
THE-DESIGN AND IMPLEMENTATION OF

A DISTRIBUTED PROGRAMMING LANGUAGE

A Thesis

Presented to

The Chinese University of Hong Kong

In Partial Fulfillment of the Requirements

For The Degree of Master of Philosophy

by

Li Wai Kit

Mav 1985

PREFACE

This thesis covers the design and implementation of a dis-

tributed programming language called GDPL. GDPL is a tool

for developing distributed software systems for a distri-

buted processing environment. Several previous research

efforts and designs for distributed and parallel programming

languages have been studied and analyzed. A lot of valuable

information about the design philosophies and other issues

in concurrent programming languages have been incorporated.

The thesis is presented in 6 chapters.

Chapter 1 introduces the attributes and characteristics of

a distributed programming language. The research objectives

of the thesis are also elaborated in this chapter.

Chapter 2 discusses the current major issues of concurrent

programming languages.

Chapter 3 gives an outline of the aesign pnhiosopny o uueL

and an overview of the lanciuaqe is also presented.

Chapter 4 shows 14 sample programs written in GDPL.

Chapter 5 describes in detail the implementation of the

run-time support system and the compiling system.

Chapter 6 contains a summary of the design and implementa-

tion of GDPL. Problems encountered and practical experience

in using GDPL will be discussed. Finally, a proposal on the

future enhancement of GDPL is given.

2
Preface

Table of Contents

Acknowledgements 6

Abstract 7

Introduction 9

1.1 Introduction 9

1.2 Attributes of a Distributed Programming Language 9

1.3 Research objectives 10

2 Major Issues in Parallel Programming Languages 12

2.1 Introduction 12

2.2 The nature of Concurrency 13

2.3 The Model of Computation 14

2.4 Communication Mechanisms 15

2.4.1 Direct Shared Variables 16

2.4.2 Procedure or Operation calls 16

2.4.3 Message Passing 18

212.5 Synchronization Mechanisms

2.5.1 Indirect shared variables 21

3
2.5.2 Invocation of procedures, operations

input/output commands 22

2.5.3 Signals 24

2.6 Process creation-and termination 26

2.6.1 Restricted Manner 26

2.6.2 Free Manner 27

2.7 Access Control in Parallel Programs 28

2.8 Exception Handling 32

2.9 Implementation issues 34

3 The Design of GDPL- A Generalized Distributed

Programming Language 37

373.1 Overview of GDPL

383.2 Programs

393.3 Nodes

403.4 Services

423.5 Utilities

43
3.6 Processes

4
3.7 Communication and Synchronization 45

3.7.1 Shared Variables 45

3.7.2 Message Passing 46

3.8 The GDPL Language and Parallel Programming Issues 50

3.8.1 The Nature of Concurrency 50

3.8.2 The Model of Computation 51

3.8.3 Communication Mechanisms 52

3.8.4 Synchronization Mechanisms 52

3.8.5 Process creation and termination 53

3.8.6 Access Control 54

4 Sample Programs 59

4.1 Introduction 59

5 The Implementation of GDPL 91

5.1 Introduction 91

5.2 The Run-time Support System 92

5.2.1 Manager control 92

5.2.2 Main control 94

5.2.3 Node control 97

5
5.2.4 Service control 102

5.2.5 Utility control 104

5.2.6 Process control 106

5.3 The Compiling System 112

5.3.1 Parser 112

1185.3.2 Code generation

5.3.3 Linker 121

1236 Conclusion and Future Development

Appendix A: The Specification of GDPL 127

154Appendix B: Extended BNF of GDPL

165Appendix C: Sample outputs of GDPL

170
References

179Publications

6
Acknowledgements

I would like to dedicate this thesis to my parents, Mr. S.L.

Li and Mrs. T.K.F. Li. Without their encouragement and

understanding, this thesis would not have been able to come

to fruition.

I would also like to express my special thanks to my super-

visor Dr. K.W. Ng, for giving me his valuable guidance and

critical advice throughout the years from the design to the

implementation of the GDPL language. Without his patience

and effort, this project and thesis would not have been able

to come to a successful ending.

I must also give my thanks to Mr. Michael Wong, Mr. L.K. Hu,

Mr. Simon Lam, Mr. K.L. Lau, and Miss Alison Ng for sacrif-

icing many precious hours in maintaining a smooth operation

of the Zilog S8000 system, where the GDPL language has been

implemented.

My classmates in the M.Phil. Programme, miss C.S. Hu, Mr.

Bill Kwok, and Mr. W.B. Ngai and many good friends also

deserve a vote of thanks for their encouragement throughout

the years. Not forgetting Mr. C.S. Law and Mr. W.H. Cheung,

for their constructive suggestions.

7
ABSTRACT

Generalized Distributed Programming Language (GDPL) is a

programming language designed to be used in a distributed

processing environment and may be used for distributed sys-

tems or applications programming. A GDPL program is com-

posed of a number of concurrently executing processes which

may reside on a single processor or distributed over a set

of processors connected via a network.

GDPL incorporates a number of recent proposals for con-

current programming and represents a synthesis of language

features ideally suited for engineering distributed systems.

The design of GDPL is based on solving the major issues of

concurrent programming languages, such as the nature of con-

currency, the model of computation, communication mechan-

isms, synchronization mechanisms, process creation and ter-

mination, access control, exception handling and implementa-

tion issues.

The development and implementation of GDPL have been carried

out on the Zilog S8000 super micro-computer system with

ZEUS (Zilog Enhanced Unix System) as its operating system.

Besides the language design, a compiler, a linker and a

run-time support system have also been implemented so as to

make the language operational. At present, the code gen-

erated can only be executed on a single processor with the

8
multiple processors environment being simulated. Further

development effort will be required in order to implement

this language on a true multiple processors environment.

9
CHAPTER 1

Introduction

1.1 Introduction

This chapter introduces the attributes of a distributed pro-

gramming language and then lays down the design objectives

of the GDPL language.

1.2 Attributes of a Distributed Programming Language

A distributed programming language is a concurrent (or

parallel) programming language designed for a distributed

computing environment. It provides a tool for users to

develop distributed computing software running on a distri-

buted computer system. A distributed program contains a

number of processes, which are executed overlapping in time

either virtually or actually by processor(s). The virtual

concurrency can be achieved by interleaving the executions

of the processes on a single processor. However, the dif-

ferent parts of a distributed program will execute con-

currently in the distributed computer systems configuration

[1].

The processes of a distributed program usually must communi-

cate and synchronizate with each other in order to achieve

10
their common goal. Synchronization is a mechanism to enforce

the order of execution of the processes. The methods of

current parallel programming languages to express such com-

munication and syncronization fall into two categories [2]:

(i) Using shared memory and explicit syncronization primi-

tives- a typical example is the monitor 1351

(ii) Using the message passing mechanism to achieve communi-

cation and synchronization purposes- this is a gen-

eralized parameter passing mechanism.

A distributed computing environment (or configuration) con-

sists of a number of processes connected together, either by

simple communicatioin links or by a network. The processors

usually have distributed memory spaces. Program and data

may be distributed over these processors and processes can

be executed concurrently. Strategies for distribution of

processes and data are embedded in the distributed environ-

ment to utilize the resources of the processors in an effi-

cient manner. Hence designing and implementing a distributed

programming language may face the isssues of parallel pro-

gramming language design and the strategies to distribute

and execute processes on the distributed computing environ-

ment.

1.3 Research Objectives

There are several objectives in the design and implementa-

tion of the distributed programming language called

11
Generalized Distributed Programming Language (GDPL). They

are presented below:

(a) To provide considerable expressive power of concurrency

for a wider range of parallel programming applications.

(b) To obtain maximum computing speeds using multiproces-

sors with common or distributed store.

(c) To define a structured, clear access control in order

to increase the readability, security and verification

of distributed programs.

(d) To implement a compiler and a linker for the language

such that executable codes can be generated and distri-

buted onto different processors.

(e) To write a run-time support system to support the exe-

cution of the different parts of the distributed pro-

gram.

(f) To write several sample programs of the language in

order to evaluate the language against the above objec-

tives.

(g) To gain the experience of the design and implementation

of a distributed programming language.

12
CHAPTER 2

Major Issues in Parallel Programming Langauges

2.1 Introduction

There is no doubt that the parallelism of execution is an

attractive facility to realise the concurrency inherent in

application systems and system-oriented systems. The

development of distributed computing systems, and networking

make parallel programming more realistic and practical.

Therefore there is a real demand and neccessity for a nota-

tion or programming language to communicate to these sytems.

Many such programming languages have evolved over the years.

They have their own design philosophies and purposes for

various applications and underlying machine models. Twelve

parallel programming languages have been studied and several

major issues in parallel programming languages have been

located and analyzed. Thus, they form the basis for the

development of the design and implementation of the distri-

buted programming language GDPL.

The issues involved include the nature of concurrency, the

model of computation, communication mechanisms, synchroniza-

tion mechanisms, process creation and termination, the

access control in parallel programs, exception handling and

13
implementations issues. Actually, some of the issues are

closely related or overlapped in some situations. They are

treated separately for simplicity, clarity and ease of

analysis. The twelve parallel programming languages selected

are: Distributed Pascal [1], Distributed Processes (DP)

(2], Synchronizing Resources [3] [10], Modula [5] [6] [7],

Communicating Sequential Processes (CSP) (81, Gypsy [11],

Edison [12], Soma [13], ADA [14] [15] [17] [19], DPL-82

[21], PLITS [22] and Concurrent Pascal [23]. The design and

implementation strategies of them will be quoted as exam-

ples.

2.2 The Nature of Concurrency

The major objective of parallel programming languages is to

express the concurrency inherent in a problem effectively

and efficiently. Increasing the concurrency within a program

is to gain the potential improvement of the speed of execu-

tion.

The concurrency of a program is affected both by the under-

lying machine architectures and the nature of the applica-

tion systems. The underlying machine architectures include

single processor, multiprocessors with common or distributed

store, distributed computer network, etc. The application

systems can be divided into loosely coupled and tightly cou-

pled systems. In a loosely coupled system, the computation

is spread among several processors which are connected by

14
some communication paths. The programs are expected to be

made up of largely self-contained processes which will

share very little information directly. In a tightly coupled

system, a larger amount of shared entities are shared by the

processes.

The nature of the concurrency ranges from the restricted to

the unrestricted form. The restricted one is suitable for

tightly coupled application system and is easier to be

implemented in a single processor or multiprocessors with

common store. The other extreme is the unrestricted one.

The maximum degree of parallelism in a program is equal to

the number of processes declared in the program. This is at

most suitable for loosely coupled application system and

implemented in a distributed computing environment. Message

passing is the sole means of communication. The processes

share nothing, but pass the data between the processors and

store in their private stores. Most of the parallel systems

lie between the two extremes, a number of mechanisms for

expressing and implementing concurrency are discussed in the

.-ommunication and synchronization mechanisms sections.

2.3 The Model of computation

There are a number of approaches to selecting an underly-

ing mechanism for controlling the computation in a parallel

program. The two ends are the data flow mechanism and con-

trol flow mechanism. The data/control mechanism lies in the

middle of the two ends, which is the MIT Actor [21] model of

15
computation

For data-flow mechanism, processes can continue their compu-

tations as long as all operands are available. Operands of a

process are a list of data to be waiting for. Each process

is responsible for sending the data to the other process.

The language DPL-82 is a typical example, which depends on

the data flow mechanism. The processes of a DPL-82 distri-

buted program are called nodes. The nodes are connected by

the communication links which are called arcs. Arcs transmit

operands to other nodes, which are tokens and signals. The

computation of a node proceeds as soon as all required

tokens and signals are available. The availability of

operands is detected as an activation condition within the

node.

There are a number of languages such as Guarded Procedure

(GP) [18], Communicating Sequential Processes (CSP) [8],

Concurrent Pascal [23], Soma [13], ADA [14], Distributed

Processes (DP) [2] and Modula [5] which apply the control

flow mechanism. The control flow mechanism is characterized

by the remote procedure call concept or monitor concept.

After the procedure call is terminated, the control will

return to the invoking process. This is the major differ-

ence between the data flow and control flow mechanism.

2.4 Communication Mechanisms

Communication is to convey data from one program component

16
(e.g. process, module or class) to another. Communication

can be divided into: direct and indirect. The direct commun-

ication is achieved by the direct access of the shared vari-

ables. The indirect communication is achieved either by cal-

ling procedures/operations of the other program components

or by message passing. Some languages select one or a combi-

nation of the three means as the language communication

mechanisms. Each one has both advantages and disadvantages

over the other. No one of them is ideal for all application

systems. Therefore, a language should select the most suit-

able one for its own envisaged application area.

2.4.1 Direct Shared Variables

Within a program, it is possible to structure the code

into a number of concurrent processes which communicate

with each other via shared objects. Since the processes

run in an unpredictable order, it means that some mutual

exclusion mechanisms are required to ensure the correct

usage of the shared variables such as semaphores, test

and set instruction, P and V operation. The mutual

exclusion is either automatically achieved by the

machine or explicitly programmed by using conditions.

2.4.2 Procedure or operation calls

The languages under this category are based on the

assumption that procedures or operations are much more

reliable interactive mechanism than shared data struc-

17
tures. This category can be subdivided into loosely

coupled and tightly coupled mechanism. In loosely cou-

pled mechanism, the data are copied from one process tc

the other. In tightly coupled mechanism, the callinc

process is allowed to reference the variables of the

called process as long as it is permitted.

(a) Loosely coupled mechanism

For loosely coupled system, after the communication is

permitted, the data can be copied from one process to

the other. In Communicating Sequential Processes (CSP)

[8], the input and output commands are used for communi-

cation between concurrent processes. The communication

is said to be ready when one process names another as

destination for output and the second process names the

first process as source for input. In addition, if the

type of the variable of the input command is compatible

with the value denoted by the expression of the output

commands, then the input and output commands are said to

correspond. The value to be output is copied from the

source to the destination process.

(b) rignt-Ly coup-Lea system

For tigntiy couplea system, Lne monitor is Lne Lyplud.L

construct used to share a number of objects among a col-

lection of processes. Each process can access the shared

object indirectly through monitor procedures. However,

18
guards are required to control the access of shared

objects. Concurrent Pascal [1] and Distributed

Processes (DP) [2] are based on the monitor concept. The

processes are active and the monitors are passive. The

monitor provides exclusion of simultaneous access from

several processes to shared objects. If a process has

called any monitor procedure (critical region or guarded

region), another process calling the same or another one

of these procedures is delayed until the first process

has completed its critical regions. During the execution

of the critical region, the calling process is allowed

to store its data into the shared objects. If the other

process has the chance to enter the monitor afterward,

the process can read the data from the shared objects.

Hence, the communication objective is achieved.

2.4.3 Message passing

The message passing mechanism is the most suitable tor

those distributed languages implemented on processors

with distributed store. It is subdivided into the asym-

metric and symmetric mechanisms. In the asymmetric

mechanism, buffers must be required. However for the

symmetric mechanism, it may be implemented without

intermediate storage for message but the sender of a

message must be delayed until the message has been

received.

There are a number of advantages to using message

19
passing

(1) It simplifies the common exclusion problem.

(2) It can be used as the cleanest way of parameter

passing.

(3) It solves the distributed store problem.

(4) It provides a multiple returned values facility.

The two types of message passing mechanisms are

described below:

(a) Asvmmetric Mechanis

Soma [13] unifies the process and the monitor con-

structs. Somas are communicated directly by exchanging

messages via mailboxes. It can be easily implemented on

a distributed architecture. In the soma body an arbi-

trary number of mailboxes can be declared. A mailbox

address is associated with each mailbox. The mailbox

identification must be made available from one soma to

the other to establish the communication link of message

passing.

The soma in which a mailbox is declared can obtain a

message from this mailbox by executing the receive

operation. If the mailbox is empty, the soma is delayed

until a message is sent. Any soma having the mailbox

i8entification can send a message to the mailbox by the

20
send operation, a send operation is never delayed. it is

the principle of the asymmetric mechanism.

(b) Symmetric mechanism

DPL-82 [21] depends on the port and message concepts or

Rashid's CMU VAX/UNIX Interprocess communication path

called arc. The run-time support facilities provide pro-

tocols via the IPC for establishing communication path

between processes and passing the data on those paths.

The processes can proceed as long as all the data

rpculired are available.

In Gypsy [11], processes communicate only tnrougn mes-

sage buffers. A message buffer is a finite size queue on

which send and receive operations are defined. The queue

is manipulated in a FCFS manner. When a send is made or

a full buffer, the sending process is suspended until

the buffer is not full. On the other hand, a receive or

an empty buffer also causes the process to be suspender

until it is not empty. A semaphore is associated witr

every buffer such that mutually exclusive access to the

buffer is achieved.

In Synchronizing Resources (SR) [35], the send state-

ments are like message sends. If the operation is

invoked by send, the invoking process may proceed as

soon as the actual parameter values have been saved or

terminated.

21
2.5 Synchronization Mechanisms

Synchronization mechanisms are used to force the sequence of

execution of program statements in a correct manner. It can

be implicitly determined by the underlying run-time system

or explicitly specified by the programmer. If it is imple-

mented implicitly by the run-time system, a large amount of

work for the synchronization is relieved from the programmer

and the synchronization mechanism is defined in a more pre-

cise manner. It is opposed to those explicitly specified by

the programmer. However, more freedom is given to the pro-

grammer for controlling the sequence of execution in more

sophisticated application systems and it is assumed that the

programmer has full understanding of his own system. It is a

rare case that the synchronization is achieved solely by the

implicit run-time system without the aid of the programmer.

The synchronization mechanism is classified into: indirect

by examining the shared variables, and direct by sending anc

waiting for messages or by invoking the procedures, opera-

tions and input/output commands.

2.5.1 Indirect shared variables

In Edison [12], process synchronization is controlled bi

when statements. The concurrent processes can only exe-

cute the when statements one at a time. When statement!

are used to give concurrent processes exclusive access

to common variables when their value of the expression

22
satisfy certain conditions. If the value of an expres-

sion is not true, the process is delayed until the

expression is true.

A process executes a when statement in two phases: syn-

chronizing phase and critical phase. In synchronizing

phase, the process is delayed until no other process is

executing the critical phase of the when statement.

