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Abstract

Generating microcode from higher level microprograms has

long been 'a tough issue for it involves various conflicting

factors like economic considerations, ease on user

microprogramming aspect and the generality of the microcode

generation system, etc.

The aim of introducing the AMPS (automatic microprogramming

system) is to present an approach towards automatic microcode

generation. Under such an approach, rather than constructing a

translator for the microprogramming language, only an once-off

description of the microarchitecture is required. Bases on this

description the AMPS then generates the necessary functions to

translate source higher level microprograms to microcode. In

fact, the above process of microcode generation also signifies

the meaning of automatic.

To realize the proposed approach, two languages are

developed, namely AMPL (a microprogramming language) and MIMOL (a

microinstruction modelling language). The design of AMPL is

basically influenced by Dasgupta's S* [1] but augmented with some

additional important language constructs like macros, non-return

call of function routine commands, etc. It is applicable to

different microarchitectures by adopting Dasgupta's method of

instantiation [1]. MIMOL, on the other hand, is designed to allow

users to define a microarchitecture hierarchically through the

declarations of microinstruction intra- and inter-field

information. MIMOL also provides a formalism to describe various



microarchitectures in a completely machine independent manner.

Certain modest yet fundamental goals are achieved by the

AMPS designed, namely,

(i) Retargetability, i.e. the applicability to different

machines having similar microarchitecture to the Chen's machine

[21];

(ii) User Microprogrammability, i.e. users can practise higher

level microprogramming without much difficulties

(iii) Transportability, i.e. the AMPS can be implemented on

different machines without much difficulties

(iv) Integrity in the development of microcode. This is achieved

as both AMPL and MIMOL are applied in a coherent fashion for

microcode development in AMPS

(v) Automatic generation of microcode, i.e. no dedicated

translator for the microprogramming language of any particular

machine is required to construct for the generation of microcode.

To demonstrate the feasibility of the AMPS, a prototype

system developed for the Chen's machine [2] is implemented using

VS/APL. Microcode is also generated to eI:,ulate an architecture

similar to that of the IBM S/360. VS/APL, contrasting to most

other single-user environment for microcode development, provides

a mechanism whereby a class of students can learn

microprogramming and microarchitecture in an efficient manner.

Thus, together with the hardware version of the Chen's machine

[3], the current implemented AMPS also carries a high pedagogic

value.
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Chapter 1. Introduction

1.1 Motivation

Although microprogramming was introduced by Wilkes in 1951

[4], the first extensive commercial microprogramming project was

the design and implementation of the IBM S/360 series of

compatible 'processors in the early sixties [5]. Since then

microprogramming has grown rapidly and is now a widely accepted

processor implementation technique.

With this growth in microprogramming comes the requirement

for better microprogramming production method. Just as the need

for software to be produced more quickly, cheaply and reliably

has been recognized, the need for these characteristics in

microprogram development is obvious. There are at least three

major reasons for this need. The first is that many microprograms

such as those used in the implementation of an instruction set

are still being committed to read only storage (ROS) or read only

memory (ROM). Errors in these applications are expensive to

repair if a proper set of tools is not available. Second, the

increased migration of programs from other programming levels

into firmware thus leads to larger microprograms. An example is

the support of high level languages by the application of

microprogramming--- both in terms of processing and execution of

these languages. Some applications are actually reported such as

the implementation of an APL machine by Hassitt [6] and the

implementation of EULER by Weber[ 7]. These [6,7] all indicate

the fact that it is promising to execute high level language
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via microprogramming provided that the microprogrammed high level

language primitives are properly chosen. Another example is the

microprogramming support of the operating systems as reported in

the [8,9]. As a result, more microprogramming activities are

anticipated. The third reason is the growth of user

microprogramming brought about by the availability of processors

with writable control store (WCS) or the alterable control memory

(ACM) and the introduction of what so called the bit-slice

products.

Therefore the requirement for an efficient microcode

production system is imminent. Accordingly, a system which can

generate microcode automatically from higher level microprograms

will greatly facilitate user microprogramming. Motivated by this,

the research project for the design and implementation of such an

automatic microprogramming system is so initiated.

1.2 Definition of Terms

Many terms- used in this thesis may mean differently to

different people. Therefore, for the sake of consistency and

clarity, we present our definitions for these terms as follows:

a) Operation unit-- this is the data manipulation part of a

digital computer.

b) Control unit-- this is the part of the digital computer

exercises control on the operation unit. In other words, it is

responsible for the initiation and sequencing of the primitive

operations of the operation unit.
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c) Microarchitecture-- this term refers to the structure of a

microprogrammable machine that can be accessed and manipulated by

the microprogrammer. In other words we restrict our use of the

word microarchitecture to describe:

i) the set of microinstructions through which the machine

can be controlled and manipulated by the

microprogrammer, and

ii) the machine organization that is visible to the

microprogrammer.

d) Micro-operation-- this term refers to the elemental operation

that is initiated by a field of the microinstruction. Micro-

operation (herein after called MOP), therefore, is different from

the primitive operations of the operation unit. MOP is

effectively the most primitive action available to the

microprogrammer.

e) Host machine-- this is the microprogrammed machine where the

final microcode produced is to be resided and executed.

g) Base machine-- this is the machine where the AMPS is placed

and microcode for the host machine is developed.
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Chapter 2. Introducing AMPS

2.1 Design Goals

Generally speaking, due to the wide spectrum of

microarchitectures (from simple monophase to complex polyphase)

[10], designing an AMPS is a highly complex task and it involves

the study of

a) microarchitecture design

b) language modelling for microprogramming

c) machine description methodology

d) translator technology

e) microprogram optimization techniques and

f) microprogramming environment in which the AMPS embeds for

the development and production of microcode.

Therefore, rather than being too ambitious to design an

all-perfect AMPS, that requires an extensive study of the above

topics, the scope of this research is to design an AMPS which

attains the following modest yet fundamental goals:

(i) Retargetability, i.e. the AMPS should be a general system

applicable to different machines within the same class of

microarchitecture. This means that the designed AMPS should be

capable of cross-production of microcode for different host

machines.

(ii) User Microprogrammability, i.e. the AMPS should allow users

to have higher level microprogramming rather than involved in the
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intricate idiosyncracies of the machine microprogrammed. This, in

particular refers to freeing the users from knowing the

particulars of the control store organization. The

microprogramming language used should also be easy to understand

and use.

(iii) Transportability, i.e. the AMPS should pose little problem

to its implemention. In other words the AMPS should be machine

independent and can be implemented in different base machines for

the development of microcode.

(iv) Integrity in the development of microcode, i.e. different

constituents of the AMPS should be functioning in a coherent

fashion for the development of microcode. For this can eliminate

the requirement of multi-environments for the development of

microcode.

(v) Automatic-generation of microcode. Automatic here implies

1) Higher level microprogramming at the source level without

the need of users' knowledge about the control store

organization. This basically coincides with a part of

point (ii) above.

2) There is no need to construct any language translator

for the host machine. In turn, users only need to supply

a description of the host microarchitecture to the AMPS.

The AMPS should then generate the necessary language

translator and takes the care of translating the source

higher level microprograms to microcode of the host



machine concerned.

Consequently, the fore-mentioned a), b), c), d), and f) are

the main issues concerned in designing our AMPS.
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2.2 AMPS Organization

Conceptually, the basic organization of an AMPS is as shown in

Fig.2.1.

Microinstruction(MI) higher

description level

microprogram

microinstruction microprogramming

microinstruction
description statement

information

processor (in internal form) translation

(MDP)

(MSTP)
processor

microcode

F.g.2.1 MPS basic organization

An AMPS accepts two primary inputs: the source microprogram

written in a higher level microprogramming language, and the

description of the microprogrammable machine microinstruction.
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The microinstruction description processor is the part of the

AMPS that accepts the input microinstruction description and

transforms it into the proper internal representation. This

internal representation will then be used by the translation

processor for the generation of microcode.

It should be noted that an AMPS is only functionally divided

into these two major components. However, how the AMPS is

actually constructed depends on how one approaches to achieve

automatic microcode generation. Yet, to the best knowledge of the

author there is no consensus method nor approach proposed towards

such an aim. Nevertheless, in the coming section such an attempt

is presented.
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2.3 An Approach Towards Automatic Generation of Microcode

The approach proposed to achieve automatic microcode

generation is based on the following two observations.

(a) Many fields of a microinstruction, in fact, are inter-

related. The way how a microinstruction addresses or initiates

microoperations, is, as a matter of fact, solely achieved by the

setting up of certain bit patterns in the MI fields (this is also

known as microcoding). And due to the particular nature of

microoperations-- direct operations on machine hardware, MOPs are

basically of the function./operation (including the branching

operation) or the register-transfer types of operation. These

machine basic operations, in turn, are very primitive and they

usually simply involve the selection of operations/operands or

the selection of destination/source registers or devices. As MOPs

can usually be directly mapped with the fields of the MI, fields

of the MI are thus implicitly related by the nature of the MOPs

they are controlling or addressing. Suppose there are two fields

responsible for the initiation of a register-transfer operation.

These two fields may then be probably related by the source-

destination relationship implied by the MOP they are triggering

as one field may be responsible for the source register select

while the other acts as the destination register select field.

Similarly, an operation-operand relation can also exist between

two fields responsible for the initiation of a function/operation

type of MOP (assumed mono-operand). With one field being

responsible as an operation select field, the other field then is
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responsible for the selection of operand for the operation

selected. In cases where the MOP does not need any operand, it

can still be treated as a function/operation type of MOP (for it

simply is a null-operand microoperation). Then we may suppose

the function or operation select field is related to a null

field.

(b) The final translated microcode (or called the object code)

can be treated as a piece of matrix with its elements bearing the

value either 1 or 0.

Base on these two observations, we may then derive some

suppositions. These suppositions also serve as the premise for

the approach proposed. These suppositions are:

1) Under observation (a), it implies that microinstruction

fields, with their implicitly existing operation-operand

or destination-source relation, could be depicted

syntactically as general programming languages.

2) In other words, rather than as conventionally describing

microinstruction fields in an unrelated, field by field

basis a microinstruction description language can be so

designed that microinstruction fields relations are

described in an abstract manner resembling general

programming languages. Hopefully, if the inter-field

description could appear and be applied in a coherent

fashion with the microprogramming language used, the

microcode generation process would then be facilitated.
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(This point will become clear in latter paragraphs).

3) Under observation (b), the process of generation of

microcode is given another dimension. Rather than

conventionally treating the final microcode as a result

of the process of pattern matching and recognition the

microcode can also be generated as a result of some

bit-setting functions on a presumed object code matrix.

4) That is, rather than using conventional method of

parsing and syntax analysing, the language translator,

on accepting the source programming statements,

initiates (if we deliberately design it so) some

functions with their execution effects a setting of

values to a presumed final object code matrix piece, the

generation of microcode would then be very efficient.

(This process of microcode generation will be discussed

in full with example later on).

Having all the preliminaries stated, we now go into the

details of the approach proposed towards automatic generation of

microcode.

The basic concept structure of the approach is described in

Fig.2.2.



common

core

syntax

basic

relational

keywords

MI

field

names

basic

(oper-

ation)

keywords

data

obj-

ects

MI

intra-

f ield

descr-

iption

inter-field

relation

description

statements

basic

micropro-

gramming

statements

addit-

ional

program

reser-

ved

words

(and

faci1i-v

ties)

micro ins true t ion

description

higher

level

microprogram

M D P

AMPS

M S T P

MI: microinstruction

MDP: microinstruction description

processor

microcode

MSTP: microprogramming statement translation processor

Fig.2.2 Ihe Basic Concept Structure for the Approach

Towards Automatic Microcode Generation
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Referring to Fig.2.2, the microinstruction intra-field

description is the description on each of the microinstruction

fields details including their names (or identifiers),

corresponding positions in the MI word, and relevant machine

resources as referred by them, etc. The basic relational keywords

for MI inter-field relations description are the type of keywords

that can depict the basic relations between MI fields as accorded

to the basic machine operations they are addressing or

controlling. These basic keywords also have a close resemblance

to those basic (operation) keywords employed for

microprogramming.

As shown in Fig.2.2, the approach employs a core syntax for

the MI inter-field description and microprogramming. That is, a

discipline is posed (as accorded to the common core syntax) such

that the MI inter-field description statements and the

basic microprogramming statements are resembling each other

syntactically. (The core syntax employed for our AMPS is also

clearly shown in sec.3.2.4 and sec.4.2.4). There are certain

advantages in employing a common core syntax for MI inter-field

description and microprogramming. First, it brings coherence

between the MI inter-field relation statements and source

microprogramming statements. A correlation between user

microprogramming and microinstruction description can also be

established. Moreover, under the common the syntax, a unified

picture between MI description and microprogram description (as

microprogramming statements, in fact, are describing the
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microprogram) can thus be obtained. In addition, the adoption of

a common core syntax also brings convenience to the construction

of the MSTP (microprogramming statement translation processor) as

constructs of the source microprogramming statements can directly

be referenced with their counterparts in the MI description under

the common syntax.

During translation, the source microprogramming statements

data objects are identified. (These data objects, as will be

illustrated in later chapters, actually corresponds to the host

machine resources declared in the intra-field descripition). At

the mean time the keywords (including the program reserved words

and necessary operation keywords, etc.) are also sorted out from

the source statements. In fact, the microprogramming statement

translation processor (see Fig.2.1), on receiving these operation

keywords, directly executes the relevant bit-setting functions

corresponding to them, and effects in the setting of bits on the

presumed final object code matrix. If the bit-setting functions

in the translation processor are designed in such a fashion that

their names correspond to the would-be-accepted keywords, the

process of microcode generation will be highly facilitated. For

the job of recognizing these keywords has now become the job of

recognizing the function names exist in the system/environment

the AMPS is embedding. As a result it becomes the background

system task and is passed to the background system/environment

rather than the AMPS! Therefore from the AMPS viewpoint, the

generation of microcode can be very efficient. In reality, this

very method is also exploited by the approach proposed for



14

automatic microcode generation. We also call such a way of

translation by the name translation by direct execution. This

concept of translation is further illustrated in Fig.2.3 below.

SOURCE

STATEMENTS

(in key-

word form

and act as

functions

invoking

statements)

TRANSLATOR

(contains bit-setting

functions with names

correspond to the source

statements keywords)

V

object code

Fig.2.3 The Concept of Translation by Execution
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Nevertheless, in order to have real automatic generation

of microode, one more step is required. That is, we should have

the bit-setting functions contained in the microprogramming

statement translation processor (see Fig.2.1) be generated within

the AMPS. In other words, rather than writing the bit-setting

functions one by one for the translation processor, the

translation processor, after receiving the microinstruction

information in an appropriate internal form from the

microinstruction description processor, generates the bit-setting

functions corresponding to these operation keywords. And on

accepting these keywords the translation processor directly

executes these keyword-corresponding bit-setting functions and

effects in the setting of the bits of the presumed final object

code matrix. Thus, the translation processor, rather than doing

the job of parsing and analysing, does the job of proper

functions generation and execution instead to achieve microcode

generation. The microcode generation process is automatic for the

bit-setting functions are created internal to and by the AMPS

itself. Retargetability can also be achieved as microprogramming

for different host machines only requires one to supply the

corresponding machine microinstruction descriptions. (This point

will further be elaborated in later sections).

One final note, this approach only provides a

fundamental framework or guideline towards automatic microcode

generation. And how it actually works may have deviations from

one installation to another. Nevertheless, the basic principle,
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remains the same.

Below also shows in a step by step manner an example of how

to apply the approach to achieve automatic microcode generation

for a part of an hypothetic microinstruction in VS/APL.

