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ABSTRACT

Many methods have developed to detect the monlinearity of time

series,including the technique of nonparametric regression.Subba Rao-

Gabr's test,Hinich's test and Keenan's test. We begin with a general

description of these methods and a simulation study is presented to

examine their power and their discriminant ability.Test results on real

data will be discussed.

A new method which mainly based on the likelihood ratio test is

proposed.After a simulation studt. the merits and limitations of our

test are discussed.

Finally.a comparsion among all tests on the simullation results,

applications to real data,sensitivity to some special time series and

computational efficiency is presented.
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CHAPTER I INTRODUCTION

It is a remarkable fact that linear Gaussian models have dominated

the development of time series model building for the past five decades.

Time series data from a variety of sources are often analyzed under the
»•w'

explicit or implicit assumption that they are generated by linear

Gaussian processes. These processes are finite parameter linear

stationary stochastic processes. The general linear process

representation of {X} is of the form
r

where e are Gaussian, independent identically distributed random

innovations with E [e]= 0. Although many successful examples can be

found in linear Gaussian model building, it has been pointed out that

there are still some limitations on this modelling technique (See, e.g.,

Tong 1983).

Recently, several special non-linear models in Time Series have

been developed, including Bilinear Models (Granger and Andersen 1978,

Subba Rao and Gabr 1984), Threshold Models (Tong 1983) and Exponential

Autoregressive Models (Haggan and Ozaki 1978). A general non-linear

time series model can be regarded as the output of a non-linear systemi

whose input is a stationary random process{ e}. The output is of

the form

where f is a nonlinear function that does not depend on t. Nonlinear

time series data can exhibit limit cycles, clipping, hysteresis, and so

on. We may often have to face the problem of deciding whether a given

set of data are generated from a linear or non-linear process.



Diagnostic checking in the traditional Box and Jenkins approach is

not designed to reveal non-linearity of the time series data. A simple

graphical method that can be used to detect nonlinearity is

nonparametric kernel regression (See, e.g., Watson 1964). However the

accuracy of this method may be affected by the subjective choice of

bandwidth and type of window. Nevertheless, nonparametric regression is

valuable as a preliminary examination of the data.

Today, businessmen, engineers and sociologists may face a lot of

time series data; they need a systematic method of discriminating

between linear and non-linear time series.



CHAPTER II EXISTING METHODS

Recently, a few statistical methods designed to detect certain

types of nonlinearity in a time series have appeared in the literature.

Some of them are nonparametric methods, while others are parametric

tests.

Subba Rao and Gabr (1980) presented a test for nonlinearity using a

sample estimates of the bispectrum of time series. Hinich (1982)

presented a nonparametric test that also uses the sample bispectrum, but

which takes advantage of the asymptotic properties of the bispectrum

estimator. Keenan (1985) described a Tukey nonadditivity- type test for

nonlinearity in time series. The test is regarded as a diagnostic for

linearity versus a second-order Volterra expansion. In this chapter, we

are going to investigate existing methods individually.

2.1 SUBBA RAO-GABR'S TEST

Let{ X} be a time series with third order moments.

Define

(2.1.1)

where

f(w) is the spectral density function of{ X}

(2.1.2)



with R(s) is the autocovariance function of{ X}

(2.1.3)

f(wrw2) is the bispectral density function of{ X.}

with C(r,s) is the third-order central moment of{}
t

Subba Rao-Gabr (1980) showed that the should be constant over

all w. and w. if{ X} is given by a linear representation, i.e.
J J t

where{ e} is a sequence of independent identically distributed random

2
variables with zero mean, constant variance a. The actual test

e

2
statistic is based upon the complex-valued analogue of Hotelling's T

test of the mean vector lying on the equiangular line. Subba Rao-Gabr

use the asympototic complex-normality of the bispectrum in a certain

2
triangular region of[ 0, 2 tt]( Van Hess 1966). They, however, use as

their estimated covariance matrix the usual sample second moment matrix

of multivariate analysis, treating the bispectral estimates as the data,

rather than using the known asymptotic covariance matrix of the

bispectral estimates.

The hypothesis of Subba Rao-Gabr's test are:

H: f(w.,w.) is constant for all w. and w.
0 l j i J

H: f(w.,w.) is not constant for some w. and w.
1 i J i J

Acceptance of is consistent with linearity while rejection of HQ

implies that the process is not linear.



In order to obtain T, we need to estimate f(w) and f(w.,w.) of
ij i j

{ X}. Subba Rao-Gabr (1984) considered the estimation of the spectral

and bispectral density function using the spectral window approach

(See, e.g., Priestley 1981). The natural estimates of E[X] and R(s),

repectively, are

The estimated spectral density function is

cos ws

where M is the truncation point and V is the lag window function. Some

of the windows which will be used in the simulation study in Section 4

of this chapter are given in table 2.1.

Table 2.1 here

The estimated bispectral density function is

where n



P= Max(0,r,s)

is the two dimensional spectral window

Vp(p,q)= V(p) V(q) V(p-q) (2.1.12)

Subba Rao-Gabr (1984) have compared different type of one-dimensional

and two-dimensional lag windows. In Section 2.4, we have performed their

test under different types and bandwidths of lag windows. Some

interesting results were discovered.

2.2 HINICH'S TEST

Hinich (1982) improved on Subba Rao-Gabr1s test by using the known

asymptotic covariance matrix of the bispectral estimates and also

proposed a test based on the interquartile range of square modulus of

the sample bispectrum over a certain triangular region The

test statistic is the interquartile range of a subset of

which is approximately normal distributed under the linearity hypothesis

and certain conditions,

There are many ways to average the bispectral density function

f(i,j) to obtain a consistent estimate of the bispectrum on a lattice of

points in the triangular grid region. Subba Rao-Gabr use the standard

window approach, but Hinich prefers to smooth the f(i,j) in a square of

2
M points, where M : NC for N is number of data, 0.£ : c 1 The

parameter c controls the trade off between bias and variance.

This nonparametric test proposed by Hinich is based on a robust

measure of dispersion. The Subba Rao-Gabr's F test can be sensitive to

outliers in the T.. due to small estimates of the spectrum at certain
ij

frequences. Also, the power of Hinich's test is high when rN is large

(r is the average skewness).



