l)
~

::::::1
0

...c
u

z er::;
::::>
E-t
~

o::;

L
() u.,

0
C

J
C

) 0
0

L
f) C

,
r
l
 C

J
C

)
0

0

C
0

,---1

r
l
 C

) 0
0

0

L
[
)
~
l
O
O
C
~
O
O

t-1

r-1

C"-l c•:· o
(::. o

o
o

,---1
,-I

D
C

O
C

.O
C

J
O

D
O

,-

!

,_
,

['-
((l C

0
C

) 0
0

0
,
-
~

,-1

r
l
O

C
O

O
O

O
O

r-1

L'--
C"-l m

 c:J o
o

o

z n:::;
;:J
E---~
Cr~
~

c---
(Y

) eo
0'1

L
f) o

er)

~
l

(
0

(Y

)
0

(X
)

(\')
c-·-J

,.-i
r
l

r
l

("-)
('-J

(\..}
0

r
l

r
l

r
l

l....._
(0

(0

0

0
)

~:j1
0

0-J
~

0-1
C''-l

N

C'-J

CD
 m

t..f)

C-J
(•1

0
CD

N

r
l
 C'-J

t-1

C·.J
r
l

,.~
CD

C

0
0

0
CD

l(

)

('\.)
r-1

r
l

~;:ji
(r)
~

"'Ji

•\ji
(Y

)
L

f)
L

f)
(D

';:fi

r
l

.
~

0'1
,-~ crJ

~t' c0

r
l

~

N

["-..
0

)
 0-l

r-1
r-1

N

(•')

"';:fi
-.\:f1

(0
 (-....

C'..J
('..J

0
::)

0
')

L
i")

r
l
 C

0
0'1

0
')

t"-,-
.... w

c
~

:-_:...
[--1
~r-1
cr.

..---1
r-1

 c---
c--

C'-J r---
C

J
,.-1

c·"J
CQ

(D

 c.._
c-"1

<D c--
,-1

,---t
.-1

L

i)
CO

(D

CD

C
)

,----i
(' ·l

CD

CO

0

) CD

C'·J
,---1

C',J
, .. .;

·:jt CO

('•1 0
)

O
J

r
1

c·,1 r
l

·~11
,-~

t"'·
C

• r-
H

r
l

["'-
·
~

L
[) c--

,--1 en
C

•
,-·-i

('.}
.-:-j1
~

('-J

('..J
('1')

0
)

['--
("-)

0
(
j)

r-1

,---i
r-1

C"-J

...-Ji
-:;j1

(',]

CD

0
CO

CD

«:;-,f1

C"-1 C
J

r-i
r
l
 (0

 ('J ('-J

tO

-~1

0
L

[)
(Y

) 0
1

 (•)
('·.J

0
')

(r)
('-.]

~
I

(
t)

,--1

("'-
~

•:;:tt
0

l.f)

,--i
'~

C'\.1
·~

(Y
)

·~·

C'\.1
,---1

(0
r
l

r
l
 r-....

CD

,---!
(Y

)
('-) 0-:·,

'=
jl

•
:.

~
~

U
..• .. ~

C
) C:>

0
0

C
J m

0

)
0

.,--1 l~.,
--::Ji

CD

(0

L

O

(D

fJ)

('-1 C
O

~
~

r-1

0
')

(Y
J

,---l
(Y

)
(•")

('··:.
C

-J
(r.:i

--~-.)

.·-
-IJ

-
~

-W

~r::i
·rl

·rl
·r~

1--1 ::1
~

::.1
tu)

0
0

0
I I

~

H

H

· -·
1--1 ·ri

·r~
•ri

lJ .. ~
(_ _)

C_)
0

"\:V

l_j
·r--i

::r
(
)

J~

• :-i
(_

)

..._
-r:.-

,.:....-1

~

;=.
E-~

~
l

Cl~

('--J
CD

l--i

[·-
~~1)

C
J 0

.-~
r
l

·-
·1

•;ji
('f)

l{
)

('-.}
('~

r
l

~--
{

,-
i

,---1

.---t c-:r
,--1 o:'

<
-1 C'-J

(')
.--t

,--1
•-I

,.--!

,--
·1 C

0
CJ.•

(' -1 c
-J O

J
C

)
.,-

-{
·-·!

CD

,----t
C

)
·;1

:
,.-~

t-1

,
~

·-··!
,.-1

,.--1

L
()

(i"j
L

{)
,--!

,·-i
,--;

,--{
,-

--~
,--i

-r-1
,.. .. f

r--.....
~
1

t.f)
C--l

C
>

0
C

l
,---1 ('.}

(.T
)

(J
)

(
j)

r

·i
•:j

l
0

c----
,.---1

C'-l
·:::Jl

C'-l

, --~
u-)

U
)

0
)

er;
<D

0

)

,--1
('.)

(' -l
(\~)

(Y
)

('·.J
(D

('•)

U
)

.---i
,--~

(o')

('•.]
r-i

('~)
•;ff

(Y)
·~1

(•)
,--1

o
:ji

C<)
u

-j
C'-l

0
r--i

('·.) c·-J ('-) ("'-]

CO

0
<...."J

C"-l
c-~

C'-.J C
J

r···i
,--{

•;jt
(··)

(¥")
.-,ji

f.·-
·~Jt

C
D

 1:,:, V
)

C
1

·~rt
,-

1
,---!

,--·1
(" ,)

('•)
(Y

)
(
')

 --u-:,

~
-j

·r1

:J (.)

S-I
I,-~

t
-, .,

r
-

·r
,.;:....

~

:::-J
f·-

I

~.r..l
(
~

C
• ('..)

,. ·i
,--1 C·-1

('-,1
C''-l

,--1

(f.:l
C

-l
(' ..) C

 .J C..J
,---1

t-1

r--1
,--1

C
)

•-::J
·~.tt c·--:. to c.-) 0

)
(•)

(
•)

(t)
("-J

('-J

Ci)
C:J

,--~
0

C"-l
,.-1

(D

c·~
C

-1
,.-;

C'J
(-.;

C
)

1 -·-i
LO

(' ..)

~~jl
(ij

L
[)

(·

,---~
t-i c-... 1 ,--1

r-1
('-.J

(0

C:J
CD

CD

C'·l

CO

r-1

0
•:jl

,-·-1
r-i

._j1
~;::J1

('•")

('-J
o:::Ji

·
~

1
('"-

(...._
("-,)

L
[)

C''-l
,--·1
~

•Zl1

(.0

t.O
 u:_.

...-1
CD

C~')

«-...Ji
('-,.}

,.-
j

l
-~

"'1'
•:;Jl

l
·

<
 ,-j

C
'

C
D

0

:J
C:O

0

)
(.'·.)

('•.}
0

')
(")

CD

-1-.i
·r~

~_j

0 t-..~
·r~

C)

:(.:~-4
0:' -·
to--·

E~-
I

rr.l
C:G

(D
 ,---1 r--

r
·i

,-~
C

)
(''.]

t-1

,--1
,. . .;

!.0
,---1

·~1'
(\-.)

0
)

(')
•zj"l

,---1
,.---i

,--1

(
()

L{
)

,-
·l

,·-·t
(
t)

'
~

C
>

,---(
,--i

, ... j

en
.-

1 c--
•:.:Ji c

1-)
<o c

,
r

·-l
,--l

,--t
r---f

[·-
•;jl

,--i
L

{)
(D

,-! c_-:,

,-·1 ,---!
•;··i

, .. ;

0
)

L
l")

C
)

O
:J

0~·
(C.•

C
•

r--1
,.---~

C:)
·:-tt c -'l

('·.) [......
())

.-
~

,---1 (')
(•')

,--(
·~

t'

0
) G

:J
(0

1----i
L

()
C

r 0
(t')

,--1 (>
)

, -1
,.---1

(D

(
j)

•<:;jl

C
) (".J

..-;-_J I
,--1

c~--l
C',l

C'-J
..... Jl

("1 ,---1

ro
L[
)

[·-
,.,_)

c·r)
(0

 C
•

r
-1

('·.]
,--j

L
()

[·-
[·--

L
()

(
')

(•)

C
>

('t)

('-.]
('-J

('-J
,--1

(,T
J

•:.jl
C

) C
.J

([)
,-

-~
C

)
('.J

(Y)
(',)

(•')
('.)

0
)

C
:)

C
 :•

(0
,-

~
C'.J

C
•

'·Ji
(~'"".)

(")
,.-.;

N

 N

R

 R

 3

s

 u

 u

 s

6
 r.

 .

 r.

8
 T

 T

2

E

E

 /

R

 R

 3

1

8

i

 p

d

n

 2

 4

7
 1
 2
 2
 1

 6

 o
 2

 2

 4
 5
 5

 1
1

 o

 a

 V

 1

一
丄

 1

丄

 1
 1

 •.丄

 r
H

 1

1

1

 7

 u

 》

9
 7
 2

 o
 5

 7
 7

 5

 9

 3

 3
 G

 G
 0

〕

 5

 2

 ̂

 -

1

丄
 1

 1
 T
-
丄

 1

 1

 1
 1
.
丄

 〔
)

 9

 /

 5

 .

c
 4

 1

4
 1
 1

 3
 6
 6
 6
 (
o

 7
 6
 o
u

 6
 C
D

 1

r
^
 i

 1

 p

1

丄
 1

上

 1
 1
-
丄

 1--1

 T
’
丄

 1
-
1

 2

 s

t
 /

 8

4
 4
 6

 6
 C
O

 7
-

 6

 2

 2
 c

 6
 4

 7
 6

 3

 5

 (
〉
】
^

1
.
1

 i

 1

 1

丄
 -
1

 1
 T
-
丄

 T
-
丄

 r
H

 M

 p

 c,
)

5
 2
 5
 6
 o
 6
 7

 5

 o
 6

？

6
 8
 6

 ̂

 8

 1
2

1
丄
1
丄
1
丄
1
1
 T
-
丄
1

 1

 1

 r
丄
T
H

 r
丄
1
丄

 g

 p
^

 1

9

8

 o
u

 5

6

6

6

 1
丄

1

丄

6

9

6
 C
D

 7

2

^

1

1
1
 t
丄

 f
丄

 1
 1
1
丄

 <
L
>

 /

 ••

 s

 r
)

^
 8

 i

 ̂

9
 4

 3
 6
 C
O

 3
 6

 C

 O
 6
 7

 4
 4

 6
 7

 ̂

 s

 2

 ̂

 ̂

,
丄

 1
 1
1

 1

1

1

c

 /
1

 t

2
 3

 1

 s

^
 y

/

I

 J

k

 h

 2

 p

 L

u

 m

 s

 p

s

 "
n

s

p

y

 ̂

e

 f
f

 8

 n

 e

 2

 1

 ̂

R
 7

 o
 1
 4

 2
 6
 o

 5

 2
 0
0

 o
〕
C
D

 1

 o

\
 1
2

 t

 5

 /

 ;

 r
c

1
 i
 2
 2

 4
 2

 2
 2

 2
 3

 2

 y

 7

 t

 ̂

 n

 i

 G

J
^

 l
a

 i

 2

8
 6
 2
 9
 4

 1
 9

 9

 8
 6

 3
 6
 2

 8

 §

 g

 r

 2

 p
/

 6

4
 1
 1
1
4

 3

1
 C
,
1

 2
 0
0

 4
 4
-

 ̂

比

t

 /

 7

 1

t

g

i

t

 t
5

 2

 1

 -

3
 1
 1
 3
 4
 6
 3

 6

 5
 6
 0
0

 4

 4

 4

 S

 i

 5

 s

 a

 M
-

 p

 5

1

 2

3
 3
 4

 1
1
1

 0
0

 4
 2

 ̂

 ̂

I

V

 y

 .
1

 r
e

^

 g

 n

 t

 2

 2

 2

 6

 u

8
 4
 6

 5
 2

 o
 1

 5

 2
 o

 2
 7
 o

 6

 c

 £

 M

 i
 V

 /
w
-

 ̂

 1

 g

2
 4

 1

 4
 3
 2

 3
 2
 4
 4

 k

 0
9

 d
 .s

 4

 K

 H

p
 F

 3

 e

t

l

p

p

l

o
 3

 9

 2

 0

 2

 8

 0
 9

 4
 9

 1
7

 5
 s

 8

 1

 h
 c

 /

 2

3
 2

 2
 3
 ?

】
4

 3
 1

 1
 1

 3
 3 4

 4
 ̂

 2

 ̂

 8

 ̂

 s

 ̂

^
 u

 I
n

 n

 s

 i
 i
 o

 2

 1

C
O

 6

7

5

7

3

4

4

1
 7
.

7

3

3

1

o

2

6

7

i

^

八
厂

1
丄

 -
丄

 C
O

 3
 4
 0
0

 1
 4
-

 0
0

 4

 1-
5

 ̂

 o

 1

 f

 c

 1
 2

 2

 1

 2

 s

G
 1

 3

 4

 1

 1

 /
/
/

 -

 1

C
O

 7
 5
 5
 【
,
6

 5

3
 1
 c
,

〕

 8
 7

 5
 6

 5

 t

 ̂

5
6
7

 ̂
^

g

2
 2
 1

4
 2
 3

 1
1
 3

 3
 n
i
i
i
i
i

 u

 p

 p

 p

 p

 p
v

 :

n

 l
A

 ̂

 N

 w

 o

 1
1
N

^
 :

 :

 5

 r
a

 5

 2
 2
 1
 8 R

 1
3
4
1
1
s

^

【
/

C
J
 e

 k

二

二
 l
-
l
l
l
-

 u

 t

 p
u

^
 _.

 ,r
>

 ̂

 1

 n

 n
 n

 n

 n

 T
 s

 i
 i
 i
 i

 i

 u

n

？

 E

 E

 i

5

幻

c

t
 t

 g

 1

 2
 3
 4
 5
 R
 L
5
2
2
1
8
1
S

.

 i

 i

 .rr

 e

s

 a

 r

 n
-

 p

 p

 p
 p
 p

 s

 p
n
n
n
n
n
i
s

.

 ̂

 g

 u

 u

 u
 u
 u
 s

 ̂

 r

 r

 ̂

T

 P

 、

m

p

p

o

o

o

e

 0
1
2
3
4

 5

 2
E

r

 I

 ̂

 ̂

 ̂
 ̂

 ̂

 r
 r

 I
I

 -
I
I
I

 /
R

-
1

 i

 s

 G
 G
 G
 G
 G
 p
 G
G
G
G
G
G
5
P

c
 c

 1

T. S. Cheung Results 87

S ingle E l e m e n t G r o u p s F o r m a t ion:
G r o u p 1 n二9 i: 1 2 5 6 7 8 10 11 14
Group 2 n=3 i: 3 4 9
G r o u p 3 n二2 i: 12 13
Group 4 n=3 i: 15 16 17
G r o u p 5 1 i: 18
Group 6 n二2 i: 19 20
G r o u p 7 n二9 i： 21 25 26 27 28 29 31 39 47
Group 8 n=10 i: 22 23 24 33 34 35 36 40 45 46
G r o u p 9 n二2 i： 30 37
G r o u p 10 n = l i: 32
G r o u p 11 n二1 i： 38
Group 12 n二4 i： 41 42 43 44
P r e s s RETURN if finished investigation：

Group List with c o n n e c t i v i t y attributes:
G = 1 n:9 i:1 p 2/2 s 6/2 i:2 p 1/2 s 5/1 i:5 p 2/1 s 6/1 i：6 p 1/2 s 10/1 i:7 p

2/1 s 6/1 i:8 p 2/1 i：10 p 6/1 i:11 p 2/1 s 6/1 i:14 p 1/1
G二2 n:3 i:3 p 4/2 i:4 p 3/2 s 9/1 i:9 p 4/1
G二3 n:2 i:12 p 13/2 i:13 p 12/2
G二4 n:3 i:15 p 16/2 i： 16 p 15/2 s 17/1 i：17 p 16/1
G二5 n： 1 i：18 p - 1 / 0
G二S n:2 i：19 p 20/1 i:20 p 19/1
G二7 n:9 i:21 p 4 7 / 1 i:25 p 47/3 s 26/1 i:26 p 25/1 s 27/1 i:27 p 47/2 s 31/1 i:

28 p 25/1 s 27/1 i:29 p 25/1 i:31 p 27/1 i：39 p 4 7/1 i:47 p 25/3 s 27/2
G二8 n：10 i:22 p 33/1 s 34/1 i:23 p 33/1 s 34/1 i:24 p 35/1 s 36/1 i:33 p 34/2 s
35/2 i:34 p 33/2 s 36/2 i:35 p 33/2 s 46/2 i：36 p 34/2 i:40 p 33/1 i:45 p 33/2

i:46 p 35/2
G二9 n:2 i:30 p 37/1 i:37 p 30/1
G=10 n : l i:32 p - 1 / 0
G = l l n : l i:38 p - 1 / 0
G二12 n:4 i:41 p 42/2 s 43/2 i:42 p 41/2 s 44/2 i:43 p 41/2 i ： 44 p 42/2
PRESS RETURN:

Figure 5 - 1 7 Group List of Ckt. 3

T. S. Cheung Results 98

S i n g l e E l e m e n t G r o u p s Formation：
G r o u p 1 n二8 i: 1 2 ,3 4 6 7 10 13
G r o u p 2 n = l i: 9
G r o u p 3 n二2 i： 11 14
G r o u p 4 n=4 i： 5 12 15 42
G r o u p 5 n二3 i: 8 16 17
G r o u p 6 n=2 i: 18 19
G r o u p 7 n - 2 i: 20 21
G r o u p 8 n=2 i： 22 23
G r o u p 9 n=2 i: 24 25
G r o u p 10 n=2 i: 26 27
G r o u p 11 n=9 i： 28 30 32 33 34 37 39 40 4 1
G r o u p 12 n二5 i: 29 31 35 36 38
G r o u p 13 n二1 i: 43
G r o u p 14 n二 1 i: 44

P r e s s RETURN if f i n i s h e d investigation:

G r o u p L i s t with c o n n e c t i v i t y ' attributes：

G二1 n : 8 i:1 p 2/2 s 6/2 i ： 2 p 1/2 s 3/2 i：3 p 2/2 s 4/2 i:4 p 3/2 s 7/2 i:6 p i
/2 i:7 p 4/2 i：10 p 2/2 i： 13 p 2/2
G = 2 n: 1 i:9 p - 1 / 0
G二3 n : 2 i：11 p 14/2 i:14 p 11/2
G二4 n:4 i:5 p 12/1 s 15/1 i: 12 p 15/2 s 5/1 i：15 p 12/2 i:42 p 12/1 s 15/1
G=5 n : 3 i:8 p 16/1 s 17/1 i：16 ? 17/2 s 8/1 i:17 p 16/2
G二S n : 2 i:18 p 19/2 i：19 p 18/2
G二7 n : 2 i:20 p 21/2 i:21 p 20/2
G二8 n : 2 i:22 p 23/2 1 : 2 3 p 22/2
0二9 n:2 i:24 p 25/2 i:25 p 24/2
G二10 n:2 i:26 p 27/2 i:27 p 26/2
G二11 n:9 i:28 p 30/4 s 32/2 i:30 p 28/4 i:32 ？ 28/2 s 39/1 i：33 p 28/2 i：34 p 2

8/2 i:37 p 28/2 i:39 p 3 2 / 1 s 33/1 i:40 p 28/1 s 30/1 i:41 p 3 2 / 1 s 33/1
G二12 n:5 i:29 p 38/4 s 31/2 i:31 p 29/2 i:35 p 36/2 i:3S p 29/2 s 35/2 i:33 p 2

9/4
G : 1 3 n： 1 i:43 p - 1 / 0
G二14 n : l i:44 p - 1 / 0
P R E S S RETURN: Figure 5 - 1 7 Group List of Ckt. 3

i

2

9

 /

8

 6

1

p

1

2

-
1

3

/

7

1

s

4

/

3

C
M
 ？

6

1

^

c

f

3

 o

/
 3

 t

2

/

^

2
 3

 i

^

 L

i
u

 p

 p

u

 7

 :

 s

 3

 u

^

 2

 n

 e

 /

 7

 o

^

 o

 t

 C
O

 2

R
 6

 i

 u

 1

 :

 G

2

 t

 b

 i

a

 i

？

 p

3

 .g

 r

 2

 ̂

:

 2

 i

 t

1

7

/

1

1

1

1

1

1

n

 t

 t

 /
1

 7

 /
/
/
/
.
/

 /

 5

o

 2

 s

 a

 4

 :
1
9
0
5
0
5
 8

•
1

 2

 e

 1
-

 1

 1 1

 1
 1
 1
 1
 1
 -
1

 1

 2
 3

 3

 3

 c

t

 V

 y
/
/
/
/
/
/
/
/
/

 p

 ̂

a

 1

 n

 t

 1

 2
 C
o

 4

 5

 6
 7

 O
O

 9

 P
2

 p

 p

 p
 p
 p

 p

m

 2

 i

 i

 /

 6

 g

r

V
O
‘
P
P
P
P
P
P
P
P
2
1
2
1
3
4
0
9

 2

 R

o

 8

 d

 i

 3

 2
 :
4
3
3
4
3

 4

 I

F

 1

 e

 t
5

 0
4
1
8
2
9
3
1
 :

 i

 :

h
 C
I

 1
2
1

 2

 1
2
1
3
-
1

 s

 i

 .1

 i
 .1

 .1

 i

s
 2

 7
 1

 3 4

 o
 9

 2

 s

 e

 4

p
 3

 1
 4
 0
0

 3
 4
 3

4
 i
 n

 -
1

 -
1

 -
1

 .
1

 -
1

 .
1

 -
1

 -
1

 .
1

 1
 C
M
/
/

 1
 1 1

 1
 1
 o Q

 1

U
5
0
4
1
8
2
9
3
1

 n

 n

 /
/
8
/
/
/
/
/
/
/
/

0

 1
1
2
1
2
 1
2
1
3
4
6
9
0
5
0
5
6
7
8
-
1
 0
1
1
1
1
1
1
1
1
1
2
7
1
1
3
4
0
9
1
1
2

r
 1
1
1
2
2
3
3

 0
0

 3
3
f
 c

 /
 /
/
 /
/
 /
/
 /
/
 3
1
 4

3

3

4

3

1

1

4

G
 1
2
3
4
5
6
7
8
9
 5
0
4
1
8
2
9

 3
 1

 p

f

 h
l
l
2

 1
2
 1
2
 1
3
p
p
 p
p
p
p
p
p
p
p

t
 1

 i

 i

 i

 i

 i

 i

 i

 .1

 i

 .1

 t

 3

n
 .
1

 i
 .
1

 .
1

 i i

 .
1

 .
1

 i

 i

 p

 p
 p
 p
 p

 p
 p

 p

 p

 4
 C
D

 2
 9
 O
 5 o

 5
 6
 7
 8
 :

g
 e

 2
8
2
2
2
2
2
1
1
2
N

 w

 1
1

 :
1
2
2
3
3
3
3
3
N

n
 m
c
M

 2

2

2

2

2

2

2

2

1

1

二

二

 -
二
二
I
 -
I
I

二
二
I
R

 1
2
3
4
5
6
7
8
9

 1

 R

u
 a
>

二

二

二

二

 I
I

二

二

 I
I

二

 n

 n

 n

 n

 n

 c

 n
 n
 c

 n
 ：!：>

 t
 1

 i
 i

 i
 i
 .
1

 i
 i
 i
 i
 u

^
 I
n
n
n
n
n
n
n
n
n

 T

 s

 i i i

 .
1
.
1

 i
 i i i

 3

 T

h

 E

 0
1
2
3
4
5
6
7
8
9
E

 ,
1

 2
8
/
2
2
2
2
2
1
1
2
E

c
 1
2

 3
 4
5
S
7
8
9
1
1
1
1
1
1
1
1
1
1
R
 L
2
2
2
2
2

 2
 2
2
2
 ••

 :
7

 R

e
 n
n
l
n
n
n
n
n
n
n
n

I
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
s
 p
n
n
n
n
n
n
n
n
n

 s

、
」

g
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
s

u

 o
l

P
2
3
4
5
6
7
8
9
S

\
 n
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
e

 o

 1
0
/
-

 3
4
5
 6
 7
8
9
1
1
 1

 1
1
1
1
1
 1
1
 E

1

i

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

 r

 二

 i
i

 -
二
i

 i
二
二
-

 i
i

 i
二
二
|

 2

二

二

二

二

二
 I
-

二

二

 R

S
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
P
 G
G
G
G
G
G
G
G
G
G
G
G
2
G
G
G
G
G
G
G
G
P

T. S. Cheung Results

Single Element Groups Formation：
Group 1 n=2 i: 1 10
Group 2 n二2 i: 2 11
Group 3 n=2 i: 3 12
Group 4 n=2 i: 4 13
Group 5 n-2 i: 5 14
Group 5 n二2 i： 6 15
Group 7 n二2 i： 7 16
Group 8 n=2 i: 8 17
Group 9 n=2 i： 9 18
Group 10 n二2 i: 19 20
G r o u p 1 1 ri二2 i: 2 1 2 2

