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Abstract

Store-and-forward (S/F) deadlocks in a packet-switched

network can be totally avoided with the use of deadlock avoidance

protocols. These protocols put so much restrictions on the use of

buffers that even under normal circumstances the buffer

utilization is small.

We propose a deadlock control algorithm that is entirely

invisible under normal circumstances. As soon as certain channels

in the network have trouble in accepting and transmitting packets

due to the lack of buffers, the deadlock detection phase of the

algorithm is invoked. When a deadlock is identified, the deadlock

resolving phase of the algorithm is executed. Once* the deadlock

is resolved, the control is removed. The algorithm can be used in

conjunction with either the Complete Partitioning or the Sharing

with Maximum Queue Lengths output buffer allocation strategies. A

proof on the correctness of the algorithm is given. Simulation

results show that the network can maintain a relatively high

throughput even when deadlocks are being detected and resolved.

In addition, several properties of deadlocks are found: i)

deadlocks start to increase abruptly once the network operates

beyond its capacity and ii) under heavy load condition,

increasing the buffer size will not delay the occurrence of

deadlocks.
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I. Introduction

Store-and-forward (S/F) packet-switched network [1-2] is one

of the most popular computer networks nowadays. It may be thought

of as a distributed pool of resources (channels, buffers,

switching processors etc) which can be shared dynamically by a

community of competing users wishing to communicate to each

other. This dynamic sharing of resources has the advantages of

greater speed, more flexible in setting up user connections in

the network and more efficient use of network resources after the

connection is established.

But unless careful control is exercised on the user demands,

the dynamic sharing do not come without danger: the users may

seriously abuse the network. In addition, if the offered load are

allowed to exceed the network capacity, unpleasant congestion

effects will occur which will rapidly neutralize the fast

response and efficient advantages of the network. So properly

monitoring and controlling the offered load is necessary and is

called flow control procedure. M.Ger la [3] has made a good

comparative survey in this field.

The main functions of flow control in a packet-switched

network are:

1) prevention of throughput degradation and loss of

efficiency due to overload.

2) fair allocation of resources among competing users, and

3) speed matching between the network and its attached
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users.

One of the useful methods in f low control is the output

buffer allocation strategy [4-6] in which five categories are

classified. They are:

1) Complete Sharing (CS). Letting Bi be the number of packets in

the ith queue and B be the total buffer size, we have the

following constraint:

O < Bi <13

2) Complete Partitioning (CP). Let N be the number of output

queues. The constraint becomes:

0 < Bi < B/N

3) Sharing with Maximum Queue Length (SMXQ). Let b be the maximum

queue size allowed (where b B/N). We have:

0 < Bi < b

Bi

4) Sharing with Minimum Queue Length (SMA). Let c be the minimum

buffer allocation which is guaranteed to each queue (typically, c

< B/N). The control then becomes:

max(0, Bi-c) < B-N.c

5) Sharing with Minimum and Maximum Queue Length. This strategy

combines both SMXQ and SMA.

M.Irland [4] has made an analytic analysis in these



3

partitioning strategy, as shown in Fig.1-4.

Anyway, f low control procedures can guarantee the network to

have a good performance except that one catastrophic problem does

not happen: Deadlocks. Once deadlocks happen, the entire network

can be completely inoperative even under normal traffic

condition. A good survey of potential deadlocks in S/F networks

can be found in [7]. There are altogether six types of deadlocks

in S/F packet-switched network

1) Direct S/F deadlock, where two adjacent nodes of a network

both are filled up with packets waiting for transmission to the

other node. Then none of these packets can be transmitted- since

there is no free buffer available (and none will become

available) at the receiving node, as depicted in Fig.5.

2) Indirect S/F deadlock, where more than two nodes are involved

in the deadlock. It may occur even if the precautions against

direct S/F deadlock have been taken. This can easily be

demonstrated by a circular network, each node of which is filled

with packets directed to the next node in some cycle orientation,

as depicted in Fig.6.

3) Progency deadlock, where original messages spawn other ones,

and buffer contention occurs between the original and progency

messages. This occurs when positive or negative acknowledgments

are created. e.g.- if messages reverse direction after

encountering a path failure.

4) Copy-release deadlock, where a message copy is stored at the
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source node and the buffer is not released until an

acknowledgement is received from the destination node. Buffer

contention may arise among the original messages, stored copies

and acknowledgements.

5) Pacing deadlock, where a local flow control protocol is used

between a network node and attached terminals. Buffer contention

may arise between the message flows into and out of the terminal,

preventing the transmission of go-ahead commands.

6) Reassembly deadlock, whereby reassembly of packetized messages

at the destination node cannot be completed. Two types of

reassembly deadlocks have been recognized.

i) The first type is completely analogous to situations

which may arise in primitive computer operating systems

if requests for storage units are granted freely, as long

as sufficiently many units are available. In the context

of reassembly of messages from packets such an

'expedient' allocation strategy may cause the entire

buffer pool to be filled with incompletely. reassembled

messages such that none of them can ever be completed.

ii) The second type of reassembly deadlock is somewhat more

intricate. It occurs when reassembly of messages in a

certain node N cannot be completed due to the following:

all the reassembly buffers at node N are either occupied

or reserved for awaited packets of' partially reassembled

messages. The neighbours of node N are filled with S/F
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packets also having destination N for which no reassembly

buffers are being reserved. Thus the neighbours of N

prevent the remaining packets of the partially

reassembled messages at node N from reaching their

destination.

In all types of deadlocks mentioned, direct and indirect S/F

deadlocks are of particularly important and have received

considerable attention in recent years. There are two main

streams to tackle with these two types of deadlocks: prevention

techniques and detection and resolution techniques.

1) Prevention Techniques

The typical approach of this technique is to institute some

form of flow control based on buffer reservation. These solutions

involve partitioning the buffer pool at a node into several

classes and permitting only a restricted set of packets access to

a given buffer class. -The structure buffer pool technique

proposed by Merlin [8] Is the buffer reservation of this kind

based on the number of hops.

In this technique, packets arriving at each node are divided

into classes according to the number of hops they have covered.

For example, packets entering a node from the host belong to

class 0 of that node, since they have not yet covered any hops.

The highest class Hmax corresponds to packets that have traversed

Hmax hops, where Hmax is the maximum path length in the network

a function of the topology and the routing algorithm). The

highest class Hmax also includes all the packets that have
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reached their destinations. The nodal buffer organization

reflects this class structure as shown in Fig.7. Each packet

class has the right to use a well-defined set of buffers. Class

can access only the buffers available in set 0. Class i+1 can use

all the buffers available to class i. Finally, class H max can

access all the buffers available to class `max-l. Hence, all the

buffers in each node have been partitioned and well-structured

and a buffer graph is created.

