Py

MAI--SUM CHAN

Dişortation submitted to

MUE GHTNESE MNTVERSITY OR HONG KONG
in partial fulfillment
of the regnirements for the
dogree of

MASTER OF PUIIOSOPHY

471296

GRGDIJTTE SEOUL

The undersigned certify that we have road the thesis, entitled " Tests for Linearity in Time Series : A comparative study " submitted by Mr. Woi-sum Chan in partial folpillment of the requirement for the degree of Master of Philosophy in statistics. We recommend that it be accented.

Dr. Y. Lam

Professor R. Y. Shumay, External Ermine

ACKNOWI,EDCEMENT

I would like to express my deep gratitude to Professor Howell Tong, who enthusiastically supervised the research work, for his advice and general help at all stages during the preparation of this dissertation.

I wish to extend my gratitude to the entire staff of the Department of Statistics, especially to Dr. Y. V. Hui, Mr. K. S. Chan and Mr. K. W. Ling for their warm discussion. Thanks are also to Ronnie Lui for her encouragement.

ARSTRACT

Many methods have been developed to detect the nonlinearity of time series, including the technique of nonparametric regreseion, Subba RaoGabr's test, Hinich's test and Keenan's test. We begin with a general description of these methods and a simulation study is presented to examine their power and their discriminant ability. Test rosults on real data mill be discussed.

A new method which mainly besed on the likelihood ratio test is proposed. After a simulation study, the merits and limitations of our test are discussed.

Finally, a comparsion among all tests on the simulation results, applications to real data, sensitivity to some special time series and computational efficiency is presented.

TSBEEOF CONTENTS

Page
Chapter I IETRODUCTION 1
Chapter II EXISTING LiETMODS 3
2. 1 Subba Rac-Gabr's Test 3
2.2 Hinich's Test 6
2. 3 Kenan's Test 7
24 A Simplation Study 3
2.5 Anptration to Real Data 14
2. 6 Comments 17
Chapter III A NEW PROPOSED METUOD 42
3.1 Introduction 42
3,2 The Idea 42
2. 3 A Simblation Study 15
3.4 Anplication to Real Data 47
3.5 Comitects 47
Crapter IV A EOMEANSION 52
3. 1 Simulation Results 52
1.2 Real Data 53
4. 3 Sore Snacial Time Series 54
4.4 CPU Time Roquired 55
Chapter v CONELUSION 65
ARFENDIX 67
REFREENEES 71

CHAPTER I INTRODUCTION

It is a remarkable fact that linear Gaussian models have dominated the development of time series model building for the past five decades. Time series data from a variety of sources are often analyzed under the explicit or implicit assumption that they are generated by linear Gaussian processes. These processes are finite parameter linear stationary stochastic processes. The general linear process representation of $\left\{x_{r}\right\}$ is of the form

$$
\begin{equation*}
X_{r}=\sum_{s=0} h_{s} e_{r-s} \tag{1.1}
\end{equation*}
$$

where e_{t} are Gaussian, independent, identically distributed random innovations with $E\left[e_{t}\right]=0$. Although many successful examples can be found in linear Gaussian model building, it has been pointed out that there are still some limitations on this modelling technique (See, e.g., Tong 1983).

Recently, several snecial non-linear models in Time Sories have been developed, including Rilinear Models Granger and Andersen 1078 , Subba Ran and Gabr 1984), Threshold Models (Tong 1983) and Exnonential Autoregressive Models (Haggan and 0zaki 1978). A general non-linear time series model can be regarded as the "output" of a non-linear system whose "input" is a stationary random process $\left\{\mathrm{e}_{\mathrm{t}}\right\}$. The output is of the form

$$
\begin{equation*}
x_{t}=f\left[e_{t}, e_{t-1}, \cdots\right] \tag{1.2}
\end{equation*}
$$

where f is a nonlinear function that does not depend on t. Nonlinear time series data can exhibit limit cycles, clinping, hysteresis, and so on. We may often have to face the problem of deciding whether a given set of data are generated from a linear or non-linear process.

Diagnostic checking in the traditional Box and Jenkins approach is not designed to reveal non-linearity of the time series data. A simple graphical method that can be used to detect nonlinearity is nonparametric kernel regression (See, e.g., Watson 1064). However the accuracy of this method may be affected by the subiective choice of bandwidth and type of window. Nevertheless, nonparametric regression is valuable as a preliminary examination of the data.

Today, businessmen, engineers and sociologists may face a lot of time series data; they need a systematic method of disoriminating between linear and non-linear time series.

CHAPTER II EXISTING METHODS

Recently, a few statistical methods designed to detect certain types of nonlinearity in a time series have appeared in the literature. Some of them are nonparametric methods, while others are narametric tests.

Subba Rao and Gabr (1980) presented a test for nonlinearity using a sample estimates of the bispertrum of time series. Hinich (1982) presented a nonparametric test that also uses the sample bispectrum, but which takes advantage of the asymototic pronerties of the bispectrum estimator. Keenan (1985) described a Tukey nonadditivity - type test for nonlinearity in time series. The test is regarded as diagnostic for Jinearity versus a second-order Volterra expansion. In this chanter, we are going to investigate existing methods individually.

2.1 SUBBA RAC-GABR'S TEST

Let $\left\{X_{t}\right\}$ be a time series with third order moments.
Define

$$
\begin{equation*}
T_{i j}=\frac{\left|f\left(w_{i}, w_{j}\right)\right|^{2}}{f\left(w_{i}\right) f\left(w_{j}\right) f\left(w_{i}+w_{j}\right)} \tag{2.1.1}
\end{equation*}
$$

where
$f(w)$ is the spectral density function of $\left\{X_{t}\right\}$

$$
\begin{equation*}
f(w)=\frac{1}{2 \pi} \sum_{s=-\infty}^{\infty} R(s) e^{i s w} \tag{2.1.2}
\end{equation*}
$$

with $R(s)$ is the allocovariance function of $\left\{X_{t}\right\}$
$R(s)=E\left[X_{t} X_{t+s}\right]$
$\mathrm{f}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ is the bispectral density function of $\left\{\mathrm{X}_{\mathrm{\ell}}\right\}$

$$
\begin{equation*}
f\left(w_{1}, w_{2}\right)=\frac{1}{(2 \pi)^{2}} \sum_{r, s=-\infty}^{\infty} \sum_{\substack{\infty \\ r}} C(r, s) e^{-i r w_{1}} e^{-i s w_{2}} \tag{2.1.4}
\end{equation*}
$$

with $C(r, s)$ is the third-order central moment of $\left\{X_{t}\right\}$

$$
\begin{equation*}
C(r, s)=E\left[X_{t} X_{t+r} X_{t+s}\right] \tag{2.1.5}
\end{equation*}
$$

Subba Rao-Gabr (1930) showed that the $T_{i j}$ should be constant over all w_{j} and w_{j} if $\left\{X_{t}\right\}$ is given by a linear representation, i.e.

$$
\begin{equation*}
x_{t}=\sum_{r=-\infty} \quad a_{r} e_{t-r} \tag{2.1.6}
\end{equation*}
$$

where $\left\{e_{t}\right\}$ is a sequence of independent identically distributed random variables with zero mean, constant variance $\sigma{ }^{2}$. The antual test statistic is hased upon the complex-valued analogue of Hotelling's π^{2} test of the mean vector lying on the eguiangular line. Suhba Rac-Gabr use the asympototic complex-normality of the bispectrum in a certain triangular region of $[0,2 \pi]^{2}$ (Van Hess 1956). They, however, use as their estimated coveriance matrix the usual sample second moment matrix of multivariate analysis, treating the bispectral estimates as the data, rother than using the known asymptotic covariance matrix of the bispectral estimates.

The hypothesis of Subba Ran-Gabr's test are :

$$
\begin{aligned}
& w_{0}: f\left(w_{i}, w_{j}\right) \text { is constant for all } w_{i} \text { and } w_{j} \\
& H_{j}: f\left(w_{i}, w_{j}\right) \text { is not constant for some } w_{i} \text { and } w_{j}
\end{aligned}
$$

Accentance of H_{0} is consistent with linearity while rejection of H_{0} implies that the process is not linear.