Group 12 n二2 i： 23 24
Group 13 n二2 i: 25 26
Group 14 n二2 i: 27 28
Group 15 n=2 i: 29 30
Group 16 n二12 i: 31 32 33 34 35 36 37 42 43 44 45 46
Group 17 n=4 i: 38 39 40 41
Groap 18 i: 47
Group 19 n二1 i: 48
Press RETURN if finished investigation：

Group List with connectivity attributes:
G 二 1 n : 2 i： 1 p 1 0 / 1 i ： 1 0 p 1 / 1

G二2 n:2 i:2 p 11/1 i:11 p 2/1
G二3 n:2 i:3 p 12/1 i：12 p 3/1
G=4 n:2 i:4 p 13/1 i:13 p 4/1
G二5 n：2 1:5 p 14/1 i:14 p 5/1
G二5 n:2 i:6 p 15/1 i:15 p 6/1
G=7 n：2 i:7 p 16/1 i:16 p 7/1
G=8 n:2 i:8 p 17/1 i:17 p 8/1
G二9 n:2 i:9 p 18/1 i:18 p 9/1
G二10 n:2 i:19 p 20/1 i:20 p 19/1
G二11 n:2 i:21 p 22/1 i:22 p 21/1
G二12 n : 2 i : 2 3 p 2 4 / 1 i：24 p 2 3 / 1

G=13 n:2 i:25 p 26/1 i:26 p 25/1
G二14 n:2 i:27 p 28/1 i:28 p 27/1
G二15 n:2 i:29 p 30/1 i:30 p 29/1
G=16 n:12 i:31 p 44/1 i:32 p 37/1 s 4 2 / 1 i:33 p 37/1 s 43/1 i:34 d 37/1 s 42/1

i:35 p 37/1 s 42/1 i:36 p 37/1 s 42/1 i:37 p 42/2 s 43/2 i:42 p 37/2 s 46/1 i:43
p 37/2 i:44 p 37/2 s 31/1 i:45 p 37/1 i:4S p 42/1 s 43/1
G二17 n:4 i:38 p,41/2 i:39 p 41/2 i:40 p 41/2 i:41 p 38/2 s 39/2
G二18 n : 1 i：47 p - 1 / 0
G二 19 n : 1 i:48 p -1/0
PRESS RETURN：

Figure 5 - 2 0 Group List of Ckt. 7

T. S. Cheung Results 9 1

Single Element Groups Formation：
Group 1 n二2 i: 1 4
Group 2 n二2 i: 2 5
Group 3 n二2 i: 3 6
Group 4 n二2 i： 7 8
Group 5 n二2 i： 9 10
Group 6 n二2 i: 11 14
Group 7 n二2 i: 12 15
Group 8 n二2 i: 13 16
Group 9 n=2 i: 17 IS
Group 10 n二2 i: 19 20
Group 11 n二2 i： 21 24
Group 12 n二2 i: 22 25
Group 13 n二2 i: 23 26
Group 14 n二2 i: 27 28
Group 15 n二2 i: 29 30
Group 16 n二12 i： 31 32 33 34 35 36 37 42 43 44 45 46
Group 17 n=4 i: 38 39 40 41
Group 18 n二1 i: 47
Group 19 n二1 i: 48
Press RETURN if finished investigation:

Group List with connectivity attributes:
G二1 n:2 i:1 p 4/1 i:4 p 1/1
G二2 n:2 i:2 p 5/1 i:5 p 2/1
G:3 n:2 i:3 p 6/1 i:6 p 3/1
G二4 n:2 i:7 p 8/1 i:8 p 7/1
G=5 n:2 i:9 p 10/1 i：10 p 9/1
G二6 n:2 i：11 D 14/1 i:14 p 11/1
(}二7 n:2 i： 12 p 15/1 i: 15 p 12/1
G二8 n:2 i:13 p 16/1 i:16 p 13/1
C-二3 n:2 i: 17 p 18/1 i： 18 p 17/1
G=10 n:2 i:19 p 20/1 i:20 p 19/1
G二 11 n : 2 i : 2 1 p 2 4 / 1 i：24 p 2 1 / 1
0=12 n:2 i:22 p 25/1 i:25 p 22/1
G二13 n : 2 i : 2 3 p 2 6 / 1 i：26 p 2 3 / 1

G二 14 n:2 i:27 p 28/1 i:28 p 27/1
G=15 n:2 i:29 p 30/1 i：30 p 29/1
G二16 n : 1 2 i : 3 1 p 4 4 / 1 i : 3 2 p 3 7 / 1 s 4 2 / 1 i : 3 3 p 3 7 / 1 s 4 3 / 1 i：34 p 3 7 / 1 s 4 2 / 1

i:35 p 37/1 s 42/1 i:36 p 37/1 s 42/1 i:37 p 42/2 s 43/2 i:42 p 37/2 s 46/1 i:43
p 37/2 i:44 p 37/2 s 31/1 i:45 p 37/1 i:46 p 42/1 s 43/1
G二17 n:4 i:38 p 41/2 i:39 p 41/2 i:40 p 41/2 i:41 p 38/2 s 39/2
G二 13 n:1 i:47 p -1/0
G二19 n:l i:48 p -1/0
PRESS RETURN:

Figure 5 - 1 7 Group List of Ckt. 3

T. S. Cheung References 92

5.2 Details of Affinity Clustering Procedure on Ckt. 2 and Ckt. 5

The result of affinity clustering on ckt. 2 is shown in figure 5-22 and 5-23. The

m a x i m u m connectivity of the circuit is 2. Hence, there was only one pass in the

"Primary Grouping" step (Table 3-3). After this step, three groups were formed with

sizes 7, 8 and 8 respectively. From ckt. 2, it is noted that the three groups are with

larger number of connections. Then, after the Element Appendage to Existing Groups

step, the first group became a group with size 15，while the other two had no change.

After the third step "Loose Appendage of Ungrouped Elements", grouping increases to 8，

with 5 groups of size 2. After the last step "Single Element Groups Formation", all the

elements were included in the group list and there were 5 single element groups. A s a

result, ckt. 2 was partitioned into 13 groups.

The result on ckt. 5 is shown in figure 5-24 and 5-25. The m a x i m u m connectivity of

this circuit is 3. Hence, there were two passes in the "Primary Grouping" step. In the

pass with conn. (no. of connections) 2*, there was only one group with 8 elements. Each

element in this group has 3 connections to other elements in the group. In other words,

they are elements with the highest connectivity in the circuit. In the pass with conn. 1，

five groups formed with sizes 8，5，3，2, and 2 respectively. At the "Element Appendage

to Existing Groups" step, group 2, 3 and 4 were expanded to include 17，7 and 4 elements

respectively. At the "Loose Appendage of Ungrouped Elements" step, there were 3 new

groups with group size of 2. At the last step, 4 single element groups were formed. A s

a result, ckt. 5 was partitioned into 11 groups.

* In the pass with conn, i, elements with number of connections greater than i is
grouped.

T. S. Cheung Results 奶

MAXC〇NN=2

P r e s s RETURN if finished investigation：

Round： 1 End of p a s s w i t h conn 1.
G r o u p 1 n=7 i: 1 2 3 34 35 36 37
G r o u p 2 n二8 i: 4 5 6 7 8 9 10 11
G r o u p 3 n=8 i： 12 13 14 15 16 17 18 19
P r e s s RETURN if finished investigation：

P r i m a r y G r o u p i n g :
G r o u p 1 n二7 i： 1 2 3 34 35 36 37
G r o u p 2 n二8 i： 4 5 6 7 8 9 10 11
G r o u p 3 n二8 i: 12 13 14 15 16 17 IS 19
P r e s s RETURN if finished investigation：

E l e m e n t A p p e n d a g e to E x i s t i n g G r o u p s :
G r o u p 1 n二 15 i： i 2 3 26 31 33 34 35 36 37 38 39 41 42 44
G r o u p 2 n二8 i： 4 5 6 7 6 8 10 11
G r o u p 3 n二8 i： 12 13 14 15 16 17 18 19
P r e s s RETURN if finished i n v e s t i g a t i o n :

L o o s e A p p e n d a g e of U n g r o u p e d E l e m e n t s :
G r o u p 1 n二15 i: 1 2 3 28 31 33 34 35 36 37 38 39 41 4 2 44 “
Gr o u p 2 n二8 i: 4 5 6 7 8 9 10 11
G r o u p 3 n二8 i: 12 13 14 15 16 17 18 19
G r o u p 4 n二2 i： 20 21
G r o u p 5 n二2 i： 22 23
G r o u p 6 n=:2 i ： 24 25
G r o u p 7 n二2 i： 26 27
G r o u p 8 n - 2 i: 29 30
P r e s s RETURN if finished investigation：

Figure 5 - 2 2 Affinity Clustering Procedure on Ckt. 2

T. S. Cheung Results 94

Single E l e m e n t G r o u p s F o r m a t i o n :
Group 1 n=15 i： 1 2 3 28 31 33 34 35 36 37 38 39 41 42 44
Group 2 n二3 i: 4 5 6 7 8 9 10 11
Group 3 nrS i: 12 13 14 15 16 17 18 19
Group 4 n二2 i: 20 21
Group 5 n二2 i： 22 23
Group 6 n=2 i: 24 25
Group 7 n二2 i: 26 27
Group 8 n二2 i： 29 30
Group S n二1 i: 32
Group 10 n二 1 i: 40
Group 11 n二1 i: 43
Group 12 n二 1 i: 45
Group 13 n二1 i: 46

Press RETURN if finished investigation：

Group L i s t with c o n n e c t i v i t y attributes:

G二1 n : 1 5 i：1 p 2 / 2 s 3 5 / 2 i:2 p 1/2 s 3 / 2 i:3 p 2 / 2 s 3 1 / 1 i：28 p 3 6 / 1 i : 3 1 p 3
./I i:33 p 3/1 i:34 p 35/2 i:35 p 1/2 s 34/2 i: 36 p 35/2 s 28/1 i:37 p 1/2 s 38/1
i:38 p 37/1 1:39 p 3/1 i:41 p 36/1 i:42 p 1/1 s 2/1 i:44 p 3/1
G二2 n:8 i:4 p 5/2 i:5 p 4/2 s 6/2 i:6 p 5/2 s 7/2 i:7 p 6/2 s 8/2 i:8 p 7/2 s 9

/2 i:9 p 8/2 s 10/2 i:10 p 9/2 s 11/2 i：11 p 10/2
G二3 n:8 i:12 p 13/2. s 14/2 i:13 p 12/2 i:14 p 12/2 i:15 p 12/2 i:16 p 12/2 i: 17
P 12/2 i:18 p 12/2 i：19 p 12/2 . "
G=4 n:2 i:20 p 21/1 i:21 p 20/1 ̂
G=5 n:2 i:22 p 23/1 i:23 p 22/1
G二S n:2 i:24 p 25/1 i:25 p- 24/1
G二7 n:2 i:26 p 27/1 i:27 p 28/1
G=8 n:2 i：29 p 30/1 i：30 p 29/1
G二 9 n ： 1 i ： 3 2 p - 1 / 0

G 二 1 0 n : 1 i : 4 0 p - 1 / 0

G二 1 1 n:l i:43 p -1/0
G 二 1 2 N : 1 i : 4 5 D - 1 / 0

G二13 n:1 i:46 p -1/0
PRESS RETURN:

Figure 5 - 2 3 Affinity Clustering Procedure on Ckt. 2 (cont.)

T. S. Cheung Results 95

M A X C 0 N N = 3 - -
P r e s s RETURN if f i n i s h e d i n v e s t i g a t i o n :

R o u n d : 2 End of p a s s w i t h conn 2 .
G r o u p 1 n二8 i: 9 10 11 12 13 14 15 16
P r e s s RETURN if f i n i s h e d i n v e s t i g a t i o n :

R o u n d : 1 End of p a s s w i t h conn 1.
G r o u p 1 n=8 i: 9 10 11 12 13 14 15 16
G r o u p 2 n二5 i: 17 18 4 2 45 46
G r o u p 3 n二3 i: 32 35 36
G r o u p 4 n二2 i: 33 34
G r o u p 5 n二2 i: 43 44

P r e s s RETURN if f i n i s h e d i n v e s t i g a t i o n :

P r i m a r y G r o u p i n g :

G r o u p 1 11二8 i: 9 10 11 12 13 14 15 16
G r o u p 2 n二5 i： 17 18 42 45 46
G r o u p 3 n二3 i： 32 35 36
G r o u p 4 n=2 i: 33 34
G r o u p 5 n二2 i： 4 3 44
P r e s s RETURN if f i n i s h e d i n v e s t i g a t i o n :

E l e m e n t A p p e n d a g e to E x i s t i n g Groups：
G r o u p 1 n二8 i: 9 10 11 12 13 14 15 16
G r o u p 2 n二17 i: 1 2 3 4 5 6 7 8 17 18 19 25 30 41 42 45 46
G r o u p 3 n二7 i： 20 21 23 31 32 35 36
G r o u p 4 n二4 i: 22 28 33 34
G r o u p 5 n二2 i: 43 44
P r e s s RETURN if f i n i s h e d investigation：

L o o s e A p p e n d a g e 〇r U n g r o u p e d Elements：
G r o u p 1 11二8 i: 9 10 11 12 13 14 15 16
G r o u p 2 n二 17 i: 1 2 3 4 5 6 7 8 17 18 19 25 30 4 1 42 45 46
Group 3 n：：? i ： 20 21 23 31 32 35 36
G r o u p 4 ri二4 i: 22 28 33 34
G r o u p 5 n二2 i: 26 27
G r o u p 6 n二2 i: 29 37
G r o u p 7 n二2 i: 43 44
P r e s s RETURN if f i n i s h e d investigation：

Figure 5 - 2 3 Affinity Clustering Procedure on Ckt. 2 (cont.)

T. S. Cheung Results %

Single E l e m e n t G r o u p s Formation:
Group 1 n二8 i： 9 10 11 12 13 14 15 16
Group 2 n二17 i： 1 2 3 4 5 6 7 8 17 IS 19 25 30 41 42 45 46
Group 3 n二7 i: 20 21 23 31 32 35 36
Group 4 n-4 i: 22 28 33 34
Group 5 n二1 i： 24
Group 6 n二2 i: 26 27
Group 7 n二2 i: 29 37
Group 8 n二1 i: 38
Group 9 n二1 i: 39
Group 10 n二1 i: 40
Group 11 n - 2 i: 43 44

P r e s s RETURN if finished investigation：

Group L i s t with c o n n e c t i v i t y attributes:

G二1 n:8 i:9 p 10/3 s 11/3 i：10 p 9/3 i:11 p 9/3 i:12 p 9/3 i:13 p 9/3 i：14 p 9/
3 i: 15 p 9/3 i:16 p 9/3
G=2 n:17 i:1 p 17/1 i:2 p 17/1 i:3 p 18/1 i:4 p 18/1 i:5 p 18/1 i:6 p 13/1 i:7

P 17/1 i:8 p 17/1 i:17 p 18/2 s 4 5/2 i:IS p 17/2 s 3/1 i：19 p 17/1 s 18/1 i:25 p
42/1 i:30 p 17/1 s 18/1 i:41 p 17/1 s 18/1 i:42 p 46/2 s 25/1 i:45 p 17/2 i:46

P 17/2 s 42/2
G二3 n : 7 i : 2 0 p 3 5 / 1 s 3 6 / 1 i : 2 1 p 3 2 / 1 s 3 5 / 1 i：23 p 3 2 / 1 i : 3 1 p 3 2 / 1 s 3 5 / 1 i：

32 p 36/2 s 21/1 i:35 p 36/2 s 20/1 i:36 p 32/2 s 35/2
G二4 n:4 i:22 p 33/1 s 34/1 i:28 p 33/1 s 34/1 i:33 p 34/2 s 22/1 i:34 p 33/2
G二5 n : 1 i：24 p - 1 / 0
G二S n:2 i:26 p 27/1 i:27 p 26/1
G二7 n:2 i:29 p 37/1 i:37 p 29/1
G=8 n:1 i：38 p -1/0

n：1 i:39 p - 1 / 0
G=10 n:1 i:40 p - 1 / 0
G二11 n:2 i:43 p 44/2 i:44 p 43/2
PRESS RETURN:

Figure 5 - 2 5 Affinity Clustering Procedure on Ckt. 5 (cont.)

T. S. Cheung References 97

5.3 Results on Alteration Phase

The results on alteration is summarized in the following table. Ckt. 1 is not

included in this table since its cell count is too small (18) and the result is not suitable

to be compared with other circuits (cell count > 40).

Ckt 2 3 4 5 6 7 8

No 46 47 44 46 42 48 48

AN 3 2 5 3 3 1 1

Co 257 184 294 189 182 295 271

Cd 291 223 333 248 196 314 299

Cs 292 216 341 245 201 305 295

Ca 284 215 332 242 198 306 295

Ps 277 191 327 224 193 302 289

Pa 264 186 307 207 186 299 289

ACs (%) 0.34 -3.14 2.40 -1.21 2.55 -2.87 -1.34

A C S / A N (%) 0 . 1 1 - 1 . 5 7 0 . 4 8 - 0 . 4 0 0 . 8 5 - 2 . 8 7 —1 . 3 4

ACa (%) - 2 . 4 1 - 3 . 5 9 一 0 . 3 0 - 2 . 4 2 1 . 0 2 - 2 . 5 5 - 1 . 3 4

A C A / A N (%) - 0 . 8 0 一1 . 8 0 - 0 . 0 6 - 0 . 8 1 0 . 3 4 - 2 . 5 5 一1 . 3 4

A P S (%) 7 . 7 8 3 . 8 0 1 1 . 2 2 1 8 . 5 2 6 . 0 4 2 . 3 7 6 . 6 4

A P A (%) 2 . 7 2 1 . 0 9 4 . 4 2 9 . 5 2 2 . 2 0 1 . 3 6 6 . 6 4

where N。 = Original cell count,

An = Change in cell count,

Co = Original cost on the placement,

Gd = Cost on MDAE (Method qf Direct Addition of new

Element), "

Cs = Cost on MSPS (Method of Simple Propagation of

empty-Space),

Ca = Cost on lAPA (Incremental Alteration Placement

Algorithm),

Ps = Cost on MSPS without considering added elements,

Pa = Cost on 工APA without considering added elements,

ACs = Change in cost on MSPS = (Cs-Cd) /Cd /

A G S / A N = Change in cost on MSPS per added element,

ACa = Change in cost on 工APA = (Ca-Cd)/Cd,

^Ca /An = Change in cost on lAPA per added element,

APs = (Ps-Co) /Co, and

APa = (Pa-Co)/Co,

Table 5 - 1 . Results on Alteration of Ckt.2 to 8

T. S. Cheung References 98

M D A E is a method of updating the placement by placing the added element in an

empty space with the least cost. Hence, the original placement of all the other

elements would not be changed. This method is the most straightforward way to update

the placement and its results are used as reference for other methods.

M S P S is a method to change the original placement by simply propagating (shifting)

elements along the cross-cut (Section 3.2.3.1). Firstly, the mostly connected element, c,

of the added element, a, will be determined. Secondly, the nearest empty space to 'c'

will be determined. Thirdly, the cross-cut between c and the empty space will be

found Then, the cells will be shifted along the cross-cut towards the empty space until

the empty space is adjacent to 'c' (as in Figure 3-13). Finally, the added element will

be placed at the evacuated space.

From the above table, it is seen that ACa reduces the cost much more than ACs.

This implies lAPA make smaller disturbance to the placements than both M D A E and

M S P S . Calculation on the average values of Ac are as follows:
Average ACg = -0.47%

Average ACa 二 一1.66%

Hence, improvement on AC by lAPA = 1.19% with respect to MSPS

= 1 . 6 6 % with respect to MDAE

Ac/An is a measure on change in cost per added element. It gives normalized index

on the result of the algorithms.

Average ACs/AN = -0.68% per added element

Average ACa/AN = -1.00% per added element

Hence, improvement on AC/An by 工APA

= 0 . 3 2 % per added element with respect to MSPS

= 1 . 0 0 % per added element with -respect to MDAE

Ps and Pa are the costs on M S P S and lAPA respectively without taking the added

elements into account. In other words, they considers only the connections among the

original circuitry. These two values are to indicate the degree of disturbance on the

original placement subject to the alteration. That is, if the P value of a method is much

larger than Co, it implies that the method has caused much disturbance on the original

placement. From Table 5-1, it is also noticed that l A P A gives better result than M S P S

: t h e increases in P values of the circuits are less. Calculation on the average values

of AP are as follows:

Average APs = 8.05%

T. S. Cheung References 99

Average APa = 3.99%

Hence, improvement on AP by 工APA 二 4.〇6%

The above results are summarized in the graphs of figure 5-26 to 5-28.

A C ['/,] A ^
A A C 3

- 3 . 0 . 、 s

Figure 5-26 Results on Total Change in Cost

A C / A N m A C s / A N

A C q / A N
l.Q- ^ °z

\ 3 7 8 C i r c u i t

\ ^ Qug = - l - G O

;::： V
Figure 5-27 Results on Change in Cost Per Added Element

T. S. Cheung Results 10()

A P ['/.]
A

18.Q. 六 一 APs

1 6 . G . \ 祉 。

m . Q . / \ / \
10.Q . T \

2 . 0 . n V 、 , = 3 . 9 9

Q
2 3 4 5 6 7 8 ~ C i r c u i t

Figure 5-28 Results on Change in Cost Without Considering Added Elements

In the three figures, solid lines represent the results of M S P S while bold lines

represent those of lAPA. Areas between the lines indicate the improvement of

placement by using l A P A instead of M S P S .

T. S. Cheung References 1 0 1

5.4 Details of Alteration Procedure on Ckt. 2 and Ckt. 5

The processing history on ckt. 2 in the alteration procedure is summarized as

follows:

The alterations on ckt. 2 are shown in figure 5-29. There are 3 new elements added

to the circuit, namely, 47，48, 49. e47 (element 47) is assigned to G 1 = {1, 2，3, 28, 31，

33，34，35，36，37，38, 39，41，42，44}. In the processing of e47 (figure 5-29a), the left

matrix is the original placement, the middle one is the grouping，and the right one gives

the location(s) of adjacent empty space(s) to Gl. A "T" represents an empty space

adjacent to Gl. In this case, an empty space adjacent to G l is found on (1,4). The new

element will be assigned to this space and the length of connection of e47 to G l is 3

units.

After calculating e48's belong tendencies to the groups, it is assigned to G 3 = {12，

13，14, 15, 16，17，18，19}. In addition, e48 will be linked to the cluster tree. In the left

matrix，it can be observed that there are two adjacent empty spaces to G3, namely (6,6)

and (7,7). The connection length at the first one is 11 units and that at the second is 15.

Hence, the first one is chosen as the empty space for e48.

Similarly, e49 is assigned to G 9 = {32} but there is no adjacent empty space to this

group. Hence, the optimal propagation path joining c and ^ is determined and shown as

"T" items on the right matrix (in this matrix, the meaning of "T" and "F" is different

from those in figure a and b). It can be observed that this path passes through 3 groups:

G l (size:16)，G13 (size=l)，and G 3 (size=9)，and is the optimal solution to the alteration

problem.

The processing history on ckt. 5 is summarized as follows:

The alterations on ckt. 5 is shown in figure 5-30. There are 3 new elements added

to the circuit, namely, 47，48, 49. e47 is assigned to G 9 = {39}. The nearest empty

space is at (1,3). The optimal propagation path is shown on the right matrix. It passes

through G 2 (size=17) and Gil (size=2).

e48 is assigned to G 9 = {39，47} (updated). The nearest empty space is at (2,7).

The optimal propagation path passes through G 2 (size=17), G l (size=8), and G 4 (size=4).

T. S. Cheung Results 102
-‘ f ^ •..•IL

e49 is assigned to G2 二 {1，2, 3’ 4，5，6，7，8，17’ 18，19，25, 30，41, 42，45，46} and
_ the nearest empty space is at (1,7). The optimal propagation path passes through G1

I (size=8).

L

L

— . 、 ， .

. .r- ‘

- ‘ • s

- IV

< •‘

• ：、 • • ” ,

• . - •• • “ •
‘ ‘ r I • -

‘ ： = • . ' : 、

‘ ”：. i ‘ - ‘ •,
- � ‘ ‘

1 ‘‘ .

• • • • L

‘ •• • C . ’
I I

_ • 一 J •
- J - I • _ I

• • _

r - - | i - I •

T • - 1 . . -

L T- _ - • I _ ‘ • •”

.h^.C- . • • =

u

. •

， •

- I _.