2.3 KEENAN'S TEST

An important insight to the nature of the general nonlinear model

is provided by the discrete time Volterra series expansion:

(2.3.1)

The a1., aij., aijk. are coefficients of the series and the e

input process is usually considered to be unobservable. Wiener (1958),

in a classic study of nonlinear systems, used the continuous time

version of (2.3.1) to express the nonlinear relationship between input

and output of a physical system. When{ e} is a purely random process

with zero mean, the first term in (2.3.1) is a general linear model and

the successive terms are usually referred to as the quadratic,

cubic components.

When restricting to the quadratic component of the Volterra series

expansion, Keenan (1985) argues that a test of linearity is equivalent

to test whether all a in (2.3.1) are equal to zero. An analogue of

Tukey's (1949) one degree of freedom for nonadditivity test provides a

framework to achieve this target.

The hypothesis of Keenan's test are:

where a.. are coefficients in (2.3.1)
ij



The steps to calculate the test statistic of Keenan's test are as

follows:

(i) Regress X on
s

and calculate the fitted

values and the residuals, f or

and the residual sum of squares,

2
(ii) Regress X on

s
and calculate the

residuals{ E}, for
s

(iii) Regress on

2
and obtain N and F via

where NQ is the regression cofficient and

Keenan proved that for a large n( sample size) and a large, fixed

M, F is asymptotically Chi-square distributed with one degree of

frooHn m

2.4 A SIMULATION STUDY

To investigate each existing tests, nine sample models have been

selected as the basis for examining the discriminant ability of each

method.

APPENDIX I here



Models 1 and 2 are linear models, second-order moving average and

second-order autoregressive, respectively. The others are all nonlinear

models; models 3,4,5 and 6 are some special nonlinear time series models

( Priestley 1981, Section 11.6). Models 7,8 and 9 are some nonlinear MA

models which have been discussed by Keenan (1985). The parameter values

of the sample models are fairly representative, in the sense of not

being close to the boundary. The{ e} are all Gaussian with zero mean

and unit variance.

A. Nonparametric Regression

In Chapter I, we have mentioned that people usually use

nonparametric regression as a preliminary technique to detect

nonlinearity in time series. A series with 10,000 data was generated for

each sample model. By using G. S. Watson's (1964) approach, we performed

the nonparametric regression analysis for each of them. E[X |X_] are

plotted.

Figs 2.1a to 2.1i here

The nonparametric regression seems quite reasonable for detecting

nonlinearity in the sample series. Fig 2.1 a and b show the linear

characteristics of models 1 and 2. The nonlinear elements of models 3,

4, 5, 6, 8 and 9 can be identified by means of this technique. However,

model 7 has hidden its nonlinearity under nonparametric regression.

Although the performance of nonparametric regression in our sample

models is quite satisfactory, there are still some deficiencies of this

technique. How to choose a suitable type of window and its width?

Different choices among them may give different conclusions. Moreover,



the scale of the graph E[X |X] is very important, different scales

may reveal different shapes. Finally, in the above simulation, we have

chosen a very large sample size( N=10,000). The results are not

satisfactory when the sample size is less than 300.

B. Subba Rao-Gabr's Test

Subba Rao-Gabr (1984) provided a FORTRAN program to perform their

test. However, we discovered that there are some minor bugs within the

program:

line 58 original: R(I)=V(I)SUMFL0AT(N-I)

corrected: R(I)=V(I)SUMFL0AT(N)

line 93 original: S=V(J1)V(J2)V(J1-J2)C(J1,J2)

corrected: S=V(J1)V(J2)V(J1-J2-H )C(J1,J2)

line 231 : Subroutine F04ASF is missing

F04ASF is replaced by IMSL subroutines which are designed to

perform matrix operations. After correcting these minor mistakes, their

program will run. Moreover, we added to the program two subroutines

DANIEL and BRTPRI which evaluate Daniell and Bartlett-Priestley windows

respectively.

i

In order to examine the Subba Rao-Gabr's test, we have generated

one linear time series from model 1 (Series A) and one nonlinear time

series from model 9 (Series B), each one with size N=500. These series

are plotted in Fig 2.2a and Fig 2.2b.



Figs 2.2a and 2.2b here

In estimating the spectral and bispectral density functions, we

have attempted to use different types of window and different M. The

parameters K, L, d, r, p and n for constructing the F-statistic are as

follows

The critical value is upper 5% point of F with (6,3) degrees of freedom

(8.94). The calculated F values for Series A and Series B are given in

Tables 2.2a and 2.2b

Tables 2.2a and 2.2b here

The F-statistics vary a lot under different M and types of window.

It reveals that the F-statistic under Subba Rao-Gabr's test is extremely

unstable and heavily depends on the choices of M and type of window. As

a typical example, if we choose one and two dimensional Daniell window,

M=30 for Series A, the conclusion of Subba Rao-Gabr's test is linear

(1.10 5.89). But if we choose Parzen window with M=30, the conclusion

will be reversed (15.95 5.89)!

The main problem of Subba Rao-Gabr's test is the erratic behaviour

under different types of window and M values. From (2.1.2)

the values of f(w.), f(w.) and f(wi+w.) may be very close to zero at

certain frequencies and T_ will blow up. At different M values and



types of window, the location of these frequencies are different. The F-

statistic is also very sensitive to outliers in the T.. and will lead to
ij

instability in Subba Rao-Gabr's test.

Moreover, Subba Rao-Gabr (1984) chose a distance d so that the

bispectral estimates at neighbouring points on the fine grid are assumed

to be uncorrlated. This assumption may not be always true. Also, their

test requires the existence of third-order moment of the data, which may

not always hold without appropriate instantaneous transformation. These

are some of the limitations of their test.

C. Hinich's Test

The test is examined under the nine sample models in Appendix I.

APPENDIX I here

To analyse the discriminant ability of Hinich's test, 100 replications

were performed for each sample model with N=204. When we set a =0.05,

the critical values are+ 1.96. Table 2.3 gives the results.

Table 2.3 here

Hinich's test seems unable to detect the nonlinearity in Threshold

and Exponential Autoregressive models( models 3,5, and 6). Its

discriminant ability for other non-linear models is not very high(

models 4,7, and 8), even less than 40%. Fortunately, Hinich's test can

detect the linearity in models 1 and 2 quite satisfactory.