In order to obtain $\hat{T}_{i j}$, we need to estimate $f(w)$ and $f\left(w_{i}, w_{j}\right)$ of $\left\{X_{\tau}\right\}$. Subba Rao-Gabr (1984) considered the estimation of the spertral and bispectral density function using the snectral window approach (See, e.g., Priestley 1981). The natural estimates of $E\left[X_{t}\right]$ and $R(s)$, renoctively, are

$$
\begin{align*}
& \bar{X}=\sum_{N}^{1} \sum_{i=1}^{N} X_{t} \tag{2.1.7}\\
& \hat{R}(s)=\sum_{N} \quad \sum_{t=1}^{N-|s|}\left(X_{t}-\bar{X}\right)\left(X_{t+|s|}-\bar{X}\right) \tag{2.1.8}
\end{align*}
$$

$$
\text { where } s=0, \pm 1, \pm 2, \ldots, \pm(N-1)
$$

The estimated spectral density function is

$$
\begin{equation*}
\hat{\mathrm{f}}(\mathrm{w})=-\frac{1}{2 \pi} \quad \sum_{\mathrm{s}}^{\mathrm{n}} \mathrm{~m}-\mathrm{n} \text { V[s/M] } \hat{\mathrm{R}}(\mathrm{~s}) \cos \mathrm{ws} \tag{2.1.9}
\end{equation*}
$$

where M is the truncation point and V is the lag window function. Some of the mindows yinch mill be used in the simulation study in Section a of this chanter are given in table 2.1.

```
msole 2.1 hore
```

The estimated bispectral density function is

$$
\begin{equation*}
\hat{f}\left(w_{1}, w_{2}\right)=-\frac{1}{(2 \pi)^{2}} \sum_{r=-n}^{n} \sum_{s=-n}^{n} V_{2}\left[\frac{r}{M}, \frac{s}{M}\right] \hat{C}(r, s) e^{-i r w_{1}} e^{-i s w_{2}} \tag{2.1.10}
\end{equation*}
$$

where $n=N-1$

$$
\begin{equation*}
\hat{C}(r, s)=--\sum_{i=1}^{N}\left(X_{t}-\bar{X}\right)\left(X_{t+r}-\bar{X}\right)\left(X_{t+s}-\bar{X}\right), r, s \geq 0 \tag{2.1.11}
\end{equation*}
$$

$$
\begin{align*}
& P=M a x(0, r, s) \\
& V_{2} \text { is the two dimensional snectral mindow } \\
& V_{2}(p, q)=V(p) V(q) V(p-q) \tag{2.1.12}
\end{align*}
$$

Subba Rao-Gabr (1984) have compared different type of one-dimensional and two-dimensional lag windows. In Section 2.4, we have norformed their test under different types and handwidths of lag windows. Some interesting results were discovered.

2.2 HINICH'S TEST

Hinich (1982) improved on Subba Ran-Gabr's test by using the known asvmptotic covariance matrix of the bispectral estimates and also proposed a test based on the interquartile range of scuare modulus of the sample bispertrum over a certain triangular region $[0,2 \pi]^{2}$. The test statistic is the interquartile range of a subset of $\left\{2|T i j|^{2}\right\}$, which is approximately normal distributed under the linearity hynothesis and cortain conditions.

There are many ways to average the bispectral density function $f(i, j)$ to obtain a consistent estimate of the bispectrum on a lattice of points in the triangular grid region. Subba Rao-Gabr use the standard window approach, but Hinich prefers to smooth the $f(i, j)$ in a square of M^{2} points, where $M=N^{C}$ for N is number of deta, $0.5<c<1$. The parameter controls the trade off between bias and variance.

This nonparametric test nronosed by Hinich is based on a robust measure of dispersion. The subba Rao-Gabr's F test can be sensitive to ontliers in the $T_{i j}$ due to small estimates of the spectrum at certain freguences. Also, the power of Hinich's test is high when $r N$ is large (r is the average skewness).

2.3 KRENAN'S TEST

An important insight to the nature of the general nonlinear model is provided by the discrete time Volterra series expansion :

$$
\begin{align*}
x_{t}= & \sum_{i=0}^{\infty} a_{i} e_{t-i}+\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} e_{t-i} e_{t-j} \\
& +\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{i j k} e_{t-i} e_{t-j} e_{t-k}+\ldots . \tag{2.3.1}
\end{align*}
$$

The ${ }_{i}, a_{i j}, a_{i j k}, \ldots$ are coefficients of the series and the e_{t} input process is usually considered to be unobservable. Wiener (1958), in a classic study of nonlinear systems, used the continuous time version of (2.3.1) to express the nonlinear relationship between input and output of a physical system. When $\left\{\mathrm{e}_{\tau}\right\}$ is a purely random process with zero mean, the first term in (2.3.1) is a general linear model and the suecessive terms are usually referred to as the "quadratic", "cubic", ... components.

When restricting to the guadratic component of the Volterra series expansion, Keenan (1985) argues that a test of linearity is equivalent to test whether all $\mathrm{a}_{i, j}$ in (2.3.1) are equal to zero. An analogue of Tukey's (1949) one degree of freedom for nonadditivity test provides a framework to achieve this target.

The hynothesis of Keenan's test are :

$$
\begin{aligned}
& H_{0}: a_{i j}=0 \text { where } a_{j j} \text { are coefficients in (2.3.1) } \\
& H_{1}: a_{i j} \neq 0
\end{aligned}
$$

The steps to calculate the test statistic of Keonen's test are as follows :
(i) Rogress X_{s} on $\left\{1, X_{S-1}, \ldots, X_{s-M}\right\}$ and calculate the iitited values $\left\{\hat{X}_{s}\right\}$ and the rosiduals, $\left\{\hat{e}_{s}\right\}$, for $s=M+1, \ldots, n$, and the residual sum of squares, $\langle\hat{e}, \hat{e}\rangle=\sum \hat{e}_{s}^{2}$.
(ii) Regress \hat{X}_{s}^{2} on $\left\{1, X_{s-1}, \ldots, X_{S-M}\right\}$ and calculate the residuals $\left\{\hat{E}_{5}\right\}$, for $s=M+1, \ldots, n$.
(iii) Regress $\hat{e}=\left(\hat{e}_{M+1}, \ldots, \hat{e}_{n}\right)$ on
$\hat{E}=\left(\hat{E}_{M+1}, \cdots, \hat{E}_{n}\right)$
and obtain N^{2} and F via
$N^{2}=N_{0}^{2}\left[\sum_{t=M+1}^{n} \hat{E}_{t}^{2}\right]$
where N_{n} is the regression cofficient and

$$
F=\frac{N^{2}[n-2 M-2]}{<\hat{e}, e>-N^{2}}
$$

Koenan proved that for a large n (samnle size) and a large, fixed M, F is asymptotically Chi-square distributed with one degree of treedom.

2. 4 A GIMUHYTION STUDY

To invostigate each exjsting tests, nine sample models have been solected as the basis for examining the discriminant ability of each method.

Models 1 and 2 are linear models, second-order moving ayorage and second-order antoregressive, respectively. The others are oll monlinear models; models $3,4,5$ and 6 are some spocial nonlinear time series models (Priestley 1981, Section 11.6). Models 7, 8 and 9 are some non!inear MA models which have been discussed by Keenan (1985). The parameter values of the sample models are fairly roprosontative, in the sense of not being close to the boundary. The $\left\{e_{t}\right.$? are all Gaussian mith zero moan and mit rariance.

A. Nonnarametric Rogression

In chapter I, we have montioned that poople usually use nonparametric regression as a nereliminary technique to detect nonlinearity in time series. A series with 10,000 data was generated for each sample model. By using E. S. Hatoon's (1964) approach, we nerformed the nonparametric regression analysis for each of them. $E\left[X_{t} \mid X_{t-1}\right]$ are plotted.

Pigs 2.1a to 2.1i here

The nonnarametric regression seems quite reasonable for detecting nonlinearity in the sample series. Fig 2.1 a and b show the linear charocteristics of models 1 and 2. The nonlinear elements of models 3 , 4, $5,6,8$ and 9 ean be identified by means of this technique. However, model \%has hidden its nonlinearity under nonparametric regression.

Although the norformance of nonnarametric regression in our sample models is guite sotisfactory, there are still some deficiencies of this terhnique. How to chnose a suitable type of window and its width ? Different choices among them may give different conclusions. Moreover,
the scale of the graph $E\left[X_{i} \mid X_{t-1}\right]$ is very important, different scales may reveal different shapes. Finally, in the above simulation, we have chosen a very large sample size $(N=10,000)$. The results are not satisfactory when the samnle size is less than 300.

B. Subba Rac-Gabr's Test

Subba Rao-Gabr (1984) provided a FORTRAN program to perform their test. However, we discovered that there are some minor bugs within the program :

```
line 58 original : R(I)=V(I)*SUM/FLOAT(N-I)
                corrected : R(I)=V(I)*SUM/FLOAT(N)
```

line 93 original : $\mathrm{S}=\mathrm{V}(\mathrm{J} 1) * \mathrm{~V}(\mathrm{~J} 2) * \mathrm{~V}(\mathrm{~J} 1-\mathrm{J} 2) * \mathrm{C}(\mathrm{J} 1, \mathrm{~J} 2)$
corrected : $S=V(J 1) * V(J 2) * V(J 1-J 2+1) * C(J 1, J 2)$
line 2.31 : Subroutine FO4ASF is missing

FOAASF is replaced by IMSL subroutines which are designed to perform matrix operations. After correcting these minor mistakes, their program will run. Moreover, we added to the program two subroutines DANIEL and PPTPRI which evaluate Daniell and Bartlett-Priestley windows respertively.