After the critical phase (i.e. the synchronized state-

ments) is executed, the process is either returned to

the synchronizing phase or the execution of the when

statement is terminated.

2.5.2 Invocation of procedures, operations an(

input/output commands

(a) Procedures

In Guarded Procedure (GP) [18], a guarded procedure can

call the guarded procedure of another process but not

its own. A process continues to execute its initial

statement until either it terminates or waits until the

guard of the guarded procedure is ready. Then the pro-

cess selects arbitrarily one of the ready guarded pro-

cedures for execution if more than one guarded, pro-

cedures are ready. The execution of the guarded pro-

cedure in a process is delayed until the last of the

same guarded procedure call is completed. This waiting

is necessary because there is only one buffer associated

23
with each guarded procedure of each process to hold the

input and the output parameters.

In addition to the interprocess guarded procedure,

guarded command is the other way of synchronization

mechanism within each process. The guarded command con-

sists of a guard and a command list. A guard is said to

be executable if it does not fail. A guard is said to be

enabled if it does not fail and also there is a call

statement in the guard. The guarded command in GP is

more efficient then that proposed by Hoare. In GP, the

selection is made between enabled guards instead of exe-

cutable guards and is delayed until one or more guards

become enabled.

In ADA [14], it is possible to set a signal wltnout

waiting, and to wait for a signal. However, the major

synchronization mechanism is the rendezvous. When the

synchronization is achieved, the rendezvous is said to

have occurred. The rendezvous consists of executing

statement between the-do and end keywords following the

accept statement. The rendezvous is completed as long as

these statements have been executed. The level of syn-

chronization mechanism is higher than semaphores. The

conditional accept statement is introduced to specify

the conditional execution of entries. The other state-

ment: select statement-is introduced to select among a

nimhtr of alternative accept statements depending on the

24
order in which entry calls occur.

(r)) Operations

In Distributed Processes (DP) [2], a process interleaves

the execution between the initial statement and external

requests one at a time. A process switches from one

operation to another only when an operation terminates

or waits for the satisfaction of the condition within a

guarded region. A process continues to execute opera-

tions except when all of its own operations are delayed

for some conditions within guarded regions or when it

makes a request of operation of the other process. The

process must wait until the operation is completed by

the called process.

(c) Input/output commands

In Communicating Sequential Processes (CSP) [81, the

input/output commands may appear in guards. The guarded

command is selected for execution if the corresponding

input and output command is ready to execute the

corresponding output and input command. If several input

or output guards are ready, only one of them is selected

arbitrarily.

2.5.3 Signals

In Soma [13], mailboxes may be used to transfer message

containing no information but only for synchronization

25
purposes.

In Modula [5], the synchronization is explicitly

achieved by the use of signals. The signals of Modula

correspond to conditions of Hoare and to queues of

Brinch Hansen. The processes can be influenced by sig-

nals and shared variables only.

Two operations and a test statement can be applied to

the signals: wait and send operation, await statement.

Wait (s,r) delays the process until it receives the sig-

nal s, and the priority r is given to the delayed pro-

cess. Send (s) sends the signal s to those processes

waiting for s with the highest priority. If there are

several processes waiting for s with the same priority,

the process with the longest waiting time receive the

signal s. Await (s) return the value true if there is at

least one process waiting for signal s, otherwise it

returns false.

If the signal is sent from a process to the other pro-

cess waiting within the same interface module, then the

control is passed from the sending process to the

receiving process. The sending process is delayed until

the other process has completed its interface procedure.

Under this mechanism of send and wait operations, a

one-in one-out sequence is achieved and the mutual

exclusion problem is solved.

26

2.6 Process creation and termination

The process creation and termination policy directly affects

many design decisions of parallel languages. The design

decisions include storage requirement, program verification,

modularity, process deadlock, flooding and starvation, for-

mal definition of syntax and semantics, etc. The process

creation and termination can be in a restricted manner or a

free manner. In a restricted manner, the flexibility of pro-

gram structuring is reduced. However, it is easier to imple-

ment and verify. In a free manner, the programmer is given a

lot of freedom to structure his application systems.

Many parallel languages use a process name and a subscript

which may contain one or more ranges to stand for a series

of processes. Only a slight variation exist in different

languages. In ADA, an alternative instantiation statement is

used. However, it is more convenient to use subscript

instantiation and is especially important when a number of

similar processes are defined.

2.6.1 Restricted manner

In Concurrent Pascal [23], As long as a process is

created, it exists forever. This greatly simplifies the

problem of storage management. The process and monitor

can be initialized only once. After initialization, the

parameters and local variables of a process and monitor

exist forever. They are called permanent variables. Even

when the execution of a process terminates its permanent

27
variables such as monitors continue to exist because

they may be used-by other processes.

In Modula [5], processes cannot create other processes,

process creation is confined in the main program. This

means that processes cannot be nested. Modula [6] sup-

ports dynamic process generation, however, the genera-

tion of new processes is restricted to the main program

to reduce the complexities of nested processes and

storage requirements can be estimated.

In Communicating Sequential Processes ((bF) Logy, C11CLC

is no recursion of processes and no process-valued vari-

ables. Therefore, the number of concurrent processes is

known at compilation.

2.6.2 Free manner

In DPL-82 [211, if child nodes are required then the

child nodes are declared in the use section. The child

startup and initialization of parameters are performed

in the initialization section. The connections of nodes

are established in the arc interconnection section. The

freedom is given to the node in self-termination and

child node restarting.

IN ADA, more freedom of process creation is allowt!U.

Processes may be initiated at any point. However, it is

not possible to exit the scope of a process until the

process is terminated.

28
2.7 Access Control in Parallel Programs

Besides the communication and the synchronization mechanisms

of parallel programming languages, access'.control is another

important issue in order to develop a structured, reliable

and secure parallel programming system. Therefore a number

of clear and exact access control schemes must be stated

explicitly in order that the programmer can use these access

rights correctly. Moreover, information is provided for the

compiler to check the validity of certain illegal accesses

which are ignored by the programmer.

The access control schemes should be able to

(i) define clearly the scope of the data objects and opera-

tions that each program component uses in a precise manner

(ii) restrict that only meaningtul operations are allowed

to operate on the data objects, which is also a requirement

of the abstract data type

(iii) schedule the order of access to controlled data

objects

The access control schemes can be divided into static access

and dynamic access. The access path of the static access

scheme is clearly defined at the language definition time.

The objective of the static access scheme is to make the

access of the data objects well under control. Hence, it

reduces the unnecessary or meaningless access of the con-

29
trolled data objects. The access patn or the aynamic access

scheme is determined at run-time. The access right of data

objects, such as monitors, is passed from one process to the

other process.

The static access scheme is also caileu the scope rules in

program, which is a common way to specify the access rights

in a program. In many parallel programming languages, the

nested block structure is the most common scheme. More care

about the access rights must be taken because the nested

hlnrk structure is unrestricted in an uncontrolled sense.

There are a number of approaches to explicitly express the

static access control scheme such that the compiler can

roeI17nA a number of unwanted and meaningless accesses:

(i) A process or module is totally self-containea, wnicn may

only access its own variables and operations, no local vari-

ables can be examined from the outside, no procedures can be

invoked. No nested block structure and recursive procedure

call are allowed.

In Distributed Processes (DP) [2], parameter passing oeLweeri

processes can be implemented either by copying within a com-

mon store or by input/output between processors that have no

common store. No direct access of the data across the pro-

cess boundarv is allowed.

In Gypsy [ll], it has no non-local variables, all variables

are either local variables or parameters. This enhances the

30
reliability of program and also simplifies the verification-

In Concurrent Pascal [23], the parameter passing is used at

the initialization phase to establish the connections of the

program components. All variables accessible to a program

component are declared in type definition. This access rule

and the init statement make it possible for a programmer to

state the access right explicitly and have them checked by a

compiler. Nested monitor operations are not allowed.

(ii) Variables must be exported from one process to the

other through some explicit statements. In Edison [12], a

module is either contained in a procedure or in another

module. The module is a block consisting of two kinds of

named entities: local and exported entities. The local

entities can only be accessed within the module. The

exported entities can be accessed by the module and the

immediate surrounding block. This means that the scope rules

of the variables are restricted to two levels of nested

block. The compiler can generate instructions for addressing

the references of the local and the exported entities within

the local block and immediate surrounding block. In ADA

[14], there are two scopes: open scopes and closed scopes.

The open scopes are those that are globally declared vari-

ables. Closed scopes are those in which the non-local vari-

ables must be explicitly imported.

(iii) Process or module may be nested. Explicit statements

are required to list the variables that inner process or

31
module can use. The inner process or module may export vari-

ables to the outer process or module as well. In Modula

[5], a module is a set of procedures, data types and vari-

ables. Modules may be nested and procedures form a block

structure. It allows the programmer to control the entities

that are imported from and exported to the environment of

the module. Other entities are local to the module and can-

not be accessed by the other modules. In the heading of the

modules, there are two lists of identifiers: define-list

and use-list. The define-list identifies all the entities

exported to the outside of the modules. The use-list identi-

fies all the entities imported to the module. The entities

can be exported further more than two block levels if neces-

sary.

(iv) A new grant feature [16] is introduced in that grant

declarations allow the data objects' visibility to be selec-

tively expanded.

The dynamic access schemes are relatively uncommon because

they are usually implicitly defined by the communication and

synchronization mechanisms. However, there are still a

number of approaches to explicitly express the dynamic

access schemes to increase the efficiency of implementation

and representation.

(i) In ADA [14], it is possible to mark variables that are

shared among parallel processes, an unmarked variable that

is assigned on one access path and then used on another will

32
cause a warning.

(ii) the concept of capability is introduced in [161. All

the controlled data objects and their corresponding dynamic

access rights are stored in the capability variables as

other data objects are stored in variables. Then access

rights are passed between processes by passing capability

variables as parameters to and from the data objects.

2.8 Exception handling

Among the twelve parallel programming languages, only PLITS

[22], Gypsy [11] and ADA [14] provides the facilities for

handling exception situations. The purpose of exception han-

dling is to specify what actions should be taken if some

software or hardware errors or unusual events occur. Excep-

tion handling introduces another way of control from one

program component to another. In general, the process of

exception handling include declaration, raising and handling

of exceptions.

In PLITS [22], exception handling depends on the transaction

key. A transaction is a unique key such that the exception

handling process can route the correct answer to the ori-

ginating process.

There are two classes of exception conditions: internal con-

ditions arise within a module-and external conditions occur

outside the module. The internal conditions include arith-

metic overflow, end of file, type mismatch, etc. External

33
exception conditions include invalid messages, time-out

notifications, etc. The external exception condition is

raised through messages and handled by an exception process.

The internal exception conditions are handled by a set of

handlers procedures. When a handler is invoked, it runs

under the environment of the block where the exception

occurs. The exception may be passed on to another handler if

necessary. After the exception handling is completed, the

control can return either to the point of invocation or exit

to some higher level block.

In ADA [14], the exception conditions include both the

hardware, software errors detected during execution, error

in built-in operation and user defined exceptions. The

raised exceptions are handled by exception handler. There

might be more than one handler for the same exception condi-

tion. However, the handler is sought first local to the sub-

program where exception is raised, then in the environment

of call of the subprogram, and the searching is continued in

this way until a handler is found for handling this excep-

tion condition. Then the exception is executed in the

environment of the handler. Therefore, the scope problem

should also be considered carefully. After the handler is

completed, the environments in which the exception occurs

and handled are abandoned. ADA also allows the suppression

of exceptions to reduce the run-time checks. However, the

behavior of the translation and execution cannot be

predicted.

34
2.9 Implementation issues

In this section, only some key features and issues of imple-

mentation of parallel programming languages are stated. The

key features include the architecture of the underlying

machine, storage management, process scheduling, process

switching, timing constraint, context switching between

processes and scheduler, formal definition of semantics of

the language and proof rules, nondeterministic execution,

interfacing between processors, process deadlock, flooding

and starvation etc.

Edison [12], Gypsy [11], Modula [5] and Concurrent Pascal

[23] are primarily designed oriented towards the single pro-

cessor. Even when they are implemented on a multiprocessors

system, there should be a common store. Guarded procedure

(GP) [18], DPL-82 [21], Distributed Pascal [1] and Communi-

cating Sequential Processes (CSP) [8] are designed for dis-

tributed computer systems. Although they can also be imple-

mented on a single processor, the power of distributed com-

putations is reduced. Synchronizing Resources (SR) [10]f

PLITS [22] and ADA [14] are suitable for both single proces-

sor and distributed computer systems. Processes should have

consistent semantics whether implemented on multiprocessor

or interleaved execution on a single processor. However, the

drawbacks due to the common store of Concurrent Pascal and

Modula can be removed by the Soma construct [13]. Soma makes

all program components active and have adequate facilities

35
allowing the program components communicating directly.

The storage management is highly related to the processes or

modules (including their temporary and permanent variables)

creation and termination manner and automatic message

buffering. Static storage management and dynamic storage

management are required for those languages with restricted

and free manner of process creation and termination respec-

tively. It is obvious that static storage management can be

easier and more efficient to implement. On the other hand,

dynamic storage management requires more overhead and

storage space to implement, hence it is easier to introduce

more system errors. However, the dynamic scheme is a neces-

sity for those languages with more flexible concurrency

requirements.

There are three approaches to processes scheduling: impli-

citly scheduled by the run-time scheduler, explicitly deter-

mined by the programmer, or the scheduling decision is

embedded in the process structure. The major objective of

process scheduling is to minimize the overhead due to the

context switching between processes and the scheduler, and

to handle the asynchronous event from the external environ-

mPnt sinh AR T_/n device interrupts in a correct way.

In general, the computer systems on WIIIL L1 LUIlk UL L C11L

processes run will handle short-term scheduling of simul-

taneous execution of processes. There are a number of

language facilities provided for the programmer to delay or

36
schedule processes for longer periods of time until some

conditions (internal or external) are satisfied. Hidden

scheduling decisions should be avoided.

IN ADA [14], the built-in scheduling algorithm is FIFO

within the same priority. In Concurrent Pascal [23], a pro-

cess does not directly call a monitor procedure, the call is

supported by a kernel routine which solves the mutual exclu-

sion problem and busy queuing. This kind of kernel facility

is implemented by a compiler transparent to the programmer.

The queue of Concurrent Pascal can be used by monitor pro-

cedures to control medium-term scheduling of processes, a

monitor can either delay a calling process in a queue or

continue a process waiting in a queue.

For CSP L8J, i t a group o processes aL e d LLCIPLlily Uuiiuuii-L

cation but none of their corresponding input and output com-

mands are executed, it is called a deadlock. When two or

more modules in a PLITS [22] program are attempting to

receive a message which must be sent by another, deadlock

occurs. When a module generates too many messages, flooding

occurs. When a module does not receive messages intended for

it, starvation occurs. There are three kinds of solutions to

the above error conditions: the kernel must provide more

facilities to minimize the number of avoidable deadlocks

use system-generated exception and to prohibit interrupts

for the module, therefore no deadlock will occur but the

level of parallelism will be reduced.

37
CHAPTER 3

The Design of GDPL - A Generalized Distributed Programming Language

3.1 Overview of GDPL

GDPL is a distributed programming language designed to cope

with the main parallel programming issues and it incor-

porates a number of good design philosophies. The syntax

and semantics of the sequential part of GDPL are the same as

the classical sequential programming language pascal except

for the followings:

(a) The sequential control structure is based on Dijkstra's

guarded command [19] giving the whole language a uniform

control structure.

(b) The 'go to' statement is not allowed, in order to avoid

unstructured control flow [23].

(c) Pointers are not provided in order to have a clear and

secure program. The cost of the implementation of pointer

references in a distributed configuration is also reduced.

(d) Global variables are not allowed, in order to maintain a

clear scope rule of program objects.

(e) Files are not provided but the basic I/0 statements are

38
implemented. This reduces a great deal of work required to

implement a file management system.

The concurrent programming part of GDPL includes the node,

the process, the service and the utility. Interprocess com-

munication and synchronization is based on the shared vari-

able and the message passing mechanism. An overview of the

language is given in the following sections. The syntax of

GDPL is described using an extended BNF notation (see Appen-

dix B). The detailed language specification is presented

in Appendix A.

3.2 programs

A program consists of global message definitions and one or

more nodes hich are similar to the resources of SR [4-5].

It has the form

[<message definition list>]

<node> [<node>]

In GDPL, a program is constructed in such a way that all

nodes are executed simultaneously in their virtual proces-

sors. The virtual processors may be mapped onto a single

processor or multiple physical processors. The physical

processors can either be homogeneous or heterogeneous pro-

vided that they have the proper communication links and vir-

tual processor software. The programmer can determine which

group of processes are tightly or loosely coupled and they

are expected to group those tightly coupled processes

39
together under the same node. Hence, those loosely coupled

processes may be distributed onto different virtual proces-

sors. If the loosely coupled processes want to communicate

with each other, they have to use the message passing

mechanism to send their data. Two tightly coupled processes

may also communicate with each other using this mechanism.

A message definition defines a number of message construc-

tors, and is similar to a type definition except that a new

data type 'address' is also permitted. The data type

'address' is a string of characters to represent the source

or destination message addresses. The addresses must

include both the name of the process and the node in which

the process resides. However, only the process can utilize

the Facility provided by the message passing mechanism,

including the message constructors, 'messin' and 'messout'

statements.

3.3 Nodes

Each node consists of a fixed number of processes and ser-

vices. It has the form

node node name

[service{ service}]

begin

process{ process}

end node name

A process is an active program component. Atter the process

48
is initialized, it continues to exist until the last state-

ment of the process is executed or interrupted by some

events. The processes of a node are initialized at the same

time and they execute simultaneously in their virtual pro-

cessors. Since all the nodes of a program are initialized

at the same time, therefore, all the processes are also ini-

tialized at once. After the initialization, all processes

within the same node are put into the queue waiting for exe-

cution according to their initial values of priority. Then

the program is executed by dispatching a process from the

queue waiting for execution or from the sleeping processes

queue.