D. Keenan's Test

For the convenience of comparsion, we also used the nine sample

models in Appendix I to examine Keenan's test. We maintained N=204, IOC

replications were performed for each sample model. The summary are

given in Table 2.4.

Table 2.4 here

Keenan's test performed quite well in models 1, 2, 4, 8 and 9, but

it failed to detect the nonlinearity in models 3,5 and 7. The original

design of Keenan's test is to detect the existence of quadratic

component in Volterra series expansion. However, some nonlinear time

series models may without quadratic compenent but have other higher

order terms. For an example, consider a general Exponential AR(1) model:

where p1, p2, p3
are constants in terms of a, b and g

for some q., q...
i ljk

Therefore, the Volterra series expansion of model 3 is only in odd power

terms. Keenan's test cannot detect its nonlinearity.

Moreover, some symmetric with respect to the origin SETAR models,

as model 5, are approximately close to those Exponential AR(1) models.



It may explain the failure of detecting the nonlinearity in model 5 by
i' r i•. 11. ii

Keenan's test. Figs 2.3a and 2.3b show the shapes in E[ X 1 vs X of
t t-1

models 3 and 5 respectively.

Figs 2.3a and 2.3b here

2.5 APPLICATION TO REAL DATA

The test were also applied on some well known time series data. The

series considered are

(i) the Canadian lynx data;

ti

(ii) Wolfer sunspot numbers; and

(iii) Nicholson's blowfly data.

The first series we considered is the annual number of Canadian

lynx trapped in the Mackenzie River district of North-west Canada for

the years 1821-1934, giving a total of 114 observations. These numbers

are given in Appendix II and plotted in Fig 2.4a. There is an obvious

I

cycle of approximately ten years with varying amplitude. We tested both

raw and logarithm of the data. The second series we considered is the

it

Wolfer sunspot for the years 1700-1955 (Waldmeirer,1961), giving 256

observations. These numbers are given in Appendix III and plotted in Fig

2.4b. This series has a certain historic interest for statisticians,

see, e.g. Yule(1927), Bartlett(1950), Whittle(1954) and Brillinger and

Rosenblatt(1967). It is believed by many scientists that this series has

an eleven year cycle. We applied the raw, logarithm and a special square

root (proposed by Tong, 1983) transformed data to the tests. The last

series we considered is a laboratory data— Nicholson's blowfly data.

Nield in an unpublished M.Sc. dissertation( University of Manchester,



1982; see also Tong, 1983, S5.4) has seperated the data set Into two

halves:

BLOWFLY A

BLOWFLY B

21

21!

145

299

The full set of blowfly data are given in Appendix IV. Fig 2.4c gives

the data plot, from whcih the time intervals of BLOWFLY A and BLOWFLY B

are specified. Chan and Tong (1985) has made the following comments to

the blowfly data:

(i) that there is a sharply defined change point, i.e.

threshold, in the generating mechanism for the first half of the date

set (BLOWFLY A) and that the generating mechanism is best taken to be

non-linear;

(ii) that, for the second half of the data set (BLOWFLY B),

there is no evidence of non-linearity.

Figs 2.4a, 2.4b and 2.4c here

Nonparametric regression were applied to each raw series and the

results are plotted.

Figs 2.5a to 2.5d here

The graphs suggest that all the input series are generated from non¬

linear process, even BLOWFLY B data set.

We tried Subba Rao-Gabr's test for each series. The values of K was

chosen, as in Section 2.4, to be K=6, which implies that L=4 and P=7.



Also r-2, which implies that n=9 for all the above real series. The

critical value is upper 5% point of F distribution with (6,3) degrees of

freedom (8.94).

Tables 2.5a to 2.5d here

The computation of Subba Rao-Gabr's F-statistic again behaves quite

erratically when applying to the real series.

The results of HTnich1s test for the real series are given in a

condensed table.

Table 2.6 here

The test concluded that lynx and sunspot data are generated from linear

processes, regardless of the transformation. In BLOWFLY A data, Hinich's

test detects nonlinearity after the logarithm transformation. His test

accepts the linearity in BLOWFLY B data.

We also applied Kaneen's test to each real series, the results are

summarized at the table 2.7.

Table 2.7 here

The test classifies the lynx data into linear time series. For BLOWFLY

A, Keenan's test concluded the raw data as linear but the transformed

data are non-linear. Our experience suggests that instantaneous

transformation has a useful role to play in detecting non-linearity.

Now, tests for nonlinearity are usually based on the assumption of

homogeneous variance. A suitable instantaneous transformation may be

needed to stablize the variance. The non-linear behaviour of the series

could then become more obvious.



17
2.6 COMMENTS

Various tests for linearity have been proposed although none is

totally satisfactory. After the study of these existing tests, we have

found out some weakness of each method.

A. Subba Rao-Gabr's test

Because of the numerical instability of Subba Rao-Gabr's F-

statistic, it is difficult to interpret results of their test.

B. Hinich's test

Although an improvement over Subba Rao-Gabr's test, Hinich's

test seems unable to detect some Threshold or Exponential AR models. The

discriminant ability of his test is rather low. It quite often draws

misleading conclusion.

C. Keenan's test

The test fails to detect those nonlinear time series models

which do not have the quadratic component in Volterra series expansion.
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Fig 2.2a Series A, simulated from the model 1, N=5Q0
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Fig 2.2b Series B, simulated from model 9, N=500
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Fig2.4a Lynx Data
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-iq2.4b Sunspot Data
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Fig2.4c Blowfly Data
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TABLE 2.1 Lag windows V(s)

