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ABSTRACT 

This thesis presents the analysis of rectangular microstrip antennas 
wrapped either on the outside and inside surface of a metallic cylindrical 
duct. The present method is a full-wave analysis which rigorously solves 
the electromagnetic boundary value problem by retaining all field 
components. The electric surface current model is employed : The electric 
field and the surface electric current distribution are related by the spectral 
domain Green's function. Moment method is then used to determine 
entities like input impedance, mutual impedance, and resonant frequency. 

Analysis of microstrip antennas on curved surfaces requires 
knowledge on special functions computation, for instance, Bessel functions 
and Hankel functions are needed for cylindrical bodies. Computation of 
complex argument Bessel function and Hankel function is a burden to the 
analysis of microstrip antennas on cylindrical surfaces, since existing 
routines available are either not accurate enough, restricted to real 
argument, or applicable for a relatively small range of argument. The first 
part of this thesis is devoted to the problem of computing integer order 
cylinder functions of wide range of complex argument, which makes 
subsequent analysis of microstrip antennas on cylindrical bodies possible . 

The input impedance and mutual impedance of cylindrical-rectangular 
microstrip antennas are studied using this method. The Green's function in 
the spectral domain is derived by matching the boundary conditions on the 
interfaces. A homogeneous matrix equation is obtained from the integral 
equations by applying Galerkin's method, which is a special case of 
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moment method. The matrix equation is solved numerically for the surface 
current distribution, from which the input impedance and mutual 
impedance can be computed. 

The complex resonant frequency and input impedance of rectangular 
microstrip antenna fabricated on the inner surface of a cylinder are also 
studied. A similar analysis method as that employed for studying 
cylindrical-rectangular microstrip antennas is used. The radiator is 
replaced by a surface current distribution on the interface between air and 
dielectric. The formulation will lead to a set of integral equations from 
which the current distribution on the patch can be evaluated. The set of 
integral equations is solved using Galerkin's method with sinusoidal basis 
functions. Muller's method is then used to locate the zero of the 
eigenvalue equation whose root is the complex resonant frequency. Both 
the real and the imaginary part of the complex resonant frequencies will be 
calculated with various dielectric substrate thicknesses. The input 
impedance is computed using a method similar to that of cylindrical-
rectangular microstrip antenna. 
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Studies of Microstip Antennae on Cylindrical Structures 

CHAPTER 1 

INTRODUCTIONS 

The concept of using microstrip antennas to provide printed 
radiating structures, which are electrically thin, lightweight, and low 
cost，is a relatively new development in antenna engineering. Although 
the concept of microstrip antenna was proposed by Deschamps [1] in 
1953, no such practical antenna had been fabricated until early 70s' 
when a better theoretical model and low loss dielectric substrate was 
developed. 

The key contributing factor for recent advances of microstrip 
antennas is the advent of electronic circuit miniaturization brought 
about by developments in large scale integration, fiber optics and 
sensor technology, which requires compact antennas that are 
compatible with integrated electronics. Microstrip antennas are now 
largely used due to their intrinsic advantages of low profile and weight, 
and conformity to curved surfaces. 

In the early development phase, the analysis of microstrip antenna 
is based on various approximate methods like transmission line model 
and cavity model. 

Transmission line model (TLM) [2] [3] [4] is the simplest 
approach of analyzing microstrip antennas, this method exploits the 
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analogy between a rectangular microstrip patch and a section of a 
transmission line. The equivalent transmission line of the rectangular 
p a t c h IS t e rm i n a t e d w i t h e d g e a dm i t t a n c e a t t h e t w o end s , i npu t 

impedance is found by analyzing the transmission line network. 
Modifications to the TLM have been made to enable the analysis of 
mutual coupling, and analysis of non-rectangular patch shapes. The 
transmission line model is simple but it is still useful for first order 
engineering design. 

A major breakthrough in microstrip antenna analysis has been the 
use of cavity model [5] in place of transmission line model. In this 
model, the microstrip antenna is considered as a cavity bounded by a 
magnetic walls along the edges and by electric walls on the metallic 
patch and ground plane. Several assumptions are made in cavity model, 
namely, 

(1). The substrate must be very thin electrically that electric field has 
only z-component (ground plane on x-y plane), and magnetic field 
has only xy-components in the region bounded by the patch and 
the ground plane. 

(2). The fields inside the cavity are independent of the z-coordinate for 
all frequencies of interest. 

PAGE 11 



Studies of Microstip Antennae on Cylindrical Structures 

(3). The electric current on the patch must have no component normal 
to the edge at any point on the edges, implying a negligible 
tangential component of magnetic field along the edges. 

With the assumptions made, the radiation patterns, input 
impedance, Q-factor, mutual impedance and resonant frequency of a 
microstrip antenna can be determined. This method is applicable to 
patch shapes for which the two-dimensional wave equation is 
separable. Cavity model gives satisfactory results when the substrate is 
thin compared to the operating wavelength. 

Both transmission line model and cavity model do not consider the 
variation of field components along the normal direction between the 
patch and ground plane. This simplification will not cause significant 
errors to electrically thin microstrip antennas, however, this 
simplification is invalid for relatively thick microstrip antenna, say h/X 
-0.1. Hence, there is a need for an accurate full wave analysis method 
；6-9] for microstrip antenna. In full wave analysis methods, usually an 
integral equation is formulated and then moment method is used to 
solve the integral equation. Resonant frequency, input impedance, 
mutual impedance, and radiation patterns can be calculated using this 
method. 

Microstrip antennas on curved surfaces are different from planar 
microstrip antennas in several aspects. In the analysis of planar 
microstrip antenna, it is usually assumed that the ground plane is flat 
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and is infinitely large, however, the ground plane for a microstrip 
antenna on curved surface is a finite surface with finite radius of 
curvature. The curvature of both the microstrip patch and the ground 
plane gives extra complexity to the analysis. Analysis of microstrip 
antennas on cylindrical bodies has been studied using cavity model [10] 
and moment method [11’ 12；. 

In this thesis, full wave analysis is employed to solve some 
problems of rectangular microstrip antenna on cylindrical bodies. 

Analysis of microstrip antennas on curved surfaces requires 
knowledge on special functions computation. For example, Bessel 
functions and Hankel functions are needed for cylindrical bodies; 
Mathieu functions are needed for elliptical cylinder; spherical Bessel 
functions are needed for spherical bodies. Computation of such special 
function is a burden to the analysis of microstrip antennas on curved 
surfaces especially when routines for calculating such special functions 
are unavailable. Chapter two of this thesis is devoted to the problem of 
computing integer order cylinder functions of a wide range of complex 
argument. 

In chapter three, the input impedance of a cylindrical-rectangular 
microstrip antenna is considered using the spectral domain method. The 
spectral domain Green's function is obtained by subjecting the fields to 
the boundary conditions on the interfaces. A homogeneous matrix 

‘ I 
equation is derived by adding a test function and by applying Galerkin's 
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method which is a special type of moment method. The matrix 
equation is then solved numerically for the surface current components 
on the patch, from which input impedance can be calculated. 

Chapter four gives an account of a method to calculate mutual 
impedance of rectangular microstrip antennas on cylindrical bodies. 
The method of analysis is basically an extension to that in chapter 
three. 

In chapters five and six, the complex resonant frequency and input 
impedance of rectangular microstrip antenna wrapped inside a metallic 
cylinder are studied. 
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CHAPTER 2 

COMPUTATION OF CYLINDER FUNCTIONS 

1. INTRODUCTION • 

Bessel functions and Hankel functions of integer order occur as 
the solutions of many electromagnetic problems formulated in 
cylindrical coordinate system [4，Chap. 5]. Since the author is 
interested in the study of conformal antennas mounted on grounded 
substrate on metallic cylinder, where Bessel functions and Hankel 
functions which model standing waves and traveling waves are 
encountered frequently, and the range of the complex arguments of 
interest extends from zero to over several thousands in magnitude, 
which will normally have encountered problems of underflow or 
overflow in computation. Consequently, the accurate computation of 
Bessel functions and Hankel functions of a large range of complex 
argument is of importance. In this section, the term cylinder function is 
used to denote Bessel and Hankel functions collectively. 

Amos [2] reports a sophisticated and portable code for Bessel 
functions. However, his underlying algorithm is not available for 
analysis. Du Toit [3] reports methods for computing Bessel functions of 
the first and second kind for integer orders and complex argument, but 
calculation of Hankel functions was not mentioned in his paper, also 
the argument range is limited by the computer's ability to handle large 
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number. Mason [6] has presented a convenient way of segmenting the 
complex z-plane where different algorithms can be applied. This 
chapter will give an account of works that extend previous works by 
adopting z-plane segmentation scheme similar to Mason's, and develop 
simple and efficient algorithms, and discussions on schemes for 
determining starting index for backward recurrence, ways to avoid 
exceeding permissible floating-point exponent range of the computer 
will also be covered. 

The algorithm has been tested extensively and counter-checked 
with a number of existing routines. A FORTRAN-77 computer 
program implementing the algorithms presented is available from the 
author. 

2. NEED OF COMPUTING CYLINDER FUNCTION OF 
COMPLEX ARGUMENTS 

There are lots of well written routines for real argument cylinder 
functions, however there are relatively few routines available for 
computation of complex argument cylinder functions which are 
unavoidable in the study of microstrip antennas on cylindrical ground 
plane in spectral domain. 

A typical Somerfeld integral to be evaluated numerically is of the 
following form: 
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Z:; = JL,(-n，-kz)6JJn，kJdkz 
n = — 一 的 

where Ĝ ^ is function of cylinder functions c j ^ k ' - k ^ b ) . The 

contour of integration cannot run on the x-axis from minus infinity to 
plus infinity, since the integrand possesses surface wave poles, a 
typical contour is shown in figure 2.1. 