EXAMPLE:

1) Assumption:

There are two fields named A and B in the MI with

their positions in the MI as illustrated below

MICROINSTRUCTION A B

0 2 3 5

with field A at the MI bit positions 0, 1, 2 (or

extending from bit position 0 to 2) and field B is at

MI positions 3, 4, 5. Suppose A is the source and B is

the destination register select fields with their

corresponding relevant (selectable) registers (which

are also noted as parts of the host machine resources)

as follows:

register corresponding binary

value in the field

field A: R1 000

R2 001

field B: R3 010

R4 011

2) Intra-field Information:

The infra-field information can be stored up in
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VS/APL by the following VS/APL statements

R1<--0,0,0

R2<--0,0,1

R3<--0,1,0

R4<--0, 1, 1

A<---'MI [0, 1, 2]'

B<--'MI [3,4,5]'

where MI is an abbreviation for the microinstruction

word.

3) Inter-field Information:

Assume the keyword TO is used to depict the

register transfer relation between fields A and B then

we may have

A TO B

as the inter-field relation description between A and

B. The field names A and B in the above description

statement thus are abstract representations of their

corresponding selectable resources for the register-

transfer relation existing among them. To keep with the

basic objective of the proposed approach, we should

have the following parallelism between source

microprogramming basic statements and the MI inter-

field description statement.



MI inter-field

description

statement

source

microprogramming

statement

A TO B

In VSAPL the keyword TO used for inter-field

description is actually a VSAPL function and may be

written as follows:

[1]

[2]

[3]

During the execution of the function TO during MI

interfield description, the 1st function statement

creates a 15-character row named TO with content:

X TO Y

The 2nd function statement expand TO to a matrix

X TO Y

MI[0, 1, 2]— X

The 3rd function statement further expand TO to

X TO Y

MI[0,1,2] —X

MI[3,4,5] —Y

In fact TO has now become a VSAPL expression (in a

character matrix form) for a latent MI word bit-setting
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4) Automatic Translation by Direct Execution

During the actual translation, we can invoke

a VSAPL function (i.e. a program) containing the statement

OEX 'TO' (can be executed in both system

andor VSAPL function levels)

to initialize the translation environment. (The

original function TO for inter-field description can

easily be restored back in the current VSAPL workspace

using )PCOPY or )COPY commands from the appropriate

workspace storing the function). After initialization,

we can then establish the bit-setting function bearing

the same name as the keyword TO in the inter-field

relation description statement. The establishing of the

bit-setting function in VSAPL can easily be achieved by

using the system function QFX statement as follows:

0 FX TO (can be executed in a VSAPL program)

Now, suppose we have a source microprogramming basic

statement

R1 TO R3

inputting to the translation processor (see Fig.2.1).

As already illustrated, this source statement will

simply initiate the execution of the function named

TO with R1, R3 substituting for the operands X and Y

respectively. In essence, we have the following VSAPL

statements



executed. It the variable MI above is actually a row of:

the presumed object code matrix, automatic generation

of microcode is thus achieved.

Although the number of linking variables or flags for the

installation programs may increase as the complexity of the

microarchitecture, the fundamental concept behind however,

remains. It should also be noted that although the example is

illustrated in VSAPL, it does not necessarily imply that the

concept is dependent and works only at the VSAPL-based

environment.

In the following chapters, steps towards the realization

of the proposed approach for automatic microcode generation

through the design and construction of an AMPS are presented and

discussed. These steps basically, are:

a) The design or choice of an higher level microprogramming

language;

b) The design or choice of a microinstruction description

language;

c) The design or choice of an environment in which the two

fore-mentioned major components of an AMPS embeds (see

Fig.2.1).

We now go into these steps one by one in details.
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Chapter 3. Design of AMPL

3.1 Design Considerations

The first step to realize the proposed approach for

automatic microcode generation is to design or choose a proper

language for higher level microprogramming. As for this step, due

to the uniqueness of the approach, we have developed the language

ourselves, namely called AMPL (A Microprogramming Language). It

is basically a Dasgupta's S*[ 1] influenced language. In fact,

some parts of AMPL are actually adopted from S*. However, AMPL

does differ to S*, e.g. AMPL uses mnemonics rather than operator

symbols, AMPL also possesses (while S* lacks) some language

facilities which are deemed important in real microprogramming

context like the macro facilities, etc. (see later sections).

The main aspects concerning the design of AMPL are also

discussed as below.

(a) The Resource Binding Problem

The first problem addressed by microprogramming is the

resource ,binding problem. This problem can best be described by

the following example.

Consider a BASIC program to perform matrix multiplication.

The semantics of BASIC requires that code must be written to do

this operation component by component. Therefore the object code

produced for this program will have to take many (basic)
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instructions to perform the task. Now consider a host machine

having matrix multiplication hardware available, which, in fact,

can also be utilized via proper (machine) instruction. Hence,

instead of writing the previous BASIC program, one such

specialized instruction would, be adequate. To compare, the

resulting BASIC program is surely inefficient. And with regard to

this, no matter how the resulting translated microcode of the

BASIC program is optimized, this inefficiency would not be

eliminated.

One possible way to solve the above problem would be to

construct a translator that would recognize that a segment of the

source program was doing matrix multiplication. During

translation, this source segment will then be recognized and

converted into the specialized matrix-multiply (machine)

instruction. But, there are various many ways of writing programs

by different programmers. This approach would then imply that the

translator have to memorize every possible such segments that

would likely be doing the task of matrix multiplication. Of

course, this is not feasible. Another solution would be to

incorporate a matrix-multiply operator into the source language.

This does solve the problem, but the resulting language is no

longer the general machine independent HLL (High Level Language)

BASIC! Moreover, this is not a general solution to the problem.

The reason being that a language based on this principle would

have to include every possible host resource of every possible

host machine. This is obviously impossible!
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The problem of how to recognize the similarities between

source constructs and host machine resources and how to bind the

source constructs to the appropriate host machine resources is

called the resource binding problem.

The resource binding problem simply implies that

contemporary HLLs cannot directly be used to substitute as

microprogramming languages. For instance, the HLL FORTRAN does

not have the constructs to allow users to access the stack of a

minicomputer. Most conventional HLLs also do not have the

constructs for describing microparallelisms, which however is a

basic feature of microprograms.

The way how the resource binding problem is tackled by AMPL

will become clear in latter discussion.

(b) Machine Specificity and Microarchitecture Variability

The second problem we encounter in developing AMPL is

machine specificity. This problem basically follows the resource

binding problem. While the nature of a program is to work on an

abstract machine, a microprogram however, works on a specific

piece of hardware. Thus it is operationally insignificant to talk

of a microprogram running on an abstract machine. Say, while it

is perfectly sensible to refer a program as implementing some

particular interface (or function), it is operation-wise

meaningless to talk of an emulator (i.e. a microprogram) without

referring to the host machine on which the emulator runs.

Therefore, the machine specific nature of a microprogram makes it

contradictory to state microprogramming in a machine independent
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manner (which however is our ideal) as conventional high level

programming languages.

This problem is further complicated by the fact that

available microarchitectures come with a profusion of shapes and

sizes. In fact, it is really very difficult for us to express

microprograms without any reference to the host machine involved.

Thus, if a microprogramming language has to be machine-

independent, it then have to be sufficiently general to cope with

the variations in microarchitectures. And no matter how hard one

strive to abstract and generalize the many components of

different microarchitectures, certain different and peculiar

components regarding to individual microarchitecture still

remain. In our design of AMPL, this notion of microprogramming is

also acknowledged and an approach, namely instantiation [1], is

adopted for the constitution of a microprogramming language from

AMPL for a particular machine M (see section 3.2).

The issues on machine specificity and microarchitecture

variability are also extensively discussed in [1].

(c) Degree of Abstraction

In our design of AMPL, we have the following remarks

concerning the two main aspects of abstraction, namely the data

and the function aspects.

i) Data Abstraction-- A natural way to model a data resource is

with a data type. In the microprogramming domain, however, the
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extent to abstract data objects is very limited. For as

previously mentioned, microprograms implement virtual machines on

physical hosts. In other words, to whatever level the data

objects of the microprogram is abstracted, a conformation with

the host machine resources still remains. Nevertheless, under

such a limitation, AMPL data type can still be chosen in a

fashion that a conveniently high level of abstraction retains

so that general programming methodologies can still be applied.

Furthermore, these data types may also be allowed to model a wide

range of data resources of different machines. Thus, a certain

degree of machine independent characteristics may be achieved,

although semantically each declared data object of a particular

data type of the microprogram is machine dependent.

ii) Function Abstraction-- In order to model the functional

elements of different host machines, AMPL should possess the

ability for function abstraction. As will be shown, with the

allowance of macro declaration and instantiation of machine

pecularities, AMPL thus acquires both flexibility and

extensibility in modelling a wide range of different functional

elements of different machines.

(d) Machine Independence and Higher-Levelness

In designing AMPL, we have to be clear about the issues of

machine independence and higher-levelness. First, when we are

speaking of machine independence, we are referring to host
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machine independence, i.e. not the base machine by which the

object microprogram is generated (see chapter 1). Second, when we

are talking of host machine independence, we are not comparing

with the machine independence of conventional high level

languages. As we have pointed out, microprogramming involves the

programming of the intimate hardware features of a

microprogrammable machine. Thus, the user has to possess the

knowledge of the host machine microarchitecture to a certain

extent. Therefore, designing a completely machine independent

microprogramming language is nearly impossible. However, we would

like, here, to say that a language is well worth to be described

as machine independent if it possesses certain machine

independent characteristics in its syntactic and semantic

structures which make it (not_the microprogram) applicable to a

wide range of microarchitectures. In this sense, machine

independence is also important to microprogram modification.

(For example, when we are writing emulators for the same target

machine under different hosts of similar microarchitecture,

previously written microprograms will then be useful).

About the interpretation of higher-levelness, there are

quite different interpretations about this term from different

authors, for example[ 1] and[ 11]. In designing AMPL, we feel

content that it is a higher level microprogramming language

if it enables one to write structured and readable

microprograms. And in our writing of AMPL microprograms, we

assume, the microprogrammer has the machine organization chart
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and microarchitecture information in hand when he writes his AMPL

microprograms.

(e) User Microprogranunabii ity

With the advance of hardware technology, more and more

sophiscated hardware systems are produced. Microprogrammable

processors (especially the horizontal microcoded ones) which

allow users' involvement are also becoming more attractive for

many special high speed applications, e.g. signal processing,

etc. Such involvement of the users' part in microprogramming is

also enhanced by the introduction of what so called the 'bit-

slice' products. Thus, user m.icroprogrammability has become one

of the most important factors to be considered in designing AMPL.

In fact, AMPL will be more user microprogrammable if it is easy

to understand and use. As will be described, AMPL is basically

designed-' as a mnemonic type language which can easily be

understood via its keywords. At the same time, AMPL is not

symbol-dependent of any particular language to facilitate its

portability.
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3.2 The Language AMPL

3.2.1 An Overview

The language AMPL is basically designed with an approach

adopted from Dasgupta's schema concept [1]. Therefore the AMPL

structure also has a resemblance to Dasgupta's S* [1] but with

some important language constructs augmented, for example the

macro and the non-return call of procedure commands, etc. The

language AMPL thus, using Dasgupta's words, denotes a framework

for the development of microprogramming languages for machines of

different microarchitectures. That is, rather than directly

microprogram with the lanugage AMPL, a specific microprogramming

language developed from AMPL for a specific machine is used. For

example, given a machine M, a particular language AMPL(M) is

obtained by extracting the specifications of AMPL and at the same

time filling into .it the specific particulars of M. Using

Dasgupta's term, AMPL is instantiated into a particular

language AMPL(M) on the basis of (or with respect to) M. In fact,

instantiated versions of AMPL only differ in their elementary

statements and implications between different microoperations

(see section 4.2.6).

Essentially, AMPL is a mnemonic type language and can easily

be grasped by its keywords. In addition, AMPL has also retained

the flavours of conventional high level languages such as

structured control constructs, so as to facilitate the writing of

structured and readable mi'croprograms. Besides, AMPL also

incorporates constructs for describing micro-parallelism. Similar



to Dasgupta's S* (1], AMPL basically consists of

(i) a set of elementary constructs whose syntax and

semantics are only partially defined

(ii) a set of composite constructs by means of which control

structures in AMPL programs are developed.

We now present the language schema AMPL in details.
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3.2.2. Data Types and Data Objects

a) Data Types:

As AMPL is designed with the intent of being used for more

than a single lmmicroarchitecture, the data types of AMPL are thus

chosen such that they are general enough and applicable to

different microarchitectures.

The data type in AMPL basically resembles those of the S*

[1], namely the primitive and the structured
data types. The

primitive data type in AMPL is the BIT which is assumed to hold

only the value 0 or 1. While for the structured type, as its

name suggests, is structured from this primitive. Given the data

objects having the type BIT the arithmetic and Boolean operations

depicted in section 3.3.3 can be applied to them.

Structured data types are basically obtained by structuring

the BIT data type. And there are four such categories (keywords

are underscored for clarity):

1) The sequence: SEQ n (III.1)

where n is the integer denoting the number of bits in the

sequence. A sequence of this form can then be accessed by

indexing the sequence name with either an integer constant i or

the name of some other data objects. This data type sequence can

actually be used to model machine registers

2) The matrix: MATRIX m,n (111.2)

where m,n are integers denoting the number of rows and

columns of the matrix respectively. A row of a matrix of this



form can be accessed by indexing the matrix name with either an

integer constant i or the name of some other data objects

following by;. This data type matrix is actually used to

model machine register files or memory. However many machines

generally allow only certain machine resources as the addressing

element (called pointer usually) for its memory elements. Such

explicit binding of matrix and its corresponding addressing

elements can be denoted by the POINTER identifier in the

below statement:

MAT RIX m, n POINTER 'identifier{,identifier}' (III.3)

with the identifier as the pointer. Note that the notation

indicate a list of zero or more elements of the type X.

This notation also works for latter expressions.

3) The stack:

STACK n OF type POINTED

The stack data type here has its usual meaning to represent

the stack of a machine. While n here refers to the depth of the

stack, the identifier after the word POINTER refers to the

element addressing the current top of the stack. The standard

primitive operations -[push, pop} also go along with the stack

data type. The type above may refer to the primitive type BIT

or structured type SEQ (III.1).

(III.4)



4) The tuple: TUPLE 'identifier 1' OF type 1

'identifier k' OF type k

ENDTUP (III.5)

The tuple here is basically adopted from S [1], Besides, it

looks very like the Pascal recdrd and is consisting of a number

of fields of type Ctype k, repectively. Any valid

operations on an individual field of the tuple are determined by

its corresponding type and the nature of the microprogrammable

host machine. Here the type i may refer to any one of the

previously mentioned types III.1-2 or the primitive type BIT.

Example:

TUPLE

'opcode' OF SEQ 6

'operand' OF MATRIX 4,4

' index' OF BIT

ENDTUP

As the tuple permits the grouping of different types of

objects it therefore is fairly powerful. For example, an object

named flag-status can be declared as an instance of the type

tuole.

TUPLE

aluflag' OF BIT

'pcflag' OF SEQ 4

'progflag' OF SEQ 12

ENDTUP
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b) Data Objects

In AMPL, there are three main classes of data objects,

namely the type, variable and constant data objects. These data

objects are also defined by, the host machine (except the

pseudovariables and literal constants). That is, their names,

types, and structures are defined at the microarchitectural level

(see section 4.2,.2 on machine resources declaration). In fact,

apart from the pseudovariables and literal constants, an AMPL

microprogrammer can only reference those data objects appeared to

him in the machine organization. In other words, only those

machine resources already declared in the microarchitecture

description (see section 4.2.2) can be referenced. In case there

is any reference to pseudo-variable or literal constant data

object (will be described later), which must be declared before

being referencd. There are basically three reasons to support

the adoption of such a policy. The first reason is for the

reduction of unnecessary errors and ambiguities as the programmer

now has to pay heed to the structure of referenced data objects.