Daniell window

Tukey-Hamming

window

Parzen window

Bartlett-Pri est ley-

window

Bartlett window

v(S;

otherwise

otherwise

otherwise



TABLE 2.2a F-STATISTICS FOR SUBBA RAO-GABR'S TEST FOR MODEL 1

Lag

M

17

Daniell

Optimum

Bartlett

WINDOW

Tukey Daniell Parzen

804.1190.26 146.45 55.67 20.17

Bartlett

Priestlev

87.57

5.7483.4719.3914.5224.931.2520

25 0.61 8.38 5.27 2.31 12.70 1.55

1.5415.951.101.533.110.6830



TABLE 2.2b F-STATISTICS FOR SUBBA RAO-GABR'S TEST FOR MODEL 9

Lag WINDOW

M Daniell

Optimum

Bartiett Tukey Daniell Parzen Bartlett

Priestley

17 3.79 435.05 93.88 141.59 821.47 7.19

20 19.59 12418.30 174.76 188.84 2648.87 19.37

25 6.61 10315.09 270.28 153.88 436.49 21.17

30 4.39 1810.75 56.61 53.04 246.57 2.97



34

TABLE 2.3 SUMMARY: HINICH'S TEST FOR MODEL 1-9 (N=204)M=15) 100 REPLICATIONS

MODEL FREQUENCY OF CORRECTORIGINAL

DECISIONS( a =0.05)NUMBER TYPE

91L.1

97L2

10NL3

38NL4

5NL5

2NL6

34NL7

27NL8

87NL9

REMARKS: L- LINEAR NL- NONLINEAR
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TABLE 2.4 SUMMARY: KEENAN'S TEST FOR MODEL 1-9 (N=204)M=8) 100 REPLICATIONS
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MODEL ORIGINAL FREQUENCY OF CORRECT
DECISIONS( a =0.05)NUMBER TYPE

95L1

98L2

NL3

88NL4

NL5

37NL6

10NL7

NL8 91

NL9

REMARKS: L- LINEAR NL- NONLINEAR
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TABLE 2.5a SUBBA RAO-GABR'S TEST FOR RAW LYNX DATA (F-STATISTICS)

Lag W I N D 0 W

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

M Daniell Bartlett Tukey Daniell Parzen Bartlett

Optimum Priestley

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13 1.09 96.84 36.87 9.35 3002.15 1.95

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

16 2.03 4959.02 7.64 26.66 429.48 0.46

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 8.67 185.23 1.51 26.68 829.37 1.64

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

25 75.39 10.23 3.23 5.32 53.06 1.42

REMARKS :0=0.05, Critical Value= 8.94
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TABLE 2.5b SUBBA RAO-GABR'S TEST FOR RAW SUNSPOT DATA (F-STATISTICS)

Lag W I N D 0 W

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

M Daniell Bartlett Tukey Daniell Parzen Bartlett
Optimum Priestley

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

17 2.82 545.62 4.04 116.27 54396.73 0.83

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 2.37 343.46 1245.46 109.86 17180.14 1.99

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

25 7.26 247.43 60.60 95.91 4955.32 0.49

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

30 1.48 143.11 1.89 92.33 1876.83 1.64

REMARKS : a=0.05, Critical value = 8.94
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TABLE 2.5c SUBBA RAO-GABR'S TEST FOR RAW BLOWFLY A (F-STATISTICS)

Lag W I N D 0 W

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

M Daniell Bartlett Tukey Daniell Parzen Bartlett

Optimum Priestley
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13 1.38 7.54 2.96 23.87 -3283.80 0.90

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

16 1.77 4.92 29.39 49.27 1537.53 0.83

. - - - . - . . - • - - - - - - - • - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 38.30 14.18 3.53 18.61 143.87 7.90

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .

25 7.99 7.84 2.00 90.09 245.44 2.16

REMARKS: a=0.05, Critical Value= 8.94
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TABLE 2.5d SUBBA RAO-GABR'S TEST FOR RAW BLOWFLY B (F-STATISTICS)

Lag W I N D 0 W

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

M Daniell Bartlett Tukey Daniell Parzen Bartlett

Optimum Priestley

- - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

8 0.67 55.57 11.59 8.02 23720.70 2.99

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 4.44 9.15 14.09 5.51 69.19 0.83

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13 6.85 36.31 2.39 4.31 382.44 1.73

16 0.86 8.89 4.64 18.45 43.27 0.75

REMARKS :a=0.05, Critical Value =8.94
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TABLE 2.6 HINICH'S TEST FOR REAL DATA
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Conclusion2Data Transformation Test
l

Statistics

L1.4588Lynx RAW

N=114

-1.1824 LLOGTEN

L0.3785RAWSunspot

N=256
-0.2394 L2[Sq(X+1)- 1]

L0.4834RAWB lowf lyA

N=126
-0.6705 LSQRT

NL2.8977LOGTEN

L1.1816RAWB lowf lyE

N=82
-0.5868 LSQRT

-0.3768 LLOGTEN

REMARKS: (1) a =0.05, Critical Values=+ 1.96

(2) L-- Linear NL-- Nonlinear
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TABLE 2.7 KEENAN'S TEST FOR REAL DATA

Conclusion)TransformationData
Test 1
Statistics

L0.1221RAWLynx

N=114

L1.3661LOGTEN

NL14.5364RAWSunspot

N=256

NL5.83202[Sq(X+1)- 1]

L1.8994RAWB lowf lyA

N=126
NL3.8706SQRT

NL5.5964LOGTEN

L0.2282RAWB lowf lyB

N=82
L0.1914SQRT

L0.1242LOGTEN

REMARKS: (1) a =0.05, Critical Value 3.64

(2) L-- Linear NL-- Nonlinear
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CHAPTER III A NEW PROPOSED METHODS

3.1 INTRODUCTION

In a recent paper, Tong and Lim (1980) state that the new era of

practical non-linear time series modelling is, without doubt, long-

overdue. To accompany this claim, they introduce a family of non-

linear models, called threshold autoregessive (TAR) models, and

demonstrate their applicability to practical problems by examples.

Although Tong and Lim invited us to enter the world of non-linear

models, there is no reason for us to abandon all models in the territory

of linearity. The theory of linear models is as yet much better

developed than that of non-linear models, and many problems are easier

to deal with in the linear framework. We believed that there should be

ways of choosing the right (linear or non-linear) family of models on

the basis of the evidence contained in the data.