CI C2 

Z X . C3 � 
I \ " “ ^ 

- • 

Figure 2.1 Contour of a typical Somerfled integral 

The argument of -k^b) is complex on CI and C2, purely 

imaginary in C3, so there is a need to compute cylinder functions with 
complex argument in general. 
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3. NEED OF COMPUTING HANKEL FUNCTIONS 

As will be shown in chapter 3，the wave equation will be 
converted to a Bessel equation after taking Fourier transform, it is of 
the following form: 

d^y Idy ^ n ^ � 
巧 种 ( 2 . 1 ) 

The general solution can be of either form : 

y = C,J„(x) + C,Y(x) (2.2) 
y = C3H(„i)(x) + C4H:2)(x) (2.3) 

where Cj, C:，C3 and C4 are constants, J„(x) is Bessel function, Y„(x) 
is Neumann function, Hĵ ^^x) and are Hankel functions of the 
first kind and second kind respectively. If either form is used, the 
Green's functions derived will be functions of J„(x) and Y„(x) only, or 
functions of H，x) and Hĵ ^̂ (x) only, then it may appear that only the 
computation of J^(x) and Y^(x) or H(n”(x) and Hĵ ^̂ (x) are needed. If 
the solution takes the first form，it seems that the difficult problem of 
computing Hankel functions can be avoided. 

It is absolutely correct in principle to write the Green's functions 
using J„(x) and Y„(x) or H(?(x) and H:2)(x) only, but the other pair 
of cylinder functions are necessary in actual numerical computations of 
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the Green's functions, simply because the computer precision is not 
infinite. Here shows an example, the expression Y j Q ^ � i s very 
commonly encountered in the Green's functions : 

P — H(:)(Kb)H(/(Ka)-H(/(Ka)Hi2)(Kb) �� 
7 7 " 一 一, ？ ？ ( 2 . 4 ) 

Hi” (Kb)Hl2) (Ka) - H i” (Ka)H(„2) (Kb) 

w h e r e K m a y b e c omp l e x . P^/Q^ wi l l i n c o r r e c t l y g i v e z e r o d i v i d e d b y 

z e r o f o r l a r g e n, a n d n » | K a |， n » | K b | , w h i c h w i l l c e r t a i n l y c r a s h a n y 

machine. It is known the cylinder functions are related by the following 
expressions (similarly for the derivatives of the cylinder functions): 

Hli)(z) = J„(z) + jY„(z) 
H(„2)(z) 二 J„(z)-jY„(z) • 

However, an alternate representation of P„/Q„ derived using the 
above expression can avoid such type of numerical problems for 
n » | K a |， n » | K b | : 

P„ 一 J„\Ka)Y„(Kb)-J„(Kb)Y„\Ka) 

J:(Ka)Y„'(Kb)-J„'(Kb)Y/(Ka) 

On the other hand, the above representation (2.6) also suffers 
from s im i l a r n u m e r i c a l p r o b l e m s f o r | l m ( K a ) | � � n，| l m ( K b ) | � � n， i n 

which it will incorrectly give zero divided by zero again. Under this 
circumstance, the first form will give the correct value of P„/Q„ • It 
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turns out that both the representations of are necessary if the 
Green's functions are to be accurately computed. 

The necessity of computing Bessel function, Neumann function, 
and two kinds of Hankel functions becomes clear now. 

4. OUTLINE OF APPROACH 

Hankel functions of the first and second kind are defined by : 

H(:)(z) = J„(z) + jY„(z) 
Hl2)(z) = J„(z) - jYn(z) • 

where j = V ^ 

We are easily tempted to calculate H。)（z) and H『（z) from 
J^(z) and Yn(z) using the above expressions. No problem will ever 
appear with small argument z, but if z has a sufficiently large positive 
or negative imaginary part, we have 

J (z) — - j Y (z) ,Im(z) » 0 n n 
J (z) -> jY (z) ,Im(z) « 0 n n 

If the expressions (2.5) are used for computation of Hankel 
functions, the first one implies H(„i)(z) equal to 0 and the second one 
implies Hf^(z) equal to 0，which are obviously wrong. This implies 
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that Hankel functions cannot be solely computed using expressions 
(2.5). 

If z is small, a sequence of J„(z) are computed using Miller's 
algorithm, and the sequence of Y„(z) are calculated using forward 
recursion and those of H(„2)(z) are calculated by using (2.5). If z is 
large，the sequence of J„(z) are calculated using backward recursion 
normalized by J^Cz) which is calculated by evaluation of integral form, 
the sequence of H?(z) or Hf^z) are calculated by first finding HW(z) 
and H「)（z) using the integral form, and then using upward recursion 
afterwards, having J„(z) and H?(z) or H?(z)，the sequence Y„(z) 
can be easily calculated by : 

Y„ = jJ„(z)-jH(„i)(z) (2.6a) 
or 

Y„=-jJ„(z) + jH(„2)(z) (2.6b) 

In this manner, a combination of forward and backward 
recursion, which is difficult to implement, is not necessary to calculate 
the sequence of Neumann functions [6；. 
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5. ALGORITHMS 

The algorithms employed depend on segmentation of the z-plane. 
Figure 1 shows the division of regions. 

i i lm(z) 

Region 3 ； Re ^ion 3 ； Region 3 

I « • 
："(-16,10) ：(16,1"0) 

Region 5 . Re )ion 4 , Region 5 

:(-16,5) : (16,5) 

: Region 1 : 
Region 2 : : Region 2 

： Im ！ R eW“^ 
• Region 1 • 

… “；(-16.-5) ： (16,-5) 

Region 5 ： Region 4 ！ Region 5 

.'(-16,-10) 1(16,-10)----
Region 3 ； Region 3 ！ Region 3 

Figure 1 : Regional division of Complex z-plane 

PAGE 24 



Studies of Microstip Antennae on Cylindrical Structures 

5.1. REGION 1 : |IM(Z)| < 5 AND |RE(Z)丨<16 : 
5.1.1. Computation of J„(z): 

Miller's algorithm is used to find a sequence of Bessel functions 
J„(z), n=0,l,2...N. The sequence of Neumann functions Y (z), 
n=0，l，2，...N， is calculated using the intermediate values during J (z) 
computation. 

The recurrence relation [1: 

C„+i ⑵二 @C„(z)-C„_,(z) (2.7) z 

where C^(z) can be any cylinder function, enables the evaluation of all 
the orders for a given argument z, from any two known consecutive 
orders. However, the above statement was true for J^(z) if the 
computer had infinite precision arithmetic since J„(z) is a minimal 
solution to (2.7), any roundoff error will get amplified as the recurrence 
is going on in the increasing n direction. It is well known that for 
Bessel function J„(z)，the recurrence is always stable in decreasing n. 
If two consecutive orders, say, Jj^(z) and Jm-i(z) are assigned to zero 
and a small arbitrary number p, and the recurrence relation is executed 
in decreasing n direction, the error will diminish as the recurrence goes, 
a suitable normalization constant is needed to retrieve the whole 
sequence of J^(z) from a scaled sequence. The accuracy depends on 

the starting index M and the accuracy of the normalization constant. 
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The problems remaining are how to determine the normalization 
constant and the starting index M. 

5.1.2. Determination of Starting Index M : 

The starting index M for backward recursion is determined by 
the following expression which is adapted from an earlier version of 
Matlab (Note : The current version uses another scheme that 
occasionally gives an M < N for N » z, which will obviously result in 
the wrong J„(z). 

M = 17.1032+0.2639xN + 0.6487x|z| - 0.0018xNx|z| + 0.6457x max(N, |z|) 
(2.8) 

It should be noted that Du Toit [3] reports a scheme that gives an 
optimal starting index, but it requires solution of a non-linear equation 
that is not as straightforward as the current approach. 

5.1.3. Determination of Normalization Constant r| : 

The normalization constant r\ required can be obtained by using 
a truncated infinite series involving various orders of Bessel function. 

The commonly used one is : 

l = J�(z) + 2IJ2k(z) (2.9) 
k= l 
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If {J„(z)} is the scaled sequence of Bessel functions obtained in 
backward recursion, then 

/V M/2/V Ti = J,(z) + 2XJ,,(z) (2.9a) 
k= l 

However, if z is purely imaginary, the summation in equation 
(2.9) is not desirable since Ĵ ^Cz) will oscillate between positive and 
negative values and it will be shown that such oscillation will cause 
numerical errors. The oscillation of values of J^A^) between positive 

and negative values can be easily shown as follows. 

Power series expansion for J^(z): 

J“z) 二 二 z ^ ) � (2.10) 
z z k=ok!r(n + k + 1) 

i f z= j p， 

J 2 � P ) = ( 众 1 广 

It is seen that J j J jP) and J�』？） a r e of different sign. 

Besides, unless z is real, in which J„(z) is always less than 1 [1， 
eqn. 9.1.60], J J z) can be much larger than 1. For imaginary z, the 
sequence of Ĵ ^̂ Cz) oscillates between positive and negative values 
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which can be very large, and equation (2.9) is to obtain the value 1 
by adding and subtracting a large number of terms with large 
magnitudes, this process is particularly vulnerable to numerical 
errors since severe loss of precision may occur. 

An infinite series that outperforms (2.9) for complex z is 

cos(z) 二 J�(z) + 2i(-l)kJ2k(z) (2.11) 
k= l 

then 
/V M/2 

” = ^ (2.11a) 
cos(z) 

Obviously, equation (2.11) can avoid the problem caused by 
(2.9) if z is purely imaginary. Also, equation (2.11) converges faster 
than equation (2.9) for complex z, implying that normalization constant 
obtained by using (2.11a) is more accurate than that calculated using 
(2.9a) using the same number of terms, or equation (2.11) can give r| 
with the same precision using less terms than equation (2.9). On the 
other hand, equation (2.9) performs better than equation (2.9) if z is 
real. 