Second, for the clarity of the program text. Third, such

declarations set up a well-defined scope for the data objects

declared, thus providing some measure of protection to undeclared

data objects. These three reasons are also already well

understood in the area of programming methodologies.

The declarations for the three types of data objects namely

the type, variable and constant data objects are as follows:
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(i) Type Data Object

TYPE' type-identifier type-identifierj' OF type-structure

where type-structure refers to any one of the types

(III.1)-(III.5), or simply, the'symbol BIT and type identifier

is a programmer-defined name for some structured type.

Example:

TYPE 'register word' OF SEQ 16

The introduction of the type data objects is for better program

readability and programming conveniences.

(ii) Variable Data Object

In AMPL, variable data objects are all host-machine-defined

and are treated as predefined global varibles. Sometimes, at an

abstract level, however, for convenience purpose we can express

some particular actions by assigning a value to some virtual data

objects. These virtual objects may also provide a means for

communication between statements. In AMPL such objects are termed

pseudovariables and they are declared as follows:

PVAR 'pvar-identifier{pvar-variableIT' OF type identifier

Examples:

1. PVAR 'ovflsampalu-status-enable-bit' OF BIT

2. PVAR 'HLMN' OF word

Example 1. declares two pseudovariables named ovflsamp and
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"alu-status-enable-bit of the type BIT. Example 2. declares four

registers H,L,M,N of the type word previously declared having a

structure of SEQ 16 (see the example for the type data object).

In addition, variables and pseudovariables can also be

renamed using the SYNTO (synonymous to) declaration:

'identifier 1' SYNTO 'identifier 2'

Example:

PVAR 'reg' OF SEQ 4

PVAR' ovf l' OF BIT

' indexreg' SYNTO 'reg'

' f lagreg' SYNTO' ovf l'

(iii) Constant Data Object

The declaration for constant data objects is:

CONST 'identifier' OF number type (length) value

where identifier is the programmmer or machine-defined name

corresponds to the machine-defined constant located in read-only

memory elements number type can either take BIN (binary), or

OCT (octal), or HEX (hexadecimal), or DEC (decimal) and length

and value are the bit-length and value of the data object in

the corresponding number system respectively.
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Example:

CONST 'zeros' OF DEC (16) 0

CONST 'plus1' OF OCT (16) 1,

CONST 'sign' OF BIN (8) 10000000

Sometimes, for programming conveniences, literal constants may

need to be declared, and their declaration in AMPL is

LITCON 'identifier' OF number type (length) value

Example:

LITCON 'N' OF DEC (16) 1

Basically, all data-objects are predefined in the machine

resources declaration (see section 4.2.2). And the

microprogrammer need only have the machine organization chart at

hand to start writing his microprograms.
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3.2.3 Operators

The basic operator set for AMPL is depicted in Table I. As

shown, they are basically of the keyword type. Eight arithmetic

operators are allowed in AMPL 'and parentheses may be used to

explicitly specify precedence. Relational operators are used to

compare two data items to determine the relationship existing

between them. The execution of a comparison statement results in

returning a boolean value carrying either the 1 (true) or 0

(false) value.

In addition to the six basic logical operators which, are

applicable to variable and constant data objects, a number of low

level, hardware-oriented, special operators have also been

introduced. Examples are provided by the two operators LSB and

MSB which, when they are applied to a variable, set a 'boolean'

variable to the value of the least (LSB) and most (MSB)

significant bit of the variable, respectively. For example we

could write:

CONST 'A' OF BIN (8) 10101010

'B' EQU LSB A

'C' EQU MSB A

The result is that B and C assume the values 0 and 1,

respectively.

In microprogram writing it is often necessary to specify a

shift operation to achieve this, four 'shift' operators have

been provided, allowing different types of shift: namely,
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arithmetic left shift (SHAL), arithmetic right shift (SHAR),

logical right shift (SHLR) and logical left shift (SHLL). The

structure of a shift operation consists of the shift operator

keyword followed, by the item to be shifted, a comma, then the

number of places to shift. For example, the result of the

statement:

SHLR A, 4

would be the shifting of the variable A four places to the right,

entering zeros from the left. Jump and main memory read/write

operators are also included in the table for microprogram

writing.

Besides the operators stated in Table I, macro-operation can

also be declared in AMPL as follows:

MACRO 'macro-head'

macro-body consisting of AMPL executional statements,
see section 3.2.4

ENDMACRO

Thus, using macros, AMPL also provides language

extensibilities (although macro within macro is not allowed in

AMPL). Numerous examples of macro declarations can be found in

the sample emulator listing in Appendix A.
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Table I. Basic.AMPL operators (to be continued)

a. Arithmetic operators

ADD A,B
/4+B

BADD A,B
/Binary add for A, B

SUB A,B
/A-B

BSUB A,B
/Binary subtract, A-B

MULT A, B
/A multiply B

BMUL A,B /Binary multiply

DIV A,B
/A divided by B

BDIV A,B /Binary divide

b. Relational operators

A EQ B /A=B?

A NE B /AtB?

A GT B /AB?

A LT B /AB?

A GE B /AB?

A LE B /AB?

c. Logic operators

A AND B

A OR B

NEG A /negate A

A EXOR B /A exclusive OR B
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Table I. (contd.)

d. Special and shift

A EQU MSB (.B) / A=most significant bit

of B

A EQU LSB (B)

SHAL A,n
/ Arithmetic left shift

of A by n places

SHAR A,n

SHLL A,n

SEIRL A, n

e. Jump

GOTO A / A is the destination

address (or label,

then quotes are

required)

ACT 'A'
/ activate procedure A

CALL 'A'
/ call procedure A

RTN

f. Main memory read and write

LOAD R,A / A is the address and R

is the register to be

loaded with MEM(A)

STOR R, A / storing content of

register R to MEM(A)

Note: All the above keywords together only provide a basic

framework of operators for the final instantiated

microprogranuning language. And these operators are only valid if



they are supported by the host machine (see section 4.2.2) or

declared as a macro function narne in the microprogram.
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3.2.4 Micro-statements

Like S* [1], there are two main types of microstatements in

AMPL, namely the simple and the composite microstatements. The

basic executional entities in AMPL are the simple statements

which correspond to microoperations (MOPs) in the host machine.

To keep with Dasgupta's notion of schema [1], the design

objective for AMPL's constructs is to provide a skeleton on which

the MOPs of the host machine could be mapp(-f'd. Thus a person

knowing AMPL and reading a microprogram written in AMPL(M) for

some machine M could obtain a reasonably good idea as to the

workings of the microprogram without knowing too much specifics

of M.

(I) Simple microstatements:

To conform with the proposed approach for automatic

microcode generation, this type of statement is also the basic

statements that correspond to the inter-field description

statements (see section 4.2.4) of the host microinstruction. In

essense, the simple statements are of three types: assign,

function and branching.

a) Assign:

A TO B (A. 1)

where A is a source data object (i.e. a variable, a constant data

object, or a literal constant) and B is a destination (simple or

subscripted) variable.



b) Function:

E {to bV ( A. 2)

where E is a parenthesized expression of one of the forms

with op being a primitive machine-defined operation; macro-op

being a declared macro operation identifier; D1, D2 being data

objects or literal constants.

Note that the syntax and semantics of expressions are not

fully specified in AMPL; their form and meaning are determined

during instantiation [1]. This approach thus provides a practical

solution to the problems posed by the variability of

microarchitectures and yet has the merit of simplicity. There are

three basic reasons justifying this instantiation method, and

they are (quoting Dasgupta's words):

For in the context of 'real' systems, it is easily verified

empirically that (1) the number of distinct expressions in a

given instantiation is quite small, (2) the expressions are quite

simple, and (3) the primitive operators in the instantiated

language are mostly obtained in the operator set defined in AMPL

or are valid compositions of these operators; and yet the weak

specification of function statement form allows 'deviant'

functions, whose syntax andor semantics do not easily conform

to standard patterns, to be defined without too much difficulty



during instantiation.

c) Branching:

Branching statement may take one of the following forms:

GOTO destination

or CALL 1 p.rocedure identifier

or A.CT' procedure identifier

or RTN

(A.3)

(A.4)

(A.5)

(A.6)

where destination is either a statement label or a data object

or an expression E (possibly parenthesized) as defined in the

function statement. In case the destination refers to a

statement label, quotes have to be introduced as those for the

procedure identifier in statements A.4 and A.5.

The issue on the employment of GOTO statement has been

thoroughly discussed in [12] for any further discussion. The

reason here for its inclusion may best be argued by Dasgupta's

words:

The inclusion of this statement may appear regressive as a

philosophy of language design, and yet from the viewpoint of

source program optimization it seemed essential to include it.

The word ACT (activate) here refers to the calling of

procedure without return.

Finally it is important to note that since simple

microstatements correspond to MOPs and the precise action of MOPs

are machine-specific, the semantics above are only partial
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machine, additional rules may be required to complete their

semantics (see section 4.2.4 and 4.2.6). (An example is the

setting of the overflow flag for some 'add' operations while

leaving the flag intact for other operations).

II) Composite Statements

There are basically four types of composite microstatements

in AMPL. Basically, they are composed of simple microstatements

strung by the AMPL program reserved words. These composite

statements are the AMPL statements consisting the constructs by

means of which control structures in AMPL programs are developed.

a) Compound:

The compound statement is basically the type of statement

having the construct for denoting micro-parallelism. A compound

statement looks like the following:

COBEGIN

51

52

ENDCO (A.7)

where Si are simple statements that are all to be executed within

the same microcycle. This statement basically specifies the

concurrent execution of the Si's. Thus, microinstruction
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optimization can therefore be performed at the source level.

b) Condition:

IF 'C'

THEN D

ELSE Dn

ENDIF (A.8)

where C is either a machine defined testable condition or a

program condition D and Dn can be one of the statements (A.1-

A.7). The ELSE Dn included in the curved bracket is optional.

'Program condition' here refers to the program testing condition

on pseudo-objects (i.e. pseudovariables or literal constant data

objects). Under such a case, D and Dn may also include some

operations on pseudo-objects not necessarily conform to A.1-A.7

(see the Appendix on the emulator listing) and normal program

expansion like that for the macro occurs.

c) While:

WHILE 'C' DO D (A.9)

where C and D are as described for the 'condition' statement.

d) Repeat:

REPEAT D UNTIL 'C'(A 10)

where C and D are as described for the 'condition' statement.

Essentially the composite statements have incorporated the

necessary components for writing structured and readable

microp rograiis.
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Note: All the underscored keywords appeared in the executional

statements are AMPL reserved words with their normal usage as in

a macroprocessor. They can be mapped to microoperations only if

they are declared in the microarchitecture description (see

Chapter 4).



3.3.5 Syntax Summary

The syntax of AMPL is described using the following series

of syntax diagrams.

Microprogram:

MPG
Microprogram

identifier

Declaration

block

Execution

block ENDMPG

Declaration block

DECLARATION

Pseudo-

variable

declaration

Constant

declaration

Svnonvm

declaration

Macro-

dec1aratior

ENDEC

Fig.2.3 AM °L Syntax Diagrams (to be cont'd)



Execution block:

B2GIN

Procedure

Micro-

statement
END

Macro-

function

Pseudovariable declaratic

PVAR

Pseudo-

variable

'identifier

OP

type

identifier

type

structure

Fig. 3.2 AMPL Syntax Diagrams (cont'd)



Constant declaration:

LTTCON

CONST

identifier

number

type
length value

Synonym declaration

identifier SYNTO

identifier

Fig.3.2 AMPL Syntax Diagrams (cont'd)



Maero declaranion:

macro—heac
micro-

statement

ENDMACRO

Prnrpritirp:

PROC
identifier

literal

constants &

synonym (s)
declaration

micro

statements
PTjnrorr'

label

aridres

any of th

executable

statements

Fig.3.2 AMPL Syntax Diaprai
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Chapter 4. Design of MIMOL

4.1 Design Considerations

The second step to realize the proposed approach for

automatic generation of microcode is to design or choose a

language for microinstruction description. As the research in

this area is still sparse (13], and with regard to the uniqueness

of the approach, we therefore decided to design the language

ourselves. The language we designed is called MIMOL

(microinstruction modelling language).

Certain points need to be considered before we go into the

design of MIMOL. Basically these points are related to the

capabilities as required by a microarchitecture description

language, and they are listed as follows:

(i) MIMOL must be capable of describing the details of every

field of a microinstruction including

a) the corresponding posit-ion of each field in the

microinstruction,

b) every controlled microoperations and machine resources

corresponding to each field of the microinstruction, and

their corresponding microcode values,

c) the corresponding default value of each field, etc.

(ii) MIMOL must be capable of describing the relations between

fields of the microinstruction, including

a) how fields are arranged under different formats of the

microinstruction,
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b) how a field links with the other in the microinstruction,

for example, field A acts as the source and field B acts

as the destination resource select field for a register

transfer operation, etc.

c) the conflict condition between fields, like resource

conflict (e.g. field A cannot initiate an operation

involving register A while field B is using the same

resource, etc.).

(iii) MIMOL must be applicable to different microarchitectures.

This is also the basic requirement posed by the retargetability

of AMPS.

(iv) MIMOL must be portable. The portability of MIMOL implies

that it can be implemented on most of the existing high level

languages.

(v) MIMOL has to conform with the approach proposed for the

automatic generation of microcode. In other words, inter-field

description statements in MIMOL have to be consistent with the

structure and syntax of AMPL's simple statements.

We now go into the language MIMOL in details.
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4.2 The Language MIMOL

4.2.1 An Overview

MIMOL is basically a declaration language. It contains

constructs for the following purposes:

a) Definition of the hardware resources of the machine

microprogrammed

b) Definition of the field encoding details of the

microinstructions of the host machine. These details include

the field names, default values and positions in the

microinstruction, etc.

c) Definition of relationships between fields of micro-

instruction. These relationships basically are established

by the operations/operands relations between different

fields of the microinstruction

d) Definition of the machine defined testable conditions that

will be assumed during microprogramming the host machine

e) Definition of implied operations between operations/operands

of different fields of a microinstruction.

In addition to allowing users to define the semantics of

microinstructions, MIMOL is also designed in such a fashion that

it can be applied coherently with AMPL for the generation of

microcode. As one of the primary aims of designing AMPS is

retargetability, the formalism adopted in MIMOL also allows users

to describe microarchitectures in a completely machine-

independent manner.
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4.2.2 Resource Declaration

The declaration of machine resources of the machine

microprogrammed provides a basis for other parts of

microarchitecture declaration. All the rest declarations, say,

the intra- and inter-field declarations, etc. will also refer to

and be limited by the resource set declared. Thus, the resources

declared also provide a check list for later declarations.

Besides, these declared resources will also be treated as the

predefined variable data objects for AMPL programs.

Essentially, all machine resources appeared in the

microarchitectural level will all. be declared. Resource

declaration is basically used to show the existence of particular

machine resources in the inicroarcliitecture. Thus only the

resources' names and type structures are of importance. The

syntax for resource declaration in MIMOL is as follows:

Resource declaration:

resource declarationRESDEL CMT
class statement

ETNDRES

rig.4.0 Syntax Diagrams for Resource Declaration (cont'd)



Declaration statement:

resource

identifier

type

structure

Fig.4.0 Syntax Diagrams for Resource Declaration

where RESDEL and CMT are the keyword commands for resource

declaration and comment respectively; type structure may either

be one of the structures as described in AMPL (section 3.2.2).

The resouce class appears in the syntax diagram above is

arbitrary and introduced by the user solely for his convenience

and clarity.