3.4 Services

Another program component that can exist within a node is

called a service. It has the form

service service name

[I[' range I]']

[constant definition l i st]

[type definition list I

common variable definition list

[variable definition list]

utility I utilit}

begin

[initialization statement list]

end service name

The service is a kind of abstract data type which provides

41
data and operations (through utilities) in a secure manner

and transparent to the users (processes). It means that

processes can access the data and operations without consid-

ering how the data and operations are implemented. Thus,

the implementation can be changed if necessary without

affecting the users' view of the utilities. For example, a

device control program can be implemented using the.service

construct. Processes can use the device via utility calls

without worrying about the address references and manipula-

tions of the device registers. The machine dependent code

is embedded in the utility so that no other program com-

ponents can reference the device registers.

Putting all the shared objects of each service of the node

together, they represent all the shared objects of the node.

The shared objects are not only identified by their names,

but also by the service in which they are declared. There-

fore, two services of a node can use the same name to denote

shared objects with no conflict. Each service must contain

one or more shared variables, otherwise it is meaningless to

use a service without shared objects. Furthermore, the

shared objects are visible only to processes in the same

node.

An array of services is allowed such that several similar

services can be defined simply by a single service defini-

tion and an index. A range is added to the service defini-

tion in order to define a family of similar services. In

42
many parallel programming applications a number of similar

cooperating services are required to support a single ser-

vice to the users, therefore the service array is useful.

In the family of service array, their declarations and ser-

vice body are exactly the same except for their identifica-

tions. The index of the family of the services and the ser-

vice name is used to uniquely identify a member of the fam-

ily. The attribute (me) of the service contains the index

of the current service. The initialization statement list

forms the body of the service. The body of the service is

executed when the node is initialized. After it is exe-

cuted, the service becomes inactive and waits for activa-

tion.

3.5 Utilities

An utility has the following form

utility utility name

'('[parameter list))'

[constant definition list]

[type definition list]

[variable definition list]

begin

statement list

end utility name

There are no traditional procedures or functions within the

service except the utility. The statements allowed within an

utility include all sequential statements, utility calls and

43

a wait statement. It is assumed that the utilities are com-

posed of a number of critical regions which are usually

quite short. Therefore, it is not necessary to use the trad-

itional procedure or function to decrease the repetitive

coding. An utility can use the shared objects declared

within the service and its local objects which are tran-

sparent to the user. Utility calls for other utility of the

same or other service in the node is allowed. Recursion of

utility is also allowed.

The parameter list of an utility is similar to those in

ordinary procedures/functions. This is the unique way of

passing data between the calling process and the called

utility. Both pass by value and pass by reference are

allowed.

3.6 Processes

The process of GDPL is similar to the process used in other

parallel programming languages, it is used as the major con-

struct to collect a number of program codings together to be

executed simultaneously with other processes in the same or

other nodes. Processes in the same node are competing for

the resources of the same virtual processor.

Each process defines its own private objects and consists of

a number of statements, including sequential statements,

procedure/function calls, utility calls and message passing

statements. A process has the form

44
process process name

<range>

[(' priority')'];

[constant definition list]

[type definition list>]

[variable definition list]

[function declarations>]

[procedure declarations>]

begin

statement list

end process name

An array of processes is allowed such that several similar

processes can be defined simply by a single process defini-

tion and an index. A family of processes is valuable for

many parallel application systems and systems oriented work.

Priorities of each process or family of processes are

optional. The default value of the priority is 0, which is

the lowest value, the highest value is 127. Every process

can obtain an initial priority in the process definition.

They can change the priority using the predefined variable

'priority'. A process has an attribute 'me' which contains

the index of the current process. If it is a member of a

family of processes, then the index reflects the relative

pointer within the family. Otherwise, the value of me is 0.

When a process issues an utility call, it cannot enter the

service immediately. A process is allowed to enter those

45
services without processes or only with sleeping processes.

The control of the process is then passed to the called

utility. After the utility call is executed, the control

will be returned to the process.

3.7 Communication and Synchronization

Communication and synchronization in GDPL is achieved

through shared variables, messages, and some specialized

statements.

3.7.1 Shared Variables

When processes communicate through the indirect access

of shared objects, the order of execution of the

processes within the service is nondeterministic.

Therefore the internal synchronization of the utilities

are required to enforce a correct sequence of execu-

tion. The internal synchronization between utilities

within the service is achieved by the 'wait' statement

(or conditional critical region statement). The 'wait'

statement has the form

wait g ua rd ed command

{ [] <guarded command>}

end

A guaraea commana nas Wine form

guard>- <statement list

The statement list of a guarded command can be executed

46

if its guard (Boolean expression) is true. The 'wait'

statement is composed of one or more guarded commands.

When the current active utility executes a 'wait'

statement, all guards of the 'wait' statement are

checked. If one or more guards of the 'wait' statement

is satisfied (true), then one of the satisfied guarded

commands is selected arbitrarily, and the statement list

of the selected guarded command is executed. The state-

ment list following each guard should be executed until

it is completed. However, if none of the guards of the

'wait' statement is satisfied, then the utility is

delayed (i.e. it enters the sleeping state) The process

which has called this utility is said to be inactive. If

it is time to activate the sleeping process, the guards

of the called utility are examined again to determine if

there is a satisfied guard. If there is such a guard,

the statement list following the guard is executed. The

execution of the utility will continue until it is com-

pleted or another utility call is issued. When the

utility is completed, the process becomes active again.

3.7.2 Message Passing

The unique means of communication between processes in

different nodes is through message passing. The message

passing mechanism is also used for the purpose of syn-

chronization of two processes. This kind of synchroni-

zation is called external synchronization to distinauish

47

it from the internal synchronization between utilities.

Message passing may also be used by processes in the

same node. The message passing mechanism is in an asym-

metric manner similar to the Soma [10]. There is no

need to delay the source process after a message is

sent. However, the destination process must wait for the

arrival of all required messages. 'Messin' and 'messout'

statements achieve synchronization in the following

way: if a 'messin' statement is executed, then the exe-

cution of the process will be delayed until the

corresponding 'messout' statement has been executed.

The 'messin' and 'messout' statements have the following

forms

messout

destination address

'(' message variable')'

maCCin

('(' message variable

source address

'(' message variable>')'

({'' source address

'(' message variable')'} I

{ ':'source address

'(' messaqe variable')'})

The content of the message is storea in the message

48
variable. In addition to the content of the message,

the sender information must also be sent to the destina-

tion process. A buffer is required to hold the message

sent regardless of whether the corresponding 'messin'

statement is executed or not. A message handler in the

run-time support system also records the the address of

the sending process. If a message is received, the name

of the sender is recorded in the attribute 'sender'. The

attribute(succ) of the message variable is also set to

true. The attribute 'succ' is useful when there are

more than one sending processes sending messages to the

same receiving process. After the execution of the

'messin' statement is completed, the process can then

continue its execution from the statement following the

'messin' statement.

For each message variable, it must be declared with a

message constructor which is defined at the beginning of

the program. The function of the message constructor is

similar to a mail box. A message constructor is treated

as a mail box where the same type of message are stored.

Each message variable can receive message from its mes-

sage constructor.

The 'messin' statement has two different forms. The

first one is a 'or' 'messin' statement which can be

further divided into two subtypes. The first subtype

simply contains a message variable without any source

49
address. It means that the 'messin' statement will be

completed only when a message has arrived in its message

constructor regardless of the sender identification.

The second subtype of the 'or' messin statement may

specify one or more sources (sending process) with

explicit source addresses The address may either be a

constant or a variable, a new data type called 'address'

is derived for this purpose. When one of the source

processes has sent a message to the message constructor,

the 'messin' statement is completed and the process can

continue its execution. Otherwise, the process must

wait until the above condition is satisfied. The wait-

ing process will be inserted into the waiting for mes-

sage queue. If more than one source process have sent

messages to the receiving process before it executes the

'messin' statement, then the messages would be stored by

the message handler in the order of their arrivals

corresponding to the different message constructors.

When the process executes the 'messin' statement, then

the message with the longest waiting time is removed

from the message constructor and placed into the mes-

sage variable of the receiving process. The destination

message variables of the 'or' 'messin' statement may be

the same or not.

The second subtype of the 'messin' statement is the

'and' 'messin' statement. This statement specifies one

or more sources with explicit source addresses, however,

50
this 'messin' statement is completed only when all the

source processes have sent their messaaes_

3.8 The GDPL Language and Parallel Proqramminq issues.

3.8.1 The Nature of Concurrency.

The design philosophy of GDPL is that it can cater for a

large range of computer systems configuration ranging

from a single processor to the multiprocessors with com-

mon or distributed store. It is also suitable for a

wide range of application systems, from strictly

tightly-coupled systems to loosely coupled systems. The

node is the key structure that can achieve the above

objective.

It is assumed that the programmer is the one who knows

the most about the relationships between processes and

the configuration of the distributed computing environ-

ment. The programmer should put those highly related

processes into the same node. All the processes within

the same node will eventually reside in the same physi-

cal processor. They are using the same resources of the

physical processor. Since the processes of the same

node are using the same common store, the most efficient

way to establish communication and synchronization is

the shared variable. Hence, the service in a node is

constructed to provide shared variables and explicit

primitives for synchronization. It is a good computing

51
environment for those tightly coupled application sys-

tems.

However, if multiple processors with distributed store

is used, then each reference of a variable represents

one copy of data from a memory store of one physical

processor to another. This is very inefficient becauses

many actual communications between the physical proces-

sors are required. GDPL's message passing mechanism is

more suitable for implementation on multiple processors

with distributed store, and is also suitable for those

loosely coupled application systems. They involve dis-

tributed computing in their individual physical proces-

sor and will use the message passing facility only for a

small number of times. Massage passing can be regarded

as a generalized parameter passing mechanism in program-

ming languages.

3.8.2 The Model of Computation.

In GDPL, the message passing mechanism can be regarded

as a data flow mechanism. As long as a message is

available, the process requesting for message can

proceed again.

GDPL's utility concept is to achieve the communication

and synchronization between processes in the same node

in a control flow manner. In GDPL, the word remote of

the remote procedure call is used for those processes

52
within the same node but not for those processes in dif-

ferent nodes. After the utility is terminated, the con-

trol is returned to the invoking process. Thus, GDPL

contains both of the program features of the data flow

and control flow mechanism.

3.8.3 Communication Mechanisms

GDPL includes the three commonly used communication

mechanisms: direct shared variables, procedure or opera-

tion call and message passing [3]. They are present in

GDPL in the form of shared objects within services,

remote procedure call (utility call), and message pass-

ing('messin' and' messout' statements). GDPL provides

the users with a wider range of tools to fulfill various

types of communication requirements.

3.8.4 Synchronization Mechanisms

In GDPL, the service uses wait statements to achieve

internal synchronization between utilities. Shared

objects must be included in guards of wait statements.

If only local variables of utility are included in the

guard, the synchronization function of the wait state-

ment is not made use of. The waiting for a true guard

may be forever if the guard is not true for the first

time. Within the same node, the utility call can be

used to achieve synchronization between processes

because no more than one process can execute the utility

53

of a service simultaneously. Message passing is the

third mechanism to achieve synchronization. 'Messin

statement cannot proceed until all expected message:

have been collected.

3.8.5 Process Creation and Terminatior

The process creation time in GDPL is statically deter-

mined. All the nodes are initialized at the same time

when the program is started. At the same time, all the

processes of the nodes are also activated. The services

of a node are also initialized at the same time. Con-

sequently, the storage allocation for all processes and

services can be done only once.

Hence, the job of storage management is greatly simpli-

fied. Although the creation of utilities can not be

determined, the storage requirement can be determined at

compilation time. Storage may be allocated at compila-

tion time or at run time.

Although the processes can terminate at different times,

there is no need to worry about the storage allocation

problem of the terminated processes. The storage of the

terminated process is returned to the free storage pool

and the terminated process will not make further

requests for storage due to the non-reactivation charac-

teristics of processes in GDPL. The node is terminated

when all of its processes have terminated. Before the

54
node is terminated, it will terminate all services

because the services are passive constructs and cannot

terminate by themselves. The program is terminated when

all the nodes are terminated. The clear creation and

termination of the program constructs makes it easier

for the program to be verified.

3.8.6 Access Control

In sequential programming languages, access control is

an important issue. It should provide a clear access

path and access right of each program construct in order

to improve the readability, and ease of verification of

the program. For parallel programming languages, the

concurrency introduces nondeterministic execution paths.

It makes the access control a more complicated problem.

In GDPL, access control and access right of objects of

each program construct is clearly defined both in

sequential programming and concurrent programming.

(i) The scope of the data objects of each program con-

struct in GDPL

For sequential programming, no global varlaoies are

allowed. Therefore, the parameter list of

procedure/function is the unique means to pass data

between processes and procedures/functions. A recursive

procedure/function is also allowed because it is very

useful in many application systems. No nesting or

55
blocking structure of procedure/function are provided.

Although many usages of block structures such as the

restricted visibility provided for local identifiers and

efficient use of storage, etc. are lost, some of the

more severe disadvantages [23] of block structures can

be avoided. These disadvantages include poor readabil-

ity, difficulties in separate compilation, up-level

addressing implementation and interference. Furthermore,

the implementation of non-nested constructs are easier

than those nested constructs.

For concurrent programming, the major objects are shared

variables and message variables. Although processes

can invoke the utilities of the service, only the ser-

vice and its utilities can directly access the shared

variables. Processes can only obtain the values of

shared variables through the parameter list of utili-

ties. A process can access the message variables and its

attributes. The attribute (succ) of the message vari-

ables is treated as a logical variable. However, the

attribute (sender) of the message variable can only be

used as an address constant. Message variables can be

accessed as ordinary variables with the same data type

as message variables. Of course, only the operations of

that data type are allowed for manipulating the message

variables. Other processes cannot directly access the

message variables of a process, they can only obtain a

copy of the values of the message variables.

56
(ii) The operators allowed to operate on the data

objects of each program construct in GDPL.

In a service, all sequential statements are allowed to

access the shared objects and the local variables of

the service. But no wait statement is permitted to

manipulate the shared objects in the service. In an

utility, both the local variables of itself and shared

variables of the service can be accessed by all sequen-

tial statements and the wait statement. However, an

utility cannot access the shared variables of another

service. The message variables can be accessed only

within the process, procedure and function. All sequen-

tial statements, 'messin' and 'messout' statements are

allowed to manipulate the message variables. However,

processes cannot use any statements to access the mes-

sage variables of another process.

(iii) The schedulin of access to data objects

In G,DPL more than one process can enter the service, a

scheduling scheme is required to control the access of

the shared objects. At any time, only one process is

active within the service. The other processes can be

active only when the process leaves the service or goes

to the sleeping state. Hence only one process is

allowed to enter the critical region, but the meaning of

the critical regions of Concurrent Pascal and GDPL is

different. The critical regions of the service include

57
both the statement list following the guard and other

statements within the utility.

GDPL's service is similar to Modula's interface module

[15-17] except that there is no define-list and use-

list, and no nesting of service definition is allowed.

There are three possible states for the service: either

all the processes within the service are sleeping, all

the processes within the service is sleeping except one

is active, or no process is residing within the service.

There is no wake up statement in GDPL's service. The

wake up of the sleeping processes within a service is

handled by a central scheduler. The scheduler will

select the next sleeping process only according to their

waiting time. A sleeping process of GDPL is not waken

up even though it has a satisfied guard. It is because

the current active process cannot recognize whether the

guard of other processes is satisfied or not. The

guards are examined only when the sleeping process is

waken up.

The execution of the processes in different node are

executed simultaneously. They can access their data

objects in their physical processors. No conflict will

occur even when messages are passed because the destina-

tion process will be temporarily terminated in order to

put the message in the message constructor. The execu-

tion will recover after the message passing is com-

58
pleted. The source process will also continue its exe-

cution.

The processes within the same node are dispatched by the

central scheduler as well. Each process is assigned a

fixed time of execution (time slice). When the process

is active, it can access its data objects through its

statement list or the shared objects of the service

indirectly through the utility call. The control of the

process will be passed to the central scheduler when the

time slice is used up, the process is sleeping or the

process is completed. Hence, the execution path in the

process is clean and secure.

59
CHAPTER 4

Sample Programs

4.1 Introduction

14 sample programs of GDPL have been written and exe-

cuted under the Zilog S8000 super micro-computer system.

They are used to test the validity of the design deci-

sions and implementation of the language. Comparisons

can be made between GDPL and other parallel programming

languages through these sample programs. Comments in the

sample programs are placed inside braces[}.

Example 1: Semaphore

A general semaphore can be implemented as a service

semaphore that contains two utilities swait and signal.

They can be invoked within the node in which the service

semaphore resides.

node main

service semaphore

common s: int

utility swait()

begir
wait sO- s: s-1

wend

end swait

60
utility signal()

begin

s:=s+l;

end signal;

begin {the body of the service]

S :=0;

end semaphore

begin

{The utility of the semaphore can be called by:

semaphore.swait() or

semaphore.signal()}

process dummy

begin {the statement list is optional}

skip

end dummy

end main

Example 2: Message butter

The service message buf provides a ring butter and two

operations: send and receive for its users(processes)

such that the users can communicate with sending and

receiving character through the service.

node main

service message buf

const

buffersize= 1000 common

head,tail,avail: int

{head points to location in which character is placed}

{tail points to location in which character

is received}
{avail indicates number of available location}

buffer: array[buffersize] of char;

{the data structure used can be

chanqed transparent to the users}

61
utility send (c:char)

begin

wait avail>0 avail:= avail- 1

buffer [head]:= c;

head:= head+ 1

if head= buffersize->

head:= 0

fi;

wend

end send

utility receive (c:char)

begin
wait availbuffersize-

avail:= avail+ 1

c:= buffer [tail]

tail:= tail+ 1
if tail== buffersize-

tail:= 0

fi

wend

end receive

begin

head:= 0 {all integer variables are initialized to

0}

tail:= 0 {hence these two statements are optional}

avail:= buffersize

end message-but

begin

process dummy

begin

skip

end dummy

end main

Example 3: Resource Scheduler

The service resource sch can schedule a resource ka rair

scheduling scheme is not guaranteed) for its

62
users(processes) through the two utility calls: request

and release.

node main

service resource sch

common

rfree: bool

utility request();

begin

wait rfree-> rfree:= false

wend

end request

utility release()

begin

wait not (rfree)-> rfree true

wend

end release

begin

rfree:= true

end resource sch

begin

process dummy

begin

skip

end dummy

end main

Example 4: Shortest job next scheduler

The service shortest job next scnecules a resource among

n user processes in shortest job next order. It consists

63

of three utilities: request, release and driver. The

utility request enters the service time of the user in

its reserved location indexed by the user-supplied iden-

tification id. Then the user process waits until it is

selected by the scheduler. The utility release returns

the resource to the scheduler.

