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ABSTRACT

Chinese characters are characterized by complex

internal structures with strokes as basic structural

elements. As the number of basic strokes that can be

combined to form the complete character set is small,

the availability of stroke information can considerably

simplify many processing problems associated with

Chinese characters. A system is described that can

extract stroke information from binary Chinese character

patterns. Demonstration is made on utilizing this

information to achieve good quality scaling and font

transformation.
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1.0 INTRODUCTION

An extensive amount of works has been reported that

tries to bring Chinese characters interface with digital

computers practical. The large number of distinct

characters and the complexity of the structure of these

characters have imposed great difficulties to these

attempts. These difficulties are evident from the fact

that native writers typically took years to master by

rote a subset, around 3000, of the characters so as to

be able to communicate adequately through them- and the

current effort in Mainland China to simplify the

characters so that their use may be easier.

Unfortunately, at this moment, even the rule of

lexicographical ordering of these characters in the

dictionary is not too satisfactory. These, in the

context of computer processing of Chinese characters,

create problems in several areas: storage, input method,

recognition and generation. Numerous schemes on these

have been proposed but few has yet received universal

acceptance.

In this report, attempt is made to solve the

problem of recognizing strokes, which are the basic

structural elements of all Chinese characters, from

Chinese character patterns and demonstration is made on

how this information is able to ease the problems of

scaling and font conversion. A system that can extract

stroke information from binary Chinese character

patterns, and achieve scaling and font transformation,
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has been constructed. The system is divided into two

parts. The first part is a three-level stroke extraction

process that extracts stroke information from Chinese

character patterns. The second part is on scaling and

font transformation which operates on individual strokes

and combines the results to form characters that are

properly scaled and/or of different font type. The first

part of the work is a limited form of character

recognition while the second part, scaling and font

conversion, belongs to the category of character

generation.

A survey of published works as an introduction to

the topic will start the presentation, which is followed

by a general description on the objectives of the work

and the approaches taken. The resulting system is then

described in detail. The results are presented in the

chapter that follows. Finally, discussions are made on

the results and other related matters.

The chapter classification follows the above

mentioned sequence with Chapter Two devotes to general

introduction to Chinese character processing through a

brief survey of related works. Chapter Three gives a

general introduction of this work. The implementation

details are given in Chapter Four to Chapter Seven.

Chapter Eight and Nine presents the testing result and

an overall discussion.
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2.0 INTRODUCTION TO CHINESE CHARACTER PROCESSING

2.1 Introduction

This chapter has two purposes: to provide

background information on Chinese character processing

and to introduce the scope of our work in this context.

The first section will give a survey emphasizing on

Chinese character recognition, scaling and font

transformation. The second section will give a brief

introduction to our work to be described in this report.
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2.2 A Survey

This ert1on pre enter a brief survey on t-he

published papers and texts on topics that have a direct

or indirect relations with and influence on our work.

The survey will be divided into two parts: topics on

Chinese character recognition and topics on Chinese

character generation. Works on coding and compression on

Chinese characters were well summarized by Nagao [301

and therefore will not be repeated here. Some of the

publications mentioned below may seem remote to.our work

but are included as they carry important topics which

can help make a better presentation.
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2.2.1 Modelling of Chinese Characters

By modelling of Chinese characters means a formal

description of them from their pictorial structures. As

discussed by Stallings [381, modelling of Chinese

characters is very difficult, given the great deal of

structure and irregularities, but is important because

the knowledge of the structure of Chinese characters may

contribute to their mechanization and recognition.

Numerous works have been reported in this area 1381.

Although these works all hoped to generate all

characters in use, they faced the problem that these

methods would also, as a by-product, generate non-

characters. In addition, the normally accepted stroke

sequence of which a character is drawn by native writers

is in not predictable from most of these methods of

representation.

The lack of a good formal description forces

researchers to use a large number of different methods

in building practical devices or developing processing

systems. For example, the number of proposed searching

and indexing methodology for use in digital computers

are large the number of input devices for typesetting,

typewriting, or computer usage are numerous [38,44].

Clearly the problem is non-trivial, it appears that

a problem of such a scale, in which tens of thousands of

Chinese characters are involved, as is many other real

life problems of considerable complexity, that no simple
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elegant model can be found to handle all the cases that

can arise. Rich [331 listed a number of problems to show

that to solve these problems, an often voluminous, may

be difficult to characterize accurately, and in some

cases constantly changing, knowledge base is often

required. This can be easily extended to the case of

modelling of Chinese characters. The number of

Characters are large the number of font types are

increasing and the characters are changing, most by

several deliberate efforts in history. One may then

argue that an expert system with considerable artificial

intelligence might be needed in order to be able to

handle the difficult task of generating accurate Chinese

characters with a generally accepted stroke sequence.
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2.2.2 Chinese Character Recognition and Analysis

It has long been recognized that to input

information to a computer with Chinese character as a

medium is handicapped by the lack of uniformity and the

lack of a satisfactory lexicographical ordering. Before

the computer era, mechanicals device to convert key

strokes to printed character, a counter-part of our

daily used typewriters, may have as many as thousands of

keys. At this stage, numerous clever schemes, some have

already been applied in some commercial products, have

been proposed to use the ordinary keyboard when

interfacing with a computer. But these methods are not

terribly convenient. Clearly, one of the alternatives is

to let the machine recognize them by optical or other

means. This has become an important subject in computer

processing of Chinese characters.

There was a number of approaches to solve the

difficult problem of Chinese character recognition, and

the work may be separated into three groups that deal

with three forms of input characters: printed

characters, hand-written characters, and on-line hand-

written characters. In general, they all deal with

characters in digital-form but stroke input time-spatial

sequence is also available for the on-line hand-written

type of input method. The methods employed to recognize

these forms of input characters vary from system to

system. Some of them are described in the following. See

Stallings [37] for a more detailed treatment.
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One early work on Chinese character recognition is

by Casey and Nagy [31 who first reported the recognition

of printed characters by template matching. In their

method, a given digitized sample of a printed character

is compared with templates of characters stored in

advance. To improve processing efficiency, a two-stage

matching process is used. Some other methods also by

pattern matching have also been reported [10,351. Other

reported approaches include peripheral feature [211,

transformation algorithm [451 and boundary belt

patterns [11]. Recently, Umeda [43] reported, a very

successful recognition method for multi-font printed

Chinese characters. The method used a combination of

mesh feature, peripheral feature, and some

discrimination procedures to achieve the high

recognition rate reported.

As to On-line hand-written Chinese characters,

Groner [141 reported an experimental system that

utilizes sequential positional information to recognize

hand-written chinese characters. Another method also by

time-spatial information on on-line hand-written input

of Chinese characters is also reported [501.

Regarding hand-written Chinese characters

recognition, a large number of groups attempted the

problem by many different techniques such as by pattern

matching [25,42], periphery of a character [46,47],

cellular feature [321, structure feature concentration

[1,181, and probabilistic modeling [22,23,24], and some
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others [28,52]. Most of these works divided the task

into two or more levels to improve the efficiency and

attempts were made to utilize features that were found

to be the least variant in most conditions and were

easier to extract. The features chosen, however, in many

cases do not correspond to the natural basic structural

units that constitute a Chinese character. In this

regard, although sufficient in achieving the goal of

recognition, their contribution to the mechanization of

Chinese characters are limited by the lack of

generality.

Other than those mentioned above, there are works

that deal directly with the basic structure of Chinese

characters, some of which have been applied to character

recognition. [2,16,17,37,38] are examples of this kind

of approaches which attempt to classify, analyze or

encode Chinese characters by the inherent structural

information. Stallings [38] developed a scheme based on

a two-level representation of the structure of a Chinese

character. A character is considered to be composed of a

two-dimensional arrangement of stroke segments. A tree

of graphs may thus be generated and coded to represent a

character and the information is used to recognize them.

This method as implemented may not be as efficient as

those above but did address the area of structural

information and its representation. The group led by Hsu

[16,17] attempted to extract stroke information from

higher resolution character patterns. The work was an
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extraction of the skeleton of a character which is,

however, remote to its title that implies stroke

classification.

To summarize, the choice of method is generally

determined by processing efficiency consideration. It

appears that there are a large number of features that

are usually easier to deal with than strokes as basic

classification elements, and a two or three level

classification scheme normally is sufficient to make the

approach feasible. In fact, extracting the basic

structural information such as stroke from character

patterns, though desirable as this information may be

used for many purposes other than solely for

recognition, in terms of processing efficiency and the

ease of the method, is not preferred when the purpose is

to recognise characters. However, stroke, as a natural

basic structural element of Chinese characters, is an

important information in many facets of Chinese

character processing ranging from storage compression to

font generation. Therefore, even though they are

difficult to deal with, and may not be the best choice

as a classification element, attempts have still been

made to extract them out of Chinese character patterns

as is evident from the papers mentioned above.
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2.2.3 Scaling, Font Generation and Transformation

There exists only a few papers in the category of

font generation and transformation, probably because it

this level of technologies where computer with Chinese

character as a practical interface is just beginning to

reach the commercial sector, it is generally true,

except for acedemic interest, that lower quality output

characters are considered acceptable in many

applications such as in game graphics and non-business

oriented word processing systems and this may be partly

attributed to the fact that recognition problem brings

more immediate fruits than area that partly involves

aesthetic which is difficult to quantify and thus

evaluate. Knuth [19] made the historic attempt and set a

new direction in automatic font generation and

naturally, the principle is extended to Chinese

character font. Several systems [7,15,26] based on

similar idea have been reported. All of them had special

routines to construct basic strokes and characters are

synthesized using these strokes. All these systems

produced very high quality fonts. Similar to font

generation, scaling is a less noticed area as brute

force may be all that is required for a temporary

solution, and larger systems can afford to store a large

database of character patterns sufficient for their

particular applications. Except possibly in very special

situation as that reported by Casey [4,5] that the

scaling problem was investigated.



12

Apart from those mentioned above, smaller systems

employing different methods were also reported [6,13,47]

but gave low quality character output. In [ 31], the

problem of font transformation was tackled by a very

simple store-the-difference approach which was of course

very limited. Shiono [361 proposed to detect and change

some special features to achieve the effect. The result,

however, was not too satisfactory.
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2.3 Scope of Our Work

Following the concept by Stalling [381 who views a

character pattern as a two-dimensional graph and stroke

segments of the character pattern are traced out

directly from the pattern so that a graph can be

constructed, a stroke extraction scheme by a similar but

unrelated trace procedure with additional classification

and description capability is chosen as part of the

investigation, which corresponds roughly to the area of

character recognition. The technique may be named as

analysis-by-synthesis. The meaning of which will become

clear after the detailed presentation. The other part of

the investigation is on scaling and font transformation,

which corresponds to the area of character generation.
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3.0 GENERAL DESCRIPTION OF THE SYSTEM

3.1 Introduction

rim l.ilC ieia is yeti considered mature, and as

pointed out by one author (371 that many techniques from

different disciplines may be required to solve the

difficult problem of Chinese character processing. There

is no clear method that can claim superiority in

performance and solve the large number of conditions

that may appear given the multitudinous. of characters

and their complex structures. We have chosen here to

deal with strokes in character patterns as the

generality of this information makes it possible to be

applied to a wide range of problems. An analysis scheme

has been developed to extract stroke information from

character patterns. The job involves classification as

well as description. We have then used scaling and font

transformation to show that stroke information can

simplify the scaling algorithm, and guide the use of

pre-stored patterns to form strokes so that character

patterns of a different font can be obtained. The source

of the character patterns is a library of binary

character patterns of resolution 24x24.
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3.2 Stroke Extraction

There are traditionally two main methods, accordin

to Fu [9], that are used in recognition: decision

theoretic approach, of which statistical approach is a

example and structural approach., The former is

appropriate when the problem is primarily one o

classification and explicit structural information abou,

the pattern is not considered important. The latter is

required when the pattern is rich in structura:

information and the problem requires classification a:

well as description. In practice, a combination of thf

two may somethimes be necessary to bring about a

practical system. Returning to our target of strokE

extraction, with Chinese characters rich in structural

contents, a system of the structural type is obviously

more appropriate. Note that it is generally difficult tc

express the structural relation, that must be used tc

make decision in a recognition process, among the

structural elements in a Chinese character without

resorting to linguistic definition, which therefore

dictates a structural approach.

In our approach, a character is viewed as a graph

where the links are stroke segments and the nodes are

where stroke segments start or end, or where they

connect. A stroke may consist of one or more connected

stroke segments. A three-level system is employed to

identify strokes in a character pattern. The lower two

1PvP1g involve primitive extraction and selection. The
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highest level involves structural analysis. This may be

called an analysis-by-synthesis as the last level is

mainly a synthesis process. Knowledge on internal

structure of typical Chinese characters is used to guide

the analysis.

The stroke extraction stage is divided into three

levels. The input to the first level, Level One, is a

binary Chinese character pattern current implementation

expects a resolution of 24x24. On output, this level

produces a group of data describing the stroke segments.

The second level, Level Two, performs data abstraction

on the data from Level One. The data produced.by Level

Two are a list of symbollic quantities describing the

stroke segments. The third level, Level Three, is an

analyzer that is responsible for selectively combining

these stroke segments into strokes.

The three-level stroke extraction part corresponds

roughly to a subset of ordinary recognition system [9].

The system in this case is simplified by eliminating the

usual noise removal stage, which is not implemented as

the pattern is assumed noise free, an assumption found

later to be only partially true. In order not to be

overly ambitious, the implementation limits the

recognition to stroke level only. To extend the

recognition to a whole character, more powerful

classifier would be needed.



Input

Level One

Level Two

Level Three

Output

Figure 3. 1 Stroke Extraction Process

伕
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3.3 Scaling

It is obvious that direct magnification of a binary

Chinese character pattern without correction will result

in a pattern of rugged edges, see Casey [4,51 for a

discussion of this. Simple smoothing or interpolation

algorithms either in spatial or frequency domains do not

give' good result as they cannot be applied universally

to all parts of a Chinese character as different parts

of a character may have different demand. As

demonstrated by Casey [4,51, by restricting the scaling

factor at each step and observing symmetry and

separation, it is possible to reduce the problem to a

manageable level. The result, however, is not entirely

satisfactory as the characters resulted in some cases

exhibit structures not conforming to those considered

correct, and the algorithm tends to be very complicated

as there is no prior knowledge regarding the structure

of the Chinese character in concern. It is speculated

that if the stroke information is available, the

algorithm can be considerably simplified. This forms the

basis of our approach.