In order to examine the Subba Rao-Gabr's test, we have generated one linear time series from model 1 (Series A) and one nonlinear time sories from model 9 (Series B), each one with size $N=500$. These series are plotted in Fig 2.2a and Fig 2.2b.

In estimating the spectral and bispectral density functions, we have attempted to use different types of window and different M. The parameters K, L, d, r, p and n for constructing the $F-s t a t i s t i c$ are as follows

$$
\begin{aligned}
& \mathrm{K}=6 \quad \mathrm{~L}=4, \quad \mathrm{P}=7, \\
& \mathrm{r}=2 \quad \mathrm{n}=9, \\
& \mathrm{~d}=15 .
\end{aligned}
$$

The critical value is upper 5% point of F with (6,3) degrees of freedom (8,94). The calculated F values for Series A and Sories Bare given in Tobles 2.2a ard 2.2b

```
Tables 3.2a ard 3.2b here
```

The P-statistics vary a lot under different M and tynes of window It reveals that the R-statistic under Subba Rac-Gabr's test is extremely unstable and heavily denends on the choices of M and type of window. As a typical example, if we choose one and two dimensional Daniell window, $M=00$ for series A, the conclusion of subba Ran-Gabr's test is linear (1.10<5.89). But if we choose Parzen window with $M=30$, the conclusion will be reversed $(15.95>5.89)$!

The main problem of Subba Ran-Gabr's test is the erratic behaviour of $\hat{T}_{i j}$ under different types of window and M values. From (2.1.2)

$$
T_{i j}=\frac{\left|f\left(w_{i}, w_{j}\right)\right|^{2}}{f\left(w_{i}\right) f\left(w_{j}\right) f\left(w_{i}+w_{j}\right)}
$$

the values of $f\left(w_{i}\right), f\left(w_{j}\right)$ and $f\left(w_{j}+w_{j}\right)$ may be very close to zero at cortain frequencies and $T_{i j}$ will blow up. At different M values and
types of window, the location of these freguencies are different. The Fstatistic is also very sensitive to ontliers in the $\mathrm{m}_{\mathrm{i} j}$ and will lead to instability in Subba Rac-Gabr's test.

Moreover, Subba Rao-Gabr (1984) chose a distance "d" so that the bispectral estimates at neighbouring points on the fine grid are assumed to be uncorrlated. This assumntion may not be always true. Also, their test requires the existence of third-order moment of the data, which may not always hold without appropriate instantaneous tranoformation. These are some of the limitations of their test.

C. Hinich's Test

The test is examined under the nine sample models in Anpendix I.

APPENDIX I hore

To analyse the discriminant ability of Hinich's test, 100 renlications were nerformed for each sample model with $\mathrm{N}=2.04$. When we set $\alpha=0.05$, the critical values are ± 1.96. Table 2.3 gives the results.

Table 2.3 here

Hinich's test seems unable to detect the nonlinearity in Threshold and Exponential Autorepressive models (models 3,5 , and 6). Its discriminant ability for other non-linear models is not very high (models 4,7 , and 8), even less than 40%. Fortunately, Hinich's test can detect the linearity in models 1 and 2, quite satisfactory.

For the convenience of comparsion，we also used the nine sample models in Appendix I to examine Keenan＇s test．We maintained $N=204,100$ replications were performed for each sample model．The summary are given in Table 2．4．

Toble 2.4 hore

Keenan＇s test performed quite well in models $1,2,4,8$ and 3 ，but it failed to detect the nonlinearity in models 3，5 and 7．The original design of Keenan＇s test is to detect the existence of＂quadratic＂ commonent in Volterra sories expansion．However，some nonlinear time series models may without＂ભ⿴囗十⺝刂atic＂comnenent but have other higher order terms．For an example，consider a general Exponential $A R(1)$ model：

$$
\begin{aligned}
& x_{t}=\left[a+b \exp \left(-g x_{t-1}^{2}\right)\right] x_{t-1}+e_{t} \\
& =\left\{a+b\left[1+{ }^{\prime}\left(-g X_{t-1}{ }^{2}\right)+1 / 2!\left(-g X_{t-1}{ }^{2}\right)^{2}+\ldots\right]\right\} X_{t-1}+e_{t} \\
& =\left\{a X_{t-1}+b X_{t-1}-g b X_{t-1}^{2}+0.5 g^{2} b X_{t-1}^{4}+\ldots\right\} X_{t-1}+e_{t} \\
& =p_{1} x_{t-1}+p_{2} x_{t-1}^{3}+p_{3} x_{t-1}^{5}+\ldots+e_{t} \\
& \text { where } p_{1}, p_{2}, p_{2}, \ldots \text { are constants in terms of } a, b \text { and } g \\
& \infty \quad \infty \quad \infty \quad \infty \\
& \text { i.e. } X_{t}=\sum_{i=0} q_{i} e_{t}+\sum_{i, j, k=0} \sum_{i j k} q_{t-i} e_{t-j} e_{t-k}+\ldots \text { for some } q_{j}, q_{i j k}
\end{aligned}
$$

Therefore，the Volterra series expansion of model 3 is only in odd power torms．Yeenen＇s test cannot detect its nonlinearity．

Morenver，some symmetric with resnect to the origin SETAR models， as model 5 ，are anproximately close to those Exponential $A R(1)$ models．

It may explain the failure of detecting the nonlinearity in model 5 by Keenan's test. Figs 2.3a and 2.3b show the shapes in $E\left[y_{t}\right]$ vs X_{t-1} of models 3 and 5 resnertively.

Figs 2 3a and 2, 3b here

2.5 APPLTCATION TO REAL DATA

The test wore also applied on some mell known time sories dota. The sories considered are
(i) the Canadian lynx data ;
(ii) Wölfer sunspot numbers ; and
(iii) Nicholson's blowfly data.

The first series we considered is the annual number of Canodian Jynx trapped in the Maskenzie River district of Morth-west Canada for the years 1821-1934, giving a total of 114 ohoeryations. These numbers are given in Apnendix II and plotted in Fig 2.4a. There is an obvious cycle of approximately ten years with varying amplitude. We tested both raw and logarithm of the data. The second series we considered is the Whfer sunspot for the years $1700-1955$ (Waldmeirer,1961), giving 256 ohservations. These numbers are given in Anpendix III and plotted in Fig 2. 4 b . This sories has a certain historic interest for statisticians, soe, e.g. Vule(1927), Bartlett(1950), Whittle(1954) and Brillinger and Rosenblett(1967). It is believed by many scientists that this series has an eleven year cyole. We anplied the raw, logarithm and a special square root (nronosed by Tong, 1983) transformed data to the tests. The last sories me considered is a laboratory data -- Nicholson's blowfly data. Nield in an unpublished M.Sc. dissertation (University of Manchester,

1982; see also Tong, $1983, \mathrm{~S} 5.4$) has seperated the data set. into two helyes :

Br. OWPLY A	$20 \leq \mathrm{t} \leq 145$
BTOWPLY B	$218 \leq \mathrm{t} \leq 299$

The full set of blowfly data are given in Appendix IV. Fig 2.4c gives the data plot, from whoin the time intervals of RLOWFLY A and BIOWFI,Y B are sperified. Chan and Tong (1985) has made the following comments to the blowfly data :
(i) that there is a sharply defined change point, i.e. threshold, in the generating mechanism for the first half of the data set (BIONRLY A) and that the generating mechanism is best taken to be non-1inear ;
(ii) that, for the second half of the data set (BLOWFLY B), there jis no evidence of non-linearity.

```
Figs 2.4a, 2.4b and 2.4c here
```

Nonparametric regression were applied to each raw series and the results are plotted.

Figs 2.5a to 2.5d here

The graphs suggest that all the input series are generated from nonJinear process, even RLOWFLY B data set.

We tried Subba Rao-Gabr's test for each series. The values of K was chosen, as in Sertion 2.4, to be $K=6$, which implies that $L=4$ and $P=7$.

Also $r=2$, which implies that $n=9$ for all the above real series. The critical value is upper 5% point of F distribution with $(6,3)$ degrees of freedom (8. 94).

Tables 2.5 a to 2.5 d here

The computation of Subba Rao-Gabr's F-statistic again behaves quite erratically when anplying to the real series.

The results of Hinich's test for the real series are given in a condensed table.

Tahle 2.6 hore

The test concluded that lynx and sunspot data are generated from linear processes, regardless of the transformation. In BLOWFLY A data, Hinich's tost detects nonlinearity after the logarithm transformation. His test accepts the linearity in BLOWFLY B data.

We also anplied Kaneen's test to each real series, the results are summarized at the table 2.7.