•
I . •

3

w
 F

 F
 F

 F

 F

 F

 F

 F

 F

 F
F
 F
 F

 T

F
 F
 F

 F

 F
 F
 T

^
 F F

 F
 F
 F F

 F

 F
 F
 F F

 T
 F
 F

 F F

 F
 F T

 F

T
 F
 F
 F F

 F
 F
 F

 F
 F F F

 F
 F
 F

 F
 F
 F F

 T

 F

p
 F
 F

 F
 F
 F

？

 F
 F F F

 F
 F
 F

 F
 F F

 T
 F

 F

7
 F

 F
 F
 F

 F

 F

 F

 F

 F
 F

 F
 F
 F
 F

 F

 F

 F

 F

 T

 F

 F

4
 F

 F

 F
 F
 F

 F

 F

 F

 F

 F

 F

 F

 F

 F

 F

 T
 T

 F

 F

 F

^
 F

 F

 F
 T

 F

 F

 F

 F

 F
 F

 F
 F
 F
 F

 d

 F

 F

 F
 F

 F
 F

 F

4

 e

^
 g

 2

4
 e

 ‘1

 .

7
 1
 1
 4
 8
 6
 o

 n

 7

 1
 1
 4
 8
 6

 o
 s

 7

 1
 1
 4
 8
 6
 o

 j
d

1

1

r

f

f

e

 1

 s

 1

 p
^
)

4
 i

 a

 c

7
 0
0

 6

 3
 5 o

 3
 s

 7

 0
0

 6
 0
0

 5

 o
 3
 7

 3
 6
 C
o

 5

 3
 3
 m

9
 s

(

)

 o

3

a

〇

e

4

3

3

G

8

3

2

4

3

3

o

8

3

2

L

4

3

3

o

8
 C
O

2

§

8

1

1

1

 c

 1

1
 1
1

 1

 1

 d

3
 o

 1

汉

3
1
2
3
1
1
1
d
 L

 C
O

 1
 2
 T
丄

 1
 T
丄

 d

 1
」

3
 1
 2
 3
 1
-
i

 1
 T
-
丄

 ̂

s
 7

i

i

 r
c

u
 3

 •

 •

 3

 8

 •.

 Y

 p

m
 2

 2

 5

 2

 1
1
1
)
 4

 2

 2

 5
 2

 1
1
1
)
 G

 2

 2

 5
 2

 1
1
1
 1

6

f

Y

f

R

沉

R
 3

 (

 G

 9

 (

 E

 d

2
 3
 9
 1
1
1
1

 R

 1

 2

 3
 9
 1
1
1
1

 N
‘

 2

 3
 9
 1
1
1
1

 a

5
 k

 E
 k

 E

 ̂

3
 n

 N

 8

 n

 _

 w

2
 2
 2 o

 1
 1
 1 i

 E

 1

 2

 2 1

 i
丄

 t
丄

 I
i

 i

 N

 oy_

 9
】
1
-
1
1
1

 y

4
 1
-

 _

I

I

 A
^

.
3
 -

 N

 :

'
7
 I

 M
:

 :

 :

 .

 •

 O
S

•

S

I

 e

 -

 1

 s

 e

 e

 y

 e

 3

•

 3

 f

 M

 u

f

1
 5
 u

 u

:
 u

、

3
 c

 n

 6

 c

 1

 1

 n

 n

)
-

 n

 5

h
 7

 3
 8

 o
 9 4 o f

 3
 i

 h
i

 7

 3
 8

 o
 9
 4

 o
 f
 :

 :

 i

 .1

 【
/

 3
 8

 o
 9
 4

 o
 n

 i

 e

g
 1
 2

 4
 2 2 2 2

 :

 t

 g

 2

 4
 2
 2
 2
 2
 n

 n

 t

 t

 2

 4
 2 2 2 2

 /

t
 ̂

i
 3

 r

 n

 .
 n
 .
1

 5

 r

 e

 e
 •

 n

 n

 y

 .
 n

e
 6

 9
 5 2

 3
 0
 6
 0

 e
 7

 O

 e
l

 6

 9
 5
 2
 0
0

 o
 s
 o

 L

 L
 8
 O

 o

 6

 9
 5
 2
 3
 8
 6
 (
 9
 O

 -
u
c

N

s

2

 1
2

1
2

1

L

 ̂
^

c

N

2

1
C
N
1
1

 2

1

4

c

c

 C
N
】
1

 !
>
】
1

 2
 4

1

4

c

F

2

•

)

4

,

}

1

5

？

c
 d

 1

 8
 0
0

 o
 o 6

 5
 d
 3

 t
o

 e
l
d

 1
-

 6
 3
 o
 o
 6 5 d

 1

 1
 t
o

 o

 1

 8
 3
 o
 o
 6

 5
 t
 -

 t
 O

3
 n

 2
1
1
4
3
4
4
(

 :

 n

 t

 n

 ？
-

 1
 1
 4
 0
0

 d
-

 4
 (
 :
 :

 n

 t

 t

 i
m

 -
丄

 1
 3

 4

 r
 n

 t

r
 u

 r
f
t
o

 e

 r

 3
 u
 U
i

 g

 e

 e

 d

 e

O

2

O

4

3
 C
o

5
6

4

1

k

r

m
N

o

1

o

4

3

5

5
6

4

1
k

r

r

m
N

3

N

4

3
5

5

6

4
1

s

e

m

N

C
T
t
o

f

f

1
3

1
3

4
3

n

E

e

R

f

f

1
3

1

3

4

3

n
 E
E

e

R

4

R

:

1

3
 1
3

4

3

n

n

e

R

§

1

i

1

u

2

i

1

u

二

u

D

i

 g
l

u

^
 g

 h

1
4

 2

7

9

 2
 1
1
-

 7

 E
 T
 -
l
O
O

 1
 h
 1
 4
 2
 7
 9
 2
 1
丄

 1
 8
 ou

 E

 T
 t

 T
 R
 1
 4
 ？
〕
7
,

 9
 2
 1
 i
 E
 m
i

h

n

:

g

1

2

3

4
4

I

4

E

n

1

2

3

4
 4

I

4

4

E

 f
O

s

A
1

2

3

4

4

o

s

E

c

i

i

i

1

f

R

i

:

i

1

f

R

o

R

o

t

s

f
R

.
 k

 e
 6

 7 2 2

 C
O

 3
 5
 i

 :
 o

 k

 i
 e

 6

 7 2

 2
 C
O

 3
 L
O

 i
 :
 :

 O

 c

 B

 6
 7
 2
 2
 8
 0
0

 5
 a
 O

s
 o

6
 N
 1

 3

 3

 3

 a

 t

 s

 o

 N

1

 3

 3

 3

 a

 t

 t

 s

S

I

1

 3

 3

 3

 t
 s

.
 o

 1

 t

 s
 d

 s

 o

 9

 t

 s
 s

 d

 s

 n

 s

 N
 n

 c
 d

 s

T

L

二

c

0
9
8
0
1
7
4

e

n

n

e

L

二

c

o

9
8

7

1

7

4

e

n

n

n

e

i
<
D
I
0
9
8
7

 1
7

4

a
〇
n
e

n

1

3

3

d

I

E

r

。

n

1

4

3

3

d
 丁
丄

 I
 E

r

 w

 M
 r

 H
 1
 4

 3

 3
 w
 L E

 r

 ^

p
 ̂

 p
-

 ̂

 p

 p
-
(

F
 F

 F
 F
 F

 F
 F

 F

 T

 T

 F
 f
^
M

 F
 f
i

 F

 F
 f
h

 ‘
 F

 F

 F

w
 F

 F

 F
 F

 F

 F

 F

 F

 F
 F
 T

 F

 F

 F

 T

 F

 F

 F

 F

 F

 F

F
 F
 F
 F F

 F
 F
 F

 F
 F T F

 F F

 F

 T F

 F
 F
 F
 F

F
 F

 F

 F
 F

 F
 F

 F

 F
 F

 T

 F
 F
 F

 f-
r

 T

 F

 F

 F
 F

 F

F
 F
 F
 F
 F
 F F

 F
F
F
F
T
F
F

 F

 F
 F
 F
 F
 F
 F

F
 F
 F
 T
 T
 T F

 F

 F
 F F F

 T F

 F

 F F F F F

 F

F
 F

 T
 F
 F

 F

 T

 F

 F

 F

 F
 F

 F

 F

 F

 F

 F
 F
 F
 F

 F

0
 o

 4
 4

 3

 3
 7

 o

 o

 4

 4
 3

 3
 7

 (：：-

 4

 1

 4

 3

 3

 7

5

«

1
3

3

1
3

 0
0

3

1

3

3

 -
丄

3

3

 3

1

3

3

1

3

3

3

^

1
 1
 1

 1
 2
 7
 1

 1
4
 1
 1
-
i

 c
/
3

1
 1
丄

 4
 t-
h

 1
 C
乙

7
 c

 -

0
 2
 1
 1
 2
 2 2

 o

 2
 1
 1
 2
 2 2

 0

 2
 1
2
 2 2

 2
 d

1
 1

 1

c

c

^
 2

 5

 2

 2
 2

 2

 2

 2

 ro

 2

 2
 2

 2
 2

 2

 5

 2

 2

 9
 C
-
J

 2

 ̂

3
 p

S
 6

 (
z

 C
-
J

 2
 2

 1
 t
丄

 6

 2

 2
 (
z

 9

 1

 6

 2

 2

 1

 G
)
-
丄

 §

R

1

 -
丄

1

1

1

 .n

^

6
 2
 o
 2 4

 8
 8

 6

 2
 2
 2
 4

8
 s

6

2

2

 2

 4

8
 9

订

T
x

e

y

e

 e

V
.
 e

 e

 y

 e

 A
^

u
 :

 u

 u

 :

 u

 u

 u

 3

n
)

 n

 n

)
•

 n

 n

？
 n

 ̂

i

 •
 o
 4
 3
 L
Q

 3 9

 n

 i

 .
1

 o

 o
 4
 3
 l
O

 3
 8
 n

 i

 i

 o

 4

 o
 3
 5
 3
 9
 n

 i

 -

t
 3

 3

 3

 2

 2
/
 t

 t

 3

 3
 3

 2
 C
s
l

 /

 4
」

 t

 3

 1

 3
 3
 2

 2
 /

 t

 5

o
 9
0
1
0
2
1
6
(

 7

 O

 5

 9

 o
 1
 O
 2
 1
 C
D

 c
 C
O

 o

 9

 o
 1
 4
 2
 1
 6
 (

、

 9

 O

辽

c
 2

 2
 1
3
3
3
 4
c

 c

 2

 9
】
1

 3
 3 3

 4

 c

 c

 2

 2
 1
 3
 (
o

 3
 4

 c

 ̂

0
:

？

 _v,

 i

o
 1
 5
 2
 4
 3
 5
 7
 t
 t

 o

 O

 1
5

 2
 4

3

5
 7
 t
 t
o

 G

 1
5

 2
 2
 3
 5
 7
 t
 t
o

 F

t
 1
1

(
乙

 1
 1
 C
M

 C
O

 r

 n

 t
 t

 1

 1
 (
z

 1 1

 2

3
 r

 n

 t
 t

 1

 1 2

 1
 1
 2 3

 r

 n

 t

e
d
e
 e

 d
 e

 e

 d
 e

6
 N
 0
6
6
2

 6

 1
~
0

 s
 e
 m
N
 2

 N
 O

 6
 6
 2 6

 1
 O
 s
 e
 S

 N
 C
D

 K
 o

 6
 6
 7
 6
 -
i

 o
 s
 e
 m
 M

3
 R
 "
4

 1
1
4

 4 3

 n

 n

 e

 R
 5

 R
 :
4
 1
1
4

 4
 3
 n
 n

 e

 R
 3
R

 :

 4
 1
1
4

 4 3

 n

 n

 e

 R

T
?

二

 u
 D
 i

 -
g

1

 u

二

 u
 D
 i

 g

1

 u
 --

 u
 D
 i

 t
/
l

1

 u

^
 t

 T

 R
 2

 4

 4

 7

 7

 2

 5

 i

 E

 T

 t

 T

 R

 2

 4

 4

 7

 7
 2
 5

 i

 E
 T

 ,p

 T
 R

 2
 4

 4

 7

 8
 2

 5

 i

 E

 T

§
 S
E
A

 2

 1

 4

 4

 o

 s

 E

 S
E
A

 2

 1

 4

 4

 o

 s

 E

 s

 E
 A

 2

 4

 4

 4

 O

 s

 E

e
 O
R
G

 t

 s

 f
 R

 O
R
O

 t

 s

 f
R
 O
R
O

 t

 s

 f
 R

M
n
^

 c

 B
6
5
8
1
9
 3
4
 a

 O

 c

 B
 6 5

 8 9

 oo

 7
 4
 a

 o

 c

 B
 6 5 8

 9
 3 7

 4
 a

 O

c
 s

 I

 2
 1
 1
 4
 4
 t

 s

 s

 I

 2
 1
 1
 4

 4
 4

 t

 s

 s

 -

 2
 1
 1
 4
 4

4

t

s

.
 n

 s

 N
 n

 c
 d

 s

D
S
N

 n

 c
 d

 s

 n

 s

 N
 n

 c
 d
 s

s
 i

 e

 I
 7 3

 o
 o
u

 8
 8
 p
-

 a

 o
 n

 e

)

 i
e
I
7

 3

1
0
0
8
8
9
a
〇
n
e
)

 i

 e

 I
 7
 3
 1
 Q
u

 8
 8
 G
o

 a

 o
 n

 e

,
.
 M

 r

 H
 2

 3
 3
 w
 L
 E
 r

 a

 H

 r

 M 2

2
 3
 3
 w L

 E
 r

 b

 H

 r

 M
 2
 2

 3
 3

 w
 L
 E
 r

 c

T
 p

 p

 (

 p

 p

 (

 p

 p

 (

3
 1
1

 9

 7

/
/

1

：
,
J

 „

 乂

 p

 8
 1

 s

%

 r
e

 3

 i

K

 a

 1

 s

 2

3
 s

 /

 2

5

 :

 2

 7

 /

 2

1

-

1

2

/

2

2

/
 2

P

I

 t

n

 1
1

 k

a

 /

 p

 8

 p

「
)

2
 6

 p

 c

2

 3

7

-

1

 6

 f

.
 7

 4

 1

 o

J
g

 P
3

 :

 2

 :

 s

汰

:
i

 /

 i

比

c
 8

 i

 8
 ̂

f

 2

 1
 2

 r

o
 :

 1

 /

 s

 /

1

•
1
/
3

 2

 r

s

 8

 2

 1

 e

^
 1

 2
 p

 /

 ̂

h
：
 7

 1
1
4
 8
 6

 3

 7
 V

 s

 4

 6

 p

 T
m

1

 4

 3

 4

 p

 5
 c

r
 2

 •

 •

 1—
I

^
 7

 3
 C
D

 3 5

 3

 3

 4
 s
/
i

 7

 e

^

1

4

 5

 :

 i

 A

^

 r
f
0
4 3
 3
o
8
1
2

 2

 ̂

 3
 ̂

 i

 2

c

 .
5

1

1

4
 2

 P
2

 ̂

 /
I

 ̂

e
 P
3

 1
2
3
1
1
1

 1

 ̂

P
6
S

 a

h

 ⑴

 4

 e

 0
0

 o

 1

 g

t

 ？，；
，

)

 1
0
0

 :
1

 S
I
P

 n

r
 2
 2
5
2
1
1
1

 9

 u

 :

 i

 /

 s

J
^

G
 3

 b

 i

 1
 2

 p

 4

叫

n

.

1

2

/

1

1

几

s

 a
 2

 3

 9
9
1
1
1

 8

 r

 2

 /
 p

 5

 1
:
/

 r
c

k

 3

 t

 /

 4
 1

 i

 4
 r

 J

u

 O
b

 4
」
3

 3

 2

 p

 :

 1

 c

^
 ̂

 2

 2
 2
 1
1
1
1

 7

 a

 4

 .
1
2

 1

，

e

 h

 3

 8

 s

 s
 :

 6

 /

 p

 /

 u

^

 ̂
 3

 4

 y

 i
 :
2
2

 5

冗

I

 m

 ̂

 3
 t

2
 2
 -
1
/
1
-
8

4

记

g

3

9

 i
/
/
l

1

4

 m

^
 5

 1

 V

 1

 1

 /
 2

 1

 p

 :

 s

 e

c
t
 K
v

 5

 i

 6
 /

 i
 c

，
d
 ̂

 ̂

 ̂

 ̂

 M
 8

t

p

p

s

o

D

S

 3

 1
1
1
1
1
2

汉

u

 ̂

 2

 4
 2 2

 2

 2
 4

 1

 c

 1

 2
 /
/
/
/
/
/
 A

 ？
T

n

 i

 4

 6
2

 5
 p

 S
2

 :
/
0
2
4
6
9
2

 p

比

 a

 ̂
^
^
^
^
^
^

3

 u
p

 n

 ••

 3
 f

m

 ̂

 2

 1
2
 1
2
 4 1

 i

 1
 n

 i
 :

 1
 2

 9

 1

 ̂

g

 ̂

 ’
t
3
0
0

置
 f

 C
O

 r
i
T
’

 V
 p

 p

 p
 p
 p
 p

 D.

 ̂

此

 S

时

 2
1
1
4
3
3
4

 1
1
1

 /

 2
 .
1

 ̂

 1
3
5
7
0
9

 k

-
—
I
n

 f
f

 1

 h

 5
 /
 p

 Q
 1
 9

 2
 2
 2
 2 3

 4

 u

p
 e

 4

 3 5

 5 9

 4

1

 3

 9 5

 t

 3
 u
^

1

 K

:

.

.
 ？.

^

2
 c

 1
 o
o

 1
3

 4

 3

 1

 i

 3

 /
 5

 :

 s

 .
:
1

 .
1

 i
 i
 i
 i

 e

3

 a

8
8

 w

 s

 3
 :

 i

 -
1

 o
o
o
o

 R

s

 ̂

 p

 1

 2
 4

 4

 r
7
1
 /
-

 2
 /
/
/
/
/
/
 v
v

 w

 ̂

^
 ̂

 e

 3
 e

 /
 4
 2
 /

 3
 /
 1
 3
 5
 7 •

 1

 I
 -

 -

 -

 u

u

 a
 G

 7
 2

 9
 8
 3 5

 r
 6
3

 1
3
5
 7
0
9
 r

 2
 3

 9
 /

 o
 1

 c
"
 7
1

 2
 r
^

二

 X

 -

 .
m

u

 1

 1
3

 4

 3

 3

 T

 2

 1
2

 2

 2

 2

 3
 4

 T

 ••

 3

 1

 1

 p

 p

 p

 p

 £

^
 3

 5

 o

 3

 5 6

 p
i
:

 p
p
p
p
p
p
p

r
c
 J
 o

 9

 8

 7

 1

 7

 4

 r

 1

 2

 0
 2
 4

 6

 9

 2

 4

 4
 4

 4

 r

 i
 P
S

 p
 o

 3

 5

 6

g

 r
 r
e
 1

 4
 3

 3
 4

 1

 2
 2
 2
 2
 2
 3

 e
l
l

 2

 o

 2
 4
 6
 9
 2
 4

 d
i
^
 ̂

 u

Y
」

 1

 u

 ̂

 ̂

 t

 :
/
l

 4
2
1
6
2
2
2
2
2
3

 0
0

u

 a

 C
T
S
 」
 :

 s
i

 1

 i
 i

 i

 :

 s

 i

 3

 /
 :

 /
 •

•

 1
 1

 i
 .
1
.
1

 ..

 -V
,

X

 n

 i

 2

 N

 u
 i
i
i
i
i
i
i
i

 N

 u
 7

 .
1
8
.
1

 :

 i

 i
 i

 i

 i

 i

 N

 5

K

.
r
n

f
 ,

 R

n

6

}

 l
l
l
l
R

 1
6

 p

 0
0

 i

 l
l
l
l
R

 e

n

 1

 ̂

 a

 C
1
S
9
2
2
2
2

 2
2

 u

 C
I

 8
P
9

 2
2
2
2
2

 2

 u

 n

c
 e

 -
n

 ̂

 T

 L

 K

 n
n
c
n
T

 :

 3
 p

 :

 :

 2
 n
n
n
c
T

 u

.

 ̂

 1

 c

 E

Q
n
n
n
n
n
n
n
n
n

 E

 I
n

 3
 n
9
n
/
n
n
n
n
c
c
:

 s

 g

s

n

p

 R

 a
 o

 1
 2
 3

 R

 a
 :

 8

 :

 2
 o

 1

 2
 3 R

 ̂
^

7
 0
1
2
3
4
5
6
7

 0
^

 9
 1
1
1
1
 n
l
i
3

 2
-
1
3
1
4

 5
6
7
8
9
1
1
1
1

 F

r
 .

 o

 Q

 i

二

二

I
-

二

二

二

二

二

I

I

二

I

I

二

二

 }

 .
1

二

：

I

I

 -
I

二

I

I

I

I

I

I

 --

二

二

 --

二

-
I

1

 h

 ̂

 ̂
H
-

 G
 G
 G
 G
 G
 G
 G
 G
 G
 G G

 G

 G

 ̂

 F

 G
 1
 -
1

 G
 G

P
G
 G
 G
 G
 G
 G
 G
 G
 G
 G

d
.

T. S. Cheung References 106

C k t 5： P l a c e m e n t Grouping
27 26 2 40 11 15 9 6 S 2 10 1 1 i

3 5 24 6 49 20 34 2 2 5 2 2 3 4
1 18 4 16 22 21 10 2 2 2 1 4 3 1
8 19 7 17 12 14 33 2 2 2 2 1 1 d

28 43 48 46 13 32 35 4 11 9 2 1 3 3
38 47 42 41 25 31 23 8 9 2 2 2 3 3
39 44 45 30 37 36 29 9 11 2 2 7 3 7

RETURN:
(a)

F i n a l C l u s t e r T r e s :
G二1 n : 8 i： 9 10 11 12 13 14 15 16

n : 1 8 i : 1 2 3 4 5 6 7 8 17 18 19 25 30 41 42 45 46 49
G二3 n : 7 i : 20 21 23 31 32 35 38
G二4 n :4 i : 22 28 33 34
G二5 n : 1 i : 24
GrS n : 2 i : 2S 27
G二7 n : 2 i： 29 37
G二8 n : l i : 33
G = 9 n ： 3 i : 39 47 48
G-10 n : 1 i : 40
G二11 n:2 i: 43 44

RETURN: (h)
F i n a l Cluster Tree with connectivity attributes:
G = 1 n:8 i:9 p 10/3 s 11/3 i:10 p 9/3 i:ll ？ 9/3 i：12 p 9/3 i:13 口 9/3 i : d 9/

3 i:15 p 9/3 i:lS p 9/3 •
G二2 n：13 i：1 ？ 17/1 i:2 p 17/1 i:3 p 18/1 i:4 p 18/1 i:5 d 18/1 i:3 d 18/1 i:7

p 1 7 / 1 i : 3 p 1 7 / 1 i：17 p 18 /2 s 4 5 / 2 i : 1 8 p 1 7 / 2 s 3 / 1 i : 1 9 o 1 7 / 1 s 1 8 / 1 i：25 o
4 2 / 1 i : 3 0 ？ 1 7 / 1 s 1 8 / 1 i : 4 1 ？ 17/L s 1 8 / 1 i : 4 2 p 4 6 / 2 s 2 5 / 1 i : 4 5 d 1 7 / 2

p 1 7 / 2 s 4 2 / 2 i : 4 9 a 1 / 2 s 4 1 / 2 ‘
G二3 n : 7 i : 2 0 p 3 5 / 1 s 3 6 / 1 i : 2 1 ？ 3 2 / 1 s 3 5 / 1 i : 2 3 d 3 2 / 1 i : 3 1 ？ 3 2 / 1 s 3 5 / 1 i :

32 ？ 3 6 / 2 s 2 1 / 1 i : 3 5 p 3 6 / 2 s 2 0 / 1 i : 3 8 p 3 2 / 2 s 3 5 / 2
(J 二 4 n : 4 i : 2 2 ？ 3 3 / 1 s 3 4 / 1 i : 2 8 p 3 3 / 1 s 3 4 / 1 i : 33 p 3 4 / 2 s 2 2 / 1 i : 34 d 3 3 / 2
G二5 n : 1 i : 2 4 p - 1 / 0 ‘
G二S n : 2 i : 2 6 p 2 7 / 1 i : 2 7 p 2 6 / 1
G二7 n : 2 i : 2 9 p 3 7 / 1 i : 3 7 p 2 9 / 1
G = 8 n : 1 i : 3 8 p - 1 / 0
0-2 n : 3 i : 3 9 p - 1 / 0 i : 4 7 p 3 9 / 1 i : 4 8 p 3 9 / 1
G二10 n : 1 i:40 p - 1 / 0
G二11 n:2 i:43 p 44/2 i:44 p 43/2

RETURN:
(c)

Figure 5-32 Final Results of Placement, Grouping and the Cluster Tree of Ckt. 5

In this thesis, only the results of 7X7 grid plane is done because the m a x i m u m size

that can be afforded by the initial placement program "fplace77.pas" (Appendix I) is 7X7

variables. If a larger plane is to be process, the initial placement should be done

manually. A new algorithm on the initial placement for larger circuit is discussed in

Section 6.5. This new algorithm will utilize the constructed cluster tree data structure

in the Affinity Clustering phase and will solve placement problem on a larger grid plane.