The utility driver is transparent to the user processes.

It must be called once by a specific process, then it

continues to wait until there are further user processes

waiting for the resource. It then selects a user process

with the shortest job next algorithm. If the resource is

available, then it is allocated to the selected user

process. Otherwise, it continues to wait until the

resource is available.

node main

service SJN sch

const

nil= minint

{nil denotes an undefined process index}

n= 10 {let n= 10}

common

user: int

{user denotes the current user index}

no of waiting :int

{no_of_waiting denotes the number o user

process waiting within the service}

queue: array [n] of int

queue: array [n] of int

{queue is an array to record the

service time of the user process}

utility request(id,service_time:int)

begin
no of waiting:= no_of_waiting+ 1

queue[id]:= service_time;

wait user== id- skip;

wend;

end request;

utility release();

beg in

user:= nil;

end release;

uti1ity driver();

var

if min, next: int;

begin

loop true

wait no_of_waiting

min:= maxint;

i:= 0;

next:= 0;

loop i n- i:= i+1;

if queue[i]= min- skip;

[] queue[i] min-

next:= i;

min:= queue[i];

fi;

lend;

wait user== nil-

user:= next;

no of waiting:= no of waiting-1;

wend;

wend;

lend;

end drlver;

begin {body of the service}

user:= nil;

end SJN_sch;

begin

process dummy;

begin

skip;

end dummy;

65
end main

Example 5: Readers and Writers

There are two families of processes, called readers and

writers, sharing a single resource. The family of

processes reader can use the resource simultaneously.

However, each member of the family of processes writer

must have exclusive access to it. The service resource

is used to control the access of the shared resource

among the two families. A common variable s defines the

current state of the shared resource.

s= 0 1 writer is using the shared resource

s= 1 0 processes is using the shared resource

n-1 readers are using the resource, where n>=2s= n

node main

service resource;

common s: int

utility startread()

begin

wait s=l-> s := s+1;

wend;

end startread;

utility endread()

beg1r

if s1-> s :=s-l;

fi;

end endread

utility startwrite()

begin

wait s== 1- s:= 0;

wend;

end startwrite;

utility endwrite();

beqi r

if s== 0- s:= 1;
fi:

end endwrite;

begin

s:= 1;

end resource;

{The readers and writers should use the shared resource

in the following way:

star tread();

not

read();

endread();

the aualifvina name resource is

used because the service resource

and the two families are residing
within the same node

startwrite();

write();

endwrite;

begin

process dummy;

begin

skip;

end dummy;

end main;

Example 6: Dining Philosophers

There are n philosophers alternating between thinking

and eating. When a philosopher gets hungry, he joins a

table and picks up two forks next to his plate and

67
starts eating. There are, however, only n forks on the

table. So a philosopher can eat only when none of his

neighbors are eating. When a philosopher has finished

eating he puts down his two forks and leaves the table

again.

In order to prevent two philosophers from starving a

philosopher between them to death by eating alternately,

a fair scheduling scheme is required (in this case, the

round robin). An array of status is required to record

the status of each philosopher. When the entry is equal

to 0, the philosopher is thinking. When the entry is

equal to -l, the philosopher is eating. The philosopher

waiting to join the table is inserted into the stack

index in a fair scheme (i.e. the neighbor(s) of the

index in the stack index is (are) corresponding to the

nearest neighbor (s) of the philosopher with this index).

The utility driver is responsible for examining whether

there is any philosopher who can join the table. If it

is so, then the status of the satisfied philosopher is

set to -1. The utility driver continues to wait until

there is any philosopher calling the utility join or

release. The utility driver must be called by a specific

process (forever) only once and it continues to exist

forever.

node main;

service table;

const

no_of_philosopher= 5;

index_size= 6;

nil= maxint; common

status: array[no_of_philosopher] of int;

index: array[index_size] of int;

no_of_waiting,no_of_eating :int;

max_no_of_eating :int; var

i: int;

pointer: int;

utility join(isint);

begi n

no_of_wa i t ing:= no_of_wai t ing+ 1;

table.insert(i);

wait status[i]== -1- skip;

wend;

end join;

utility leave(i:int):

beg in

status[i]:= 0;

no of eatinq:= no of eatinq- 1;

end leave;

utility insert(i:int);

var

j ,tempi:int;

begin

if index[0]== nil- index[0]:= i;

gIss j•= 0

if ((index[j] i) and (i index[j+l]))

or ((index[j] i) and (index[j+l] i))-

tempi:= index[j+l];

index[j+l]:= i;

loop tempi nil-

i:= tempi;

j:= j+l;

tempi:= index[j+l];

index[j+l]:= i;

lend;

fi;

fi?

end insert;

utility delete(i:int);

begin

loop index[i+1] nil-

indexfi]:= index[i+l];

i:= i+ 1;

lend;
l n H p y T i 1•=•

end delete;

uti1ity driver();

var i, j,k,k1,tempi,temp2: int;

begin

wait no_of_waiting 0-
i•= a.

tempi:= no_of_eating;
1 nnn(i npv T i 1 s n i M o

(no_of_eating max_no_of_eating)- {nil

denotes that the end of the stack is encountered}

j:= index[i]; {j is the index of the

selected philosopher}

k:= j+no_of_philosopher-1;

temp2:= kno_of_philosopher;

k:= k- temp2no_of_philosopher;

kl:= j+1;

temp2:= klno_of_philosopher;

kl:= kl- temp2no_of_philosopher;

if (statusfk] -1) and

(status[kl] -1)-

statusfj]:= -1;

table.delete (i);

no_of_eating:= no_of_eating+ 1;

no_of_waiting:= no_of_waiting-1;
A 1 C A 1•— 1 X 1•»

fi;
o n•

Y.7Al~l ~1

wait (tempi no_of_eating)-:
sk i d!

wo nH

end driver;

beain (body of the service

max__no_of_eating:= (no_of_philosopher-1) 2

no_of_wai ting:= 0;

no~of_eating:= 0;

poTnter:= 0;

i:= 0;

loop i index_size-
i nrlpv f i 1:= nil:

i:= i+ 1;

lend;

end table;

begin

process philosopher[5]; {there are n philosophers with
index:

0,1,2,...,n-1}

procedure think(time: int);

var

i: int;

begin

loop i time10-

wr iteln (i);

i:= i+ 1;

lend;

skip;

end think;

procedure eat(time:int);

var

j: int;

begin

loop j time5-

writeln (j);

j:= j+ 1;

lend;

skip;

end eat;

beg i n

loop true- think(me);

table.join(me);

{me is the attribute of the family

of the processes, which contains

the index of the current process}

eat (me);

table.leave(me);

lend;

end philosopher;

process forever;

beg in

71
loop true-

sort.driver();

lend;

end torever;

end main;

Example 7: Sorting array

A sorting array with n members can sort n elements or

less. A sorting service consists of two utilities: put

and get. The items are input through sort service 0

that stores the smallest item input so far and passes

the rest to its successor sort service 1. The latter

keeps the second smallest item and passes the rest to

itssuccessor sort service 2, and so on.

When the m items have been input, they will oe storea in

an ascending order in sort services 0,1,...,m, where m

= n. The input item is input in a member of the array

of services sort through the utility put, provided that

only 0 or 1 item is in the current service. Then the

ordered items are obtained through sort service 0 by the

utility get, provided that there is exactly one item in

the current service.

In each sort service, two locations are required to

store the items. This implies that at most two items can

reside in one sort service. Each utility driver of the

service array sort must be called by a specific process

(forever) such that they can continue their work for-

ever.

node main;

service sort[7]; {an array of sort service with

7 members is defined}

common

length: int;

two: array[2] of int;

succl, next: int;

utility put(c:int);

beg in

wait length 2- :wo[length]:= c;

Length:= length+1;

wend;

end put;

utility get(var csint); {c is passed by reference}

begin

wait length== 1- c:= two[0];

length:= 0;

wend;

end get;

uti1ity driver();

var

temp: int;

begin
wa i t (length== 2) or

((length== 0) and (next0))-

if (length== 2)-

if two[0]=two[1]-

temp:= two[1];

two[0]two[1]-

temp:= two[0];

two[0]:= two[1];

fi;

length:= length-1;

sort[succl].put(temp);

next:= next+1;

(length== 0) and (next0)-

sort[succl].get(temp);

two[0]:= temp;

next:= next-1;

length:= 1;

fi;

wend;

end driver;

begin {body of the service}

sued:= me+ 1;

length:= 0;

next:= 0;

end sort;

{A user process should use the sorting array to sort an

array of n items in the following way:}

begin

process user;

var

i ,x: int;

item: array[7] of int; {there are m= 7 items to

be sorted, where m=n}

beg in

i: =0;

loop i7- sort[0].put(item[i]);

i:= i+ 1;

lend;

l:=

loop

0;

i7- sort[0].get(x);

itern[i]:= x;

i:= i+ 1;

lend;

end user;

process forever[7];

begin

loop true-

sort[me] .driver();

lend;

end forever;

end main;

Example 8: Vending Machine

A vending machine is simulated by a service

vend_machine. It accepts one coin at a time and accumu¬

lates the value of the inserted coins. Assumes that

there are m kinds of items and there are m buttons

corresponding to the m kinds of goods.

When a button is pushed, the machine returns an item

with change provided that there is at least one item

left and the inserted coins cover the cost of the item.

Otherwise, all the inserted coins are returned.

node main;

service vend_machine;

const n= 10; {let n= 10}

type item= record

no_of_item: int;

price: int;

end; common

paid, cash: int;

stock: arrayTnl of item;

{The array is initialized in other place}

utility insert(coin:int);

beg in

paid:= paid+ coin;

{accumulates the value of the inserted coins}

end insert;

utility push(var change,goods: int; item_no: int);

beqir I

if (stock[item_no].no_of_itern 0) and

(paid= stock[item_no].price)-

change:= paid-stock[item_no].price;

cash:= cash+ stock[item_no].price;

goods:= 1;

stock[item_no].no_of_item:=

stock[item_no] .no_of_i tem-1;

pa i d:= 0;

(stock[item_no].no_of_item== 0) or

(paid stock[item no].price)-

change:= paid;

goods:= 0;

paid:= 0;

fi;

end push;

begin

paid:= 0;

cash:= 0;

end vend_machine;

begin

process dummy;

begin

skip;

end dummy;

end main;

Example 9: Coroutine

A group of processes can function as coroutines through

the simulation of the resume statement. The simulation

is accomplished through the message passing mechanism.

Assume that process P is one of the processes which

function as coroutines and it wants to resume the other

process called Q at some place. After the resume message

is accepted by Q, then the control of operation is

transferred from P to Q. Then process P should wait

until the another process resumes it.

message resume_slot=int;

node coroutines; {Assume this node contains all the

processes that function as coroutines}

beg i n

76
process P

var resume: resume slot

begin

messin (resume)
skip

messout Q(resume)

messin (resume)
skip

end P

process Q

var resume: resume slot

begin

messin (resume)
skip

messout R (resume) {resume process R in the same
node}

messin (resume)
skip

end Q

{ . . . }

end coroutines

Example 10: Path expression

Path expressions define a meaningful sequences of opera-

tions. These operations are implemented as utilities and

the control sequences of operations is enforced by the

wait statement. There are a number of possible paths.

The utility P can only be followed by utility Q as shown

below:

1 20

P Q

77
One possible implementation is through a shared common

variable (control), which may contain 0, 1 or 2 to indi-

cate three different states.

node main

service pathl

common control: int

utility P()

begin

{the operations performed by P}

wait control== 0-> skip

wend

control:= 1; {control is set to 1 at this place

only}

end P

utility Q()

begin

{the operations performed by Qt

wait control== 1- skip

wend

control:= 2 {control is set to 2 at this place

only}

end Q

begin

end pa th l

{If utility P is called, it can be executed only when

control is equal to 0. Before P is completed, it sets

the control to 1. If utility Q is called, it can be exe-

cuted only when control is equal to 1. Another path

expression is that either utility P or Q can be per-

formed as shown below:

P-

10

X-

Q

It can be implemented similar to the path expression 1.}

service path2;

common control: int;

utility P();

begin

{the operations performed by P}

wait control== 0-

skip;

control:= 1; {the paths through P and Q

are mutually exclusive}

wend;

end P;

util ity Q();

begin

{the operations performed by Q}

wait control== 0-

skip;

control:= 1;

wend;

end Q;

{The other possibility of the path expression is that an

utility P can be performed 0 or more times. Then the

entry state of the utility P should remain unchanged as

shown below:

— P- LP It is implemented as shown

below:}

beg in

end path2;

service path3;

common control: int;

uti1ity P{);

begin

{the operations performed by P}

wait control== 0- skip;

79
wend:

end P;

begin

end path 3;

begin

process dummy;

begin

skip;

end dummy;

end main;

Example 11: Fibonacci

A process tlbonaccl is responsiui. LVL NLVVlu11ly a

sequence of fibonacci numbers to a user process P. The

process fibonacci and P may or may not lie within the

same node. They communicate with each other through mes-

sage passing. It is assumed that there is an overflow

handler to provide certain diagnostic actions when an

overflow occurs. It is the responsibility of the process

fibonacci to send the address (node name and process

name) of the process P to the overflow handler.

There are three message names caiiea signal, object, and

destination. The message name signal is used for Sig-

naling the process fibonacci that the process P requests

the next Fibonacci number. The object consists of the

next fibonacci number and a status. The status is used

for indicating the validity of the operation. If status

80

is equal to 0, then the process fibonacci can generate a

valid fibonacci number. Otherwise, an overflow has

occured.

The message definition list is listed below

message signal= int {the type of signal can be of an,

valid

data instead of int}

object= record

fibno: int

status: i nt

end

destination= address

node main

{ The process fibonacci is listed below:}

begin

process fibonacci

const limit= maxint {limit is the greatest integer on

the current computer system}

var

request: signal

fib: object

complainer: destination

this, last, previous: int

begin

last:= 0

this:= 1
loop true-

messin (request)

previous:= last

last:= this
if limit- last previous-

this:= last+ previous

fib.fibno:= this

fib.status:- 0

messout request'sender (fib)
[] limit- last'= previous-

complainer:= request'sender

messout overflow handler (complainer)

fi

lend:

81
end tibonacci

{ The user process P is listed below:}

process P:

var

request: signal

fib: object

next f ibno: int

begin

skip

messout fibonacci (request)
skip

messin (fib) {the source address is not speci-

fied

because the message may be sent by

either the process fibonacci or the

overflow handler}
if fib.status== 0-

next fibno:= fib.fibno

else skip

fi

skip

end P

end main

Example 12: Stacks

An array of service stacKs are usea to construct n stac,c

data objects with two operations: push and pop.

node main

service stacks[5] {5 is the number of the members of

the service array stacks} const stacksize= 1000

common
stack: array [stacksizel of real

top: int

utility push (object: real)

begin
wait top stacksize- 1-

top:= top+ 1

stack [top]:= object

82
wend

end push

utility pop (var object: real)

begin

wait top= 0- object:= stack [top]

top•= top- 1
wend

end pop

begin

top -1 J.initialize the stack pointer top}

end stacks

begin

process dummy

begin

skip

end dummy

end main

Example 13: Prime number generator

This example is used to illustrate the use of an array

of processes. It uses pipeline communication and ack-

nowledgement to implement a parallel version of the

sieve of Eratosthenes. Assume that there are two utili-

ties called: getint and printint within a service of the

node in which the init process and an array of processes

prime reside. Getint is used to get an integer called

limit such that prime numbers equal to or less than the

square of limit are printed out by the utility printint.

The size of the array of processes prime determine the

83
number of prime numbers that it can generate. It can

generate prime numbers less than m, where m is equal to

the square of the (prime size+l)th prime number.

message

number= int

signal= int

node prime no gen

service input-output

common dummy: int

utility getint (var x: int)

begin
write (Please input the limit

readin W

writeln()

end getint

utility printint (x: int)

begin
write (The prime number is:")

writeln (x)

end printint

begin

end input output

begin

process init

var
object: number

ack: signal

n.limit: int

begin
input output.printint (2)

n:= 3

input_output.getint (limit)
loop n<= limit->

object:= n
mPSSOut prime no gen.prime [0] (object)

messin prime_no_gen.prime[0] (ack);

{it makes sure that the process

prime[0] has received the object,

then it sends the next object}

n:= n+ 2;

lend;

end init;

process prime[19]; {prime_size= 19 defines the number
of the

member of the process array as well as the

number of prime numbers that it can generate}

var

object: number;

ack: signal;

p, mp, n: int; {p is a prime; mp is a multiple of

pj

procedure receive_object(var n: int);

var

object: number;

ack: signal;

begin

messin (object);

n:= object;

messout object' sender(ack);

end receive_object;

begin {main program of prime}

receive_object (n);

p:= n;

mp:= n;

input_output.printint (p);
loop me 19- 1-

receive_object (n);

loop n mp- mp:= mp+ p;

lend;

if n== mp- skip;

ri n mp-

object:= n;

messout

prime no qen.prime[me+1](object);

{send to the next prime number}

messin prime no gen.prime[me+1] (ack);

fi;

me ==19-1-

receive_object (mp);

if mp PP- input_output.printint (mp);

[] mp= pp- Skip;
T~ 1 a

1 pnH•

e nd nrimp•

end prime no gen;

Example 14: This example is to emulate the data flow

This program contains two nodes called Main and Subsidi¬

ary. In node Main, there are a service called

input_output and two processes called sumsqroot and

fourthroot. In the service input_output, there are two

utilities called input stream and output stream. In

node Subsidiary, there are two processes called

sqroot[0] and sqroot[l]. The processes sqroot[0] and [1]

both contain a procedure called sqroot proc.

For the process sumsqroot, it uses the utility

input_stream to obtain two input numbers. These two

input numbers should be non-negative integers. If one or

both of them is negative, then this process would be

terminated. Before it is terminated, two messages wil!

be sent to the two processes sqroot[0] and sqroot[1] tc

notify them of its termination. Otherwise, it requests

the process sqroot[0] and sqroot[l] of the node Subsidi¬

ary to evaluate the square root of the two input numbers

and return the results to the process sumsqroot through

messages. Then the two square roots are added up and the

final result is output through the utility

environment

86
output stream.

