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Abbreviations 

BAM - Bidirectional Associative Memory 

ECAM - Exponential Correlation Associative Memory 

FM - Fundamental Memory 

FP - Fixed Point 

GCAM - Gaussian Correlation Associative Memory 

LHSGF - Left-Hand-Side Gaussian Function 

RCAM - Recurrent Correlation Associative Memory 

SNR - Signal to Noise Ratio 

SNRG - Signal to Noise Ratio Gain 

WOPLAM - Weighted Outer-Product Learning Associative Memory 
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Nomenclature 

a - base of the exponential function 

a⑴-learning weight directed to the recall of FM u<n 

a - average value of learning weights 

Aa(r> - incremental change of a(rl 

Pi - parameter of the sigmoid function 

P： - parameter of the sigmoid function 

C(u,r)，11妒)-correlation between FMs u<r丨 and u(p) 

C隱-maximum correlation among all the FMs 

Cn
J - combinatorial value c 

a - parameter controlling the slope of the LHSGF 

d(u(" , u(p>) - extensive distance between FMs u,rl and u<pl 

di - Hamming distance between the input of the network and its corresponding FM 

Dh - energy of an FM in the Hopfield network 

Dw - energy of an FM in the WOPLAM 

E - expectation 

F,<r) - associative recall error of the i"' element of FM u<r> 

F01 - associative recall error of FM u(n 

F - overall associative recall error of the network 

- function used for an optimization with a constraint 
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G(r) - SNRG ofFMu<r> 

H(u(r>，u<p>) - Hamming distance between FMs u(r> and utp) 

L - length of a neighboring range of a hit of an FM 

m - number of FMs 

n - dimension of FMs 

N"11 - computational complexity of an algorithm 

o丨…-ilh element of the output vector corresponding to FM u<r> 

q(p) - nonlinear monotonically decreasing function of the error percentage p 

p - error percentage of an input (compared to its corresponding FM) 

9-equals d[Ilin(u
<r,,u,p,)/n 

u<r丨-r,h FM 

u, ,r,'i ,h element o fFMu , n 

Var - variance 

W,丨-connection strength between neurons i and j in a neural network 

W丨】H - connection strength between neurons i and j in the Hopfield network 

W„vs - connection strength between neurons i and j in the WOPLAM 

x - input of the network 

x, - i"' element of x 

y,(r) - i,h element of the summed input vector corresponding to FM u ln 

<u(r>, x> - correlation between utrl and x 
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Diagram Captions 

The Block diagram of the Hopfield network (in Chapter 3). 

The Block diagram of the RCAM (in Chapter 5). 
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Figure Captions 

Figure 3-1. Experimental results obtained by using the WOPLAM with different sets of learning 

weights (a'", a<2), an>, a'41). All sets of learning weights are chosen arbitrarily, (a) The four FMs 

(They are taken as the network's inputs). (bMm) Results of the WOPLAM by different sets of 

learning weights, (b) (1，1, I, 1). (The case of the Hopfield network), (c) (2，2, 2，2). (d) (1, 2，2, 

2). (e) (2，3, 3，3). (f) (1，I, 1,2). (g) (2, 2, 3, 2). (h) (I, 1,2, 2). (i) (3, 4, 4, 3). (j) (2，3, 2, 2). (k) 

(4，6，6，4). (1) (4，5, 5, 4). (m) (5, 6, 6, 5). 

Figure 3-2. Empirical results obtained by efficiently utilizing the WOPLAM with different sets of 

learning weights (a⑴，al2\ a,4>). All sets of learning weights are empirically found and chosen 

so that as many SNRGs as possible are made to he larger than or equal to their corresponding 

thresholds. In this example, the maximum number of FPs is 3. (a) The four FMs (They are taken as 

the network's inputs), (h)-(e) Results of the WOPLAM with different sets of learning weights, (b) 

(4.2，5.7, 5.7, 3.0). (c) (0.7，3.4； 3.5,3.3). (d) (3.0,4.0, 0.7, 4.0). (e) (2.7，0.7, 3.4, 3.5). 

Figure 3-3. Simulation results of n=l(). 

Figure 3-4. Simulation results of n=20. 

Figure 3-5. Simulation results of n=50. • 
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Figure 3-6. Convergence speed comparison between different WOPLAMs (n=10). 

Figure 3-7. Convergence speed comparison between different WOPLAMs (n=20). 

Figure 3-8. Convergence speed comparison between different WOPLAMs (n=50). 

Figure 4-1. The effects of different neighboring ranges for the case of n= 10. 

Figure 4-2. The effects of different neighboring ranges for the case of n=20. 