1. S. Cheung Discussion] j |

6. Discussion

In this section, the computation time of l A P A will be analyzed (section 6.1); three

alternative methods on the determination of propagation path will be discussed and

compared (section 6.2); an algorithm on wiring optimization (section 6.3) and the

method to generalize the cluster tree data structure (section 6,4) are introduced. In

addition, a new placement algorithm and an alternative method on element allocation

are described in section 6.5 and 6.6 respectively.

6.1 Computation Time of the Algorithm

The computation time of the algorithm is summarized as follows (n is the number of

cells in the circuit and lei is the number of connections). Derivation is in Appendix H

1. Affinity Clustering:

computation cycle

i. construction of connection lists lei

ii. primary grouping lei + n 2 / 1 6

iii. element appendage to existing groups lel/2 + 5n2/64

iv. loose appendage of ungrouped elements lel/4 + 13n2/256

V. single element group formation lel/8 + 15n2/256

Total computation time is

T 1 = 23lel/8 + n2/4 cycles Eq. 6-1

Assume that each cell has an average of 2 connections to other cells, lel=2n. Then,

the equation becomes:

T1 = 23n/4 + n2/4 cycles Eq. 6-2

2. Alteration:

Mffi computation cycle

i. element assignment to a group n

ii. empty space searching 2(n/2)"2

iii. determination of direction of element allocation

-cross-cut direction of allocation (n/2)i/2

- d y n a m i c determination of path based on size functions

-segmentation of cross-cut (n/2)i/2/4

-partial optimization of segments 3ni/2/2

[(ni/2/6.36)+!]
- d y n a m i c linking of segments 3

T. S. Cheung Discussion 1()8

iv. element allocation (n/2)i /2

Total computation time is

[(ni/2/6.36)+l]
T 2 = n + 4*(n/2)i/2 + (n/2)""4 + 3 n " " 2 + 3

[(ni/2/6.36)+l]
= n / 2 + 4.5n"2 + 3 cycles Eq. 6-3

The graphs on these two equations are shown in figure 6-L

Equation 6-2 and 6-3 indicates acceptable computation time since the computation

time for a whole placement process should be at least of complexity 0(n2) while the

present algorithm is of about 0(n2) (the n terms, ni/2 terms and the last term in Eq.

6-3 is small as compared with the n2 term as n is less than 10000).

The values of T1 and T2 for n=9 to 100 is summarized in the following table:

n 9 16 25 36 49 64 81 100

T1 73 156 300 531 882 1392 2106 3075

T2 27.5 40 54.6 71.5 90.6 111.9 135.7 161.9

Table 6—0. Values of T1 and T2

T. S. Cheung Discussion 109

Conpulotlon Tina
(ogolstt)

J f
38G8- /

2988 • /

28G8 • /

2788 - /

26G8- /

2508. /

2uaa • /

2388 • /

2288. /

2168- +

2088 • /

1988. /

1808- /

/ T1
1686' /

1588- /

1488. i

1308. /

1288 • /

1188- /

1888- /

9 . /

808- /

780- /

688' /

588- /

use- /

308- /
/ T2

2 8 8 - J

® IB28""“38""“H'B 5 8 6 8 7 8 8 8 i i ~ ~

orrog slza (o«ll«】

Figure 6 - 1 Computation Time of lAPA

1. S. Cheung Discussion] j |

Alternative Methods on the Determination of Propagation Path

In this thesis, the propagation path on alteration of placement is determined by

segmentation of cross-cut and linking of optimal segments. The following are three

methods proposed on the determination of propagation path. The first one is an

exhaustive search on the optimal propagation path. It will go step by step on the

determination of path direction. The second one executes a thorough search on path

segments. It will use more computation time but the search is more detailed. The third

one is a method with different approach. It will use progressive accessing method and

recursive functions is required.

6.2.1 Method 1

This method will execute an exhaustive search on a region between c and t

Consider the following examples:

1 2 3) 5 5 7 1 2 3 ^ 5 6 7

1 c o I I I I I j 1 |c I o I ~ ~ ~

2 Q X Q 2 0 X 0 0 一

3 O X O 3 O X X O

4 ^ X o 14 0 0 ^

5 Z Z Z Z a Z Z 5 LIZZZZZZ

6 二 6 =======
7 I I I I I I I I 7 I I I I I I I

(Q〕 〔b〕

Figure 6- 2 Ranges for Exhaustive Search

The paths with crosses are the cross-cuts. The adjacent neighbours to the cross-cuts

will be marked with circles. Then, the optimal propagation paths are determined within

the regions with marks by progressively linking towards the target,。starting from c.

The directions of linking are illustrated in figure 6-3. O n the slot with circles, there

will be two directions on linking, while on that with crosses, there will be three

directions. Linkage of the propagation path is based on the criterion to minimize the

cost functions and the length of the path.

1 . S. Cheung Discussion] j |

C o o

O X 一卡 O C X O O
；

十、 7
O X o O P

^ ^ _ _ ^

O ^ o o

〔e〕 〔b〕

Figure 6-3 Directions for Linking Propagation Path

The number of execution cycles on this method is:

Tmi - (A.M.)x

where A.M. is the arithmetic mean of the number of directions of linking, and

X is the number of steps on the path.

Since A.M. = (2+3)/2 and x = (n/2)i/2,

Tmi 二 (1.9)ni/2 Eq. 6-4.

For an 7X7 array, the average number of execution time is

Tmi = 89.4 cycles

which is a large number as compared with that in section 3.2.3.2.3 (9 cycles).

6.2.2 Method 2
Method 2 is similar to the dynamic determination of path in section 3.2.3.2.

However, the search for optimal path is done on more path segments. Consider the

examples in figure 6-4. The small squares mark the points on the cross-cut with Lmht

of 4 or 5 from c or the last point. The slots with circles are points to determine path

segment templates (as in section 3.2.3.2.2). These circles may be on the diagonal or

adjacent (horizontal or vertical) neighbours to the crosses. It is classified by the

inclined angle of the cross-cut. In algorithmic form,

xdiff:二 xe-xs;

y d i f f y e - y s ;

xdiff+ydiff ;

if or I^ht二5) then

飞 . S . Cheung Discussion 122

begin

set—cross—point;

if (xdiff〉=2) or (ydiff>=2) then

set—circle—points—diagonally

else if (ydiff<2) then

set_circle_points_horizontally

else

set—circle—point s—veirtically,.

end; {if}

where (xs,ys) and (xe,ye) is the start and end points of the

segment respectively.

Table 6-1. An Algorithm to Determine the Circle Points

on Path Segmentation in Method 2

1 2 3 4 5 6 7 1 2 3 ^ 5 6 7

1 |c丄 I I I I I I 1 I |c I I I I I

2 2 Z Z " ! ^ ~ Z Z Z

3 ； 3 一 "
4 Qy^ J 4 o g o

5 ZZ_ILZZZ 5 I
6 6ZZZxZZZ
7 I I I I I 111 7 I I I I I I I

〔Q) (b〕

1 2 3 4 5 6 7 1 2 3 5 6 7

1 I I I n 1 1 1 1 1 1 丨丨丨

2 一 2
3 工 二 二 二 3 ： ! ! 1 =：^ =二 =
4 一 ^ 一 [" ^？-^：二‘。
5 工 二 = 5 一 审 ； 巧 才
6 0 、 、 \ \ 6 〜 —

7 | r 卜 1、4 7 1 1 1 1

〔C〕 （ d〕

Figure 6-4 Path Segmentation of Method 2

1. S. Cheung Discussion] j |

There are more combinations on the linkage of the segments as compared with the

method in section 3.2.3.2.3. In figure (a) and (b), there is a level of 3 division points (1

with square and 2 with circles) and each segment have about 3 templates (section

3.2.3.2.2). Hence, the number of combinations is approximately

(number of combinations of path) * (number of combinations of templates in a path)

二 (3) * (3 2)

- 3 3

which is case for a path with Lmht > 6.

In figure (c) and (d)，there are two levels of 3 division points. The number of

combinations of path segments is approximately

(32)*(33)

二 35

which is case for a path with Lmht > 10.

In general, for a length of L, the number of combinations is given by

•2*(L/A.M.) + 1]

f (L) 二 3

where A.M. is the arithmetic mean of the length of a path segment.

Since the arithmetic mean is (4+5)/2 = 4.5,

[2*074.5) + 1]

f (L) = 3 Eq. 6-5.

Since the average length of path in an array with size n is (n/2)i/2, Eq. 6-2 is given by

[2*(ni/2/6.36) 4- 1]

Tm2 = 3 Eq. 6-6.

For an 7X7 array, the average number of combination is Tm2 二 27.

飞 . S . Cheung Discussion 124

6.2.3 Method 3

A n alternative method to determine the propagation path in section 3.2.3.2 is

proposed as follows. The propagation path is found out by progressively approaching the

target empty space, t instead of segmenting the cross-cut.

1 2 3 14 5 5 7 1 2 3 4 5 6 7

2 - 2
V —

3 _ 、 、 卜 - X \ 3
I ^ s V
•4 •、、>< \ \ LI c - - — >c-:P

：̂,

5 _ _ 1 丄 一 _ _ 二 1 5 二二：：
6 ^ 6 =

7 I I I I I I I I 7 I I I I I I I
> V

Q 〔b〕

Figure 6-5 Examples on Propagation Path

The optimal propagation path is determined by the following steps:

(1) - A straight line (cross-cut) is drawn between the 2 cells.

-Store the number of "passing" groups; this value is the initial value.

(2) 5 cells at a Lmht of 4 with the one nearest to the cross-cut on the cross-cut are

chosen as the middle of the 5 cells. These 5 cells are marked with crosses ’’x" and

those cells with L^ht of 4 and adjacent to the crossed cells are marked with dots

(3) - Check those cells with a cross or a dot

-Store the number of "passing" groups.

-Find the one with the smallest value.

- I f more than 1 path are with the smallest value, the summation of size of the

”passing" groups should be taken into account as well.

- I f that is still incapable of determining the difference, additional straight lines are

drawn between the cells concerned and the empty cell, the one with shorter Lmht is

chosen.

(4) Check cells with a circle inside, see whether they are in the same groups with their

adjacent cells. In the example on the Figure 6-6 , there are two criteria on the choice

of the optimal path:

飞 . S . Cheung Discussion 125

= 工 ; : = Z I =] = 二 = 工 R B C
• . X ^ ——U I

丄 r V ^ 1 — • X

= = 半 ! ！ 口 I I Z I Z I Z
X o ^ “

3 xA o

〔e〕 （b〕 （c〕

Figure 6-6 Examples on the Choice of the Next Start Point on Path Determination

(a) If CI is the path that passing through the smallest no. of groups then C2 will be

chosen as the next starting point since CI and C2 are in the same group.

(b) Let A 2 be the end of the chosen path and with Ga2 groups passed while CI with

G c i
Now, CI and C2 are in the same group,

if Gci = Ga2 + 1 then if summation of size (C2) < summation of size (A2) then

C2 chosen

else A 2 chosen

else A 2 is still the chosen one

(5) if Chosen cell < > empty space then

the process starts again {chosen cell --> starting point }

else end.

Remark:

(i) W h e n a Lmht of 3 is used instead of 4，we are actually checking each and every

possible path. It, in some way, is a more general check but on the other hand, the more

iteration or shorter the path is, the more likely that w e m a y omit some "good" path with

complicated initial start but straightforward ending.

Without loss of generality, choosing 5 cells on each search is also appropriate for

cell arrays with size greater than 7X7.

(ii) W h e n iterative paths are selected, linkage of all the optimal path segments is not

necessarily the optimal path. The case can be illustrated by the mathematical equation

on vector summation:

T.S.Cheung Discussion

I S X Iv.l ， where v ； is a vector. Pn f̂ .i

The above method can be implemented with recursive subroutines [Monro87,

ScWePe82] ’

The average number of execution cycles of this method is:

[(ni/2/6.36) + 1]

二 9 cycles Eq. 6-8.

r . S. Cheung Discussion 11/

6二.4 Comparison on Execution Time of the Four Methods

Comparison on the execution time of l A P A (Incremental Alteration Placement

Algorithm), Method 1，Method 2 and Method 3 is shown in the following figure. It is

noticed that l A P A is the one with the least number of execution cycles.

Execution Tine (cycle)

A

. M l

3GG - /

250 - /

2QG - / • M 3

150 - J /
IGG - ^

5。.

X 头 ^
I I I 1 1 1 1 1 1 1 >

‘ IG 2G 3Q 4Q 5G 6G 7Q 8G 9Q IQQ

Arroy Size 〔cell)

Figure 6- 7 Comparison on Execution Time of lAPA, Ml, M 2 and M 3

1. S. Cheung Discussion] j |

6.3 Wiring Optimization

In section 4.1，it was stated that one of the function of the affinity clustering phase

is to minimize crossing congestion across channels. The method is described as

follows:

The number of crossing count can be estimated by the following formula (criteria):

Consider the example in figure 6-7. The i-th net is represented by (s, ,t,)，where s and t

are the start and end points of the net, and are real numbers.

At channel 1, considering only net 1 and net 2，ti and S2 are on the same column and

it will increase the channel width by 1. In algorithmic form,

if ((si<t2) and (S2 <ti) and (si<〉ti) and (S2<>t2)) then

土increment cross一count [channel一num]；

Hence，the cross count formed by the pair {net 1，net 2} is 2. The cases of {net 2，

net 3} and {net 3，net 4} are similar, and the cross counts are 2 as well. Since the

channel width is the m a x i m u m of the cross counts, the channel width = 2.

At channel 2，the m a x i m u m cross count occurs at the third column and is 3. Hence,

the channel width = 3.

At channel 3, net 1 and net 3 are pure vertical connections and thus si=ti, S3 二ts.

Even though there is crossing at net 2 and net 3，the channel width should not be

increased. Hence, the channel width = 1.

In general, the algorithm is as follows:

for 1 t〇 n do

begin

at channel j,

arrange end points of nets such that S1<S2<S3 ... <Sn,

and Si >ti V i ；

if ((Si <tj) and (Sj <tj)) and (Si <>t,) and (s」<〉tj)) V j > i then

increment cross—count[channel一num]；

channel—width[channel—num]:= max{cross 一count};

end; {for}

Table 6-2. An Algorithm on Channel Width Estimation

1. S. Cheung Discussion] j |

^ i ~ ^ t—a~~"=3-, a _ J _ C i r-,鬥

1-1 2. 1 3.1 1 5. 1
J L t2 ta tii

LJ 丨少 u

c h a n n e l 1 ^ ^ ^ ^ ^ ^

r^f^ r^ 门

1-2 2.2 3.2 4.2 5.2
S 2 ti t3
CC：：：^^^^^^^^ ^ u ' - o ~ c H Ha~err-'

c h a n n e l 2

Si 12 1 1 P i

1 - 2 2.3 3,3 4.3 5.3
S i S 2 S 3

•""o ~cr-' "—acn—' ^ ~ ~ c q ^ L ^」 _cr-'

c h a n n e l 3

— ^ r - ^ [—a CX— A J i .-. .-1

t l 1 3 t 2

1 • 2 2.4 3.4 5.4

~ C I - ' ~ ~ c i - J ~ C 3 - J u u 丨 ‘ ― a ~ ~ o -

Figure 6-8 A Wiring Model on Macrocell Array

It is worth noting that the coordinates of x and y (or i and j) can be readily obtained

from the data (coox and cooy) on each record of the cluster tree.

6.3.1 Data Structure

Figure 6-9 shows how data are accessed by an array for each axis of the chip.

"PTR" stands for pointer. The entry in the Y array for a given y coordinate points to the

head of the list for all data at that y coordinate. For example, wiring information at y。

coordinate is accessed through the pointer in to the storage pool.

For processing efficiency, entries are sorted according to their starting coordinates

(i.e. si<s2<s3 • . . <Sn). Feature type states the type of crossing of the net (i.e. case

in channel 1，2 or 3). Feature P T R is for the case of non-planar crossings (e.g. cyclic

constraint). It is optional.

飞 . S . Cheung Discussion 1 2 0

C h i p 1noge

512 P U Z] S t o r o g a
pool

？ Z ^ z ^ 1 — 、 w i r i n g

t 日。y r ：•
o •

- : ^ c^
^ . fl row / \

of c e l l s / \

1 2 512 / \

X orrQjj / \

F e a t u r e PTR s t a r t end F e a t u r e
type n e x t c o o r d , c o o r d . PTR

e n t r y (8) (t〕 【opt.〕

Figure 6-9 Data Structure Scheme for Modeling Chip Image

Overlapping and Separate Bounding Boxes

Alternatively, the number of crossings can be determined by the number of

overlapping of bounding boxes of connections at each channel.

In Figure 6-10,bounding boxes A and B are separate while C and D are overlapped.

At channel 1，the channel width should be increased due to the overlapping boxes. At

channel 2, however, the width of channel should not be increased because the boxes are

separate .

However, the case is different in figure 6-11. Although the bounding boxes X and Y

are overlapping, it occurs between two channels. In this case, width of neither channel

should be increased.

飞 . S . Cheung Discussion 131

c o o x c o o y

r^j nt n “ 一

1.1 2.1 3. 1

^D ^C
M-= L Y — M i—y m •

c h e n n e l 1 ^ _ n 十
c im：；^— u •

“ 门 ‘ n nc= p A I n

1.2 2.2 3.2

f̂l s已

u iL 一 l y J iji tr
c h o n n e l 2 Sp R B t g

• I m liaL^ “ o • tm jiy

1.3 2.3 3.3

u U '̂"U U U tJ “

Figure 6-10 Case of Overlapping and Separate Bounding-boxes on Single Channels

- a f - B » B U . p B B U .

1.1 2.1 3.1

tx

c h a n n e l 1

n I f • _ • 两•

1 .2 2 . 2 3 . 2
s 丫

U IT"* l-l 1 L-LI U-

c h a n n e l 2 s^ X T “ “ " t 丫

“ A - j fh j-A n

1.3 2.3 3.3

u lu U LJ u LJ

Figure 6-11 Case of Overlapping Bounding-boxes on T w o Channels

To optimize wiring of a circuit, we should minimize number of crossings at each

channel so that the channel widths and thus the interconnection lengths are minimized.

T. S. Cheung Discussion ⑵.

6-4 Generalization of the Data Structure

The data structure of group list and cluster tree described in section 4.3 is only a

simplified model of a circuit. For a more detailed representation of a circuit, the record

structure should include information on a few items: (1) cell type of the element, (2)

more detailed information on the adhesive elements, (3) indicator on block macrocell,

and (4) indicator on the critical path.

The record structure of in figure 6-12 is proposed to replace the element variables in

Table 4-2 and 4-3 for the generalization. The "bulkrec" record in Table 4-2 and

"zisprec" record in Table 4-3 will be used as usual the "head of a group".

J . cell

St type c o o x c o o y o d h e b l o c k cri ep

(o〕 P r o p o s e d r e c o r d s t r u c t u r e

n e x t con cp

〔b) o d h e _ p t r

Figure 6-12 Generalized Record Structure

In the record at figure (a), "inst"，"coox"，"cooy" and "ep" are the same as those

declared in Table 4-2 and 4-3. Four new variables (cell—type，adhe, block, and cri) and

a new pointer variable (adhe_ptr) are introduced in the record.

1. cell一type : integer; {indicates the type of cell an element belongs to}

2. adhe : adhe_ptr; {(as in figure b) to record A L L the adhesive elements to the

instance. It is more detailed than the two variables ("pri"

and "sec") in the "treerec" record.}

[adhe—ptn- next : adhe一ptr; {pointer to the next adhesive element}]

con : integer; {connectivity of the adhesive element)]

[cp : integer in group list; {instance of the adhesive element}]

[：tptr in cluster tree; {points to the adhesive element}]

1. S. Cheung Discussion] j |

3. block : set of integer in group list; {set of instances of elements in a block)

:tptr in cluster tree; {points to other element(s) of a block, if any}

4. cri : integer in group list; {instance of the next element on the critical path}

:tptr in cluster tree; {points to the next element on the critical path)

Details of the above items will be discussed in the following sub-sections.

6.4.1 Cell Types

All the macrocells can be classified into types of cell. Three of the cell types are

shown in the following figure:

J S r ^ U l C D U l CD o o o
① CM Ln rj CD OD

二 二 • • • . ••詹
"r-i - » - (-T—I - , - H * r H

~ ° ~ ~— a ~ |—a~门 ri 广 f r-»

〔i,J〕 〔i,J〕 (1,J]

(x,y〕 （x,y〕 (x, y)

~ ° D ~~a~cr-J 【u u L_i u
L n C D U ^ CD CD Q CD

⑴ ① C\J Ln r- c\j CD CO ‘ • • • • — — — — — — — —

〔G) two-port cell (b) three-port cell 【c) four-port call

Figure 6-13 Cell Types in the Generalized Data Structure

Cell types not only indicates the classification of cells but also give the locations of

each ports on the cells. Port locations together with net connections give information on

the wiring in each channel (section 6.3). The locations are given by the relative position

of a port and the absolute position of the cell. For example, the relative position of the

two ports in a two-port cell are 0.33 unit and 0.67 unit respectively and the absolute

position of the cell is (i, j). Then, the locations of the two ports in the i-axis are:

i + 0.33 = i.33, and

i + 0.67 = i.67 respectively.

The cases in other types of cell are similar.

T. S. Cheung Discussion 】24

6.4.2 Adhesive Attributes

Unlike the element records in Table 4-2 and 4-3，there is no limit on the number of

adhesive elements in the generalized data record. The way to link the adhesive

elements is illustrated in figure 6-14.