It can be easily shown that this techniques eliminates

deadlocks of both the direct and indirect type. First a deadlock

occurs if and only if there is a cycle in the buffer graph, i.e.,

there is a chain of arcs which starts from one buffer, and

terminates at the same buffer. But in the buffer graph, no cycle

can occur since each arc starts from a buffer of class i and

points to a buffer of class i+1 (recall that a packet gains

seniority at each hops an illustration of this property is shown

in Fig-8). Thus this technique is deadlock-free.

This technique is easy to implement and has an implicit hop-

level flow control. But the main drawback is that this scheme

requires that a certain minimum number of buffers be present in a

nodes. For example, deadlock-free cannot be guaranteed if all the

nodes contain fewer that hmax+l buffers, where hmax is the

maximum- number of hops that any packet in the network will have

to travel. Even if we make'the assumption that the routing used

in the network is deadlock-free, i.e., the same node -is never

visited more than once by a packet, hmax must still be no
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smaller than N-1 where N is the number of nodes in the network.

To minimize the number of buffer classes necessary in each

node, other solutions have included buffer reservation based on

the number of valleys [7], the route which the packet is

travelling on [10] and the counting of negative hops [11].

Another interesting solution by Gelernter [12] attempts to

prevent S/F deadlocks by a deadlock-free flow control procedure.

This procedure has the advantages of 1) no restriction in the

routing of packets, 2) no partitioning of buffer-pool and 3) the

size of buffer pool at each node being independent of the

network size. Unfortunately, as network congestion increases,

this algorithm requires rerouting of packets and, in the worst

case, it may even loss some of them.

(2) Detection and resolution techniques

J.Blazewicz [13] proposed a distributed deadlock-resistant

flow control procedures which can detect and then remove direct

S/F deadlocks at negligible cost. But for indirect S/F deadlocks,

the deadlock detection and recovery is much more expensive.

Gambosi [14] proposed another deadlock detection and removal

algorithm to resolve both direct and indirect S/F deadlocks.

First Gambosi pointed out two important criteria that a deadlock

control.algorithm should fullfil

1) Deadlock detection should be performed in a distributed

fashion since any form of centralized control would certainly

incur in an unreliable and inefficient operation of the
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algorithm.

2) The algorithm should exhibit negligible overhead for nodes not

involved in a deadlock. In other words, normal network operation

should not be affected by any kind of deadlock control traffic.

He then proposed a two-part algorithm: one for deadlock

detection and the other for deadlock recovery. The detection

algorithm can detect deadlocks by constructing a Site Blocking

Graph (SBG). Once a deadlock is detected, then based on SBG, a

distributed deadlock recovery procedure is applied to resolve the

deadlock. Nevertheless, the whole algorithm relies on a SBG whose

construction is quite time-consuming.

At the first glance, the prevention techniques seem to be

more favourable than the detection and resolution techniques. But

after studing the Gambosi criteria and the Gelernter three

advantages, we find most of prevention algorithms cannot fullfil

these criteria (the structure buffer pool technique sacrifies the

Gelernter three advantages and violates the Gambosi second

criterion). In addition, intuitively, S/F deadlocks rarely

happens under normal traffic condition in a properly designed

network. But any deadlock prevention algorithm applied to the

network will surely deteriorate its performance (e.g. network

throughput, delay etc.)-. Thus, in this respects, the detection

and resolution techniques are more desirable than the prevention

techniques.

In this thesis, a different deadlock detection and
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resolution algorithm is proposed. The algorithm, first based on

the output buffer allocation strategy being CP and later extended

to SMXQ strategy, not only satisfies the Gambosi criteria, but

also shares the three advantages of the Gelernter algorithm under

normal traffic condition. Moreover, packets will not get lost

with this new algorithm.

In the following, we shall first introduce a network model

(Chapter II). We then describe the deadlock control algorithm

for the CP strategy (Chapter III) and give two examples for

illustration (Chapter IV). This is followed by a correctness

proof of the algorithm (Chapter V). A modified deadlock control

algorithm for the SMXQ strategy is then introduced (Chapter VI).

Finally, using simulation, the performance of the algoithm is

determined and some interesting properties of deadlocks are

presented.
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II. Network Model

Consider a S/F packet-switched. network with channels always

reliable. Let all inputs to this network be fixed-size packets,

each occupies one unit of buffer space. All packets are

acknowledged or negative-acknowledged depending on whether they

-are accepted or not. The overhead of the acknowlegement traffic

is neglected.

A typical model of a S/F node with CP buffer partitioning

strategy is depicted in Fig-9. There is a central processor to

handle all internal transmissions of packets. One buffer is

reserved for each input channel. Since the central processor will

process the received packets immediately upon their arrivals and

will move them away afterwards, there is always room for* further

receipts at each input channel. All output channels are modelled

as first-come-first-served (FCFS) queues. A special output buffer

called the reserved buffer is permanently allocated at each

output channel for deadlock resolving purpose.

The deadlock control algorithm is executed by the channel

processors, each of which works independently. An output channel

can be in one of the following three states: 1) Normal state (N),

2) Test state (T), and 3) Deadlock-resolving state (DR). A state

transition diagram is depicted in Fig-10.

Depending on the channel state, outgoing packets are attached

with different headers:

1) Normal header. It has a normal header identity, source and
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destination node addresses and a header check-sum.

2) Test header. Besides a header identity and all the normal

header information, it also includes (i) an integer x indicating

the total number of DR packets (packets with DR headers attached)

to be transmitted and received upon detectinga deadlock and (ii)

an I field recording a set of channel identities in state T.

3) DR header. It contains the integer x, a bit pattern for DR

header identification and all the normal header information.

Upon receiving a packet from an adjacent node, the node

processor will check whether the packet is destined for the

present node or not. If yes, the processor will immediately turn

the packet over to the local host. If not, the packet will be

routed to one of the output queues, say queue i. If queue i is

full, then except for the DR packets which are put into the

reserved buffer associated with queue i, all other kinds of

packets are discarded after extracting the header information.

Similarly, packets from the local host are accepted if queue i is

not full.