In our approach, we utilize the stroke information

to guide the scaling process. The scaling algorithm as

implemented is rather simple as the stroke information

supplied made such approach feasible. It works in

spatial domain and is in a form of a universal operator

that examines a number of the adjacent pixels to
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determine the outcome of a particular pixel in the

scaling process. The algorithm operates on individual

strokes one at a. time.
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3.4 Font Conversion

A very popular approach to generate high quality

character is fitting and joining high order curves such

as cubic splines which define the boundary curve of a

stroke. This method requires reference points that may

not be on the strokes. Modification of these points in

order to generate a different font is difficult without

human assistant as this is generally a trial-and-error

process and involves aesthetic judgement of which no

general guideline can be found. Another method which we

have chosen may be more suitable for lower resolution

application in which a set of patterns are prestored and

combined when needed to produce strokes which in turn

produce characters. This method is not as powerful and

elegant as the equation method but the complexity of

which is reduced and is generally faster as the amount

of computation is much smaller as oppose to a

computational intensive curve fitting approach. In

addition, only a window is all that is needed to define

the size and position of a stroke. The human assistance

part is implicitly shifted to pattern construction and

is done once and for all without further intervention to

the process.

The transformation works by replacing the orginal

pattern by a combination of prestored patterns selected

according to stroke information extracted from the

original pattern. The size and position of a stroke is

determined also from the source pattern. Each stroke is
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constructed by one or more of the more foundamental

subpatterns found common in many strokes. The list of

strokes and the-foundamental subpatterns will be shown

in Chapter Seven.

A major limitation of the this method is that it is

capable of achieving font transformation where the

relative positions of strokes of a character do not

require adjustment. This of course limits the number of

fonts that may be produced. However, as there lack's good

parameters that allow aesthetic values be quantified and

thus form the basis of adjustment, it is difficult to

devise method to allow transformation be extended to

those fonts that require a stroke position shift, and

let alone those requiring a major structural

modification. For these, at this stage, human assistance

seem to be the only alternative. Based on this, our

system will be limited to those fonts without a need of

stroke position adjustment.
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4.0 STROKE EXTRACTION LEVEL ONE

4.1 Introduction

This is a primitive extraction stage. The

primitives of the input Chinese character pattern are

chosen as subpatterns that are portions of a stroke.

They are called stroke segments here. A trace algorithm

has been devised for this purpose. This chapter

describes in detail this algorithm.

In finding a method to extract stroke segment

information from a character pattern, several factors

have been considered that determined the final approach.

They are the following.

1. Each traced stroke segment should correspond

to a stroke as much as possible as this would

simplify the design of other levels.

2. The intersaction area should be investigated

in such a way that when two segments of similar

inclination are joined at an intersaction area,

for example, when two straight horizontal segments

are joined together later possibly to form a stroke

that is both straight and horizontal at Level

Three, the pixels reported for these two segments,

should the connection take place, should form a



Pattern

Graph(4 segments)

Smoothly joined

segments

Figure 4.1 Smooth Stroke Segment Connection



24

good, that is, a smooth joint at this area (Figure

4.1). This is necessary so as to ensure the

information generated is sufficient for completely

defining the stroke shape.

3. Data generated should carry sufficient

information so that no reinvestigation by the same

fashion is necessary and meaningful judgement may

be made based on this information alone.

4. As a prevention of overdesign, some problems

such as connections that are not due to structural

necessity but merely as a result of the pattern not

being well conditioned and information lost due to

distortion that may require high intelligent to

recover will not be handled.

Meeting all the above requirements is clearly no easy

task.

At the low resolution domain, where a stroke may

have as few as several pixels, many of the techniques

reported cannot be applied. For example, segmentation by

polygons introduced by Feng 181, is difficult to be used

here. The method reported by Stallings [371 may be

useful in identifying the graph representing a

character, however, the information generated is

insufficient to meet requirements two and three. In

general, Chinese characters have the following

characteristics that, if properly utilized, might be
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helpful to achieve our goal: as a character is formed by

strokes, and the way the stroke is written is mostly

from high to low, a trace following the same path may be

able to use the past to predict what is after a joint so

that the trace. may be continued as this will ensure

requirement two be met although some of the customally

defined strokes in dictionary are quite complex and are

produced with multiple brushes of different orientation,

a simpler set of strokes may be defined so that this

type of situation can be, to certain degree, avoided,

which may then make requirement one meaningful. Note

that this simplifies mainly later levels. Based on the

above, the following method is devised.
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4.2 Detail

The input to this part of the system is a binary

matrix containing a Chinese character pattern of

resolution 24x24. The pattern is assumed noise free and

is positioned upright. The character represented by the

pattern is viewed here as a two dimensional graph. See

Figure 4.2. A node of the graph corresponds to an end

point of a stroke, a cross between two or more strokes,

or where a stroke changes inclination. A link of the

graph corresponds to the body, or part of the body of a

stroke. By this classification, a stroke segment is a

link together with its corresponding two end points a

stroke therefore consists of one or more stroke

segments. Arbitrarily, one end that is higher in

position or is to the left if the stroke segment orients

horizontally is called a Head, the other a Tail while

the link, or the body, is called a Trunk. See figure

4.3. On output of this part of the system is a table

called a sequence table with each entry as a sequence. A

sequence is defined as a group of pixels together they

form a part of a stroke, or joined strokes, having a

particular orientation, as shown graphically in figure

4.3a. In general, a sequence may consist of one or more

stroke segments and is obtained by a pattern following

process called a trace process, to be described later.

Each pixel of the pattern on input has only one of

the following two states: Zero or one, with Zero meaning

not occupied by the character in a character pattern
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matrix, and One, also named Black, meaning the opposite.

During the trace process to be described, each Black

pixel may be changed into two other states Processed or

Special. These additional states are necessary because

some pixels may be reprocessed and these additional

states serve to prevent confusion.. State Special is

used for those pixels identified as belonging to nodes.



A Tyoical Pattern
A 2-Dimensional Graph

A Stroke

Figure 4.2 A Chinese Character Pattern as A Graph

伕

伕



Stroke Segments Strokeeaients

segient 1

segment 2

segment 3

segment 4

A Stroke Segient

head

segient 4

trunk

tailI (body)

Figure 4.3 Head, Tail and Body of A Stroke
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SEQUENCE TABLE

1 2 3Sequence

Location of (2,6) (2,16) (5,12)

Ref. Pixel (x,y)

south south eastDirection

$ 10 11# of Units

1 1 1Width(1)

Offset(1)

2 2 1Width(2)

0 0 0Offset(2)

y 2 1Width(%)

-1 2 1offset(3)

Figure 4.3a sequences aria Sequence 1dliiC

伕
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Each trace process is to obtain data of a group of

pixels that belong to one or more connected stroke

segments having similar inclination and width variation

characteristics. These groups of data, each is called a

sequence to prevent confusion from a stroke segment, may

then further processed by later levels to obtain the

stroke information. The structure of the main program is

shown in Figure 4.4. From Figure 4.5 which shows the

operation of a very important module- Scanner, it can

be seen that the sequence of trace may be divided into

several steps.

1. Locate pixels to start tracing.

2. Determine trace direction.

3. Trace to get a data sequence.

4. Insert data to table.

The sequence is repeated until no more suitable pixels

can be found. In the following, the important modules

involved will be described individually.

The main module is the Scanner. It scans the binary

pattern from top to bottom, left to right to locate two

types of pixels, Black and Special, and reports the

coordinates of which. Additional constraint must be

satisfied when the pixel is of type Special: the pixel

or its surround pixels of the same type must be

connected to pixel of type Black for it to be accepted,

as the opposite will mean this pixel is not appropriate



Program Level One

Input

A binary Chinese character pattern of resolution

24x24

Output

A table called sequence table (Figure 4.3a) with

each entry holding information of a sequence of pixel

strings, each of which is called a unit (Figure 4.10),

representing one or more stroke segments.

Method

Definition--- Scanner: a routine, see text.

Begin

1. Load a Chinese character pattern.

2. Scanner.

3. Save sequence table.

4. End of program.

Figure 4.4 Program Level one



Procedure Scanner

T nnint-

A 24x24 Chinese character pattern with each pixel

having one of the following two states: 1 and 0 with 1

(Black) for those occupied by the character.

Output

A table called a sequence table with each entry

being a sequence of units of pixels collected in a trace

process.

Method

Definition--- R: size of the two axes of the

character pattern matrix

B: pixel type= Black

P(I,J): pixel at coordinates (I,J)

D: direction of trace

T: portion of a character pattern

corresponds to one or more stroke

segments, called a sequence

A: sequence table

S: pixel type= Special

I,J: variables as counters for loops

Starter, Tracer: routines, see text.

For I:= 1 to R do 2 to 81.

Begin

For J:= 1 to R do 3 to 82.

Begin

If P(I,J)= B then3.

Begin
Select D by calling Starter, trace in

4.
direction D by Tracer to get T.

Enter T into A.

End.

Else if P(I,J)= S then5

Begin
Find pixel= B connected to P(I,J),

6.
or its neighbours of same state.

If pixel= B located then
7.

Begin

Do 4.8.
End.

End.

End.

End.

End of Procedure.9

Figure 4.5 Procedure Scanner
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for starting a trace. A routine will confirm whether

this condition is satisfied. If no more qualifying pixel

can be found, the trace process is declared completion.

After Scanner reports the coordinates, a modulE

called Starter will determine the trace direction. I

trace direction is defined as the direction wherE

further pixels are to be located. Obviously, the tracE

direction will exclude those going upward. The remaininc

question is how fine should the two quadrants, from east

clockwise to west, be devided? One of the candidates i.c

to divide the two quadrants into five parts as ranged b

degrees, 90-130, 131-160, 161-200, 201-230, 231-270

(Figure 4.6). This would nicely fit with the general

stroke direction. However, the two divisions at 131-160

degrees and 201-230 degrees would make the definition of

stroke length and width difficult. Since there is no

simple solution, the number of trace directions is

arbitrarily reduced to three: south, east and west, and

is found to be adequate. The possible cases of inclined

stroke segments are then handled during the trace

process by monitoring the positional offsets (see

below). Note that the direction thus defined is also for

defining the length and width of a stroke but has

nothing to do with the detailed inclination. The

detailed inclination will be computed in Level Two based

on the positional offsets. This, therefore, simplifies

the Starter.



231-270 90-130

201-230 131-160

161-200

EastWest

South

Figure 4.6 Division of Space and Direction



Procedure Starter

Input

X and y coordinates of a pixel of two' possible
states: Black and Special.

Output

A trace direction or a flag indicating direction

not found. If a direction is found, the first unit of

the sequence to be traced is defined, its location and

width are recorded into a record variable called State

(see text).

Method

Definition--- I(i), i= 1,2,3: index variable for

control table T

H: length of horizontal string of

non-zero pixels

V: length of vertical string of

non-zero pixels

C(i): group of connected pixels of

same state in the horizontal

string H, i= 1,2,3

G: number of C(i), limit to 3

D: cluster of connected pixels of

state black connected to and

below C(i)

T: control table with entry

guiding selection of direction

S: a record variable called State

used in the trace process.

Begin

1. Initialize I(1), 1(2) and 1(3).

2. Compute H and V starting from position (x,y).

3. Find all C(i) in H, G:= number of C(i).

4. If G 3 then

G.-.

5. For i:= 1 to G do* 7

Begin

6. Find D(i) for C(i).

7. Compute I(i) using C(i), D(i) and V

End.

8. Find direction using T(I(1),I(2),I(3)).

9. Prepare first unit in S.

10. End of procedure.

Figure 4.7 Procedure Starter



Case Condition Direction

iridex1 inclex2 index3

abc abc abc

1 SBN west from right end

2 SBN dPd ddd east

3 SBC ddd south

4 SBC dPd dBd east

5 dPN dBN west from right end

6 dPN SBC south from pixel group

two

7 dPN LBC east

8 dPN dBd dPd east

9 southdPC

west from right end10 dPC dBN

eastdPddBNdPC11

dPdSBCdPC12 south from pixel group

two

eastdPdLBCdPC13

west from right endLBN14

eastddddPdLBN15

south if short blackddddddLBd16

cluster directly below,

else east or west

depending on offset of

black cluster

Note: a= size-- L: large

d: don't careS: small

P: Special or Processedb= type-- B: Black

d: don't care

c= connection-- N: no niacK cluster connecteu

C: black cluster connected

d: don't care

non exsistent

Figure 4.8 Decision Table For Starter
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Conceptually, the decision upon which Starter wil:

base to select a trace direction is by the relative s1-,-,E

of the length and the width of a stroke segment. Ir

practice, the condition is complicated by the possiblE

multiple combinations of pixels of various states aE

defined above. These combinations necessitates

construction of'a control table to handle the possiblE

cases.

Upon receiving the pixel coordinates, Starter looks

first at pixels at the east and those below (those at

the west need no consideration as Scanner scans from

left to right). As the states of the string of pixels at

the east may have several values, the first three groups

of pixels of same states are considered. The state of a

connected group is determined by

1. type --- B (black) or P (special or processed),

2. size --- L (large) or S (small),

3. connection --- C (connected) or N (not connec-

ted).

By connection, we mean that those pixels directly below

these connected groups are examined to see if clusters

of Black pixels are present and if so then this

connected group is declared C (connected to black

clusters), otherwise N (not connected to black

clusters). By this, three indexes are resulted as shown

in Figure 4.8 that for different combinations, different

directions are selected.
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For example, in case two as also shown in Figure

4.9a, the direction is chosen as east. In case thirteen,

also see Figure 4.9a, the direction as chosen is west

with the starting point changed to the right end. This

can solve the problem of a possible inclined stroke

segments hidden over the horizon. Note that in those

cases of SBC (short black group connected to black

cluster below), selecting south is a good decision as

chances are high that they are the tip of a vertical or

similarly inclined stroke segments. This also solves the

case of an inclined stroke segments with most of



First

Unit

22

22

22

1331 111111111111

22

22 Indexl= SB

22

Pixel under Index2= PP

Consideration

Index3= don't care

Direction= east-

22

First Unit22

2
33

L3311111

2211

Indexl= PPB

Index2= SB

Direction= west

Note:

1: black pixel

2: processed pixel

3: special pixel

(node)

Figure 4.9a Starter Example



Pixel under First Unit
Consideration

Indexi= SBCLill

11

11 Direction= south

11

11

1

Pixel under First Unit

Consideration

iii Indexi= SBC

11

11 Direction= south

11

111

1

Figure 4.9b Starter Example
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the data hidden because of the inclination. Therefore,

graphically, Starter will be able to select direction as

shown in Figure 4.9b though not through complete

explicit examination. Note that a special case is that

the Starter has the option to reject this pixel if the

situation indicates a defered decision is appropriate,

as indicated by case six. Further examples may be found

in Appendix.