For the process fourthroot, it uses the facility

input stream to obtain an input number. Initially, it

checks to see if the process should be terminated or

not. If it should be terminated, two messages are sent

to the two processes sqroot to notify them of its termi-

nation. If the input number is non-negative, then it

requests the process sgroot[O] to evaluate and return

the square root of the input number. Then it requests

the process sqroot[l] with the same message to evaluate

and return the square root of the square root of the

input number. The fourth root is output through the

utility output stream.

In the node Subsidiary, a range is used to define a fam-

ily of processes called sqroot. This family has two

processes called sgroot[0] and sqroot[l]. They are both

ready for providing services to the process sumsqroot

and fourthroot. Only one of the processes sumsqroot and

fourthroot is served at any time. When a message is

received, it should check whether the termination condi-

tion occurs or not. The process sqroot should be ter-

minated if both process sumsqroot and fourthroot are

terminated, otherwise the procedure sgroot_proc is

called to evaluate the square root of the component x or

the component sqx (square root of x) according to

whether the component x is equal to maxint or not. Max-

87

int is a predefined constant equal to the largest

integer available on the corresponding physical proces-

sor.

After the process sumsqroot and fourthroot have ter-

minated, then the node Main is terminated. After the twc

processes sqroot [0] and sqroot [1] have terminated, ther

the node Subsidiary is terminated. If both the node Mair

and Subsidiary have terminated, then the program is ter-

minated.

message

mess slot= record

x: int

sqx: real

end

node Main

service input-output

common

sharedobjectl: int

shared object2: char

var

continue: bool

utility input_stream (var xl,x2: int)

)egin

read (xl)
if x2== maxint-

read (x2)

fi

continue:= true

end input stream

begin

continue:= false

end input-output

begin

process sumsqroot;

var ml,m2: mess_slot;

y: real;~~

begin

m2.x:= maxint;

input output.input stream

(ml.xrm2.x);

loop (ml.x= 0 and m2.x =0)-

messout Subsidiary.sqroot[0]

(ml);

messout Subsidiary.sqroot[1]

(m2);

messin Subsidiary.sqroot[0]

(ml)

Subsidiary.sqroot[1]

(m2);

y:= ml.sqx+ m2.sqx;

input output.output stream

(y);

m2.x:= maxint;

input output.input stream

(m 1. x, m 2. x);

lend;

if ml.x 0-

messout Subs idiary.sqroot[0]

(ml);

messout Subsidiary.sqroot[1]

(ml);

0-

Subsidiary.sqroot[0]

(m2);

Subsidiary.sqroot[1]

(m2);

ml.x=

messout

messout

fi;

end sumsqroot;

process fourthroot;

var ml: mess_slot;

beg i n

input output.input stream

(ml.x,0);

ml.x= 0-

messout Subsidiary.sqroot[0]

(ml);

loop

messin

ml.x:=

messout

Subsidiary.sqroot[0]

(ml);

maxint;

Subsidiary.sqroot[1]

(ml);

messin Subsidiary.sqroot[1]

(ml); r

input output.output stream

(ml.sqx);

input output.input stream

(ml.x,0);

lend;

messout Subsidiary.sqroot[0]

(ml);

Subsidiary.sqroot[1]

(ml);

messout

end fourthroot;

end Main;

node Subsidiary;

beg i n

process sqroot [2];

var ml,m2: mess_slot;

flagl,flag2: bool;

procedure sqroot_proc (var ml: mess_slot);

beg in

if ml.x== maxint-

ml.sqx:= ml.sqx{} 0.5;

ml.x maxint-

ml.sqx:= ml.x{} 0.5;

fi;

end sqroot_proc;

'oeqi n

flagl:= true;

flag2:= true;

messin Main.sumsqroot

(ml)

Main.four throot

(m2);

loop (flagl or flag2)-

if ml'succ-

if ml.x= 0-

sqroot proc (ml);

messout Main.sumsqroot

(ml);

ml.x 0-

flagl:= false;

fi;

not (ml'succ)-

if m2.x= 0-

90
sgroot proc (n2)

nessout "Main. fourthroot"

(m2)
[] m2.x <0->

flag2:= false;

fi;

fi;
messin Main.sumsqroot

(ml)

Main. fourthroot

(m2)
lend

end sqroot

end Subsidiary

91
CHAPTER 5

The Implementation of GDPL

5.1 Introduction

GDPL has been implemented on the Zilog S8000, which is a

microcomputer system using an enhanced version of the

UNIX operating system. The 'C' programming language is

used to develop the compiling system of GDPL. The code

generated by this compiling system is supported by a

run-time support system, which is also written in 'C'.

The run-time support system should be loaded and exe-

cuted on the Zilog S8000 as well. The compiling system

is a one-pass recursive descent compiler. It consists of

three major components: a parser, a code generator and a

linker. The function of the parser is to generate

tokens and check the validity of the syntax and seman-

tics of the GDPL source program. The code generator gen-

erates 'C' code for the run-time support system in two

stages. The first stage is before the linkage time. The

codings of all sequential statements are generated.

Since the configuration' of the distributed computing

system is not known before linkage time, only part of

the codings of concurrent statements are generated. Then

the second stage is after the linkage time. The

92
remaining couings oj ctle concurrent statements and the

control programs of the run-time support system are

formed.

The run-time support system consists of six cypes oL

control programs: manager control, main control, node

control, service control, utility control and process

control. Each control program is a complete 'C' program

with certain responsibility. Since the service is

optional in a GDPL program, a run-tine support system

may not contain the service and utility control. How-

ever, manager control, main control, node control and

process control must reside in the run-time support

system. The compiling system and the run-time support

system are described. in more detail in the following

sections.

5.2 Run-time Support System

5.2.1 Manager Control

The run-time support system can be viewed as a hierarch-

ical system. There is only one manager control in first

level of a run-time support system. The main purpose of

manager control is to control the execution of the whole

system and work as a common communication station among

the main controls. When a. mnain control wants to send a

message to another main control, it should store the-

content of the message into a common message buffer and

93
then send the address of the destination main control to

the manager control. Then the manager control informs

the destination main control that a message have been

sent. The destination main control will eventually

remove the message from the buffer.

A manager control contains the information of the main

controls, some facility routines, an initialization rou-

tine, a manager/main routine and a manager control body.

The information in the manager control include the ini-

tial number of main controls, their identifications, the

status and the current number of active main controls.

The status of each main control :shows whether it is ter-

minated or not. If all the main controls are terminated,

the manager control should be terminated and the run-

time system is completed.

The facilities routines are used to put and get values

trom manager/main channel and argument list. Channels

use the pipe in UNIX which are the communication paths

among a number of UNIX's processes. The argument list of

the manager control passes the manger/main channel

number and identification number of manager control to

each main concrol

Initially the execution of the run-time support system

is started by executing the manager control. Then the

manager control executes the initialization routine to

create the main controls (use fork in UNIX) and replaces

94
the newly created UNIX's processes (use execl in UNIX)

with the load modules of main controls. Then the main

controls are activated. The manager/main routine is

activated when a UNTX signal (use kill in UNIX) is

passed from a main control. The signals used in any two

types of control programs must be different, otherwise

the proper control would be lost. The manager/main rou-

tine is also used to receive and send the information of

the message but not the content of the message. The

information include the source address, destination

address and the identification number of the messge.

The body of the manager control contains the initializa-

tion routine and an infinite loop of control statements.

After the initialization routine is executed, it enters

an infinite loop until all main controls are completed

or aborted if some abnormal events occurs in the run-

time support system.

5.2.2 Main Control

Main control is at the second level of the run-time sup-

port system. There may be one or more main control in

the run-time support system with each main control

residing in one physical processor. The major function

of each main control is to handle the execution switch-

ing, message passing and' storage allocation within a

physical processor. However, all main controls are

mapped onto the Zilog S8000 and executed as if a

95
distributed computinq confiquration is available.

Each main control contains the information of the main

control, some facility routines, a priority list of pro-

cess controls, manager control identification, main con-

trol identification, an initialization routine, process

control routines, a manager/main routine, a main/node

routine and a main control body. The information of main

controls contain the initial number of node controls,

their identifications, the status and the current number

of active node controls. The status of each node control

indicates whether it is terminated or not. If all node

controls of the main control are terminated, the main

control should be terminated.

Main control controls the execution of its node con-

trols. It also indirectly controls the execution of

service controls, utility controls and process controls

through node controls. A priority list of process con-

trols is maintained to achieve this purpose. Actually

the service controls, utility controls and process con-

trols are 1-1 mapping to the service, utilities and

processes of the GDPL source program.

In general, the process with highest priority in the

priority list is selected. If there are more than one

processes with the same highest priority, the round-

robin scheduling scheme is applied. However, there must

be a chance for waking up those sleeping processes. The

96
sleeping processes include those waiting for messages

and waiting for a true guard within the utility. There

may be a number of strategies to wake up the sleeping

processes. In order to simplify the implementation, a

simple wake up scheme is selected. At each alternate

selection of the next active process control, the sleep-

ing processes pool is examined. If there is a sleeping

process, then the first sleeping process in the pool is

waken up. The selection of the next sleeping process is

also in round-robin, but does not depend on the priori-

ties of the sleeping processes. When all processes come

to sleep, selection of the next active process control

is taken from the sleeping process pool.

The initialization routine creates the node controls and

replaces the newly created UNIX's processes with the

load modules of the node controls. The main node chan-

nel number and main control identification are passed to

node control. Then node controls become active. However,

the node controls are active until all initialization of

service, utilities and processes control programs are

completed. Node controls will then report to the main

control and goes to sleep (the sleep system call in

UNIX). The node control will be active again only when

one of its controls is activated. The manager/main rou-

tine in the main control is different from the one in

the manager control. It is activated when a UNIX signal

is sent from the manager control. The functions of the

97
manager/main routine include receiving message informa-

tion, receiving acknowledgement of the destination main

control, and receiving the termination command from the

manager. The acknowledgement of the destination main

control means that the message is successfully received.

If the termination command is received from the manager

control, the main control should terminate itself.

The main/node routine is activated when a UNIX signal is

sent from the node control. The main/node routine should

handle receiving acknowledgement of message, receiving

the request of sending a message, inserting the current

active process into the priority list again according to

the completion of the initialization of node controls,

completion of the current active process and completion

of the node control.

The body of the main control consists of the initializa-

tion routine and an infinite loop of control statements.

After the initialization routine is completed, the

infinite loop is to control the execution of all node

controls until all node controls are completed or

aborted if some abnormal events occur.

5.2.3 Node Control

Node control is at the tnlra ievei of the ru-time sup-

port system. Every node control must be under the con-

trol of a main control. Node control is a collection of

98
control statements corresponding to a node of the GDPL

source program. Each node control is used to control the

execution of service controls, utility controls and pro-

cess controls and reports to the main control. It also

handles message passing and utility call scheduling.

Each node control contains the information of node con-

trol, some facilities routines, a process control, a

status table, a service/process list, a main/node rou-

tine, a node/service routine, a node/process routine, an

initialization routine and a node control body. The

information of node control include number of service

controls, number of service strings, initial number

of processes, current number of active process, service

index list, process index list, main control identifica-

tion number, node control identification, service con-

trol identification and process control identification.

The number of service controls may not be equal to the

number of service strings because an array of services

is allowed. The service and process index list are used

to record the number of members in the family of ser-

vices and processes respectively.

The process status table records the status of all pro-

cess controls of the node control. The status may be

sleeping, waiting for execution and being terminated.

When process control returns to the node control, it is

then time to update the status of the process control

99
and report to the main control. The service/process list

consists of the execution paths within a service control

of all process controls, if any. The execution path

within a service is the calling sequence of utilities

within the service by the process. After a utility is

called by a process, it may call itself or another util-

ity of the service. Hence, it is necessary to record the

calling sequence of utilities such that the control will

be properly returned to the calling one after the called

utility is completed.

The main/node routine in node control is not the same as

the one in main control. It is activated when a UNIX

signal is sent from the main control. The main/node han-

dles the receiving of the message information, reac-

tivating the process control and terminating itself.

When the node control receives the message information

from the main control, it should pass this information

to the destination process. Before reactivating the pro-

cess control, the status of the process control should

be checked. If the process control is already ter-

minated, then the node control should be terminated

abnormally. Before termination of the node control, it

should terminate all nonterminated process controls and

service controls. If the process control is sleeping for

a true guard of the utility, the service/process list

should be examined to find out the utility control in

which the process control is sleeping. Then the service

100
control where the utility control is under its control

is activated.

In that case, the utility call will be eventually

activated but not the process control. The reason is

that the control of process control is passed to that

utility now. If the calling sequence of utility control

is completed, the control will be returned to the pro-

cess control again. The third type of status of the pro-

cess control is waiting for execution. The node control

will activate the process control. If the termination

command is received from the main control, the node con-

trol will terminate all service controls and process

controls and itself.

The node/service routine is invoked when the UNIX's sig-

nals are sent from the service control. It handles the

exceptions of utility control, utility control calling

the temporary completion of utility control and comple-

tion of utility control. The exceptions include computa-

tion errors, invalid utility call, utility parameters

passing problems and invalid UNIX signals passing. When

exception occurs, the node control will terminate

itself. When a utility control call signal is accepted,

it means that the current active utility control issues

a utility call. The node control should update the

service/process list by adding the new utility control.

Then it activates the service control in which the new

101
utility control resides.

When the utility control is temporarily completed, the

utility control should be sleeping for a true guard.

Then the process control goes to the sleeping state

again. If the utility control is completed, then the

node control should check whether the calling sequence

of utility control is completed. If the calling sequence

has not been completed, the node control will activate

the next utility control which has called this completed

utility control. Otherwise, the process control will go

out of the sleeping state.

The node/process routine is invoked when the UNiX'S Sig-

nal is sent from the process control. It will handle

message passing, waiting for messages, utility control

calling, temporary completion of process control and

completion of process control. The node control can send

and receive message information to/from process control

and main control respectively. If the process control

cannot receive all required messages, it should go to

the sleeping state (waiting for messages). The status of

the process control will be updated. When the process

control issues a utility control call, node control

should activate the utility control through its service

control. If the temporary completion signal is

received, the time slice for the process control must be

„czArl iin_ The status of the process control should be

102
waiting for execution. When the process control is com-

pleted, the node control should check whether all pro-

cess controls have completed. If all process controls

have been completed, the node control should be ter-

minated.

The initialization routine of the node control will

create a number of UNIX's processes and replace them by

the load modules of service controls and process con-

trols. The node control should initialize all service

controls and process controls, and then is forced to

sleep and report to the main control. The node control

is activated when the process or utility control is

activated.

The node control body contains the initialization rou-

tine and an infinite loop of control statements. After

the initialization is completed, it enters an infinite

loop to control the execution of service controls and

process controls until all processes are completed or

abnormal events occur. The node control should report

the status of the process controls to the main control

as well as their priority values because the process

control may change their priority levels through the

5.2.4 Service Control

The service control is under the control of the node

keyword

103
control program and is at the fourth level of the run-

time support system. The service control includes the

information of service control, a list of shared vari-

ables, a node/service routine, a service/utility rou-

tine, an initialization routine and a service control

body. The information contains the number of utility

controls and service control index, the service control

identification number and node control identification

number. The service control index shows the membership

within the family of service controls. The list of

shared variables will be passed to/from utility control.

The node/service routine is invoked when a UNIX's signal

is sent from the node control. It can handle the termi-

nation of itself, initialization of utility control,

activation of utility control and completion of utilitJ

control. When the completion of utility control is

received, it acknowledges the utility control which ha:

called the completed utility control. The

service/utility routine is invoked when a UNIX's signal

is sent from the utility control. Its functions includE

handling utility control call and temporary completion

of utility control. Before service control terminate!

itself, it should terminate all nonterminated utilitN

controls.

The initialization routine of the service control

obtains all arguments passed by the node control and

104
executes the initialization statement list (service

body) of the service control. After the statement list

is completed, the service control is forced to sleep and

reports to the node control. It is activated when a

utility control is activated. The service control body

contains the initialization routine and an infinite loop

to control the execution of utility controls. Since ser-

vice control is passive in nature, it is activated

always by the invocation of its utility control by the

process control or utility control.The service control

will be terminated when the termination command is sent

from the node control or failure occurs.

5.2.5 Utility Control

A utility control is used to encapsulate the codings

generated for a utility. In order to be under the con-

trol of the service control, some facility routines and

control routines are also included. Utility control is

at the lowest level of the run-time support system. It

contains the number of service strings, a list of shared

variables of its service control, a service/utility and

a service/process channel, a utility request routine,

service/utility routine, an initialization routine, a

utility normal termination routine, a utility abnormal

termination routine, a utility temporary termination

routine and a utility control body.

Every time when the utility control is activates,

105
temporarily terminated or terminated, the list of shared

variables must be passed from/to service control. The

service control can maintain an up-to-date list of

shared variables. The value of the argument list of the

calling process or utility control can be passed through

the service/process channel. The utility request routine

is used to prepare the utility control call such that

the argument list of the utility control and the list of

shared variables are passed.

The service/utility routine is different from the one in

service control. It can receive the termination command

from the service control and completion of utility con-

trol. If the utility control receives the termination

command, it simply terminates itself. When the comple-

tion signal of utility control is received, it means

that the utility control call is completed. The values

of arguments which are passed by reference are returned

and stored. The list of shared variables is also

returned. The utility normal termination routine is

used to terminate the utility control in normal manner.

However, the utility abnormal termination routine is

used to terminate the utility in abnormal manner. When

the utility control cannot find a true guard in the wait

statement, the utility temporary termination routine is

used to let the utility control enter the sleeping

state.

106
The utility control body contains the initializatior

routine and the statement list of the utility control.

The statement list is actually the 'C' version of the

corresponding statement list of the utility. It mad

include' if', 'loop', 'wait'. 'read', 'write'exit

statement and utility control call. After the initiali-

zation routine is completed, the utility control will be

forced to sleep and report to the service control. The

utility control will be activated again when it is

called by a process or utility control. Then the state-

ment list of the utility control will be executed until

one of the following events occur: completion of the

statement list, issue of another utility call and wait-

ing for true guard with a wait statements.