Table 2.7 hore

The tost classifies the lynx data into linear time series. For BLOWFISY A, Keonan's test concluded the raw data as linear but the transformed dsta are non-linear. Our experience suggests that instantaneous trensformation has a useful role to nlay in detecting non-linearity. Now, tests for nonlinearity are usually based on the assumption of homogeneous variance. A suitable instantaneous transformation may be neaded to stohlize the variance. The non-linear behaviour of the series corld then berome more obvious.

26 COMEMENTS

Various tests for linearity have been proposed although none is totally satisfactory. After the study of these existing tosts, re have found out some woakness of sach msthod.
A. Subba Rac-Gabr's test

Recause of the numerical instability of Subba Fao-rabr's Fstatistic, it is difficult to interpret rosults of their tsst.
B. Minich's test

Although an jmprovement over Sobba Reo-Gabr's tost, Ifinich's test seems unable to detect some Threshold or Exponential AR models. The discriminant ability of his test is rather jow. It quite citen anaws misleading conclusion.
C. Kemnen's test

The test fails to detect these nonlinear time series models Which do not hove the ruadratic commont in volterra sories empansion.

Wis 2.1a $\mathrm{W}\left[\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right]$ for Honel 1

Fig 2.1. Six $\left.\mid X_{i-1}\right]$ for liodict 2
 \qquad

 -0.1233

- $0.1024 E \div 4$ —
$-0.6570 E-02$

-0.10.
-0.203 26.01%

O.1,150,E:00.
0.ACLAE*OO
0.7023E.(1) 1

0. © 23.15.3:
O.: a M BE +: :
0.16n26:い)
0.29/47501

\qquad

Pig 2.1c $E\left[X_{t} \mid x_{t . . t}\right]$ for Nodel 3

Fig 2.1d $S\left[X_{t} \mid X_{t-1}\right]$ for Nodel 4

Fig 2.1e $\mathrm{E}\left[\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right]$ for :hodel 5

Fig 2.11 $E\left[X_{t} \mid X_{t-1}\right]$ for fodel 6

Fig 2.18 $\mathrm{E}\left[\mathrm{X}_{\mathrm{f}} \mid \mathrm{X}_{\mathrm{t}-1}\right]$ for vored?

Fig 2.1h $E\left[X_{t} \mid X_{t-i}\right]$ for Vodel 8

Pi\& 2.1i $\left.\quad \mathbb{Z}, \mid X_{t-1}\right]$ for Norie1 ?

Fig 2. 2b Series B, simulated from model 9, $N=500$

Fis 2.3a $E\left[X_{t}\right] V_{s} X_{t-1}$ for model 3

Fig2.4a Lynx Data

Fig2.4b Sunspot Data

Fig2.4c Blowfly Data

 $25!3.2 \div 2 j$＿－－

$$
\text { Fi, 2.5a } \left.1 . \lambda_{t} \mid X_{;-1}\right] \text { for Lymx data }
$$

 ＋1．1，1．5
$-1)=2901615:$

－3．1 il｜ $1:=$
－ $0.1,1101 \cdot 1: 1$

＂のこうッらす！
 rio31116．0．0

（1．51， $15: 1: 3$
…vor2t．．．i i

リ．1015c．．．？

C． $2 \times 108+13$.
C．14336， 02
（1．）Siout（i）
c．1701F192
cispecic？
C． 235.56 .302
い．16：2Ftu？
Cろ3＞0ヶt60
6．1．8：5：02
C．6．）R．3．+1.1
（1．）（．8）$\ddagger+\mathrm{C} 2$
C． $11: \pm 98$
C．：711：＋ 112

FíG 2．51， $1\left[\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right]$ for sumppot date

Fig 2.5c $E\left[\mathrm{~K}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}, \mathrm{-1}}\right]$ for Blowfly A data

Q:
 5531.071.

Fig 2.5d E[X $\left.\mid X_{t-1}\right]$ for Blowfly is data

Daniell window	$V(s)=--\frac{\sin (\underline{s} \pi)}{s \pi}$
Trukey-Hamming window	$V(s)= \begin{cases}0.54+0.46 \cos \pi s & \|s\| \leq 1 \\ 0 & \text { otherwise }\end{cases}$
Earzen witrdow	$\mathrm{V}(\mathrm{~s})= \begin{cases}1-6 \mathrm{~s}^{2}+6\|\mathrm{~s}\|^{3} & \|s\| \leq \frac{1}{2} \\ 2(1-\|s\|)^{3} & \text { 六 } \leq\|s\| \leq 1 \\ 0 & \text { otherwise }\end{cases}$
$\begin{aligned} & \text { Partlett-Priestley } \\ & \text { window } \end{aligned}$	$\left.V(s)=\frac{-3}{\pi}-\frac{s}{s}\right) 2\left\{-\frac{\sin }{\pi} \frac{\pi s}{s}-\cos \pi s\right\}$
Earilett mindow	$V(s)= \begin{cases}1-\|s\| & \|s\| \leq 1 \\ 0 & \text { otherwise }\end{cases}$

TARLE 2.?a F-STATTSTICS FOR SUPRA RAO-CARR'S TEST FOR MODEL 1 ==1

Legg		V	I N	D 0		
M	Daniell Ontimum	Partlett	Tukey	Dani.ell	Psorzen	$\begin{aligned} & \text { Partlett } \\ & \text { Prinstley } \end{aligned}$
1.7	90. 26	146.45	55.67	20.17	804.11	87.57
20	1. 25	2.4.93	1.4. 52	1.9. 39	83.47	5.74
2.5	0.61	8. 38	5.27	2. 31	1.2.70	1. . 55
30	0.58	2. 11	1. 53	1. . 10	1.5.95	1. 54

TABTE 2.2b F-.STATYSTICS FOR SUBBA RAO-CABR'S TEST FOR MODEL 9 $==1$

KODEL MUMER	$\begin{aligned} & \text { ORTGTNAL } \\ & \text { TYPE } \end{aligned}$	farquency of correct DECSEONS ($\alpha=0.05$)
1	L	91
2	L	97
3	ML	1.0
$1 /$	ML	38
5	NL	5
6	NL	2
7	NL	314
8	NL	27
9	NL	87

REhatics : L - LIfitar ; NL - NONLTNEAR

$\begin{aligned} & \text { MODEL } \\ & \text { MUUER } \end{aligned}$	$\begin{aligned} & \text { ORTGINAL } \\ & \text { BYEE } \end{aligned}$	FBEQUENCY OF COREECT DECISIONS ($\alpha=0.05$)
1	τ	95
2	τ	98
3	NL	6
4	NL	83
5	NL	8
6	NTL	37
7	NL	10
8	ML	91
9	NL	93

REMARES : L - LINEAR ; NL - NONETNEAR

TABEE 2.5a SIRBA EACMABR'S TEST POR BAN LYNX DATA (F—STATTSTICS)

TABLE 2.5b SUPBA PAOMGABR'S TEST FOR RAN SUNSOOT DATA (F--STATESTICS)

TABEE 2.5C SYRBA PAOMABR'S TEST POR RON BLOMFLY A (F--STATSSTICS)

REMARNS : $\simeq=0.05$, Critical Valae $=3.94$

TABEE 2.Jd GURBA EACMABR'S TEST POR RAN BLOHFLY B (F--STATSSTICS)

REMARKS : $\alpha=0.05$, Critical Value $=8.94$

Revarizs : (1) α :0.05, Critical Values $= \pm 1.96$
(2) I -- Linear ; NL -- Norlinear

Dita	Teenatormation	Test ${ }_{\text {Ststistics }}{ }^{1}$	Conclusion ${ }^{2}$
$\begin{aligned} & L y n x \\ & N=114 \end{aligned}$	RAN	$0 . \pm 221$	\square
	LOETEN	2.3661	L
$\begin{aligned} & \text { Sunspot } \\ & M=256 \end{aligned}$	BAW	14: 5364	NL
	$2[s 4(X+1)-2]$	5.,8320	NL
$\begin{aligned} & E 10 \text { iflyA } \\ & N=126 \end{aligned}$	RAW	1.8794	τ
	SpRe	3.8706	NL
	LOEmen	5.5964	NTL
$\begin{aligned} & B 1 \text { orflyB } \\ & N=32 \end{aligned}$	E.AW	0, 2282	T
	SQET	0.1914	\pm
	LOEmen	0.1242	L

REHARAS : (1) $\alpha=0.05$, Crivical Value $=3.84$
(2) L -- Linear ; NL -- Norlinear

CHAFTER III A MEW REOROSED METHODS

3.1 INTRODUCTION

In a recent paper, Tong and $\mathrm{Lim}(1330)$ state that " the rew ora of pactical non-linear tial series modelling is, without doubt, longoverdue ". Fe accompary this claim, they introduce a family of ronlinear movels, called chaceshold autgregessive (TAR) models, jand demonstrate their applicability to practical problems by examples.