In addition to selecting a direction, Starter also

defines the first unit, explained below, on which

further reference of positional offsets are based.

In the trace process, the basic quantity used is

not a single pixel but a string of pixels called a unit.

As is shown in Figure 4.10, each unit is a string of

connected non-empty pixels perpendicular to the trace

direction. The left and right end points of the first

unit are used as reference points so that the quantities

left-offset and right-offset can be defined. The width

of a unit is the number of pixels in the string. The

length of a segment can then be defined as the number of

connected units involved. This relatively unprecise

definition that cannot reflect the true length of a

stroke segment in the normal sense does not create

problem as the length information is not critical for

later processing. The final output of each trace process

is. thus a sequence of units representing one or more

stroke segments.



Trace Direction

Trace

Direction Unit

Left Reference

Pixel

Right

ReferenceUnit#

Pixel

i=1

1=2

i=3

i=4

Right-Offsets

(one for eachTrace

unit, same forDirection

Left-Offsets)

Figure 4.10 Definition of A Unit



Procedure Tracer

Input

A record variable called State in which trace

direction and the first unit have been defined.

ntniit

A record variable called State with full sequence

of units collected by the trace process.

Method

Definition--- S: record variable State

U: record variable Current-state

C: number of connected units ahead

accept: a flag in Current-state

to indicate whether a unit

is to be accepted.

continue: a flag in Current-state

to indicate whether the

trace may continue.

Begin

Prepare S and U.1.

Stop:= false.2.

Repeat 4 to 73.

Begin

Obtain connected units ahead, C:= count,4.

insert this information into U.

Case C of5.

0: stop:= true.

1: Single handler(S,U).

Else

Multiple_handler(S,U).

End of case.

If accept then6.
insert unit in U into S.

Until stop or (not continue).7.

8. End of procedure.

Figure 4.11 Procedure Tracer
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Once a trace direction is known, the Tracer traces

in that direction. The logic flow of the Tracer is shown

in figure 4.11. The trace process is as fO11Ows, A

module is called to examine situation ahead. If there is

only one unit connected ahead, then module

Single_hand1er is responsible for resolving the

situation. Figures in Appendix have numerous examples of

this. If there are more than one connected units, module

Multiple handler will handle the case, see figure A.1.30

for example.

of all the main modules, to be described later,

involved in the tracing process, two record variable:

are used during the trace process to hold the

information gathered and all the necessary variable-.

through which these modules communicate. These twc

records are called State and Current state. Record State

has two parts. The first part holds the width and offset

information of the unit sequence that has been traced.

This part is declared as an array. The second part holds

the global status that indicates the overall situatior

such as whether the sequence is a straight one or

whether the sequence is bending towards right or towards

left, and the direction of trace. Record Current state

is a buffer for holding the newest unit(s). In addition,

it has variables used by the routines involved as input

and output parameters. These include two important

flags: accept to indicate the new unit is accepted after

a test continue to indicate that the trace may

continue. By grouping data into two records and creating
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temporary copies when needed, the complete status of a

trace can be recorded and passed to test a particular

trace session conveniently and backtracking is therefore

.S. T

relatively easily implemented.

Backtracking is necessary as there are cases where

there are multiple units ahead or the unit is not of a

simple type, or the width of which indicates that a

cross of multiple stroke segments may be encountered. In

each of these circumstances, there is no easy way to get

around but a sequencial testing for a path passing this

area. By creating copies of record State and

Current-state, and passing them to the handling

routines, the array in State can be used as a working

space that holds the information of the test run. On

return, the complete path is returned as a whole. The

module that initiates the testing then has the option to

select the best path available. The path is judged by

the length. The shortest path in most cases is chosen.

Another criterion is that a good path is that the trace

may still continue following the path. Figure A.1.30 has

an example.

Coming back to the two modules Single-handier ano

Multiple-handler, it is necessary now to describe them

individually. Single-handler handles only singly

connected unit. If the unit is of type Black and the

width of which does not exceed a threshold, then the

unit is either accepted or rejected, which means a

mination of the trace path. The latter case arises
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when the unit indicates a change in inclination. If the

unit has a width over a threshold, or if the unit is not

of a simple type, then a node must have been

encountered, and special handling is therefore

necessary. These are handled by modules

Exception-handler and Special-handler.



Procedure Single _handler

Input

A singly connected unit recorded in record variable

Current-state, and the past sequence of units recorded

in record variable State.

Output

Result of testing and/or further trace directly

recorded into record variables State and Current state.

MPthnc1

Definition--- U: record variable Current state

S: record variable State

accept: accept/reject the new unit

width: width of a new unit

type: type of the new unit

(above three variables are in U)

threshold: an empirical constant

Begin

If type= Black then1.

Begin

See if unit acceptable, set/clear accept.2.

If not accept then3.

Begin

If width threshold then4.

Exception_handler(S,U).

End.

End.

Else5.

Special handler(S,U).

6. End of procedure.

Figure 4.12 Procedure Single handler



Procedure Multiple handler

Input

A set of connected units recorded in record

variable current _state, and the past sequence of units

recorded in record variable State.

Output

Result of testing and/or further trace directly

recorded into record variables State and Current state.

Method

Definition--- found: flag to indicate if a path

is found

count: number of connected units,

count is a variable in U

S(I): variable State for unit I,

for testing

U(I): variable Current-state for

unit I, used for testing

S: variable State

U: variable Current state

I: variable as counter of loop

U(I).accept: accept is a variable

in U(I)

Begin

found:= false.1.

For I:= 1 to count do 3 to 52.

Begin

S(I):= S,3.

U(I):= U.

Modify U(I) to have only one connected unit.4.

Single_handler(S(I),U(I)).5.

End.

Choose among U(I).accept= true for6.
shortest path in S(I) name the pair as

as Si and Ul found:= true.

If found then7.

Begin

S:= Si,8.

U:= U1.

End.

9. End of procedure.

Figure 4.13 Procedure Multiple-handler



Procedure Exception-handler

Input

A new unit known to be of type black and of a width

exceeding the acceptable threshold. This unit is stored

in record variable Current_state. The past sequence of

units traced is stored in record variable State.

Output

Result of testing and/or further trace directly

recorded into record variables State and Current state.

Method

Definition--- S: variable State

U: variable Current state

Si: copy of variable State for

testing

Ui: copy of Current-state for

testing

accept: accept flag in U

Begin

1 Sl:= S,

Ul:= U.

2. Predictor(Sl,Ui).

3. If accept then

Begin

4. S:= Si,

U:= U1.

End.

5. End of procedure.

Figure 4.14 Procedure Exception-handler
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Multiple_handler handles multiple connected units.

The way to resolve this is by calling Single-handler

sequentially testing each connected unit one by one. Of

all those paths returned, one will be selected.

Except ion-handler is called when a unit is Black

but' its width exceeds a threshold. The situation is

resolved by callinq a module Predictor.

Special handler is called when a unit is not of a

simple type. That is, the unit may consist of pixels of

type Black, Processed or Special. As part of the unit

can be selected to reduce the range of search, a

selection is made and the selected portion is passed to

Predictor. The selection is based on the table in Figure

4.16. The different states of the pixel groups in the

unit are converted to a maximum of three indexer

quantized to B (Black), S (Special) and M (Processed).



Procedure Special_handler

Input

A new unit that is known to be not of simple type

Black. This unit is recorded in record variable

Current-state. The past sequence of units traced is

recorded in record variable State.

Output

Result of testing and/or further trace directly

recorded into record variables State and Current state.

Method

Definition--- S: variable State

U: variable Current-state

Si: copy of variable State for

testing

Ui: copy of Current-state for

testing

Index(I): index variables for

control table T

T: control table for selection

portion of a unit to test

Ul.accept: accept is a variable

in U1

Begin

1. Based on data in U, assign values to

Index(1), Index(2) and Index(3).

2. S1:= S

U1:= U.

3. Modify U1 as directed by

T(Index(1),Index(2),(Index(3)).

4. Predictor(S1,U1).

5. If Ul.accept then

Begin

6. S := S1,

U:= U1.

End.

7. End of procedure.

Figure 4.15 Procedure Special_handler



r.ac,- A Condition Selected Portion

indexl index2 index3

BdoMB1

B+ SdoSB2

SS3

S+ BBS4

SMS5

S+ BMBS6

S+ B+ SSBS7

rejectM8

BBM9

SSM10

BMBM11

B+ SSBM12

S+ BBSM13

SMSM14

B black portion

M: processed portion

S special portion

-- non existant

Figure 4.16 Selection Table for Special-handler



Input

A unit on which testing must be performed is stored

in record variable Current-state. The past sequence of

units traced is in record variable State.

Output

Result of testing and/or further trace directly

recorded into record variables State and Current state.

Method

Definition--- W: average width of units traced

0: average offset of units traced

S.: variable State

U: variable Current-state

Margin: an empirical constant

I,J: variables as counters for loops

S(I,J): copy of variable State

corresponds to I as width,

J as offset, used for testing

U(I,J): copy of variable Current- state

corresponds to I as width,

J as offset, used for testing

straight: variable in S to show if

the collected units indicate

a straight stroke segment

Begin

1. Compute W and 0.

2. If straight then

Begin

3. Modify U with W as width, 0 as offset.

4. LookAhead(S,U).

End.

5. Else

Begin

6. For I:= 0-Margin to O+Margin do 7 to 10

Begin

7. For J:= W-Margin to W+Margin do 8 to 10

Begin

8. U(I,J):= U, S(I,J):= S.

9. Modify U(I,J) with I as offset and

J as width.

10. If selected unit is acceptable then

LookAhead(S(I,J),U(I,J))

End.

End.
11. Choose among U(I,J).accept= true for

shortest path In 3(I,J) name the pair

as Si and Ul found:= true.

12. If found then

Begin

13. S:= Si, U:= Ul.

End.

14. Else

15. U.accept:= false.

End.

16. End of procedure.

Figure 4.17 Procedure Predictor
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vreuiczor expects an oversized unit, but smaller

unit causes no trouble. Its job is to select a portion

of the unit as a test unit and initiate a test run base

on this new test unit. For the case in which a stroke

segment has already been declared a straight segment,

the expected width and offset is obvious. Otherwise, the

selection is based on the average width and the average

offset of those traced units plus and minus a margin.

All these cases will be tested by calling a module

LookAhead with this predicted unit as an input

parameter. One of the reported path will be selected.

LookAhead is a subset of the module Tracer with the

difference being that LookAhead will test run starting

from the input unit and reports the resulting path. It

is called by Predictor and is the module that initiates

the recursive behaviour upon encountering unit that

needs multiple testing for a good path. Examples of this

can be found in figures in Appendix.

The control flow of this recursive testing

procedure is given in Figure 4.19. It should not be

confused with the flowchart of that of Level One.



Procedure LookAheac

Input

A selected unit in record variable Current state.

The past sequence of traced units is in record variable

State.

Output

Result of further tracing is returned through

record variables State and Current state.

Method

Definition--- C: number of connected units ahead

U: variable Current state

S: variable State

Begin

1. Obtain connected units ahead,

C:= number of connected units

insert this information into U.

2. Case C of

Begin

3. 0: U.continue:= false.

4. 1: Single_handler(S,U).

5. Else

6. Multiple handler(S,U).

End.

7. End of procedure.

Figure 4.18 Procedure Look ahead



Scanner

Tracer

Multiple_handler

Single_handler

Special_handler Exception_handler

Predictor

LooxAneaa

Figure 4.19 Control Flow among main modules
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This completes the description of the main modules

involved in Level One. The method chosen is considerably

more complex than that reported by Stallings and the

modules involved are typically relatively large. This

cost is paid off as the later level. can be made simpler

as some of the complex conditions are already resolved

in' this level. In general, those guidelines given

earlier have been met except in some cases where the

pattern is not well conditioned or there are complex

interconnection that the program will make wrong

decision. More on this will be discussed in Chapter

Eight and Chapter Nine. An example trace sequence is

shown in Appendix.

The final output of this level is a table called a

sequence table. Each entry of this table is data

collected by one trace session. Note that each entry may

consist of one or more stroke segments (Figure 4.3a).
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5.0 STROKE EXTRACTION LEVEL TWO

5.1 Introduction

There is no theorectical reason for not

incorporating this level into Level one and certainly

doing so would speed up the process by eliminating the

time consuming input/output in between. However,

squeezing two already large programs into one would

require very careful memory and data planning and the

limitation of data and code sizes of 64 k bytes each by

most compilers for IBM-PC type machines places heavy

constraints on data structures. Although extensive use

of linked lists instead of large arrays may reduce the

size of data segment, the added program complexity may

be more than offset the benifit gained. As a result, a

separate program is used to handle the work.

The input to this part of the system is the

sequence table resulted from previous level (Figure

4.3a). The function of this level is to organize proper

portions of each sequence into quantities each of which

is called a token, which represents truely a stroke

segment, and into a form suitable to be processed by

Level Three. Part of the process can be regarded as

constructing a graph of a Chinese character pattern that

has been traced by Level one, and with all the nodes

labelled and all the links identified. Figure 5.1

clarifies the concept.



1 2

3

4 6

Sequence

Figure 5.1 Character and Stroke Segments

伕

伕
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A Stroke Segment

A Token

Head-label

Head-shape

(identification)

tail-laDel

Tail-shape

(identification)

Body-inclination

(identification)

Body-shape

Body-length

Sequence number

Token number

Note: Body is also called Trunk

Figure 5.2 A Token and A Stroke Segment

伕
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Since each entry in the sequence table may consist

of one or more stroke segments, which may or may not

belong to the same stroke which is to be constructed by

Level Three. These segments must be singled out

correctly from each sequence in the sequence table. The

appropriate point to segregate these sequences are the

points where pixels are declared Special as these points

correspond to nodes of the graph. In the whole process,

both ends of each of all the stroke segments is assigned

a label (provision is made to eliminate redundant

labels). These labelled points are simply nodes if the

character is viewed as a graph, as has been shown in

Figure 4.2. For each stroke segment, one of the node is

called Head and the other Tail, see section 5.2 below.

A token, or physically a stroke segment, contains

the following quantities: head-identification, head-

label, tail-identification, tail-label, trunk-

identification, trunk-shape, trunk-length, and the

number of the sequence to which this token belongs

(Figure 5.2). These quantities are not readily available

and must be computed. Head-label and tail-label are

simply the label assigned as discussed above. Head-

identification and tail-identification are used to

describe the shape of a given node computed using the

corresponding end units of a stroke segment. Trunk-

length is the length of a stroke segment. Trunk-shape

describes whether the width of a stroke segment

decreases, increases, or remains constant from head to
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tail. Trunk-identification describes the inclination of

a stroke segment. These will be further clarified in

later sections.