5.2.6 Process Control

The process control and service control are at the same

level of the run-time support system and under the con-

trol of the node control program. The process control is

used to collect the coding generated for a process. The

coding include 'if', 'loop', 'read', 'write', 'exit',

'skip', 'messin', 'messout' and assignment statements,

functions, procedures, function calls, procedure calls

and utility calls. The information in the process con-

trol consists of the time slice allowed for each process

control, number of message constructors, number of main

controls, number of node controls, number of service

107
strings, number of utility strings of each service con-

trol, number of process strings of each node control and

number of node strings of each main control.

The process control contains a list of service index, a

list of process index, a list of process starting index,

a utility string table, a process string table, a node

string table, a 'C' version of the message definition

list (if any), a process string initialization routine,

a message address routine, a messout routine, a messin

routine, a 'or' messin routine, a 'and' messin routine,

a utility request routine, an alarm routine, a

node/process routine, a process normal termination rou-

tine, a process abnormal termination routine, a process

temporary termination routine, a process waiting for

message routine, an initialization routine and a process

control body.

The list of service or process index snow the number of

member in the family of service and process. Each pro-

cess control may be assigned an index (for identifica-

tion) by its node control. The list of index of all pro-

cess controls of the same node control will be stored in

the list of process starting index. The 'C' version of

message definition list contains the type definition and

data structure of each message constructor. Hence, the

message variables declared in the process control will

use the type definition and data structure of one of the

108
message constructors defined in the message definition

list. The data structure of each message constructor

consists of the source address of the message, the suc-

cess flag, the content of the message and a pointer to

the next message. Therefore, the message definition list

of the process control is used to store up all messages

with different types of message constructors.

The message address routine can find out the internal

representation of the message address. The message

address of a GDPL source program may be an 'address con-

stant', 'address variable' or 'sender' of message vari-

able. It is necessary to transform them to a standard

representation of message address in the run-time sup-

port system. The messout routine sends the information

of the message to the node control and the message to a

message buffer. After the acknowledgement is received

from the node control, the control of the messout rou-

tine will be passed to the next statement after the mes-

sout statement in the process control.

The messin routine, 'or' messin routine and 'and' messir

routine are used to handle all types of messin state-

ments. The messin routine checks whether there is and

message in the message constructor corresponding to the

message variable. If a message has arrived, the first

arrived message is removed from the message constructor

and stored in the message variable of the messin state-

109
ment otherwise, the process control will be forced to

the waiting for message state. The 'or' messin and

'and' messin routines handle the 'or' and 'and' messin

statements. In the messin routine, the source address of

the message is neglected, however the source address of

the message must be matched with the one used in the

messin statement for 'or' and 'and' messin routines. The

'or' messin routine checks whether one of the required

messages has arrived. If it is true, the routine removes

the message from the message constructor and stores it

in the message variable otherwise, the process control

is put in the waiting for message state. The 'and' mes-

sin routine must check whether all the required messages

have arrived. If it is true, then the routine removes

all the required messages from their message construc-

tors and stores them in the message variables. For all

of the three types of messin routines, the source

address and success flag of the message variable must be

filled with the source address of the arrived message

and true values respectively.

The utility request routine handles the utility call

issued by the process control. It will put the values of

the argument list of the utility call into the

service/process channel and check the validity of the

utility call. The utility request routine will then send

the utility call signal to the node control. After the

utility call is completed, the value of those arguments

110
which are passed by reference are stored and the con-

trol is passed to the process control again. The alarm

routine is invoked when the time slice of the process

control have been used up. It will temporarily ter-

minate the process control and report to the node con-

trol.

The node/process routine is invoked when a UNIX's signal

is sent from the node control. The routine can handle

the receiving of messages, termination command, comple-

tion of utility and activation of the execution of pro-

cess control. If the message information have been sent

from the node control, the node/process routine should

remove the message from the message buffer and store it

into the specific message constructor. The source

address of the message must also be recorded in the

message constructor. When the utility call is completed,

the control will be passed to the utility request rou-

tine. Eventually, the control will be passed to the pro-

cess control again.

The process normal termination, process abnormal terms

nation, process temporary termination, process waiting

for message routines are used to handle normal termina-

tion, abnormal termination, temporary termination and

waiting for message state. For all cases, except normal

termination, the process control will be forced to sleep

and report to the node controls. When the process con-

111
trol is normally terminated, it means that its

corresponding UNIX's process will be killed. The node

control will know that the process control is normally

completed. The initialization routine is responsible

for allocation of memory for message variables, setting

up of. alarm signal and node control signal (use UNIX

signal) and establishment of the process tahle_

The process control body consists of the initialization

routine and the statement list of the process control.

The statement list includes the 'C' codes generated by

the compiling system for the process. When the initiali-

zation routine is completed, the process control will be

forced to sleep and report to the node control. The pro-

cess control will be activated when it is dispatched by

the main control. The statement list of the process

control will be executed until one of the following

events occur: completion of the statement list, issue of

a utility call, use of the time slice and waiting for

message. If the statement list is completed, the process

control should terminate itself. When a utility call is

issued, the utility request routine is invoked. If the

time slice of the process control is used up, an alarm

signal may automatically be sent to the process control.

The alarm routine will be invoked, the process control

will be temporarily terminated. If the message(s)

required have not arrived yet, the process control will

be put into the waiting for message state for any type

112

of the 'messin' statements. In order to have a clear and

secure run-time support system, the time-up signal is

neglected (use UNIX alarm(0)) while handling utility

call, 'messin' message and 'messout' statement.

5.3 The Compiling System

5.3.1 Parser

The first component of the compiling system is a recur-

sive decent parser which is developed according to the

specification of GDPL (see Appendix A). It is composed

of a number of facility routines and a collection of

recursive routines. The facility routines are described

as follows:

(a) Integer to character routine:

This routine converts an integer to a string of charac-

ters.

(b) Error handling routine:

This routine records the type of errors and the error

line numbers and prints out the error messages when the

compilation is completed.

(c) Lexical analyzer:

Lexical analyzer generates the tokens of the source pro-

gram for the parser. A token consists of a type, a

number and a string. The token type includes keywords,

113
operators, identifiers and constants. The token number

is required for the operator token type to distinguish

the different kinds of operator. The token string is

only useful in identifier and constant token type.

(d) Constant checkinq routine:

This routine checks whether the identifier is defined in

a constant declaration or not. If the idetifier is a

constant. its strina and its tve are returned.

(e) Variable checking routine:

This routine checks whether the variable is declared or

not. If it has been declared, the type of the variable

will be returned. Otherwise, an error has occurred. If

the variable is a message variable, the identification

of the message constructor is also returned.

(f) The definition routine:

This routine finds the type definition of the identifier

and returns the index of the type definition table when

it is found. Each entry of the type definition table

contains the detailed information of the type definition

of the identifier.

(g) Message address analyzing routine:

This routine analyzes the character string ana cnecKs

whether it is a valid message address string. The mes-

114
sage address string should contain an identifier fol-

lowed by a'.-' and another identifier. The first iden-

tifier should be a valid node string and the second

identifier must be one of the process strings of the

node.

(h) Storage allocation routine:

In the compiling system, a number of linked list of spe-

cial purpose data types are required. The storage for a

linked list will be requested during parsing. Therefore,

the storage allocation scheme for each element of the

linked list is dynamic. The storage allocation routine

maintains a pool of elements construct of each special

purpose data type. If the element is requested, an

element's construct is removed from its pool to fulfil

the request. When the pool is empty, the UNIX's system

call (calloc) is used to allocate a new element's con-

struct. When a linked list of a data type is released,

all the element's construct's are returned to the pool

of the data type and the field of each element's con-

struct are cleaned up. The special purpose data types

are built for fulfilling the different requirements of

the various parts of the parser. They include 'string',

'type', 'proc/fn', and 'utility' data types.

The 'string' data type contains a character string

pointer. It is useful for lists of node strings, service

strings, utility strings, subscript expression, process

115
message, etc. When codes are generated, the 'string'

data type is the unique data structure to maintain the

character strings of codes. The next kind of data type

is 'point'. The 'point' data type contains a character

string pointer, two integer fields and a character

field. The 'pointer' data type is usually used to

record the token information, the type of a variable and

some conditions. The types of a variable include

'integer', 'character', 'boolean', 'float', 'address',

'array' and 'record'. The message definition list, mes-

sage variables list, shared variables list, local vari-

ables list, type declaration, parameter list and iden-

tifier list have the 'point' data type.

The 'string head' data type is designed for construction

of a list of 'string' list. Typical examples are vari-

able list and argument list. As the name implies, the

'node information' data type is used to keep the infor-

mation of a node. The information includes the number of

string, process strings, service and processes, service

index list, process index list, process pointer list,

service file name list and process file name list. The

'error' data type is simply to record the error codes

and the line number of the GDPL source program where

error occurs. There are nearly one hundred types of com-

pilation error. The constant tables of the parser belong

to the 'constant' data type. The symbol and type defini-

tion tables of service, utility, process and proc/fn are

116
built of 'symbol' data type. The 'type' data type is

used to establish the type tables of the parser. The

'proc/fn' data type records the information of pro-

cedures or functions. The information includes the type

of routine, data type of function if necessary, routine

name and list of parameter list. The type of routine is

either procedure or function.

The collection of recursive routines are actually one-

to-one mapping to the nonterminals of the extended BNF

of GDPL (see Appendix B). The recursive routines are

responsible for checking the syntax and semantics of the

source program. The syntax of the source program is sim-

ply checked by parsing the tokens generated by the lexi-

cal analyzer. If the token of the source program can

successfully come across the recursive routines and go

to the end of the parser, the syntax of the source pro-

gram is error free. Otherwise error messages will be

printed and the compilation will be terminated when

parsing can not proceed any more. The checking of the

source program is not an easy task. A number of tables,

lists, data structures and flags are used to achieve

this purpose. The major checkings for semantics are

listed below:

(a) Only a message type definition may contain the

'address' data type.

(b) The starting identifier must match the ending

17
identifier of the following program constructs: node

service, utility, process, procedure and function.

(c) No array of arrays is allowed.

(d) There should be at least one node within the source

program.

(e) There should be at least one process within each

node

(f) There should be at least one utility within each

service.

(g) Within a service, there should be a snared variaole

declaration.

(h) Only the process may contain procedures or runc-

tions.

(i) No 'wait', 'messin', 'messout' statement and utility

call are allowed in a service.

(j) No 'messin' and 'messout' statement are ailowea in a

utility.

(k) No 'wait' statement is allowed in the process, Pro-

cedure and function.

(1) The local variables of a utility must not be

declared before in the shared variables of the service

and the parameter list of itself.

118
(m) The local variables of proc/fn must not be declared

before in the process and the parameter list of itself.

(n) For the utility and procedure/function, the data

types of the parameter list should be declared in the

service and process respectively.

(o) The initial priority must be within the range 0 to

127.

(p) The type of L.H.S. and R. H. S of an assignment state-

ment must be compatible.

(q) The attribute 'sender' of message variables cannot

be invoked in an arithmetic computation.

(r) The variable of the 'messin' or 'messout' statement

should be declared with a data type of the message

definition list.

5.3.2 Code Generation

The objective of the code generation is to generate the

ICI version of the GDPL source program (i .e. the .run-

time support system). The sample outputs of GDPL program

constructs will be shown in Appendix C. The code genera-

tion is spread among the collection of recursive rou-

tines. Since the configuration of the distributed com-

puting environment will be input at the linkage time,

the codes depending on the configuration will be gen-

erated after the linker is completed. The code

119
generation will first transform each source statement

into 'C' version and then organize them into the manager

control, the main control, the node control, the service

control, the utility control and the process control

according to the specification of the source program.

The run-time support system can be divided into two

parts for the sake of code generation. They are the

'basis' part and the 'variation' part. The 'basis' part

forms a framework of the run-time support system such

that the 'variation' part can be added to it to con-

struct the whole system. The 'basis' part of the run-

time support system is fixed for any GDPL source pro-

gram. However, the 'variation' part will vary depending

on both the software (GDPL source program) and the

hardware (configuration of the distributed computing

environment).

For 'exit', 'skip', 'if', 'loop', 'read', 'readln',

'write', 'writeln' and assignment list, the scheme for

code generation is simple because there are correspond-

ing statements in the 'C' language. Only a direct

translation from GDPL to 'C' is required. Because there

is no procedure in 'C', both procedure and function of

GDPL are translated into functions in the 'C' language.

The difficulties in implementing the procedure/function

are the argument passing problems and the distinctions

of the parameters and local variables within the pro-

cedure and function.

120
When translating the utility call, the 'wait' statement,

the 'messin' statement and the 'messout' statement, some

simulation schemes are required to generate their codes.

It is because they have no counterparts in the 'C'

language. The implementation of the utility call

includes the utility argument list passing and the

actual invocation of the utility. The argument passing

for procedure/function and utility call are completely

different. The argument passing mechanism for

procedure/function is implemented in the same program

construct (process). However, the arguments of utility

will be passed from one program construct (e.g. process)

to another type of program construct (utility).

The schemes for translating the 'wait' and 'loop' state-

ment are very similar. They should establish the loop

structure and the exit conditions. The scheme for

translating the 'wait' statement is also required to

handle the finding of true guards. When no guards of the

'wait' statement is true, the process should be forced

to the sleeping state. Finally, it must handle the

checking of guards if the sleeping process is waken up

again. The implementation of 'messin' and 'messout'

statements are the most difficult job. Initially, they

should find out the internal representation of the mes-

sage address and check whether the address is valid or

not. The second step is to find out the number of the

message constructor. The number of the message

121
constructor determines the operations to be used for

manipulation of the messages. The third step is to send

or receive the message to/from a message buffer. The

fourth step is to check for the arrival of messages. The

fifth step handles the sleeping state of processes. When

the expected messages have not arrived, the process

should be forced to sleep. The final step is to check

for the arrival of messages again when the sleeping pro-

cess is waken up. If all the messages have arrived, the

messages should be stored in the associated message

variables and the attributes of the message variables

should also be set.

5.3.3 Linker

The third component of trie compiling system is the

1inkir. The functions of the linker are shown below.

(a) Initially, the linker will ask for the programmer to

input a configuration of the physical processors. The

information of the configuration includes the number of

physical processors and the connection of the proces-

sors. The information will be validated.

(b) The linker will select the processors trom the input

configuration to construct the distributed computing

environment where the run-time support system will exe-

cute. Any two selected processors must at least find a

oath to the other and the number of the selected proces-

122
sors is optional.

(c) The nodes of the GDPL source program are mapped to

the physical processors. Then the number of main con-

trols is computed. The linker should also determine the

physical processor that the manager control will reside.

After the linker has completed the above three func-

tions, the remaining codes are generated for the state-

ments and program construct. The final version of the

whole run-time support system is then turned out. Within

the run-time support system, a number of exception

handlers are embedded. The exception handlers can detect

the timing problem of the process control, invalid util-

ity call, invalid message address, activation of a ter-

minated process, sending message to a terminated pro-

cess, invalid priority value, invalid messages, abnormal

termination manager control, main control, node control,

service control, utility control and process control.

123
CHAPTER 6

Conclusion

The design and implementation of GDPL have been suc-

cessfully completed. Several sample programs of GDPL

have been written in order to test the run-time support

system and the compiling system. The performance of the

two systems are fairly satisfactory. Most of the objec-

tives of the design and implementation of the distri-

buted programming language have been achieved. They

are:

(a) The fourteen sample programs nave been written in

other parallel programming languages such as DPL-82,

Concurrent Pascal, Ada, etc. It is not difficult to

translate the sample programs into the GDPL versions. It

shows that the service concept, the message passing

mechanism, the array of services and the array of

processes are especially powerful tools to express the

concurrency in parallel application systems.

(b) The sample programs are easy to reaa, moairy dna

verify. They have also a.clear, secure and structured

program control structure. Although many design pur-

poses and philosophies are integrated, no confusion on

124
the syntax and semantics of GDPL occurs. This is

because the access rights and the order of operations on

the data objects are clearly defined. There are no spe-

cial problems for establishing the communication paths

and synchronization primitives within the sample pro-

grams. This illustrates that GDPL has clear, simple and

structured program control structure, access control of

data objects, execution order and process

creation/termination time, which are important factors

when developing parallel programminq svstems

(c) During the design and implementation of the

language, a lot of valuable experience in parallel pro-

gramming language design have been gained, which include

solutions for the major issues, the design and implemen-

tation considerations and the development of the appli-

cation systems, run-time support system, and the compil-

ing system of a distributed programming language.

The insufficiencies of the present implementation are

also presented below.

(a) The run-time support system can only execute in a

single processor. Each node is a virtual processor. In a

distributed computing environment, the virtual proces-

sors should be mapped to the physical processors. How-

ever, all the nodes are mapped into the same processor-

Zilog S8000 in this version of implementation, the dis-

tributed computing environment can only be simulated.

125
(b) No separate compilation of the GDPL source program

is provided. Seperate compilation is useful for develop-

ing large scale application systems. Only the modified

part should be recompiled. This could reduce a lot of

development time and also give the programmer more flex-

ibility in organizing his application systems. However,

the separate compilation of GDPL programs have been

taken into consideration in the design. Therefore, it is

not difficult to incorporate this feature in the near

future.

(c) The 'go to' statement, wake up statement, global

variables, block structure and dynamic process creation

are not used. Many advantages of these features cannot

be obtained. However, a good control structure, clear

and secure program and low cost implementation of the

language can be maintained although some compromises are

necessary.

Some future developments of GDPL are suggested as fol-

lows:

(a) The separate compilation of a GDPL program should be

implented.

(b) The run-time support system should be modified to

execute in an actual distributed computing configura-

tion. The design strategies have already been available.

ThP new version of the run-time support system is dif-

126
ferent from the current one in the physical communica-

tion links between the physical processors. In the

current implementation, the communication link between

virtual processors are handled by some temporary files.

(c) More flexible message address scheme should be

derived such that the message passing mechanism is

enhanced.

(d) A distributed kernel should be implemented in the

distributed computing environment in order to support

the process switching, storage management, physical com-

munication and exception handling in a more efficient

manner.

(e) Optimization of the code generated may improve a lot

the performance of the run-time support system.