Table 1 gives some numerical examples about the convergence 
of equations (2.9) and (2.11). It is observed that for complex z, 
equation (2.11) gives faster convergence, as indicated by the smaller 
percentage error due to truncation than equation (2.9)，equation (2.9) 
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gives faster or at least comparable convergence rate for real z. This 
implies that equation (2.11) performs better for complex z while 
equation (2.9) is more suitable for real z. 

• Equation (2.9) Equation (2.11) 
Argument z Percentage Error Percentage Error N 

5+5i 1.78e-13 4.79e-15 28 
30+8i — 8.99e-12 1.54e-14 — 60 
30+80i L17e20 — 1.66e-14 136 — 

80i 2.88el9 1.66e-14 128 
2 2.22e-14 1.33e-14 20 
5 ^ 1.96e-14 24 
15 1.33e-13 3.65e-13 40 
30 2.89e-10 1.62e-9 56 
70 8.74e-12 1.05e-ll 108 

Table 1 : Percentage error due to truncated series of eqns (2.9) and 
(2.11) 

So a criterion for choosing infinite series for normalization is that 
:if z is real, use equation (2.9a), otherwise use equation (2.11a). 

5.1.4. Computation of Y„(z), H(„”（z) and Hf^(z) 

After evaluation of a sequence of J„(z), the sequence of Y (z) 
can be efficiently calculated by the following method : 
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• First calculate Y。（z) using [ABRAMOWITZ et al 1964，eqn 9.1.89], 
noting that it can be calculated in the same backward recursion for 
Jn(z). 

Yo ⑵=乱11{寻) + Y ] J �⑵」 |： ( - 1 ” ¥ (2.12) 

兀L v2y � 7ik=i k 

• Calculate X(z) using either [1，eqn 9.1.88] or Wronskian relation 
[1，eqn 9.1.16]. 

/ ^Z 丫 N 

n! — 1 — Jk(z) � , � -] 
Y “ z ) 二 一 - ^ l y ) +互 In 1 -vK(n + l) J „ � 

n ic=o (n —kOk! n _ V2y _ 

2 y ( i)“n + 2k)J„+2k(z) 
71 ̂ ^ k(n + k) (2.13) 

= \(/(n) = -Y + Sk-^ (n>2) 
k = l 

Or 

Y和)=f J1 (z) Y�(z) - — ( 2 . 1 4 ) 
V N Z J J ^ I Z ) 

• Calculate Y„(z) using forward recursion from Y^iz) and Yj(z). 
H(ni)(z) and are calculated using equations (2.5). 
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Hl̂ ^(z) = J„(z) + jY„(z) 
H(„2)⑵二 J“z) 一 jY„(z) (2.” 

5.2. REGION 2 : |Re(z)| > 16 AND |lm(z)| <5 

In this region, the argument z can have a very large real part, 
making the starting index M for backward recursion computed by 
equation (2.8) very large, the computation time will be impractically 
long especially only Bessel functions of orders up to a relatively small 
number N, N « | z | , are needed. 

If N > z，which is seldom encountered physically, similar 
algorithm as region 1 is employed to determine J„(z), n = 0，1，2，".，N. 

However for real z or when |Re(z)| »|lm(z)|, (note these 
conditions are automatically satisfied as z being in region 2), the 
general magnitude of |j„(z)| and |Y (z)[ is approximately constant for 
n< I z I, so the relative propagated error intrinsic to the recurrence 
relation is stable in increasing n direction [3] [7:. 

In order to apply forward recurrence for J„(z) and Y丨丨(z)，ĴCz), 

Ji(z)，Yo(z) and Y^(z) are needed. They can be efficiently calculated 
by Hankel's asymptotic expansions [1，eqns. 9.2.5，9.2.6； • 

J 

PAGE 31 



Studies of Microstip Antennae on Cylindrical Structures 

� L � L 斗」一 

(2.15) 

X (Z) s J z + c� s [ z 
\ nz 2 4 2 4 

、 L J L. -Jy 

(2.16) 

where 

P (二) 一 1 I f (-l)k(41)2 - I2)(4n2 - 32)…(41)2 - (4k - 1)2) 
n S (2k)!26kz2k 

O (z) - y (一 1 广(4n2 -I2)(4n2 -3))... (4n̂  - (4k- 3”) 
n � 卜 (2k-l)!26k-3z2k-i 

Hankel functions are calculated using same method as in region 1. 

5.3. REGION 3 : |lm(z)|>10 
5.3.1 Computation of J„(z): 

J^(z) computation in this region also makes use of backward 
recursion, but have two numerical problems to solve, firstly, if the 
same infinite series (2.11) is used for normalization, and z is a very 
large complex number, the term cos(z) will overflow, failing equation 
(2.11a); secondly, if the argument z is very large, there will be 
numerical difficulties including the possible exceeding of exponent 
range of floating point number during J„(z) calculation. 
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To solve the first problem, normalization constant r| is instead 
determined by the ratio of J,(z) to J,(z), where J,(z) is calculated 
using integral form representation. 

Before considering methods of fixing the second problem, two 
forms of integral representation of J„(z) will be considered. 
Commonly used integral form of J „ (z) [6] is : 

1 ^ 
J„(z) = - cos(zsine — ne)de (2.17) 

兀0 

In particular, 

J0 (z) 二 丄 f cos(z sin e) de (2.17a) 
71 0 

Ji(z) =丄 fcos(zsine-e)de (2.17b) 
K i 

It will be shown shortly that an alternate form can be numerically 
evaluated slightly less efficiently but can be used to exponentially 
scaled the J„(z) sequence to tackle the problem of exceeding the 
exponent range of floating point number. 

Consider the following integral form representation [5，p. 149]: 

J „ (z) 二 j e—e cos(ne) dG (2.18) 
n 7C 

In particular, 
； . 
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J�(z) =丄 f e—0de (2.18a) 
71 i 

= e 一 cos(e) de (2.18b) 
K 0 

The integrands of the two above integral form representations 
are plotted in graph (Figures 2 to 5). The following observations are 
made : The larger the value of |Re(z)| over |lm(z)|, the greater the 
oscillations of the integrands; The integrand of (2.17a) is symmetrical 
about the line t 二 7c/2，and the integrand of (2.18a) is the enlarged 
version of the portion of (2.17a) running from t = 0 to t = 7i/2. All 
these can be shown as follows : 

71 
Define f(z,9) =cos(zsin0), then f(z，一+ 0) = cos(zcos0) 
Define g(z,e) = e � " " � t h e n if | lm(z)|» 0 

g(z,6) = cos(zcos0) + jsin(zcos9) 

8(z,e) 0<e<7r/2 
�2co s( z co s e) 71/2 < 0 < 7C 

8(z,e) O<Q<kI2 

~ ^ 2 f ( z , - + e) 7c/2<0<7C � 2 
where £(z,9) 

PAGE 34 



Studies of Microstip Antennae on Cylindrical Structures 
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Figure 2 : Plot of Real Part of Integrands 
z = 30 4- 6i 
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Figure 3 : Plot of Imaginary Part of Integrands 

z = 30 + 6 i 
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Figure 4 : Plot of Real Part of Integrands 
z = 30 + 20 i 
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Figure 5 : Plot of Imaginary Part of Integrands 
z = 30 + 20 i 
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As a result, equation (2.17a) seems to give twice as many 
oscillations as that of equation (2.18a), actually for the range 
0<Q<n/2, there are oscillations symmetrical to that in the range 
n/2<e<K about the line i = K/2, but the amplitudes are so small that 
they can be virtually considered as zero. It is these small oscillations in 
the range O<0<7i/2, that makes (2.18a) slightly less accurate for 
numerical integration using Gauss-Legendre rule of same number of 
points. A typical value is 14 decimal places (Scientific notation) for 
(2.17a) and 13 places for (2.18a) using 96-point Gauss-Legendre rule. 

Despite of the fact that form (2.18a) is slightly less accurate, it 
does provide a way of solving the problem of possible exceeding of 
exponent range which would otherwise require multiple precision 
routines or extended-range arithmetic routines similar to that of Smith 
:8] which are unavoidably slower in operation. Consider the integrand 
of (2.18), we have the following inequality : 

e一 e cos(ne)| = |ejz1cos(ne) 
< ^ jzcose 

— -Iin(z)cos6 jRe(z)cos0 — 6 e 
< �(z)咖e 

< e-i'"(z) 
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Hence |j,(z)| So if Im(z) » 0，underflow may occur, 
while if Im(z) « 0 , overflow may occur. However, if the term Im(z) in 
the exponent of the integrand is suppressed, no overflow or underflow 
may ever occur. 

Since backward recursion with J。（z) for normalization is 
adopted, only equation (2.18a) has to be dealt with. Should there be 
any chances of overflow or underflow, instead of evaluating (2.18a), 
the following form is evaluated : 

J G ( Z ) = 丄 f e —昨 "⑴丨 de (2.19) 71 0 

J�(z) = e-l_ljG(z) 

So this solves our problem, we can now compute a sequence of 
/s 

J„(z) by normalizing {J^(z)} with J。（z) calculated using integral form, 
no matter how large the value |z| may be, should |z| be too large or too 
small, a sequence of exponentially scaled Bessel functions J„(z) is 
computed. 