^ p o i n t s to o t h e r

厂 b l o c k e l e m e n t 〔 s) , if o n y

‘ 广 > n e x t 8 1 e n e n t o n c r i t i cq1 p a t h

{ Q I XI y d |J IJ I ^ p o i n t s to n e x t e l e m e n t

~~~ in t h e g r o u p 

1 IcllH > p o i n t s to 1 s t o d h e s i u e e l e m e n t 

IcaFI > p o i n t s to 2 n d o d h e s i <je e l e m e n t 

• 

• 

•^cnlH > p o i n t s to n - th o d h e s i ^ e e l e m e n t 

Figure 6-14 Linkage to Adhesive Elements by the "adhe" Pointer 

In the above figure, the element record with instance "i" is shown, "ct" stands for 

the cell type of the element. (x丨，yj) are the coordinates. The pointers of the 

"adhe_ptr" records link the "tptr" record of the adhesive elements and cl, c2,…，cn are 

the connectivities of the corresponding adhesive elements. A s in section 4-3, the "ep" 

pointer links the next element in the group. The "block" pointer links the block 

element(s) and the "cri" pointer links the next element on critical path. 

6.4.3 Blocks Representation 

S o m e logic parts (e.g. multiplexers, JK flip-flops, arithmetic logic unit) are 

composed of several macrocells and they will form blocks of macrocells with certain 

sizes and shapes. T o distinguish these blocks in the circuit so that the placement 

alteration is done properly, one more attribute should be added to the element record, 

naming "block", to identify existence of the blocks. 

If such blocks are added to the circuit, w e should find a space with the same size 

and shape to the block so that placement is possible. In the case that any block of cells 



1. S. Cheung Discussion ] j | 

exists on the path of propagation, each move (shift of cell) should be done after checking 
the "block" attribute of all the elements related, so as not to break the structure of any 
block. Thus, checking "block” attributes of all the elements related is necessary before 
allocating empty spaces and executing additions. 

The attribute "block" is suggested to be a pointer for linkage of element(s) in the 

same block. Since pointer is a dynamic variable, direct access is possible and it will 

facilitate the computation. 

6.4.4 Critical Path Adjustment 

Consider the following circuit: 

C K O — —. 
0 n O Q l 

LL. 

HckQ g•丨___C>Q1B 

』EX^^> DQ. Q _ r - ^ Q 2 

P LJL_ 

— 列 O Q 2 已 

I $ 5 

一 ~ \ i $ 3 

LL. 

~ ~ | c k Q ir| [Z>Q3B 

Figure 6-15 A 3-bit Synchronous Counter 



飞.S. Cheung Discussion 126 

The connection lists of the circuit (algorithm in section 3.1.1) are: 

Directed Undirected Fan-out Link-related 

Connection Connection Connection Connection 

List List List List 

1,5: 1 1,5: 1 5,6: 2 1,5: 1 

1,6: 1 1,6: 1 1,6: 1 

2,5: 1 2,5: 1 2,5: 1 

2,6: 1 2,6: 2 2,6: 2 
3,4: 1 3,4: 2 3,4: 2 

4,3: 1 4,5: 1 4,5: 1 

1 5,6: 2 
6,2: 1 

Table 6-3. Connection Lists of the 3-bit Synchronous Counter 

The grouping is N = {1, 2, 5，6} U {3,4}. The cluster tree together with connectivity 

attributes are shown in figure 6-16. 

In the circuit, the longest delay path is from input CK, via I$l，I$5, I$4, and I$3 to 

output Q 3 (I$x is the notation for Instance x). This critical path can be represented by 

the sequence {1, 5，4’ 3}，where the integers denote the instances. In the cluster tree of 

figure 6-16, the critical path is outlined by bold lines. Delay on this critical path is 

given by the following equation. 

Let Delay(e，s) denotes the delay from s to e, where s, e are start point and end point 

respectively. 

Delay(3，1) = (|x3-X4| + | X4-X5I +[.X5-Xi|) + (|y3-y4| +|y4-y5| +|y5-yi|) 

To reduce the delay on the critical path，we should adjust the location of elements 

on the critical path such that the above value is minimized. 

In general, the delay on a critical path {ei, e?，...，e。} is: 

Dday(en’ei)= Z (|xe,..i-Xe + | ye, .i-ye,|) Eq. 6-9. 

The sequence {e：, 62,…，e。} can be traced by the "cri" pointers on the elements. 

The values on x and y coordinates can be read from the "coox" and "cooy" attributes. In 

algorithmic form, calculation on critical path delay is: 



1. S. Cheung Discussion ] j | 

p:= start 一point 

delay:=〇； 

while (p"̂  . c r i o n i l ) do 

begin 

d e l a y d e l a y + abs(p^.cri^.coox-p^.coox) 

+ abs (p^ .cri'^ .cooy-p'^ .cooy); 

p:= p".cri 

end; {while} 

Table 6-4. Algorithm of Critical Path Delay Calculation 

And, the aim of critical path adjustment is to minimize Delay(en, ei). 



T. S. Cheung Discussion 

I 
15" cJ —~~^ 

D) —— OJ 二 
r 一 — 

(D ^J 一 

I Y 

CJ CJ 

— cn 

^ L 

o Z 
° I 77 

Figure 6 - 1 6 Generalized Cluster Tree of the 3-bit Synchronous Counter 



飞 . S . Cheung Discussion 139 

Total Interconnection Length Estimation 

In the cluster tree of section 4.3，the total interconnection length of a circuit can be 

estimated by the following equation: 

Total Interconnection Length 

= Z (I pA.prr.coox - pA.coox I + I p:pri:cooy - p^.cooy 

+ I pA.secT.coox - pA.coox | + | p、ecf.cooy - p:cooy | ) Eq. 6-10, 

where "p" is the tree element variable (Table 4-3). 

However, the above term is only an rough estimation because only the two mostly 

connected elements of each instance are taken into account. With the generalized data 

structure, the total interconnection length can be estimated more accurately: 

Total Interconnection Length 

Z I (1 ap:cpA.coox - pA.coox | + | ap^cp^cooy - p:cooy |) Eq. 6-11. 

where "ap” is the adhe—ptr variable (Figure 6-11). 

In algorithmic form, the above equation can be implemented as follows. 

zp:= zisp—root; 
to ta lJength := 0; 
while ( z p o n i l ) do 
begin 

p:= zpA.atom; 
while ( p o n i l ) do 
begin 

ap:= pA.adhe; 
while ( a p o n i l ) do 
begin 

to ta lJength := total—length 
+ apA.con*(abs(ap:cpA.coox-pA.coox)+abs(ap:cpA.cooy-p:c〇oy)); 

ap:= apA.next; 
end; {3rd while} 
P:= P : e p ; 

end; {2nd while} 
zp:= zpA.molecule; 

end; {1st while} 

Table 6 -5 . Algorithm on Total Interconnection Length Estimation 



T. S. Cheung Discussion î r； 

6.5 A New Placement Algorithm 

A new algorithm on the initial placement for larger circuit is discussed in this 

section . Since this new algorithm will utilize the constructed cluster tree data 

structure in the Affinity Clustering phase, it m a y solve placement problems on grid 

plane with size up to 10X10 (estimated from the declaration on array variables for a 

program with this algorithm). The flowchart of the algorithm is as follows: 

Q Stort ) 

Rffini ty 

Itero 11ve Clustering 

Placement 

jJ,/ 
Initial 

尸 1 ocenen t 

E U Q 1 U A te 

Cost, CQ ^ 
Suffle 
Cells 

ii 
Ei^o 1 uo te 

Cost, C 

j| I 
^ T 

Updo te \f p 

尸 locsnent 

V 

F i 
p o s s ^ > 

T中 
I 

( E n d ) 

Figure 6 - 1 7 Flowchart of the New Placement Algorithm 



1. S. Cheung Discussion ] j | 

In this algorithm, the affinity clustering phase is done before iterative placement. 

The affinity clustering phase is classified as a partitioning task as those described in 

section 2.1. 

The iterative placement composed mainly of 5 step: 

1. The initial placement step is one which assign location for element by their 

grouping. Elements belonging to the same group will be placed around an area. Each 

time an element is placed at the array, its interconnection length to the adhesive 

elements should be measured so as to minimize the wiring length. 

2. The cost is evaluated by three parameters. The first one is wiring optimization。 

Width of each channel should be minimized. The measure of channel widths was 

suggested in section 6.3. The second parameter is the total interconnection length and 

the estimation algorithm was stated in section 6.4.5. The third parameter is the delays 

in the critical paths (section 6.4.4). 

3. Cell shuffling is done by interchanging two or more adjacent cells. The selection of 

these cells are based on information in the cluster tree. Usually, cells with higher 

connectivities would be selected in the beginning of the iteration so that the change in 

cost value is more significant. However, at the later stage of iteration, shuffling cells 

with lower connectivities is more likely to reduce the cost value. 

4. Evaluation of the new cost after cell shuffling. If the value of the new cost is lower, 

the placement will be updated. Else, another cell shuffling would be perturbed. 

5. Step 4 will be repeated until the placement reach an equilibrium^ state or the number 

of iteration reach a pre-defined value, N. 

This placement algorithm is recommended because the cluster tree formed by the 

affinity clustering phase gives a detailed data base on the circuit, and operations on the 

data structure is flexible and will save both computation time and computer memory. 

The resulting layout by this algorithm will be similar to that by the Simulated 

Annealing algorithm in Appendix since the evaluation in cost and method of cell 

shuffling in the two algorithms are similar. 



T. S. Cheung Discussion 132 

An Alternative Method on Element Allocation 

The method used in Element Allocation in section 3.2.4 shifts elements along the 

optimal propagation path. A n alternative method which uses information on the cluster 

tree is suggested. Considering the slots among the two end points in the six templates 

in figure 6-18. 

3 i 
I _ ^ ^ I i l i pi • i _ ii 

(e〕 （b〕 (c) (d) (e) (f) 

Figure 6-18 Slots A m o n g End Points in the Six Templates 

The above 6 templates were defined in section 3.2.3.2. The shaped parts are the 

slots among the end points "o" and ’’x”. (a), (b)，and (c) are the templates for L M H T 

(Manhattan Length) of 4，while (d)，（e)，and (f) are those of L m h t of 5. Mathematically, 

the set of these "enclosed slots" is defined by 

SES(O, X ) = {(i,j)} - {(IOJO), (ixj.)}, 

i G {io,…，IX} a n d j G {j。，…, Eq. 6-12. 

At figure (a), there are 3 slots between "q'： and "x".； However, sinca only an average 

of 1.5 cells may belong to the same group, there are 1.5 combinations for a change in 

placement between these two end points. The number of combinations of placement 

change and the number of occurence of the six templates are summarized in Table 6-6. 

Template a b c d e f 

N o . of Enclosed Slots, NES 3 6 1 4 8 10 

A v g . n o . of combination, Nc 1.5 3 3.5 2 4 5 

N o . of Occurrence, NQ 4 8 4 4 8 8 

Table 6-6. Statistics on the Six Templates 



丁. S‘ Cheung Discussion ] 3 � 

The occurrence of the above templates is illustrated by figure 6-19. 

X 

X X X 

X X X X 

X X X X 

一 X X X X 

X X o X X 

X X X X 

X X X X 

X X X X 

X X X 

X 

Figure 6-19 Occurrence of the Six Templates 

Crosses on the outer ring are locations with LMHT = 5 units to the circle, while those 

on the inner ring with L m h t = 4 units. There are totally 40 locations with L m h t = 4 or 

L M H T =5 to the circle. However, the numbers of occurrence of the templates are not 

equal. For example, there is 8 cases in which template (b) matches with the space, but 

there is only 4 case in which template (a) matches. 

The average number of combinations of each set of templates is given by 

Avg(I^HT) = I(Nc'^No)/INo Eq. 6-13. 

The average number of combinations of templates a, b, and c is given by 

Avg(4) == (1.5x4 + 3.5x4 + 3x8) / 16 

=2.75 

The average number of combinations of templates d，e，and f is given by 

Avg(5) = (2x4 + 4x8 + 5x8) / 24 

= 3 3 3 

A s an average, the number of combinations of the six templates is 

(2.75+3.33)72 = 3.04 

and the average number of the combination in an array with size n is: 



1. S. Cheung Discussion ] j | 

Nconi(n) = 3.04*[(n/2)i/2/4.5] 

1 N c o . ( n ) = 0.478ni/2 Eq. 6-14. 

The values of Ncom(n) for n=9 to 100 cells is given as follows: 

n 9 16 25 36 49 64 81 100 

Ncom(n) 1.43 1.91 2.39 2.87 3.35 3.82 4.30 4.78 

Table 6-7. No. of Combination in Arrays with Size from 3X3 to 10X10 

The values of Nconi(n) for n二 100 to 10000 cells is given as follows: 

n 100 400 900 1600 2500 3600 4900 6400 8100 10000 

N c o m ( n ) 4 8 9.6 14.3 19.1 23.9 28.7 33.5 38.2 43.0 47.8 

Table 6-8. No. of Combination in Arrays with Size from 10X10 to 100X100 

Plots of the above values is shown in figure 6-20 and 6-21. Since Ncom(n) is 

proportional to the square root of n, it is noticed that an average of only 47.8 

combinations is need in the change of placement in an 100X100 macrocell array. Thus, 

the algorithm is also applicable for large scale circuits. 

Q u e r o g e n o . o f 

c o n b i n a t i o n s 

A 

5.0 -

1 . G -

° ~ 2 Q ^ ~ J G ^ ~ M 7 0 ~ ^ ~ ^ I G Q 〉 

o r r o y s i z e ( c e 1 1 s ) 

Figure 6-20 Plot of Ncom(n) of Medium Scale Arrays 



1. S. Cheung Discussion ] j | 

Q ^ e r o g e n o . o f 
c o m b i n a t i o n s 

A 

50 -

4 0 -

2 0 - ^ ^ 

° r k ^ S ~ ~ l i ' k 5 ' k ^ 7 k ^ ^ ~ l o i " ^ 

o r r o y s i z e ( e e l I s ) 

Figure 6-21 Plot of Ncom(n) of Large Scale Arrays 



T. S. Cheung Conclusion 1 36 

7. Conclusion 

In this thesis, a new alteration placement algorithm on macrocell array design is 

presented. This algorithm is aimed at automatic adjustment of the placement due to 

minor change on a design. Thus, the designer need not re-execute the placement phase 

or manually correct the placement. Using dynamic variables to form the data structure, 

the design is represented in a flexible form. It is proved that the computation time is 

reduced by implementing such data structure. Testing results from eight test circuits 

have been very encouraging. Alternative techniques which m a y improve the result of 

the algorithm are also suggested and investigated. In addition, another new placement 

algorithm which bases on the already developed data structure is recommended for fully 

utilization of the programs. These proposed methodologies are aiming at improving 

dimensions and performance of designs on macrocell array. 

In section 1，Introduction: the problem of layout automation, the proposed algorithm 

to solve placement alteration, the modeling of macrocell array, and the measure of cost 

function was introduced. 

In section 2’ Reviews of Partitioning and Placement Methods: the problems of 

partitioning and placement, and some of the State-of-Art methods were described. 

In section 3, Algorithm: the steps of the Incremental Alteration Placement 

Algorithm (lAPA) was described and a simple example circuit was used to illustrate the 

procedure-

In section 4，Implementation: techniques and details on the implementation of l A P A 

was investigated. The construction of the data structure and the layout of programs and 

data files were also described. 

In section 5，Results: the results of simulation on 8 test circuits are analyzed and 

summarized. Details of simulation procedure of two circuits were investigated for more 

detailed understanding of effectiveness of the algorithm. 

In section 6, Discussion: the computation time of l A P A was investigated. Three 

alternative methods on the determination of propagation path were introduced and 

compared for a deeper investigation on the problem and a better understanding of the 

computational complexities. In addition, an algorithm together with the data structure 

on the wiring optimization problem, a method to generalize the data structure to solve 



T. S. Cheung Conclusion � 3 y 

problems with more sophisticated circuits, and a new placement algorithm which bases 

on the already developed data structure in the affinity clustering phase were discussed 

for further research on the topic. At last, an alternative method on element allocation 

which will improve the performance of .the algorithm was introduced. These methods 

not only gave substantial suggestions for a more realistic software but will also provide 

insight on creative automatic layout techniques. 

In section 7 and 8，the conclusion and list of references were presented. 

In the last section, Appendix: the principles, implementation, and results of a 

placement program using Simulated Annealing Algorithm were summarized. The 

program was used as the initial placement phase for the Incremental Alteration 

Placement Algorithm and its program file was named "fplace77.pas" (section 4.4.2). 

In general, the main idea brought out in this thesis is the application of dynamic 

data structure to a new placement algorithm, lAPA, which will help solving a c o m m o n 

IC design problem: change of placement due to minor change in schematic. Design of 

the algorithm not only emphasized the validation of methodology but also considered 

realistic implementation possibility. A well-organized software system was built and 

suitable test circuits were selected for evaluation of the algorithm. Results of 

simulation and computational complexity of the algorithm were also carefully studied 

and analyzed. In addition, constructive suggestions to modify the algorithm were 

examined for further exploration of the topic. 



T. S. Cheung References 1 38 

8. References 

[1] E. R. Barnes, "Algorithm for Partitioning the Nodes of a Graph", S I A M J. Algebraic 

and Discrete Methods, Vol. 3’ No. 4，Dec. 1982，pp.541-550. 

[2] E. R. Barnes, A. Vannelli, J. Q. Walker, "A N e w Procedure for Partitioning the 

Nodes of a Graph", I B M Research Report R C 10561，June 1984. 

[3] E. R. Barnes, "Partitioning the Nodes of a Graph", Graph Theory with Application to 

Algorithms and Computer Science, Wiley-Interscience Publication, 1985, pp.57-72. 

[4] Dimitri P. Bertsekas, "Dynamic Programming: Deterministic and Stochastic 

Models", Prentice-Hall Inc., 1987, pp. 26-28. 

[5] M . A. Breuer, “ Min-Cut Placement", J. Design Automation & Fault 

Tolerant Computing 1，No. 4, 343-382, 1977. 