(f) The current compiling system employs the one pass

compiling technique. If one or two passes are added,

the efficiency of the compiling system will be improved.

(g) In an actual application systems development, the

input of the distributed computing configuration is not

required. Each installation of the GDPL in a distributed

computing environment should be assumed to have such

configuration. The programmer should write programs to

execute in this distributed computing configuration.

127
Appendix A: The Specification of GDPL

The language specification of Generalized Distributed

Programming Language (GDPL) is presented.

The context-free syntax of the language is described

using an extended version of Backus-Naur Form (see

AppendixB).

(a) Lower case words enclosed in denotes syntactic

categories, for example

process

(b) Optional items are enclosed in sequence brackets,

for example

[identifier]

(c) Repeated items are enciosea in graces meaning

that the item may appear zero or more times,

for example

sequential-statement tsequential-statement.t

(d) Lower case words enclosed by the symbols" are

terminals, for example

'a' (represent the first lower case letter)

A.1 Basic Elements

A..l Character Set

(a) characters ::= letters|digits|

special_characters

::= Clower_case_letters|

Cupper_case_letters

(b) letters

lower_case_letters

Cupper_case__letters

(c) digits

(d) Cspecial_characters

A.1.2 Separator

(a) seoa ra tor
::= space|

statement_separator|

object_separator|

comment

(b) space

(c) statement separator

(d) object separator

(e) comment '{'{valid_characters}1}

Any two adjacent word symbols or names must be

separated by at least one separator. Comment can be

inserted into any place of the program.

(f) valid characters: = letter|digits

A.1.3 Operato

(a) operators: = arith_operators|

relational_operators

logical_operators|

other operators

(b) arith_operators

(c) relational_operators

(d) logical_operators 'not1| 'or'| 'and'

(e) other_operators

The arithmetic operators, relational operators and

logical operators have the same meaning as the classi¬

cal programming languages such as Pascal. though the

syntax is not exactly the same.

1[]1 is used in the guarded command list.

is used in the guarded command list as well.

1~' is used in the messin statement and has a mean¬

ing and.

1:1 is used in the messin statement and has a mean¬

ing or.

is the assignment operator.

1.' is used for qualification.

A.1.4 Constant

(a) constant char_constant|

int_constant|

bool_constant|

real_constant|

address_constant

(b) char__constant::=' 1 1 Cletter s 1 1 1

The letters include all valid characters except 1,1.

(c) int_constant signed_constant|

unsigned_constant

signed_constant ('+' I 1)unsigned_constant

unsigned_constant digit {digit}

(d) bool__constant 'false'| 1 true 1

(e) real_constant::= int_constant(nul1| 1 E 1)

[int_constant]

All scalar types have its own type constant. All com¬

position types have type constant depending on

those members with scalar types.

(f) address_constant::= 11address_characters''

(g) address_characters::= node_name'.'process_name

Both the node and process number must be specified.

(h) node_name
name

(i) process__name
name

A.1.5 Name entity

(a) alpha_num (letters|digits)

{letters|digits}

(b) name
letters {(null|'_')

alpha_num}

(c) null

A.1.6 Reserved word

(a) reserved_word::= key_word| attributes

(b) key_word 'node'| 1 service'|

'process1|'utility1|

'type'|'of'|'var'|'const'|'common'|

'begin'|'end'|

'if'|' fi'| 'else'| 'loop'| 'lend'| 'exit'|

'read'I'readln'|'write'|'writeln'|

'skip'|'wait'|'wend'I

'procedure'I'function'|

'messin'|'messout'|

'int'| 'char'! 'bool' I 'real'|

' address'|

'record'|'message'|'array'|

'true'|'false'|

'return'

(c) attributes
succ'|'sender'I'maxint'I

'minint'I'me'|'priority'

The attribute 'me' is used to indicate the index of

the current service (or process) of the family of ser¬

vices (or processes). If the family of services

(or processes) has only one member, then 'me1 will con¬

tain a value of 0.

A. 2 Declaration and Type

A.2.1 Type declaration

(a) type_definition_list::= 'type

type_definition

{';'type definition}';'

(Note: null denotes a null character, i.e.'')

(b) type_definition

(c) type

type_name'=' type

scalar_type|

structured type

(d) (scalar_type 'int1| 'cha r' I 'bool'|

'real' I 1 add ress'

The constant name may assume the data type 'address'

in the following way: constant_name= where

denotes a string of valid characters. The address

constants variables of this type can be used by mes-

sin or messout statement to specify the source or

destination addresses. Actually, the data type

'address' is an array of characters. The attributes

'me' and 'sender' are of the data type

'address 1.

(e) structured_type array_type|

record__type

(f) ar ray__type 'array'' ['subrange

{','subrange}']•

'of' type

(g) record_type ' record'

field_name':' type

field_name':' type}

' end'

(h) type_name name

(i) field_name name

(j) subrange digits{digits}|

int_constant_name

(k) int constant_name
name

A.2.2 Constant declaration

(a) constant_definition_list
' const'

constant_definition

constant_definition}

(b) constant_definition constant_name

(constant|''octal_constant)

The'' denote the octal byte address. If the'' is

used, then the constant_name is equivalent to a sym¬

bolic address with the value equal to the

octal_constant.

(c) constant_name) : name

A.2.3 Message declaration

(a) message_definition_list) 'message'

message definition

'message definition:

' end

(b) message_definition message_name)

message_type)

The message definition is similar to the type defini¬

tion, in which a number of message constructors is

defined. Then the message variable in each process

may assume these message constructors.

However, the message definition list is different

from the type definition list that only the data type

'address1 may be used within the message definition

list but not in the type definition list.

(c) message__name
name

(d) message__type
scalar__type I

array_type|

message__r eco rd_type

address_type

(e) message_record_type 'record 1

field_name':1

message__type

'field_name1:'

Cmessaqe type}

' end 1

The message record type is nearly equivalent to the

record type except that the member of the message

record can contain field with the data type 'address1

but the record type cannot.

(f) address_type
' address'

A.2.4 Variable declaration

(a) var iable_def inition__list::= 1 var'

variable_definition

{';'variable_definition}';'

(b) variable_definition variable name':'type|

message_variable_name':'

message name

(c) variable_name int_variable_name|

real variable_name|

char variable_name|

bool variable_name|

array_variable_name|

record variable name)

(d) int_variable_name = name)

(e) real_variable_name) name

(f) char_variable_name = name)

(g) bool_variable_name: name

(h) array_variable_name; name

(i) record_variable_name name

(j) message_variable_name : name

A.2.5 Common variable declaration

(a) Ccommon variable definition list::= 'common1

common_va riable_definition

{1;1common_variable_definition}1;'

(b) common_variable_definition::=

common_variable_name':'

type

(c) common_variable_name ::= variable_name

Common variables declared can only be used within

service and utility.

A.3 Statements

(a) statements
sequential_statements|

comm_sync_statements

(b) sequential_statements) assignment_statement|

if_statement|

loop_statement|

exit_statement|

io_statement|

skip_statement

Statements can be divided into sequential statements

and communicationsynchronization statements.

Statements used in utility and processes are

slightly different, therefore the syntax illustrated in

this section is only used to show the syntactic

structure of all the statement of the language. The

statements should be probably indexed when used in

the utility and process definition.

A.3.1 Sequential statements

A.3.1.1 Assignment statement

(a) assignment_statement
va riable expression

(b) expression arith_expression|

logical_expression|

char_expression

(c) arith_expression::= arith_expression'+' term|

arith_expression term

term

(d) term: term' factor

term'' factor

factor

(e) factor primary'' factor

primary

(f) primary '-1 primary|

element

(g) element 1 ('arith_expression 1)'|

constant|

variable

(h) int_variable int_variable_name|

(i) real_variable real_variable_name|

The'' and'' operators are left-associative. The

'+• and operators are left-associative.

The precedence is order from high to low

(unary minus)

(j) logical_expression (logical_expression

(1 or 1| 1 and')

relational_expression)|

(nul1| 1 not1)

'(' logical__expression 1)'|

bool_variable|

bool__cons tant

(k) relational_expression' : arith_expression

relational_operators)

arith_expression

The logical expression is evaluated from left to

right. The precedence of the relational operators are

higher than the logical operators. Parentheses are used

where appropriate.

(1) char_expression char_variable|

char constant

(m) variable int_variable|

real_variable|

char_variable I

bool_variable|

message_variable|

indexed_variable|

record_member_variable|

message member__var iable|

pr ede fined_va riable

(n) int__var iable
int__var iable__name

(o) real_variable
real_var iable__name

(p) char__var iable
char variable_name|

(q) bool__var iable
bool_var iable__name

(r) message_variable
message_variable_name

(s) indexed_variable
array_variable_name

'['arith_expression

l','arith_expression}']'

Each element of an array is composed of an array vari¬

able name and a subscript which is composed of a

sequences of arithmetic expressions.

(t) record_member_variable record_variable_name

1.1variable

Each member of a record variable is denoted by the name

of the record variable followed by a. and the name

of the member. The member may also be a record.

(u) Cmessage member variable) = message_variable_name

'.'variable

The construct and the usage of the message is the same

as the record except that the record cannot be used in

the messin and messout statement.

(v) predefined_variable)
= 'me'|'maxint'|'minint|

message_variable1'

(1succ'| 'sender'| 'priority')

A.3.1.2 If statement

(a) if_statement
: 'if' guarded_command list

['else' Cstatement_list]

' fi 1

An else guard is satisfied only when all other guards

of the 'if statement are not satisfied. However this

guard is optional.

(b) guarded_command_list guarded__command

guarded__command}

(c) guarded_command guard'-

sta tement_list

When a 'if' statement is executed, each guard is exam¬

ined. If one or more guards are satisfied, then one of

the guarded commands is arbitrarily selected and the

statement list of the selected guarded command is exe¬

cuted. After the statement list is executed, then

•if1 statement is terminated. If no guard is satisfied,

then it is a run-time error and the program is

aborted.

(d) guard Clogical_expression

A.3.1.3 Loop statement

(a) loop_statement
'loop' guarded_command_list

• lend 1

When a 'loop' statement is executed, each guard is

examined. If one or more guards are satisfied, then one

of the guarded commands is arbitrarily selected and

the statement list of the selected guarded command

is executed. After the statement list is executed,

the above steps are followed again until there is no

guard is satisfied.Then the 'loop' statement is ter¬

minated.

A.3.1.4 Exit statement

(a) exit_statement::= 'exit'

The 'exit1 statement can be used only within a

loop. When an 'exit statement is encountered, then

control exits from the loop in which the exit state¬

ment resides. One level of exit is allowed.

A.3.1.5 IO statement

(a) io_statement read_statement|

write_statement

(b) r ead__sta tement
'read1 '('variable_list')'I

'readln1' (1variable_list')'|

(c) wr i te__sta tement
'write1 1(1variable_list')'|

'writeln' 1('variable_list')'

(d) var iable__l i st
variable {',1variable}

The input pointer will point to the same line after the

'read' statement is executed. While the input pointer

will point to the next line after 'readln' statement is

executed.

The output pointer will point to the same line

after 'write1 statement is executed. While the out¬

put pointer will point to the next line after

'writeln' statement is executed.

There are two types of parameter passing mechan¬

ism. The first one is by value, and the other is by

reference. If the parameter is preceded by nothing,

it is passed by value. However,if the parameter is

preceded by var, then it is passed by reference. The

parameter passing mechanism is applied for both util¬

ity, procedure and function.

A.3.1.6 Skip statement

(a) skip_statement::= 'skip1

The skip statement is simply a null statement. It is

useful for some checking but without execution.

A.3.2 Communication and Synchronization statements

A.3.2.1 Wait statement

(a) wait_statement 'wait' guarded_command_list

1 wend 1

145
When a 'wait' statement is executed, each guard is

checked. If there is one or more guards which are

satisfied, then one of them is selected arbi-

trarily and the statement list following the

selected guard is executed. After the statement list

is executed, the 'wait' statement is terminated. Oth-

erwise, the process is said to be delayed (or sleep-

ing) and the control is passed to other process.

A.3.2.1 Mess i n statement

(a) messin statement::= 'messin'

('(' message variable')' j.

source address

'('message variable')'

({ ''source address

'('message variable')'}I

{':'source address

'('message variable')'}))

If only message-variable are specified tollowing the

keyword 'messin', then it implies that this messin

statement will accept all messages sent from any pro-

cess using the same message name. No combined use of

and':' is allowed.

(b) source address:: address derinition.

(c) address_definition message_varlaDLe.

'sender'I

(address_constant|

address_constant name|

message_variable|

message_member_variable)

['[' index1] 1]

(d) address_constant_name::= name

A.3.2.3 Messout statement

(a) messout_statement 1messout'

destination_address

message_variable1)'

There is only one form of messout statement and only

one receiving process is specified.

(b) destination_address::= address_definition

A.4 Program

(a) program [message_def i ni t ion__l i st]

nodes

A.4.1 Nodes

(a) nodes ::= node {node}

(b) node node' node_name 1

[services]

1begin1

processes

'end' node name'

(c) node_name::= name

A.4.2 Processes

(a) processes::= process {process}

(b) process 'process1 process_name

[1 ['range1]']

['(' process_priority')']';'

[constant_definition_list]

[type_definition_list]

variable_definition_list

[f unctions]

[procedures]

1 begin1

sta tement_l ist_l

'end' process_name;

In each process there may be an optional range,

range is used to indicate that a family of

processes is to be created

The family of processes contains: process name[0],

process_name [1] f..., process_name[range-l].

The constant and type declarations are optional.

However, there must be a variable declaration list in

which every variable used within the process is

declared.

Only the process can use the functions and pro¬

cedures. The variables of the process can be refer¬

enced only through the parameter passing mechanism.

(c) range::= unsigned_constant

(d) process_priority::= unsigned_constant

(e) functions::= function {function}

(f) function 'function function_name

(' [parameter_list] 1)

': type';'

[constant_definition_list]

[type_d efinitio n__l i s t]

[variable_definition_list]

• begin'

statement_list_l

1 end1 function_name;'

The parameters of a function must be declared in the

parame te r definition list. In addition to the param—

eters passed by the process, the function also has a

number of local variables. The statements allowed in a

process is also allowed in the function.

(g) procedures::= procedure {procedure}

(h) procedure::= 'procedure' procedure name

'('[parameter_list]')'';'

[constant_definition_list]

[type_def ini t ion__l ist]

[variabl e_d efinitio n__l i s t]

'begin'

sta tement__l ist_l

'end' procedure_name';'

The parameters of the procedure must also be declared

in the parameter definition list. The statements

allowed in a process is also allowed in the procedure.

(i) statement_list_l::= statement_l

{';' sta tement__l}';'

(j) statement_l
sequential_statements|

f unction__callI

procedure__call|

utility_callI

messin_statement|

messout_statement

(k) function_call function_name

1('[variable_list]1)1

(1) parameter_list (null|,var,)variable

{1, fvariable}': 1 type

{1;1 (null| 'var1)variable

{1,'variable}1:1 type}

(m) procedure_call procedur e_name

1(' [variable_list] 1)'

(n) utility_call [service_name]

[1 [1index•]'] 1 .1

utility_name

1(1 [variable_list]') 1

(o) process_name
name

(p) function_name
name

(q) procedure_name
name

(r) service_name
name

(s) utility_name
name

index arith_expression

A.4.2 Services and Utilities

(a) services::= service {service}

(b) service::= 'service1 service name)

[1[' range]•]';'

[constant_definition_list]

[type_def inition_list]

common_var iable_def ini tion__list

[variable_d efinitio n_lis t]

uti1ities

1begin1

[initialization_statement_list]

'end1 service__name 1;

In each service, the constant, type and variable

definition list are optional. However, the com¬

mon variable definition list must be declared.

The variables declared within the variable definition

list are local to the service (i.e. they are

not shared objects of the node).

The service can use all statements of the language

except 'wait1, 'messin' and 'messout' statements.

In each service, there may be an optional range. The

range is used to indicates that a family of services is

to be created The number of a member of the family

is equal to the number specified by the range If a

member is referenced, the service name and an index

of that member are required.

The family of the services contains

service_name[0], service_name[1],...,

service name[range-l].

(c) utilities::= utility {utility}

(d) utility 'utility1 Cutility_name

'(1 [parameter_list] 1) 1'; 1

[cons tan t_def ini tion__l ist]

[type_definition_list]

[variable_definition_list]

1 begin1

sta tement_list_2

'end' Cutility_name 1

The constant declaration, type declaration and variable

declaration are optional.