5.3.2 Computation of H?(z)，H:2)(z) and Y„(z): 

In this region, Hankel functions are calculated using forward 
recursion, and Neumann functions are calculated using relations (2.6a) 
or (2.6b). 
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If |lm(z)| > 0, Hankel functions of the first kind H(„i)(z)are 
computed, and Hankel ftinction of the second kind H(„2)(z) determined 
using 

H(„2)(Z) = 2J„(Z) - H;:)(Z) 

If |lm(z)| < 0, Hankel functions of the second kind H(„2)(z)are 
computed, and Hankel function of the first kind determined 
using 

Hli)(z) = 2J„(z) - H(„2)(Z) 

To start the forward recursion, Hf (z)，where i = 1 or 2, is to be 
computed first. The integral form used is : 

'一 2je-jn" (z/2)"� t 广中"� I _ 
V ^ r(i/2+n)| (t2 + i)i" dt ，1 = 1 

H(„i)(z;H ,、於 
2j( — l)n (z/2)n � + 和⑷I 

r(l/2 + n)i “2 + 1,2 dt ，1 二 2 
(2.20) 

where k=0, if no exponential scaling is necessary, k=l otherwise. 
Whereas Hf)(z)，i = 1 or 2，is determined by the Wronskian relations 
[5，p. 144]: 

一 一 H 丨 = 丄 + Ji(z)H? (2.21a) 
J � � L j兀 z 一 
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— mmm 

H�)(z) = ： ^ (2.21b) 

5.3.3 Determination of Point of Starting Exponential Scaling : 

The starting value for argument z where exponential scaling 
begins is quite arbitrary, as long as beyond which underflow or 
overflow will occur. The algorithm described performs equally well if 
scaling is to be performed for all z. For double precision calculation, 
the criterion can be : |lm(z)| >700, however, since it is common to 
encounter expressions involving ratio of Bessel function, Neumann 
function and Hankel function, a safer criterion will be |lm(z)| > 300，to 

make evaluation of such ratios possible. 

5.4. REGION 4 : | R e � | < 16 AND 5<|lm(z)| <10 

If Hankel functions are not required, use similar algorithm as 
region 1 for computation of J„(z) and Y„(z). On the other hand, if 
Hankel functions are required, use algorithms as region 3，to avoid 
problems of failure of equations (2.5). 

5.5. REGION 5 : |Re(z)| > 16 AND 5< | l m � | < 10 

If Hankel functions are not required, use similar algorithm as 
region 2 for computation of J„(z) and Y (z). On the other hand, if 
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Hankel functions are required, use algorithms as region 3，to avoid 
problems of failure of equations (2.5). 

PAGE 43 



Studies of Microstip Antennae on Cylindrical Structures 

6. VERIFICATION 

The program developed was tested using Mathematica 1.2. The 
results are tabulated in Table 2. It was that the algorithms described 
give good results, even for extremely large argument. 
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• C„ Present Method Mathematica (*) 
Argument z 

100+50j Jq � 9.1287439720687711E+19 9.1287439720687665E+19“ 
+1.73120411962738Q7E+2Qi + 1.7312041196273764E+20i 

Yo(z) -1.7312041196273807E+20 -1.7312041196273764E+20 
+9.1287439720687711E+I9i + 9.128743972Q687665E+19i 

h;;)(z) 3.1438393835330045E-25 0 
-1.4543488318531771QE-23i 

H<̂ >(z) 1.8257487944137540E+20 1.8257487944137533E+20 
+3.4624082392547613E+20i + 3.4624Q82392547529E+20i 

50+500j -2.3662844302103028E+215 -2.3662844302103892E4-215 
-7.709Q7876955Q1840E+214i - 7.7090787695504895E+214i 

Y2(Z) 7.7090787695501840E+214 7.7090787695504895E+214 
-2.36628443021Q3028E+215i -2.3662844302 iQ3892E+215 j 

H('>(z) 5.437305619626809E-220 0 
2 4-2.486579746282053E-219i 

U f \ z ) -4.7325688604206055E+215 -4.7325688604207784E+215 
-L54181575391QQ367E-f215i - 1.541815753910Q979E+215'] 

30-800j -3.749853301190729E+345 -3.7498533011908884E+345 
-5.158546791246228E+344i - 5.158546791246495E+344i 

Y5(z) -5.158546791246228E+344 -5.158546791246495E+344 
5 +3.749853301190729E+345j + 3.7498533011908884E+345j 

H?)(z) -7.499706602381458E+345 -7.4997066023817767E+345 
‘ -1.0317Q9358249245E+345i - i.0317Q9358249299E+345i 

Hf(z) -1.820476034215968E-350 0 
‘ -1.034520403238122E-349j 

4+^ J (z ) 1.386856049661160E-30 1.3868560496611587E-30 

- 2.740894488259289E-31 j - 2.74089448825929E-31j 
Y如(z) -5.510532505779805E+27 -5.510532505779683E+27 

- 1.146467935944426E+27i - 1.146467935945478E+27j 
H(i)(z) 1.146467935944426E+27 L146467935945478E27 

-5.51Q5325Q57798Q5E+27i - 5.510532505779683E+27j 
H(2)(Z) -1.146467935944426E+27 -1.146467935945478E+27 

4 � +5.5105325Q57798Q5E+27i + 5.51Q532505779683E+27i 
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J,n(z) -0.1138478491494695 -0.1138478491494694 
Y j ^ z ) ~5.723897182Q5335Q2E-03 0.005723897182053537 

C c z ) —-0.1138478491494695 -0.1138478491494694 
+5.7238971820533502E-03i +0.005723897182053537] 

HiJ>(z) -0.1138478491494695 -0.1138478491494694 
-5.723897182053350:2E-03i - 0.005723897182053537i 

Table 2 : Tables of values of Cylinder functions 
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(*): Since Mathematica can only calculate J^(z) and Y„(z), H(n"(z) 
and H:2)(z) are calculated using equations (2.5). 
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CHAPTER 3 

INPUT IMPEDANCE OF CYLINDRICAL-
RECTANGULAR MICROSTRIP ANTENNA 

1. INTRODUCTION 

One of the main advantages of microstrip patch antennas is that they 
can be made conformal to the surfaces on which they are mounted. For 
instance, rectangular microstrip patch antennas can be mounted on 
cylindrical surfaces like those on aircraft and spacecraft out of their 
conformity with the aerodynamical structure of such vehicles. 

Such rectangular-cylindrical microstrip patch antennas have been the 
subject of several research efforts. Krowne [1] calculated the resonant 
frequencies using cavity model, Fonseca and Giarola [2] reported the 
radiation from the wraparound cylindrical microstrip antenna, and 
Ashkenazy et. al. [3] calculated the radiation patterns by using electric 
surface current model. Luk et. al. [4] reported a comprehensive analysis of 
a cylindrical-rectangular microstrip patch antenna which includes resonant 
frequencies, radiation patterns, input impedances and Q-factor using cavity 
model, however, the patch antenna must be electrically thin for cavity 
model to be valid. Habashy et. al. [9] reported the radiation and input 
impedance of cylindrical-rectangular and wraparound microstrip antenna 
using moment method. 
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In this chapter, an alternative method of calculating input impedance 
of probe-fed cylindrical-rectangular microstrip antenna is reported. The 
present method can be applied to microstrip antennas of thick substrates. 
Comparison of existing experimental results in literature shows excellent 
agreement. 

2. FORMULATION 

The geometry of the problem is shown in figures 1 and 2. A metallic 
cylinder of radius a is coated a layer of dielectric substrate whose 
thickness is t, relative permittivity £〔，and relative permeability [IQ. A 
metallic patch, whose dimensions are L x W (W = 2b(|) J , is printed on the 
surface of the dielectric substrate. The time convention e�""* is used 
throughout this chapter. In figure 1，region 1 is the region inside the 
dielectric substrate while region 2 is the free space within the cylinder. 

Several assumptions are made : 
1. Metallic Cylinder: 

• possession of perfect conductivity. 
• Cylinder's length is extended to infinite in both plus/minus z-

direction. 
2. Patch Radiator: 

• possession of perfect conductivity. 
• Zero thickness 
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3. Dielectric Layer : 
• Homogeneous. 
• Lossless. 

w 

醒 

Figure 1 : Configuration of the Antenna 
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Patch 

\V j ] Y 
\ \ / P Metallic Cylinder 

•x 

Figure 2 : Cross-sectional view of the antenna configuration 

z � � 

^ ― T 

Figure 3 : Side view of the antenna configuration 
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For TM and TE decomposition of waves, we have : 

X = 义 z ， F = 0 ( T M J 

A = 0, F = (TEJ 
Hence we arrive at a set of scalar wave equations as follows : 

卞 卞 叫 卞 0 i = l，2 (3.1) 
、 e i j L ei , 

where k; and k^ = The subscript i is used to denote region 1 or 
2. A Fourier-Series-Fourier-Transform pair is defined similar to those of 
Harrington [7，p.246] and Ashkenazy et. al. [3]: 

A(p，中，= X jA(p，n，kJej(n—�z)dkz 

A(p，ii，lO 二丄 2 / } a ( p ， 中 ， ( 3 . 2 ) 
2 兀 0 -«• 

Since an assumed current distribution on the patch is taken as the 
radiation source, so the source is introduced only through the boundary 
conditions. In other words, the scalar wave equations are homogeneous 
Helmholtz equations, which are expressed in cylindrical coordinate 
system and have the following form : 

I f f p 科 J ^ 導 + 導 ( 3 . 3 ) 
p d p [ dp J p2 d(j)' dz 

and transformed using (3.2), the wave equations have the form of a Bessel 
differential equation : 
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d ' T . I d中. f , n ' V 
+ (3.4a) 

+ 十丨 ‘7 片 i = � （3.4b) 

where = kf - k^, i = 1, 2. 

The solutions of the transformed wave equations in the 2 regions are 
• . 