[6] Chamey, H. R.，and D. L. Plato, "Efficient partitioning of components", in 

Proceedings of the 5th Annual Design Automation Workshop, pp. 16-0 to 16-21, 1968. 

[7] K. K. Cheng, "A Pattern Recognition Circuit using C M O S Standard Cell Array 

Technology", B S c Thesis, Dept. of Electronic Engineering, The Chinese University of 

Hong Kong, 1989. 

[8] T.S. Cheung, "Serial Data Synchronizers/Desynchronizers implemented on 

Macrocell Arrays", BSc Thesis, Dept. of Electronic Engineering, The Chinese University 

of Hong Kong, 1988. 

[9] L. Coirigan, ”A placement capability based on partitioning", Proceedings of the 16th 

Design Automation Conference, 1979，pp. 406-413. 

[10] Eric V. Denardo, "Dynamic Programming: Models and Application", Prentice-Hall, 

1982，pp. 16-18. 

[11] Donath, W . E” and A. J. Hoffman, "Algorithms for partitioning of graphs and 

computer logic based on eigenvectors of connection matrices", I B M Technical 

Disclosure Bulletin 15，pp. 938-944, 1972. 

[12] Donath, W . E. and A. J. Hoffman, "Lower bounds for the partitioning of graphs", 

I B M Journal of Research and Development, vol. 17，pp. 420-425, 1973. 

[13] Donath, W . E” "Physical Design Automation of V L S I Systems", 1988, chap. 3，pp. 

65-86，Editor: Bryan T. Preas and Michael J. Lorenzetti Pub: The Benjamin/Cummings 

Publishing Company, Inc. 

[14] M . Dannie Durand, "Parallel simulated annealing: accuracy vs. speed in 



T\ S. Cheung References 1 3 9 

placement", IEEE Design & Test of Computers Magazine, June 1989’ pp. 8-34. 

[15] Alfred E. Dunlop and Brian W . Kemighan, "A procedure for placement of 

standard-cell V L S I circuits", IEEE Trans, on C A D , Vol. CAD-4, No.l, Jan. 1985，pp. 

92-98. 

[16] W . H. Elder, P. P. Zenewicz, R. R, Alvarodiaz. "An interactive system for V L S I 

chip physical design", I B M Journal of Research and Development, Vol. 28, No. 5，Sept., 

1984, pp. 524-536. 

[17] M . Feuer, W . R. Heller, et al” " E M E R A L P S - Automatic Partitioning and 

Placement of Logic Circuits on Weinberger Images", Proceedings of the I B M Design 

Automation Conference, 1977, pp. 9-22. 

[18] M . R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the 

Theory of NP-Completeness", Freeman, 1979. 

[19] Satoshi Goto and Tsuneo Matsuda, "Partitioning, Assignment and Placement", 

Advances in C A D for V L S I Vol. 4: Layout Design and Verification, North Holland, 

1986，pp. 55-97. 

[20] Satoshi Goto, ” A n Efficient Algorithm for the Two-Dimensional Placement 

Problem in Electrical Circuit Layout", IEEE Transactions on Circuits and Systems, Vol. 

CAS-28, No. 1，Jan., 1981, pp. 12-18. 

[21] Maurice Hannan and Jerome M . Kurtzberg, "Placement Techniques", in Design 

Automation of Digital Systems, M . A. Breuer，Ed. Englewood Cliffs, N J : Prentice-Hall, 

1972 Chap. 5，pp. 213-282. 

[22] Tony Holden, "Knowledge based C A D and Micro-Electronics", 1987 Pub: 

North-Holland. 

[23] Ernest E. Hollis, "Design of V L S I Gate Array ICs", Prentice-Hall, 1986，pp. 6-12. 

[24] B. W . Kemighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning 

Graphs", Bell Systems Technical Journal, Vol. 49，Feb. 1970，pp. 291-307. 

[25] Kodres, U. R.，Partitioning and Card Selection. Design Automation of Digital 

Systems (edited by M . A. Breuer), Prentice-Hall, Inc., Englewood Cliffs, N e w Jersey, pp. 

173-212, 1972. 

[26] D. LaPotin and S. Director, "Mason: A Global Floor-planning Approach to V L S I 

Design”，IEEE Trans, on C A D of ICAS, Vol. CAD-5, pp. 477-489，Oct. 1986. 

[27] K. W . Lallier and R.K. Jackson, "A new circuit placement program for F E T chips", 

Proceedings of the 16th Design Automation Conference, 1979，pp. 109-113. 



T\ S. Cheung References 140 

[28] U. Lauther, "A min cut placement algorithm for general cell assemblies based on a 

graph representation", Proc. 16th Design Automation Conf. (San Diego), pp. 1-10，1979. 

[29] C. Y. Lee, "An algorithm for path connections and its applications", IRE Trans. 

Electron. Comput. EC10(3)，pp. 346-364, 1961. 

[30] Kurt Mehlhom, "Data structures and algorithms 2: Graph algorithms and 

NP-Completeness", Springer-Verlag，1984，pp. 1-3. 

[31] A. Mennone and R. L. Russo, "Selecting seed vertices for multiple mappings using 

the automated logic mapping system", in I B M Technical Disclosure Bulletin 13，pp. 

3202-3204, April 1971. 

[32] D. Milford and N. Kingswood, " C A D tools for semicustom IC design", 

Microprocessors & Microsystems，Vol. 12, No. 7, Sept, 1988，pp. 363-372. 

[33] M . Monro, "A Crash Course in P A S C A L " , Pub: Edward Arnold, 1987, pp. 160-170. 

[34] Tatsuo Ohtsuki, "Maze-running and line-search algorithms", Advances in C A D for 

V L S I Vol. 4: Layout Design and Verification, North Holland, 1986，pp. 99-131. 

[35] Thomas Payne, Robert Wells, and Werner Gundel, "A Study of Automatic 

Placement Strategies for Very Large Gate Airay Designs"，IEEE International 

Conference on Computer-Aided Design (ICCAD-87), 1987，IEEE Computer Society, pp. 

194-197. 

[36] Bryan T. Preas and Patrick G. Karger, "Physical Design Automation of V L S I 

Systems", 1988, chap. 4，pp. 87-155, Editor: Bryan T. Preas and Michael J. Lorenzetti, 

Pub: The Benjamin/Cummings Publishing Company, Inc. 

[37] Jerry Priste, "Design Manual: M C A 6 0 0 E C L and M C A 1 2 0 0 E C L , M E C L 10,000 

Macrocell Arrays Design Guidelines", Rev. 1，Motorola Semiconductor Products Inc., 

1984. 

[38] G. Russell, D. J. Kinniment, E. G. Chester, and M . R. McLauchlan, " C A D for 

VLSI", V a n Nostrand Reinhold (UK) Co. Ltd, 1985. 

[39] A. Sangiovanni-Vincentelli, "Automatic Layout of Integrated Circuits", 1987 in 

"Design Systems for V L S I Circuits: Logic Synthesis and Silicon Compilation" Pub: 

N A T O Advanced Science Institute Series. 

[40] G. Michael Schneider, Steven W . Weingart, David M . Perlman, "An Introduction to 

Programming and Problem Solving with Pascal", 2ed, 1982, Pub: John Wiley and sons, 

pp. 377-378. 

[41] Carl Sechen, "Average Interconnection Length Estimation for Random and 



T. S. Cheung References 1 4 1 

Optimized Placements", IEEE International Conference on Computer-Aicled Design 

(ICCAD-87), 1987，IEEE Computer Society, pp. 190-193. 

[42] Carl Sechen, "VLSI Placement and Global Routing Using Simulated Annealing", 

Kluwer Academic Publishers, 1988，pp. 255-266. 

[43] Tsuneta Sudo, Tatsuo Ohtsuki, and Satoshi Goto, " C A D Systems for V L S I in Japan", 

Proceedings of the IEEE’ Vol. 71，No. 1, Jan., 1983. 

[44] Texas Instruments, "Standard Cell Data Book" (SCJ1208), Texas Instruments Inc., 

1987. 

[45] Jean-Paul Tremblay and Richard B. Bunt, "An introduction to computer science: an 

algorithmic approach", McGraw-Hill Ltd., 1979’ pp. 432-627. 

[46] Niklaus Wirth, "Algorithms and data structures", Prentice-Hall Inc., 1986, pp. 

171-268. 



T.S.Cheung Appendix I M 2 

9, Appendix I 

The problem of placement on macroceli array is investigated in this section. The 

solution will be found out by a Simulated Annealing algorithm together with several 

c o m m o n measures on the performance of a circuit. The algorithm in this section is used 

as the placement phase for lAPA. The program file is named "fplace77.pas" (section 

4.4.2). 

9.1 Definition of the Problem 

The problem is to place cells (logic gates or flip-flops) into a cell array such that 

the following three purposes can be fulfilled: 

(1) the total interconnection- metal length should be minimized to a certain extent, 

(2) the metal connection length on the critical path should be small for good 

performance of the circuit, and 

(3) the skew in propagation delays on the input-to-output paths should be small as well. 

A 3X3 cell array (Figure 9-1) and a digital circuit with 9 logic units (Figure 9-2) are 

used as examples in the simulation program. 

Figure 9-1 A 3X3 cell array 

9.2 The Simulated Annealing Algorithm 

Simulated annealing is a process assembling the heat annealing of doped 

semiconductor wafer or crystals. Since the natural formation of bondings among 

molecules in these substances is always looking for a minimum potential energy, the 

process can be imitated to find the global minimum in a multi-objective problem. The 

algorithm of simulated annealing is shown in Table 9-1. 



T. S. Cheung Appendix [ M'i 

Start with some state, So; 
T = To; 
repeat 

while (not at equil ibrium) do 
begin 

Perturb S to get a new state Sn; 
AE := E(Sn) - E (S); 
if AE < 0 then 

replace S with Sn 
else 

with probability exp(-AE/kT) replace S with Sn 
end; 

T := c X T ; { 0 < c < 1 } 
until (frozen); 

k : Kelvin constant, T : temperature, 

E(S) : Energy of state S 

c : a constant (decrease rate of T). 

Table 9-1. A Simulated Annealing Algorithm 

9.3 Example Circuit 

Figure 9 - 2 A 4-bit Synchronous Counter 



T. S. Cheung Appendix I 14 ( 

The counter has the following 'directed' connections: 

[1，5]，[1,8], [1,9], [2,5], [2,8], [2,9], [3,6], [3,9], 

[4,7], [5,2], [6,3]，[7,4], [8,6], [9,7]. 

The connection in cell 1 is not counted because it can be viewed as internal 

connection. 

9.4 Performance Indices and Energy Value 

There are three performance indices in this problem, namely, (1) total 

interconnection length，（2) the delay of the critical path, and (3) the skew in the 

input-to-output delays. And, the energy is given by a weighted sum of the three indices. 

9.4.1 Total Interconnection Length 

For simpler manipulations of data, the interconnection length in connection is 

measured in Manhattan Distance and the unit of length is assumed unity: 

" 5 6 

7 丁 9 

Figure 9-3 Manhattan Distance A m o n g Slots 

For example, distance between cell 1 and 2 is D(l,2)=l，D(l，3)=2，D(l,5)=2 and 

D ( 1 , 9 M . 

9.4.2 Delay on Critical Paths 

Dynamic Programming approach [1], [2] is used in the calculation of delay on 

critical paths. The connection flow diagram of the synchronous counter is shown in 

figure 9-4. 



T. S. Cheung Appendix I 14 ( 

1 D (pi. p5) 5 D(p5,p2) 2 

2 6 •(P6,P3】3 

J / P ^ 0 / P 

3 7 0(p7,p4) ^ 
^ > o 

Figure 9-4 Connection Flow Diagram of the Synchronous Counter 

The critical path delay (i.e. greatest delay in this circuit) determines the m a x i m u m 

operating frequency of the circuit. Notice that the flow is directed, i.e. from inputs to 

outputs. To illustrate the principle of Dynamic Programming, let's analyze a simpler 

connection flow diagram: 

o 3 c 

Figure 9-5 A n Example Connection Flow Diagram 

delay in ce : 7 --> Pee , where Pxy is the m a x i m u m delay from x to y. 

de : 8 - -> Pde 

ae : ace : Pee + 3 = 10 

ade : Pde + 4 = 12 --> Pae 

be : bee : Pee + 5 = 12 

bde : Pde + 6 = 14 --> Pbe 

se : sae : Pae + 1 = 13 

sbe : P b e + 2 = 16 --> Pse 

Hence, the m a x i m u m delay is 16 units in the critical path {s, b, d, e}. 



T. S. Cheung Appendix I 146 

9.4.3 Skew in Input-to-Output Delays 

In many synchronous circuit, the propagation delays, tpd, of outputs relative to inputs 

are required to be approximate. In the example circuit, it is required that the time delay 

from C K to Q's be close. Since the propagation delay of the D-type Flip Flops (DFF) are 

the same, the skews are contributed by the difference in metal length and number of 

fan-outs. Hence, the propagation delay degradation is given by 

Atpd = w l * / + w 2 * Nfo Eq. 9-1. 

where w l = time delay per unit length of metal, 

w 2 = time delay per fan-out, 

I = metal-length connecting to an 〇/P， 

Nfo = number of fan-outs of an 0/P. 

In this example, I is measured in unit integer and both w l and w 2 are set 1 for 

simplicity. 

9.4.4 Energy Value 

Since the delay in critical path is considered much important, the energy value is 

given by 

E 二 round[(L/Lo + S/So + 2D/Do) X 10] Eq. 9-2 

where L = the total metal length, 

S = Skew in I/P-O/P paths, 
D = Delay in the critical path, and the ’o’s denote initial values. 

The multiplier, 10，is to adjust E to an integer such that the subsequent calculation can 

be simpler. In addition, operations on integer variables are faster and will save much 

storage. 

9.S The Simulation Program 

Pascal is used as the programming language of the simulation algorithm. The 

program consists of 4 functions, namely, (1) alise, (2) max一delay，(3) replace, and (4) 

total-length; and 4 procedures: (1) init—weight，(2) inverse, (3) initial，and (4) shuffle. 



T. S. Cheung Appendix I 14 ( 

9.5.1 The "function" Subroutines 

9.5.1.1 alise 

This function calculates the m a x i m u m delay difference in the input-to-output paths. 

Firstly，it is reasoned that the m a x i m u m difference can be obtained by finding the 

difference between the m a x i m u m and m i n i m u m delay paths. Both the m i n i m u m and 

m a x i m u m delays are obtained by iterative calculations using Eq. 9-1. 

9.5.1.2 max_delay 

This function calculates the m a x i m u m delay path (critical path) in the circuit. The 

Reaching Method of Dynamic Programming [2] is used. The algorithm is: 

1. Set Vj = 0 f o r j = 1,2, . . . . .，N. 

2. for i:= 1 to N-1 do 

3. for j:= i+1 to N do 

Vj := max{Vj, Vi + D , j } 

where V x is m a x i m u m delay from x to terminal node, 

Dxy is delay from x to y. 

Table 9-2. Reaching Method of Dynamic Programming 

9.5.1.3 replace 

This function determines whether to replace the state or not if the energy difference 

is positive. A boolean value would be returned: true for replace, false for not. The 

kelvin constant, k = 0.05. 

9.5.1.4 totaljength 

This function calculates the total interconnection length among cells. The 

statements on computation are: 

for i:= 1 to 9 do 

for j:= i to 9 do 

length := length + C,」.Dpip」; 

where Cj j is the number of connection between i and j, 

Dpipj is the distance between the positions of i and j. 



T. S. Cheung Appendix I 14 ( 

9.5.2 The "procedure" Subroutines 

9.5.2.1 init 一 weight 

This procedure assigns the interconnection distance (w-distance) of slots. The 

characteristic equation is given by 

w-distance(A,B) ：= abs(ii-i) + abs (jj-j) Eq. 9-3. 

where (i，j) is the coordinate of cell A and (ii,jj) coordinate of B. 

9.5.2.2 inverse 

Since the original cell order is expressed in position-of-cell form, it is more precise 

to expressed the cells in cell-in-position form. Hence, this procedure reverses the order 

of position of cells. 

9.5.2.3 initial 

This procedure assigns the connection of nodes. The connections are according to 

the directed connection of the synchronous counter. 

9,5,2A shuffle 

The purpose of this subroutine is to make perturbation on the placement. It shuffles 

the positions of either (1) any two arbitrary cells, or (2) any two adjacent cells, by the 

choice of the designer. 

9.53 The Main Program 

The main program is the implementation of the simulated annealing algorithm 

(Table 9-1). The initial temperature is To=l(XX) and the rate of decrease of time is c 

(adjustable), the Kelvin constant is defined in the function 'replace'. The frozen 

temperature is 100. 



T. S. Cheung Appendix I 14 ( 

9.6 Results and Discussion 

The initial placement configuration is : 

上上丄 L O = 2 6 I 9 1 ^ 7 

上丄丄 3 、1 

S 。 = 1 0 8 j 7」 D = 7 9 t ^ 7 

O __^ ^^ ^ O —K；̂  
n o x : 12 ( c e l l 1 〕 p o t h ： 1.9.7,14 

n i n : 2 ( c e l l I 3 | 中 I deloy=7 M 小 

Figure 9-6 The Initial Placement Configuration 

The energy value, E, is 40 by default. 

The best placement configuration (with m i n i m u m energy) ever found is: 

^ I 5 I 2 I L : 1 8 Li 5 4 = 2 
— — — - H ) f - t 

丄上丄 
3 6 8 3 " 6 " 8 

S二6 U I I [ i ^ ^ p ] ^ 

n o x : 8 ( c e l l 2〕 del。y = 4 7— 9 丄 

n i n : 2 ( e e l 1 4 ： 〕 丨 … M M deloy = iA I 〜 5 I 曰 

Figure 9-7 The Best Placement Configuration Ever Found 

The energy value, E = round [ (18/26 + 6/10 + 2 (4)/7) X 10 ] 

= 2 4 



T. S. Cheung Appendix I 14 ( 

Several values of c (0.72，0.9, 0.99) are used in the simulation and the sequence of 

final energy is as follows (30 consecutive executions of the program are done on c二0.72 

and 16 executions were done on c二0.9 and c二0.99): 

W h e n c=0.72，the sequence is: 

34，40，34，39，33，33’ 36，36，37，33，45，42, 37’ 35’ 36，32，36，41 

45，36，39, 35，39，41，42, 36，30，38，34，38 

m e a n 二 37.07， S T D = 3.695， m a x 二 4 5， m i n 二 30. 

W h e n c二0.9，the sequence is: 

35，38，37，39，29, 33，36，30，38, 36，37, 37，37，46, 33，38, 32，34 

mean = 35.83, S T D = 3.823， m a x = 46，min = 29. 

W h e n c二0.99, the sequence is: 

32，28, 32，31，28，32，35，35，33，36，41，33，39，37，33，38，34，41 

m e a n = 34.33， S T D = 3.819， m a x 二 4 1， m i n = 28. 

It is found that the one with c=0.9 can give a quite good set of solution and is thus 

fully investigated. 

The first 6 simulations with c二0.72 are listed in Figure 9-8 to 9-13, and those with 

c=0.9 in Figure 9-14 to 9-19. It is found that some valuable configurations, i.e. those 

with quite well performance indices, were obtained in the process of simulation. If 

these values are collected into a set, the m e m b e r in this set can be used as reference for 

further minimization, initial placement, or options for special requirement. For instance, 

configurations with particular good performance in S m a y be useful in circuit design of 

accurate synchronous machine, while a small D is preferred in high speed systems. 

Moreover, executions of the program with linear decrease in temperature were also 

done. However, the result is unsatisfactory. It is because the simulated annealing 

algorithm is a process with properties of exponential function. Linear parameters m a y 

cause conflict in the simulation. 



T. S. Cheung Appendix 丨 1 5 j 

Punning 

…气2 Initial energy^40 L 二 26 S:10 7 Decrease rate o-、：^d …”,r。-Q 7?。 