Example: RESDEL

CMT 'register'

'R1;R2' OF SEQ 16

CMT 'aluports'

'APORT1;APORT2' OF SEQ 8

CMT 'control-store'

'CS' OF MATRIX 1023,32

ENDRES



57

4.2.3 Intra-field Declaration

Intra-field declaration names microinstruction fields and

enumerates their constituent microoperations/operands and

positions in the microinstruction word. Generally speaking, the

bit position (s) of a field in a• microinst,r. uction word should be

stated in a consecutive manner and the leftmost bit is always the

most significant one (see latter example for the Chen's machine).

However, fields are allowed to overlap (as will be later shown).

And fields are basically associated with the resource named CS

(i.e. control-store) declared at the start of the declaration.

Intra-field declaration is basically of two steps: the

identification of microinstruction field names and relevant bit

position(s) in the microinstruction the enumeration of each of

these fields details.

a) 1st step: Identification of microinstruction fields

A microinstruction (hereinafter called MI) may take

different formats. In other words, we may have MI= MIFIMIFLIMIF3(

MIFn or MI E iMIFiI i=1 to n Within these MIs of different

formats, certain fields are format affected while certain fields

are not. Thus, by grouping these format unaffected fields into

sections, we can save our effort in later declaration by simply

including these sections. The step of microinstruction fields

identification is essentially depicted by the following syntax

diagrams. As will be illustrated, the MIMOL keywords (capitalized

words) are already self-explanatory. The keywords AT and ATX
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mean at the position(s) and at the positions extending from

respectively.

Field identification.

control formatted

IELDS store MI ENDFI
identifier specificati-

on

Formatted MI specification:

steering
format

ThT WITH bit (s)identifier
Specificat-

ion

section

inclusion
single

field ENDFtMTsection
identificat-identificat.

ion
ion

Fig.4.1 Syntax Diagrams for Field Identification (cont'd)
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Steering bit(s) specification

MI position(s)

EQU value(s)

Section inclusion:

section
INCL

identifier

Fig. 4.1 Syntax Diagrams for Field Identification. (conc'd)
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Section identification:

seetion
SECTION

identifier

single
ENDSECTION

field iden-

tification

Single field identification

AT

field

mnemonic position

identifier

ATX

Position(s).

number

Fig.4.1 Syntax Diagrams for Field Identification (conttd)



values(s)

value

Fig.4.1 Syntax Diagrams for Field Identification

Example:

etet.ds vr.q1

FMT 'f11 WITH MI[0] EQU 0 declare a MI of format named f1

and set the format decision

position (MI[0]) into 0

declare a section named s1SECTION 's1'

'ainDUt' AT 48.49

'binput' AT 43,44

ENDSECTION end of section declaratior

' i nrloY1 A 1 S_ 1(

flag' ATX 17,20
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FMT 'f2' WITH MI[0] EQU 1

INCL s1 /include section sl

'condition' AT 23,24

ENDFI



b) 2nd step: Field enumeration

Although there is a wide spectrum of available

microarchitectures, MI fields, however can be classified as the

following three basic types: the operation select, the operand

select, and the emit fields; where emit field means that the

field acts as a data supply field. The enumeration of fields'

details can be depicted by the following syntax diagrams.

operation

field

specification

FDF.TATT.S
operand

field

spec i f ica t ioi

ENDFD

emit

field

specificatio

Fig.4.2 Syntax Diagrams for Field Enumerations (cont'd'



Operation field specification:

OPTFIELD

field

identifier

DEF

default

value

operation

keyword EQU

va1ue ENDOPT

Fig.4.2 Syntax Diagrams for Field Enumerations (cont'd)



Operation field specification:

OPNFIELD

field

identifier

DEF

defau1t

value

resource

identifier
EQU

value ENDOPN

Fig.4.2 Syntax Diagrams for Field Enumeration (cont'd)



Emit field soecification:

ZMEISLD
field

identifier

DEF
default

value
RANGE

lower

bound

value

upper

bound

value

ENDEM

Fig.4.2 Syntax Diagrams for Field Enumerations



Example:

FDTAILS

OPTFIELD 1aluop1 DEF 0

field details declaration

declare an operation field named

aluop with default value 0

'nop' EQU 0

'add' EQU 1

'sub' EQU 2

OPTEND

OPNFIELD 'ainput' DEF 0 declare an operand field named

ainput with default value 0

'R1' EQU 0

'R2' EQU 1

OPNEND

EMITFD 'emit' DEF 0 declare an emit field named

emit with default value 0

with range between 0 to 25'

(2's complement are assumec

for -ve value)

RANGE 0,255

EMENC

ENDFE



4.2.4 Inter-field Declaration

Inter-field relation basically depends on the operation-

operand or register-transfer relations exhibits as accorded to

the use of the microinstruction fields. To conform with the

notion of a common core syntax under the proposed approach for

automatic microcode generation (see section 2.3), inter-field

description statements in MIMOL, therefore, are also similar to

AMPL1s basic statements in their syntactic appearances. Besides,

this similarities further allows users to have a coherent picture

between the MIMOL described microinstruction and the 'would-be'

microprogramming language developed from AMPL.

Inter-field relations in MIMOL are essentially depicted by

the following types of syntactic statements:

(i) Assign:

Coperand field identifier TO Coperand field identifier

(ii) Function:

(B. 1)

E t0 operand field identif ier)' (B. 2]

where E is an parenthesized expression of one of the forms

Coperation field:

identifier

fCemit or operand field

identifier i
{emit or operand

field identifier}

or

emit or operand

field identifier:

Coperation field

identifier

Cemit or operand fiel(

identifier
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(iii) Branching:

GOTO emit or operand field identif emit or operand field

identifier

(B.3)

or CALL emit or operand field identifier (B.4)

Although only three primitive syntactic statements are

available to describe the inter-field relations, it is believed

that they are sufficient for the purpose as all MOPs are

basically primitive (assign, branching and function) actions. In

cases where the MI consists of multiple such relations (e.g. a MI

requires two or more 'function' statements to describe its inter-

field relation), the occurrence specification is introduced. The

syntax for occurrence specification has the form

OCCUR occurrence number

Essentially, the occurrence specification is apppended at the end

of each of the above syntactic statements (B.1-4) during use.

Its presence at a particular statement is to indicate the number

of occurrences of that type of statement in the inter-field

declaration. For the 'ASSIGN' statement, if the number of

occurrence is 1 or the destination field referenced is the same

as its predecessor in the statement, this occurrence

specification can be omitted. For the 'FUNCTION' statement, if

there is no destination field referenced the occurrence

specification can also be omitted.

In essense, the provided syntactic statements for inter-

field relation description give an abstract representation of the
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possible primitive operations initiated by the MI. By comparing

B.1-B.4 with A.1-A.4, one can readily observes that they are

actually identical in their syntactic outlook.

(Note: The "ACT" and "RTN" are not included in MIMOL for inter-

field description. This is because "ACT" is in fact a variant of

GOTO and "RTN" is an implied operation of "CALL". While "ACT" and

"RTN" may exist in the microprogram for better program

structuring, they are not necessary for the inter-field

description purposes).
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4.2.5 Machine Defined Testable Conditions Declaration

In MIMOL, the syntax for the declaration of a machine

defined testable condition is as follows:

CONDITION

EQUOP 'operation identifier declared resource ,delcared

or operand field resource or

identifier operand field

identifier

ENDCON

Essentially, defining a machine defined testable condition

is equivalent to pinpointing a particular micro-operation. This

is because the set-up of a specific machine defined testable

condition is always associated with the setting of certain bits

of the MI. This in turn means that a certain microoperation is

initiated. In other words, setting up a machine testable

condition is equivalent to a function operation statement (B.2).

Therefore the keyword 'EQUOP' (equivalent operation) is used.

These declared machine conditions will then be the only

valid conditions referred to in microprograms.
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4.2.6 Implied Operations Declaration:

This declaration refers to those cases where some

microoperations must be or shouldn't be executed inclusively or

exclusively at some microinstruction cycles due to the resource

utilization or timing requirements of the microarchitecture.

These declared implications then provide rules for proper

relation between different operations initiated by different

fields of the MI. The syntax diagrams for the implied operations

declaration are as follows:
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Implied Operations Declaration:

microoper-

ation
IPOP

( B.1-4)

implication
implication

IMPLY validity

ENDIP

Implication:

mandatory

micro-

oneration

orbidaen

micro-

operation

Fig.4.3 Syntax Diagrams for Implied Operation Declaration (cont'd)
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Mandatory microoperation:

micro-

MUST operation

Forbidden microoperation:

micro-

NOT operation

(B.1-4)

validity:Implication

current

micro-

instruction

current

and next

micro-

instruction

Current and next microoperations:

number of

next
NAT

microoperat--

involved

Current microinstruction:

ino(s)

( B . 1-4)

Fig.4.3 Syntax Diageams for Implied Operation Declaration
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Chapter 5. The VS/APL-based Microprogramming Environment

5.1 What is a microprogramming environment?

Before discussing the different aspects of a

microprogramming environment, we must first address the central

question of what a microprogramming environment is. However, this

is indeed difficult and risky for there has been only relatively

little organized research in this area not just to mention the

definition of the term. Thus, 'microprogramming environment' may

sound and mean quite dissimilarly to different people.

Microprogramming environment, as its name suggests, is the

environment under which the process of transforming microprogram

specification into machine executable microprogram (or called

object microprogram) takes place. The relationship between the

microprogramming environment and its user, is illustrated below.

microprogram

specification microprogramming

environment object microprogram

user involvement

In the broadest sense, a microprogramming environment
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includes the technical methods, the management procedures, the

computing equipment, the software (including the supporting

tools), and the physical workspace involved in the development of

the final object microprogram. And the software involved for the

object microprogram development may include the following:

a) the microprogramming language

b) the microinstruction description language

c) translators for the above two languages

d) the microprogram editor

e) the microprogram verifier and/or simulator.

It should be noted that items d) and e) are not shown as the

components of an automatic microprogramming system in Fig. 2.1.

This is because microprogram editor, verifier and/or simulator

are basically the supporting utilities for the automatic

microprogramming system rather than its parts.

Here, as far as our interest is concerned, we will restrict

our discussion to the supporting tools or machine software

provided by a microprogramming environment. Also, when we talk

of 'microprogramming environment', we are referring to the

supporting software that the microprogrammer might use in the

course of preparing his object microprogram. In other words, our

discussion scope for microprogramming environment is as follows.
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higher level microprogram

microprogramming

object
MI description environment microprogram

user involvement

Thus the relation between the microprogramming environment and

the automatic microprogramming system may be depicted as below.

microprogramming environment

supporting utilities

higher

level microprogram

automatic

microprogramming object

MI description system microprogram

user involvement
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5.2 Features of the VS/APL-based Microprogramming Environment

The language chosen here for the implementation of the

automatic microprogramming system is VS/APL. (The original

specification of APL is contained in [14], and for details of the

language, please refer to [151]).

VS/APL provides an environment for microprogramming which

has the following features:

a) Interactive capability in the specification and design of micro-

programs

b) Interactive capability in the definition and specification of

machine microarchitecture

c) Direct executability of AMPL and MIMOL keyword commands results

in fast and efficient microcode production. This is easily

achieved by declaring these keyword commands as VS/APL function

names.

d) Good isolation can be provided between different microprogramming

project machines' data. This is basically achieved by the

provision of workspaces in VS/APL. These workspaces also

provide good isolated areas for the storing of different

machines' information. Updating of these machines' information

is also made easier and less error prone as the problems caused

by the overlapping of variable names between different machines'

information are eliminated. Thus, the provided workspaces also

improved information security against unintentional erasure.

e) A multi-user environment can be enjoyed to help to develop
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microcode. As most computers can only safely support one user

during microcode development and testing, VS/APL provides a

mechanism whereby a class of programmers can work about

microprogramming and computer architecture without tying up

a machine in an inefficient manner.

f) Integrity in the development of firmware, as a complete micro-

programming environment can be set up with one common language,

namely VS/APL.

g) Provision of utilities to help the development of microcode.-

For example, the provided editor can be used for editing

source microprograms and microarchitecture description. Micro-

code development is also benefited through the use (directly or

indirectly) of the abundant available system funtions (e.g.

FX, CR, LC, etc.). Finally, the microcode produced can also

be stored up as a variable in the VS/APL system and thus saves

later" re-translation" of the source microprograms.
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Chapter 6. An AMPS Prototype for the Chen's Machine

To demonstrate the feasibility of the design presented in

the previous chapters, an AMPS prototype for the Chen's machine

[2] has been implemented. The following sections will only

highlight the main points of the implementation. Interested

readers, may, however, refer to the Appendice and [2] and [3] for

details.

To start, it will be very helpful to have a look at the MI

and the machine organization of the Chen's machine first.

6.1 Microinstruction and Machine Organization

The Chen's microinstructin essentially is of two types: the

register transfer and the branching microinstructions. They are

shown in Fig.6.1.



Register-transfer microinstruction:

0 1 6789 23

0 sink A I sourcedata

1=1: immediate operand

A=1: +1

A, 1=0,0

A,1=1,0

A,1=0,1

A,1=1,1

C(source)

C(source)+ 1

data

data+ 1

C(sink)

C(sink)

C(sink)

C(sink)

Branch microinstruction:

0 12 35 8 9 13 19 16 23

1 P q r regname bitpo addreg disp

1 0

0 1

0 0

1 1

testbit unchanged

negated

reset

set

displacement

p: stackop

q: jumptest

r: testbitop

'0l: test and jump if 01

01: (no push)push into micro-stack if 01

addreg field .contains the address to one of the four micro-index

registers, KXjR(O) to MXR(3)«

effective address= disp OR (MXR(addreg))

Fig.6.1 The Chen's Machine MI



82

As shown, the microinstructions specify only register

transfer and branch operations arithmetic and logic operations

are not included. Yet the semantics of the microoperations are

complicated by the fact that the content of microaddress

registers MXR(O) is hardwired to a constant zero and that for

MXR(1), its most significant bit is hardwired to one. Another

complication added into the semantics of the microoperations is

the availability of the unmatched transfer (will be illustrated

later). Below is an illustration to the operation semantics of

the Chen's microinstructions.

Referring to Fig.6.1, the distinction between a branch and a

register transfer microinstruction lies in the logic state of the

most significant bit. If this bit is 1, the instruction word is a

branch one, otherwise, it is for data movement among registers.

During a register transfer operation, if the sink register

is shorter than the source register, the extra leftmost bits of

the data from the source register will be truncated. On the other

hand, if the sink register is longer, zeros will be appended to

the left of the most significant bit of the source data, as

illustrated in Fig.6.2. O.'s appended

source source

sink sink

extra leftmost

bits truncated

Fig.6.2 An illustration of the 'unmatched' transfer
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The same adjustment to the length of the sink register alsc

applies when immediate operand is the source. If the immediatE

operand or the contents from a source register is incremented b

1 before being loaded into the sink register, it is the result

after the incrementation to which this adjustment to the length

of the sink register applies.

The execution oC a branch microinstruction involves a

sequence of microoperations. First a specified condition will be

tested (i.e. a machine defined testable condition is set up).

This specified condition is the logic state of any one bit of a

certain register (counted from left to right in an increasing

order) defined by the 'addreg' and 'disp' fields of the

microinstruction respectively. If the register under test is

longer than 32 bits, only the most signigicant 32 bits are

involved in the test. If the 'regname' field contains a zero, an

unconditional branch will be made.If the test condition is not

satified, no branch is made. Otherwise a branch is made to the

effective address calculated using the information contained in

the 'addreg' and 'disp' fields (Fig.6. 1). The 'addreg' field

contains the address to one of the four micro-index register

(MXRO-3) in the Chen's machine organization (Fig-6.3). Contents

of the 'disp' field is the displacement. The displacement is OR-

ed with the micro-index addressed by the 'addreg' field to

produce the effective address. But before this effective address

is placed into the control store address register (MMAR),

original contents of MPC may need to be pushed into the micro-

stack according to the logic state of the 'stackop' field in the
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branch microinstruction word. A one in the 'stackop' field

specifies such a push into the micro-stack if a branch is

successfully made.