3.2 THE IDEA

The idea of using piecewise linear models in a systematic way for

the modelling of discrete time series data was first mentioned in Tong

(1977) and reported in, Tong (1978a, 1978b, 1980). A Comprehensive

account, together with numerous applications and discussion, is

available in Tong and Lim (1980). Our new proposed test is based on

choosing between Autoregressive (AR) and Self-Exciting Threshold

Autoregressive (SETAR) models. Tong (1983) provided a general reference

for SETAR modelling.
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Consider a general SETAR(2k,k) model

(3.2.1)

Let

and

we consider testing the interesting nullGiven

hypothesis

^(2)

against

,(2)

H1 states that the generating machanism is non-linear in being piecewise

linear as specified in (3.2.1). Note that, under HO, the nuisance

parameter r is not present and the SETAR(2k,k) model will collapse to a

AR(k) model. However, for fixed r, ignoring the transient effect of

initial observations (as is usually done), the classical result of

likelihood ratio test is shown to hold (Chan and Tong, 1985).

Let

(3.2.2)

Where L2 is the estimated innovation variance of the AR(k) mode

and NL2 is the estimated innovation variance of the non-linea

2

SETAR(2:k,k) model. Under Hn, -2 ln is asymptotically x2 k+1.



It is intuitively clear that the test thus provided is useful

only when the alternative is in the form (3.2.1) with a fixed r.

However, in the original setup, r is seldom known beforehand. Chan and

Tong suggest that a natural approach is to consider instead

or, if we have reason to believe that r

Tong and Lim (1980) employ Akaike's Information Criterion (AIC,

A A

Akaike ,1974) in choosing the r and d to replace the fixed threshold (r)

f!

and the delay parameter (d) in (3.2.1) respectively. However, Terasvirta

and Luukkonen (1983) have suggested that the Schwarz1s Bayesian

Information Criterion (SBIC), cf. Schwarz (1978), is a viable

alternative.

A A

Unfortunately, even if we obtain r and d to replace r and d in

calculating the likelihood ratio statistic Y or Y, the classical result

no longer holds. Feder (1975) pointed out that in these cases the

parameter estimates are not asymptotically normal and -2 In A is not

asymptotically X2 with the appropriate number of degree of

2

freedom. Although the distribution of Y or Y is not asymptotically X

and rather different to obtain, we can always appeal to the Monte Carlo

I i i• II i ll i

technique. Silverman (1985) has applied similar approach in

specification of regression models.

The algorithm of our new proposed test is as follows:

(1) Input the test data,, X, V

(2) Use SBIC to choose a best fitted linear AR(k) model and

obtain the appropriate



(3) Use SBIC to choose a best fitted non-linear SETAR(2: k. k)

model and obta:
2

NL'

(4) Calculate the likelihood ratio test statistic

(5) Simulate the null distributior

(i) are simulated from the AR(k)

linear model specified by the step (2)

(ii) Repeat steps (2) (3) and (4) to obtain an

r

observation, say T, from the null distribution.

(iii) Repeat (i) and (ii) 100 times and obtain a sample

from the null distribution in form of T., 11 2
T

100'

from which the null distribution may be estimated.

(6) T is compared with the simulated null distribution and a

conclusion is drawn. Let{ T(2) T(100)
be the

order statistic of{ T, 1, T
100

If we take

=0.05, the decision rule is

conclusion: non-linear

conclusion: linear

The Monte Carlo results reveal that our new proposed test is quite

roboust among the choices of k (maximum lag in fitting the linear and

non-linear models). Therefore, we prefer to use k=2. In this case, the

estimation of the AR(k) and SETAR(2;k,k) models are quite simple.

- 45



3.3 A SIMULATION STUDY

Our simulation study, again, is based on the nine sample models in

Appendix I.

Appendix I here

204 simulated data are generated from each sample model. We perform our

test with 100 replications. Number of correct decision for each sample

model are recorded in table 3.1.

Table 3.1 here

We have a very high detection rate among models 1 to 6, models 8

and 9. However, our test fails to detect the non-linearity in model 7.

Consider model 7:

The conditional mean of model 7 is in a linear form. It may be

considered a limitation of our test which seems unable to detect non¬

linear time series models with a conditional mean linear in the
I

unobservable e 's. The following simulation experiment tends to support

our observation. Consider

MODEL A

MODEL B

MODEL C

MODEL D
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We test each model with 100 replications, the results are given in

table 3.2.

Table 3.2 here

Models A and B, with a quadratic conditional mean, can be identified by

the test. While models C and D, with a linear conditional mean, cannot

be detected by our test.

3.4 APPLICATION TO REAL DATA

We apply the same real series used in section 2.5 to our new

proposed test. The results are given in table 3.3.

Table 3.3 here

The test concluded that the lynx,' sunspot and BLOWFLY A data are non-

linear time series, regardless,of transformation. These results suggest

that fitting a SETAR model to lynx data, blowfly A data and sunspot data

is not unreasonable. This conclusion leads some support to non-linear

modelling of these data. For BLOWFLY B data, the test agrees with Chan

and Tong's (1985) conclusion that the data are generated from a linear

machanism.

3.5 COMMENTS

This new proposed test seem to have a high degree of reliability in

detecting non-linearity in time series data. From the simulation study

in section 3.3, when the generating machanism is piecewise linear as

specified in (3.2.1), we have a 100% detection rate! Even when the

generating machanism of the test data is non-linear in the form of
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bilinear, exponential AR or non-linear MA, which is different from the

working setup (SETAR), our test still tends to classify the data as

being generated by a non-linear model. Also, when applying to some well

known real series, the test draws conclusions which tends to support

non-linear modelling of them. But there is a limitation of using the

test. It is unable to identify some non-linear time series models with

conditional mean linear in the et's. Since we use Monte Carlo technique

to obtain the null distribution of our test, it is difficult to assign

the exact level of significance. But it does not seem a great barrier in

practice.
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TABLE 3.1 SUMMARY: OUR TEST FOR MODEL 1-9 (N=204) 100 REPLICATIONS

FREQUENCY OF CORRECTORIGINALMODEL
DECISIONS (a =0.05)TYPENUMBER

99L1

96L2

94NL3

100NL4

96NL5

100NL6

14NL7

96NL8

NL 989

REMARKS: L- LINEAR NL NONL N1AK
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TABLE 3.2 SUMMARY: OUR TEST FOR MODEL A-D (N=204) 100 REPLICATIONS