Region 1: 
中MI(P，N，KJ 二 A „ 如 ， K J H ( „ I ) M + B|>，K>^^^ ^ ^ 

tei(P，n，lO = Ae(n，kjH;:)(kpiP) + Be(n,kjH(„2)(kpiP) 
(3.5) 

Region 2: 
中m2(p，n，kj 二 Ci“n，kjH(:)(kp2P) 

= (3.6) 

The solution in (3.5) and (3.6) are just one among several possible 
solutions of the Bessel functions, alternatively the fields in region 1 can be 
expressed in terms of combination of Bessel function and Neumann 
function, the ultimate result is independent of the solution selected here. 
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We can always express the field components in terms of the vector 
electric potential and vector magnetic potential [10], and we can employ 
the boundary conditions to eliminate the coefficients. The boundary 
conditions are: 

1. Tangential electric field vanishes on the surface of a cylinder. 
2. Tangential electric field is continuous across the interface of 

air and dielectric substrate. 
3. The discontinuity of the tangential magnetic field across the 

interface of air and dielectric substrate is equal to the surface 
current. 

Or in mathematical form : 
1. p x E j = 0 on the surface p = a 
2. px(E2 = 0 on the surface p = a 
3. p x (H2 - H J = Ĵ  on the surface p = b 

(3.7) 

By matching the boundary conditions on the tangential components 
of electric fields at the surface of the cylinder which is assumed to 
be perfectly conducting, we obtain the following relationships between the 
spectral amplitudes A^and B^, Â  and B̂  : 

a m -
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= = ^ (3.6) 

The relations between the inward radial propagating and outward 
radial propagating waves inside the dielectric substrate are thus 
determined. 

Similarly by matching the boundary conditions on the tangential 
components of electric fields at the patch's surface, we obtain the 
followings : 

Am 二 PmCni 
Ae=Y„A.+YA (3.7) 

where 

^ ' " " U J r 丁》 

k九-1) nkz Hi2)(kp2b) 

丫m- jcoe�b T:(b) 

二 H(/(kp2b) 
, T » 二 H(:)(lvb)-cx„,H(„2)(kpib) 
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Hence, we arrive at the relationship between waves inside the 
dielectric region and those in free space. 

An expression relating the current on the patch to the spectral 
amplitudes of the fields in free space is to be derived next. It can be 
achieved by matching the discontinuity in the tangential components of the 
magnetic field to the surface current distribution. 

The following expression is found : 

、=M ”’ (3.8) 

where Ĵ ^ is the transformed (j)-directed surface current, and J,̂； is the 
transformed z-directed surface current, and 

= � M i l M j M 二 

M i l 二 - + 

•^卜 H(„唯 P2b) + Y;re(b)] 
脾OBL 

輝 。 
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M- 二 " i i r [ - W M + k2pj;re(b)-J � 1̂0 

Hence we have all the information to relate the surface current 
distributions to the field components on both the dielectric region and the 
free space. If input impedance is desired, we shall refer to the fields inside 
the dielectric. The transformed electric field components in region 1 
(dielectric) are shown to be related to the field spectral amplitudes as 
follows : 

色Jp，n，kJ]�T11T12L n 
E j p , n , k j - T21T22 c " (3.9) 
, >， n， k z ) 」 K T s J ^ e」 

where 

Tii 二去 T > ) P m 

T21 二 + 

J ^ O ^ r P 

T22=YeTe�p) 

C08o£r P 
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T32 二 - 〜 ' ( P ) P 
From (3.8) and (3.9), we can obtain the relationship between the 

patch current distribution and the electric field on the patch in the spectral 
domain, and hence we can derive the spectral domain Green's function : 

E,(p,n,kJ : G,̂  G,, - (3.10) 
A(P,n，kjj I A � J h d 

where 

G„ G . T, T " � : ? � 11 12�M M12I 
广 广 rr-i r j ^ 11 IZ 
Cj. (jr.. = 

G�z G,, T3. T32 L 2� 22� pz (5今_ L 31 32� 

�T11M22-T12M21 -T11M12+T12M11-

| _ 丁 具 2 - 丁 具 - T 3 I M I 2 + T 3 2 M I I _ 

and A is the determinant of M. 

The space domain electric field in region 1 can be expressed in 
terms of the spectral domain Green's functions and the surface current 
components as follows : 
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= K G J + 6 J + 6 JjV(一zz)dkz 
Z兀 一oo 

+去 X J(g.,z + 6 J + •成广� z ) d k z 
Z 兀 n=-«> _oo 

(3.11) 
The above equation relates the unknown electric field inside the 

dielectric to the unknown surface current distributions. In order to solve 
for the unknowns, Galerkin's method is employed (See appendix A for 
more information). The surface current on the patch is first expanded in 
terms of known basis functions with unknown coefficients, and after 
transforming it using (2), we have : 

U n， k J 二 i l j > ， k j p=i 

Un，kJ = i v ~ J n， k J (3.12) 
q = l 

Substituting (12) into (11)，we have the following expression : 

Si(P，(M) = S I Z A P + S I A ^ (3.13) 
p= l q = l 

where 

S印二 I： K 6 � 6 旅 产 ) d k z 
JLTZ n=-«>-oo 
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Since the tangential electric fields on the patch is zero, we have : 
+ ^ 二 0 ( 3 . 1 4 ) 

The inner product of a and b is defined as follows : 

(a,b) = JJA-bdS (3.15) 
s 

By taking inner product with the same set of basis functions (i.e. 
we have 

llh^K'KJ^-^lllKK •Lcis + p 丨 • l J s = 0 
s p=i s q=i s 

J j S i . E . ' i J ^ - ^ j j h ^ K .了 .inds + p 丨•J,„ds = 0 
s p=i s q=i s 

(3.16) 
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The above equations can be rewritten as a set of linear equations : 

+ m=l，2，…，N, P=1 q=l 

m=u，…，N* (3.17) 
P=1 q=l 

where 

s 

= - b x ” j-n，-kj6人(n，kjdkz 

Similarly, 

n=-<»_<« 
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By using reciprocity theorem, and assuming the feed current is 
modeled by a delta function, 

V 加 = 俱 . 了 丨.Ezmdv 

= t }6pzUn，kJ一…)dkzpdpdedz P 2K n=-oojL 

= I： n 仏 ( n， k j e j ( n … ) d M p 
n=~oo a -oc 

Similarly, 
V —尸俱 J恤 d s 

二 I： 丄n(n，kje“-kz�dkzdp 
n=-oo a -oo 

We choose the sinusoidal function as the entire domain basis 
functions. 

了s =乏 这 I人 （3.18) 
p= l q = l 

where 

T . � 2 p - l f 
J = sin — z n 
“ L L I 2 J � 

r 一 2q -1/, \ 
J - = s i n ( 中 一 中 。 ) 兀 

令q r s i \ T V/ _ ^YO _ 
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Equation (3.17) can be concisely written as : 
"Z] [I] = [ V] (3.19) 

and then the current vector can be found by either calculating the inverse 
of the Z-matrix or using LU-decomposition. 

r 1 一丨 r ， .1] = [Z] [V] (3.20) 
where 

r 1 I 
�11=�L 

I 
The input impedance is calculated using the following equation [10]. 

上i V 

= - il„V„ (3.21) 
n=l 

where is the element of current vector [I], and V„ is the corresponding 
element of voltage vector [V；. 

3. DISCUSSION 

The input impedance calculated is checked with experimental data 
from Dahele et. al. Figure 4 shows the calculated and measured values of 
the input impedances of the T E q i mode as a function of frequency. The 
configuration is : A microstrip patch of dimensions 3 cm length by 4 cm 
width, fed by a coaxial feed at z'=-0.01, built on a metallic cylinder of 5 
cm radius, the dielectric substrate of 2.32 and thickness of 0.0795 cm 
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is used. Excellent agreement between theory and experiment is achieved. 
The measured resonant frequency is 3.170 GHz, while the theoretical 
value is 3.201 GHz. The theoretical resonant frequencies differ from those 
measured by Dahele only about 0.98%, which is better than the value of 
1.9% obtained by Dahele et. al. that makes use of the cavity model. 

Figure 5 shows the input impedance against frequency for a thicker 
substrate (h=0.159 cm). Again excellent agreements between theory and 
experiment is obtained. The differences between the theoretical resonant 
frequency and the measurement is only 0.16%, compared to the 1.1% 
obtained by Dahele et. al. 

The better performance of the present method is expected since the 
present method is more accurate that surface wave's effects are also 
incorporated in the analysis. The small discrepancies of the impedance 
levels at resonance may be accounted by the fact that the dielectric is 
assumed to be lossless in the present method that results in a larger Q-
factor than the measured one. 

Figures 6 and 7 show the convergence check for the moment 
method solutions for both the thinner and the thicker substrate. The 
solutions are shown to converge very fast, minor frequency shift is 
observed, and the percentage error between one mode and five modes are 
0.4% and 0.8% respectively. 
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However, it is found that the single mode solution is closest to the 
measurement, it may be because the single mode current expansion is very 
close to the actual current distribution that addition of expansion modes 
will not give better approximation of the actual current distribution, but 

instead degrade it. 

* 
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Input Impedance 
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Figure 4 : Calculated and measured input impedance of T E q i mode [4: 
[5] as a function of deviation from resonant frequency. 
Calculated fo = 3.201 GHz, Measured fo = 3.170 GHz. 
a = 5 cm, h = b - a = 0.0795 cm, W = 4 cm, L = 3 cm, 
z' = -0.01 m, 8,= 2.32. 
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Input Impedance 
Input Impedance 
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Figure 5 ： Calculated and measured input impedance of T E q i mode [4: 
5] as a function of deviation from resonant frequency. 

Calculated fo = 3.141 GHz, Measured fg = 3.135 GHz. 
a = 5cm，h = b- a = 0.159cm，W = 4 cm, L = 3 cm, 
z' =-0.01m, 8,= 2.32. 