All together three tables are produced by this

Level (Figure 5.3): a token table, a label table, and a

link table. The token table contains a list of tokens.

The label table contains a list of labels, with

additional entries under each label as those tokens

sharing that same label. The link table carries

additional information describing how the tokens are

connected, that is, how the graph is connected. Hence

the main entry of the table is again a list of label,

with the additional entries as a list of token pairs and

the related connection information. Four quantities

called P1, 22, P3 and P4 are used to describe the

connection. This will be discussed later.

There is an additional program that converts these

tables into text files as currently, there is no easy

way to allow direct data transfering between Level Two,

which is written with Pascal language, and Level Three,

which is written with Prolog language, and which can

only handle text files, Consequently, a little

conversion is necessary.



An Entry of The Token Table

Token# Head Identification

Head Label

Tail Identification

Tail Label

Trunk Identification

Trunk Shape

Trunk Length

Sequence Number

An Entry of The Label Table

Label#- List of Tokens whose Head Label

is equal to this Label

- List of Tokens whose Tail Label

is equal to this Label

An kntry of- ne Linz- able

Label#- List of pairs of Tokens and

their connection parameters

P1, P2, P3 and P4

Figure 5.3 Entries of The Three Tables



Program Level Two

Input

A sequence table produced by Level One

Output

Three tables: a token table, a label table and a
link table.

Method

Definition--- Q: sequence table

N: number of sequnces

S(I): a sequence whose number= I

T: token table

L: label table

K: link table

Begin

1. Load Q.

2. Re examine.

3. Labeller.

4. For I := 1 to N do 5

Begin

5. Builder(S(I)).

End.

6. Build label list.

7. Build link list.

8. Save T, L and K.

9. End of Program.

Note: Re_examine, Labeller, Build_label_list, and

Build_link_list are program modules, see text

for details.

Figure 5.3 Program Level Two



Matrix M(l..resolution,l..resolution).

Each entry M(i,j) being a record R. i= l..resolution,

j= l..resolution.

Record R

Begin

N: number of sequences

S: array (1. .41 to hold the identity of sequences

that has pixel at that location

M: label number

P: number of tokens

T: array [1..4] to hold the identity of tokens

End of Record.

Figure 5.4 Structure of The Working Matrix



Procedure Re-examine

Input

Sequence Table from Level One. A matrix

M(1..24,1..24) as defined in Figure 5.4.

Output

A matrix M(1..24,1..24) with sequence part modified.

Method

Definition--- M: matrix M(1..24,1..24)

N: total number of sequences

I: variable as counter for loop

S(I): sequence whose number is I

Begin

1. Initialize M.

2. For I 1 to N do 3

Begin

3. With S(I) do

Begin

4. Plot all units to M.

End.

End.

5. End of Procedure.

Figure 5.5 Procedure Re-examine



Procedure Labeller

I nput

Matrix M with sequence part filled by procedure

Re_examine.

Output

Matrix M with label part modified. A list called

label list (not yet fully completed).

Method

Definition R: size of one axis of a character

pattern(= 24)

I,J: variables as counters for

loops, also used as indexes to

ma t r i x M

N: number of sequences in a

particular position of matrix M,

ie., M(I,J)

A: label number

Beg i n

For I:= 1 to R-l do 2 to 6

Begin

For J:= 1 to R-l do 3 to 6

Beg in

If (N of M(I,J)1) and

(not yet assigned label) then

Begin

Assign a label A to M(I,J),

Insert label A to L.

End.

Examine M(I,J+l),M(I+1,J) and M(I+1,J+1),

assign them label A if N of them 1.

End.

End.

End of Procedure.

Figure 5.6
Procedure Labeller



Procedure Builder

Input

sequence table from Level one. Matrix M processed
by procedure Re-examine and Labeller.

Output

Matrix M with token part modified. A list called

token list.

Method

Definition--- S: a stroke segment (a token)

T: token list

Begin

1. Repeat 2 to 8

2. Obtain a part of the sequence as

a stroke segment S.

3. Write the stroke segment to matrix M.

4. Compute Head parameter.

5. Compute Body parameter.

6. Compute Tail parameter.

7. Insert S into T.

8. Until all segments done.

9. End of Procedure.

Figure 5.7 Proceaure Builaer



Procedure Build-link-list

Input

A list called label list.

Output

A list called link list with entries as defined in

Figure 5.3. This list is indexed with lahAl namP,-,

Method

Definition--- N: number of labels

L: label list

I: variable as counter for loop,

also used as label number.

J,K: variable as counter for loop

also used as token numbers.

M: number of tokens under L(I)

P1, 22, P3 and P4: connection

parameters

U: link list

Begin

1. For I:= l to N do 2 to 6

Begin

2. With L, (I) do 3 to 6

Begin

3. For J:= l to M do 4 to 6

Begin

4. For K:= J+l to M do 5 to 6

Begin

5. Compute connection parameters

Pl, P2, P3 and P4.

6. Insert J, K, 21, P2, P3 and P4

to U.

End.

End.

End.

End.

7. End of Procedure.

Figure 5.8 Procedure Build-link-list



Procedure Build label list

Input

A list of tokens with both head-label and

tail label defined.

Output

A list called label list with entries as defined in

Figure 5.3. This list is indexed with label number.

Method

Definition--- N: number of tokens

I: variable as counter for loop,

also serves as identities of

tokens

L: label list

Begin

1. For I:= 1 to N do 2 to 4

Begin

2. With T(I) do 3 to 4

Begin

3. Insert I to L(headlabel).

4. Insert I to L(tail_label).

End.

End.

5. End of Procedure.

Figure 5.9 Procedure Build-label-list
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5.2 Detail

The logic of the program is shown in Figure 5.3.

After obtaining the data from previous level, the data

must be restructured so that data of different sequences

can be more easily related. This is by redisplaying the

data into a matrix with each position of the matrix

corresponds to the position of a pixel of the character

originally traced, and under which are entries that

allow recording of what sequences are involved (Figure

5.4). This is done by a module called Re-examine (Figure

5.5).

The second module is named Labeller (Figure 5.6)

which assigns label to all the nodes that are shared by

multiple stroke sequences by scanning the matrix from

top to bottom, and from left to right. Provision is made

to make sure that all pixels that satisfy the above

conditions of the same connected cluster are assigned

the same label. Note that those nodes at the isolated

ends of a stroke segments are not yet handled. They will

be handled later (by module Builder) when encountered to

keep this module simple.

After the labelling step, each stroke sequence is

examined individually by a module called Builder (Figure

5.7) to compute all parameters of the stroke segments

involved. These parameters are: inclination, shape,

length and identification of the two ends. These are

discussed in the following.



Segment Inclination

Segment Shape

Decreasing Constant Increasing

Figure 5.10 Segment Shape and Inclination



Slope of A Segment

Allow six ranges

Bending of A Segment

Three types

Figure 5.11 Segment Slope and Bending
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Figure 5.10 lists the classification of a stroke

segment according to its shape and inclination. For

those stroke segments with fewer than four units, the

classification is meaningless as not enough information

is available and therefore they are made a separate

class. The inclination of a stroke segment is computed

with the slope measuring from the midpoints of the first

and the last units of this segment. The slope is

quantized to six values as shown in Figure 5.11. An

additional parameter is used that indicates whether the

segment is straignt, or bent clockwise or anticlockwise.

This is computed by counting the number of pixels on the

two sides of the main axis defined by the midpoints of

the first and the last units of the segment. Altogether

fourteen inclination is possible. As the width of a

segment can be increasing, remaining constant or

decreasing. A separate parameter is devoted to this

which is obtained by finding the average slope in a plot

of unit width versus segment length. This completes the

body part of a stroke segment.

The shape of each of the two ends of a stroke

segment is classified by the first two units, if Head

or last two units, if Tail but only for those isolated

Heads or Tails not connected to others. By the

positional offset between these units together with

widths of these units, a total of some 50 node numbers

are assigned to different combinations. For those nodes

which are connected to multiple stroke segments, the



0

7
1

6 2

5 3

4

Example 1. P1= 1

P2= 2

21= 0Example 2.

22= 4

P1= 7Example 3.

P2= 2

Figure 5.12 Relative Position of Two Connected

Stroke Segments



P3--- Quantized junction offset. Computed by

using the units at the connection

area between the concerned two stroke

segments.

1st segment

23= C in this example

2nd segment

(see Figure 5.2)

P3=( A, B, C, D, E), a total of five values

P4--- Quantized width variation at junction area

P4=( A, B, C, D, E), a total of f ive values

Figure 5.13 Junction offset and Shape, 23 and P4
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shape identification is of no use and instead, four

parameters are computed to show how each pair of stroke

segments are connected at a particular node.

The four parameters are simply named P1, 22, P3 and

P4. P1 and P2 describe the relative positions of the two

concerned stroke segments. Figure 5.12 demonstrates the

concept. P3 and P4 are computed only when P1 and P2 show

good possibility for the two concerned token to form a

single quantity called a secondary-token, to be used in

Level Three and will be explained at Chapter Six. The

condition is

Condition For Computing P3 and P4

abs( Pl- P2)= 3, 4 or 5

P3 indicates the offset at the junction while P4

indicates the width variation (Figure 5.13). Together,

they are the basis upon which the next level will decide

whether a combination of tokens is meaningful when

constructing strokes, the meaning of which will become

clear when Level Three is discussed.

To summarize, a total of three sets of data are

produced by this level. They include:
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1. label list indicates what stroke segments are

connected at what label

2. token list with the token listed according to

the order they are computed with all the afore-

mentioned attributes

3. link list detailing the connection attributes

for each pair of stroke segments that are

connected.
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6.0 STROKE EXTRACTION LEVEL THREE

6.1 Introduction

This level is responsible for selectively combining

the list of tokens, by using the available accompanying

information, and with a set of prebuilt rules, into a

list of strokes, which is the final target of this

stroke extraction system (Figure 6.1). This is a

synthesis process.

Prolog is chosen the programming language for this

level as it is ideal for proving relations among

subjects. The automatic handling of backtracking and

recursive characteristics provide good program

constructs for solving problems that are heavy on

reasoning rather than on numerical computing, which is

exactly the type of problem we are facing at this level.

In addition, there are built-in database facility that

allows facts and rules be used and manipulated. Section

6.2 will describe Level Three in detail.

Initial design of this level is faced with the

following two options.

1. The most powerful approach will be that a

Chinese character is completely defined by some

relations, somewhat similar to that defined by

Cheng and Chen (71, so that the resulting system



Figure 6.1 Stroke Extraction
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not only can extract stroke information but also

can be directly converted to recognize Chinese

characters with the addition of some pre-stored

classification library.

2. A lower end approach will be to provide just

enough power to extract. strokes out of the pattern

and leave the possible extention to later.

After some investigation, it is found that a very

complicated analyzer will be needed that (in a somewhat

similar fashion) first performs stroke extraction, then

verifies that they form good radicals that finally group

to become a character existing in the library. Although

very desirable, clearly this is an overkill when

considering the initial target. Therefore, the analyzer

as constructed can extract stroke only. Even so, the

resulting analyzer is quite large in size. The compiled

module has a size of over 120k bytes, partly because a

large set of rules has been used to handle shape

variations.
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6.2 Detail

The two-dimensional nature of a typical stroke in

terms of stroke segments as primitives indicates that a

simple string grammer is difficult, though not

impossible, in describing the relationship. More

complicated grammars such as tree grammar and graph

grammer (9,121 are powerful but still lack the facility

to describe the semantic information, without which

separate rules must be created for different strokes.

With some 25 strokes (Figure 6.6) in total each of which

is defined with one or more stroke segments and to allow

for some variations in parameters to deal with possible

variation of segment shapes, the resulting set of

production rules would be very complicated. In contrast,

semantic information can turn a simple grammar into a

powerful descriptive machine which allows semantic

information to separate different elements belonging to

the same group such as stroke identity to the group of

strokes. This semantic information can further be used

to handle shape variations as well, as indeed be

demonstrated in this case. A further advantage is

inspired by Prolog's database facility that by building

the analyzer in such a way that semantic information is

used as reference rules to control the searching

process, as opposed to directly incorporating them into

the search procedure, the analyzer, once built, will

need no further modification, and only the database be

changed to handle new situation such as a new font with

different stroke and stroke segment characteristics.
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kcLriDUtea grammars were first formulated by

Knuth to assign semantics or meanings to context-free

languages. Formally, an attributed context-free grammar

is defined as shown in figure 6.2 (closely following

that given by Tsai and Fu (411) which is the grammar

chosen here to describe a stroke out of stroke segments

(tokens). In this case, the starting symbol is Stk which

represents a stroke. The set of non-terminals is

where Ptk and K represent partial-stroke and secondary

token, to be explained later, respectively. The set of

terminals has only one element

which represent a token, or equivalently, a stroke

segment. The set of production rules has two parts as

shown in Figure 6.3.



Attributed Grammar

Definition

An attributed context-free string grammar is a 4-

tuple G= (Vm, Vt, P, S) where

Set of nonterminals,

Set of terminals,

Start symbol,

for each XG(VmUVt), there exists a finite set of

attributes A(X), each attribute of A(X) having a set,

either finite or infinitive, of possible values D; and

P is a set of productions each of which is divided into

two parts: a syntactic rule and a semantic rule. The

syntactic rule is of the followinq form

where XoEVn and each X±eVnUVt for l;im. The semantic

rule is a set of expressions of the followinq form

where{•••,„}= A(Xo)UA(Xi)U-•- UA(Xm), each

o(i j(lin, ljni) is an attribute of some Xk for 0km,

and each fa.(lin) is an operator which may be in one of

the following three forms:

a mapping f i: Dox DotxDox..- x,

a closed-form function, i.e., Ui may be

expressed functionally in terms of the values

Of ot, Gln,

an algorithm which takes... £(in, and

any other available information or data as

input and 03. as output.

If{, 2,•' ©r.}=A(Xo) and each is an

attribute of some X for lkm, then all attributes

defined in the semantic rules are synthesized

attributes. If{ 1, 2,••', oi n}= A( Xi) UA( X2 )U- UAl Xm) and

each j is an attribute of Xo, then all attributes

defined are inherited attributes.