(e) Cinitialization_statement_list::=

Csequential_statements

(f) statement list_2::= Cstatement_2

{1;1Csta tement_2}1;1

(g) statement_2 sequential_statements|

uti1ity_cal1|

wait_statement

(h) wait_statement 'wait1 guarded_command_list

1 wend'

Appendix B: Extended BNF of GDPL

program m_dn_d

m__d::= ,m,t_d

m_d::= e

t_d::= na_l1='t1;1t_d1

t_d1::= t_d

t_d1::= e

t::= 1rd1r_d1 en1

t::= 1 ad'

t::= 'in'

t::= 'ch1

t::= 'bo 1

t::= 1 re'

t::= 1 a 1sub_d'of't

t::= 1na1

r_d::= 1na11:'t1;1r_d1

r_dl::= r_d

r_dl::= e

na_l::= ,na,na_ll

na_ll::= ,,,na_l

na_l1::= e

sub_d::= 1 [XsublX]1

subl::= ,ct,sub2

subl::= lna'sub2

sub2::= 1,'subl

sub2::= e

n_d::= 1n11na1';'nln_dl

n_d 1::= n_d

n_d1::= e

nl::= s_d1b1p_d'en 11na1';'

s d::= 1s11na1sls_d

s_d::= e

s 1::= ,[,,ct,,]M? 1 s 2

s1::= 1;1s 2

s2::= tc_ds3

s3::= cv_ds4

s 4::= v_d s 5

s5::= u_d,b,s l,en,,na,,;,

tc_d::= 1 c 1 cd_d IX tc_d

tc_d::= 1t1t_dXtc_d

tc_d::= e

cd_dl::= 1na'1=1c1;1cd_d2

cd_d2::= cd_dl

cd_d 2::= e

cv_d::= 'co'vd_d

vd d::= na_l': 1 t1;1vd_d1

vd_dl::= vd_d

vd_d1::= e

v_d::= 'v'vd_d

v_d::= e

u d::= 1 a11na1ulu_dl

u__d 1::= u_d

u_d 1::= e

u1 1 (1p_l')' 1 ;1u2

u2::= tc_du3

u3::= v_dXu4

u4::= 'b's 11 en1 1na11;1

p_l::= 1 v 1 na_l 1: 1 tXp__l 1

p_l::= na_l 1: 1 tXp_l 1

p_l::= e

p_ll::= ,;'p_l

p_l 1::= e

p_d::=' p1 1 na' plXp_d 1

p_d 1::= p_d

p_d 1::= e

pl::=' [1 'ct' 1] 1p2

pl::= p2

p2::= 1(1 'of 1) 1 1; 'p3

p2::= 1;1p3

p3::= tc_dXp4

p 4::= v_d X p 5

p5::= fn_pr1b1s_l1 en 1 1na' 1;'

fn_pr::= 1fn11na1fnlfn pr

fn_pr::= 1pr11na1ulfn_pr

f n_p r::= e

fnl::= 1(1p_l')1fn_tl1;1u2

fn_t 1::= 1:1 t

fn_t 1::= e

c::= cl

c::= 1+ 1c 2

c::= 1 -1c 2

c::= c 2

c1::= 1 1 1 ct1

c1::= 'st1

c1::= 'f1

c1::= 1tr1

c1 1 max1

c1::= 'min'

cl::= 1 me1

c2::= 'ct1

c2::= 1rc1

v::= 1na1vl

v::= 1pri1

vl::= 1[1sub_e1]1vl

vl::= 1.1v

vl::= 111v2

vl::= 1(1arg_l1)1

vl::= e

v2::= 'su1

v2::= 1se1

sub_e::= a_esub_el

sub_el::= ,,,sub_e

sub_el::= e

l_e::= r_el_el

1 el::= and_orXr_eXl_el

l_e 1::= e

r_e::= a_eXr_el

r el::= 1ro1a_er_e1

r_e 1::= e

and_or::= 1 an 1

and_or::= 1 or 1

a e::= terma el

a_el::= 1+'a_e

a_el::= ,-,a_e

a_e1::= e

term::= fterml

terml::= ,,term

terml::= ,'term

terml::= e

f::= prif1

fl::= ''f

f1::= e

pri::= pri1

pri::= c 2

pril::= 1('l_e')1

pril::= 1 no'1 ('1 e')'

pri1::= v

pri1::= cl

pril::= ,+,pri

pri1::= 1 -»pri

s_l::= s_s1;1s_l

s_l::= e

s_s::=' i f' g_c__l i f_s

s_s::= 111g_c_l1le1

s_s::= 1wa'g_c l,wel

s_s::= 1r11('v_l1)'

s_s::= 1 r11 1 (1v_l')'

s_s::= 'w1'('arg_l')1

s_s::= 'wl11(1arg_l')'

s_s::= 1 ex1

s_s::= 1sk•

s_s::= ,mi'mi_s

s_s::= mo1ad_d1(1v1)'

s s::= 1pri1':=1a_e

s_s::= ,na,s_sl

s s 1::= 1 1 1v21:= 'a_e

s_s 1::= 1 (1arg_l')1

s_sl::= 1[1a_es_s2

s_s 1::= s_s 3

s_s2::= 1f'sub_e']'vl':='a_e

s_s2::= ']'s_s3

s_s3::= ':=,a_e

s_s3::= 1.11na1s_s41(' arg_l1) 1

s_s4::= vl1:='a_e

s_s4::= 1(1 arg_l1) 1

g_c_l::= l_e 1- 1 s__l g_c__l 1

g_c_ll::='[] 1 l_e'- 1 s_lg_c__ll

g_c_l 1::= e

if s::= 'el1s_l'fi'

if_s::= 1fi1

v 1::= vv_ll

v_ll::= 1f1v_l

v 11::= e

arg_l ss= a_earg 11

arg_l::= e

arg_ll::= ',,arg_l

arg_ll::= e

mi_s::= 1(1v1)1

mi_s::= ad_d'('v') 'mi_s1

mi_sl::= 1~ 1 ad_d1 (1v1) 'mi_s2

mi_sl::= 1:1ad_d'('v1)1mi s3

mi_sl::- e

mi_s2::= 1~1ad_d1('v1)1mi_s2

mi_s 2::= e

mi_s3::= 1:1ad_d1('v')1mi_s3

mi_s 3::= e

ad__d::= 1 na 1 ad_dl

ad_d::= 'st'ad_d2

ad_dl::= ''1'se

a d_d1::= e

164
<ad-d2> :: = ['['<a-e>

ad d2::= e

165
Appendix C: Sample outputs of GDPL

The sample outputs of manager control, main control, node

control, service control, utility control, process control,

utility call, following sections using extended BNF nota-

tions.

C.1 Manager control

information of manager control

facility routines of manager

manager/main routine of manager

initialization routine of manager

manager body:= initialization routine

inf ini to loop of control statement in

manager

C.2 Main control

information of main control

facility routines of main

manager/main routine of main

main/node routine of main

process control routines of main

initialization routine of main

166
<main body:= initialization routine of main

infinite loop of control statement of

main

C.3 Node control

information of node control

facility routines of node

main/node routine of node

node/service routine of node

node/process routine of node

initializat.ion routine of node

node body:= initialization routine of node

infinite loop of control statement of

node

C.4 Service control

list of shared variables in service

information of service control

facility routines of service

node/service routine of service

service/utility routine of service

167
<initialization routine of service

service body:= initialization routine of service

[statement list of the service]

infinite loop of control statement of

service

C.5 Utility control

list of shared variables in utility

information of utility control

facility routines of utility

service/utility routine of utility

utility request routine of utility

normal termination routine of utility

abnormal termination routine of utility

initialization routine of utility

utility body initialization routine of utility

[statement list of the utility]

normal termination routine call of utility

C.6 Process control

information of process control

168
<facility routines of process

node /process routine of process

utility request routine of process

message passing routine of process

normal termination routine of process

abnormal termination routine of process

temporary termination routine of process

waiting for message routine of process

initialization routine of process

process body:_ initialization routine of process

fstatement list of the process]

normal termination routine call oL pLOe55?/./ UL111LY

call disable alarm facility

check validity of utility calf

send the argument list to utility

issue the actual utility call

receive the returned values from the utility

enable alarm facility

C.8 'Messin' statement disable alarm facility

169
<find the internal representation of message address

check the arrival of messages

[infinite loop to handle the waiting for message]

enable alarm facility

C.9 'Messout' statement disable alarm facility

find the internal representation of message address

stores the content of message to the message buffer

send the destination address to the node control

enable alarm facility

170
References

1. 'An Experiment in Language Design for Distributed Sys-

tems', by D. Crookes and J.W.G. Elder, Software-Practice and

Experience, Vol. 14(10), P. 957-971, Oct. 1984.

2. 'A Language for Distributed Processing', by Ronald J.

Price, (National Computer Conference), P. 957-967, 1979

3. 'Bruwin: An Adaptable Design Strategy for Windov

Manager/Virtual Terminal Systems', by Norman Meyrowitz Mar-

garet Moser, 8th Symposium on 0/S Principles, ACM, Dec,

1981

4. 'Japan's Fifth-generation Computer Systems', by Philif

Treleaven, Computer, IEEE, p. 79-88, August 1982

5. 'The Programmer's Apprentice: Knowledge Based Program

Editing', by Richard C. Waters member, IEEE, Transactions of

Software Engineering, Vol. SE-8, No. 1, P. 1-12, January

1982

6. 'The Versatility or FRULUU 1, Dy L. OdXLeL, LCNCIL LI«ciIL vi

Computer Science, York University, Downsview, Ontario M3J,

D'I Arm STPLAN Notices, Vol. 15, No.12, P.15-16, Dec. 1980

7. 'PROLOG: A step toward the ultimate c:omPuLeL Latiyuayc,

by Ron Ferguson, 137 University AVE W, Apt 907 Waterloo,

Ontario N2L 3E6 Canada, BYTE, Vol. 6, No 11, P. 384-392,

Nov. 1981

171

8. 'Advances in Computers', edited by Marshall C. Yovits,

Vol. 20, P. 199-259, 1981

9. 'Can Programming be liberated from the Von Neumann

Style? A Functional style and its algebra of programs', by

John Backus, IBM Research Lab., P. 613-641

10. 'Distributed Processes: A Concurrent Programming Con-

cept', by Per Brinch Hansen, ACM, Vol. 21, No. 11, P. 934-

941, Nov. 1978

11. 'Programming by Refinement, as exemplified by the SETL

Representation Sublanguage', by Robert B. K. Dewer, Arthur

Grand, Siu-Cheng Liu, and Jacob T. Schwartz, ACM Transac-

tions on Programming Language and Systems, Vol. 1, No. 1,

P.84-97, July 1979

12. 'A new approach to proving the correctness of Multipro-

cess Programs', by Leslie Lamport, ACM Transactions on Pro-

gramming Language and Systems, Vol. 1, No. 1, P. 84-97, July

1979

13. 'Report of Session on Concurrency', by Jack Dennis, 5IG

PLAN notices, Vol. 8, No. 9, Sep. 1973

14. 'A data flow language for 0/S programming', by Paul R.

Kosinski, SIGPLAN Notices, Vol. 8, No. 9, P. 89-93, Sep.

1973

15. 'Application of Extensible Language to Specialized

Application Language', by Jean E. Sammet, SIGPLAN Notices,

172
Vol. 6, No. 12, P. 141-143, Dec. 1971

16. 'Lucid, a Nonprocedural Language with iteration', by E.

A. Ashuoft, W. W. Wadge, CACM, Vol. 20, No. 7, P. 519-526,

July 1977

17. 'History of Programming Language', edited by Richard L.

Werelblat

18. 'High-level programming for Distributed Computing', by

Jerome A. Feldman, CACM, Vol. 22. No. 6, P. 353-357, June

1979

19. 'Concurrent Programming Concepts', by Per Brinch Hansen,

Computing Surveys, Vol. 5, No. 4, Dec. 1973

20. 'Programming Language Design and Implementation', by

Terrence W. Pratt, P. 314-509

21. 'The Programming Landscape', by Henry Legard Michael

Marcotty, P. 129-146, P. 247-266, p. 377-405

22. 'Function-level computing, Automating programming, pro-

gramming for non-programmers', Computer Software I, II, and

III. IEEE Spectrum, p. 22-38, August 1981

23. 'Smalltalk-80 System', BYTE, August 1981

24. 'A sampler of Formal Definitions', by Michael Marcotty

and Henry F. Ledgard, Computing Surveys, Vol. 8, No. 2, P.

191-276, June 1976

25.' Programming Language- the first 25 years', by Peter

Wegner, IEEE Transactions on Computers, P. 10-28, Dec. 1976

26. 'The Distributed Programming Language SR-Mechanisms,

Design and Implementation', by Gregory R, Andrews,

Software-Practice and Experience, Vol. 12, P. 719-753, 1982

27. 'A Comparative Survey of Concurrent Programming

Languages', by Paul Scotts. Jr., ACM SIGPLAN Notices, Vol.

17, No. 10, Oct. 1982

28. 'Natural language Communication with Computers', edited

by G. goos and J. Hartmanis

29. 'Formal specification of Programming Languages: A

Panoramic Primer', by Frank G. Pagan

30. 'The programming language Concurrent Pascal', by Per

Brinch Hansen, IEEE Transactions on Software Engineering, P.

199-207, June 1975

31. 'The architecture of Concurrent Programs', by Per Brinch

Hansen, 1977

32. 'Modular A language for Modular Multiprogramming', by N,

Wirth, Software-Practice and Experience, Vol. 7, P. 3-35,

1977

33. 'Communicating Sequential Processes', by C. A. R. Hoare,

Communication ACM, 21, P. 666-677, 1978

34. 'Guarded commands, Nondeterminacy and Formal Derivation

of Programs1, by Edsger W. Dijkstra, Communication ACM, P.

453-457, Auqust 1975

35. 'Monitors: An Operating System Structuring Concept', by

C. A. R. Hoare, Communication ACM, P. 549-557, Oct. 1974

36. 'Synchronizing Resources', by Gregory R. Andrews, ACM

Transactions on Programming language and Systems, Vol. 3,

No. 4, P. 405-430, Oct. 1981

37. 'The ROSCOE Distributed 0S', by Marvin H. Solomon and

Raphael A. Finkel, ACM 1979

38. 'GYPSY: A language for specification and implementation

of verifiable programs', by Allen L. Ambler Amdahl Corpora¬

tion, ACM SIGPLAN, P. 1-10, March 1977

39. 'Access Control in Parallel Programs', by James R.

Mcgraw and Gregory R. Andrews, IEEE Transactions on Software

Engineering, Vol. SE-5, No. 1, Jan. 1979

40. 'The Design and Implementation of Modula', by N. Wirth,

Software-Practice and Experience, Vol. 7, P. 67-84, 1977

41. 'An Assessment of Modula', by J. Holden and I. C. Wand,

Software-Practice and Experience, Vol. 10, P. 593-621, 1980

42. 'Edison- a Multiprocessor Language', by Per Brinch Han¬

sen, Software-Practice and Experience, Vol. 11, P. 325-361,

1981

43. 'Abstraction and Verification in Alphard: Defining am

Specifying iteration and Generators', by Mary Shaw and Wil¬

liam A. Willf, Communication ACM, P. 553-564, August 1977

44. 'Extending Concurrent Pascal to all Dynamic Resource

Management', by Abraham Silberschatz Richard B. Kieburtz,

IEEE Transactions on Software Engineering, Vol. SE-3, No. 3,

May 1977

45. 'Capability managers', by Richard B. Kieburtz, IEEE

Transactions on Software Engineering, Vol. SE-4, No. 6, Nov.

1978

46. 'The Soma: A programming construct for Distributed Pro¬

cessing', by Joep L. W. Kessels, IEEE Transactions on

Software Engineering, Vol. SE-7, No. 5, Sep. 1981

47. 'The design of Ada', Requirements for High Order

Computer Programming Language- Steelman

48. 'DoD's Common programming language effort', by David A.

Fisher, Computer, P. 24-33, March 1978

49. 'Programming with Ada: An introduction by Means of Gra¬

duated Examples', by Peter Wagner, ACM SIGPLAN Notices, P.

1-46, Dec. 1979

50. 'On the design of a Distributed Operating System using a

High Level Distributed Programming Language', by R. K.

Arora and N. K. Sharma, North-Holland Publishing Company,

Microprocessing and Microprogramming 10, P. 247-254, 1982

51. 'Concurrency in ADA and Multicomputers1, by N. H.

Gehani, Computer Language, Vol. 7, P. 21-23, 1982

52. 'Language constructs for Real-Time Distributed Systems',

by D. M. Berry, C. Ghezzi, D. Mandrioli, Computer Language,

Vol. 7, P. 11-20

53. 'DPL-82: A language for Distributed Processing', by Lars

Warren Ericson, Carnegie-Mellon University

54. 'A General-Purpose Algorithm for Analyzing Concurrent

Programs', by Richard N. Taylor, Communication of ACM, Vol.

26, No. 5, P.362-376, May 1983

55. 'A Survey Note on Programming Languages for Distributed

Computing', by Abraham Siberschatz, Department of Mathemati¬

cal Sciences, The University of Texas, 21st IEEE Computer

Society International Conference, P. 719-722, Sep. 23-25,

1980

56. 'A Language Model for fully Distributed Systems', by

Arthur B. Maccabe and Richard J. Leblanc, School of Informa¬

tion and Computer Science, Georgia Institute of Technology,

Atlanta, P. 723-728, Sep. 23-25, 1980

57. 'The Starmod Distributed Programming System', by Robert

P. Cook, Computer Science Department and Mathematics

Research Center, University of Wisconsin-Madison, P. 729-

735, Sep. 23-25, 1980

58. 'CSP80: A Language for Communicating Sequential

Processes', by Mehdit Jazayeri, Carlo Ghezzi, Dan Hoffman,

David Middleton, Mark Smotherman, P. 736-740, Sep, 23-25,

1980

59. 1A Communicating Sequential Process Language and Imple¬

mentation', by T. J. Roper and C. J, Barter, Department of

Computer Science, The University of Adelaide, the Australian

Computer Journal, P. 17-27, Vol. 15, No. 1, Feb. 1983

60. 'Communications Policy for Composite Processes', by C.

J. Barter, Department of Computer Science, The University of

Adelaide, the Australian Computer Journal, P. 9-16, Vol. 15,

No. 1, Feb. 1983

61. 'A Comparison of the Concurrency Constructs and Module

Facilities of Chill and Ada', by C.J. Fidget and R. S. V.

Pascoe, the Australian Computer Journal, P. 17-27, Vol. 15,

No. 1, Feb. 1983

62. 'LOFE: A Language for Virtual Relational Data Base', by

J. K. Debenham and G. M. McGrath, the Australian Computer

Journal, P. 2-8, Vol. 15, No. 1, Feb. 1983

63. 'Is Block Structure Necessary?', by David R. Hanson,

Department of Computer Science, The University of Arizona,

Tucson, Software-Practice and Experience, Vol. 11, No. 8, P.

853-866, Sep. 1980

64. 'Evaluating Synchronization Mechanisms', by Toby Bloom,

MIT Laboratory for Computer Science, ACM, Proc. of the 7th

Symposium on 0S Principles, P. 24-32, Dec. 1979

65. Primitives for Distributed Computing', by Barbara

Liskov, MIT Laboratory, ACM, Proc. of the Symposium on 0S

Principles, P. 33-42, Dec. 1979

66. 'Concepts and Notations for Concurrent Programming', by

Gregory R. Andrews, Department of Computer Science, Univer¬

sity of Arizona, Computing Surveys, Vol. 15, No. 1, P. 3-43,

March 1983

179
Publications

1. "GDPL-A Generalize.d distributed programming language." by

Ng, Kam-wing and Li, Wai-kit, In The International Confer-

ence on Distributed Computing Systems (U.S.A), p. 69-78,

1984.5.

2. "GDPL-A language for programming distributed systems." by

Ng, Kam-wing and Li, Wai-kit, In The First International

Conference on Computers and Applications (U.S.A), p. 76-83,

1984.6.