FREQUENCY OF CORRECTMODEL ORIGINAL

DECISIONS( a =0.05)NUMBER TYPE

95NLA

97NLB

14NLC

12NLD

REMARKS: L- LINEAR NL- NONLINEAR
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TABLE 3.3 OUR TEST FOR REAL DATA

ConclusionCriticalTest'TransformationData
Value a= 5%Statistics

NL7.031027.4200RAWLynx

N=114
NLT nr_TFN 6.374426.4254

NL8.838868.1915RAWSunspot

N=256
NL9.081420.0074

NL6.981423.4344RAWB lowf lyi

N=126
NL7.01057.2725SQRT

NL8.545717.9827LOGTEN

L10.33862.5966RAWB lowf lyB

N=82
L9.70580.1748SQRT

L7.90381.4368LOGTEN

REMARKS: L-- Linear NL-- Nonlinear



52
CHAPTER IV A COMPARSION

4.1 SIMULATION RESULTS

In Section 2.4 of Chapter II, the Monte Carlo results reveal that

Subba Rao-Gabr's F-statistic is extremely unstable and cannot draw

consisent conclusions. Some simulated data are used to test their method

and the results are given in Table 2.2a and 2.2b. We input the same test

data into Hinich's test, the results are recorded in Table 4.1.

Tables 2..2a, 2.2b and 4.1 here

From Table 4.1, Hinich's test can draw correct and consistent

conclusions under different choices of M. Therefore, based on the

simulation study, we can conclude that Hinich (1982) has improved Subba

Rao-Gabr's test significantly.

We are going to compare Hinich's test, Keenan's test and our neu

proposed method. The comparsion„will,be mainly based on the performance

of each test to the nine sample models.

Appendix I here

Number of correct decision among each test in 100 replications are given

in Table 4.2.

Table 4.2 here

All of the test can identify the linearity elements in models 1 and

2 successfully. But none of them can detect the non-linearity in model 7

satisfactory. Hinich's test seems perform better in testing model 7, but
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its detection rate for other non-linear sample models are quite poor.

Keenan's test is sensitive to non-linear MA models, but its ability in

detecting non-linear AR models (e.g. SETAR, EXPAR,..) are weak. From the

simulation results, our test is satisfactory but not perfect. The

disability of detecting some non-linear models with linear conditional

mean are disclosed in testing model 7.

4.2 REAL DATA

An ideal test is not only perform satisfactory under simulation

experiments, but also can draw reasonable conclusions when applying to

the real data. Some well known time series have been selected to examine

the tests. The lynx, sunspot and BLOWFLY A data are widely accepted as

non-linear time series. While BLOWFLY B data are generated from linear

machanism. In previous chapters, individual tests had been applied to

each real series and the results were discussed. In Table 4.3, we

summarize the conclusions of the tests to each real series.

Table 4.3 here

The conclusions of our test agree with the widely accepted results.

Keenan's test classifies lynx data to linear time series, but his test

can draw quite reasonable conclusions among other series. Hinich's test

concludes that all tested series are generated from linear machanism,

except logarithm transformed BLOWFLY A data. Our test seems better than

other methods in applying to the real series.
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4.3 SOME SPECIAL TIME SERIES

A. Non-Gaussian Time Series

After five decades of domination by linear Gaussian models,

the time is certainly ripe for a serious study of ways of removing the

many limitations of these models. Once we decide to incorporate features

in addition to the autocovariances, the class of models would have to be

greatly enlarged to include those besides the Gaussian ARMA models. We

may retain the general ARMA framework and allow the white noise to be

non-Gaussian.

We are interested in comparing the ability of each test in

detecting the linearity of linear non-Gaussian models. Consider a non-

Gaussian MA(1) model

where

We perform a simulation experiment with 100 replications, the number of

correct decision among each test are reported in table 4.4.

Table 4.4 here

Keenan's test and Hinich's test can detect the linearity in

this linear non-Gaussian model successfully. However, our test

misclassify it into non-linear territory. Consider the conditional mean

of this non-Gaussian MA(1) model, after some manipulation, E[XtIXt-1] is

shown to be non-linear (Tong, 1983). As previous conclusion in Chapter

III, our test is mainly based on testing the conditional mean of the

model. In this case, our test will misclassify these models.
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B. Linear Time Series Models With Random Coefficients

Consider the following random coefficient AR(1) model

where

Random coefficient AR models have been included as a sub-class

of non-linear models (e.g. Nicholls and Quinn 1982). However, it is

arguable if these models are truly non-linear because the conditional

means, E[ Xt past X's are linear in the past X's (See the

discussion paper by Lawrance and Lewis 1985). We apply the tests to the

model with 100 replications, the results are given in table 4.5. All

tests draw the same conclusion, random coeficient AR(1) models are

linear. Therefore, as far as Hinich's (a fortified Subba Rao-Gabr's)

test, Keenan's test and our test are concerned, these models are linear.

Table 4.5 here

C. Time Series With Small Sample Size

We are going to examine the tests with small sample. A linear

AR(2) (model 1) and a non-linear model (model 9) are chosen as basis.

Hinich's test finds it difficult to deal with small samples. When

N 60, the number of squares within prinicpal domain which are used-to

smooth the spectrum is less than 2. Therefore, Hinich's test is not

applicable to time series with observations less than 60. When we use

Keenan's test in model 9, we discover the design matrix of regression in

Tukey's non-additivity-type test-framework is near singlar. Therefore,



we cannot draw valid conclusion. However, when the data are generated

from model 1 (linear model), Keenan's test appears to operate well, even

when N 50. Our test seems to work normally when applying to time

series with small sample size. Table 4.6 gives the results of the

simulation experiment.

Table 4.6 here

D. White Noise With Different Innovation Variance

2
Consider a series of white noise e« N( 0, a). An ideal

L C

2
test can detect its linearity independent of any cr. We apply the

6X
2

tests to these series of white noise with different magnitude of a
c

the results are given in table 4.7. All tests appear to identify the

2
linearity of each series, regardless of the magnitude of cj within the

range of (1,500).

Table 4.7 here

4.4 CPU TIME REQUIRED

We are going to compare the computational efficiency of each tests.

A comparsion of CPU time required by each test to process a time series

with 204 observations are given in table 4.8.