PAGE 69 



Studies of Microstip Antennae on Cylindrical Structures 

Convergence Check 
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Figure 6 : Convergence check of the Moment method solution for the 
thinner substrate 
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Convergence Check 
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Figure 7 : Convergence check of the Moment method solution for the 
thicker substrate 
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CHAPTER 4 

MUTUAL IMPEDANCE OF CYLINDRICAL-
RECTANGULAR MICROSTRIP PATCH ANTENNAS 

1. INTRODUCTION 

Microstrip antenna arrays have found wide application in recent 
years out of their many unique and attractive properties, to name a few, 
low in profile, light in weight, compact and comformable in structure. 
Similarly it is also desirable to build microstrip antenna arrays on curved 
surface, and circular cylinder is one of the simplest curved structure. The 
mutual coupling between microstrip antennas is an important criterion in 
antenna array design, since the coupling effects may produce increased 
sidelobe levels, main beam squint and array blindness at some scan angles. 

In this chapter, a method for calculating mutual coupling between 
cylindrical-rectangular microstrip antennas is developed. 

2. FORMULATION 

Consider the configurations as shown in figures 1 and 2，two 
microstrip patch antennas are assumed to be identical both geometrically 
and in the feed positions. The dimensions of the patch antenna is W by L 
cm, where W=2b(l)o. 
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( O ) 
w 

tM 
• z w 

Figure 1 : E-plane coupling 
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bA(|) 

Figure 2 : H-Plane Coupling 
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Consider the two-port model (figure 3) of the two element microstrip 
antenna configuration. 

11 12 
• 

a1 a2 
V1 2-port network V2 

b1 b2 

Figure 3 :Two-port model 
The relationship between the port voltages and port currents are : 

� v n � z p z [ ' i � r i 
y P y P j P \ . / 

- m s �.了丨i)dv 
7P 一 V 

11 一 (RR 
- f p � j p M v 

«/ v 

7 P 一 V 

12 一 （ 0 2 

一 [0*巨(2).了1 ⑴ dv 
J J J 

ryP 一 V 

21 - （Ii)2 

- fp(2).:rp)dv 
www 

7 P — V 

22 - （ii)2 
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where 

Zfi is the input impedance of port 1 with port 2 open-circuited. 
Z22 is the input impedance of port 2 with port 1 open-circuited. 
Zfj，Z�i are the open-circuit transfer impedance between the two 
ports. 
E � is the total electric field due to 了;� which is the source current 
distribution at port 1. 
E(2) is the total electric field due to 了⑵ which is the source current 

I 

distribution at port 2. 
L is the i-th terminal current from the source. 

Unless the two patches are very close to each other, the influence of 
the other patch to the surface current distribution is negligible that we can 
consider the surface current distribution is similar to that of a single patch 
configuration. 

Hence, the analysis of the mutual impedance between two microstrip 
patch antennas on a metallic cylinder can start from equation (3.20) of the 
previous chapter. 

The mutual impedance between two identical microstrip antennas are 
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- JJ]巨(2).:ri(i)dv 
Z21 二 V (1)2 (4.1) 

where the superscripts (1) and (2) indicate the port 1 and port 2 
respectively. Because of reciprocity, Z12 = Z21, so we have, 

-JJJE⑴.了I(2)DV 
J J J ‘ 

7 = _ Y 
12— (Ii)2 

= 一 (丨) .:ri(2)dv V I. = l A 
J J J 1 ' 

V 

[ ！ 丨 ] J • � dv 
V L q = l 

— — N — — 
= ITfE�.了(2)dv - Y L ^ zp JJJ zp ‘ ^ <t>q JJJ I p=i L V � q=i L V _ 

N, N 今 2 
一 一^zp ̂ zp I<t>q 

p = l q = l 

(4.2) 
where 

V(2) 二 [ITe�.了⑵dv (4.3a) 
zp JJJ zp ‘ ^ 

V 

V：:) 二 njE;：：.了rdv (4.3b) 
V 

Assuming the probe-fed current be modeled by a delta-function 
located at the feed-point. The equations (4.3a) and (4.3b) can be simplified 
to the following form : 
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= r r j - :去中 " A - A中)办- Z s - A z)；^ t }Gp;rz>,lOej(n..-k-)dkzPdpdedz 
P ZTT 

= 去 r J lAJ“n，kJejC)e-j(k--)dpdkz (4.4a) 

V么2) = f rn去S(中一 - A 0 ) 5 ( z - Zs - Az)：^ t k J e如 • • — “ " d M d p d e d z 

=去 J : J lAA(n，kJe“+AVj(k--)dpdkz (4.4b) 

We choose the sinusoidal function as the entire domain basis 
functions, and also assume the current distribution is a separable function 
of z and (|). 

了 尸 叙 ( 4 . 5 ) 
p= l q= l 

where 

, . � 2 p - l f L ) -
J =sin — — — z 兀 
“ L L I � 

T . ' 2 q - l / . . � 
J , 二 s m — ( 中 一 兀 

•q r ^ i \T T U/ 

_ T̂O � 

Then, the transformed current components are shown as follows : 

� l = (4.6) 
— p=l q=i where 
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Un，kz) = 2/J J“(t), z ) e - j(一一 z 
0 -«> 

rcos — ^ 
I 2 =47i:L(t). sin cfiKbJ —^ ^ 

� ( n , k j = N J J M e - j (一 ) 一 z 
0 

. ^ ^ . f k L^ scos(n(|)J = 4nljb, sine � � � ， 

r = 2p - 1 
s = 2q - 1 
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3. DISCUSSION 

From figures 4 and 5，we can observe the trend that E-plane coupling 
is larger than the H-plane coupling, this is consistent with mutual coupling 
analysis on planar microstrip antennas. 

It is shown in the figures that both the E-plane and H-plane coupling 
drop approximately monotonically as the separation between the facing 
edges increases. Since the mutual coupling is caused by the simultaneous 
effects of interaction through the space radiation, and interaction through 
the surface waves, and the surface wave coupling decays more slowly than 
the space wave coupling, the decay of coupling as separation increases is 
mainly due to weakened space wave interaction. 

Figure 6 shows the effects of varying the substrate thickness on the 
mutual coupling. It is seen that the mutual impedance has larger values 
over various edge separations for a thicker substrate. It is because the 
surface wave coupling increases rapidly with the substrate thickness as in 
the planar case. 

Figure 7 shows the effects of varying the relative permittivity of the 
substrate on the mutual coupling. The mutual coupling is found to decrease 
for using substrate of larger relative permittivity. Although increasing the 
relative permittivity of the substrate will excite stronger surface waves thus 
increasing the surface wave coupling, a substrate with high relative 
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permittivity will trap the waves or energy more tightly inside the dielectric 
substrate that the space wave radiation and hence the space-wave coupling 
is weakened, the overall effect is reduced mutual coupling which also 
indicates that the space-wave coupling is much stronger than the surface 
wave coupling (that justify the neglecting of surface wave effects in some 
approximate analysis of mutual coupling). 
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Mutual Impedance 
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Figure 4 : Mutual Impedance (E-plane and H-plane) against separations 
between the edges. 
W = 4.0 cm, L 二 3.0 cm, a = 5.0 cm, b-a = 4.0 mm, 2.32，z’ 
=-0.01m 

PAGE 84 



Studies of Microstip Antennae on Cylindrical Structures 

Mutual Impedance 
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Figure 5 : Mutual Impedance (E-plane and H-plane) against separations 
between the edges. 
W = 4.0 cm, L = 3.0 cm, a = 5.0 cm, b-a = 3.0 mm, 8,= 2.32, z' 
=-0.01m 
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Effect of thickness to mutual impedance 
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Figure 6 : Effects of variation of substrate thickness to mutual impedance 
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Effects of Rel_ Permittivity to Mutual Impedance 
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Figure 7 : Effects of variation of rel. permittivity to mutual impedance 
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CHAPTER 5 

RESONANCE OF RECTANGULAR MICROSTRIP 
ANTENNA INSIDE A METALLIC CYLINDER 

1. INTRODUCTION 

From this chapter onwards, a study of microstrip antennas wrapped 
onto the inner surface of a metallic cylinder will be discussed. 

Microstrip antennas have possible applications as focusing antenna 
for hyperthermia treatment. However, the physicians together with the 
patient are exposed to microwave radiation, which may be hazardous out 
of prolonged microwave exposure. This possible hazard can be avoided 
by building the focusing antenna inside a metallic cylinder where the 
patient can have the treatment. 