Although Tong and Lim Lmited us to onter the world of non-linear mucuels, tinere is no reason for us to abandon all models in the territory of Inearity. The theory of inear models is as yet much better deveioped than that of nonilinear models, and many problems are easier to deal with in the Ilinear framework. We welleved that there should be ways of choosing the right (ifnear or noni-ilnear) family of medels on the basis of the avidence contained in the tata.

3.2 THE IDEA

The idea of using piecewise linear models in a systematic way for the modelling of discrete lime series data was first mentioned in Tong (1977) and reported in Toing (1978a, 1973b, 1080). A Carprehensive account, together with mumerous applications and diocuasion, is available in fong and Lim (1980). Sur new propesed test is based on choosing becween Autoregressive (AR) and Belf-Exciting Threshold Autoregressive (SETAR) models. Tong (1983) provided a Eereral reference por GETAR medalling.

Consider e general SETGR(2;k,k) medel :

$$
x_{t}= \begin{cases}a_{0}^{(1)}+\sum_{i=0}^{k} a_{i}^{(1)} x_{t-i}+e_{t} & \text { if } x_{t-d} \leq r \tag{3.2.1}\\ a_{0}^{(2)}+\sum_{i=0}^{k} a_{i}^{(2)} x_{t-i}+e_{t} & \text { if } x_{t-d}>r\end{cases}
$$

Let

$$
\begin{aligned}
& \underset{\sim}{A} \\
& {\underset{\sim}{A}}^{(1)}=\left(a_{0}^{(1)}, a_{1}^{(1)}, \ldots, a_{k}^{(1)}\right) \text { and } \\
& \left.{\underset{\sim}{x}}^{(2)}, a_{1}^{(2)}, \ldots, a_{k}^{(2)}\right)
\end{aligned}
$$

Given $X_{0}, X_{1}, \ldots, X_{N}$, we consider testing the interesting null hypothesis

$$
\mathrm{H}_{0}:{\underset{\sim}{A}}^{(1)}={\underset{\sim}{A}}^{(2)}
$$

against

$$
\mathrm{H}_{1}:{\underset{\sim}{A}}^{(1)} \neq{\underset{\sim}{A}}^{(2)}
$$

H_{1} gtates that the generating machenism is non-linear in boing piecowise Hinear as specified in (3.2.1). Nove that, under H_{0}, the naisance parameter r is möt present and the $\operatorname{SETAR}_{\text {a }}(2 ; \mathrm{k}, \mathrm{k})$ model will collapse to a $\dot{A K}(k)$ nudel. However, for îixed r, ignoring the transient effect of initial observations fas is usually done), the chasoical result of likelihood ratio tast is ohown to hold (Chan and Tong, 1935).

$$
\lambda=\left[\left(\hat{\sigma}_{L}^{2}\right)^{-N / 2} / \quad\left(\hat{\sigma}_{N L}^{2}\right)^{-\mathrm{N} / 2}\right]
$$

Where $\hat{\sigma}_{L}{ }^{2}$ is the estimated innovation variance of the $\operatorname{AR}(\mathrm{k})$ model and $\hat{\sigma}{ }^{2}{ }^{2}$ is the estimated immovation variance of the nonlinear $\operatorname{SETAR}(2 ; \mathrm{k}, \mathrm{k})$ model. Under $H_{0},-2 \ln \lambda$ is asymptotically $\chi^{2} \mathrm{k} \cdot \mathrm{r} 1$.

It is intuitively clear that the test thus provided is useful only when the alternative is in the form (3.2.1) with a fixed r. However, in the original setup, r is seldom known beforehand. Chan and Tong suggest that a notural anproach is to consider instead $Y=\max _{r \in R}-2 \ln \lambda o r$, if we have reason to believe that $r \in S \subseteq R$ $Y_{1}=\max _{\mathrm{r}}-2 \ln \lambda$.

Tong and Lim (1980) employ Akaike's Information Criterion (AIC, Akaike, 1974) in choosing the \hat{r} and \hat{d} to replace the fixed threshold (r) and the delay parameter (d) in (3.2.1) respectively. However, Terasvirta and Tonkkonen (1983) have suggested that the Schwarz's Bayesian Information Criterion (SBJC), cf Schwarz (1978), is a vjable elternative.

Unfortunately, even if we obtain \hat{r} and \hat{d} to replace r and d in calonlating the likelihood ratio statistic Y or Y_{1}, the classical result no longer holds Feder (1975) nointed out that in these cases the parameter estimates are not asymptotically normal and $-2 \ln \lambda$ is not asymntotically x^{2} with the " appropriate " number of degree of freodom. Although the distribution of Y or Y_{i} is not asymptotically X^{2} and rather different to obtain, we can always anneal to the Monte Carlo terhnique. Silverman (1985) has applied similar approach in specification of regression models.

The algorithm of our new proposed test is as follows :
(1) Input the test data, $X_{1}, X_{2}, \ldots, X_{N}$.
(2) Use SBTC to choose a " best fitted " linear AR(k) * model and obtain the appropriate $\hat{\sigma}{ }_{L}{ }^{2}$.
(3) Use SRIC to choose a " best fitted " non-linear SETAR(2;k,k) model and obtain $\hat{\sigma}$ NI. ${ }^{2}$.
(4) Calculate the likelihood ratio test statistic

$$
\mathrm{T}^{*}=-2 \ln \lambda=\left(\mathrm{N} \ln \hat{\sigma}_{\mathrm{L}}^{2}-\mathrm{N} \ln \hat{\sigma}_{\mathrm{NL}}{ }^{2}\right)
$$

(5) Simulate the null distribution :
(i) $X_{1}{ }^{*}, X_{2}^{*}, \ldots, X_{N}^{*}$ are simulated from the $\operatorname{AR}(k)^{*}$ linear model specified by the step (2).
(ii) Repeat steps (2), (3) and (4) to obtain an observation, say T_{i}, from the null distribution.
(iii) Roneat (i) and (ii) 100 times and obtain a sample from the null distribution in form of $T_{1} \quad T_{2}, \ldots, T_{100}$, from which the null distribution may be estimated.
(6) T^{*} is compared with the simulated null distribution and a conclusion is drawn. Let $\left\{\mathrm{T}_{(1)}, \mathrm{T}_{(2)}, \ldots, \mathrm{T}_{(100)}\right\}$ be the erder statistic of $\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{100}\right\}$. If we take $\alpha=005$, the decision rule is :

$\mathrm{T}^{*}>\mathrm{T}_{(95)}$	conclusion : non-linear
$\mathrm{T}^{*} \leq \mathrm{T}_{(95)}$	conclusion : linear

The Monte Gorlo results reveal that our new proposed test is quite roboust among the choices of k (maximum lag in fitting the linear and non-linear models). Therefore, we prefer to use $k=2$. In this case, the estimation of the $\operatorname{AR}(k)$ and $\operatorname{SETAR}(2 ; k, k)$ models are quite simple.

3.3 A GTMULATION STUDY

Our simulation study, again, is based on the nine sample models in Anpendix I.

Anpondix I here

204 simulated dota are generated from each sample model. We nerform our test with 100 replications. Nomber of correct decision for each sample model are rocorded in toble 3.1.

```
    Trble 3.1 here
```

We have a very high detection rate among models 1 to 6 , models 8 and 9. Homever, our test fails to detect the non-linearity in model 7 . Consider model 7 :

$$
\begin{aligned}
& x_{t}=e_{t}-0.4 e_{t-1}+0.3 e_{t-2}+0.5 e_{t} e_{t-2} \\
& E\left[x_{t} \mid x_{t-1}, \ldots\right]=-0.4 e_{t-1}+0.3 e_{t-2}
\end{aligned}
$$

The conditional moan of model 7 is in a linear form. It may be connidered a limitation of onr test whioh seems unable to detect nonlinear time series models with a conditional mean linear in the umperarvable ϵ_{t} 's. The following simulation exneriment tends to support our observation. Consider

$$
\begin{aligned}
& \text { MODEL A : } e_{t}-0.4 e_{t-1}+0.3 e_{t-2}+0.5 e_{t-1} e_{t-2} \\
& \text { MODRL } 3: e_{t}-0.4 e_{t-1}+0.3 e_{t-2}+0.5 e_{t-1} \\
& \text { MODEL } O: e_{t}-0.4 e_{t-1}+0.3 e_{t-2}+0.5 e_{t} e_{t-1} \\
& \text { MODEL } D: e_{t}-0.4 e_{t-1}+0.3 e_{t} e_{t-1}+0.5 e_{t} e_{t-2}
\end{aligned}
$$

We test each model with 100 menlisations, the results are given in table 3.2.

Table 3.2 here

Models A and E, mith a quedratic conditional mean, can be identified by the test. Wile models 6 ond D, mith a linear conditional moan, connot be detected by our tost.

3.4 APCLICATION TO REAL DATA

We apply the same real eeries used in section 2.5 to cur new proposed tast. The rasults are fiven in toble 3,3.