T = 1000 Su54 p: 987645321 11 3 1 = 29 S: 8 D：： 8 £：：42 E Df- 9 Fd-o'aii Ph-O qsi w 
T= 720 Su58 p : 9 5 7 6 4 8 3 2 1 11 3 L:29 S二 8 D二 8 E=42 0 t ？匕―0.3S1 Nw 
T = 5 1 3 S u 8 5 p : 9 3 7 6 4 5 3 2 1 1 1 3 L二29 S二 3 D二 3 S 二 T T 二 0 

T二 373 Su62 p : 3 S 7 2 4 5 3 6 1 11 3 L:27 S: 8 D二 8 E r 4 i s'Df^-l ；了v 
T= 269 Sul5 p : 9 8 7 2 4 1 3 6 5 9 3 L=27 6 D二 7 e=3R E'D— Mw 
T二 1S3 Sul7 o:S81247365 9 2 L:25 S= 7 D= 5 IZ二3二 E.D:、-; Nv 
；̂二 139 Sa76 p : 9 3 1 2 4 6 3 7 5 9 2 S二 7 D二 7 E = 33 E : D“ ^ PHrO 938 F^-O 55? OH 
T ” 0 ? S a l 6 p : 9 8 6 2 4 7 3 1 5 9 2 L二31 S二 7 D : 8 E - - 4 2 E . D f二 8 Pb^'o 2 0 3 Od 
>Fina丄 position is ： 9,8,1,2,4.7,3,5,5,# Final energy二34 

Figure 9-8 1st Simulation with c二0.72 

Runn ing 
2 Initial energy:40 L:26 S:10 D= 7 Decrease r a t e。f emperature-Q 7,P 

?冗 S u t ' 2 L . 2 7 S - 1 0 8 E . D f - 3 i S ^ O ： 7 3 ^ P b ' o ' o ^ ^ Nw 
丄一 / 二u bul / p . y84o513z / 9 3 L 二 27 6 D= 9 E 二 42 E Of — 一1 NL7 
T二 518 Su85 p:g54681327 9 3 L:27 S. 6 D. 9 E o N^ 
T : 373 Su85 p:984651327 9 3 L二27 S: 6 D= 9 E^Df- 0 Nv 

2 6 9 S u l 8 p : 9 1 4 6 5 8 3 2 7 9 3 L : 2 5 S . 6 D . 9 L t l E D f：-' w 
3；二 193 Su62 p:914258367 7 3 S= 4 D二 8 E.36 E Df.-5 = 

139 Su65 p:914268357 8 3 L=27 S= 5 D二 8 E=33 E ' D f : 2 ^d-Q 804 Ph-n 7 s n nn 
S a 4 2 p : 9 1 2 4 5 8 3 6 7 8 4 L二27 S-- 4 D二 9 E二40 E . D f . 4 二：二 P b 二 I . 4 5 � N w 

>Final position is ： 9 , 1, 2 , 4 , 5 , 8，3 , S, 7, Final energy:40 

Figure 9-9 2nd Simulation with c=0.72 

Rann ing 
energy=40 L:26 S = 10 D : 7 Decrease rate of temperature:。. 720 

T二 1000 Su26 p : 9 8 7 2 5 4 3 6 1 12 2 L二24 S:10 D：. 7 E = 39 E Df = - 1 Nw 

P O Su57 p:985274361 12 2 Lr28 S = 10 0：= 7 E:41 E . D f : 2 RdrO.974 Pb = 0 946 Od 
？二 S H 12 2 L.25 S:l。 D二 8 E=42 E . D f : 3 Rd.0.393 Pb:0:891 Nw 
二 气<。^uod p : o o / 2 a 4 3 D l 12 2 Lr26 S:10 D : 8 E:43 E.Df= 1 RdrO.061 Pb:0 948 Nw 

1= Su76 p : 8 5 6 2 9 4 3 7 1 12 3 L:32 S二 9 D:10 E:50 E . D f : 7 Rd:•.巧2 Fb=o'594 Nw 
T : 193 Sul6 p:851294376 8 3 L:2S S: 5 D : 8 E=38 E Df:-12 Nw 
T二 1 3 9 S u 6 5 p : 8 6 1 2 9 4 3 7 5 9 3 L二28 S二 6 D二 6 E二34 E D f ^ - 4 N w 
T = 100 S u 4 7 p : 8 6 1 2 9 7 3 4 5 S 3 L二28 S二 6 D二 6 E二34 E.Df二 0 N w 
>Finai position is : 8 , 6 , 1, 2 , 9 , 7 , 3 , 4 , 5 , Final energy=34 

Figure 9 - 1 0 3rd Simulation with c二0.72 



T. S. Cheung Appendix 丨 

Runn ing 

子J。Il^itial e n e r g y = 4 0 L = 26 S二 10 D= 7 D e c r e a s e rate of temoeraturp = n 720 
T : 1。 0 Su43 p : 9 8 7 6 5 3 4 2 1 12 5 L:35 S : 7 D = 10 E = 49 E . D f . 9 Rd = 0 43厂？匕二0 Nw 
T二 7 2 0 S a 3 4 p : 9 8 7 6 5 4 3 2 1 1 2 2 L : 2 6 S二10 D二 7 E二40 E D f二- 9 Nw 
T二 518 Su78 p：978654321 11 3 L=28 S二 3 D二 7 E = 3 9 E Nw 
T二 3 7 3 S u 5 6 p : 9 7 S 5 6 4 3 2 1 1 2 3 L = 3 2 S : 9 D : 7 E : 4 1 E . D f = 7 Rd=0 21R ^ h - - s q ° Nw 
T= 2 6 9 S u 4 2 p : 9 7 8 5 6 2 3 4 1 12 3 L = 3 0 S . 9 D . 7 E D f . n ；iw 
T= 1 3 3 S q 5 2 p : 9 7 8 2 6 5 3 4 1 1 0 3 L二28 S二 7 D= 7 E = 3 8 E D f 二 N w 
1= Su65 p : 9 7 8 2 5 6 3 4 1 11 3 L = 28 S二 8 D= 7 E二39 E.Df二 1 Rd = 0 pv.-o 865 N；. 
T : 100 Sal2 p : 9 7 3 1 5 6 3 4 2 11 3 L 二 29 S 二 3 D 二 7 £二313 E Df 二 0 ' ̂ ^^ 
〉;Final p o s i t i o n is : 9 , 7 , 8 , 1, 5 , 6 , 3 , 4 , 2 , F i n a l energ.y:39 

Figure 9-11 4th Simulation with c=0.72 

。I」n n ^ n 

？二5 t ； D e c r e a s e r a t e o f t e m p e r a t u r e : � . 7 2 � 
丄-lUUU S u 4 8 P : 9 4 7 6 5 8 3 2 1 1 0 2 L二24 S二 8 Dr： 7 E二37 E Df - N w 
y - 0 £a79 p : 7 4 G S 5 3 3 2 1 9 2 L:24 3. 7 D . 7 E = 3o = Nw 

$二 513 Su47 p : 4 7 9 6 5 8 3 2 1 S 2 L=23 S: 7 D二 5 E:33 E。Df:-3 Nw 

^： ，二t ^ ^ 2 7 9 6 5 6 3 4 1 10 3 L = ，二 7 D二 • E- -37 E . D f . 4 R d . 0 . 1 2 3 P b . 0 . 8 0 7 N . 
^ S a o l i o 3 p : ^ , . y D c 5 3 4 x 丄Q 3 二 2 7 3二 7 C.二 7 5；二37 E D f二 0 N w 

T : 193 3u2S p : 9 7 2 6 8 5 3 4 l 10 3 1^二23 S二 7 D : 7 S - 3 3 E Df = -1 
T二 139 Sub3 p : S 7 2 S 5 3 3 4 1 10 3 L二2.5 S二 7 D二 7 E二37 E Df二 1 Rd-O 988 Ph-n rrr n^ 
T二 1 0 0 S u 8 4 P : 9 7 2 6 4 5 3 3 1 9 o L二22 S : 7 D二 6 S : 3 3 E Nw 明6 Od 
> F i n a l p o s i t i o n is : 9 ,7 , 2 , 6 , 4 , 5 , .3 , 8 , 1, # F i n a l e n e r g y 二 33 “ 

Figure 9-12 5th Simulation with c=0.72 

Runn ing 
ml〒J。Initial energy:r40 L = 2S 3 = 10 D二 7 D e c r e a s e rate of temperature = 0 720 
T二1000 Su26 p : 9 S 7 2 5 4 3 6 1 12 2 L=24 S二10 D= 7 £二39 E D f = - 1 Nw 
T : 720 Sul4 p : 9 o 7 2 5 1 3 5 4 9 3 L-23 S二 S D二 7 E二35 Nw 
T二 518 Su85 p : 9 5 7 2 8 1 3 6 4 9 3 1^:23 S二 6 D：：： 7 £：：35 E D f : 6 Nw 

U!二 二 2 p : 8 5 7 2 9 1 3 6 4 9 3 L:25 S : 6 D：： 7 E=:36 E . D f : 1 Rd-0.731 P b :。9 4 8 Nw 
T二 2S9 Sa36 p : 8 5 7 2 9 1 6 3 4 9 3 L=23 S : 6 D二 S E : 3 2 E Nw 
T二 193 Su34 p : 4 5 7 2 9 1 6 3 8 9 3 L二23 S二 S D二 S E二32 E Df二 〇 Nw 
1 = S u 5 8 p : 4 3 7 2 g i 6 3 5 9 3 L : 2 5 3= 6 6 E = 3 3 E . D f = 1 R d : 0 . 3 3 7 P b = 0 . 8 6 6 Nw 
T二.10? Sa87 p : 4 7 S 2 9 1 6 3 5 10 2 1 - 2 3 S二 S D二 8 E=40 E.Df= 7 Rd.0.4ol Fb^O 248 Od 
> F i n a l position is : 4 , 8 , 7 , 2 , 9 , 1 , 6 , 3 , 5 , F i n a l energy = 33 

Figure 9 - 1 3 6th Simulation with c=0.72 



^
 ̂

 ̂

 W

 w
d

 W

 W

 d
 ̂

 W

 
W

W
 d

 w

 d
 

3

 [

 N

 N

 N

 N
o

 N

 N

 o
 N

 N

 N

 N
 ̂

 N

 ̂

 

^

 ̂

 ̂
 
4

8

 9

 

6

0

1

 3

 4

 6

 7
 1

 o

 1
 

1
 

,

北

巧

厂

 3

 
3

2

1

.

7

4

 ̂

 4

 4
0
 I
K
O
 

9

 9

 9

 7

 9

 5

 9

 4

 6

 )

 7

 9

 6
9

 4

 6

 4
 

c
 •

 .
 -

 ‘

 o

 •

 .

 .

 z
-

 f
-

o
 o

 
o

o

o

o

o

o

 o

 o

 o

 o

 o
 o

 o

 o
 

3

 --

 r

 
I

I

 I
I

 I
I

 n

 
I

I

 
I

I

 9

 I
-

 -
I

 -
I

 V

 4

 
二
 

：
^

 ̂
^

 b

 b

 b

 b

 b

 b

 3-

 b

 b

 b

 b
 b

 b

 b
 

c
?

 p
p

 p

 p
p

 p

 p

 p
 o

 p

 p

 p
p
 p

 p

 ̂

 

--̂
 5

 8

 2

 4

 5

 3

 5

 4

 
1

-

8

 2

 3

 6
 4

 4
2
 

2

 5

 8

 
1

5
 1

 2

 o

 1

 3

 3
 ̂

 u
-
 8
 

；
广
-
1

 6
8

 3
 

4

8

8

0

9

 e

 6

 4

 5
3
 8

 1
s
 

r
 •

 •
 .

 
.

.

.

.

.

.

 r

 .

 •
.

 .
.
.
 

”

〕

O

O

C

D

 o

 o

 o

 o

 o

 o
 u

 o

 o

 o

 o
 o

 o

 o
 

-
-
-

…
-
-
-
-
 I
 
I

I

 
I

I

 
I

I

 t

 
I

I

 -_

 
I

I

 
I

I

 V
/

 w
 

「
-
d
w
 

W
M
d
w
w
 w

 w
d

 w
d
d

 w
d

 w
d

 w

 w
d
w

 w

 
a
w
d
w
w
w
w
w
w
w
w
d
w
w
w
d
d
w
w
w
d
d
d
 

”
二
-

 F
 H
 H

 R
 R

 -
 N

 N
 N

 N R

 N
 R
 R
 N
 R

 N R N N

 R

 N
 N

 ̂

 N

 R N

 N
 N

 N
 N
 N N

 N
 R

 N
 N
 N
 R

 R
 N

 N

 ̂

 ̂

 ̂

 

I
 >

、
2

 ？
1

 2
 1
 1

 o
 (
o

 o
 4

 5
 1
 1

 9
 2
 1

 o
 7

 O
 4

 3 1 2

 5
 p

 o
 1
 4
 2

 2

 o
 o
 o
 2

 o
 1

 3
 2
 o
 5
 1

 o
 1

 7
 s
 3
 5
 G
O
 

-
二

 -

 -

 

I

I

I

 I

 

1

1

1

3

 
m

l

-

-

-

 I

 -
 I

 I

 -

 •

 3
 

二
)

 
二
 
二

 
二
 
-

 
二

 
二

 
二

 
二
 
二

 I
I

 
二
 --

 
二

 
二
 
二
 
二
 
二

 I
-

 -
I

 
二

二
 e

 I
I

 I
I

 
二
 I
-

 I
I

 
二
 
二

 
二

 
二
 I
I

 
二

 
二
 I
-

 
二
 --

 I
-

 I
I

 I
I

 
二

 -

；
.
)
f
r

 f
 f
-

 f
 f

 -
 f
 f
 f
-

 f
 p
-

 f
 f

 f
 f
 f

 f
 f

 f f f

 f
 y

 c
)

 t

 F
-
l

 f
 f
 f
 (
r

 f
 C
J
L
 f
r

 f
 c
r

 f

 f
 t
r

 f

 f
 f
 (
r

 f
 t
r

 F
-
l

 f
 (
r

 y

 9
 

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
T
F
O

 N
^

 、

 D
D
D
D
D
D
D
D
D
D
D
D
D
D
 D

 D
 D
 D

 D
 D

 D
 D

 G

 C
^
 

I

 
I

I

 ̂

 

G
 E
 s

 E E

 E
 E

 E
 E

 E
 E
 E
 E

 E
 E
 E

 E
 E E E

 E

 E
 E
 e

 c

 o

 E E

 E
 E
 E

 E
 E
 E
 E
 E
 E

 E
 E
 E

 E
 E

 E
 E
 E
 E
 E E

 e

 ̂

 

5
C
.
J
0
8
9
0
0
4
 4
 0
(
0

 5
6
5
4
5
5
2
2
3
1
7
5
e
 e

 〇

 1
7
5
3
3
3
3
1
1
 2

 9
7
7
2
3
3
2
 5
 1
8
3
 e

 h
 

t
 4

 3
 3
 4
 4
 3
 3 3 3

 3
 3 4 3

 3
 3
 4
 4
 4

 3
 3

 
i

 t

 
4
 
5
 
4
 4 4

 4 4

 4
 
4
 
4
 
4
 
3 
3

 3
 4
 4
 4
 
4
 C
O

 
4
 
3
 
4

 t
 

a
 
二
 I
-

 I
I

 I
I

 
二
 I
I

 I
I

 -
I

 1
1

 
二

 
二
 -
I

 
二

 
二

 
二
 -
I

 
二

 
二

 
二
 
I

二

1

1

-

 1

 W

 a

 
二

 
二
 
二
 
二

 
二
 
二

 
二

 
二

 
二
 I
I

 
二
 I
I

 I
-

 
二
 I
I

 
二
 I
I

 
二

 1
 

r
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
a
 r
^
M
^
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

 a

 ̂

 

I
 

e
 7
 
7
 7
 7
 7
 7
 6
 6
 5
 7
 7
 7
 o
 7
 7
 7
 9
 

s
 8
 6
 6
 i

 o

 e
7
0
9
9
8
8
8
8
8
8
8
8
7
7
8
8

 3

 8
6
8
7
9
-
1

 S
 

c_

 

s
 1

 F

 

d
 
S

I

 F

 ̂

 

a
 
二

 
二
 I
I

 
二
 I
I

 I
I

 I
I

 
二

 
二
 I
I

 I
-

 I
I

 -

 I
I
 -
I

 -
I

 --

 
二
 -
I
I
I

 ̂

 a

 --

 
二

 
二

 
二

 
二
 I
I

 
二

 
二
 -
I

 
二

 
二
 
二
 
二

 I
-

 I
-

 
二

 
二
 
二

 I
-

 
二
 -
I

 
二

 d
 

d
 C
-
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
^

 1

 e
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
U
 

e
 C
O
Q
:
-

 8
8
 3
8
7
 7
 7

 5
 5
7
4
5
6
6
4
6
6
7
9
7
 8
"

 n
 C
0
9

 8
 7
9
8
8
8
7
7
6
7
8
8
8
9
9
3
3
7
7
7
-
K
^

 w
 

p

 -
m

 e
l

 m
 

p
 「-
,
J

 
二
 
1

1

 
二

 
二

 
二
 
二

 
二
 
一
|

 
二
 
二
 
I

I

 
二

 
二
 
I

I

 
二

 
二
 
二

 
二
 
I

I

 
二

二
 -
I

 9
 D

 
二

 --

 
二
 
二

 
二
 
I

I

 
二
 -
I

 
二
 
二

 
二
 
I

I

 
二
 
I

I

 I
-

 
I

I

 
二

 
二

 
二

 8

 i
 

\
 S

 (
.
0

 S

 S S S

 S
 S

 S
 S
 S
 S
 S
 S

 S

 S S

 S S S S

 S
 J

 s
s
s
s
o
^
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

 J

 s
 

7

 2

 t

 7

 1

 i
 

。
3
 7
 9
 2
 1
 5
 5 3

 7
 5 4

 .C
o

 4
 3
 3
 1
 7
 L

。
9

 7
 7

 ,
 6

 4
4
2
3
 1
1
1
9
9
3
5
3
3
9
3
0
 0
0

 5
9
9
7
 -

 ̂

 

I
I
 c
)

 C
J
 2 2

 3
 3

 C
s
l
 2

 2
 (
-

】
2

 2
 3
 2
 2

 2 3

 C
,
1
 2 2

 2 2 1

 1

 
1

1

2

 3 3

 3
 2

 3
 3
 3 2

 2
 3

 2
 2

 2
 2 2

 3

 2
 2
 2

 2
 2

 7
 

D
 
二

 
二
 
二

 
二
 
二
 
二
 
二
 
二

 
二
 
二
 
二

 I
-

 -
I

 I
I

 
二

 
二
 
二
 
二

 
二

 
..

 D

 
二
 --

 I
I

 I
I

 
二

 
二
 I
I

 
二
 
二
 --

 I
I

 
二

 
二
 -
I

 I
I

 
二
 I
I

 -
I

 I
I

 I
I

 
二

二

 2
 

T
^

 
L
 
L
 
L 
L

 
L
 
L
 
L 
L

 
L
 
L
 
L
 
L
 
L 
L

 
L 
L 
L

 
L
 
L
 
L
 
L
 
6

 
4

 
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
2
 

0

 1

 0

 5
 

丄
？
】
2
 
2
 
2
 
3
 
3 
3 
3 
2

 
3 
3

 
2
 
5
 
3 
3 
3

 
5
 
2 
2

 
2
 
2
 
2
 
7
 
-

 
1
2
3
4

 4
2
 
3
 
3
 
3
3
3
4
 
2
 
2
2
2
2
 
2 
2

 
2
 
2
3
3
3
 
1
 

-

I

 9

 -

 -

5
 0
-
1
-
0
0

 1
1
0
0
9
9
8
9
9
8
9
9
9
3
8
9
1
9
3

 2

 s
o
^

 2
2
1
1
1
1
1
0
0
0
 0
.
^

 0
0
0
1
1
0
0
9
0
0
5

 9
 

T
-
 
<

 
1
 
‘

 1
1

 *
丄

 I
f

 
1
 
1
 ,
丄

 
1

 
，

 
^

 
1
1
1
1
1
1
1
1
1
1
1

 
1
1
1
1
1
1
1

 1

 a
-
k
 

-
b

 5

 m

 6

 4

 ̂

 

I
.
-
,

】
1

 1

 1 1

 2
 6
 (
o

 3
 3
 0
)

 3 3

 3
 3
 3
 7
 5
 8 2 8

 8

 >

 §

 2

 1
1
1
1
1
-
1
1
1
1
5
 5
 4
 4 4

 3
 2
 2 2 6

 5
 6
 2

 ,

 u
 

二

 C
 .

】
c

 
二
 7
"

 2
 ？
】
1

 1

 1
 
1
1
1
1
1
1
1
1
1
1
1
1
1
9
4

 i

 --

 2
2
 2
 2
2
2
2
2
6
 6

 6
6
1
1
1
1
1
8
8
8
8
8
9

 o
t
o
 

r

 -
 0
0

 _.o

 0
0

 8 4

 4
 4
 4

 9
 o
d

 9

 7
 7 7

 7 6

 6
 6
 6
 6
 2
 2

 F

 L

 6
 6
 7
 7
 5
 4
 4
 4

 4

 4
 4
 5
 5 5

 5

 5
 s 1 1

 1
 1
 1

 f
l
 

4

 3
 8 3 3

 3 3 6

 6 7

 7
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 1
 :
 4

 4
 4
4
4
5
8
5
5
1
7
7
7
 7
 7
7
7
7
7
7
7
 7
 :

 F
 

1
〕
？

 
了

 
7
 
7
 
7
 
7

 
7
 
7
 
7
 
s
 
5
 5 5 5

 
2
 2
 2
 2 2 8 6

 6
 0

 5
 5
 5
 5
 7
 7 7

 7
 7
 7
 
1
1
6
 3
 4
 4
 4
 4
 4
 4 2

 6
 

s
 6 9 9

 9
 9 9

 s
 4
 4
 4

 4

 6
 2
 5
 5
 5
 7
 7
 7 7

 7
 s

 4

 3
 7
 6
 s 6 s

 6
 6
 2
 2
 2
 2
 2
 2
 2
 3
 3
 3
 3
 3
 3
 3

 s
 

L
O

 5 5 5 5 5 5

 5 5

 5 6

 6
 4
 6 6 7

 3
 3 3 3

 3 3

 i
 7
3
3
8
8
8

 5
8
8
8
8
8
8
8
8
8
5
5
5
6
5
5
-
1
 

二
 0
:
-

 4
 4
 4
 8
 3
 8
 C
O

 0
〕
3

 8
 8 8

 8
 8
 8

 8
 o
6

 5
 5
 5
 5

 
二

 
8
 8
 
8
 (
o

 
3
 
3
 3
 
3
 3
 
3
 3

 
3
 
3
 C
D

 C
D

 
6
 6
 6
 2
 
2
 
4
 4
 

o
:
-

 9
 6
 6
 6

 6
 2
 r
,
l

 O
J

 C
J

 2
 (
M

 4

 4
 4
 4
 d
-

 4
 4

 n

 9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

 Q
^
Q
^

 9
 n
 

.y
 

.s
 p

 p

 p

 p

 p

 p
 p

 p

 p

 O
j

 p
 p

 p

 p
 p

 p

 p
 p
 p
 p

 p
 Q
j

 i
 oo

 p

 p

 p

 p
 p

 p

 p
 p

 p

 O
u

 p
 p
 p
 p
 p

 p
 p
 p

 p

 p
 p

 p

 i
 

r
，

 r

 t

 r

 t
 

0
0

 e
【
<
。
：
-
9

 o
u

 6

 
6
 
9
 
6

 6
 9

 6
 2

 7
 7

 5 5

 9

 i
 6
6
7
6
3
5
4
8
5
2
5
7
5
6
6
4
2

 5

 8
2
5
2
6
 i
 

n
 n

 t
o

 f
j
<
 6

 3
 0

〕
1

 2
 (
o

 4

 7

 5
7
4
 4

 5
6
 3
 
7

C

6

8

6

1

S
 n
3
3
7
8
7

 5
 5
8
6
1
1
4
 1
3
3
3
c
o
l
6
6
4
2
s
 

u
 
e

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

.

u

u

J

U

J

U

U

O

 
e

u

u

u

Q

u

u

u

u

u

u

u

u

u

u

u

u

a

a

u

u

u

u

o
 

比

 s

 s s s

 s
 s
 s
 3
 s
 s s

 s
 s
 s
 s
 s
 s
 c
^

 s
 s

 s
 p

 s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

 p
 

-
C

 ’

 _
 
r—_
 

c
 a

 o o

 o

 9
 6
 o
 1

 3
 o

 7 9 4

 4

 9

 6
 5
 7
'

 o
 5
 2
 9
 1
 a
0
0
0
9
6
0

 1
8
0
7
9
4
2
4
9
6
 5

 7
0
5
2
9
1
 

1
 o
n
-

 1
2
5
9
3
7
 3
8
 4
1
8
5
2
0
8
 6
u
^
c
6
2
d
l
a

 -
1
0
0
1
2
5
9

 3

 7
3
8
4
1
8
 5

 2
0
8
6
5
3
 2
 0
a
 

c
^
 t

 G
 3

 8
 7
 6
 5
 t
o

 4
 4

 3
 3

 3
 2

 2
 C
.
J

 2
 1

 1
 1

 1
 1

 1
 n
 t

 o
 9
 8
 7

 6
 5

 5
 4

 4

 3

 3
 3
 2

 2

 2

 2
 1

 1

 1

 1

 1

 1

 n
 

1

 ..
J
l

 i

 1

 i
 

r
 •

 t
:

 I
I

 
I

I

 
-
I

 
二

 
I

I

 
I

I

 
二

 
二

 I
-

 
二

 -
I

 
I

I

 
二
 
二

 
二
 
二

 
二
 
二

 
I

I

 
二

 
I

I

 
二

 F
 n

 -
I

 
I

I

 
二

 
二

 
二

 
I

I

 
二

 
二

 
二
 
二

 
I

I

 
二

 
-
I

 
二

 -
I
-

 
I

I

 --

 
二

 -
I

 
I

I

 
二
 
二

 F
 

T
 -

 T
 T

 T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 >

 I
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 >
 



w
 w

 w

 w

 
d
 w

 
d

 w

 d
 

N

 N

 N

 N
o

 N
o

 N

 o

 ̂

 r
m

 
W

W

 w
d

 w

 d
w
d
 

•
1
 -

 J

 N

 N

 N
N

 N
o

 N

 O
N
O
 

5

 

5
 
3
 6

 2

 6
 3

 2

 2

 7
 

1
 ̂

 1

 4

 4

 2
 2

 3

 6

 7

 6

 o

 8
4

 4
7

 3

 1
3
3
 

-
J

 3

 3
 7
 8
 8
 5

 4

 
8

0

 3

 7
 2

 4

 2
9
 2

 1
7
9
 

)
•
-
•

 
3
 

「八
 L

 

•
 
.
 

.

.

.

.
 

]
 

9
 9

 s

 9
 9

 4
 L
O

 4

 3

 1
 

r
u

 
o
 
o
 o

 o

 o
 o

 o

 o

 o

 o

 .

 •

 .

 •

 •
.
 

广

 I
-

 
I

I

 
I

I

 
I

I

 
I

I

 
I

I

 
I

I

 ̂

 ̂

 o

 o
o

 o
o

 o

 o
o
o
 

「
h

 ̂
o

 ̂

 b

 b

 b
 b

 b

 b

 b

 3

 
二

 
二

 I
-

 
二

 I
I

 
二

 
I

I

 
二

 I
-

 
二
 

p
-

 p

 F

 p

 p

 p

 p

 p

 p

 、
厂

 b

 b

 b

 b
 b

 b

 b

 b

 b
 b
 

-
-
3
 3

 L

 3

 }

 
o

p

 p

 p

 p
 p

 p

 p

 p

 p p

 •
 

二

 3

 3

 1

 6

 o

 3

 2

 5

 4
 

「
 d

 3

 1

 1
 4

 4

 9

 9

 --

 5
2

 9
9

 6

 8
3
4
 

？
 1

 4

 2

 9
 2

 6

 3

 6

 6

 3

 2

 1
 s

 1

 2

 7

 1
 

u

 3

 3

 
3
-
}
:

 
.

.

.

.

 e

 6

 7

 2

 8
 2

 5

 2

 9

 o

 2
 

—、

 c

 o
 c

〕
 o

 •

 o

 o

 o

 o

 r

 .
 •

 .

 •

 •

 .

 •

 •
 

【：-,,-厂
 
7
 
二

 --

 -
二
I

 
二

 I
I

 I
-

 
-
I

 u

 o

 o
 o
o

 o
o

 o

 o
o
o
 

^

 -
 w

 d
 ̂

 w
 .c

 w

 w

 d
 w

 w

 d
 d
 w
 w

 w
 w

 d d

 w

 d
 w

 d

 
二

 
二

 -
二
-

 -
I
I
I

 
二
 
二

 
-
I

 
二
 

N
 N

 N
 R
 N
 N
 R
 N
 N
 R R N

 N
 N
 N
 R
 D
^

 N
 R
 N
 ̂

 ̂

w
w
w
w
d
w
w
w
w
d
d
w
v
d
d
w
d
w
w
d
d
d
 

...-
 r
N
R
N
N
R
N
N
N
N
R
R
N
H
P
.
-
R
N
R
N
N
^
D
^
^
 

-
-

〔
-
(
-
5

 5
 1
 3
 (

。
o

 7
 7
 1
 3
 3
 ?
1

 o
 o
 o
 6 7

 o
 1
 4

 4
 7

 e

 ̂
^

 b

 F
 

-

I

 I

 
1

1

3

 ̂

 3

 ̂

 o
 1
 o

 o 4

 9

 1
 o G

 1
 8 2

 6
 6
 4
 6
 6
 9
 9
 

？
 I
-

 
I

I

 
二
 I
-

 
二

 
二

 =
 
I

I

 
二

 
二
 
I

I

 
二
 
I

I

 
I

I

 
I

I

 
二
 
I

I

 
二
 
I

I

 |
二
|

 

m

i

l

 I

 I

 
I

I

I

 3
 

r
-

 f
 f
 f
 f f

 f
 f f f

 f
 f
 f
 f
 f
 f
 f
 f
 f f f

 f
 f
 y
 9

 e

 I
I
 I
-

 I
I

 I
I

 I

 
二

 
二
 
二
 
二

 I
I

 I
I

 
二

 
二

 
二
 
二

 
二
 
二

 I
-

 =
 -
_
T

 >
 

D
 C
:
-
)

 D
D
D
D
D
Q
D
D
D
D
D
D
D
D
D
D
D
D
D
D
T
L
O

 C
S

 T
F
F
F
F

 F

 F
 F

 F
 F

 F
 F

 F F

 F
 F
 F
 F
 F

 F F

 F
 Y

 Q
^
 

’：r
 :
;
「
；
「
；
：
•
：
•
二

 Y

 D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
g

 o
 

-
-
E

 M
E
 E
 E E

 E E

 E
 E
 E
 E
 E
 E
 E
 E
 E E E

 E
 E
 s
 e

 f
:
i

 
|

|
 

I
 ̂

 c

 O
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
V
-
E
E

 e

 ̂

 

？
二
 o
 3

 8
 7

 o
 4
 4

 1
 4

 3
 6
 9

 4
 4
 4
 4

 o
 7

 o
 1

 7

 1
 e

 h

 n
 

t
 C
o

 4
 3
 3
 4
 3
 C
O

 4
 3
 3
 3
 3
 3
 C
o

 3

 3
 4
 4 4 4

 3
 5

 u

 e

 6
 9
 5
 5 6

 2
 2
 2 8

 7
 8
 8
 8
 9
 7
 7
 3
 7
 3
 9
 9
 8
 e
 h
 

a
 
二

 
二
 
二

 
I

I

 
二
 
I

I

 
I

I

 
I

I

 
1

1

 
二
 --

 
二

二

二
 
-
I

 
I

I

 
I

I

 
I

I

 
I

I

 
I

I

 
二
 
I

I

 1
 V

 t

 3
 3
 3
 3
 3
 3
 3 3

 2
 3
 3
 3
 3
 3
 4
 3
 4
 3
 3 3

 3
 4
 .
U
 

r
 E
 E
 E
 E
 E E

 E
 E
 E
 M
 E
 E
 E
 E E

 E
 E
 E
 E E

 E
 E
 a

 V

 a

 
二

 
二
 
二
 
二
 
二
 
二

 
二
 
二
 -
1

 
二

 
二
 
二
 
二
 
二
 
二

 -
1

 
二

 
二
 
二
 
二
 1
-

 1

 
^
 

I
 v
:
;
7

、
7

 n

 n

 r
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
a

 V
 

I
 e

 7

 s
 7
 6
 7
 6
 6 3 6

 6
 6 7 6

 C
D

 s
 6
 7
 9
 7 7 7

 o
 i

 S

 ,

 n

 n
 

.

 €

 I
F

 -
K
 e

 7
 7
 7 7 7

 6
 6
 6
 5
 7
 8 8 8 8

 o
 8

 o
 7

 s
 7
 7
 9
 i

 S
 

X
 a

 
二

 
二
 
-

I

 I
I

 
二

 
二
 --

 
-

I

 I
I

 
二
 I
-

 I
I

 
二

 
二
 I
I

 
-
I

 
二
 I
I

 
-

I

 I
:
二
I

 u

 s

 
1

1

 【
t

 k
 

^
 -
】-
D

 D

 D

 D

 D
 D

 D
 D

 D

 D

 D

 D
 D
 D
 D

 D
 D

 D

 D

 D

 D

 D
 t
W
：

 ̂

 a

 
二

二
 I
I

 
二

 I
I

 |
|

 
二

 |
|

 |
|
 I
-

 
二

二

二
 
-
I

 
二
 一一

 
二

 
二
 一一

 
=

 
二

 
=

 U
 

^
 R

 ,

 D

 E
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
^

 K
 

^
 :

 s
 3
 9
 •
 C
O

 s
 C
O

 6
 8
 6
 O
O

 7
 8
 8
 8
 8
 G 9

 o
 o 8

 o
 2

 ̂

 r

 
，

 u
 

^
 -
1
.
-

 1

 
1

1

1

1

,

 b

 c

 8
0
6
6
 6
 6
6
6
6
7
5
6
6
4
6
3
 7

 Q
-

 7
 9
7

 n
 

w
 r

 
二

 
二
 
二

 I
I

 
二

 
二
 
-
I

 
二

 
二

 
二
 
-

I

 
二

 
二
 I
I

 
二

 
二
 I
I

 
二

 
二

二
 -
二
|

 4

 ；
U

 
e

l

 ,

 m
 

I
M
 3

 2
 s
 s
 s
 C
O

 s
 s
 s
 s
 s
 s
 s s

 s
 s
 s