Bits 3 and 4 of a branch microinstruction are used to

specify how the test bit is to be changed after test. Bit

patterns of bits 3 and 4 for different actions on the test bit

are given in Fig.6.1. Whenever a branch microinstruction is

executed, the test bit will be changed according to the

specification in bits 3 and 4, irrespective of whether a branch

is successfully made or not. Thus a special use of a branch

microinstruction is to change the logical state of a certain bit

of a certain register. Assume that bit 7 of the register A is

known to be in logical state 1. Consider a branch

microinstruction that tests bit 7 of register A and will effect a

branch if the test bit is in logical state zero (bit 2 of the

branch microinstruction =0). The execution of this branch

microinstruction will not cause a branch. But by properly setting

up the action pattern in bits 3 and 4, the test bit can be

changed accordingly.

As shown, arithmetic and logic operations are not included.

Yet arithmetic and logic operations can still be implicitly

specified for the arithmetic and logic units (ALUs) in the Chen's

machine are designed as autonomous units. An ALU as an

autonoumous functional unit will contain within itself the

control logic necessary for its operations. It communicates with

other parts of the system through a set of interface registers.
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The way to activate its operations is to pass to it the operands

and an operation control word through the interface registers.

After it has completed the specified operation with the input

operands, it returns the result again through the interface

registers. Thus instead of explicitly including arithmetic and

logic operations in the specification of the operations within a

system, direct register transfers can be used to move the related

operands and operation control words to the autonomously

functioning ALU to bring about the required operations. In fact

this is the basic design philosophy for the components in the

Chen's machine. As shown in the organization diagram for the

Chen's machine in Fig.6.3, the ALUs, register files and memories

in the machine are all autonomous.

The target CPU in the Chen's machine basically has an

architecture close to that of the IBM S/360 (see section 6.4).

Addresses, lengths, and functions of the registers in the machine

are given in Fig-6.4. Another list of the registers in order by

address, together with their addresses (as searched by the MI)

are also shown in Fig.6.5.
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STACKcontrol unit

MEMORY

INDCI MASK PCSTACK

IR

control
OP RI X2 B2 D2MPC MOP MDR MARstore

MMOP MHDR MMAR XOP

AOP
fixed pt.

ALU

MIR floating pointIMXP0PI MXRD XRARI
AC HO ALU

XROP XRDR XRARMXR( 1)
MXR(O)

XR(O)MXR(2)
FROP[ FRDR 1FRIAR

XR(1)MXR (3)

FR (0)

FR(2)

FR(4)XR(14)

FR(6)XR( 15)

Fig.6.3 Organization of the Chen's Machine



Add ress

(hexa-

decimal)

i

Name

L'cng th(bits,

decimal) Function

08

1C

ID

IB

19

20

IR

IROP

IRRl

IRX2

IRB2

IRD2

32

8

8

4

4

12

instruction register

subregister OP of IR(bits 0-7)

subregsiter Rl of XR(bits 8-11)

subregister X2 of IR(bits 12-15)

subregister B2 of XR(bits 16-19)

subregister D2 of IR(bits 20-31)

0D

OF

04

05

0E

09

OA

MDR

MAR

mop

STACK

PC

INDC

MASK

32

24

8

40

24

8

8

memory data register

memory address register

interface operation register for memory

stack register

program counter.

machine state indicator

interrupt mask

0B

IE

IF

10

01

FR(0)-

FR( 6)

FRDR

UFRDR

LFRDR

FRAR

FR0P

64

64

32

32

8

8

floating-point work registers

interface data register for FR's

subregister UFRDR op FRDR(bits 0-31)

subregister LFRDR of FRDR(bits 31-63)

interface address register for FR's

interface operation register for FR's

0C

11

03

XR( 0)-

XR(15)

XRDR

XRAR

XR0P

32

32

8

8

general purpose registers

interface data register for XR's

interface address register for XR's

interface operation register for XR's

00 A0P 8

02 XOP 8

interface operation register for

the floating-point ALU

interface operation register for

the fixed-point ALU

12

13

MIR

M PC

24

16

micro-instruction register

micro-program counter

15

14

07

MMDR

miAR

mmop

24

16

8

control store data register

control store address register

interface operation register for

the control store

1(

1

0

ftXR(0)-

riXR (3)

ft XRDR

fiXRAR

MXROP

16

16

8

8

micro-index registers

interface data register for the ftXR's

interface address register for theftXR's

interface operation register for

the MXR's

Fig .6 .4 Addresses, names, and functions of the Chen's

machine registers. Most significant

bit of a register is bit 0.
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Address

Register (hexadecimal)

AOP 00

FROP 01

XOP 02

XR O P 03

MOP 04

STACK 05

MXROP 06

MMOP 07

IR 08

INDC 09

MASK OA

F RD R OB

XRDR OC

NDR OD

PC OE

MAR OF

F R.A.R 10

XRAR 11

MIR 12

MPC 13

MMAR 14

MM D R 15

MXRDR 16

MXRAR 17

IRAB2 19

MQ 1A

IRAX2 1B

IRAOP 1C

IRdR1 1D

UFRDR lE

LFRDR 1F

IRAD2 20

PSw 21

AC 22

Fig. 6.5 Addresses of registers of the Chen's machine



Cr-.
i'

The corresponding control words for the ALUs, memory are also shown

in Fig.6.5 as follows.

vnp

floating pt.

A HP

REG

control word

vv nt?

register-trans fer

microinstruction:

control word for the

floatine-Doint ALU:

7A: add

7B: subtract

7C: multiply
7nr( rl A

s i nl source

( AO I C REG

or 1 Aao; i

immediat

operand

for single precision arithm.

in hexadecimal representation

Fig.$.6a0perating the floating

point ALU



control word for

the fixed-point ALU:

operand—-XRDR,MDR

5A: add

5B: subtract(XRDR-MDP)

5C: multiply

5D: divide(XRDR-rMDR)

54: AND

56: OR

5E: NAND

5F: NOR

operand—XRDR,IRD2

50: add

in hexadecimal
representation

operand—XRDR

52: decrement by 1

53: increment by 1

89: left shift by 1 bit;

0 enters LSB

88: right shift by 1 bit;

0 enters MSB

8E: rotate leftward by

1 bit

Fig.6.6bControl words for the fixed-point ALU.

Fig. £6jMemory fetch and store
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6.2 Microinstruction Description in MIMOL

As will be shown, the Chen's MI cant ompletely be described

by MIMOL. The description itself also presents a clear picture

of the microinstruction in a hierarchical fashion that itself is

already self-explanatory.

In the following sections, different segments of the MI

description on the machine's resources, intra-field details,

inter-field relations, machine defined testable conditions and

implied operations respectively are presented.

One special remark, however, is needed to make. It is about

the field enumeration of the source field (lines 136-169).

Readers may think that it is too troublesome to type in these

lines as they are repeating those of the sink field (lines 135-

170). However, this is only half-right. For in VS/APL, those

lines for the sink field (i.e. lines 135-170) can easily be

duplicated by first storing them as a variable. Then insert this

variable (using VS/APL concatenate operators) between the two

lines delimiting the source field enumeration (i.e. lines 135

and 170).



6.2.1 Resource Declaration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

RESDEL

CMT 'CONTROL STORE; MAIN MEMORY'

'CS' OF MATRIX 10 24, 24 POINTER'MMAR'

tMM OF MATRIX 5 1 20, 3 2 POINTER MAR'

CMT 'CONTROL UNIT REGISTERS1

' MIR; MMDR' OF SEQ 24

MFC; MMAR; MXRDR' OF SEQ 16

'MXRAR; MXROP; MMOP' OF SEQ 8

CMT' MICRO INDEX REGISTERS'

' MXR} OF MATRIX 4,16 POINTER'MXRAR'

CMR 'CONSTANTS'

'MXRl0;]' EQU 0

' MX RLlllV EQU 1

CMT 'OPERATION UNIT REGISTERS'

'FRDR' OF SEQ 64

' IR;MDR;UFRDR;LFRDR;XRDR' OF SEQ 3 2

CMT 'STACK REGISTER'

'STK' OF SEQ 40

'ILARiPC' OF SEQ 24

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

'MOP; INDCMASKFRAR' OF SEQ 8

'FROP;XRAR;XROP;AOP;XOP' OF SEQ 8

CMT 'ADDRESSABLE SUBRFGISTERS'

' IRtOP;IRtRl' OF SEQ 8

1 IRFX2;IR£B2' OF SEQ 4

'IRtD2' OF SEQ 12

CMT' WORK REGISTER FILES'

'XR' OF MATRIX 16,3 2 POINTER 'XRAR'

'FR' OF MATRIX 7,64 POINTER [FRAR'

CMT 'CONSTANT'

'XR[0;V EQU 0

ENURES



6.2.2 Intra-Field Declaration

(i) Field Identification

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

FIELDS 'CS'

FMT 'F0' WITH Mil0,8] EQU 0,0

SECTION 'SI'

'SINK' 1,6

M1 7

ENDSECTION

'DATA1 ATX 9,23

ENDFMT

FMT 'FV WITH Mil0,8] 0,1

INCL SI

'SOURCE' 9,23

ENDFMT.,

FMT 'F2' JOTMI[0]£$ 1

'STACKOP' 1

' JUMPTEST' J477 2

' TESTBITOP' 4!T3,4

'REGNAME' ATX 5,8

'BITOP' ATX 9,13

'ADDREG' AT 14,15

'SJSP' 16,23

ENDFMT

ENDFI

(ii) Field Enumeratior

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

FDETA TLS

OPTFIELD 'A' DEF 0

'NOP' EQU 0

'IM71' EQU 1
FTJDDPT

OPTFIELD 'STACKOP' DEF 0

'NOP' EQU 0

'PUSH' EQU 1

ENDOPT

OPTFIELD 'JUMPTEST'

' IFO' 0

' JF1' 1

ENDOPT



(ii) Field Enumeration (cont'd)

91

92

93

94

95

96

97

OP TFI ELD' TESTBITOP' DEF 2

1RESET' EQU 0

'RED' EQU 1

' SET] EQU 3

ENDOPT

98

99

100

101

10 2

103

104

10 5

10 6

107

108

109

OPNFIELD 'SINK' DEF 0

' AOP' EQU 0

' FROP' EQU 1

'XOP' EQU 2

'XROP' EQU 3

'MOP' EQU 4

1 STACK EQU 5

'MXBOP' EQU 6

'MMOP' EQU 1

'IR' EQU 8

' INDC EQU 9

'MASK' EQU 10

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

13 2

133

134

' FRDR' EQU 11

'XRDR' EQU 12

' MDR' EQU 13

'PC' EQU 14

'MAR' EQU 15

'FRAR' EQU 16

'XRAR' EQU 17

'MIR' EQU 18

' MPC' EQU 19

'MMAR' EQU 20

' MMDR' EQU 21

'MXRDR' EQU 22

'MXRAR' EQU 23

' IRtB2' EQU 25

'MQ' EQU 26

'IRIX2' EQU ZJ

'IRtOP' EQU 28

'IRER1' EQU 23

'UFRDR' EQU 30

'LFRDR' EQU 31

' IRtD2' EQU 3 2

'PSW EQU 33

'AC' EQU 34

ENDOPN

13 5

136

137

138

139

140

141

14 2

OPNFIELD 'SOURCE' DEF 0

'AOP' EQU 0

'FROP' EQU 1

'XOP' EQU 2

'XROP' EQU 3

'MOP' EQU 4

'STACK' EQU 5

'MXROP' EQU 6



(ii) Field Enumeration (cont'd)

143

144

145

14 8

14 3

148

148

15C

151

15 2

153

154

153

15 E

153

158

158

16 C

161

16 1

163

164

163

168

163

168

168

17 C

171

171

173

174

17 3

17 6

178

178

178

18 C

18:

18:

18 c

181

181

18 6

18r

18 8

xMMOPx EQU 7

JR EQU 8

XINDCX EQU 9

'MASKx EQU 10

FRDRX EQU 11

XXRDRX EQU 12

XMDRX EQU 13

XPCX EQU 14

XMARX EQU 15

1FRARX EQU 16

XXRARX EQU 17

XMIRX EQU 18

XMPCX EQU 19

XMMARX EQU 20

XMMDRX EQU 21

1MXRDRX EQU 22

XMXRARX EQU 23

xIRtB2x EQU 25

lMQx EQU 26

1 IRtX2x EQU 27

1IR tOPx EQU 28

XIR6RV EQU 29

1UFRDRX EQU 30

XLFRDRx EQU 31

IRID2X EQU 3 2

XPSWX EQU 33

XACX EQU 34

ENDOPN

OPNFIELD 'REGFAME' DEF C

x A0Px EQU 0

xFROPx EQU 1

xXOPx EQU 2

XROPx EQU 3

xM0Px EQU 4

x STACK' EQU 5

xMXR0Px EQU 6

xMMOPx EQU 7

1IRX EQU 8

XINDCX EQU 9

XMASKX EQU 10

XFRDRX EQU 11

XXRDRX EQU 12

XMDRX EQU 13

PCX EQU 14

XMARX EQU 15
mmnPKi



(ii) Field Enumeration (cont'd)

190

191

19 2

193

194

19 5

19 6

19 7

198

199

200

201

202

203

204

205

206

OP WIELD x ADD RFC' DEF 0

1 MXRlO;]' EQU 0

' MXRl 1; ]1 EQU 1

1 MXRl 2;]' EQU 2

lMXRL3'%V EQU 3

ENDOPN

EM FIELD 'DATA1 DEF 0

RANGE 0 ,3 2767

ENDEM

EMFIELD 'BITPO' DEF 0

0,31

ENDEM

ENDED

6.2.3 Inter-Field Declaration

207

208

209

210

211

212

213

214

215

216

217

218

INFIELDS XCS'

SOURCE TO SINK

EMIT TO SINK

(ADDONS SOURCE) TO SINK

{ADDONE EMIT) TO SINK

STACKOP

TESTBITOP

JUMPIEST REV NAME, BITPO

GOTO ADDRFE ,DISP

ENDINF



6.2.4 Machine Defined Testable Condition Declaration

219

220

221

222

223

224-

225

CONDITION

EQUOP }IF 1 REG NAME, BITPO!

EQUOP 1IFO RBI NAME,BITPO1

ENDCON

6.2.5 Implied Operation Declaration

226

227

228

229

230

231

IPOP' JUMPTEST REG NAME, BITPO1

IMPLY MUST 'GOTO ADDRFG tDISP}

ENDIP
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6.3 AMPL for Chen's Machine

6.3.1 Overview

As described earlier, AMPL itself is just a schema language.

In order to have decent microprogramming of a particular

machine, an instantiation fiom AMPL to obtain the necessary

microprogramming language is required. As AMPL basically consists

of two major types of language construct: the declaration and the

execution constructs, then the general structure of a program

written by the microprogramming language developed from AMPL for

the Chen's machine (hereinafter called AMPL(C)) is also bound by

these constructs and shapes as below:

MPG ' program name '

DECLARATION

/pseudovariables declarations synonyms

for renaming, constant declarations and

macro definitions

ENDEC

BEGIN

/executable statements running in the

program

PROC 'procedure name'

DECL /optional synonym and literal constants

declarations apply to this procedure

Only;
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(cont'd)

ENDECL

BEGIN

/executable statements contained in the

procedure

END

ENDPROC

/executable statements in the program

END

ENDMPG

Further illustration of these constructs will be described later.