The sest concluded that the lynx, sumspot and ELOWPLY A deta are nonlinear tine saries, regardless of smactormation. These results guggest what ficting a SEriAR mouel to Iynx data, blowfly A data and sunspot data is not unceásonable. This conclusion leads soal smpport to ron-linear mouelling of these duta. For wlubly B data, the test agrees fith chan and Tung's (1985) conclusion that the data are generated from a linear machenism.

3.5 COMENENTS

This new propused test seem to häve a high degree of reaiability in detecting non-linearity in time seties data. From the simulation study in section 3.3, when the generating machanism is plecemise linear as specified in (3.2.1), we have a 100% detection rate! Even vion the generating machanism of the test wata is noriwinear in the form of
bilinear, exponential $A R$ or non-linear MA, which is different from the working setup (SETAR), our test still tends to classify the data as being generated by a non-linear model. Also, when amplying to some mell known real sories, the test draws oncolusions which tends to eupport non-linear modelling of them. But there is a limitation of using the test. It is unable to identify some non-linear time sories models with conditional mean linear in the e_{t} 's. Since me me Morte Carlo techrique to obtain the null distribution of our test, it is difficult to assign the eyact level of significance. But it does not seem a great barrier in practice.

KEYARKS : L - LIREAR ; NL .. MONLINEAR

GEDARES : L - LIMEAR ; NL - NONETNEAR

[^0]
CHLPTER IV A COHPAESION

Q. 1 GIMUT.ATION FEESULTS

Abstract

In Section 2.4 of Chapter II, the Monte Carlo results reveal that Subba Ras-Gabr's F-gtatistic is extremely unstable and cannot iraw Cunsisent conclusions. Some simulated data are used to test their method and tine results are given in Table 2.2 a and 2.2 b . We input the sate test data into ininich's tost, the resilts are recorded in Toble 4. 1.


```
Tables 2.2a, 2,2b and 4.1 here
```

From Fable 4.1, Hinich's test can draw correct and consistent conclusions under different choices of M. Therefore, besed on the simuiation study, we can conclude that Minich (i982) has improved Stoba RadGabr's tsst significantly.

We are geing to compare Minich's test, Keenan's test and our new proposed method. The oomparsion will be rainly hosed on the nerformance of each test to the nine sample models.

```
Apperdix I here
```

Numiver of correct decision among each rest in 100 raplications are given in Tote 4.2.

Table 4.2 here

All of the test can identify the linearity elements in mofels and 2 successfully. But none of them cian uttect tine nowninearity in model 7 satisfactory. Hinich's test seems perform better in testing model 7, but
its detection rate for other non-linear sample models are guite poor. Koenan's test is sensitive to non-linear MM models, but its ability in deterting non-linear $A R$ models (e.g. GETAR, EYPAR,..) are moak. From the simnlation results, onr test is satisfactory but not gerfect. The dismbility of detecting some non-linear models with jinear conditional mann are disclosed in tasting model 7.

2, 2 FEAL DGTA

An indeal test is not only perform satiefactory under simulation erperiments, but rlso can draw reasonable conclusions when applying to the real data. Sone wall krown time series have been srleoted to examine the tests. The lynx, sumspot and GLowfly A data are midely accopted as gorlwinear time acries. Hibile BLOWFLY B tata are gencrated from linear machanism. In previous chapters, thdividual tsets had been applied to each zeal series and the results were discossed. In Table a.3, me sumanize the conclusions of the tsits to each real series.

```
Toble 4.3 here
```

The conclusions of our sest agree with the widely acoepted results. Keधnan's cest classifies lynx deata to linear time series, but his test can draw quite reascmable conclusions among cther series. indich's test conciades that all exeted senies are generated from linear machanism, except logarithm tialisformed ELOWrLY A data. Dur test seems better than otarer methods in applying to the real series.

4.3 SOME GPRCIAL TIME EERES

A. Nor-famssian Tine Series

After five decades of domination by linear Gmussian molels, the time is certainly ripe for a sorious stwdy of wrys of remoring the many limitations of these models. Once we decide to incorporate features in addition to the antocovariances, the class of models monld have to be srontly enlrerged to jnclude those besides the Gamesian ARva models. We may retain the general ARMA frombwork and alow the white notse to be normeanssian.

We are interested in compring the ability of each tast in detecting the linearity of linear norwowssian models. Consider a nonGausian MA(1) model

$$
x_{t}=e_{t}-a e_{t-1}
$$

Where

$$
\mathrm{e}_{\mathrm{t}} \sim \mathrm{U}(-1.7321,1.7321)
$$

We perform a simuiation experiment with 100 repllcations, the number of correct decision wmong each stst are roported in tible 4.4.

Table 4.4 here

Kénan's test and Hirich's test can detect the linearity in this Iinear non Gqussian model succocefully. Howerer, our test misclussify it into nor-ínear territory. Cchsider the conditional mean of this nori-taussian Mr(1) model, after some manipalation, E[$\left.X_{t} \mid X_{t-1}\right]$ is shown to be nơn-linear (Tong, 1983). As presious conclusion in Chapter III, our test is mainly based on testing the conditional mean of the model. in this çase, our 气ast will miticlassify these models.

B. Linear Time Series Models With Ramdom Coefficients

Consider the following random confficient $A R(1)$ model

$$
x_{t}=(a+r b) x_{t-1}+e_{t}
$$

Where

$$
\begin{aligned}
& \mathrm{r} \sim \mathrm{~N}(0,1) \\
& \mathrm{e}_{\mathrm{t}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

Random ooofficient AR models have boen included as a aub class of non-linear models (e.g. Nicholls and Quinn 1982). Homever, it is argorable if these models are truly non-linear bosause the conditional means, E ! X_{t} ! past $X^{\prime} s$], are linear in the past $X^{\prime} s$ See the discmssion paper by Lamance and Lerais 1985). We opply the tasts to the model mith 100 ropications, the results are given in table 4.5. All tests draw the zame conclusion, random cosficient AFi(1) models are Hinear. Therefore, as far as Hinich's (a fortified Subba gae eabr's) test, Komen's tsst and our tsst are concerned, these models are limear.

```
                            Table 4.5 here
```


C. Tine Series With Small Sarple Size

We are guing to examine the tests with small sample. A linear
 Hinich's Eest finds it difficult to deal with small eangles. Wben $\mathbb{N}<60$, the number oif squares within prinicpal domain which are lesed to shouth the spectrum is less than 2. Theiefore, Hinich's test is not appilicable co time series with cutervations less than 6G. When we use Keanan's lest in mütiel \ddot{y}, we discover the design matrix of regeession in Tukey's non additivity-type test-framework is near singlar. Therefore,
we cannot draw valid conclusion. However, when the dota are generated from model 1 (linear model), Keenan's test appears to neprate well, even when $\mathrm{N}<50$. Our test seems to work normally when applying to time series with small sample size. Table 4.6 gives the results of the simnlation experiment.

Tarle 4.6 here

D. White Noise With Different Innovation Variance

Consider a series of white noise $e_{t} \sim N\left(0, \sigma e^{2}\right)$. An ideal test can detect its linearity indenendent of any $\sigma{ }^{2}$. We anply the tests to these series of white noise with different magnitude of ${ }^{3}$, the results are given in table 4.7. All tests annear to jdentify the linearity of each series, regardless of the magnitude of σe^{2} within the range of $(1,500)$.

Table 4.7 here

4.4 CPU TTME REOUSRED

We are going to compare the computational efficiency of each tests. A comparsion of $C P U$ time reruired by each test to process a time series with 204 observations are given in table 4.8.

Abstract

Hinich's test and Kernan's tost only need $15{ }^{*}$ and 17^{*} CFI seconds respectively. Bec?use of the cormlexity in ormpating the spectral ard bismectral estimates, subba Raneabr's tost rompires eo secords. Our test neads 1.52^{*} CPU seronds to calculate the tost statistic and simelate the rull distribution. About 50% of the required cfy time for our test is taken ip in aimelating the null dietribution. Although cur new propesed method requires nearly a minutes CEU time, it ís not a barrier for us to use the test. The zdvanced computer technology today can hardle our test without any difficulty.

* All coliputer programs aire written in POFTHAN, erecuted by
 the Chinese Jniversity of Hong kong.