Note that a packet, once stored in a buffer, does not have

to be physically moved. Movement of packets depicted in Fig-9 may

be accomplished by software pointers.
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III. The deadlock control algorithm with CP strategy

Conceptually, a S/F deadlock refer to the situation where

there is a cycle of buffer requests among a set of nodes, all of

which have no empty buffer left. Our algorithm is based on

detecting the presence of these cycles and then resolving them

efficiently. We will neglect, in our model, those packets

destined to the local node as they will be turned over to the

host immediately and will not impose demand on the output buffer.

In following discussion, we focus on a typical one-way

channel, say channel i, that can transmit packets from node A to

node B (Fig.ll). Let channels nl, n2,..., nR be the set of

input channels to node A.

Here, the algorithm requires three control parameters: i) an

integer y denoting the total number of DR packets to be

transmitted and received by each channel in state DR before

returning to state N, ii) an array Sx= [sx(1), sx(2),...,

sx(R)] where sx(r) record's the integer x collected from channel

nr, and iii) a set of channel identities SI. When channel i is in

state N. these parameters are set to:

(1)y=o

(2)

(3)

where M is an integer larger than the output buffer size of
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channe 1 1.

Normally, channel i is in state N. It will change to state T

if a potential S/F deadlock is detected. If it is a false alarm,

then channel i will go back to state N. Otherwise it will change

to state DR which, after the deadlock is re-solved, go back to

state N. Therefore, the algorithm consists of three procedures,

one for each of the three states.

(i) Procedure for state N

At state N, all normal and test packets received are placed

in the output buffer of channel i. But if the buffer is full, the

received packets are discarded.

Channel i will change from state N to state T if the two

conditions are satisfied: 1) the buffer of channel i is full and

2) the head packet (the packet in the first position of the

output queue) has waited in the output queue longer than a time-

out period, say Tout secs.

Comments We declare that a potential S/F deadlock involving

channel i is detected when channel i cannot receive and transmit

any packet in a finite time Tout secs.

(ii) Procedure for state T

In state T. channel i will discard all normal packets

received. When a test packet is received from, say channel nr,

the channel i processor will discard the packet body and extract

the x and I fields from the packet header. It then checks whether
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its channel identity i is in the I field or not. If it is in,

channel i will declare the detection of a deadlock, change its

state to DR and set y to x. If i is not found in Is sx(r) and SI

are updated as follows:

The receipt of a DR packet indicates that channel i is

already involved in a deadlock. The DR packet will be accepted

and placed in the reservdd buffer of channel i. Also y is set to

x which is obtained from the DR packet header. Channel i then

changes its state from T to DR.

When channel i is in state T. only test packets are

transmitted. If the head packet is to be routed to channel j

(Fig-11), then the x and I fields in its header are set as:

(4)

(5)

where kij denotes the total number of packets in the output

buffer of channel i to be routed to channel j. Once a. new test

header is created, Sx and SI are reset according to eqns. (2) and

(3) (i.e. all their entries are used once only).

On the other hand, when the head packet transmitted by

channel i is accepted by channel j, channel i will change from

state T to N.
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Comments As mentioned before, the sufficient conditions for the

existence of a deadlock are a) the presence of a cycle of buffer

requests and b) all buffers in that cycle being full. It is

equivalent to having a.set of channels, all in state T, forming a

loop as depicted in-Fig-12. All channels in that loop will

transmit test packets. The I field in the headers of these

packets will, according to eqn (5), gradually accumulate the

identities of these channels. Sooner or later, one or more

channels in that loop will receive test packets with their own

identities included in I. If that happens, these channels realize

immediately that they are involved in a deadlock and change their

state from T to DR. Moreover, they will, in turn, transmit DR

packets to inform the other channels in the loop that a deadlock

is present.

(iii) Procedure for state DR

At state DR, all normal and test packets received are

discarded. When a DR packet is received, it*is placed in the

reserved buffer of channel i and joins the end of the output

queue. When a copy of a DR packet from channel it is accepted by

the neighbouring node, the buffer storing the DR packet is freed

and treated as the reserved buffer for receiving other incoming

DR packets.

Note that only those packets having the same destination

channel as that of the head packet are selected as DR packets to

be transmitted and there are always y or more of these in the

output buffer. The integer x in these DR packet headers are set
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to y.

After y DR packets are transmitted and received, channel i

will change back to state N.

Comments During the process of resolving a deadlock, the number

of DR packets to be forwarded and received is y which is, after

repeated use of eqn (4), equal to min[ki j, kjk, kkl,••• Knril

where i, j, k, 1,..., nr are the channel identities of the

closed loop.

Meanwhile, since DR packets will only be transmitted to

those channels involved in a deadlock, channel i in state N will

not receive DR packets.

Figs. 13 to 15 show the flow-charts for the above procedures.
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Channel nChannel i Channel kChannel j

Fig.12 A closed loop of channels
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IV Examples

1) To clarify the operation of these procedures, consider the

example shown in Fig.16. Initially let channel i be in state N.

At t, channel i detects a potential deadlock and enters into

state T. Let us assume that the head packet of channel i is to be

routed to channel j; and let the total number of packets to be

forwarded to channel j be four

Let us say in no test packet is received and at

t2 channel i transmits a test packet. The x and I fields in the

packet header are, according to equations (4) and (5), equal to 4

and [i] respectively since

In let two test packets be received: one from

channel n- with
and

and the other from channel n2 with

and
Since i is not in I, Sx and S are updated as [1,

2, M, and
respectively. At t» another test

packet is transmitted.- This test packet will contain

In [to, t), let a DR packet be received from channel n.

wit! before a test packet is received from channel n2. The DR

packet is accepted in the reserved buffer and that causes channel

i to enter state DR with The test packet is discarded upon

its arrival. At t, a DR packet with
is transmitted. Since

now channel i has received and transmitted y DR packet, it knows

that the deadlock is resolved and changes to state N.



2) Consider a set of four channels as shown in Fig.17- At tQ,

these channels are all in state N with their head packets to be

forwarded to their adjacent channels

Let the packet transmission time and the time—out period be 1 and

3 time units respectively.

1' °hannels A, B and D fail to forward their head

packets due to the lack of buffers in the receiving ends. But

channel C succeeds in forwarding its packet to D and therefore

has an empty buffer left while making channel Dfs buffer full. At

t2 a packet from another adjacent channel (i.e. not from B) is

accepted by C. Now all buffers are full and all head packets

cannot be forwarded to their adjacent channels, a deadlock loop

is formed (Fig.18a).

At tg, channels A, B and D change from state N to T and

channel C follows at ty The test packet header information

during [ty tg) is shown in Fig.18b.