Table 4.8 here
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Hinich's test and Keenan's test only need 15* and 17* CPU seconds

respectively. Because of the complexity in computing the spectral and

bispectral estimates, Subba Rao-Gabr's test requires 60* seconds. Our

*

test needs 152 CPU seconds to calculate the test statistic and simulate

the null distribution. About 95% of the required CPU time for our test

is taken up in simulating the null distribution. Although our new

proposed method requires nearly 3 minutes CPU time, it is not a barrier

for us to use the test. The advanced computer technology today can

handle our test without any difficulty.

All computer programs are written in FORTRAN, executed by

IBM-3031, VM370-OSVS1 system at the computer centre,

the Chinese University of Hong kong.
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TABLE 4.1 HINICH'S TEST FOR SIMULATED DATA

M 0 D E L 1( L) M 0 D E L 9( NL)

M

TestTest

ConclusionStatisticStatistic Conclusion

-0.2345 NL8.3921L17

NL11.6327L0.041720

NL6.4612L0.567725

-0.0595 NL2.2404L30

REMARKS: L- Linear NL- Non-Linear,

a= 0.05 Critical values=+ 1.96
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TABLE 4.2 NUMBER OF CORRECT DECISION AMONG EACH TEST (100 REPLICATIONS)
- - - - - - - - - - - - - - - - - - - - - - -

Model Original Keenan's OurHinich's

Number Type Test TestTest

951 L 91 99

97 98 96L2

94610NL3

NL
9688384

1008NL 55

100372NL6

141034NL7

969127NL8

989387NL9

REMARKS: L- Linear NL- Non-Linear,

We set a= 0.05.
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TABLE 4.3 A COMPARSION FOR ALL TESTS TO REAL DATA

Data Transrormation OurHinich's Keenan's

TestTes t Test

RAW NLLynx L L

N=114

NLL LLOGTEN

NLNLLRAWSunspot

N=256

NLNLL2[Sq(X+1)- 1]

NLLLRAWB lowf lyA

N=126

NLNLLSQRT

NLNLNLLOGTEN

LLLRAWBlowf lyB

N=82

LLLSQRT

LLLLOGTEN

REMARKS: L-- Linear NL-- Nonlinear

We set a =0.05.
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TABLE 4.4 TEST RESULTS FOR NON-GAUSSIAN MA(1) MODELS

Number of correcta Test

(a =0.05) decision per 100

99Hinich's

97Keenan's0.7

12Our test

89Hinich's

-0.7 96Keenan's

14Our test
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TABLE 4.5 TEST RESULTS FOR RANDOM COEFFICIENT AR(1) MODELS

a,b Tes t Number of correct

( a= 0.05) decision per 100

Hinich's 95

a=0.5

b=0.1 Keenan's 94

Our test 97

Hinich' s 91

a=0.0

b=0.1 Keenan's 93

Our test 98

Hinich's 93

a=-O.5

96b=0.1 Keenan's

94Our test
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TABLE 4.6 TEST RESULTS FOR SMALL SAMPLE TIME SERIES

Number of Correct Decision per 100 replications

DATA

Keenan's testHinich's test Our test

95 97Model 1 X

(N=30)

9494XModel 1

(N=50)

Model 9- 88XX

(N=30)

X 91XModel 9.

(N=50)

REMARKS: X- The test is not operational.
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TABLE 4.7 TEST RESULTS FOR WHITE NOISE WITH DIFFERENT VARIANCE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Number of Correct Decision per 100 replications

DATA

Hinich's test Keenan's test Our test

95N(0,1) 9896

92N(0,5) 92 98

9396N(0,10) 94

999095N(0,100)

959697N(0,500)
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TABLE 4.8 CPU TIME REQUIREMENT FOR EACH TEST (N=204)

CPU Time (seconds)

Lag Regression 6

Subba Rao-Gabr's test 60

Hinich's test 15

Keenan's test 17

Our test 152

The FORTRAN program is executed by IBM-3031, VM370-OSVS1 system

at the Computer Centre, the Chinese University-of Hong Kong.
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CHAPTER V CONCLUSION

Various tests for linearity have been proposed although none is

totally satisfactory. Keenan's test seems quite reasonable as a

diagnostic for linearity versus a second-order Volterra expansion. Such

a test would be time domain based and computationally less complex than

the frequency domain based alternatives. However, his. test is not

sensitive to detect non-linear AR models. It is also a limitation of

Keenan's test that it cannot deal with some non-linear time series model

without quadratic component in Volterra series expansion. The

computational instability in Subba Rao-Gabr's F-statistic is a fatal

weakness of their test. Although Hinich has improved Subba Rao-Gabr's

test significanlty and proposed a non-parametric method, the new test is

not very powerful. It is quite often that his test misclassifies a non-

linear time series into linear territory.- In this thesis, we have

proposed a new parametric method in testing the linearity in time

series. The simulation studies show that our test is quite powerful.

Although the test fails to detect the non-linearity of some non-linear

time series models with linear conditional mean, we are satisfied with

the overall performance of this test in our study.

In practice, we may use nonparametric regression as a preliminary

technique. If one prefers nonparametric method, we recommend Hinich's

test. Otherwise,,we suggest to use our new proposed parametric method.

Further development of test for linearity of time series data may

concentrate on detecting the non-linearity of time series models with

linear conditional mean (e.g. model 7). None of the existing methods can

handle this kind of models satisfactorily.



APPF.NDTY T? SAMPT.F. MODF.T.fs

MODEL 1:[ Linear AR(2

MODEL 2: f Linear MA(2)

MODEL 3:[ Exponential AR(1)

MODEL 4:[ Bilinear Model BL(1,0,1,1)

MODEL 5:[ Threshold Model SETAR(2;1,1)

otherwise

MODEL 6:[ Threshold Model SETAR(2;1,1)

otherwise

MODEL 7:[ Nonlinear MA Model]

MODEL 8:[ Nonlinear MA Model]

MODEL 9:[ Bilinear Model]
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APPENDIX II THE CANADIAN LYNX DATA (1821- 1934)