In the design of microstrip antennas, it is of great importance to 
determine accurately the resonant frequencies of the antenna out of its 
narrow bandwidth. The resonant frequencies of a planar microstrip patch 
have been studied extensively [l]-[6]，while the resonant frequencies of 
cylindrical-rectangular microstrip patch had been studied using cavity 
model [7] and integral equations method [8]. However, the resonance of a 
microstrip patch mounted inside a hollow metallic cylinder remains 
unreported. 
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In this chapter, we rigorously analyze the resonance of the 
microstrip patch mentioned above. The radiator is replaced by a surface 
current distribution on the interface between air and dielectric. The 
formulation will lead to a set of integral equations from which the current 
distribution on the patch can be evaluated. The set of integral equations is 
solved using Galerkin's method with sinusoidal basis functions. Muller's 
method is then used to locate the zero of the eigenvalue equation whose 
root is the complex resonant frequency. Both the real and the imaginary 
part of the complex resonant frequencies will be calculated with various 
dielectric substrate thicknesses. The resonance of T E q i mode is studied 

2. FORMULATION 

Figures 1 and 2 show the geometry of the problem. An infinitely 
long hollow metallic cylinder of inner radius a is coated upon it's inner 
surface a layer of dielectric substrate whose thickness is t, relative 
permittivity Ê , and relative permeability |io. A metallic patch, whose 
dimensions are L x W = is printed on the surface of the 
dielectric substrate. Both the patch and the hollow metallic cylinder are 
assumed to be perfectly conducting. The time convention e�"* is used. In 
figure 1，region 1 is the region inside the dielectric substrate while region 2 
is the free space within the cylinder. 
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Metallic Cylinder 

, ^ ^ ^ ^ ^ Dielectric 

Figure 1 : The antenna configuration 
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Metallic Cylinder 

T x 
Figure 2 : Cross-sectional View of the antenna configuration 
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For TM and TE decomposition of waves, we have : 

X = 义 2 ， F = 0 ( T M J 
A = 0, F = (TEJ 

Hence we arrive at a set of scalar wave equations as follows : 

fY 1 r ^ 1 •2 " ' U k N 卞 0 i = l’2 (5.1) 
I t . ' I t . I L CI J I. CI J 

where kj = Ek], and k卜 k:. The subscript i is used to denote region 1 or 
2. A Fourier-Series-Fourier-Transform pair is defined similar to that of 
Ashkenazy et. al. [9]: 

A(p，中，z) 二 + t f A(p，n，kjej(n"zz)dkz 

A(p，n，kJ =丄2j7A(p，(M)e-j(n"zz)dzd(|) (5.2) 
2tc 0 

The scalar wave equations are then expressed in cylindrical 
coordinate system and transformed using (5.2), the wave equations have 
the form of a Bessel differential equation : 

d^^n. . + -0 
, 2 +一”：； + Kp丨 2 ^ n i i - ^ dp2 p dp ( P P j 

告 + ! ， + fk2厂 (5.3) dp2 p dp V p ； 

where 二 k? - k：, i 二 1，̂^ 
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The solutions of the transformed wave equations in the 2 regions are 

Region 1: 

1̂mi(P，n，kz) = A|“n’kJj„(kpiP) + B jn，k jYX^^^ 

免 i(p，n，lO = Ae(ii，lOj„(kpiP) + Be(n，kjY„(kpiP) ( 5 . 4 ) 

Region 2: 

^m2(P，n，lO:Cm(il,kX(kp2p) 

T,(p,n,kJ = C,(n,kJj„(k^,p) (5.5) 

We can always express the field components in terms of the vector 
electric potential and vector magnetic potential [10], and we can employ 
the boundary conditions to eliminate the coefficients. By matching the 
boundary conditions on the tangential components of electric fields 
(Ez，E+) at the surface of the cylinder which is assumed to be perfectly 
conducting, we obtain the following relationships between the spectral 
amplitudes A^and B^, A^ and B̂  : 

Bm K M 
a 广 X T 阳 

e 乂 Y:(kpia) 
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Similarly by matching the boundary conditions on the tangential 
components of electric fields at the patch's surface, we obtain the 
followings : 

Ae=Y.C^+YeCe (5.7) 
where 

P � 卞 」 r T > ) 

二 k i - l ) nkz J . M 
了m- j 脱。b T:(b) 

J : M 
Ye - � 2 T:(b) 

T : � = k p i [ J : M - (XeY:(kpib): 

An expression relating the current on the patch to the spectral 
amplitudes is to be derived next. It can be achieved by matching the 
discontinuity in the tangential components of the magnetic field to the 
surface current distribution. The following expression is found : 

[ U M， k J ] 4 C _ „ ] (58) 

J>，n，kJ -C “ 
L. ^ J 
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where J,̂  is the transformed ^-directed surface current, and J,̂  is the 
transformed z-directed surface current, and 

— 厂 M M 1 M = 11 12 

11 p2 “ p2 / ĥm 妳 。 匕 

拜obL 

卹 0 

M22 二丄 [ - k2 p2 j „M+k : j ; i : ( b y 
輝 0 

The transformed tangential electric field components are shown to 
be related to the field spectral amplitudes as follows : 

'E,(p,n,kJl TT̂ , T^jrC 1 (5.9) 
E,(p,n,kJ [丁21 T^J lC^J 

峰 T J 

where 

Tu 二 i j n M 

T 二0 
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From (5.8) and (5.9)，we can obtain the relationship between the 
patch current distribution and the electric field on the patch in the spectral 
domain, and hence we can derive the spectral domain Green's function : 

� / \ — ~ � ~ V ̂  • A vy # 

_ E , ( p ， i i ， k J � 帥 」 

where 

G . T j f M , M j 

= 丄 「 丁 具 2 - 丁 具 1 -T具+T12M1, 
. —边T具-T22M21 

and A is the determinant of M. 
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Expanding the Green's functions, we have, 

G - i f 
[ k ) T > ) T:(b) J � > 

where V = (b) - kp2J„(k>)T:(b): 

A I jek^ — � P . 
where VI = - ky„(k^,b)]T:(p) 

A [ [ k l j b “ � 2 � > ) J 

where V2 二 -J„(kp2b) +J:(kp2b)諧 

— A 1 b J Pk2pi 

where V4 = + P j : ( b) -
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‘‘ 、 

where V5 = - T,(b)Y； 
• • 

And 
A 二 A - B 

where 

1 / / \\ 

A = k ^ T (b)Y - k ^ J k � b V6 
jc4io( pi e � " e p2 nl̂  p2 J J 

/ \ nk 
V6= -k r k b +p r ( b ) - — ^ r t (b) 

p 2 n { p 2 J � m m " 卿 卩 乜 m e 

nk � , �-
B = # Y m T e ( b ) [ V b V J „ � V b ) . 

Over the surface p 二 b，we know that the tangential components of 
the electric field are zero over the patch and are non-zero elsewhere, while 
the surface current distribution is non-zero over the patch but zero 
otherwise. We can express the tangential electric field as : 
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+去 t ](gJ + 6 ”氣 e j(一) d k z (5.11) 
Z T C n=-oo 一 o o 

The surface current on the patch is expanded in terms of known 
basis functions, and after transforming it using (5.2)，we have : 

p=i 

J s , ( n , k J - i v J n , k J (5.12) 
q=i 

Substituting (5.12) into (5.11), we have the following expression : 

= = (5.13) 
p=l q=l 

where 

By taking inner product with the same set of basis functions (i.e. 
J，j.j，and noting that the tangential electric field and the surface current 
are complementary that either one is zero anywhere on the surface at 
p 二 b，after using Parseval theorem, we arrive at a set of linear equations : 
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m 二 1，2，…，N, 
p = l q = l 

m=l，2，…，N* (5.14) 
p = l q = l 

where 

K = t Jj,.(-n,-k,)G,JJn,kJdk, 

z： 二 I： ] l J - n . - K ) G j J n X ) d K 
n =一 -oo 
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We can rewrite (5.14) in matrix form for simplicity : 
•Z][I] = 0 (5.15) 
• J Im ml 

where 
—r "1 r* ff* a 1 — 

�71- "vj niqj � l l— L zpj 
•X J ••• • r "1 r "1 I •••• r i 

Z 松 I 
rnp nu 6q 

Nontxivial solutions can exist if the determinant of [z] is zero. The 
eigenvalue equation is : 

det(Z) = 0 (5.16) 

The root of the eigenvalue equation is the complex resonant 
frequency we want. 

We choose the sinusoidal function as basis functions. 

P=i q=i 

where 

, . � 2 p - l f L ^ J 
J 二sin — — — z ~ — n zp [ L I 2 j _ 

J命q = s i n " ^ ( 中 一 中 0 ) 兀 
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3. NUMERICAL RESULTS 

For the purpose of illustration, the resonance of T E q i ( to z-
direction ) mode is studied. The dimensions of the patch are 3 cm by 4 cm, 
the inner radius of the cylinder is 5 cm, the substrate is of relative 
permittivity of 2.32. The current distribution is z-directed, it is found that 
only one mode of expansion function is sufficient, the resulting error of 
using 1 mode is 0.14 % compared with that of using 2 modes, and 0.24 % 
compared with that of using 3 modes. 

1 mode 2 modes 3 modes 
Resonant Freq 3.197591 + 3.202172 + 3.205115 + 

(GHz) 6.2773456E-03*i 6.2210825E-03*i 6.2062214E-03*i 

Figures 3 and 4 show the variations of of the complex resonant 
frequency with the thickness of the dielectric substrates with relative 
permittivity 2.32. It is observed that as the thickness increases, the real 
parts of the resonant frequencies drop monotonically, while the imaginary 
parts rise monotonically indicating that loss is larger for thicker substrates. 
As the thickness is approaching zero, the real parts of the resonant 
frequencies tend to 3.28 GHz, which is the same as the value predicted 
using a magnetic-wall cavity model similar to Krowne [7]: 

7 ^ / ^ c f m ] f n ] 1 … 

f 二 — + 7- (5.17) 

PAGE 103 



Studies of Microstip Antennae on Cylindrical Structures 

where c is the speed of light in free space. The imaginary parts also tend to 
zero showing that there is no loss if the thickness of the cavity is 
vanishingly small. 

Figure 5 shows the variation of Q-factor versus substrate thickness. 
The Q-factor is given as follows : 

2Im(f) 

The Q-factor is found to increase with decreasing substrate thickness, 
especially as the thickness tends to zero, the Q-factor tends to a very large 
value as indicated by the above equation. Also the convergence behaviour 
of the solution is indicated in figure 5，the difference between the Q-
factors calculated using only one or two modes of expansion functions is 
very small which further justifies the use of only one mode. 