 s s s

 s
 s

 
，
 s

 D

 I
-

 
二

二
 1
1

 I
-

 I
I

 I
I

 
二

 
二
 
-
I

 
二
 I
-

 I
I

 
二

 
二

 I
I

 
二

 
二

 
二

 
二

 
二
 
1

1

3

 ̂
^
 

/
 3

 1

 S

 S
 S
 S S

 S
 S S S S S S

 S
 S S

 S
 r
o

 S
 S
 S
 S
 S

 
，
 

4
 0
.

〕
4
6
C
4
3
1
-
 0
0

 5
7
1
-
4
2
3
3
7
 1
-
7
9
3
3
 >

 K

 7

 5

 h
 

I
I
 2
 C
.
.
I

 2
 2
 3
 2
 2 3

 C
X
I

 2 2 3 2

 2
 2
 2
 2 3

 2
 2 2

 3

 5

 3

 2

 4
 3 3

 5
 3
 C
O

 3 1 6

 7
 5

 5
 1
 2 9

 1
 5 3 7

 1
 5
 ,

 t
 

「
1

 
二

 
二
 

I

I

 
二

 
二

 
二

 
二

 
二
 
-

I

 
二
 
I

I

 
二

 
二
 
-

I

 
I

I

 
二
 
-

I

 
-

I

 
I

I

 
二
 
I

I

 
I

I

 
，

 -
-
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
2
3
2
2
2
3
3
5

 4
 

7
-

 
L
 
L
 T
^

 
L
 
L
 
L

 
L
 
L
 
L
 
L
 
L 
L 
L 
L 
L 
L 
L 
L

 
L
 
7

 
5

 
D

 
二

 
I
I

 
I
I

 
一
I

 
I
I

 
I
I

 
二
 
I
I

 
二

 
二
 
二
 
二
 
二

 
二
 
二
 一一

 
二
 
=
 
二

 
二
 
二

 
二

 
，
 

二

 
I

 …
I
I
L
I
,

 
^

 
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
3

 
7
 

r

 j
 C
.
I

 2
 2
 4
 2
 ？
〕
4

 ？
】
3

 3
 4
 2 2 2

 2
 2
 3
 2
 2
 2
 2
 6

 0

 ,

 1
 

二

 ，

 1
2

 2
 3
 3
 3
 3

 3
 3
 3
 3
 4
 3
 3
 5
 5

 5
 5
 2
 2

 2
 4
 4
 4

 -

1
 1
 1
 2
 C
.
1

 0
 0
 0
 0
 3
 1
 1
 0
 0
 0
 o
 2
 (
二

 2 2 •

 2
 8
 --1

 }
 >,

 3

 3

 ,

 9
 

1
1
1
1
1
1
 1

 1
 1
 1
1
1
1
1
1
1
1
1
1
1
1

 ,

 e

 C
0

 0
2
9
 9
 9
9
9
9
9
0
9
9
9
9
1
8
C
0
9
9
1
1
3
9
 

-
:
!

 
-
 
1

 
辽

 
1
1

 
1

 
1

 
1
1
1
'

 
r
e
 

？
1

 
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
 
2
 
2
 C
.
1

 
2
 
2
 
2
 
3
 
-

 ？，

 
S

 
^
 

二

 2
 C
.
1

 2

 2
 4
 5
 5
 L
O

 5
 5
 6 6

 6 6

 C
D

 S 6

 7
 4
 4
 4
-

 4
 9

 3

 2

 1
 1
 4
 4
 4 4

 8
 5.

 5

 5
 5
 5
 5 7

 7
 7
 7
 7
 7

 9 7

 9
 ,
 

L
 0
:
1

 9
 5
 3
 3 3

 3
 4
 3
 3
 3
 3
 3
 C
O

 3
 3
 3
 3
 3
 c
^
〕
3

 C‘
J

 .f
r

 二

 3
 (
o

 C
D

 s

 6
 3
 3
 3
 3
 9
 7
 6
 8 8 8

 8
 C
O

 8
 3
 3 8

 8
 2

 .
巧
 

4
 
4
 
4
 4
 2
 2
 2
 2
 2
 2
 2
 4
 2
 2
 1
 1
 1
 1 1

 1
 5
 L
O

 :

 I

 L

 0
0

 3 3

 3
 3
 6
 6 6

 6
 6 6

 7
 7
 5
 2
 6
 0
0

 3 6

 6
 6
 6

 F
 

c
-
 5
 3
 9
 9
 9 9

 Q
:

 9
 9
 9
 9
 9
 9
 9
 C
D

 7 s 7 7

 7
 7
 4
4

 1
1
1
1
1
1
2
2
2
2
 2
 2
5
?
^

 2
 4 4 4

 5
 5

 :
 

6
 R.

 6
 6 6

 6
 6
 6
 6
 6
 5
 5
 5
 3
 8
 4
 4
 4 6 6

 6
 C
D

 s

 o

 5
 5
 5
 8 9

 9
 9
 9 9

 3
 3
 3
 0
0

 3 3 3 6

 6
 3
 3 3

 3
 

7
【
-
-
-
7
 7
 7 7

 4
 3
 4
 4 4

 2
 0

。
5

 5
 5
 5
 l
q

 5 8

 8
 8
 i
 4

 6
 8
8
5
 5
 5
 5
8
 8
8
8
8
6
6
6
5
 C
o

 5 5 5

 4 4

 s
 

-
-
3
 3
 3
 5
 5
 4
 7
 7 7

 8

 8
 C
O

 4
 4
 4
 8 3

 rn

 C
D

 5
 1
 1
 7

 7 7 7

 7 7 7

 7 7

 7 9

 9
 9
 .9

 9
 9
 9 9 9

 7
 s
 7

 i
 

C
D
S
8
8
3
8
8
 8
s
7
7
7
7
7
7
7
9
A
9
9
9
r
D
r
>
 --

 2
2
2
2
 2
 2
2
2
 1
-
1
1
1
1
1
1
1
1
1
1
1
1
1
 

^
^

 ̂

 9

 9
 9 9

 8
 8
 4

 4
 4
 4

 4
 4
 4
 4
 4
 4
 4
 2
 2
 2
 2
 2
 n
 

.c.l

 
？
 
？

 p
 p

 p
 p
 p

 p
 p

 p

 p
 p
 p

 p

 p

 p

 p

 p
 p
 p
 p

 p
i
 ̂

 ̂

 ̂

 ̂

 ̂

 :

 ̂

 o
 

r

 t

 g

 ?

 p

 p
 p

 p
 p

 p

 p

 p
 p

 p
 p

 O
l

 p

 p

 p
 p

 p

 p
 p
 p

 p

 i
 

g
 -.v

 3 3 9

 3
 C
-
)

 5
 7

 3
 
4
 3
 6 2 4 8

 2
 8
 9 7

 
4
.
 s 5

 0
0

 i
 ̂

 >

 t
 

n
 n

 3
、
n

 5
 5
 4
 4
 4
 4

 3
 7

 5

 4

 8

 5
 1
 4
 7
 r
b

 6
 5
 1
 C
J

 s
 C
O

 C
O

 4
 5 9

 6
 4
 8 2

 9 9 7

 8
 7 5

 5
 s 2 3

 9
 4
 9

 i
 

u
 
-

-

-

a

,

.

,

-

U

U

U

U

U

J

U

U

U

U

U

U

U

U

J

U

U

U

U

U

O

 n

 9
.

】
6

 1
 8
 C
O

 3
 8
 5
 1 3

 7
 6 6

 5 2

 c
d

 3
 4
 s
 7
 5
 7

 s
 

e
 C
-
J
「
I
:

 s
 s s

 s s

 0
〕
s

 s
 s
 s
 s
 s
 s
 (
？
J

 s s s

 s

 p
 
e

u

u

u

u

u

u

u

u

a

u

u

u

u

u

u

u

a

u

u

u

a

u

o
 

h
 1

 s

 s s s

 s
 s
 s s

 s
 s.

 s

 s
 s s s

 s
 s
 s
 s s

 s
 s
 p
 

c
 a

 c
 o o 9

 6
 o
 1
 0:.-

 G 7

 9
 4
 2
 4
9
6
5
7
0
5
2
9
1
 Q

 V
;
)
)
 

•
-

 -
 o

「
。
1

 2
 t
o

 9
 0

〕
7
 o:
-

 8
 4

 1
 3
 5
 C
s
J

 o
 (
0

 6
 5

 3
 2 o

 a
 a
c
0
0
9
6
0
1
8
0
7
9
4
2
4
9
6

 5
 7
0
 5 2

 9
1
 

r
A

 
一

 -
 p
-

 q
-

 
3
 7
 p
-

 
5
 
5
 
4
 
3

 
3
 
3
 2
 2

 2
 2 1

 1
 1
 1
 1

 1
 r
 i

 o
 o
 1
 2
 
5
 9 3

 7
 3 8

 4
 1
 (
o

 
5
 2
 o
 8
 6 5

 3
 2 Q

 a
 

s
 i

 :
 t

 o
 9

 8
 7

 R
二
O

 5
 4
 4
 (
o

 3
 3
 2
 2
 2

 2

 1
 1
 1

 1
 1

 1

 n
 

1

 
•

 〔
：

 1
1

 
二

 
二
 
二

 I
I

 二
 I
I

 I
I

 二
 I
I

 -
I

 I
I

 -
I

 I
I

 二

 二

 二
 I
I

 二
 I
-

 I
I

 
二

 F
 i

 7,
-

 -

 .

 i
 

T
 r

 T T T

 T
 T

 T
 T
 T

 T
 T
 T

 T T T T

 T
 T

 T
 T

 T
 r
 r

 I
、

 n

 I
I
 I
二
I

 -
I

 I
I

 
二

 I
-

 I
I

 I
I

 
二

 
二

 
二
 -
I

 
二
 -
I
.

 I
-

 -
I

 
二

 
二
 
二
 
二

 I
-

 F
 

I
T
T
T
T
T

 
>
 
丁
上

 T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
E
,
 二
：

 T
T
T
T

 >
 



3

 w

 w

 w

 w
 w

 w

 
d

d

d

d

d
 

5

 N

 N

 N
N

 N

 N

 N

 o
o
 C
o
s

 ̂

 ̂

 w

 d

 w
d
d
 

5

 3

 1

 3
0

 2

 
5

0
 
6

7

5

9

1

 t

 N

 
N

O

N

O

〇
 

1

 8

 2
 o

 6

 C
O

 7
 a
)

 o

 s

 5

 3
 8
 3

 7

 8
 4

 s

 5
 i

 3

 3
 

o

 7

 9

 .
9
8

 e

 7
 7

 3
2
 3
4
s

 S
S

 g

 
购

 
叫

 |
 1

 
仍
 S
 

^

o

o

o

o
 
o

o

o

 o
o
o
o
o

 o

 •

 .

 .
 Q
^

 Q
^

 7
 3
 1
 

3

 一
-

 --

 
二

 
二

 
二

 
I

I

 
I

I

 
二

 I
I
 
I

I

 
二

 V
 P
J

 o
 o

 o

 o

 
3

D

 ]•
 

3

 ̂

 b

 b
b

 b

 b

 b

 b
b
 ̂

 ̂

 ̂

 3

 1
1
 -
I

 --

 ̂

 ̂

 ̂

 ̂
^
^
 

o

 p

 p

 p

 p

 p
 p
 p

 p

 p
 p

 p
 
昨

 G

 
扑

 £
 b

 ̂
 ̂

 ̂

 

-

1

4

 

0

1

9

6

7

9

3

7

0

4

2

 p

 
p

p

p

p

p
 

2

 5
 2
 2

 3

 7
 7
 5

 3
 o
 ̂

 ̂
 ！

 I
 8

 3

 9

 7

 5

 ̂
 )

 J
J
 

？
;
;

 3

 3

 6
3

 3

 o

 2

 9
4

 s
s
s

 „

 e
s
s

 

似

奶

「

i

 S
G
S
 

C
p

 o
 o

 o

 
o

o

o
 o

 o

 o
o
o

 r

 •

 .

 .
 1.

 5

 3
7
5
 

0
5

 1
1
3
 o

 3
 a
-

 rr
-

 s
 C
D

 4
 o
 3
 5

 3
 2

 !
 7
 5
 4

 9

 e

 ̂

 N
 t
 N

 N

 N
 N
 N
 R

 N N

 N
 R
 N
 R

 N N

 s
 R

 R
 

一-
 _
-
!
-

 --

 n

 ___

 H

 一一-

 1
7
7
7
7
0
v
o
?
Y
?
l
:
:

」
n
,
u
 

r
E
E
E
E
E
H
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
 ̂

 |

 ̂

 ̂

 D

 D
 D

 D D

 D
 D
 D

 D D

 D
 D
 D
 D

 D D

 D
 D
 D

 ̂

 ̂

 ̂

 

二
>
0

 1
8
 1
1
4
8
6
2
0
4
8
8
1
6
3
5
 4
9
s
 4
3
 §

 “

 o

 E
 E
 E
 E
 5

 E
 E

 E
 E

 E
 E

 E E E

 E

 E
 £ E E

 E
 E

 E‘

 ̂

 

5
 3
 4 4

 4
 4

 3
 3
 4

 3
 3
 3 4

 3 3

 3
 4

 2 3

 3
 3

 u

 e

 4

 2
 1
 〇
 7

 6
 s
 5
 5

 5
 6

 2
 9
 7

 8
 3
 丄
！

 3
 1

 3 m

 m

 h
 

/

 
/

I
 
-

I

 I
-

 n

 I
-

 U

 I
I

 n

 I
I

 -
I
 -
r

 ̂

 I
I

 I
 
1

7

/

1

 .
^
4
4
4
4
4
4
4

 4
 4

 a
-

 ̂

 ̂

 ̂
^

 ̂

 ̂

 ̂
^

 ̂

 ̂
^

 ̂

 ̂

 e

 M
 

r
 E
 E

 E
 s
 E
 E

 E
 E

 E
 E
 E
 E
 E
 E E

 E
 F
y
E

 E
 E E

 F
x
i
 a

 w

 -

 -
I

 -
I

 --

 ̂

 --

 V

 -

 ̂

 ̂

 ̂
 ̂

 ̂

 ̂

 
机
 

1
 .
^
0
7
7
7

 8

 9
7
7
9
7
8
 8
8
 7
7
7
8
5
7
7
7
.
^

 ̂

 i
套
豐

 E

 E

 
豐
豐

 E

 
蓋
 s

 £
 g

 “
 

仅

 s
n
”
-

 --

 -

 n

 n

 --

 
二

 F

 •
加

 •

 8
 7

 7 7

 
⑶

⑶

⑶

⑴
 S
 S
 2

 8
 7

 7 7

 C
O

 9
 s

 s
 s
 7

 J
J

 .
腹
 

.M
 -
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
^
,

 ̂

 M
 

g
 n
-

 n
-
 9

 8 o o

 9

 9
 6

 a
-

 a
-

 4
 4
-

 5
 4
 4

 5
 o
u

 6 6

 5
 4
-

 3

 g

 r

 C
E
C
C
D
D
D
D

 D
D
D
D
D
 ̂

 d
 

p
 e
l

 1
1

 >

 ̂

 c
o
o
o
o

 5

 6
6
5
5
5
6
7
 0
0
8
8
7
3
7
 3
7
 
3
]
5

 ̂

 

0
 D

 :

 I
I
 -_

 -_

 I
I
 
二

 I
I
 
二

 I
I
 
：

 -
I
 
|
一

 
二

 I
I
 I
I
 I
I
I
二
二
二

 ：：-
 6

 ；
5

 1

 1

 1
 8
8
7
9
7
6

 7
 8
^
 5

 m
 

 ̂
，
S

 S

 S
 S
 S
 S
 S

 S S

 S
 S

 S
 S
 S

 S
 S S

 S

 S
 S S

 S

 
，

 S

 D

 I
二
I

 
二
 
二

二

二

 I
I

 I
I

 
二

 
二
 
二
 
二
 
二
 
二

 
二

 
二
 
二

 -_

 
^

 ̂
^
 

(
0

 4

 6
 8

 8 2

 4
 S

 2 8

 6
 9

 3
 2
 4
 7

 3
 2 6

 4
 4
 -

 ̂

 7

 S

 C
」
C
J

 
：
 S

 S
 S
 S
 S

 ,
 

^
；
^
 
J
 力
，
一
「
」
3

 0
:
-

 
2
 
2
 
2
 
2 2

 2
 3
 3 2 2 3

 2
 2 2 2

 4
 5

 --

 ̂
u
^
e
o
^
l
.
1
1
9
9
1
1
9
4
5
2
 4

 3
1
3
 6

 1
.

 
让
 

D
 -.

 -

 ;

 
：

 --

 I
-

 
I

I

 
I

I

 
I

I

 
I

I

 I
I
 
-
I

 
I

I

 I
-

 -

 --

 --

 ,

 J

 2

 2

 3
 3

 3

 3

 2

 2

 3

 3

 2
 M

 2

 W

 K
 2

 S

 M

 3

 6
 

T
】
L

 
L
 
丁
1

 
L
 
L
 T
I

 
L 
L

 
L
 
L
 
L 
L

 
L
 
L
 
L
 
L
 
L 
L

 
L 
L

 
L
 
9

 
8

 n
^

 
^
 
:
 I
I
 
-
I

 I
I

 
±
 I
-

 
二

 I
I

 I
-

 
-
I
 r
l
Y

 ̂
^

 ̂
^

 c,
 

1
 2
 3 3

 2
 2
 3 4

 4
 4
 4
 4
 4
 4
 4
 4
 4
 4 4

 3 3

 3
 4
 7,

 O
L
L
L
L

 L
L
L
 L
 L
 L
 L
 L L L

 L L L

 L
 L
 T
I

 L L

 (
c
^

 ̂

 

二
，
，
 
；

 ̂

 2

 2
 2
 2
 5
 5
 4
 5 5

 5
 5
 4
 3
 
2
 
2

 
2
 c
,

】
2

 2
 2
 
2
 
2

 4

 
-

s
 2
 2
 1
 2
 2 2 3

 O
 8
 8
 8
 8
 8
 9
 8
 8
 9
 2
 9
 9
 3
 8

 5
 9

 二

 2

 2
 2 2

 2
 n
^
 

1
1
1
1
1
1
1
1

 1

 .

 r
e

 1

 2 1
 

6

 2

 h

 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

 1
K

 .

 e
 

(
•
.
】1

 1
 1
 1
 1
 1
 1

 1
 3
 3 3 3

 3
 3
 3
 3
 2
 3 3 3 3 3

 ,

 ⑴

 ⑴
〕

 9

 ̂

 

-
r
二

 2

 u
 p

】
2

 2 9 9

 8 3

 2 2

 2
 2
 6
 C
D

 C
D

 6
 7

 6 6

 1

 .
堵

 ̂
^

 u
 u
 n
 1

 1
 1
 2
 2
 2
 2

 2 2

 5
 5

 5
 5 5

 o
t
^

 .

 
印
 

r,-

 ̂
 6 8

 8 3 8

 7
 7 7

 7
 8

 8
 8
 8
 o
o

 8
 2
 8
 8
 3 7

 R

 -
r
u

 3
3
2
?
】
6
6
3
3
5
5
5
5
5
5
2

 2
 2
 2
 2
 5

 2
s
 

4
 4
 4
 4
 4 4

 4
 4
 4
 4
-
4
4
4
4
4
4
4
4
4
4
4
4
:

 I

 L

 ̂
 2 5

 5
 4
 4
 d
-

 4
 4 4 4

 a
-

 4 4

 7 7

 0
0

 7
'

 7
 7
 7
 ̂

 ,

 F
 

C
p

 巧 5

 7

 3
 3

 3
 3
 1 1

 1

 1
 1
 1
 9
 o
^

 9
 9

 9 9

 2
 9

 
3

 M
 ；

；
^

 4

 5
 5
 5
 5 5

 3

 3
 C
o

 C
O

 3
 3
 3

 3
 3
 8
 3
 3
 y
 •

 •
 

4
 3
7
 7
 5
1
0
5

 5
 5
5
5
5
5
3
9
1
 1
1
 1
7
6
7
8
s
 0
^
5
2
3

 0
0

 3
 o
o

 6
6
6
6
6
 7

 9
9
9
 Q,
-

 6
6
 6
 6
s
 

7
 3
 3
 O

—
J

 7
 C
D

 6
 s

 6
 C
O

 6 s

 6
 5
 5 5 5 5 5

 5

 5
 5

 i
 4

 8
 6
 6
 6 6

 2
。
)

 9 9

 9
:
9

 9 9 7

 4
 4
 4
 4
 4 4

 4 M

 s
 

-
-
3
8
6
 6
 6
7
 0
^

 8
 8

 9
9
9
5
6
6
2
3
 0
0

 2
2
0
^
2
 7

 7 7

 7

 7

 7

 7 7

 7
 7
 1
 1
 1
 1

 1
 1
 1
-

 
^

 
^
 

9
、
b
9
0
?
9
9
9
2
2
2
7
7
 7
7
7
7
7
 7
1
1
1
1
n
 --

 ̂

8
8
8
3
8
8
8
8
8
1
7
 6
 6
6
6
6
9
9
 9

 9
9
 

9
 9
9
9
9
9
2
2
1
1
8
8
3
8
8
8
 7

 8
3
8
8
^
 n
 

v
f
?

 Q
-

 p
 p
 p

 p
 p
 p

 p
 p
 p
 p

 p
 p
 p
 p
 p
 p
 p
 p
 p
 p

 p

 i
 Y
j

 
广

•

广

厂
 

b
n
 ,
一

 r
7
3
:
3
:
 
丨

 t

 ̂
^

 p
p
p
p
p
 p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
i
 

^
 e

 3
 7

 8
 7

 3
 7
 7

 9
 3 9

 7

 8
 9
 C
D

 9
 6
 3

 8
 7

 6 9 7

 .
1

 厂
、

 t
 

w
 n

 3 3

 6
5
7
6
 8
 2
1
8
2
 2
 5
5
 1
2
2
 2
 1
7
2
8
s
 e
6

 2
2
 3

 5
 2
9
C
D
2
C
0

 8
7
6
9
4
2
7
9
8
8
5
5
-
1
 

^
 
e

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

a

u

u

u

o

 m

 (
2
(
2
"
2
2
4
6

 2
3
1
5
1
1
 7
 7
7
5
8
 (
b

 3
3
2
 I
s
 

 ̂〔•-
一

 s

 s s

 s
 s

 s s s s

 s
 s
 s
 s
 s
 s s

 s

 s
 s s

 s

 p

 
e

u

u

u

u

u

u

u

a

u

u

u

u

u

u

u

u

u

u

u

a

a

a

D
 

p
i
 ]

 3 ]

 3
 1

 s s

 s
 s s

 s s s

 s s s s

 s s

 s
 s
 s s s

 s

 L
 p
 

c
 a

 o o o

 Q,.-

 6 o

 1
 R_

 n,-

 7

 9
 4
 2

 4

 9
 6
 5 7

 0
 5 2 9 1

 T
^
 

.
 i

 o
 o
 1
 2 5

 9
 3 7 3 8

 4
-

 1
 O
O

 5
 2
 G
 C
O

 6 5

 3
 2 o

 a

 o
^
^
o
o

 9 6

 
0
1
8
0
7
9
4
2
 4
9
6
5
7
0
5
2
9

 1
^
 

s
 t
-

 o 9

 8
 7
 6

 5
 5
 4
 4

 3
 3
 C
O

 2
 2
 2

 2
 1
 1
 1
 1
 1

 1
 n
 -
1

 ̂

 o
 1
 2
 5
 Q
^

 3
 7
 3
 8
 4
 1
 3
 5
 2
 o
 3 6

 5
 3 2 o

 a
 

i
 1
 ̂

 o
 9
 3
 7
 6
 5

 5
 a
-

 4
 3
 3 3 2

 2
 2
 2
 1
 1
 1
 r
4

 1 K

 L
一
 

r.
 n

 -
I

 I
-

 I
-

 -
I

 -
I

 -
I

 I
I

 I
I

 :

 -

 I
I

 I
I

 I
I

 I
I

 I
-

 -
I

 I
-

 -
-
-
I
F

 u

 ̂

 --

 --

 .

 i
 

1
 
二

 T
-

 T

 T
 T

 T
 T
 T
 T

 T
 T

 T

 T

 T

 T

 T

 T
 T

 T

 T

 T

 T

 T

 >

 
二

 I
I

 I
-

 
二

二
 -
I

 I
-

 --

 
二
 I
-

 
二

 1
1
.
1
1

 
二

 
二

 
二

 --

 
二
 
二

 F
 

I
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 >
 



T. S. Cheung Appendix I 15 6 

9.7 Summary 

There are some findings in the simulation of this problem: 

1. About at least 15 iterations (perturbations by cell shuffling) should be done before a 

reasonable minimum is found. Hence, the program execution with c〉=0.9 give better 

result. 

2. Exponential decrease in temperature gives much better result than that by linear 

decrease rate. 

3. At fast temperature, T，decrease rate, i.e. simulation with small c (e.g. 0.72)，many 

times of execution should be done to obtain an acceptable minimal, while at slow T 

decrease rate (c二0.9，0.99), less number of iterations is required. However, in the case 

of very slow T decrease rate, the minimal is mainly determined in the range of T二200 

down to 100. 

9.8 References 

[1] Dimitri P. Bertsekas, 'Dynamic Programming: Deterministic and Stochastic Models', 

pp.26-28, Prentice-Hall Inc，1987. 

[2] Eric V. Denardo, 'Dynamic Programming: Models and application丨，pp. 16-18， 

Prentice-Hall, 1982. 



T. S. Cheung Appendix I 14 ( 

10, Appendix II 

The derivation of the algorithm's computation time (section 6.1) is summarized in 

this section. 

1. Affinity Clustering Phase: 

i. Construction of Connection Lists 

The number of computation cycles is identical to the length of the connection list 

which is equal to the number of connections, lel，of the circuit. 

In step (ii) to (v), it is necessary to construct an ordered group list. Hence, the 

number of computation cycle of a step is approximately given by 

1/2 * mean of Lo and Lf * N - … … _ Eq. 10-1 

where L。is the length of group list before execution of the step, 

Lf is the length of group list after execution of the step, and 

N is the number of grouped items (i.e. number of added items to the group 

list) in the step. 

In step (ii) to (v), it is expected that the number of grouped items in each 

consecutive steps are n/2, n/4, n/8, and n/8 respectively. 

11. Primary Grouping 

In this step, it is necessary to scan once the connection list with length lel. Then, 

assuming that half of the cells are clustered in this step, to construct the group list with 

length n/2, the following number of computation is need: 

lel + 1/2 * (0+n/2)/2 * n/2 = lel + n2/16 Eq. 10-2 

iii. Element Appendage to Existing Groups 

In this step, the length of the connection list left is lel/2, L。is n/2 and Lf is 3n/4. 

Hence, the number of computation is: 

lel/2 + 1/2 * (n/2+3n/4)/2 * n/4 = lel/2 + 5 n 2/64 Eq. 10-3 

iv. Loose Appendage of Ungrouped Elements 



T. S. Cheung Appendix I 14 ( 

In this step, the length of the connection list left is lel/4, L。is 3n/4 and Lf is 7n/8. 

Hence, the number of computation is: 

lel/4 + 1/2 * (3n/4+7n/8)/2 * n/8 =丨el/4 + 13n2/256 Eq. 10-4 

V. Single Element Group Formation 

In this step, the length of the connection list left is Id/8, L。is 7n/8 and Lf is n. 

Hence, the number of computation is: 

lel/8 + 1/2 * (7n/8+n)/2 * n/8 = lel/8 + 15n2/256 Eq. 10-5 

2. Alteration Phase: 

i. Element Assignment to a Group 

It is necessary to scan through the group list once to determine which group the 

added element belongs to. Hence, the number of computation is n. 

ii. Empty Space Searching 

To find the empty space, the step consists of two parts: 1) to search the nearest 

empty space, 2) to locate the nearest group element. The expected length between an 

empty space and the group element is equal to the expected length between any two 

points in an nXn grid array. That is 

1/2 * (2)1/2 * (n)i/2 = (n/2)i/2 Eq. 10-6 

where (2)" 2 is diagonal distance in a grid, and 

(n)i/2 is the length of the array. 

Since this step consists of two parts with the method, the number of computation time is 

2*(n/2)i/2 = 2(n/2)i/2 Eq. 10-7 

iii. Determination of Direction of Element Allocation: 

-Cross-cut Direction of Allocation 

To determine the cross-cut direction of allocation, it is necessary to scan through 

the element between two points in the nXn array. Hence, the number of computation is 

equal to that in Eq. 10-6. 



T. S. Cheung Appendix I 14 ( 

- D y n a m i c Determination of Path Based on Size Functions 

-Segmentation of Cross-cut 

In this part, the path with length given by Eq. 10-6 is divided into segment with 

length 4，the number of computation time is equal to the number of segments. 

-Partial Optimization of Segments 

In this part, there is an average of 3 templates for each segment, the average of 

length of each segment is 2(2)1/2, and the number of segment is given by Eq. 10-8. 

Hence, the number of computation is 

3 * 2(2)1/2 * (n/2)i/2/4 = 3ni/2/2 gq. 10-9 

- D y n a m i c Linking of Segments 

In this part, since each segment have about 3 templates (section 3.2.3.2.2), the 

mimber of computations is approximately the number of combinations of templates in a 

path. 

For a path with L m h t >6, there is two parts of segments each with 3 templates. Hence， 

the number of combinations of path segments is 32. 

For a path with L M H T > 10，there is three parts of segments and the number of 

combinations of path segments is 33. 

In general, for a length of L, the number of combinations is given by 

[(L/A.M.) + 1] 

f ( L ) = 3 

where A.M. is the arithmetic mean of the length of a path segment. 

Since the arithmetic mean is (4+5)/2 = 4.5， 

[(IV4.5) + 1] 

f ⑵ = 3 - Eq. 10-10 

Since the average length of path in an array with size n is (n/2)i/2, Eq. 6-2 is given by 

[(ni/2/6.36) + 1] 
T = 3 Eq. 10-11 



T. S. Cheung Appendix I 14 ( 

- E l e m e n t Allocation 

Since the number of moves (shifting) of cells is equal to the expected length 

between any two points in an nXn grid array. The equation is identical that in Eq. 10-6: 

(n/2)"2 Eq. 10-12 





C U H K L i b r a r i e s 

•圓llillllll 
D D D 3 2 S 7 7 M 