The declaration block consists of data types and data object

constructs for declaring pseudo-variables to be used globally

throughout the program. Pseudo-variables are the type of

variables having no corresponding with the host machine

resources. Yet, there introduction may, at some times, brings

programming conveniences. As the data objects used by the

program are machine specific and already predefined in the

microinstruction description, the programmer basically need only

to declare the pseudo-variables, literal constants, and performs

renaming of data objects. Macros used in the program must also be

declared in the declaration block. While for the execution block,

it consists of executable statements and one or more procedures,

which in turn consist of one or more executable statements.
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6.3.2 Executable Statements

The executable statements in AMPL(C) basically retain the

shapes as those described in section 3.2. Essentially, the

executable statements of AMPL(C) consists of:

(1) Assignment statements of the form

source TO sink (VI.1)

where sink is a register variable and source may either be a

register variable or constant or even a parenthesized expression

taking the form of a function statement as described below.

(2) Function statement of the form

operation identifier operand {operand}} (VI.2)

where operation identifier is constrained by the Chen's machine

allowable operation keywords declared in section 6.2 operand

here may refer either to register variable or constant. Please

note that although the Chen's microarchitecture only provides a

limited set of operation keywords, a large number of operators

(in keyword form) described in section 3.2 in fact are retained

as most of them can be declared as macros in the AMPL(C) program

(see section 6.4 and Appendix A).

(3) Branching statements of the form
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GOTO address (VI.3)

or ACT 'procedure identifier' (VI.4)

where address may either be a label or a literal constant or a

register variable selected from MXR[0;] or MXR[1;] or MXR[2;] or

MXR[3;]. In case the address referred is a label address,

quotes are required as for the ACT command. ACT (means activate)

in here is a program reserved word. It is essentially a non-

return call to a procedure as specified by the identifier

following it.

{4) Conditional statement of the form

IF 'program condition or test condition'... ENDIF (VI.5)

where the test condition is as defined in section 6.2.4. In the

Chen's machine, this test condition is''jthe testing of a bit

value of a register in the machine organization. This is very

powerful as a large number of machine registers (from address 00

to OF in hex), and wide range of bit positions (from position 0

to 31) can be tested.

For the program condition, it is referring to the type of

condition relating to the testing of a certain virtual objects

like literal constant or pseudo-variable.
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(5) Compound statement of the form

COBEGIN S1S2...Sn ENDCO (VI.6)

where Si may be one of the statements VI-1-4 depending on the

context of the microinstruction one would like to compose. This

is also the only statement that requires the programmer's

knowledge of the control store organization. This is just as

expected (and required) for this statement is used by the

programmer at the time he wants to optimize his microprogram at

the source level.

(6) Repetition statement of the form

REPEAT statement VI.3 or VI.4 UNTIL 'test condition

or

program condition>'

(VI.8)

WHILE 'test condition

or

program condition' DO statement VI.3 or VI.4

(VI.9)

where REPEAT, UNTIL WHILE, DO are program reserved words. The

semantics of the repetition statement follows those described in

the conditional statement (VI.5). In case where the program

condition (see VI.5) is used rather than the test condition,

there is no restriction to the type of statements following the

REPEAT and DO keywords (see Appendix A for the emulator listing).

Under such a case, normal expansion like macro expansion results.
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6.4 A Sample-- An Emulator

6.4.1 The Emulated Macroarchitecture

A sample microprogram, which basically is an emulator- a

set of microprograms that implement the control of the Chen's

machine-- resides in the control store, is written. The emulated

macroarchitecture basically resembles that of the IBM S/360 and

is an abstraction of the one presented in [3]. Fig.6.6 shows the

emulated macroarchitecture with the action column machine

resources referring to those described in the Chen's machine

organization (Fig.6.3).

Macroinstruction format:

opcode R1 X2 B2 D2

0 7 8 11 12 15 16 19 20 31

Macroinstruction:

Opcode Mnemonic Action

70 STE Store floating FR(R1)-M(EA)

50 ST Store XR(R1)-M(EA)

51 STDX Store double XR's XR(R1,R1+1)->

M(EA,EA+1)

58 LD Load M(EA)-XR(R1)

7A AE add floating FR(R1)+M(EA)->

FR(R1)

7B SE subtract floating FR(R1)-M(EA)->

FR(R1)

7C. ME multiply floating FR(R1)xM(EA)->

FR(R1)

Fig. 6.6 The Emulated Macroarchitecture (to be cont'd.)



7D DE divide floating FR(R1)~M(EA)-

FR(R1)

c.r M multiply XR(R1)xM(EA)-

XR(R1)

6B SI subtract immediate XR(R1)™EA-XR(R1)

5E NA NAND XR( R1 )AM(EA)-XR(R1)

a. t? NO I NOR immediate XR(R1 )¥-EA-XR(R1)

88 SRL shift right logical XR(R1)c2-XR(R1);

0-MSB

8E DHT. rotate leftward rotate XR(R1)

leftward EA times

A 3 CAL call subroutine PSW- STACK;EA- PC

44 RETN return from

subroutine

STACK-PSW

Rf SMASK set MASK MASK D2-MASK

46 RCNT branch on count XR(R1)-1-XR(R1]

82 SINDC set INDC INDC D2-INDC

48[] BSTKF branch on stack ful] if STKF—1, EA-PC

84 STMSK store MASK MASK-XR(R1)

4C[] RARN branch on negative if ARN=1, EA-PC

o c: LDMSK load MASK R1-MASK

86 STIND store INDC INDC-XR(R1)

8B NOOP no-operation PC+1-PC

Fig.6.6 The Emulated Macroarchitecture (cont'd)

Note: fl If R1=0: test bit is reset to zero,

1

2

negated,

unchanged,

set to one,

EA (effective address) in the above statememts is calculated

by EA=XR(X2)+XR(B2)+D2
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6.4.2 Design of the Emulator

A flowchart of the emulator is shown in Fig.6.7. For the

execution of each of the macro-instruction, the emulator first

calculates the effective address for the second operand, and then

decode the opcode. Decoding of the opcode is made with the aid of

a jump table. Each entry of the jump table is a branch

microinstruction. Execution of one of the branch microinstruction

leads to the beginning of a function routine which is a

microprogram performing the function of one or more of the

machine instructions. The address of each entry of the jump table

coincides with the opcode of one of the macro-instructions.



Start

instruction fetch

effective address generation

instruction decode

RETN unconditional conditional arithm./logic fetch/store other
function branch CALL branch function function function
routines function routines ro utinesfunction routines routines routines

Y NPC PC = EA branch made PC= PC + 1.
(top of

stack)

in interrupt
a function routine is aY

handling
requested

microprogram performingroutines
the functions of one or

more of the instructions.N

EA for effective address.

Fig.6. A flowchart for the emulator.



Fig.6.8 shows an example of how the opcode of the machine

instruction ST (store) is decoded. First the emulator moves the

opcode into MPC. The next microinstruction fetched from the

control store is a branch microinstruction from location 50 (in

hex). Execution of this branch microinstruction then directs the

microprogram flow to the beginning of the STore function routine.

Control

Store

STore instruciton

nrL

005'

jump tabic

branc]

HZ yt— 1

branc

MI

function rou

ine n for STor

function

Fia.6.8 An example of decoding using the jump table
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6.4.3 The Emulator Program

A full listing of the emulator written in AMPL(C) for the

macroarchitecture depicted in Fig. 6.6 is shown in Appendix A.

Referring to the Appendix, the first feature we can readily

observe in the emulator written in AMPL(C) is the abstraction of

function using. macros. In fact, these macro functions are

declared after we have analysed more than two hundred and fifty

lines of microcode statements [3] those frequently used

microcode segments are then declared as macros. And these macros

are all declared without the need to know about the machine

control store organization. As shown by the LOAD macro functions

below:

MACRO 'LOAD A,B'

B TO MAR

1 TO MOP

MDR TO A

ENDMACRO

The declaration of a macro function is fairly simple. We

need only start the declaration using the keyword MACRO followed

by the macro-heading then write all the executable statements

necessary for the macro function in the macro body and bind it by

the keyword ENDMACRO.

As AMPL(C) itself is basically a keyword type language,

writing and reading the emulator is highly facilitated by the

provided keyword mnemonics. As illustrated in the emulator

listing, one only need the machine organization chart and
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declared operation keywords (section 6.2) at hand and can readily

write his microprogram in AMPL(C) without any need to know the

control store organization.

Another feature that is worth mentioning is the structure of

the emulator. As shown, the emulator is well structured and

readable. Indentation and blank lines can also be allowed to be

introduced in the source program to improve its readability.

Although the introduction of the program reserved words (e.g.

BEGIN, END, etc.) for better program structuring has increased

the number of program statements (roughly 10%), they virtually

require no programmer's effort. Even without the code production

phase of the AMPS, it is believed that thinemulator can be hand

translated to microcode without much difficulties.

Below is a brief analysis on the emulator written. Referring

to the emulator listing in Appendix A, the first line is the

program heading indicating that the program name is EMULATOR.

Lines 4-15 are for synonyms declaration. These declared synonyms

will then be valid globally throughout the entire program (i.e.

the emulator). Lines 17-188 are for the macros declaration. The

following is a list illustrating the meanings of these declared

macros (machine resources are abbreviated as in the resource

declaration, section 6.2.1)



line no.

in the emulator

listing macro-heading meaning

17 LOAD A,B A—MM(B)

23 STOR A,B MM( B)— A

29 LOAD CS A,B A—CS(B)

35 STOR CS A,B CS(S)—A

41 LOAD MXR N,B B—MXR(N)

47 STOR MXR N,B MXR(N)—B

53 LOAD XR N,B B—XR(N)

59 STOR XR N,B XR(N)—B

65 LOAD FR N,B B —FR(N)

7 1 STOR FR N,B FR(N)—B

77 INFET instruction fetch

83 GENADD generate address

90 FDIV INDEX,MDR floating divide

FR(INDEX)-MDR

97 FADD INDEX,MDR floating add

FR(INDEX)+MDR

10 A FSUB INDEX,MDR floating subtract

FR(index)-MDR

1 1 1 FMUL INDEX,MDR floating multiply

117 BADD XRDR,MDR binary add

XRDR+MDR

122 BSUB XRDR,MDR binary subtract

XRDR-MDR

1 27 BMUL XRDR,MDR binary multiply

XRDR MDR

132 BDIV XRDR,MDR binary divide

XRDR-MDR



137 AND XRDR,MDR XRDR MDR

142 OR XRDR,MDR XRDR MDR

147 NAND XRDR,MDR XRDR MDR

152 NOR XRDR, MDR XRDR MDR

157 ADD XRDR, ip. D2 XRDR IR D2

1 £9 DEC XRDR XRDR- 1

1
INC XRDR XRDR+1

172 SHAL XRDR,N XRDR arithmetic

left shift by N

places

178 SHAR XRDR,N XRDR arithmetic

right shift by N

places

SHLL XRDR,N XRDR logical left

shift by N places

It can be observed that most of the operation keywords in

I

section 3.2.3 are retained as macros in the emulator written.

After the declaration of the macros, the execution blocks

begins at line 192. In fact, the execution block consists of many

series of procedures interlaced with basic microstatements. Many

procedures actually take the names of the macroarchitecture

opcode which they emulate as their procedure names. The procedure

ST is one such example. Readers may note that there are

synonyms declared in many procedures, for examples in lines 211

and 222. Essentially, they are the synonym declarations for EA

(effective address). Since the scope of synonyms declared within

a procedure is confined within the procedure, EA is not valid

outside the procedure which has declared it. As a result, the

MAR can still be available for some other procedures.
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Another point needs mentioning is about the machine defined

testable conditions statements appeared in some procedures like

"BSTKF" and "BARN". As these machine defined testable conditions

have the, branching operation as the implied operation, thus there

were always the "GOTO" or "ACT" (basically the same nature as

"GOTO") statements following them. As a result, an implied

parallelism exists between the implying and implied operations at

the source level. However, the different "condition" statements

appeared in these procedures did not suggest that they are to be

executed in a concurrent manner.

One final point about the emulator is the jump table. It is

placed at the end of the emulator listing (starts at line 564

and ends at line 584). Since only those procedures/routines

interpreting the macroarchitecture opcodes are to be accessed via

this jump table, other procedures in the emulator will therefore

not be activated by this jump table.

In the following section, the microcode output for the

emulator is discussed.
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6.5 The Microcode Output

The emulator written in AMPL(C) is successfully translated

into microcode. Interested readers may refer to Appendix B for

the full listing.

Referring to the microcode listing, it starts at address

0145 (decimal) because the address 0-144 are reserved for the

jump table (Fig.6.8). As shown, the generated microcode for the

emulator is highly compacted though no microcode optimizer or

compacter is incorporated into the AMPS. (Only a hundred and

eighty-eight lines of microcode are generated for the emulator

which in turn takes more than five hundred lines at the source

level)! This can be explained as follows. Referring to Fig. 6.1,

there are basically two types of available microinstructions for

the Chen's MI, namely the register transfer and branch

microinstructions. In fact, these two types of microinstructions

can be directly mapped with the basic executable statements of

the AMPL(C). As a result, the microprogram written in AMPL(C)

basic executable statements will therefore be self-optimized at

the source level. Thus we can have a highly compacted microcode

output which we believe is compatible with a hand-coded one, but

with far less effort.
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Chapter 7. Conclusion

7.1 Discussion

Although the theme of this thesis is on the design and

construction of an AMPS, it basically consists of the works on

(a) the proposal of an approach for automatic microcode

generation

(b) the design of a higher level microprogramming language,

namely AMPL

(c) the design of a microinstruction description language,

namely MIMOL

(d) the implementation of an AMPS prototype system for the

Chen's machine.

For this discussion section, it is also presented as accorded to

the above four main topics.

(a) On the proposed approach:

One most significant point incurred after

the implementation of the AMPS about the proposed

approach for automatic microcode generation is that it

does work. Although more vigorous tests and possibly

modification(s) may be required, yet we can still expect

that the approach can apply for a class of machines have

the type of microarchitecture similar to that of the

Chen's machine. Moreover, though it is just a modest

approach yet it does provide a "seemed-possible" attempt
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.to tackle the long posted problem of retargetability of

microcode generation system.

(b) On AMPL:

As previously mentioned, AMPL is an S* [1]

influenced language. However, S* cannot be directly used

here as our microprogramming language nor can it be

treated as equivalence to AMPL due to the following

reasons.

First, the proposed approach requires the operators

for the basic statements of the microprogramming language

to be of the keyword type. However, S* employs a lot of

operators [1J which are therefore contrary to the just

mentioned keyword type notion. Besides, these operators

also appear quite peculiar of its own (for example

etc.) that reduce the degree of portability of the

language and make it not in concordance with our primary

goal set. Second, we feel that at our current

experimental stage for the proposed approach for

automatic microcode generation, it is not necessary for

us to include the abundance of S* operators and

statements for depicting microparallelism. In fact, these

opertors and statements also require one to have ultimate

knowledge about the machine control store organization,

which is really not we want. Though S* may suggest that

AMPL, in its future course of development, may need to

include those opertion keywords and statements for
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handling more sophisticated microparallelism however as

far as our current implementation is concerned they are

not required. Third, some important language constructs

like macro facilities, non-return call of routine

commands, etc. which are deemed important in" real"

microprogramming context are not included in S* [1],

[16]. In addition, the basic operators set which, is

supposed to be referenced as the frame for latter

instantiated versions of S* was also not very clearly

reported in the original papers [1] and [16].

(c) On MIMOL

Although MIMOL posseses the meritorious point that

it can allow one to define Chen's machine

microinstruction in a completely machine independent

manner, readers may still think that using MIMOL may be a

bit tedious for microinstruction description. This may

largely in part due to the MIMOL MI field enumeration

phase. For in this phase, every resource or operation

keyword for a particular field has to be enumerated.

Although the MIMOL microinstruction description is only a

once-off job to the users, the field enumeration phase

may grow very tedious as the number of machine resources

(accordingly the number of operation keywords also) grow.