At ty, channel D detects the deadlock by receiving a test

packet with its own identity in the I field. It then switches to

state DR, sets and starts to forward a DR packet to A

(Fig.18c). After receiving a DR packet from D at tg, channel A

will change its state to DR and send a DR packet to B. Since

A can change its state back to N. Similarly, channel B, C and D

will also change their states to N after transmitting and

receiving one DR packet (Fig.l8d). The deadlock is therefore

resolved.
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Fig.18 The deadlock detection and resolution process in Example 2
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V. Proof of the distributed algorithm

To prove the correctness of the distributed algorithm, we

first model the S/F network as a directed graph described as

follows.

Directed Graph (DG) Model: A transmission channel i, in state T

or in state DR, with the head packet to be routed for another

transmission channel j can be represented by vertex i, denoted as

Vi, with an outgoing edge directed towards V V. For channel i in

state N, it is represented as Vi with no outgoing edge. To

illustrate, Fig.19 shows three cascaded channels i, j and k in

states DR, T and T respectively.

Based on the DG Model representation, we can, at any moment,

use a directed graph to model the state of a S/F network. Fig.20

shows a four-node fourteen-channel subnetwork and its directed

graph model. Note that each vertex can have at most one outgoing

edge, but can have several incoming ones. Such a directed graph

exhibits only those packet transmissions that are related to the

deadlock. Those unrelated ones are neglected.

Lemma 1: Different closed loops in a directed graph are vertex

disjointed.

Proof: Suppose the closed loops L1 and L2 have a common vertex,

say Vi: Then Vi must have two outgoing edges: one belongs to loop

L1 while the other belongs to loop L2. But it contradicts our DG

Model representation of a vertex which has at most one outoging

edge. By a similar argument, we can disprove the existence of two
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or more common vertexes in three or more closed loops.

Lemma 2: A S/F deadlock exists in a network if and only if a

closed loop exists in the corresponding directed graph.

Proof: As mentioned in Chapter III, a deadlock exists when there

is a cycle of buffer requests. This condition is revealed when a

set of channels in state T have formed a closed loop (refer to

Fig. 12). Then by using the DG Model representation, it

immediately yields the corresponding closed loop in the directed

graph. Q.E.D.

Based on the preceding lemmas, Fig-21 depicts the general

situation for the presence of a deadlock in the directed graph.

Note that Vi, Vi, Vk,..., V1, Vm,..., Vn form a closed loop L

and that VW, VX, Vy,..., VZ form a path P.

Theorem 1: Every vertex in the closed loop L can detect the

deadlock and enter into state DR while vertexes not in loop L

will not.

Proof:

(i) Vertexes in the closed loop L. When the closed loop L is

formed, all its vertexes are in state T. Let us assume that all

their states remain unchanged and consider the detection of a

deadlock by Vi. First Vi forwards its test packets to Vi and

receives test packets from Vn and V. After this interchange of

packets, the test packets sent by Vi will have their headers' I

field set to[...,n, z,...] U [i]. As the algorithm is

distributed, every vertex in loop L does the same and eventually,
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Vi will find its own identity in I of a test packet received from

V. By the procedure for state T, Vi will change to state DR

indicating the detection of a deadlock.

Next, let V1 be the first vertex to detect the deadlock in

the path Q from V1 to Vi and consider Vi for its deadlock

detection. According to the procedure for state DR, V1 will send

DR packets to Vm. Upon receiving the first DR packet, Vm will (by

the procedure of state T) change to state DR and start

transmitting a DR packet. This transmission of DR packet and

change of state then propagate along the path Q and finally, Vi

will receive a DR packet from Vn to indicate the detection of a

deadlock.

(ii) Vertexes not in the closed loop L. Consider the vertex in

path P which is not in loop L but has a directed edge, originated

at Vw, towards loop L. All these vertexes must be in state T when

path P is first formed. By Lemma 1, all the loops formed must be

vertex disjointed. Therefore, path P cannot be the segment of any

loop. So even though all vertexes in path P forward test packets

with their own identities inserted in the I field of the packet

headers, they will not receive test packets with their identities

in I. In addition, these vertexes will not receive DR packets

because none of them can enter into state DR. Q.E.D.

Note that during the detection of a deadlock, there must be

at least one vertex which enters into state DR by the successful

search of their node identities in I of the receiving test

packets. These vertexes will forward DR packets to inform the
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next vertexes for the. existence of a deadlock.

Theroem 2: The transmission of DR packets is deadlock-free.

Proof: When the vertexes of a closed loop detect a deadlock,

their associated reserved buffers are always ready for receiving

DR packets. Since in state DR, only DR packets can propagate in

loop L, the transmission of DR packets is deadlock-free. Q.E.D.

Theorem 3: By the time a deadlock corresponding to loop L is

resolved, all test packets generated by the vertexes of a loop L

are discarded.

Proof: Consider Vi in state T which forwards all its test packets

to Vj. Since Vj must be either in state T or in state DR, all

test packets received are discarded. Moreover, Vj in state DR

will make a possible change of state to N only when a DR packet

is received from Vr. But Vi is in state DR and will not generate

test packets. Hence, when- Vj returns to state N, all test packets

forwarded from Vi to Vj for the search of this deadlock are

discarded. Q.E.D.

We can conclude from Theorem 1, 2 and 3 that:

a) Only those output channels involved in a deadlock can detect

the deadlock.

b) This deadlock can be resolved.

c) By the time when the deadlock is resolved, all test packets

generated for the search of this deadlock are discarded and so
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will not interfere with the detection of other potential

deadlocks.

With these properties, the algorithm is proven.
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VI. The deadlock control algorithm with SMXQ strategy

We now extend the algorithm so that the output buffers

allocation strategy is SMXQ. Let Bi be the total number of

packets on channel i and b be the maximum queue size allowed for

,each channel. Besides states N. T and DR, a new wait state, W,

Is needed for the modified algorithm. The state transition

diagram for the modified algorithm is shown in Fig-22. The

following are the procedures of each state for a typical channel,

say channel i.

(i) Procedure for state N

At state N. all normal and test packets received are placed

in the output buffers of channel i. If Bi=b or there is no empty

buffer in the common buffer pool (CBP), -the received packets are

discarded.

Channel i will change to state T if (1) Bi=b and (2) the

head packet has waited in the output queue for Tout seconds.

Channel i will change to state W If (1) Bib (2) a request for an

empty buffer in CBP fails and (3) the head packet has waited for

Tout seconds.