Figure 6.2 An Attributed Context Free Grammar



Syntactic Part

1. Stk(a)--> P(b)

2. Stk(a)--> P(bl) P(bL)

3. Stk(a)--> P(bx) P(b) P(b,)

4. P(b)--> K(c)

5.' P(b)--> t(d)

6. K(c)--> t(d) K(cl)

7. K(c)--> t(di) t(d=)

Semantic Part

1. a R1(b)

2. a R2(b1,b2)

3. a R3(b1,b2,b3)

4. b R4(c)

R5(d)5. b

R6(d,cx)6. c

7. c R7 (d1,d2)

Note: see text for explanation

Figure 6.3 Production Rules
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Note that alphabats a to d with possible numeric

subscripts represent associated sets of attributes of

the corresponding terminals or non-terminals, The

details of these sets of attributes will be given later

so as to prevent the rules from being crowded by large

number of yet defined quantities. Rl to R7 are so named

to, indicate that they are in the form of rules as

implemented though in a general sense they may be

regarded as functions. Note that the attributes are all

synthesized attributes..

Before explaining in further details, it is

necessary to define the quantities partial-stroke and

secondary-token. The idea of a partial-stroke is

originated from the finding, after analyzing the

strokes, that all of them can be defined in terms of

some elemental units that are higher in hierarchy than

tokens (stroke segments) and yet are conceptually of

one-element structure, and will certainly exist as

intermediate products during the process of combining

tokens into strokes. This relationship is demonstrated

in Figure 6.4. The list of partial-strokes used is shown

in Figure 6.5. The list of strokes defined is shown in

Figure 6.6. Secondary-token is also an intermediate

product which is the results of grouping tokens of

similar characteristics together forming a new quantity

with the same attribute set of a token, hence as so

named. Therefore, hierarchically, their order is as

reflected by the production rules. Figure 6.7 gives an

example that should clarify the distinctions.



partial stroke

Figure 6.4 Stroke and Partial-stroke



Figure 6.5 List of Partial-strokes



Figure 6.6 List of Strokes



Secondary- tokens stroke
tokens Partial

strokes

Figure 6.7 Stroke, Partial-stroke, Secondary-token

and token
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With both the non-terminals and terminals

clarified, it. is now appropriate to explain what

attributes they carry. For the token, the attributes are

those already mentioned in Level Two (Figure 5.2) that

they are the shapes and labels of the two end nodes, the

shape, length and inclination of the body. Each of these

quantities has been quantized to one of several defined

values. In effect, they are symbolic in nature. Note

that with label list available using the labels as index

to find other tokens that are connected to the same

label, a lot of useless searching can be avoided. It

should be clear now that a secondary-token will carry

exactly the same set of attributes as that of a token,

except that a secondary-token derives them from those

tokens that form it.

A partial-stroke carries a different set of

attributes from those of lower echelon. This set of

attributes consists of the identification of the

partial-stroke, a list of labels that derived from the

tokens it contains, and, inevitably, a list of tokens

that form the partial-stroke. The list of labels is used

to check for connection with other quantities (by the

use of the label list). A stroke carries a similar set

of attributes as does a partial-stroke, with the

identification being that of the stroke itself. Again

the list of labels is used to check for connection.
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the proauction rules can be explained in the

following in the context of what is provided by the

information generated, by previous levels.

1. A stroke can be formed by a single partial-

stroke. Rule one defines the stroke-identification

given the parameters associated with the partial-

stroke.

2. A stroke can be formed by two connected

partial-strokes. Rule two defines the stroke-

identification given the parameters associated with

the two partial-strokes.

3. A stroke can be formed by three connected

partial-strokes. Rule three defines the stroke-

identification given the parameters associated with

the three partial-strokes.

4. A partial-stroke can be formed by a secondary-

token.

5. A partial-stroke can be formed by a single

token.

6. A secondary-token can be formed by a token and

a connected secondary-token.

7. A secondary token can be tormed by two

connected tokens.
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The reasons for choosing these rules can be

explained with.the following example. Figure 6.8 is a

pictorial sequence of what actually happens during the

search process. In this example, the first stroke

encountered is a straight stroke very common in Chinese

characters. As this straight stroke is connected at

multiple points to other strokes, it is separated into

multiple stroke segments each becoming a token. The

analyzer attempts to form a stroke starting with the

first token encountered by calling a module to return

all the possible partial-stroke that can be formed with

this and possible together with other connected tokens

Rule one to three). In order to find a partial-stroke,

the program first applies rule 5. In this case, it

succeeds. The program then attempts rule 7 followed by

rule 4 where both succeed and lead to a second partial-

stroke. The process repeats until a total of four

partial-strokes are found, all of the same type but

consists of different lists of tokens. This is a breadth

first process as all the possible solutions are found

beginning at this node of the search graph. With these

possible partial strokes, the analyzer first starts with

the one with the most number of tokens and verifies that

it becomes a stroke. Note that start testing first with

a quantity involving the most number of tokens is a

heuristic decision that will be discussed later.



A stroke consists of four tokens Tl, T2, T3 and T4.
Searching starts with Tl,,,

Tl T2 T3 T4

Tl

Rule 5

P

Tl T2

Rule 7

K

Rule 4

P'

K T3

Rule 6

K'

Rule 4

P

K' T 4

Rule 6 Rule 4

p III

p Ml

Rule 1

A Stroke

Figure 6.8 Sample Search Process
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In the above, the connection detail between tokens,

secondary-tokens, partial-strokes are not apparant from

the production rules. Reason being that they have been

implicitly covered by the semantic rules as defined

using the label information. The possible connection

places for tokens and secondary-tokens are the two end

nodes. For a partial-stroke, it is also the two end

nodes to be considered where connection is possible with

other partial-strokes in forming a stroke. In this, the

terminology describing connection is shown in the table

in Figure 6.9.

It is necessary to define the connection among

strokes as this information is needed to control the

search process so as to prevent a stroke that consists

of multiple tokens be mis-identified as several strokes

been connected together each consisting of a single

token. In this, a somewhat arbitrary definition of head,

middle and tail of a stroke is used, which is sometimes

not as obvious as those of partial-stroke, such as

examples in Figure 6.10. This, though arbitrary and

primitive, appears to be adequate for our purpose and

of course, may be further improved. We thus have the

table in Figure 6.9.



Token/Secondary-token Head Tail

Head h-h h-t

Tail t-h t-t

Partial-stroke Head Tail

Head h-h h-t

Tail t-h t-t

Head Middle TailStroke

h-m h-th-hHead

m-tm-h m-mMiddle

t-tt-mt-hTail

Figure 6.9 Types of Connections



Head

Tail

Head

Tail

Head

Tail

Head

Tail

Figure 6.10 Head, Middle, Tail of Strokes



Implementation Examples (Turbo-Prolog syntax)

Domains

partid= INTEGER partid= ID of partial-stroke

head_id,tail_id,trunk_id,

trunk_shape,trunk_length= INTEGER

Predicates

rule_4_5_( head_id, tai l_id, trunk_id, trunk_shape,

trunk_length, partid)

Clauses

rule_4_5

rule_4_5

Explanation

The items under heading Domains are variable type

definition. Rule_4_5_ is a predicate so declared under

heading Predicates with a list of parameters head_id,

tail_id, etc. Under the Clauses section will be a list

of predicates Rule_4_5 each of which will have different

values for its paramters. Don't-care type value is

allowed in Prolog.

This particular predicate is actually an

implementation of semantic rule number 4 and number 5.

Figure 6.11 Implemantation Example of Semantic Rules
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As to the actual implementation of the semantic

rules, often a simple list out of parameters

(attributes) in the form of clause, a programming

construct in Prolog, will do. The actual indexing and

unification is automatically handled by Prolog. Figure

6.11 lists an implementation example of the semantic

rules.

Now we turn to the attention of the search strategy

that has been implemented. A what is called a constraint

satisfaction procedure type algorithm is implemented.

Note that the algorithm described earlier in Chapter

Four about Level One is also one of this type of

algorithms, though the particular implementation made

the kind of presentation chosen in Chapter Four possible

without resorting to a broad classification as is done

The name constraint satisfaction procedure is a

very loose classification that in itself does not

indicate the underlying search strategy that may have

been applied. In general, it is defined as in Figure

6.12 following closely to that given in Rich [33], full

details will not be repeated here.

here



Constraint Satisfaction Procedure

General Form:

Begin

1. Repeat

2. Select an unexpanded node of the search graph.

3. Apply the constraint inference rules to the

selected node to generate all possible new

constraints.'

4. If the set of constraints contains a

contradiction, then report that this path is a

deadend.

5. If the set of constraints describes a complete

solution, then report success.

6. If neither a contradiction nor a complete

solution has been found, then apply the

problem space rules to generate new partial

solutions that are consistent with the current

set of constraints. Insert these partial

solutions into the search graph.

Until (a complete solution is found) or

(all paths have led to deadends).

End of Procedure.7.

Figure 6.12 A Constraint Satisfaction Procedure
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It is known that every search process can be

regarded as a traversal of a directed graph in which

each node represents a problem state and each arc

represents a relationship between the states represented

by the nodes it connects. Given the often astronomical

number of problem states, it is generally true, except

in some trivial cases, that constructing the entire

problem space then finding the path that can lead one

from the initial state to the goal state, or vice versa,

is impossible or impractical. Therefore, most search

algorithm involves representing the graph implicitly in

the rules and generating explicitly only those when

needed for testing. In our case, we are initially given

a set of tokens from Level Two that are known to belong

to a Chinese character, the initial state. The goal is

to find out the actual number and types of strokes

involved, the goal state. The rest of the states may

consist of some combinations of strokes, partial-

strokes, tokens or secondary-tokens. The steps of moving

from state to state may sometimes involve application of

the production rules defined above.

If the problem state is attached with a set of

constraints that changes as the pieces of the problems

are solved and the search mechanism is built as able to

manipulate this list, then the number of states need to

be visited can be greatly reduced. We have applied the

constraint in several levels. At the highest level,

those strokes identified in the search process will

restrict the types of strokes that follows that have
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connections with them. This is a condition mentioned

before. At next level, a partial-stroke identified have

a set of partial-strokes as target that must be found

connected so as to form a stroke. At the lowest level,

partially accomplished by Level Two where linked lists

of tokens according to labels have been compiled,

testing of a particular token will restrict the list of

token that may be tested to form a partial stroke.

The search algorithm as implemented is shown in

Figure 6.13. It is written in a procedure form so that

the method is easier to follow. In actual

implementation, the program looks more like a list of

goals with the order similar to that shown in Figure

6.14 and can be easier related to the production rules

defined earlier.



Program Level Three

Input

A list called Token List from Level two.

A list called Label List from Level Two.

A list called Link List from Level Two.

Output

A list of strokes, or failure.

Method

De finition TL: token list

BL: label list

NL: link list

T,T': a token belongs to TL

S: a stroke

SL: stroke list

K,K': a secondary-token

to become

==: to replace

KL: list of secondary-tokens

P,P',P: a partial-stroke

ML: list of strokes that are

inter-connected

?C: represents a list of tokens

connected to the quantity

represented as?.

Error: a flag to indicate error

Begin

Load TL, BL, NL and insert them to database.

Repeat

Given (T, TC: T not used in ML,

T not used by any S in database) do

Begin

If T-- K then

Begin

Insert K to KL.

End.

For all T' in TC do

Begin

If T+ T'-- K' then

Begin

Insert K' to KL.

K'== T,

K'C== TC,

do 3.

End.

End.

End to be continued

Figure 6.13a Program Level Three in Procedure Forrr



Continue...

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

For all K in KL do

Begin

l£ K— p then

Begin

Insert P to PL.

End.

End.

Given (P, PC: P in PL) do

Begin

If P-- S then

Begin

Insert S to SL.

End.

Using PC== TC,

do 3 to 10 to obtain PL' and do

Begi n

For all P' in PL' do

Begin

If P+ P'-- S then

Begin

Insert S to SL.

End.

Using P'C== TC,

do 3 to 10 to obtain PL and do

Begin

For all P in PL do

Begin

If P+ P'+ P-- S then

Begin

Insert S to SL.

End.

End.

End.

End.

End.

End.

Given S with the most of T, SL: S in SL do

Begi n

Repeat

Insert S to ML.

Using SC== TC, do 3 to 23 to get SL'.

Given (S'with the most of T,

SL': S' in SL') do

Begin

If S' acceptable given ML then

Begin

Insert S' to ML.

S'== S,

S'L== SL,

do 2 4.

End to be continued

Figure 6.13b Program Level Three in Procedure Form



Continue...

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Else if other S' in S'L not yet
exhausted then

Begin

using new S', do 28.

End.

Else

Begin

Error:= true.

End.

T7nH

Until (all tokens used) or (Error).

End.

If not Error then

Begin

Insert ML into database.

If not all tokens used then

Beg in

do 2.

End.

Until (all tokens used) or (Error).

If not Error then

Begin

Save all S in database as result

End.

End of Program.



Program Level Three

Limit of Goals

character: to find all strokes from the list of

tokens given

multi-stroke: to find a group of strokes that are

inter-connected

stroke: to find a stroke

partial-stroke: to find a partial stroke

secondary-token: to find a secondary-token

token: get a token from the list of tokens given

Relations between Goals---

1. character-- multi-stroke

2. multi-stroke-- stroke multi-stroke

3. multi-stroke-- stroke

4. stroke-- partial-stroke

5. stroke-- partial-stroke & partial-stroke

6. stroke-- partial-stroke & partial-stroke

& partial-stroke

7. partial-stroke-- secondary-token

8. partial-stroke-- token

9. secondary-token-- token secondary-token

10. secondary-token-- token token

Note:'&'= logical AND

Figure 6.14 Program Level three as A List of Goals
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The search process implemented is bottom-up, or

reasoning forward from initial state, which is also the

reason for using synthesized attributes as they are

computed from attributes of lower level quantities

(terminals or non-terminals). From.Figure 6.13, it can

be seen that the program attempts to construct a stroke

in the following sequence:

token--> secondary-token--> partial-stroke--> stroke.

The order of which the production rules are applied may

be difficult to see in Figure 6.13 but is more apparant

from Figure 6.14.

A search sequence is illustrated in Figure 6.15.

Note that in intermediate steps, all possible solutions

of secondary-tokens, partial-strokes and strokes are

generated before further testing. These are breadth-

first processes. Note also that by generating a linked

list at Level two, the number of tokens to search at

each node can be reduced. The choose of strokes with the

most number of tokens to start testing takes advantage

that well connected tokens have the highest

possibilities to form a single stroke instead of several

strokes, this is the only heuristic rules applied in the

search process.