These all may suggest that MIMOL should have higher

abstraction capability for intra-field description.

In addition, the MIMOL can also be further developed

to allow itself to describe more sophisticated
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microprogram control flow activities, e.g. microtraps,

micro-subroutine calls, etc.

(d) On the implementation:

The implementation does improve the

effectiveness of the Chen's machine by bringing to it a

lot of programming conveniences. Moreover, experiences

are also gained on the various aspects concerning

automatic microcode generation after the implementation.

They are also discussed as below.

(1) In oraer to have proper automatic microcode

generation, a discipline is mandatory. This

discipline, bases on our experience gained from

the implementation should be uniform and applied

coherently down from the machine drawings to the

writing of the microprogram. For example,

resources names depicted in the organization

diagram and the MI diagram must be consistent.

Usually, the MI fields in the original diagram

(from the MI original designer) may not be

depicted as according to our designated field

types. Therefore the MI fields should be clearly

identified of their types before the MI is

described using the MI description language. For

our case under the proposed approach, it is

required that MI fields has to be classified as

one of the three types, namely the operation
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select, operand select and the emit field. For

example the two fields 'regname' and 'bitpo' of

the Chen's machine MI are originally combined and

named 'testreg' in the original diagram.

(2) With regard to our microprogramming experience

with the AMPL, we find that the structure of a

microprogram is indeed very important. In our case

for example the high degree of readability of the

emulator written really helped us a lot during our

walkthrough process. This point is also true in

our case for the microinstruction description.

(3) Another point that's worth mentioning is about the

using of VS/APL. As well understood, VS/APL is

working in an interactive mode. However, the AMPL

program requires its translator to work in a

compiler like fashion. Therefore, this demands

certain unusual applications of VS/APL. In fact

the emulator is firstly constructed as a character

matrix in VS/APL so as to allow indentation and

blank lines to be included to the emulator

program to improve its readability. As the

VS/APL editor is only a line editor, editing job

would be much more easier if APL2 [16] could be

used. APL2 is basically an advanced version of

APL which has 2-dimensional editing capability.

During execution, the character
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matrix (i.e. the emulator) is actually converted

into a VS/APL program using the DFX function During

the declaration part of the program,a declaration

mode flag is set such that all the VS/APL bit-

setting functions, after seeing the set flag,

skip. Thus basically there is no execution problem

for the declaration block of the AMPL program.

However, problems do come for the execution block

of the emulator for the GOTO, ACT and

REPEAT ...UNTIL statements. For the ACT and GOTO

bit-setting functions. It is really difficult for

them to look ahead in VS/APL and predict a correct

address for the procedure they are superficially

calling and set this address to the MI word.

However, this problem can be solved by first

storing up the address of this GOTO or ACT

statement in the presumed object code matrix and

later correct the corresponding row bit pattern at

the end of the emulator. For the REPEAT..UNTIL

statement, VS/APL actually has no direct support

of such kind of statement. Yet we can get around

the problem by using the LC system function as

follows:

Z<--UNTIL 'condition'

[1] Z<--((DLC[1]+1), OLC[1]-1) [(condition=true)+1]

Since the REPEAT statement is always at the
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( Lc[1]-1) position with respect to the UNTIL

statement, therefore this line number is

referenced in the UNTIL function. In fact, the

REPEAT..UNTIL statement is actually implemented in

VS/APL as follows

REPEAT 'action'

--UNTIL 'condition'

Thus this solution to the REPEAT..UNTIL statement

is therefore basically different from the

APLGOL [17] as APL syntax can be preserved in our

case.

In addition, certains sub-topics are also derived

after the implementation that worth separate discussion.

They are

i) the Chen's machine:

Referring to Fig.6.1 the Chen's machine MI and Fig.6.3

the Chen's machine organization, it is believed that the

machine has been "elegantly" designed to illustrate the

basic concepts of microarchitecture. As illustrated in

these figures, nearly all kinds of basic machine

operations can be found displayed by the Chen's machine

MI, for example the push of machine stack, the

uncondition/condition branch with operation on the test

bit, the selectable operation: setting, resetting or

negating of a bit on some of the machine registers under a

particular test condition, etc.

Yet, the Chen's machine can still be further
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improved. The first is about the MI. The MI can be

lengthened so that two or more register transfer

operations can be initiated by the same MI. The emulation

process will then be speeded up for previously long

register transfer operation sequences are shortened

(assuming there are no resource and data conflicts).

Moreover, the 'disp' field addressing space can also be

increased (the original space is only 255). In addition,

adding bits in the MI gives a chance to include the

previously left over micro-stack pop operation.

Second, it is on the Chen's machine hardware. Bus

system(s) can be introduced so that hardware concurrency

can be realized. At the mean time, this also allow one the

chance to alter the system "internal configuration" (i.e.

by grouping of certain registers for a particular bus) for

hardware "tuning" purpose so that the best performance for

a particular application can be achieved. From system

architecture education viewpoint this also carries high

pedagogic values. Moreover, a more advanced system clock

phasing circuit can be introduced into the original

hardware. This will further allow the Chen's machine to

have the chance to exercise pipelining operations. Besides

in bringing higher system performance, it meanwhile gives

the machine the capability and flexibility (if the system

"tuning" is allowed) to closer resemble some polyphase

machines. Under such circumstances, the effectiveness of
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various higher level microprogramming languages can be

tested and evaluated within one single machine hus incurs

higher value, from both educational and practical

viewpoints.

ii) future research:

The implemented AMPS does successfully generate

microcode and is verified correct (by hand). However,

several entities can be added to the currently implemented

AMPS to make it a more complete microcode development

tool. The first is a microcode optimizer or compactor

and the second is a microcode verifier/simulator. /Po due

to the uniqueness of the Chen's machine MI, the later

entity is comparatively more needy in our situation. In

fact a microcode verifier has virtually been built by Lai

[3] two years ago. Basically what he did was the

construction of a hardware-simulated version of the

Chen's machine with the emulator (as presented in section

6.4) installed in it. Panel displays and control switches

were also built so that the many registers' content of the

Chen's machine could be shown and the microcode kept in

the control store could be invoked, executed and verified

using the machine built. However the emulator was done by

direct microcoding. Hence a lot of Lai's work on the

construction of the emulator could be saved by the

currently implemented AMPS. Nonetheless, the two pieces of

work, namely the software and the hardware versions of the

Chen's are complementing each other rather than
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overlapping in their functions.
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7.2 Summary

In this thesis, an approach towards automatic microcode

generation via the design and construction of an automatic

microprogramming system is presented. Under such an approach,

rather than constructing a translator for the microprogramming

language, only an once-off description of the microarchitecture

is required. Bases on this description, the AMPS then generates

the appropriate functions to translate source higher level

microprograms to microcode. Two lanugages, namely AMPL (A

Microprogramming Language) and MIMOL (Microinstruction Modelling

Language) are also designed for the AMPS.

Before the detailed constructs for the two languages are

presented, the AMPS basic organization and the proposed approach

are discussed and illustrated with example. The many difficulties

and various considerations for higher level microprogramming,

namely

(i) the resource binding problem,

(ii) machine specificity and variability of microarchitectures,

(iii) the allowable degree of abstraction,

(iv) the degree of machine independence and higher-levelness

of the language used, and

(v) user microprogrammability

are also pinpointed and discussed.

AMPL is a higher level microprogramming language that can be

applied to work for various machines. Its generality in

application to different microarchitectures is achieved by the
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method of instantiation [1]. AMPL is instantiated into a

microprogramming language AMPL(M) by declaring instances of the

idiosyncratic details of the machine M into AMPL. In fact,

instantiated versions of AMPL only differ in their elementary

statements and implied operations.

The language AMPL is also easy to be grasped for it ,is

basically a mnemonic type language. User microprogrammability can

be achieved for the keyword commands of AMPL is well self-

explanatory. In addition, AMPL also retains the flavours of

conventional high level languages such as structured control

constructs so as to facilitate the writing of structured* and

readable microprograms. Thus reliable microprograms can be

written. Besides, a significant degree of function abstraction is

also allowed by the declaration of macros using the AMPL

facilities.

MIMOL, on the other hand, is a language for the description

of the various aspects of a microarchitecture, namely

(i) the machine organization hardware resources

(ii) the intra-field details of the microinstructions involved,

(iii) the inter-field relations incurred by the nature of different

fields of a microinstruction,

(iv) the machine defined testable conditions,

(v) the implied operations between operations/operands of

different fields of a microinstruction.

In addition to allowing users to define the semantics of

microinstructions, the formalism adopted in MIMOL also allows
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users to describe microarchitectures in a completely machine-

independent manner. Thus, one of the primary aim of designing

AMPS, namely, retargetability, is accordingly satisfied.

Certain fundamental goals have been attained by the designed

AMPS, namely,

(a) Retargetability, i.e. AMPS is applicable to different

machines. Here retargetability is applying for the

class of machines having the type of microarchitecture

similar to that of the Chen's machine

(b) User microprogrammability, i.e. AMPS allows users to

practise higher level microprogramming with the easy to

understand keyword type language, namely AMPL

(c) Transportability, i.e. AMPS can be implemented on

different machines without much difficulties

(d) Integrity in the development of microcode. This is

achieved as both AMPL and MIMOL are applied in a

coherent fashion for microcode development in AMPS

(e) Automatic generation of microcode, i.e. no dedicated

translator for the microprogramming language of any

particular machine is required to construct for the

generation of microcode.

The feasibility of the AMPS is also demonstrated in this

thesis through the construction of a prototype system for the

Chen's machine [2]. Microcode is also generated for an AMPL

microprogram emulating an architecture resembling that of the IBM

S/360. Together with the hardware version of the Chen's machine
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[3], the currently implementated system also carries high

pedagogic values.
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MPG 'EMULATOR'

DECLARATION

'OPCODE' SYNTO xIRLOPx

'INDEX' SYNTO 'IPAP1'

x11' SYNTO 'IRLR2'•

'12' SYNTO xIRLB21

1XRN SYNTO 'IN DC,7'

Mi?' SYNTO 1 TP DC, 6'

M?Z' 5TPT0 XINDC. 5

M07' 5TPT0' IN DC» 4 1

f STKM 1 SYNTO 'IPTO.3'

' STKF' STPTO' IN DC 2'

'TO' 5YPT0 XINDC,V

XENAB' 5TPT0 'JPPO.O'

MACRO x LOAD A ,B'

B TO MAR

1 TO AOP

MOP TO i4

D7J DMI 7? 9

MACRO' 5T0P 1,5'

B TO MAR

A TO MDR

2 TO MOP

ENDMACRO

MACRO x LOADLCS A,BX

B TO MMAR

i to mop

AAiPP TO i4

ENDMACRO

MACRO 'STORLCS A,BX

B TO MMAR

A TO MMDR

2 TO MOP

ENDMACRO

MACRO x LOADLMXR N B1

N TO MXRAR

1 TO AXPOP

MXRDR TO B

ENDMACRO

MACRO 'STORLMXR N ,BX

N TO MXRAR

B TO MXRDR

2 TO MXROP

ENDMACRO
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MACRO 'LOADLXR N ,B'

V TO XRAR

1 TO MXROP

XRDR TO B

ENDMACRO

MACRO 'STORLXR N,B'

N TO XRAR

B TO XRDR

2 TO XROP

ENDMACRO

MACRO' LOAD OFR N,3'

N TO FRAR

1 TO FROP

FRDR TO B

ENDMACRO

MACRO 'ST OR OFR N ,B'

N TO FRAR

B TO FRDR

2 TO FROP

ENDMACRO

MACRO 1 IN FET'

PC TO MAR

1 TO MOP

MDR TO IR

ENDMACRO

MACRO' GEN ADD'

IRLB2 TO XRDR

1 TO XROP

80 TO XOP

XRDR TO MAR

ENDMACRO

MACRO 'FDIV INDEX,MDR'

INDEX TO FRDR

1 TO FROP

{HEX 'ID') TO AOP

RESULT FRDR

ENDMACRO

MACRO' FADD INDEX, MDR'

INDEX TO FRDR

1 TO FROP

{HEX '1A') TO AOP

RESULT FRDR

ENDMACRO
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MACRO' FSUB INDEX,MDR'

INDEX TO FRAR

1 TO FROP

(HEX 'IB1) TO AOP

RESULT FRDR

ENDMACRO

MACRO 'FMUL INDEX,MDR'

INDEX TO FRDR

1 TO FROP

(HEX '1C') TO AOP

RESULT FRDR

EN DMACRO

MACRO 'BADD XRDR,MDR'

90 TO XOP

RESULT 'XRDR'

ENDMACRO

MACRO 'BSUB XRDR,MDR'

91 TO XOP

RESULT XRDR

EN DMA CRO

MACRO 'BMUL XRDR,MDR'

92 TO XOP

RESULT XRDR

FN DMArpn

MACRO 'BDIV XRDR,MDR'

93 TO XOP

RESULT XRDR

F.N DM A rpn

MACRO 'AND XRDR,MDR'

84 TO XOP

RESULT XRDR

ENDMACRO

MACRO 'OR XRDR,MDR'

86 TO XOP

RESULT XRDR

EN DMACRO

MACRO 'NAND XRDR,MDR

94 TO XOP

RESULT XRDR

fn rn a rpn

MACRO 'NOR XRDR,MDR'

95 TO XOP

RESULT XRDR

F.N DM A OPO
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MACRO 'ADD XRDR, IR D2'

80 TO XOP

RESULT XRDR

ENDMACRO

MACRO 'DEC XRDR'

82 TO XOP

RESULT XRDR
ENDMACRO

MACRO 'IMC XRDR

83 TO XOP

RESULT XRDR
ENDMACRO
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MACRO' SEAL XRDR,N'•

REPEAT 137 TO XOP A M1 "N"

+UNTIL 1771 EQ o

RESULT XRDR
77'?, 7 rv i n n9

MACRO 'SHAR XRDR,IV

REPEAT 13 6 TO A

+UNTIL 'N' TO 0

RESULT XRDR

EN DMA CRO

MACRO 'SELL XRDR,IV

REPEAT 142 TO A II 'A

UN TIL'N TOO

RESULT XRDR
ENDMACRO

BEGIN

BEGIN

PROC 'IP.IT'

BEGIN

(HEX '8') TO INDC

(PPX 'FF') TO MASK

END

ENDPROC

PROC 'START'

BEGIN

INFET

GENADD

END
EN DPROC

17 DCODE: OPCODE TO Mi
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PROC 1 STE 1

DECL

1EA1 SYNTO 1MAR1

ENDECL

BEGIN

LOADLFR IN DEX, FRDR

STOR UFRDR,EA

A or 'rpr'X 1 M

END

ENDPROC

PROC 1 ST 1

DECL

1 EA 1 SYNTO 1MAR1

ENDECL

BEGIN

LOADLXR INDEX%XRDR

STOR XRDR,EA

ACT 'TPCf

. END

FN DPRnr

PROC STDX1

'£4' SYNTO 'MAR1

• ENDECL
n r r ttj

LOADLXR INDEX,XRDR

STOR XRDR,EA

ADD 1 £4

4 £01 INDEX

LOADLXR INDEX,XRDR

STOR XRDR.EA

A rr' rpr

END

FN dppnr

PROC 1LD1

DECL

1EA' SYNTO 1MAR1

ENDECL

BEGIN

LOAD MDR, EA

STORLXR INDEX,MDR
CT 'IPC'

END

f.n dp pnr

PROC 1 AE 1

DECL

1EA1 SYNTO 1MAR1

ENDECL

BEGIN

LOAD MDR, EA

FADD IN DEX, MDR

STORLFR INDEX,FRDR

CT ' IPC'

H D

FN DP
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PROC' 55:'