(ii) Procedure for state W

When channel i receives a packet and an empty buffer is

successfully allocated from the CBP, the packet is accepted and

channel i will change back to state N. If no empty buffer is

available, the received packet is discarded.
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All outgoing packets in this state are attached with normal

headers.

Once channel i is in state W, it checks whether all other

outgoing channels in the same node are in states T or W. If yes,

channel i will change its state to T and trigger all other

channels in state W to change to state T.

(iii) Procedures for state T and state DR

A channel in state T or DR is not allowed to request buffers

from the CBP for incoming packets. Besides that, the procedures

are the same as that for the CP strategy in Chapter III.

Comments:

(1) To account for the additional restriction in the procedures

for states T and DR, consider the deadlock loop in Fig-12. Let us

say there is no such restriction as described' in (iii). Let

channel j, in state T or DR, obtains an empty buffer from the

CBP. Then channel j may have a chance of accepting a test packet

from channel i. Doing so will allow channel i to go back to state

N and thus a deadlock cannot be detected.

(2) Since all outgoing packets of channel i are still attached

with normal headers, a channel i in state W. is represented,

similar to state N, by Vi with no outgoing edge. Thus the

directed graph created is the same as that for the CP case. The

correctness proof of the algorithm therefore is also the same.
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VIII. Simulation results

Fig-23 shows an eight-node network connected by eleven

homogeneous full-duplex links. Each link is modelled as a FCFS

M/D/i queue with one reserved buffer permanently allocated and

other buffers allocated according to the CP or SMXQ strategy. Let

the processing time, the packet transmission time and the time-

out period Tout be 0.01, 1 and 3 time units respectively.

The shortest path routing rule is used. The input traffic is

homogeneous with all ri j (traffic rate from node i to node j)

equal to a constant, r. Each simulation run lasts for 11,000 time

units with the data from the first 1,000 time units discarded.

In Fig-24, we plot the number of deadlocks occurred against

the input load r for the output buffer size equal to 4. The CP

strategy is used. It is observed that deadlocks. rarely occur

under normal traffic condition (r<0.45).* But once beyond the

network capacity (r>0.58), the average number of deadlocks

detected increases abruptly to about 200. In between

(0.45<r<0.58), the number of deadlock occurred has a very large

variance. Fig-25 shows the case with buffer size equal to 5. We

observe that the curve is similar except that the high variance

region is shifted to 0.59<r<0.75.

Fig.26 shows the network throughput under normal traffic

condition (r<0.45). The output buffer for each channel is 4. Here

we show 3 curves: Curve C shows the network throughput with no

deadlock control algorithm implemented while Curves A and B

represent the throughput with the deadlock control algorithms
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implemented with the SMXQ and CP strategies respectively. It is

readily seen that very high network throughput can be maintained

when the network is not saturated. But for Curve C, the network

breaks down. In addition, the SMXQ starts to give slightly higher

throughput than the CP at r0.4. When one-third of the channels

are offered with twice the amount of input (i.e. under asymmetric

traffic condition), similar result is found as shown in Fig.27.

Fig. 28 shows the time for the first occurrence of a deadlock

(starting from an empty system) versus the input load using the

CP strategy. Under heavy loading, we see that the first deadlock

occurrence time is nearly a constant, independent of the number

of buffers available at each channel. On the other hand, under

moderate traffic condition, increasing the buffer size can indeed

delay the occurrence of deadlock. When the traffic is very light,

deadlock is still very unlikely to occur even with a very small

buffer size.

Fig-29 and 30 show the case for another eight-node network.

Exactly the same phenomena are oberved.
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VIII. Conclusion

Direct and indirect S/F deadlocks are some catastrophic

problems that every network designer has to tackle with. They

occur even when the network is not heavily loaded. Some

prevention techniques have been proposed to solve these problems.

But as far as the network resources and performance are

concerned, they are unjustified because 1) even when deadlocks

does not occur, any prevention algorithm will either impose

restrictions on the dynamical use of resources or deteriorate the

-network performance and 2) S/F deadlocks rarely happen under

normal traffic condition.

We propose a distributed deadlock detection and resolution

algorithm that is entirely invisible under normal traffic

condition. As soon as a potential deadlock is detected, the

deadlock detection phase is invoked. If it is a false alarm, the

algorithm will be inactivated otherwise, the deadlock resolution

phase will start to resolve the deadlock. Once the deadlock is

resolved, the algorithm is removed. This algorithm not only

satisfies the Gambosi criteia but also shares the Gelernter

advantages. In addition, it can be used in conjunction with CP

and SMXQ buffer allocation strategies.

To prove the correctness of the algorithm, a direct graph

model-ling is first used to depict a S/F network in which the

algorithm is being -invoked. Three properties are then observed

and proved. They are:

1) Only those output channels involved in a deadlock can detect
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the deadlock.

2) This deadlock can be resolved.

3) By the time when the deadlock is resolved, all test packets

generated for the search for this deadlock are discarded and so

will not interfere with the detection of other potential

deadlocks.

These properties directly lead to the deadlock and

resolution properties of the algorithm.

Simulation results show that the network can maintain a

relatively high throughput even when deadlocks are being detected

and resolved. Furthermore, several properties of deadlocks are

found: 1) deadlocks start to increase abruptly once the network

operates beyond its capacity and 2) under heavy load condition,

increasing the buffer size will not delay the occurrence of

deadlocks.-

However, several areas are valuable for future

investigations:

1) To extend the algorithm applicable to Sharing with Minimum

Allocation (SMA) and the combined SMA-SMXQ strategies.

2) To investigate the deadlock phenomena analytically.

3) To compare the network performance among the algorithm

proposed in this thesis as well as the techniques proposed by

other authors.
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Appendix

Simulation program listing and a typical output.