Although not mentioned before, it may have been

obvious that this implementation does not allow a token

be shared by different strokes. It should be clear by
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now that the program will require major modification and

be more complicated in order to handle this rare

occurance which happens mostly when resolution is too

low so that pattern is distorted. We shall have an

example of this in Chanter ciht_

Many recognition systems have explicit training

mode to collect automatically the reference data needed

for their algorithm. In this case, there is no explicit

training process. The author has analyzed about 200

character patterns, which are chosen from a small

library used previously by students working on data

compression, to extract the set of control rules

described above. This set of rules can be expanded if

more characters are analyzed.

This completes the algorithm description as far as

stroke extraction is concerned.



1st

stroke

2nd

stroke

3rd

stroke

4th

stroke

5th

stroke6th

stroke

Figure 6: A Typical Search Sequence
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7.0 SCALING AND FONT TRANSFORMATION

7.1 Scaling

Taking advantage of the stroke-information obtained

from stroke extraction level, a very simple scaling

algorithm has been used to produce relatively good

quality scaling result (Figure 7.1).

The scaling process works individually on each

stroke identified by the previously described stroke

extraction process. In order to scale a character

pattern to a required resolution, individual parts each

of which corresponds to a stroke in its original

resolution, 24x24 In this case, is doubled in resolution

in steps until the target resolution is reached or

exceeded. Then, if necessary, a subsampling step is

performed to fine tune the pattern to the target

resolution. This doubling process is adopted from

Casey [4,51. After all the strokes are scaled to the

required resolution, they are ORed to obtain a scaled

character.

In each of the doubling steps, a pixel conceptually

becomes four pixels. A direct multiplication without

adjustment, as is done in some commercial systems, will

result in some coarse patterns as shown in Figure 7.2.

The amount of distortion can be severe if the base

pattern is of very low resolution.



Stroke

伕information

from Stroke

Extraction

stage or

otherwise

obtained

Scaling

program

Scaled

character

pattern

Figure 7.1 Stroke Based Scaling of A Chinese Characte
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Figure 7.2 Distorted Character Pattern Example



Pixel under

consideration is (i,j)

Group 1.

Group 2.

Group 3.

Group 4.
F

F

F

F

F is some function

Pixel(i, j) generates( i, j), (ij)af (i,j)s and (1,3)-=

in each doubling step

(l,j)

( i, j 1 i, i

i, j)-( i, j )s

Figure 7.3 Some Smoothing Method



Pixel under

consideration is (i,j)

Pixel(i,j) generates (i,j)1, (i,j)2, (i,j)z-3 and (i,j).,+

in each doubling step

(i,j)1 ( i r i)

(i,7)

(i,i) (i,j)

using the following table

Ratio (type) of

(i,j) to other

three surrounding

pixels (Fig. 7.3)

of different type

10I01: 3

00111: 2

0i011: 1

00111: 0

Figure 7.4 Smoothing Method Used
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The simplest of the approaches to smooth the edges

is by averaging. The eight neighbours of a pixel may

be divided into four groups (Figure 7.3) in which each

group has three adjacent members which will determine

the state of one of the four new pixels to be generated.

If they observed the same formula such as by majority

voting, the resulting pattern would lost some features

at some boundary points in which a pixel which was black

and was surrounded by three or more pixels of the

opposite type would be lost. However, this pixel

actually carries more information than other pixels that

are surrounded by pixels-of the same type and thus

should not be totally lost. This kind of simple approach

clearly would penaltize pixels that carry more

information. If the rule were relaxed a bit and favored

black pixels, the resulting stroke would simply become

too thick. To improve this situation, a table (Figure

7.4) is devised to determine the outcome of a

multiplication. This is found to be able to preserve

certain sharp edges as shown, and is used in our

program.

If the target resolution is not an integral

multiple by the power of two of the source resolution, a

scale down process is needed at the end of

multiplication. In this case, a simple subsampling is

sufficient to achieve this. Some results are shown in

Figure 7.5. The method described above clearly is very

primitive. Ways to improve it will be discussed in

Chapter 9.
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Figure 7.5 Some Scaling Result
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7.2 Font Transformation

`rne approach here relies on a set of prestored

patterns which are either a stroke or part of a stroke,

and a control table that holds information as how these

patterns are combined to form strokes together with the

stroke information provided by Level Three, to re-

assemble a character to a new style.

A powerful approach that employs high ordej

polynomials to define stroke boundaries may be the

ultimate solution to the problem of character generation

or shape alteration that are accurate, flexible and of

good quality. It is, however, difficult to mechanize the

selection of reference points that are required tc

control the shape of a curve. Human assistance appears

to be the norm. The information extracted from the basic

character pattern in our case provides little additional

help at this respect as only the stroke size and the

stroke type are known. An alternative approach ip

therefore used that defines a stroke appearance based on

the stroke size and position. The quality of a stroke

thus produced in general is inferior to the polynomial

method if the pattern must be also scaled to other

resolution which may destroy some of the asthetic

quality of the character pattern which is exactly as

designed only at the upper bound resolution. Figure 7.6

shows the principle.



Stroke Font Pre-stored

iilfor11U t io?n Coo-Itrc 1 patterns

from Stroke Table (one set
Extraction (one for for each

stage or each font) font)

otherwise

obtained

Transformation

program

Transformed

Chinese

Character

Figure 7.6 Transformation



A Typical Pattern
Two Stroke Windows

Stroke WindowsFigure 7.7
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In this method, a set of patterns is stored for

each font that is to be used. These patterns are

normally portions of a stroke at their highest possible

resolution (128x128 in current implementation). All the

strokes are constructed by selectively combining these

patterns. The size and position of a stroke is

determined from the size and position of this stroke in

the source character. This defines the working area of a

stroke in which the constructed patterns are to be fit

in (Figure 7.7). This we call a stroke window. A

character pattern of a new font is produced by adding

all the constituent strokes of this character together.

Additional scale down process is needed if the target

pattern is of a different resolution (smaller).

Currently simple subsampling is used.

After some investigation, three types of patterns

are classified:

I. pattern whose size and shape are independent

of stroke windows

2. pattern whose size is dependent on one axis

only

3. pattern whose size and shape are functions of

both sides of a stroke window (Figure 7.8).
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Type one are patterns that constitute small features of

a stroke. Type two are patterns that are straight whose

width are independent of stroke windows. Type three are

patterns that are inclined which must be shaped

according to different window sizes and different aspect

ratios. The number of patterns thus classified that form

a complete font is font dependent. Each pattern is

stored as a list of offsets and widths (Figure 7.9). A

total of two fonts have been produced Figure 7.10 shows

one. In the following, a pattern is also called a

component.



Type 1. Fixed size

Type 2. Variable lengt

Type 3. variable size and

aspect ratio

Three Types of Basic Patterns
Figure 7.8



Representation 1.

Reference: y edge

Pattern defined by a list

of offsets and widths

Reference edge

Offset Width

Representation 2.

Reference: x edge

Pattern defined by a list

of offsets and widths

Figure 7.9 Representation of A Pattern



type Pattern type Pattern

1I

1 1

1 1

1 1

Ii

2I

22

33

z
3

32

33

33

33

33

33

33

Figure 7.10 Patterns of A Font



Font Control Table

Number of Stroke

A list of record M for each stroke

Record M

Begin

Stroke name.

Overall size X.

Overall size Y.

Number of record N (pattern)

A list of record N

Number of record C (check list record)

A list of record C

End of record M.

Record N

Begin

Pattern name.

Reference side Xl.

Offset to X1.

Reference side Y1.

Offset to Y1.

Reference side X2.

Offset to X2.

Reference side Y2.

Offset to Y2.

End of record N.

Record C

Begin

Connection type.

(one of h-h,h-m,h-t,t-h,t-m,t-t as

in Level three)

List of stroke to check.

Pattern name to replace.

End of record C.

Figure 7.11 Structure of A Font Control Table
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The font patterns are stored as individual files

and are loaded only when needed. This reduces the memory

demand at run time. The information as what patterns

will form a particular stroke is stored in a separate

file which will be loaded to act as a control table, the

structure of which is shown in Figure 7.11. The entries

are:

1. a list of stroke names

2. under each stroke name entry there is a list

of component names (pattern name) that form this

stroke, and a list called check list that indicates

that if this stroke is connected to other strokes,

then a different component may be used to replace

the first or last component in the component list,

depending on the type of connection (Figure 7.12)

3. under each component entry there is

information that defines the location of this

component inside the stroke window

4. under each entry of the check list there

defines the type of connection, the name of strokes

concerned and the name of the pattern to be

replaced.

The program operates in the following sequence

(Figure 7.13). The stroke information is first loaded

into memory. Together with the sequence table created
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by Level One and the token list created by Level two,

the stroke window for each stroke of the character can

be computed. Then based on the information provided by

the font control table, component windows are defined

and the corresponding component patterns are loaded into

memory and plotted. Finally, after all the strokes are

plotted, they are combined to form a character pattern

with a specific font characteristics.

During the process, once a stroke window is

defined, the next job is to outline the area and

location in which each associated pattern is to be

placed. The defined area is called a component window

(Figure 7.13). Component windows may overlap and are

positioned relative to one of the four sides of the

stroke window as reference. The component type is with

the component file and therefore is not included into

the control file.



Normal Structure

If connected at the tail

If connected at the head

If connected at both ends

Figure 7.12 Component Change Example



Program Transformation

Input

Sequence table from Level One. Token list from

Level two. Stroke list from Level Three. Font control

table and prestored patterns.

Output

A character pattern of a specified font

Method

Definition--- N: number of strokes

I,J: variables as counters for loop

S(I): stroke number I

W: stroke window

M(I): number of patterns that are

needed to form stroke a (I)

P(J): pattern number J

C: component window (Figure 7.13)

Begin

1. Load input data.

2. Prompt for font name.

3. Load font control table.

4. For I:= 1 to N do 4 to 8

Begin

5. Define W of S (I).

6. For J:= 1 to M(I) do 7 to 8

Begin

7. Define C of P(J).

8. Fit P(J) into C

End.

End.

9. If resolution not 128x128 then

10. Subsampling.

11. End of Program.

Figure 7.13 Program Transformation
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stroke window

window
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Component WindowsFigure 7.14

window3
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After a component window is defined, the pattern to

be fit into the window may need adjustment. For example,

if the pattern has been constructed of a size of 50x50,

and the component window is of a size 50x30, then the

pattern must be adjusted. The adjustment method is shown

in Fiqure 7.15.

If the final character pattern is specified to be

of resolution other than 128x128, an additional

subsampling process is performed. No specific control is

yet implemented into the process, and the pattern

maintains a good quality at resolution higher than about

48x48. Below that, some aliasing effect begins to

appear. One way to improve the situation would be to

have multilevel prestored patterns that are selected

according to certain range of target resolution. This

area needs more investigation.

The transformation function so implemented may only

change a pattern to a new font that allows identical

relative stroke position. It is out of the capability of

this system to modify character patterns to those fonts

that demand a change of relative stroke position, or

more radically, a change of character structure.

Some results are shown in Figure 7.16.



Offset(1)

Width(i)

Pattern as Constructed

Offset(i)'

Width(i)'

Window to be fit-in

Method

Offset(i)'= Offset(i]

Width(i)'= Width(i)

cimiiar nvncess is done to adjust on another axis)

Figure 7.15
Adjustment Method



推 推

凸 凸

涂 涂

透 透

Figure 7.16 Some transformation Example
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8.0 RESULT

8.1 Stroke Extraction Level one

To give a simple criteria on whether a character is

correctly traced has been found to be rather difficult

for the power of the analyzer at the Third Level is also

a factor that must be considered. This is because the

more powerful an analyzer, the less a burden is placed

on the tracer at the first level and hence looser

criteria may be acceptable. In ordinary pre-processing

stage when the primitives chosen are sufficiently

simple, there is no need of such a success or failure

judgement. However, in our case that involves directly

obtaining rather complex topological information from a

Chinese character, there are cases that can be judged to

be failures where the information produced will not be

possible to allow later stages to proceed properly.

Consider again the requirements given in Chapter Four.

The whole idea of these requirements is that the

sequences traced must consist of well formed stroke

segments each of which is a part of a stroke to this,

however, no simple quantitative guidelines can be given.

One would expect well formed stroke segments meaning

those segments apparant to the human reader. For

example, one, to those trained in Chinese character

writing, may expect a graph for the character in

Appendix be like that shown in Figure 8.1. However, to

those not familiar with Chinese characters, the graph

may be different. In practice, the program in current



Graph Expected (from knowledge)

Graph Produced (from Level One and Level Two)

Figure 8.1 Graph of a Character
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produced a more complicated graph but this does not mean

the character is not correctly traced. This, probably,

is sufficient to show the difficulty in determining

whether a character is correctly traced.

To this, the author was forced to base his

judgement on whether a character has been correctly

traced in a large part on whether the current

implementation of Level Two and Level Three could

possibly use the information produced to find out the

underlying strokes. This can be simply stated as

follows: subject-to the current implementation of Level

Two and Level Three, a Chinese character pattern is

considered correctly processed by Level one if each

sequence traced by Level one from the pattern consists

of one or more stroke segments each of which is the

whole or a part of a stroke and only one stroke stroke

segments cannot be shared by strokes. In addition, if

for some reasons that a character traced is fragmented

to pieces ie., an unnecessarily complex graph is

produced, a sometimes occurance when the amount of

distortion and forced connection is large or when a

case encountered had not been analyzed when the program

was designed, causing the program to go astray, then the

trace process is declared failure. If the graph produced

corresponds well to what one may expect, and the current

implementation of Level Two and Level Three can

theoretically based on the information to find out the

underlying strokes, then the trace is declared

successful. It is to be regretted that this is rather
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subjective and depends heavily on one's familiarity of

detailed program implementation of the three levels. A

number of cases will be discussed later. More on this

will be discussed in next chapter.

About one thousand characters have been tested.

About 25% of them were judged to have failed this level

in ways as listed below:

1.
wrong sequences were produced

2. wrong path generated at a complex node

3.
generated sequences that could not possibly

lead to successful stroke extraction

4. erred on situation not considered

5. erred on character pattern too poorly formed.

Each of these general error modes will be individually

discussed.

Case one and case two are shown in Figure 8.2 and

Figure 8.3 which need no further explanation. The third

case is rather interesting (Figure 8.4), a failure

situation can occur when a stroke segment identified

actually belongs to two connected but different

strokes. The failure here is primarily due to the fact

that the analyzer at Level Three is not designed to

handle such a complicated case. Therefore, even though

the program here did generate logical identification,

the information would be insufficient to allow later

level to proceed properly.
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There is no example given here for case four as

some of the errors as so discovered have been

subsequently corrected. This may be classified as

program bugs if one wishes to do so. Given the

multitudinous of Chinese characters and their being of

various sizes and conditions, there is always a non-zero

probability that new situations might be encountered

that would be out of the capability of the program

currently implemented.