1 2 3 4 5 6 7 8 9 10YEAR

269 321 585 871 1475 2821 3928 5943 4950 25771821- 1830

523 98 184 279 409 2285 2685 3409 1824 4091831- 1840

151 45 68 213 546 1033 2129 2536 957 3611841- 1850

377 225 360 731 1638 2725 2871 2119 684 2991851- 1860

236 245 552 1623 3311 6721 4254 687 255 4731861- 1870

358 784 1594 1676 2251 1426 756 299 201 2291871- 1880

469 736 2042 2811 4431 2511 389 73 39 491881- 1890

59 188 377 1292 4031 3495 587 105 153 3871891- 1900

758 1307 3465 6991 6313 3794 1836 345 382 8081901- 1910

1388 2713 3800 3091 2985 3790 674 81 80 1081911- 1920

229 399 1132 2432 3574 2935 1537 529 485 6621921- 1930

1000 1590 2657 33961930- 1934



APPENDIX III ANNUAL SUNSPOT NUMBERS (1700- 1955)

YEAR 123456 789 10

1700- 1709

1710- 1719

1720- 1729

1730- 1739

1740- 1749

1750- 1759

1760- 1769

1770- 1779

1780- 1789

1790- 1799

1800- 1809

1810- 1819

1820- 1829

1830- 1839

1840- 1849

1850- 1859

1860- 1869

1870- 1879

1880- 1889

1890- 1899

1900- 1909

1910- 1919

1920- 1929

1930- 1939

1940- 1949

1950- 1955

5.0

3.0

28.0

47.0

73.0

83.4

62.9

100.8

84.8

89.9

14.5

0.0

15.6

70.9

64.6

66.6

95.8

139.0

32.3

7.1

9.5

18.6

37.6

35.7

67.8

83.9

11.0

0.0

26.0

35.0

40.0

47.7

85.9

81.6

68.1

66.6

34.0

1.4

6• 6

47.8

36.7

64.5

77.2

111.2

54.3

35.6

2.7

5.7

26.1

21.2

47.5

69.4

16.0

0.0

22.0

11.0

20.0

47.8

61.2

66.5

38.5

60.0

45.0

5.0

4.0

27.5

24.2

54.1

59.1

101.6

59.7

73.0

5.0

3.6

14.2

11.1

30.6

31.5

23.0

2.0

11.0

5.0

16.0

30.7

45.1

34.8

22.8

46.9

43.1

12.2

1.8

8.5

10.7

39.0

44.0

66.2

63.7

85.1

24.4

1.4

5.8

5.7

16.3

13.9

36.0

11.0

21.0

16.0

5.0

12.2

36.4

30.6

10.2

41.0

47.5

13.9

8.5

13.2

15.0

20.6

47.0

44.7

63.5

78.0

42.0

9.6

16.7

8.7

9.6

4.4

58.0

27.0

40.0

34.0

11.0

9.6

20.9

7.0

24.1

21.3

42.2

35.4

16.6

56.9

40.1

6.7

30.5

17.0

52.2

64.0

63.5

47.4

44.3

36.1

33.2

38.0

29.0

47.0

78.0

70.0

22.0

10.2

11.4

19.8

82.9

16.0

28.1

45.8

36.3

121.5

61.5

4.3

16.3

11.3

25.4

41.8

53.8

57.1

63.9

79.7

92.6

20.0

63.0

122.0

81.0

40.0

32.4

37.8

92.5

132.0

6.4

10.1

41.1

49.6

138.3

98.5

22.7

7.3

12.4

13.1

26.2

62.0

103.9

69.0

114.4

151.6

10.0

60.0

103.0

111.0

60.0

47.6

69.8

154.4

130.9

4.1

8.1

30.1

64.2

103.2

124.7

54.8

37.6

3.4

6.8

26.7

48.5

80.6

77.8-

109.6

1 1

8.0

39.0

73.0

101.0

80.9

54.0

106.1

125.9

118.1

6.8

2.5

23.9

67.0

85.7

96.3

93.8

74.0

6.0

6.3

12.1

43.9

63.6

64.9

88.8

1U 7



APPENDIX IV BLOWFLY DATA

248

2361

939

1295

6673

739

6208

703

2267

1225

4473

549

5218

894

3571

1188

7236

604

5634

1369

3026

3075

3618

3203

4955

2837

4849

7533

2652

4066

11282

1781

5793

3162

7010

6883

146

1352

2431

915

5441

566

5996

508

3290

1076

5221

774

5311

1454

3113

1778

5245

1340

5134

1666

1589

3815

3050

2706

5584

4690

3664

6884

2330

2891

12446

936

7836

2525

8149

8103

1801

1226

3687

551

3987

303

5789

366

3471

905

6592

864

4273

2262

2319

2428

3636

2342

4188

2627

2076

4639

3772

2717

3891

5119

3016

4127

3123

3270

13712

898

4457

2290

8949

6803

6235

912

4543

313

2952

274

6652

279

3637

772

5400

1308

3270

2363

1630

3806

2417

3328

3469

3840

1829

4424

3517

2175

3501

5838

2881

5546

3955

4404

11017

1160

6901

1955

6105

5974

521

4543

167

3648

192

7939

243

3703

628

4752

1624

2281

3847

1297

4519

1258

3599

2442

4044

1888

2784

3350

1628

4436

5389

3821

6316

4494

4398

14683

3158

8191

1936

5324

8921

363

5441

96

4222

226

4868

343

4876

473

3521

2224

1549

3876

861

5646

766

4081

1931

4929

1149

5860

3018

2388

4369

4993

4300

6650

4780

4112

7258

3386

6766

2384

5766

6610

229

4412

93

3889

519

3952

761

5364

539

2719

2423

1081

3936

761

4851

479

7643

1790

5111

968

5781

2625

3677

3394

4446

4168

6304

5753

4401

6195

4547

5165

4666

6214

5973

142

3022

60

2295

1224

2712

1025

4890

825

1931

2959

795

3479

659

5374

402

7919

1722

3152

1170

4897

2412

3156

3869

4651

5448

4842

5555

5779

5962

4823

2919

7219

7007

5673

82

2656

68

1509

2236

1734

1221

3029

1702

1500

3547

610

3415

701

4713

248

6098

1488

4462

1465

3920

2221

4272

2922

4243

5477

4352

5712

6597

4213

4970

3415

8306

8154

3875

542

1967

5259

928

3818

1224

1600

1950

2868

1082

7237

445

3861

762

7367

254

6896

1416

4082

1676

3835

2619

3771

1843

4620

8579

3215

4786

8091

2775

4940

3431

8027

9049
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