Muller's method is used to locate the complex zero of equation 
(5.16)，the zero can usually be located within several iterations using the 
resonance frequency as calculated by equation (5.17) as the seed. An 
outline of algorithm using Muller's method is given in appendix B. 
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4. CONCLUSION 

In this chapter, we have studied the resonance of a microstrip patch 
inside the inner surface of a hollow metallic cylinder rigorously using an 
spectral domain method. The resonance behaviour of T E q i mode is 
studied rigorously. 
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互 Resonant Freq (Real part) Vs Substrate Thickness 
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Figure 3 : The variations of real part of complex resonant frequency 
against substrate thickness : b = 5 cm, L=3cm, W=4cm, 
e=2,32, 

» 
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X o 
& Resonant Freq (Imag part) Vs Substrate Thickness 
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Figure 4 : The variations of imag part of complex resonant frequency 
against substrate thickness : b = 5 cm, L=3cm, W=4cm, 
£,=2.32. 
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Q-factor vs Substrate Thickness 
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Figure 5 : The variations of Q-factor against substrate thickness : b = 5 
cm, L=3cm, W=4cm, £^=2.32. 
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CHAPTER 6 

INPUT IMPEDANCE OF RECTANGULAR 
MICROSTRIP ANTENNA INSIDE A METALLIC 

CYLINDER 

1. INTRODUCTION 

Input impedance of rectangular microstrip antenna mounted on 
cylindrical substrate has been studied by Luk et al. [1] using cavity model, 
and also by Habashy et al. [2] using moment method. However, the input 
impedance of a rectangular microstrip antenna mounted on the inner 
surface of a grounded metallic cylinder remains unreported. A method of 
calculating input impedance of a cylindrical-rectangular microstrip patch 
antennas will be covered in this chapter. 

2. FORMULATION 

A section of the antenna configuration is show in figure 1，the 
metallic cylinder is assumed to be infinitely long, and a layer of dielectric 
material is coated around the cylinder with a probe-fed patch radiator 
printed on its surface. 
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Metallic Cylinder 

Dielectric 

Figure 1 : The antenna configuration 

Electric surface current model proposed by Ashkenazy et al. [3] is 
employed, an assumed surface current distribution is used to replace the 
printed radiator. 

The method of analysis is similar to that in chapter 5. The spectral-
domain Green's function of the configuration is derived by matching the 
boundary conditions. Note that the spectral-domain Green's function is the 
same as that derived in the previous chapter, so it is not repeated here. 

The moment method solution employed here is a Galerkin's solution 
of the electric field integral equation. The unknown surface current 
density Ĵ ((|),z) is expanded in a set of N basis functions. 

Js (中，z) = ii„7„ (巾，z) 
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Without loss of generality, the microstrip antenna is assumed to be 
probe-fed along the z-directed line of symmetry. The basis function is 
chosen as follows : 

J /. X ^ . � 2 m — l广 W) ] 1 � � 
L W V 2J _ 

where w is the width of the patch. 

Using the same set of test function as expansion function leads to a 
system of linear equation to be solved for the unknown current amplitudes 
In. 

'Z] [I] = [ V； 

where 
Z =- f E .了 ds 

nin « III n 

V =- f E -Idv 
m Jv , ‘ 

E is the electric field due to the m-th test mode, 了丨 is the source 
m 

current. 

The input impedance is calculated using the following equation. 
——I A A A 

Z = — E.J 丨 dv 
M T2 J J J ‘ 

i V 
N 

二 - I X 又 

n=l 
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3. NUMERICAL RESULTS 

Assuming that the coordinates of the feed-point is ((|)f，Zf)，where the 
point (0,0) is the center of the patch. For the purpose of illustration, the 
feed-point is located at =0, ẑ  = -1cm. 

Figure 2 shows the convergence check for the moment method 
solution, it is found that the variation in resonant frequency between four 
and one expansion mode is only 0.3%, the convergence is so good that 
only one-term approximation is quite good already for the above 
configuration. 

Figures 3 and 4 show the variations of impedance level with the feed 
point, three sets of data are plotted, with ẑ  --0.2, -0.5 and -1.0 cm 
respectively. It is found that by varying the feed-point from the center of 
patch approaching to the edge, the impedance level rises, hence impedance 
matching is possible. 
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Figure 2 ： Convergence check 
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Variation of input resistance with feed position 
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Figure 3 : Variations of Input resistance against the probe feed-position. 
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« Variation of input reactance with feed position 
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4. CONCLUSION 

A method of computing input impedance of a rectangular microstrip 
antenna inside a metallic cylinder has been covered in this chapter. The 
method makes use of electric surface current model and moment method. 
It is shown that impedance matching is possible by choosing suitable feed-
point of the probe. 
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CHAPTER 7 

SUMMARY 

Summary of Works 
An algorithm of computing integer order Bessel function, Neumann 

function, and Hankel functions over wide range of complex arguments. 
The program developed was tested using Mathematica 1.2. It has been that 
the algorithms described give good results, even for extremely large 
argument. 

An alternative method of computing input impedance of cylindrical-
rectangular microstrip antenna has been proposed, and results have been 
checked with experimental data from Dahele et. al. Excellent agreement 
between theory and experiment is achieved. 

An analysis of mutual impedance between cylindrical-rectangular 
microstrip antennas has been made. The effects of variation of patch 
separations, relative permittivity, dielectric thickness have been studied. 

The resonance of a microstrip patch inside the inner surface of a 
hollow metallic cylinder has been rigorously studied using an spectral 
domain method. 

A method of computing input impedance of a rectangular microstrip 
antenna inside a metallic cylinder has been studied. It is shown that 
impedance matching is possible by choosing suitable feed-point of the 
probe. 
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Further Works 
Although excellent agreements between theory and experiments in 

literature have been obtained, the author noticed a significant deviations of 
impedance level in input impedance measurements, but the agreement in 
resonant frequency has been excellent. This can be a possible topic of 
research. 

Besides, the analysis has been limited to small cylinder, there are still 
much room for research concerning large cylinders. Alternative methods 
can be used for the analysis, for example, finite difference. 
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APPENDIX A 

Galerkin's method 

In the previous chapters, we can derive the green's functions in 
spectral domain, and so we can relate the electric field components in 
spectral domain to the spectral domain surface current distribution. 
However, both the surface current and the electric field are unknown 
entities. Galerkin's method has been used to convert the equations into a 
matrix equation to solve for the unknowns. A brief summary of Galerkin's 
function will be covered in this appendix. 

Given an operator equation of the following form : 
LX=Y (1) 

where A is a linear operator and X is an unknown to be determined for a 
particular excitation or forcing function Y. 

Galerkin's method starts by expanding X using a set of known basis 
function or expansion functions xj with unknown coefficients aj . Or 
mathematically, 

X二 ta丨X丨 ⑵ i=i 
Since it is impossible to implement infinite summation numerically, 

we have to truncate the infinite summation after a finite number of term N. 
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(3) 
i=i 

Substituting equation (3) into equation (1) yields 

LXN=: | a 丨 Lxi � 

The residue R^ is defined as 

Rn = LXN-Y 
二 Y N - Y 

and the residue is weighted (by taking inner product) to zero with respect 
to a weighting function or testing function Wj. In Galerkin's method, the 
weighting function Wj is chosen to be identical to the basis function xj. 

�RN，Xj�二 0 j = l，2，.“，N 
(6) 

The inner product can be defined as 
(7) 

where 1 is the domain of the operator L. 
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Equation (6) can be rewritten as follows : 

^XajLx.,x.^ = (Y,Xj) j = l，:2，…，N 

Xai�LXi’Xj�=�Y，Xj� （7) 
i= l 

Equation (7) can be written in matrix form : 

where 

" ( x p L x J � X p L x � … ( x p L x ^ ) 
•1 1 一〈 X 2 , L X I〉 .. ： Iji = . • • 

• • • 

_�Xn，LXi� �Xn，LXN�_ 

� ] [�Xi，Y�_ 
r 1 a2 1 �X2，Y� 
a; 二 . ， yj = . 

• 1 J • L J J • 
• • 

.̂ nJ L(Xn，Y〉_ 

PAGE 124 



Studies of Microstip Antennae on Cylindrical Structures 

If [iji] is non-singular, then 
r J n r 

And define X^ =[Xi x^ … X n 

The solution for the unknown X is 
-~ 1 r T r • 
Xi y j 

_ J L J a u J 
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APPENDIX B 

MULLER'S METHOD 

Muller's method can be used to find any prescribed numbers of 
zeros, real or complex, of an arbitrary function. It is an iterative approach 
that converges almost quadratically in the vicinity of a zero, and it does not 
require the evaluation of the derivatives of the function. The method is 
global in the sense that the user does not have to provide an initial guess 
for the algorithm to start. 

An algorithm for Muller's method is shown below : 
1. Let xo, xi，X2 be three approximations to a zero ^ of f(x). Compute 

f(Xo)，f(xi) and f(X2). 

2. Compute 
h2 = X2 - Xi, h i = Xi - XQ 

f(X2, Xi) = (f(X2) _ f(Xi)) / h2 

f(xi, Xo) = (f(xi) - f(xo)) / hi 

3. Seti = 2 

4. Compute 
f[Xi, Xi.i, XiJ = (f[Xi, Xi.i] - f[Xi.i, Xi_2]) / (hi + hi_i) 
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Ci =f[Xi, Xi.i] + hi f[Xi, Xi.i, Xi_2] 

5. Compute 
/ \ 

K i = -2f(X丨)/(c. 土 Vc? -4f(x丨)f[x丨，xi_i，x丨 

Choose the sign so that the denominator is largest in magnitude. 

6. Set Xi+i = Xi + hi+i 

7. compute 
f(Xi+i) and f(Xi+i，Xj) = (fOq+i) - f(Xi)) / hj+i 

8. Set i = i + 1 and repeat steps 4-7 until either of the following criteria is 
satisfied for the tolerance 8i, £2 • 

• | x�Xi_ J <£ jX i 
• |f(x.)|<8, 

or until the maximum number of iterations is exceeded. 
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