PES 2.0 11-4-1986

READING NETWORK DEFINITION

m GOOD COMPILATION

NETWORK READY

START SIMULATION

PAU3E IN SIMULATION AT 1000

CONTINUING SIMULATION

START SIMULATION

SIMULATION REACHED

SIMULATION REACHED

SIMULATION REACHED

SIMULATION REACHED

SIMULATION REACHED

SIMULATION REACHED

SIMULATION REACHED

SIMLIJATI ON REACHED

SIMULATION REACHED

SIMULATION REACHED

10 0(

20 Oi

30 0(

40 0(

5001

6 0 0(

?00(

80 OC

90 CU

1 000C

END PES



START PE

000001

000002

000003

000004

000005

000006

000007

0 0 0 0 0 3

000009

000010
000011

000012

0 0 0 0 1 3

000014

0000 1 5

000016

000017

000013
00001 9

000020
0 0 0021

000022

000022

000024
000025

000026

DECLARE

REAL PI, P2, P3, F'4, DEAD_TIME

INTEGER X, NUM_DEAD

INTEGER (NODE) SKI 00), SX 1 00), Y,
CHAR(NODE) STATUS
INTFGFR(LOCAL) IDC 100). XI

NODE!
.1L r L U L M L 1L' J U U| 1

5 SOURCE, MQUEUE(22), MREC22), NTRAN(22), SETUP1, SETUP2,

CHECK, MBRANCH, MSINK1, MSINK2, MDELAY, SETUP,
MPRANCH 1. NEXTCHAN

MSG-TYPE F'KT(FIXED LENGTH, 1 UNIT:

TOPOLOGY

SOURCE

SETUP

SETUP1
SETUP2

CHECK

CHECK
MBRANCH

MREC(X)

MREC(X)

MQUEUEOC

NEXTCHAN
MDELAY

MTRmM(X)

MBRAMCHI

SETUP

SETUP1

SETUPS

CHECK

MSINK1
MBRANCH

MREC(X)

MSINK2

riuuEUE cx:

NEXT CI IAN

MDELAY

NT RAN(X)

MBRAMCHI

CHECK

F'KT, ALL)

(PKT,ALL

F'KT, ALL)

PIT ,ALL

F'KT, ALL)
PKT,ALL

(PKT,ALL)

PKT,ALL)

F'KT, ALL)

(PKT,ALL)

PKT,ALL)

PKT,ALL)

(F'KT, ALL)

(PKT,ALL)

1 .0

1 .0

1 .0

1 .0

PI
P2

1 .0

P4

P3

1.0;
1 .0

1.0

1 .0

1.0

END PES



START PES

000001

000002

000003

000004

000005

000006

00000?

000008

0 0 0 0 0?

000010

000011

000012

000013

000014

000015

000016

00001?

000018
00001?

000020

000021

000022

0 0 0 0 2 3

000024

000025

000026

00002?

000028

00002?

000030

000031

000032

000033

0 0 0 0 3 4

000035
000036

00003?

000038

00003?

000040
0 00041
000042

000043

000044
000045

000046
0 0 0 0 4?

0 0 U0 4 8
0 0 0 0 4?

000050

0 00051

ROUTING METHOD

ROUTING TABLE

SHORTEST:

NODE1

NODE1

NODE1

NODE1

NODE1

NODE1

NODE1

NODE 2

NUDE 2

N0DE2

MODE 2

N0DE2

NUDE 2

N0DE2

NODES
N0DE3

NODE 3

NODE 3

NODE 3

NODE 3

NODES

NQDE4

NODE 4

NODE4

NODE 4

N0DE4

NODE 4

N0DE4

NODE 5

NODES

NODES

NODES

MODES
MODES

MODES
N0DE6

• NODE6

N0DE6

NODE 6
N0DE6

NODE 6

N0DE6

NODE?
NODE?

MODE?

NODE?

NODE?

NODE?

NODE?

NODE 2

N0DE3

NODE4

NODES

NODE 6

NODE?

NODE 3

NODE1

NODES'

NODE 4

NODES

N0DE6

NODE?

NODE 8

NODE1

N0DE2

NODE 4

NODES
NODES

NODE?

NODES

NODE1

NODE 2

NUDE 3

NODES

NODES

MODE?

NODES

NODE 1

NODE?
NODE 3

NODE 4

MODES

NODE?
NODES

NODE1

NODE?

N0DE3

NODE 4
NODES
NODE?

MODES

NODE1

NODE 2

NODE 3

NODE 4

MODES

NODES-

NODES

i;

1, 5;

4;

1, 6;

5

3, 18;

4, 8;
9•
- J

2,

-° 5

2, 4;

6, 12;

9, 2;
9;

10, 16, 20i

10,• 15;,
10, 1?;

10;

10, IS;
n.
•
? 1•• 1 j
7 1 S.
' J 1) u)

8, 22;

?, 3;
0• 1•u,- 1,
V•
')

11, 2;

11;

13, 14;

12, 20;

13, 1?;
13;

12;
1?;

19, 1;

18, 14;

19, 4;
18, 15;

1 8;

18, 16;

1?, 1?;

14,?;

14;

16, 20;
IS;

16;



oooo5:

UU005G

00005'

000055
Ouuu 5,

00005

00005'

NODES

N0DE8

NODES

NODES

NODES

NODES
NODES

NODEI

N0DE2
NODES

N0DE4

NODE 5

NODE 6
NODE?

9f| 7.
99 1 1.
-- 1 1:

21, 14
20;

22;

21, 17;

21;

END PES



START PES

DEFINE

SOURCE INPUT RATE EXP'!0.10);

SETUP

TYPE COMPUTE

PKT, ALL REQUEST

SETUP1

TYPE SOURCE ADDF

PKT, ALL) EQUAL PROB INT I

SETUP2

TYPE DEST ADDR

PKT. ALL) EQUAL PROE

CHECK

TYPE BRANCH

F'KT .ALL) REQUEST GOTOIF 1 LI [3] LI [2]-,

MSINKI

TYPE SINK:

MBRANCH

TYPE BRANCH;

MR EC

TYPE ARRAY22) COMPUTE

PKT,ALL) REQUEST NGOTOIP 1 STATUS 'N',

GOTOIF 2 BUF_LENGTH 0,

EX IT,
LABEL 2

••«® w

EX IT,
LABEL 1

NGOT01F 6 STATUS 'T',

GOTOIF 3 LCT1] 'N-',

GOTOIF 4 LCC13 'D',

SEARCH ID LI[33 LET 1 3,

GOTOIF 0 LB[13 T,

0 0 0 0 0 1

000002

000003

0 0 0 0 0 4

000005

000006

000007

0 0 0 0 0 8

U 0000?

000010

0000 1 1

0 0 0 01 2
000013
00001 4

000015

0 0 0 0 1 6

000017

000018

0000 1?

000020

0 0 0 0 21

0 0 0 0 2 2

000023

000 0 24
0 0 0 0 2 5

000026

0 0 0 0 2 7

000028
00002?

000030

0 0 0 0 31

0 0 0 0 3 2

0 000 33

000034

000035

0 U0 0 3 6

0 0 0 0 3 7
000033
00003?