TGBEE 4. 1 GINECH'S TEST FOR GTMULATED DATA

> REMARES : L - L'Gear ; NL ... Nor..Linear, $a=0.05$; Sritical velues $= \pm 2.96$

TABLE 4. 2 NWMPER OF CORRECT DECJSION MMONG EACH TEST (100 REPLICATIONS)

Model Nubber	$\begin{aligned} & \text { Orisinal } \\ & \text { mype } \end{aligned}$	$\begin{aligned} & \text { Hinich's } \\ & \text { mest } \end{aligned}$	$\begin{aligned} & \text { Keanan's } \\ & \text { Test } \end{aligned}$	$\begin{aligned} & \text { Cur } \\ & \text { Test } \end{aligned}$
1.	I	91	95	97
2	\square	97	98	95
3	NL	10	6	94
4	NL	38	88	95
5	NL	5	8	100
6	NL	2	37	100
7	NL	34	1.0	14
8	WL	27	91	95
9	NL	87	93	98

```
EEMARSS : L - Linear ; NL .. Nor- Linear, lie sat \(a=0.05\).
```


TABLE 4. 3 A GOMPABEION EOR ALL TESTS TO EEQL DATA

REMARKS: L -- Linear ; NL -- Nonlinear
We set $x=0.05$.

a, b	$\begin{aligned} & \text { mest } \\ & \left(\begin{array}{c} =0.05) \end{array}\right) \end{aligned}$	Number of onsrect decision per 100
$\begin{aligned} & a=0.5 \\ & b=0.1 \end{aligned}$	Uinich's	95
	Kecnan's	94
	Our test	97
$\begin{aligned} & a=0.0 \\ & b=0.1 \end{aligned}$	Hinich's	91
	Kecnan's	93
	Our test	98
$\begin{aligned} & a=. .0 .5 \\ & b=0.1 \end{aligned}$	Hinich's	93
	Keenan's	95
	Our test	94

MABLE 4， 6 mRST RESULTS FOR GMALL SAMPEE MTHE SERTES

TEMARKS ：X ．The test is not eperational．

TABLE 4,8 GPU TTME REQUTREMENT FOR EACH TEST (N-204)

CDJ Time * (seconds)

Theg Regreesion 6
Subba Rasraebr's tast 60
Hinich's test 15
Keanan's tast 17
Our test 152
*
The FORDRAN program is anesuted by TRM-3031, VM3TomoSVS1 system at the Conputer Centre, the Chinese Untwersity of Hong Kong.

CHSPTER V GOQCEUSION

Various tests for linearity have been propased although none is totally gotiofactory. Komen's tost seons wuite reasonable as a diagnostic for linearity versus a second-order Vodterra expansion. Stich a test vould be time domain based and competationally less complex than the froguency domain based altarnatives. Homever, tis test is mot Sentitive to detect mon?inear AR models. It is aleo a limitation of Keman's tost that it canot deal mith some normpinear time series model without " ¢九adratic " component in Volterra series expansion. The Compatational instability in Subba Ror-Gabr's F-statistic is a fatal Wakaess of their Eest. Although Hinich has improved Eubba Rag Gabr's test significanlty and proposed a nor-parametric method, the new test is not very pumerful. It is quite often that kis test misclassifies a nonlinear time Beries into linear territory. In this thesis, ve bave proposed a mew parametric method in testing the linearity in time series. The similation ztudies show that our test is grite pomerful. although the test fails to detect he non-linearity of some mon-linear time series moúts with linear conditional mean, we are satiafied mith the overall pesforinance of this test in our stady.

In practice, we may use nonparametric regression as a preliminary cechinique. If one prefers monparametric method, we reaomand titrich's cest. Otnerwise, we suggest to use our new proposed perametric msthod.

Purther deveiopment of east for limearity of time senies data may concentrate on detecting the non-linearity of time series models with Linear conutional mean (e.g. model 7). None of the existing methods can handle this kind of models satisfactorily.

APEENDIX I : SAMPLE MODELS

MODEL 1 : [Linear $\operatorname{AR}(2)$]

$$
x_{t}=0.4 x_{t-1}-0.3 x_{t-2}+e_{t}
$$

MondL 2: [Linear Mr!2)]

$$
x_{t}=e_{t}-0.4 e_{t-1}+0.3 e_{t-2}
$$

MODEL 3 : [Exponential AR(1)]

$$
x_{t}=\left(0.3-0.8 \exp \left(-1 x_{t-1}^{2}\right)\right) x_{t-1}+e_{t}
$$

MODEL 4 : [Bilinear Model BL($1,0,1,1$)]

$$
x_{t}=0.5-0.4 x_{t-1}+0.4 x_{t-1} e_{t-1}+e_{t}
$$

MODEL 5 : [Threshold Model SETAR(2;1,1)]

$$
x_{t}=\left\{\begin{aligned}
1-0.5 x_{t-1}+e_{t} & x_{t-1}<0 \\
-1-0.5 x_{t-1}+e_{t} & \text { otherwise }
\end{aligned}\right.
$$

MODEL 6 : [Threshold Model SETAR(2;1,1)]

$$
x_{t}=\left\{\begin{aligned}
2+0.5 x_{t-1}+e_{t} & x_{t-1}<1 \\
0.5-0.4 x_{t-1}+e_{t} & \text { othorwise }
\end{aligned}\right.
$$

MODEL 7 : [Nonlinear MA Model]

$$
x_{t}=e_{t}-0.4 e_{t-1}+0.3 e_{t-2}+0.5 e_{t} e_{t-2}
$$

MODEL 8 : [Nonlinear MA Model]

$$
x_{t}=e_{t}-0.3 e_{t-1}+0.2 e_{t-2}+0.4 e_{t-1} e_{t-2}-0.25 e_{t-1}^{2}
$$

MODEL 9 : [Bilinear Model]

$$
x_{t}=0.4 x_{t-1}-0.3 x_{t-2}+0.5 x_{t-1} e_{t-1}+0.8 e_{t-1}+e_{t}
$$

```
AHPENDIX II THE CANALIAN LYNX DNTA (1821 - 1934)
```


$Y E / R$	1	2	3	4	5	6	7	8	9	10
1821-1830	269	321	585	871	1475	2821	3928	5943	4950	2577
1831-1340	523	98	184	279	40%	2285	2685	3409	1324	409
1341-1350	151	45	68	213	540	1033	2129	2536	857	361
1851-1860	377	225	360	731	$\bigcirc 638$	2725	2871	2119	634	299
1361-1870	236	245	352	± 523	3311	6721	4254	687	255	473
1871-1380	358	784	1594	1676	2251	1420	75%	297	201	229
1881-1390	469	736	2042	$28: 1$	4431	2511	389	73	33	49
1821-1200	57	188	377	1292	4031	3:95	587	105	± 53	387
1901-1910	758	1307	3455	692	6313	3794	183.6	345	332	8.08
1311-1920	1338	2713	3800	3091	2985	3790	674	81	80	108
1221-2930	229	299	1132	21:32	3574	2935	1537	529	485	662
1930-1034	1000	1590	2657	3396						

APERNDIX ITI ANNTAL S!JNCDOT NUMRERS (1700-1955)

YEAR	1	2	3	4	5	6	7	8	9	10
1700-1709	5.0	11.0	16.0	23.0	36.0	58.0	29.0	20.0	10.0	8.0
1710-1719	3.0	0.0	0.0	2.0	11.0	27.0	47.0	63.0	60.0	39.0
1720-1729	28.0	26.0	22.0	11.0	21.0	40.0	78.0	122.0	103.0	73.0
1730-1739	47.0	35.0	11. 0	5.0	16.0	34.0	70.0	81.0	111.0	101.0
1740-1749	73.0	$4,0,0$	20.0	16.0	5.0	11.0	22. 0	40.0	60.0	80.9
1750-1759	83.4	47.7	47.8	30.7	12., 2	9.6	10.2	32.4	47.6	54.0
1750-1759	62.9	$8.5,9$	61. 2	45.1	36.4	20.,9	11.4	37,8	69, 8	106.1
1770-1779	100.8	81,6	66.5	34.8	30.6	7.0	19,8	9?. 5	154.4	125.9
1790-1789	84.8	68.1	38,5	22.8	10, 2	24.1	8?,9	132.0	130.9	118.1
1790-1799	89.9	66.6	60.0	45.9	4.1.0	21.3	16.0	6.4	4.1	6.8
1800-1.809	14,5	3/4,0	4.5 .0	43.1	47.5	42, 2	28.1	10.1	8.1	2. 5
$181.0-1.819$	0.0	1.4	5.0	12, 2	13.9	35.4	45,8	41.1	30.1	23.9
1820-1829	15,6	6.6	4.0	1.8	8.5	15.6	36,3	4.9.6	64. 2	67,0
1830-1.839	70.9	4.7 .8	27,5	8.5	13,2	55,9	121.5	1.38 .3	103.2	85,7
1840-1.849	6,4,6	35.7	24.2	10.7	15,0	40.1	6.1 .5	98.5	124.7	96,3
1850-1859	65,6	64.5	54.1	39.0	20.6	6.7	4.3	2.. 7	54, 8	93,8
1860-1.869	0.5 .8	77.2	59.1	4.4 .0	4.7 .0	30.5	16,3	7.3	37,6	74.0
1870-1879	13.0	111.2	101.6	66, 2	4.4 .7	17.0	11.3	12.4	3.4	6.0
1880-1.889	22.3	$5 / 4.3$	59.7	63.7	6.3 .5	5?, 2	25.4	13.1	6.8	6.3
1890-1899	7.1	3.5 .6	73.0	85.1	78.0	64.0	41.8	26.2	2.6,7	12.1
1900-1909	9.5	2.7	5.0	$21+4$	42.0	6.3 .5	53, 8	6?. 0	48.5	43.9
1910-1319	1.8 .6	5.7	3.6	1. 4	-. 6	4.7 .4	57.1	103.9	80.6	6.3 .6
$1220-1229$	37.6	2.5.1	1.4.2	5.8	1.5 .7	4.4 .3	63.9	69.0	77.8	64.9
1930-1939	3.5 .7	21.2	1.1 .1	5.7	8.7	35.1	79.7	1.14.4	109.6	88.8
1.740-1949	6.7 .8	<.7.5	30.6	1.5 .3	9.6	33.2	$9 ? .6$	1.51 .6	1.36 .3	1.34 .7
1250-1755	83.9	6.9 .4	31.5	1.3 .9	4.4	38.0				