Another frequent failure case is when a character

pattern is sufficiently complex that it must be squeezed

into the small space (for a discussion on the resolution

needed to faithfully represent Chinese characters, see

Nagao [30]) available and hence causing forced

connections and information lost or the pattern itself

is not well conditioned. The system is not designed to

handle these cases, however. Figure 8.5 has examples of

these. In addition, if the number of connected places

are large, the program may produce wrong sequence as has

been shown as case one.

Typically, a complex node does not necessarily lead

to error provided sufficient prior information is

collected enabling the system to make good prediction

(Figure 8.6 and Figure 8.7). In the case where a node is

encountered at the first few units, the program may not

be able to make good guesses and hence produces wrong

data (Figure 8.3). A number of cases that either causes
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wrong sequences be generated or the information

generated will not enable later level to extract strokes

correctly are shown in Figure 8.8 and Figure 8.9.

The above listed cases covered most of the errors

encountered by Level One. From the examples, many

character patterns only vaguely resemble the intented

character shapes due to low resolutions. Without prior

training on Chinese characters, it would be difficult to

identify them even for a human reader.



Figure 8.2 A Wrong Path

紊



熘 焖

Figure 8.3 Situations That Would Lead to Error



strokeStroke

1 2

Fiqure 8.4 A Segment Shared By Two Strokes



Figure 8.5 Crowded or Poorly Formed Patterns

嘏



惟

Figure 8.6 Resolved Situations



Figure 8.7 A Complex Node Resolved



涿
璇

Figure 8.8 Situations That Lead to Error



绁 骧

Figure 8.9 Ambiquity Cases
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3.2 Stroke Extraction Level Two

The program for this level is sufficiently

mechanical that no severe error was found. A total of

about 300 sets of data from level one has been processed

to generate data for further testing by Level Three. All

the error reported were minor program bugs and have been

subsequently corrected.
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8.3 Stroke Extraction Level Three

Those sets of data, 300 characters, from Level Two

have been tested on Level Three. About 70% were

successful. The judgement of success were much easier

for this level than for Level one because the strokes

identified could be displayed to check for error. To

find out the reason for failure is much more difficult,

however.

Although the program can be run in a special mode

where intermediate data are displayed for debugging

purpose, the place where failure occurs typically is

buried deep in recursion so that following the sequence

of search is difficult. Experience has shown that many

failures that have been subsequently corrected were due

to situation not being inserted into the rules (Recall

that these control rules were constructed by examining

200 characters). Of those failures not corrected and

remained as part of the 30% that categorized as failed,

many were buried so deep in the process that the author

could not help but stop searching for the actual failure

points for the moment. These need to be further

analyzed, however. other failure cases will be discuss e(1

in next chapter.

Since the set of control rules was based on only a

small set of characters as reported in Chapter six, it

must be cautious to extrapolate the 70% result to other



151

yet processed characters. Perhaps it is fair to say that

the result did show that the approach is feasible but

Improvement is much needed.
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8.4 Scaling

Scaling algorithm used currently is very simple and

the result in certain cases can be further improved

especially when the original pattern is of a poor

quality. In general, a simple scaling algorithm like

this, with the aid of stroke information, can achieve

better result than those with rather complicated

algorithm with stroke information. Note that to results

like this that require aesthetic judgement, there is no

hard success or failure but can atmost be relatively

good or relatively poor in quality.

The stroke information in the current use is simply

to separate different portions of a pattern so that

unwanted interpolation at the junction between two or

more strokes can be eliminated. Actually, the stroke

information could be further utilized to provide further

error control. This, if implemented, could further

demonstrate the importance of stroke information. More

on this will be discussed in next chapter.
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8.5 Font Transformation

Patterns of two different font types have been

produced and the results are generally good. There are,

however, still areas where the program must be further

improved. These are not the defect of the algorithm, as

the method is rather mechanical, but that some cases not

yet handled. One is when the component window deviated

too much to the size of the pattern, distortion results

as shown in Figure 8.10. The other is when two connected

strokes are reproduced, the pattern produced may not

show good connection as desired. Apart from these, most

of the degradation of quality comes from the- scaling

part which has been.allowed so that resolution smaller

than 128x128 may be specified.



鲍

突

秃 突

Figure 8.10 Results to be Improved
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9.0 DISCUSSION

9.1 On Stroke Extraction

In the following discussion, we attempt to answer

the naturally arised question that how well the method

worked, and how it may be improved.

The current implementation gave only a modest

success rate, as evident from the data available that

only slightly over 52% overall success rate has been

achieved for the first 300 characters tested. Obviously,

this is remote to what a practical system would require.

As can be seen from the data, the main sources of

rejection came from Level One and Level Three. This will

be individually discussed below.

A caretul examination of data has revealed that

several implicit assumptions about Chinese character

patterns have been made when the trace algorithm was

designed. As these assumptions were found to be invalid,

errors occurred as a result.

The first assumption is that each stroke segment

should observe a general and gradual change in

direction and width. This assumption, however, due to

low resolution, and sometimes to a character not being

well conditioned, is not always true. The second

assumption is that with the prediction process

implemented, many complicated nodes could be resolved.
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This, as the data have shown, is not the case. One

prominent example is when the prediction is made when

still early in a trace sequence where only one or two

units have been obtained, then the prediction is made on

insufficient data so that the process fails. The third

assumption is that the characters in a library would be

well conditioned so that no noise removal be necessary.

It is found that being low resolution itself is almost

equivalent to having a certain amount of noise, though

the situation may not be as worse as those directly from

camera. The presence of this, as non-gradual change of

direction and width and as unnecessary connections by

which we mean strokes are connected not because of

structural necessity but the result of limited space,

has created many error cases. The fourth assumption is

that occational forced connection could be recovered by

Level Three as long as the trace produced reasonable

stroke segments. It is found that once a character is

broken down into a list of tokens, it is virtually

impossible to distinguish these ambiquity cases. An

after-thought suggests that those we who have been

trained on Chinese characters resolve these ambiquity

cases partly by our knowledge, partly by the vastly

superior parallel recognition process where primitive

and context information are used at the same time. To

the serial method as our three-level system, these kinds

of ambiquity situations prove to be impossible.
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In our method, a sequence is collected unit by

unit. In effect, the tracer is blind over the horizon,

which makes it succeptable to stroke segments not having

a gradual. width and direction variation. Projection

profile methods [431 reported may be borrowed here that

the overall trend of a stroke segment can be reported at

once with the tracing process adding to the detail. This

night he able to reduce the difficulty of over-the-

horizon problem that we are facing here. At the

resolution of 24x24, information carried by each pixel

is important, which makes a pre-processing smoothing

stage impossible. If the patterns were of higher

resolution, a pre-processing stage might be added to

remove some notches that could mislead the program.

The case of complex nodes is very difficult.

Thinning has been suggested by Stalling [36], and some

equivalent result can be found in [16,17], but the

result does not seem to be encouraging. This should not

be surprising as such a locallized method without

contextual (structural) guidance should not perform too

well. our method in some cases with sufficient past data

of a sequence did manage to generate a reasonable path

through some complex nodes. Although restricting a trace

in only going east, west or downward was an attempt to

take advantage of a general Chinese character

characteristics and has simplified considerable the

program design, it appears that this may be too severe a

restriction when the situation indicates other direction

may be more appropriate. For example, if a node is
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encountered early in a trace sequence, it is sometimes

advantageous by going backward starting again from the

other end of this stroke segment where there is no

complex node so that the data then collected may allow a

good investigation of the complex node. The exact method

deserves further investigation. The idea is that

starting from a complex node is to be avoided, and the

best place to start a trace is from an isolated end of a

stroke segment.

Our implementation of the analyzer handles only

symbollic quantities. This precludes nearness measure

frequently employed in character recognition systems.

Our use of attributed grammar does allow variation of

shapes be handled but it still requires the character be

well traced which we have defined as in the last chapter

as a stroke segment belonging to only one stroke, and

that the connections among stroke segments be clearly

identified allowing eventual recombinations to form

strokes. This therefore places heavy constraint on Level

One. A wrong sequence as shown in last chapter (Figure

8.2) will guarantee a rejection at Level Three, thus

vastly increased the rejection rate at Level One. Note

that a case as this may be acceptable in a character

recognition system where the skeleton of a character is

obtained to match against a library for a recognition,

but is rejected here by the limitation of our analyzer,

and by our requirement of obtaining strokes exactly from

the pattern.
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Noise handling is an important subject.

Traditionally structural approach is particularly weak

in handling patterns with noise. Fu [41,51] has some

papers on combining syntactic and statistical

approaches. In our case, statistical decision is

difficult to apply to the trace process unless a

radically different approach is taken. The problem of

pre-processing noise removal is handicapped by the low

resolution of our patterns.

Since all those works on strokes as mentioned in

Chapter Two had different objectives and hence

requirements from our work here, no direct comparison

can be made. For example, the group led by Hsu [16,171

satisfy themselves by extracting a skeleton of a

character and stop after a somewhat equivalent of our

trace procedure with compatible results. If comparison

is made to systems on character recognition, we can see

that in some approaches the main concerns are to

generate unique descriptor for each distinct character

where detailed information needed for classifying

strokes simply is of no use or the main concern is to

generate data for matching against a library so that the

constraint is less severe as possible variations can be

handled by a distance measure.

Without a nearness measure or some term of

feedback, it is suspect that a serial method like this

will remain low in recognition rate.
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As to Level Three, current data do not indicate

clearly where major failures occur. From the experience

so far obtained, many of the failures could be

attributed to cases not covered by the control rules. It

is a blessing that Prolog has been chosen as the

programming language for this level, as the power of

which allows attributes and rules be easily added or

modified, and a uniformly structured program be used to

handle a large number of strokes with possible shape

variation. Consider otherwise if higher order grammars

had been used and a traditional type parser had been

implemented, the rigidity and complexity of the

resulting system might have made our approach doomed. On

the other hand, the recursive program structure together

with backtracking did make finding out where rejection

occurred difficult after the program modules had been

integrated. Other than this, an infrequent error has

been identified as when two strokes of same type are

touching each other, our analyzer either treats them as

a single stroke, or announces that this combination as

unacceptable according to our preset rule, which

eventually lead to a rejection. At present, there is no

easy way to teach the program to judge on this kind of

ambiguities.

At present, we have not yet attempted to interface

Prolog directly with other languages such as Fortran,

Pascal, C or assembly, that are more suited to numerical

computing. Doing so would open up a new horizon as to

our overall approach to the problem. This is an area
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where immediate improvement can be made. A paper by You

and Fu [51] has stressed the importance of using

production rules to guide the primitive extraction

process that is, to imitate the human recognition

process. Their method has combined parsing and primitive

extraction into a single process, in contrast to our

current implementation that the primitive extraction and

the analysis are two distinct processes. Perhaps their

conclusion can be extended to that the higher level

contextual information might be very useful to guide

stroke segment extraction. This is an area that deserves

additional examination. Please be noted that this is

mainly an observation as the limited amount of our data

does not allow us to extrapolate the result too far. For

a discussion of the importance of context in pattern

recognition, please see Toussaint [401.

The choice of parameters to describe each stroke

segment is another area to be investigated. It must be

admitted that most of the descriptive quantities have

been chosen rather arbitrarily without theoretical or

statistical support, ie., by a somewhat ad-hoc approach.

This brings us back to the problem of modelling as

discussed at the survey given earlier in the report. We

have restricted our target to strokes so as to avoid

the difficult problem of giving an adequate model of

Chinese characters. Nonetheless, the problem appears

when it comes to classification. We have here chosen a

set of intuitively appealing parameters we have also

defined connection among strokes so as to prevent a



162

single stroke consists of several tokens be mistaken as

several strokes each of which consists of one token, but

if the method is to be improved to improve so that the

parameters are not just adequate but can truely allow a

practical system be based on, probably a re-

investigation in the area of modelling is needed.

We have previously mildly stressed the importance

of knowledge. From the list of practical A.I. works

surveyed by Rich [331 that none of which can be covered

by a few lines of elegant theory. All but a few require

a large, carefully compiled list of facts or rules.

Perhaps this is what prompted Rich to make the remark

that the fast and hard fact from the first twenty years

of A.I. research is that intelligence needs knowledge.

Processing problems on Chinese characters appear to fit

into the area where similar remarks can be made. For

example, most of those character recognition systems

have large tables where reference data are held. These

allow them to handle variations and make good judgements

even at the presence of large amount of distortions. By

comparison, our method is particularly weak in this

respect, as a result of insufficient investigation on

modelling and insufficient provision on handling of

variations and distortions. Still, this is a difficult

field, as thousands of years of development still do not

yield a satisfactory lexicographical ordering may

indicate the level of difficulties caused by the vast

number of oftern complexly structured characters. it

seems that, an occational reported noval methods,
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including the trial implementation as this one, or those

reported very high recognition rate at controlled

conditions, are remote in providing a truely all-round

practical system, which may only come about after a

careful and successful modelling, and mechanization and

which may eventually demand a very large database to

represent facts and rules and may eventually demand

massive parallelism, a mechanism that we do not yet

fully understand.
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9.2 On Scaling

In general, the program worked as directed and

verified the simple but difficult to demonstrate concept

of stroke based scaling. The quality of the result could

be further improved with additional extention on the

current system.

There are still rooms to improve the stepwise

scaling method, though the time available does not allow

further investigation. One of the obvious way to improve

the method is by generating a Freeman chain of the

boundary so that irregularity can be detected by a

finite state machine and corrected. This method has been

used by Casey. The method is not entirely applicable if

the operation is on a character as a whole as some

pixels that are singular but must be preserved may be

killed. But we can take advantage of the fact that the

operation in our case is on individual stroke and hence

the situation is sufficiently simple that irregularities

can be removed by this process.

A global parameter may be used to correct stroke

width problem initiated from the base pattern in which

strokes of the same type having unequal width. In the

low resolution case where the width of a stroke is

normally one or two pixels, the resulting distortion

when enlarged can be severe. As the stroke information

is available, a simple counting will know what space

will be allowed for rnaneuvouring these strokes and
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automatic correction procedure may be devised. Similar

arguments supports another parameter to provide good

spacing between strokes so that they will not be crowded

at some region. The pattern, though may not be always

true, may have a better chance of having a better

appearance.
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9.3 On Font Transformation

The requirement of fixed relative stroke position

is obviously an inevitable constraint in our font

transformation program. To find a way to improve on this

is very difficult as there is yet general guidelines to

judge the asthetic arguments involved. All those

reported systems rely on human assistance to adjust the

controlling parameters.