011u 0 4 0
000041

0 0 0 0 4 2
000043

000044

000045

0 0 0 0 4 6

000047

0 0 0 0 4 8

0 0 0 0 4 9

0 0 0 0 5 0

0 0 0 0 51



000052

U0 0 0 5 3
000054

000055

000054

00005?

000058

00005?
000040

0 0 0 0 6 1
000042

000043

000044

000045

0 0 U0 4 4

0 0 0 0 4?

000043

U0 0 0 4 9
000070

0 0 0 0?1

0 0 0 0 7 2
0 0 0 0 7 3
000074

000075
000074

U 00077
000073

000075

0 0 0 0 3 0

0 000 81
000032
0 0 0 0 8 2
0000 84
0 0 0 0 S2
000084
000082
000083
000085
000090
0 0 0 0 91

000092
000092
000094
000092

000094
000092

000092

U0 0 0 9 5
0 0 0 1 0 0

0 0 0 1 0 1
0 0 0 1 0 2

...--.. i i -v r— r r,pr r-l mOTI- I
EQ ARRAY SI
T 1 t t-. I f t
IN SX,,
H U t L .5

P 3=0.0,

P4=i .LI,

h.K 1 I,
LABEL 4

i n i
2=2-1,

LABEL 5
% -f i a i r. l

u.1I f1I IJ

Y=) t,

Z=) 1,
fv T TI: Al l,

LABEL 6

N60T0IF 3 LCC1] 'D',
7-7.-1
I. u 1,

NGOTOIF 7 Y 0,

NGOTO IF 7 7 0,

STATU4='N',

NUM„DEAD=MUM_DEAD+1,
NGOTOIF 7 NIJM_DEAD 1,
L'CML__I

LABEL 7
!'•T ~T

MQUEUE

TYPE ARRAY1'22) QUEUE
GD FCFS CONSTANT 0.01)

MDEL AY
TYPF RFRUTCF Ff!MRTANT f 1 fl)

NEXTCHAN
TYPE ROUTING
D H C; U fl DTCTCTDAT1J I T r Ol.

NT RAN
TYPE ARRAY22) COMPUTE

NbUIUlF bIA I US N,
JP SUBROUTINE CHECK_SUCCESSS:BOOLEAN

rour:INT),
GOTO IF SMALLER 2 TOUT 3

NGOTOIF BUF_LEN6TH 0,
STATUS

LABEL 2

EX IT,
I AFl r~ I iLAbtL 1

NGOTOIF 3 STATUS 'T',

JP SUBROUTINE CHECK_SUCCESS(S:B00LEAN
IuuI:in I),

FiTTTllF 2 F T



0001 0-1

000105

000104

000107

000108

000109

00011U

000 1 1 1

000112

o o o 11 i
0 001 1 A

0001 1 5

000114

000117

000 11 8

0001 1 9

000120
000121

U0 0 1 2 2

000123

00U124
000125

000124

000127

000123

000129

000130
000131

000132
000133

000130

000135

000134
000137

000133

000139

EG ARRAY ID SI,

JP SUBROUTINE FIND KIJKIJI INT), USER DEF.SUB.

MIN XI; KIJ, SX,

CLEAR SI, SX,

EX IT,
LABEL 3

Y-Y-l,

NGOTOIF 5 Y 0,

MGOTD1F 5 2 0,

STATUS®'N',

M UM_DE A D=NIJM_DE A D+ 1,

N GO TO IF 5 NUf'l DEAD 1,

DEAD TIME®CUR_T1ME,
LABEL 4

STATUS®'N',
LABEL 5

EX 1T;

SINK2

TYPE SINK;

MBRANCH2;
TYPE BRANCH;

STATISTICS REPORT ON SINK1}

RUN

STATUS®'N'

GO 1000

CLEAR

GO 10000, 1000

PRINT DEADJT1ME, NUMJ)EAD
DUMP

EX IT}

ENDj

END PES



PAGE 3 SYSTEMPRO PES- V 2.0 BASIC SIAIJSIICS

NUMBER OF EVENTS: 295843.C

BATCH NUMBER: 1

BATCH DURATION: 10000 .OC

BATCH STARTED AT; 100Q.QC

CURRENT TIME: 11D0D.0C

REPORT ON MODE SIMK1;

COUNT RAT E

?825v 9.83

DEAD_TIME: 9357.00
MUM DEAD: 1



THR0UGHPU1 INPUT

NODEsSOURCE-: 1)

RATE

9.8 6

COUNT

98515

RATE COUNT

NODE:SETUP1(1) 9.8 6 98515

NODE:SETUPS1) 9.86 98515

NODE:CHECK1) 19.85 198470

NODE sMSINKl1) 9.83 90253

NODE:MBRANCH-: 1 10.02 100.217

NODE:MREC(1) 4.53 4532

NODEs11REC 2) 4.62 4625

NODE:NREC(3) 4.54 4536

NODE :MREC(4) 4.56 4555

NODE:MREC 5) 4.61 4613

NODE:MREC( 6') 4 .50 450 3

NODE:MREC-: 7) 4.56 4557



PAGE 10 SYSTEMPRO PES- U 2.0 THROUGHPUT STATISTICS

THROUGHPUT INPUT

RATE

4.53

COUNT

452o

RATE COUNT

NODE:MREC(8)

NODE:MREC(9) 4.60 4601

NODE:MREC10) 4.60 4598

NODE:MREC(11) 4.61 4610

NODE:MREC12) 4.51 450 7

NODE :MREC13) 4 c n1 U- 4617

NODE:MREC(14) 4.58 4577

NODE:MREC15) 4 5?i iJ i- 4522

NODE;MREC16) 4.52 4518

NODE:MREC(17) 4.55 4545

NODE:MREC18) 4.62 4622

NODE:MREC19) 4.53 4528

NODE:flREC 20) 4.50 4501



PAGE 11 SYSTEMPRO PES- V 2.0 THROUGHPUT STATISTICS

THROUGHPUT INPUT

NODE:MREC 21:

RATE

4.50

COUNT

4496

RAT! COUNT

NODE:MREC22) 4.53 4528

NODE:MSINK2(1) 0.00 24

NODE:MQUEUE(1) 4.53 453C . i crnL U O 4530

NODE:NQUEUE(2) 4.62 4622 4.62 4622

NODE:MQUEUE 3) 4.54 453- 4.54 4534

MODE:MQUEUE(4) 4.56 4555 4.56 4555

f IODE sMQUEUE5) 4.61 4 616' 4.61 4613

NODE:MQUEUE 6) 4.50 4503 4.50 4503

NODE:MQUEUE 7) 4.56 4556 4.56 4556

NODE:MQUEUE': 8 4.53 4526 4.53 4526

NODE:N01JEUE 9) 4 .60 4599 4.60 4599

MODE:M01JEUE 10) 4 .60 4597 4.60 459?