APDENDIX IV BTONELY DOTA

4	165	1801	6235	5974	8921	6610	5973	5673	3875
2351	1352	122.6	91.2	521	363	229	14:2	82	542
939	2<31	3887	4543	4543	54.41	$4<12$	3022	26.56	1967
1205	91.5	551	31.3	16.7	96	93	60	68	5259
66.73	5t\%1	3987	2252	364:8	4222	3889	2295	1509	92.8
73.9	58.5	303	274	192	22.5	51.9	1224	2236	3818
6208	$59 \% 6$	$57 \% 9$	68.52	7939	$48 \leqslant 8$	3952	2712	1734	1224
703	503	365	279	24.3	3:3	761	1025	1221	1600
22<7	3290	34.71	36.37	3703	4876	5364	4890	3029	1950
1225	1076	005	772	628	473	539	825	1702	2868
4473	522.1	6592	5400	4.752	3521	2719	1931	1500	1082
54, 3	77\%	864	1308	162.4	2224	2423	2959	3547	72.37
521.8	531.1	4273	3270	2281	15::9	1081	795	610	4,5
8.94	14.54	2.2否2	$23 \leqslant 3$	3847	3876	39.36	34.79	$34: 15$	3861
3571	3.113	2319	16.30	1297	8.51	761	659	701	762
11.98	1778	2428	3806	4.51 .9	56\%6	4851	5.374	471.3	7367
7236	52, 5	3636	24.4.7	1258	765	479	402	248	254
604	13\% 0	2342	3328	3599	4081	7543	7919	6098	6806
563.4	5.134	41.88	$34 \leqslant 9$	24.42	1931	1790	1722	1488	14.16
1359	1686	2.62 .7	38:;0	4044	4929	5.11 .1	3152	4.462	4082
3026	1589	2.076	1829	1888	1.1:9	068	1.170	1465	1676
3075	3815	4539	4:42.4	2.784	5860	5781	4807	3920	3835
3618	30.50	3772	3.51 .7	3.350	3018	2525	24.12	22.21	2619
3203	2.706	2.717	2.175	162.8	23.38	3577	31.56	4272	3771
4955	5584	3891	3501	4436	4369	3394	3859	2922	$18<3$
2.837	4:200	5.119	5838	5389	4923	$4,1 / 46$	4651	424.3	4620
4869	3064	301.6	2.881	38.1	4300	4.68	54.48	5477	579
7533		41.27	55156	6.31 .6	6.650	6304	4842	4.352	3215
26.52	2.330	3123	3955	$4 \% 94$	4780	5.753	5555	5712	4.786
4066	2391	? 270	41204	4398	4112	44.01	5779	6507	8091
11.32	124.46	1.3712	11.017	14683	72.58	6.195	5962	421.3	2775
1781	036	898	11.60	3158	3386	4.547	482.3	4070	4940
5793	7836	4.4 .57	6901	8191	6.766	51.65	2919	3415	$3 / 4.31$
3162	2.52 .5	2230	1955	1936	2.384	4656	721.9	8306	8027
701.0	8149	824.9	61.05	53.24	5766	6214	7007	81.54	9049
6883	81.03	6803							

REPRETHEES

Akaike, H. (1974). "A new look at the statistical model identification", TFEE Vol. AC-19, 715-723.

Bartlett, M.S. (1950) "Periodogram analysis and continuous spectra", Riometrika, 37, 1-16.

Brillinger D.R. and Rosenblatt, M, (1967). "Asymptotic Theory of Estimates of k-th Order Spectra", Spectral Analysis of TimeSeries (ed. B. Harris), 153-188, Wiley, New York.

Chan, K.S. and Tong, H. (1985) "A Survey on the statistical analysis of a univariate threshold autoregessive model ". Tech. Rep. 24 Nepartment of Statistics, the Chinese University of Hong Kong.

Feder, P.I. (1975). "The log likelihood ratio in segmented regression". The Annals of Statistics, Vol 3, No.1, 8L:-97.

Eranger, C. W. J. and Andersen, A. P. (1978). "An Tntroduction to Bilinear Time Series Models". Vandenhoeck and Runrecht obttingen.

Haggan, V. and Oraki, T. (1978). "Amnlitude-dependent AR model fitting for nom. innear random vilorations". Froc. Intormational Time Series Meeting, University of Nottingham, England, March 1979. (ed. O.D. Anderson). North-Holland, The Netherlands.

Hinich, M. (1982). "Testing for Gaussianity and linearity of a stationary time sories". J. of Time Sories,No.3, 150-176.

Koenan, D.M. (1985). "A Tukey nonadditivity-type test for time series nonlinearity". Binmetrika, 72, 1, 30-44.

Tawrance, 1. J. and T,ewis, P. A. W. (1985). "Modelling and Residual Analysis on Nonlinear Autoregressive Time Series in Fxponential Variables". TRSS B 85.

Nicholls, D. F. and Cuinn, B. G. (1982). "Random Cofficient Autoregressive Models : An Tntroduction" Springer-Verlag 82.

Priestley, M.P. (1981). "Spectral Analysis and Time Series", Vol. I \& Vol TI, London : Adrademic press.
schwarz, G. (1978). "Estimating the dimension of a model". Annals of Statistics, 6, 1,61-464.

Silyerman, B,W. (1985). "Some Aspects of the Spline Smoothing Approach to Non-parametric Regression Gurve Fitting", J. R.Statist. Soc., R,47, No.1, 1-52.

Subba Pao, T. and Gabr, M.M. (1980). "A test for linearity of stationary time series". J. of Time Series Anal., $\underline{1}$, $\underline{2}, 145-158$.

Subba Rao, T. and Gabr, M.M. (1984). "An Introduction to Bispectral Analysis and Rilinear Time Series Models". Springer-Verlag.

Terłsvirta, T. and Luukkonen R. (1983). "Choosing between linear and threshold autoregressive models". ETLA,No.141, the Research Institute fo the Finnish Fconomy.

Tong, H. (1977). "Some comments on the Canadian lynx data - with discussion". J. Roy. Statist. Soc. A, 140, 432-435, 448-468.

Tong, H. (1878a). "On a threshold model", Pattern Recognition and Signal Processing. (ed. C. H. Chen), The Netherlands : Si.jthoff and Noordhoff.

Tong, H. (1978b). "Threshold autoregression, limit cycles and cyclical data", Tech. Rep. No.101, Department of Maths. (Stat.), UMTST.

Tong, H. (1.980). "A. view on non-linear time series model building", Time Series (ed. O.D. Anderson), Amsterdam : North-Holland.

Tong, H. (1983). "Threshold Models in Non-linear Time Series Analysis". Snringer-Verlag.

Tong, H. and lim, K.S. (1.980). "Threshold autoregression, limit cycles and cyclical data (with discussion)". J. R. Statist. Soc., B, 42, 245-292.

Tukey, J.W. (1.949). "One degree of freedom for non-additivity". Piometrics 5, 2.32-242.

Van Hess, J,W. (1966). "Asymptotic normality of bispectral estimates". Ann. Math. Statist. 37, 1257-75.

Waldmeirer, M. (1961). "The Sunspot Activity in the Years 1610-1960", Schultheses, Zurich.

Watson, G.S. (1964). "Smonth regression analysis". Sankhya : The Inidian J. of statist., A, 359-372.

Whittle, P. (1954). "A statistical investigation of sunspot observetions with reference to H. Alven's sunspot model", Astrophys J. 120, 251-260.

Winener, N. (1058). "Non-linear Problems in Random Theory", John Wiley \& Sons.

V1.le, G.U. (1.927). "On a method of investigating periodicities in distributed series with special reference to Wolfer's sunspot numbers". Phils. Trans. Roy. Soc., London, A, 22, 261-298.

000471296

[^0]: KEHANES：L－－Linear ；NL－－Nonlinear