DECL

'EA' SYR TO 1 MAR'

EEDECL

BEG IE

LOAD MDR,EA

FSUB IN DEX,MDR

STORLFR INDEX,FRDR

ACT 'IPC'

END

ENDPROC

PROC 'ME'

DECL

'EA' SIN TO 'MAR'

ENDECL

BEGIN

LOAD MDR,EA

FMUL INDEX,MDR

STORLFR INDEX,FRDR

ACT 'IPC'

END

ENDPROC

PROC 'DE1

DECL

'EA' SIN TO 'MAR'

ENDECL

BEGIN

LOAD MDR, EA

FDIV INDEX,MDR

STORLFR INDEX%FRDR

ACT 'IPC'

END

ENDPROC

PROC 'M'

DECL

'EA' SIN TO 'MAR'

ENDECL

BEGIN

LOAD MDRtEA

BMUL INDEX,MDR

STORLXR INDEX,XRDR

ACT 'IPC'

END

ENDPROC

PROC 'SI'

DECL

'IMME' SIN TO 'MAR'

ENDECL

BEGIN

BSUB INDEX, IMME

STORLXR INDEX,XRDR

ACT 'IPC'

END

ENDPROC

PROC 'DI'

DECL

'IMME' SIN TO 'MAR'

ENDECL
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BE GIU

BDIV IN DEX 9IMME

STORLXR inDEX ,XRDi

ACT 'IPC1

END

ENDPROC

PROC '74'

DECL

'EA' Sin TO 'MAR

EUDECL

BE Gin

LOAD MDR.EA

HAND in DEX JdDR

ACT 'IPC'

END

ENDPROC

PROC 'N01'

DECL

'IMME' SYNTO 'MAR

ENDECL

BEGIN

NOR INDEX,IMME

ACT 'IPC'

END

ENDPROC

PROC 'SRL'

BEGIN

SEAR INDEX, 1

ACT 'IPC'

END

ENDPROC

PROC 'ROL'

BEGIN

SEAL INDEX,1

ACT 'IPC'

END

ENDPROC

PROC 'CAL'

DECL

'EA' SYNTO 'MAR'

ENDECL

BEGIN

PSW TO STACK

EA TO PC

ACT 'INTRUP'

END

ENDPROC

PROC 'RETN'

BEGIN

STACK TO PSW

ACT 'INTRUP'

END

ENDPROC
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PROC '3CT'

BEGIN

LOADEXR INDEX.XRDR

DEC XRDR

STOREXR IN DEX.XRDR

IF' IF 1 ARZ 1

THEN ACT 'IPC' WITH RESET

EN DIP

MAR TO PC

ACT 'INTRUP'

END

ENDPROC

PROC 'B'

DECL

'EA' SIN TO 'MAR'

EN DEC!

BEGIN

EA TO PC

END

ENDPROC

PROC 'BSTKF'

BEGIN

IF 'IF 1 IN DC. 2'

THEN GOTO 'BRANCH'

END IF

IF 'IF 0 IR.ll'

THEN ACT 'IPC'

END IF

IF 'IF 0 IN DC.2'

THEN ACT 'IPC' WITH REV

END IF

IF 'IF1 IR.10'

THEN ACT 'REPL'

EN DTP

IF' IF1 IN DC .2'

THEN ACT 'REPL' WITH RESET

END IF

END

ENDPROC

PROC 'BARN'

BEGIN

IF 'IF 1 ARN'

THEN GOTO 'BR'
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THEN GOTO 'BR'

EH DIE•

IF IF0. IR, 11'

THEE ACT 'IPC'

ENDIF

IF 'IF 0 III DC, 6'

THEN ACT 'IPC' A REV

ENDIF

IF 'IF 1 IR, 10»

THEN ACT 'REPL'

ENDIF

IF 'IF 1 ARN'

BR:

THEN ACT 'REPL' A RESET

ENDIF

END

Ell DP ROC

PROC 'HALT'

BEGIN

PC TO PC

END

ENDPROC

PROC 'NOOP'

BEGIN

ADD1 PC

END

ENDPROC

PROC 'SMASK'

BEGIN

MASK TO XRDR

OR XRDR.IRLD2

XRDR TO MASK

ACT 'IPC'

END

ENDPROC

PROC 'SIN DC'

BEGIN

IN DC TO XRDR

OR XRDR,IRLD2

XRDR TO IN DC

ACT 'IPC

END

ENDPROC

PROC 'STMSK'

BEGIN

STORLXR INDEX,MASK

ACT 'IPC'

END

ENDPROC



(Cent 1d)

49 1

1+92

4 93

494

495

496

49 7

498

499

500

50 1

502

503

504

505

50 6

507

5 0 8

509

5 10

5 11

5 12

5 13

5 14

5 15

5 16

5 17

5 18

5 19

520

52 1

522

523

524

525

52 6

52 7

52 8

52 9

530

53 1

5 3 2

533

534

535

53 6

53 7

53 8

53 9

540

541

542

543

544

545

546

547

548

549

550

PROC 'LDMSK'

BEGIN

LOADLXR INDEX, MASK

• ACT' IPC'

END

ENDPROC

PROC 'STIND'

BEGIN

STORLXR INDEX,IN DC

ACT 'IPC'

END

ENDPROC

PROC 'IPC'

BEGIN'

' ADD1 PC

END

ENDPROC

PROC 'IN TRUP'

BEGIN

IF 'IF0 IN DC,0'

THEN ACT 'START'

END IF

IF' IFO IN DC, 1'

THEN GOTO 'STKFL'

ENDIF

IF 'IF0 MASK,!'

THEN GOTO 'STKFL'

ENDIF

ACT 'HALT'

END

ENDPROC

PROC 'REPL'

BEGIN

MAR TO PC

ACT 'INTRUP

END

ENDPROC

STKFL: IF 'IFO

THEN GOTO

ENDIF

IF 'IFO MSTKF'

THEN GOTO 'STKMP'

ENDIF

ACT 'HALT'

STKMP: IF 'IFO STKM'

THEN GOTO 'AOVF'

ENDIF

IF 'IF0

THEN GOTO 'AOVF1

ENDIF

ACT 'HALT'



(Cont'd)

55 1

552

553

55 4

555

55 6

55 7

55 8

559

5 60

5 6 1

5 62

5 63

5 64

5 65

5 66

5 67

5 6 8

5 69

5 70

5 71

5 72

5 73

5 74

5 75

5 76

5 77

5 78

5 79

5 80

5 8 1

5 82

583

5 84

5 85

58 6

AOVF:

XRNG:

END

i EN DMPG

IF 'IF0 AOV'

THEN GOTO 'XRNG'

ENDIF

IF 'IF0 MA 0 V'

THEN GOTO 'XRNG'

ENDIF

ACT 'HALT'

IF 'IF0 XRN'

THEN ACT 'START'

ENDIF

ACT 'HALT'

ACT 'STE' A LOC HEX T 70 1

ACT 'ST' A LOC HEX 'SO'

ACT 'STDX' A LOC HEX 'SI'

ACT' LD' A LOC HEX '58'

ACT' AE' A LOC HEX' 1A'

ACT' SE' A LOC HEX' IB'

ACT 'ME' A LOC HEX' 1C'

ACT' DE' A LOC HEX' ID'

ACT 'M' A LOC HEX '5 C'

ACT 'SI' A LOC HEX' 6B'

ACT 'NA' A LOC- HEX' SE'

ACT' NOI' A LOC HEX' 6 F'

ACT' SRL' A LOC HEX' 88'

ACT' ROL' A LOC HEX' SE'

ACT' CAL' A LOC HEX' 43 T

ACT 'RETN' A LOC HEX '44'

ACT 'BCT' A LOC HEX' 46»

ACT' B' A LOC HEX' 45'

ACT' BSTKF' A LOC HEX '48'

ACT 'BARN' A LOC HEX '4Cx

ACT 'HALT' A LOC HEX' 8A'

Remarks MXR(3) is assumed having a value of 256.

Some keywords (and symbols) other than previously

defined are employed for writing the emulator in

VSAPL, these keywords (and symbols) are

(a) RESULT: to indicate the return result register

(b) Ml: perform 1 on a literal constant

(c)

%

: a conjunction operator between two operations

in the same source statement

(d) WITH: same meaningfunction as

(e) LOC: fix the lo cation of the current statement in c

particular location of the control store

(f) : a VSAPL control transfer symbol

There introduction is solely for VSAPL programming

conveniences and poses no distortion to the overall AMPL(C)

structure.



Appendix B: The Microcode Listing

ADDRESS MICROCODE C omment

0 145

0 IT 6

0 IT 7

0 IT 8

0 IT 9

0150

0 15 1

0152

0153

0 15 T

0155

015 6

015 7

015 8

015 9

0160

0161

0162

0163

016T

0165

0166

0167

0168

0169

0170

0171

0172

0173

017T

0175

0176

0177

0178

0179

0180

0181

0182

0183

018T

0185

0186

0187

0188

0189

000100101000000010000000

000101001000000011111111

000111100000000000001110

0000100010000U0000000001

000100000000000000100000

001110100000000000011001

000001101000000000000001

000001001000000001010000

000111100000000000011101

001001100000000000011100

001000000000000000011101

000000 10 1000000000 000001

000101100000000000001011

000111100000000000001111

010000000000000000011110

000010001000000000000010

100100000000001100110101

001000100000000000011101

000011001000000000000001

001110100000000000011101

000111100000000000001111

010000000000000000011101

000010001000000000000010

100100000000001100110101

001000100000000000011101

000011001000000000000001

001110100000000000011101

000111100000000000001111

010000000000000000011101

0000 1000100 0000000 000010

000111110000000000001111

001110110000000000011101

001000100000000000011101

000011001000000000000001

001110 100000000000011101

000111100000000000001111

010000000000000000011101

000010001000000000000010

100100000000001100110 101

000111100000000000001111

000010001000000000000001

010000000000000000100000

001000100000000000011101

001110100000000000100000

000001101000000000000010

addresses 0-144 are reserved

proc. INIT

proc. START

OPCODE TO MPC

proc. STE

proc. ST

proc. STDX

proc. LD



(Cont'd)

0190

0191

0192

0193

0194

0195

0198

0197

0198

0199

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

U210

0211

0212

0213

0214

0215

0216

0217

0218

0219

0220

0221

0222

0223

0224

0225

0226

0227

0228

0229

0230

0231

0232

0233

0234

0235

0236

0237

0238

0239

0240

0241

0242

0243

0244

025

0246

0247

0245

100100000000001100110101

000111100000000000001111

000010001000000000000001

010000000000000000100000

000101100000000000011101

000000101000000000000001

010010001000000001111010

001000000000000000011101

000101100000000000001011

000000101000000000000010

100100000000001100110 101

000111100000000000001111

000010001000000000000001

010000000000000000100000

001000000000000000011101

000000101000000000000001

010010001000000001111011

001000000000000000011101

000101100000000000001011

000000101000000000000010

100100000000001100110 101

000111100000000000001111

000010001000000000000001

010000000000000000100000

000101100000000000011101

000000101000000000000001

010010001000000001111100

001000000000000000011101

000101100000000000001011

000000101000000000000010

100100000000001100110101

000111100000000000001111

000010001000000000000001

010000000000000000100000

000101100000000000011101

000000101000000000000001

010010001000000001111101

001000000000000000011101

000101100000000000001011

000000101000000000000010

100100000000001100110101

000111100000000000001111

000010001000000000000001

010000000000000000100000

000001001000000001011100

00100010000000000001110 1

001110100000000000011101

000001101000000000000010

100100000000001100110 101

000001001000000001011011

001000100000000000011101

001110100000000000011101

000001101000000000000010

100100000000001100110101

000001001000000001011101

001000100000000000011101

001110100000000000011101

000001101000000000000010

100100000000001100110101

proc. AE

proc. SE

proc. ME

proc. DE

proc. m

proc. SI

proc. D1



(Cont's)
0249

02 4 9

0250

025 1

0252

0253

0254

0255

025 6

025 7

025 8

025 9

02 60

0261

02 62

02 63

02 64

0265

02 66

02 67

02 68

0269

02 70

0271

02 72

02 73

02 74

02 75

02 76

02 77

0278

02 79

02 80

02 81

02 82

02 83

02 84

02 85

02 86

02 87

02 88

02 89

0290

02 91

02 92

02 93

02 94

02 95

02 96

02 97

0298

0299

0300

0301

03 02

0303

0304

03 05

03 0 6

0307

03 0 8

0309

03 10

03 11

03 12

0313

OA 1U

000111100000000000001111

000010001000000000000001

000111100000000000001111

000001001000000001011110

100100000000001100110 101

000001001000000001011111

100100000000001100110101

000001001000000010001000

100100000000001100110 101

000001001000000010001001

100100000000001100110 101

000010100000000000100001

000111000000000000001111

100100000000001100110110

010000100000000000000101

100100000000001100110110

001000100000000000011101

000011001000000000000001

001110100000000000011101

000001001000000001010010

001000100000000000011101

001110100000000000011101

000001101000000000000010

10 1000 1110 10 101100 110 10 1

000111000000000000001111

100000000000001100110110

000111000000000000001111

101000111001000000000000

10000 1000 10 110 1100 110 101

1000 10 11100 100 1100 110 101

10 100 I'OOO 10 100 1100 1110 10

101000111001001100111010

10 1000111011000000000000

100001000101101100110101

100010111011001100110101

101001000101001100111010

10 10001110 110011001110 10

000111000000000000001110

0001110 10000000000001110

001110 100000000000001010

000001001000000001010110

000101000000000000011101

100000000000001100110 101

001110100000000000001001

000001001000000001010110

000100100000000000011101

100000000000001100110101

00100010000000000001110 1

001110100000000000001010

000001101000000000000010

100000000000001100110 101

001000100000000000011101

000011001000000000000001

000101000000000000011101

100000000000001100110101

001000100000000000011101

001110100000000000001001

000001101000000000000010

100000000000001100110 101

000111010000000000001110

100000111000000010010011

100000111000100000000000

100000110000100000000000

100000000000001100011111

000111000000000000001111

100000000000001100110 110

proc. NA

proc. NOI

proc. SRL

proc. ROL

proc. CAL

proc. RETN

proc. BCT

proc. B

proc. BSTKF

proc. BARN

proc. HALT

proc. LOOP

proc. mask

proc. SINDC

proc. STMS]

proc. LDMSi

proc. STIND

proc. IPC

proc. 1NTRUP

proc. REPL



(Cont'd)

03 15

03 16

03 17

03 18

03 19

0320

0321

0322

0323

03 24

0325

0112

00 80

0081

0088

0122

0123

0124

0125

0092

010 7

0094

0111

013 6

0142

0067

00 68

00 70

0069

00 72

0076

013 8

1000001110010000000,00000

100000110001000000000000

100000000000001100011111

100000111001100000000000

100000110001100000000000

100000000000001100011111

100000111010000000000000

100000110010000000000000

100000000000001100011111

100000111011100010010011

100000000000001100011111

100000000000000010011011

100000000000000010100010

100000000000000010 10 1001

100000000000000010111000

100000000000000010111111

100000000000000011001001

100000000000000011010011

100000000000000011011101

100000000000000011100111

100000000000000011101111

100000000000000011111001

100000000000000011111110

100000000000001100000001

100000000000001100000011

lOOOOOO'OOOOOOO 1100000 101

100000000000001100001000

1000000000000011000010 10

100000000000000011110111

100000000000001100010101

100000000000001100011010

100000000000001100011111

7 Label: STKFL

Label: STKMP

Label: AOVF

Label: XRNG

Jump Table Statements

Note: The translating programs are not shown nere. However, they can

be obtained from the author on request.

: K.W.WU, Computing Studies Unit, Hong Kong Baptist College,

224 Waterloo Road, Kowloon, Hong Kong.