PAGE 12 SYSTEMPRO PES- U 2.0 THROUGHPUT STATISTICS

THROUGHPUT INPUT

NODE:MQUEUE11)

RATE

4.61

COUNT

4610

RATE

4.61

COUNT

4610

NODE:MQUEUE12) 4.51 4506 4.51 4506

NODE:MQUEUE13) 4.62 4616 4.62 4616

NODE:MGUEUE(14) 4.58 4575 4.58 4575

NODE :MQUEUE 1-5) 4.52 4521 4 .52 4521

NODE:MQUEUE16) 4.52 4518 4.52 451 S

NODE :MQIJEUE 17) 4.55 4545 4.55 4545

NODE:MQUEUE 1 8) 4.62 4622 4.62 4622

NODE:MQUEUE19) 4.53 4527 4.53 4527

NODE:MQUEUE'I 20) 4.50 4501 4.50 4501

NODE:MQUEUE(21) 4.4? 44?4 4.4? 4494

NODE:MQ1JEIJE 22) 4.53 4ci 9L 4.53 4526

NODE:NEXTCHAM1) 10.02 100193



PAGE 13 SYSTEMPRO PES- U 2.0 THROUGHPUT STATISTICS

THROUGHPUT INPUT

NODE sMDELAY(1

RATE

10 .02

COUNT

100193

RATE COUNT

NODE:MTRAN1) 4.53 4530

NODE:MTRAN2) 4.62 4622

NODE:NTRAN(3) 4.54 4534

NODE:NTRAN(4) 4.56 .4IZCJTMJJJ

NODE:NTRAN(5) 4.61 4613

NODE:NT RAN-: 6) 4.50 4503

NODE:MTRAN(7) 4.56 4556

NODE:NT RAN-: 8) 4.53 4526

MODE: NTRAN(9) 4.60 45?9

NODE:MTRAN(10) 4.60 4597

NODE:NTRAN(11) 4.61 4610

NODE:NTRAN-12) 4.51 4506



PAGE 14 SYSTEMPRO PES- U 2.0 THROUGHPUT STATISTICS

THROUGHPUT INPUT

NODE:MTRAN(13)

RATE

4.62

COUNT

4616

RATE COUNT

NODE:MTRAN14) 4.53 4575

NODE: NT RAN1' 15) 4.52 4521

NODE: NT RAM-: 16) 4.52 4518

NODE:MTRAN17) 4.55 4545

NODE:MTRAN(IS) 4.62 4622

NODE:MTRAN19) 4.53 4527

NODE:I IT RANC20) 4.50 4501

NODE:MTRAN(21) 4.49 4494

NODE:MTRAN 22) 4 .53 4526

NODE:MBRANCH11) 10.02 100217



QUEUE LENGTH

MEAN

1 .84

r. 4-?

STANDARD DEN

0 .125

QUEUE LENGTH

MEAN

1 .78

STANDARD DEN

0.117

QUEUE LENGTE
MEAN
1 .82

I

STANDARD DEN
0.112

Aa. .r r-

QUEUE LENGT
MEAN

1 .4 6
STANDARD DE1

0.144

WULULI I I IC

-——-» V«• w

QUEUE LENGTH

M'••-»
1 904•jLJ-.

n i .in

STANDARD DE1-
0.117

QUEUE LENG1
MEAN
1 .6?

STANDARD DE
0.102

a A r, j



PAGE 16 SYSTEMPRO PES- M 2.0 QUEUE STATISTICS

QUEUE AT MODE: MQUEUE?

QUEUE LENGTH

QUEUE TIME

MEAN

1 .78

0.134

STANDARD DEL'

0.121

0.021

QUEUE AT NODE: MQUEUE(8)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .58

0 .136

STANDARD DEM

0.120

0.027

QUEUE AT NODE: MQUEUE?

QUEUE LENGTH

QUEUE TIME

MEAN

1 .48

0.124

STANDARD DEM

0.151

0.0 32

QUEUE AT NODE: MQUEUE10)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .33

0 .1 31

STANDARD DEM

0.140

0.015

QUEUE AT MODE: MQUEUE11)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .63

0.118

STANDARD DEM
0.110

0.025

QUEUE AT NODE: MQUEUEC12)

QUEUE LENGTH

QUEUE TIME

MEAN
1 .75

0 .137

STANDARD DEM
0 .1 38

n n 9 a



PAGE 17 SYSTEMPRO PES- V 2.0 QUEUE STATISTICS

QUEUE AT NODE: MQUEUE13)

QUEUE LENGTf-

QUEUE TINE

MEAN

1 .54

0 .11 S

STANDARD DEC

0 .122

0 .037

QUEUE AT MODE: MQUEUE(14)

QUEUE LENGTH

QUEUE TIME

MEAN

1. 55

0 .140

STANDARD DEC
0 .121

0 .034

QUEUE AT NODE: MQUEIJE'! 15)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .61

0 .137

STANDARD DEC

0 .137

0 .022

QUEUE AT NODE: MQUEUE'! 1 6)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .90

0 .1 35

STANDARD DEC

0.119

0 .037

QUEUE AT NODE: MQUEUE17

QUEUE LENGTH

QUEUE TIME

MEAN
1 .72

.0.125

STANDARD DEC
0. 1 4 4

0 .036

QUEUE AT NODE: MQUEUE18)

QUEUE LENGTH

QUEUE TIME

MEAN
1 .35

0 .1 27

STANDARD DEC
0 .1 38

Mf I 1 O



PAGE 18 SYSTEMPRO PES- V 2.0 QUEUE STATISTICS

QUEUE AT NODE: MQUEUEC19)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .73

0.113

STANDARD DEL1

0.103

0 .036

QUEUE AT MODE: MQUEIJE2Q

QUEUE LENGTH

QUEUE TIME

MEAN

1.10

0. 1 27

STANDARD DEL1

0.102

0 .035

QUEUE AT NODE: MQUEUEC22)

QUEUE LENGTH

QUEUE TIME

MEAN

1 .53

0 .1 37

STANDARD DEL'
0 .1 28

0.026