Requiring that the system to handle also the fonts

that require a structural change may- be overly

ambitious. It is suspected that in these cases, building

a system with such a level of intelligence may not be

worthwhile. A separate set of font as base may be more

desirable and cost effective.
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10.0 CONCLUSION

A three-level stroke extraction system has been

implemented. The information produced has been applied

to scaling and font transformation of Chinese character

patterns 1.

The data obtained indicate that much improvement is

needed to bring the stroke extraction system practical.

Experience has shown that the lack of an in--depth study

on the modeling of Chinese characters has hindered their

mechanization. Modelling of Chinese character is

therefore an area that deserves most of the future

effort.

Results of scaling and font transformation are

generally good, but can be further improved. This has

demonstrated that stroke information can simplify

considerably a number of processing problems associated

with Chinese characters.

1A summary of this work has been accepted for

presentation at The IEEE Asian Electronics Conference

1987 under the title Stroke Extraction, Scaling and

Font Transformation of Chinese character patterns.



APPENDIX A: A TRACE EXAMPLE OF LEVEL ONE

000000000000000000000000

001000110000000000011000

001111111011111111111100

001100110000000000000000

001100110000100000110000

001100110000111111111000

001100110000110000110000

001111110000110000110000

001100110000111111110000

001100110000110000110000

001100110010000000001100

001100110011111111111110

001100110011010000101100

001111110011011000111100

001100110011001101101100

001100110011001001001100

001100110011111111111100

001100110011000110001100

001100110011000110001100

001000110011000110001100

011011110011000110001100

010000110011000111111100

100000100011000110011000

000000000010000000010000

Y

X-Y coordinates

X

Figure A.1.1 Original Pattern

Scanner-- x= 2, y= 3

(pixel marked as o)

Starter-- direction= south

width(1)= 1

Tracer-- new width= 7

new offset= 0

(left offset)

(pixels marked as)

Figure A.1.2



Tracer--

Single_handler-- (width= 7)

Predictor--

LookAhead-- returns

width(2)= 2

offset(2) =0

width(3)= 2

offset(3) =0

Back to Tracer

Tracer-- new width= 2

new offset= 0

(as marker as)

Figure A.1.3

Tracer--

Single_handler-- accepts

width(4) =2

offset(4) =0

Sequence is declared straight

Back to Tracer

Tracer-- new width= 2

new offset= 0

(marked as)

Figure A.1.4



Tracer--

Single_handler-- accepts

width(5)= 2

offset(5) =0

Back to Tracer

so cycle repeats until

new width= 6

new offset= 0

(marked as)

Figure A.1.5

Tracer--

Single_handler--

Exception_handler--

Predictor--

LookAhead-- returns

width(7) =2

offset(7) =0

width(8)= 2

o f f s e t( 8)= 0

Back to Tracer

Tracer-- new width= 2

new offset= 0

(marked as)

Figure A.1.6



so cycle repeats until

new width= 1

new offset= 0

Tracer—

Single_handler—

width= 1 previous

terminates here

must be a node.

End of first sequence.

Figure A.1.7

Scanner-- x= 2, y= 7

Starter-- direction= south

width(1)= 2

Tracer-- new width= 5

new offset= -2

(marked as)

Figure A.1.8



Tracer--

Single handler --

Exception_handler--

Predictor--

LookAhead-- returns

width(2)= 2

offset(2) =0

width(3)= 2

offset(3) =0

Figure A.1.9

So cycle repeats till second

sequence done.

Scanner-- x= 2, y= 20

Starter-- direction= south

width(l)= 2

Tracer-- new width= 12

new offset= -9

(marked as)

Figure A.1.10



Tracer--

Single_handler--

Exception_handler--

Predictor--

LookAhead-- returns

width(2)= 2

offset(2) =0

no more units ahead

therefore end of

third sequence.

Figure A.1.11

Scanner-- x= 3, y= 3

Starter-- east

width(1)= 1

Figure A.1.12



Tracer new width= 5

new offset= -4

complex type

consists of two

types of pixels:

special and processed,

(marked as)

Figure A.1.13

Tracer—

Single_handler--

Special_handler--

Predictor--

LookAhead-- returns

width(2)= 1

offset(2) =0

width(3) =1

offset(3) =0

Returns to Tracer--

new width= 1

new offset= 0

(marked as)

Eventually accepted.

Figure A.1.14



Tracer— new width= 6

new offset= -4

complex type consists

of three groups of

pixels.

Single_handler--

Special_handler—

Predictor--

Lookahead-- temporarily

width(5)= 1

offset(5) =0

(marked as@ at next

figure)

Figure A.1.15

LookAhead-- new width= 6

new offset= -4

(marked as)

Single_handler--

Special_handler--

Predictor--

LookAhead-- temporarily

width(6) =1

offset(6) =0

Figure A.1.16



LookAhead new width= 1

new offset= 0

(marked as)

accepted.

returns a whole series

width(5) offset(5)

width(6) offset(6)

width(7) offset(7)

accepted.

Figure A.1.17

Eventually back to Tracer

Tracer-- no more units ahead

end of fourth sequence.

Last unit is automatically

automatically declared

as Special as it must

be a node.

Scanner-- x= 3, y= 11

Starter-- direction= east

width(1) =1

Tracer-- new width= 1

new offset= 0

(marked as)

Figure A.1.18



So eventually sequence

five is done.

Figure A.1.19

Similarly more sequences

are done.

Scanner-- x= 8, y= 3

Starter-- direction= east

width(1) =1

Figure A.1.20



Eventually Tracer encounters

a larger unit.

Tracer-- new width= 10

new offset= -5

(marked as)

Single_handler--

Special_handler--

Predictor--

LookAhead— temporarily

width(5)= 1

offset(5)= 0,

(marked as@ at

next figure)

Figure A.1.21

LookAhead-- new width= 10

new offset= -5

(marked as)

Single_handler--

Special_handler--

Predictor--

LookAhead-- temporarily

width(6)= 1

offset(6)= 0,

see next figure.

Figure A.1.22



LookAhead-- no more units

ahead returns whole sequence

width(5) offset(5)

width(6), offset(6)

(marked as@@)

Eventually back to Tracer.

Figure A.1.23

Tracer-- ends sequence nine.

Figure A.1.24



Similarly, four more

sequences are done.

Figure A.1.25

Scanner

Starter

Tracer

x= 12, y= 14

direction= south

width(l)= 1

new width= 1

new offset= 0

(marked as)

Figure A.1.26



Tracer--

Single_handler-- accepts

width(2)= 1

offset(2) =0

Back to Tracer.

Tracer— new width= 2

new offset= 0

(marked as)

Figure A.1.27

Trace continues until the

fifth unit that indicates

a change in inclination,

so stops there.

Tracer-- accepts

width(5)= 1

offset(5)= 1

and stops.

End of sequence twelve.

Scanner— x= 12, y= 19

Starter-- direction= south

width(1) =1

Tracer-- new width= 1

new offset= 0

(marked as)

Figure A.1.28



Second unit is accepted,

Tracer-- new width= 4

new offset= 0

complex type (marked as).

Single_handler--

Special_handler—

Predictor--

LookAhead--...

Figure A.1.29

LookAhead-- sees two units

new width(l)= 2

new offset(l)= -1

new width(l)= 2

new offset(l)= 2

Multiple_handler-- try both

paths by calling Single_handle]

The two paths are

3

2

1100

11

3

2

0130

22-- reject

so left path is chosen.

Figure A.1.30



So sequence fifteen

eventually stops.

Scanner-- x= 17 y= 11

Starter-- direction= east

width(l)= 1

Figure A.1.31

As before, sequence sixteen

is done.

Figure A.1.32



The rest are similarly traced.

Figure A.1.33



APPENDIX B
SAMPLE LISTING OF PROLOG PROGRAM OF STROKE

EXTRACTION LEVEL THREE

Note: program too long to be listed completely.

TURBO-PROLOG SYNTAX

project recogn

code= 3000

program level3 stroke extraction

abbreviation

H: head, M: middle, T: tail, K: token, s: stroke,

P: partstroke C: connect, L: list,

LL: list of list, 0: output, I: input U: trunk,

A: shape, N: length, B: label

include b:global.def global definition file

database section

database

sk_(strokeid,label,labellist,label,tokenidlist)

sk_ will be created in process and saved as

result

tk_(tokenid,id,label,id,label,trunkid,shape,length)

1b1 (label, token id list)

lblk_(label, tokenlinklist)

tk_,lbl_,lblk_ will be read in

lbls_(label,strokeidlist)

Ibis will be created saved as result

include b:global2.def 2nd definition file

include b:tools.pro tool box file

loop processing

predicates

processing(token id list,string)

loopprocessing(integer,integer,integer)

loadtokenlist(string,tokenidlist)

loadlabellist(string)

loadlink list(string)

savestrokelist(string)

savestrokelabellist(string)

cleardatabase

get_multi_(token id list, integer)



clauses

loopprocessing(_,0,_) I.

loopprocessing(Start,Countdown,Countup):-

Charnum= Start+Countup,

D1gi12= (char num d1v 6 76) mod 26+ 97,

Digitl= (Charnum div 26) mod 26+ 97,

DigitO= Charnum mod 26+ 97,

char_int(C2,Digit2),

char_int(CI,Digitl),

char_int(CO,DigitO),

str_char(Id2,C2),

str_char(Idl,Cl),

str_char(IdO, CO),

Coneat(Id2,ldl,ld21),

Coneat(Id21,IdO,Id),

concat(b:tok 1st3pId,Filename),

loadtokenlist(Filename, A), bound(A),nl,

concat(b:lnklst3p.,Id,Filename1),

load1ink list(Fi1enamel), nl,

concat(b:lbllst3p.,Id,Filename2),

loadlabe 11ist(Filename2),nl,

processing(A,Id),

write(clearing databases ),nl,

not(cleardatabase),

Countdown2= Countdown- 1,

Countup2= Countup+ 1,

loopprocessinq(Start,Countdown2,Countup2).

processing(A,Id)

readdevice(keyboard),

get_multi_(A,1),!,

concat(b:stklst3p.,Id,Filename3),

savestrokelist(Filename3),

write(STROKE EXTRACTED!! saving results....),nl,

concat(b:lblstk3p.,Id,Filename4),

savestrokelabe11ist(Filename4).

processing(_,_)

write(FAILED....) ,nl.



goal section

goal

clearwindow,

write(input start char number:),

readint(Start),nl,

write(input count:),

readint(Count),

loopprocessing(Start,Count,0).

load data section

predicates

loadtokenloop(INTEGER,INTEGER,

tokenidlist,tokenidlist)

loadlabelloop(integer, integer)

loopreadtoken id(integer,tokenidlist,token id list)

loadlink loop(integer)

loopreadlinkpair(integer,tokenlinklist,tokenlinklist)

clauses

loadtokenlist(Name,Lout)

write(loading ,Name),

openread(tokenlistfile,Name),

readdevice(tokenlistfile),

readint(Tokencount),

loadtokenloop(Tokencount,1,[],Lout),

closefile(tokenlistfile).

loadtokenloop(0,Lin,Lin)!.

loadtokenloop(Count,Countup,Lin,Lout):-

Countdown= Count- 1,

Countup2= Countup+ 1,

readint(Headid), readint(Headlabel),

readint(Tailid), readint(Taillabel),

readint(Trunkid), readint(Shape),

readint(Length),

Tokenid= Countup,

append_(Lin,[Tokenid],Linl),

assertz(tk_( Tokenid,Headid,Headlabel,Tailid,

Tai1labe 1,Trunk id,Shape,Length)),

1oadtokenloop(Countdown,Countup2,Linl,Lout).

loadlabellist(Name)

write(1oading ,Name),

openread(labellistfile,Name),

readdevice(labellistfile),

readint(Labelcount),

loadlabelloop(Labelcount,1),

closefile(labellistfile).



loadlabelloop(0,_)

loadlabe1loop(count,Countup)

Countdown= Count- 1,

Countup2= Countup+ 1,

readint(Tcount),

Label= Countup,

loopreadtokenid(Tcount,[],Token1ist),

assertz(lbl_(Labe 1,Tokenlist)),

loadlabelloop(Countdown,Countup2).

loopreadtokenid(0,X,X)!.

loopreadtokenid(Count,X,Y):-

readint(A),

Count2= Count- 1,

loopreadtokenid(Count2,[AI X],Y).

loadlinklist(Name)

write(loading ,Name),

openread(1ink 1ist£ile,Name),

readdevice(linklistfile),

readint(Linklabelcount),

loadlinkloop(Linklabelcount),

closefile(linklistfile).

loadlinkloop(0)!.

loadlinkloop(Count)

Countdown= Count- 1,

readint(Labelidint),

Labelid= Labelidint,

readint(Linkcount),

loopreadlinkpair(Linkcount,[],Linklist),

assertz(lblk_(Labelid,Linklist)),

loadlinkloop(Countdown).

loopreadlinkpair(0,X,X)!.

loopreadlinkpair(Count,X,Y)

Count2= Count- 1,

read i nt(PI),

readint(P2),

readint(P 3),

readint(P4),

readint(Tokenidlint),Token idl= Tokenidlint,

readint(Tokenid2int),Tokenid2=Tokenid2int,

loopreadlinkpair (Count2, [tlk__(PlP2,P3,P4,
Tokenidl,Tokenid2)|X],Y).



save data section

pred icat-es

savestroke

savestrokelabel

clauses

savestrokelist(Name)

openwrite(skresultfile,Name),

writedevice(skresultfile),

not(savestroke),

closefile(skresultfile),

writedevice(screen).

savestroke

sk_(A,B, C, D, E),

write(sk_( A,',',B,',',C,',',D,',,E,)»),

nl,fai1.

savestrokelabellist(Name)

openwrite(lblsresultfile,Name),

writedevice(lblsresultfile),

not(savestrokelabel),

closefile(lblsresultfile),

writedevice(screen).

savestrokelabel

lbls_(A, B),

write( lbls_( ,A, ',B,') 1 ),nl,fail.

clear database section

cleardatabase

retract (tk_(),

retract (lbl_(),

retract(lblk_(_,_)),

retract (sk_(),

retract(lbls_(_,_)),fail.

let backtracking do the job

character section

clauses

get_multi_([],_)!.

get_multi_(LK,N)

multi_(LK,N,LKl,Nl),write(upto ,N, doneM),nl,!,

get multi (LKl,Nl).

other sections of the prog'm are in separate files
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