Figure 4-3. The effects of different neighboring ranges for the ease of n=30. 

Figure 4-4. The effects of different neighboring ranges for the case of n=40. 

Figure 4-5. The overview of the effects of using different L for the case of n=30. 

Figure 5-1. The simulation results of n=20. The horizontal axis corresponds to the number of 

the FMs and the vertical axis corresponds to the number of the correctly recalled FMs. The 

results of the GCAM are plotted in solid lines while those of the EC AM are plotted in dotted 

lines. 



Figure 5-2. The simulation results of n=30. The horizontal axis corresponds to the number of 

the FMs and the vertical axis corresponds to the number of the correctly recalled FMs. The、 

results of the GCAM are plotted in solid lines while those of the ECAM are plotted in dotted 

lines. 
v 

Figure 5-3. The simulation results of n=40. The horizontal axis corresponds to the number of 

the FMs and^he vertical axis corresponds t s^C number of the correctly recalled FMs. The 

results of the GCAM are plotted in solid lines while those of the ECAM are plotted in dotted 

lines. 

Figure 6-1. Simulation results of n=20. 

Figure 6-2. Simulation results of n=5(). 

Figure 6-3. Simulation results of、n=100. 

Figure 6-4. Simulation results of n= 150. 

Figure 6-5. Simulation results of n=200. 

Figure 6-6. Simulation results of n=250. 
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Figure 6-7. Simulation results of n=3(X). 

Figure 6-8. Simulation results of n=350. 

Figure 6-9. Simulation results of n=400. 



Table Captions 

Table 3-1. Learning weights and SNRGs of the cases in Fig.3- l(bHm). The single underlined 

SNRGs are the ones sufficient for their corresponding FMs to he FPs. The double underlined ones 

are the empirically obtained thresholds for their corresponding FMs to be FPs. 

Table 3-2. Learning weights and SNRGs of the cases in Fig.3-2(hMe). The "underlined" has the 

same meaning as that in Table 3-1. 

Table 5-1. The values of the parameters used in the simulations corresponding to Figs.5-l(a) 

to (g) with n = 20. p is the "error" percentage of the input. 

Table 5-2. The values of the parameters used in the simulations corresponding to Figs.5-2(a) 

to (g) with n = 30. p is the "error" percentage of the input. 

Table 5-3. The values of the parameters used in the simulations corresponding to Figs.5-3(a) 

to (g) with n = 40. p is the "error" percentage of the input. 
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Abstract 

In the Hopfield-type associative memories, all the fundamental memories (FMs) are stored in 

the manner of global distribution storage. One connection weight represents partial information of 

all the FMs, and thus cross-talk between different FMs exists in the storage process. More 

importantly, the storage capacity of the Hopfield model has been found to he severely constrained 

by the dimension of the FMs. Empirical [ 18] and theoretical [26] results show that the storage 

capacity of the Hopfield network, i.e., the number of stably stored FMs, is in general less than 15 

percent of the FMs' dimension. In general, the quantity and quality of the associative recall of the 

FMs deteriorate as the number of FMs increases. Sometimes, even when this number is small, the 

associative recall of the FMs may not he all correct. 

The objective of this thesis is to find out and to improve the factors affecting the storage 

capacity and associative recall performance of the Hopfield-type associative memories. Approaches 

used include some new encoding/learning methods which can increase or greatly increase the signal 

to noise ratio (SNR), and local distribution storage with nonlinear function which not only has no 

cross-talk between different FMs but also enlarges the difference between auto- and mutual-

correlations. Finally, a further investigation into the scheme of the Hopfield model is given which 

reveals some critical factors for the associative store/recall. 

There are four main topics of original results to be presented in this dissertation. They are an 

adaptive weighted outer-product learning associative memory, neural associative memory with 

maximum stability based on a novel encoding strategy, a Gaussian correlation associative memory, 



and a further investigation into the upper hound of the asymptotic storage capacity of the Hopfield 

associative memory. 

With respect to the adaptive weighted outer-product learning associative memory, for the 

correct recall of an FM, a corresponding learning weight is attached to this FM and a parameter 

called signal to noise ratio gain (SNRG) is devised. Sufficient conditions for the learning weights 

and the SNRGs are derived. It is found both empirically and theoretically that the SNRGs have 

I 

their own threshold values for the correct recall of the corresponding FMs. Based upon the 

gradient-descent-search approach, several algorithms are constructed to adaptively find out optimal 

learning weights with reference to global- or local-error measure. 

With respect to the novel encoding strategy based neural associative memory with 
* 

maximum stability, unlike the conventional point wise outer-product rule used in the Hopfield-

type associative memories, the proposed encoding method computes the connection weight 

between any two neurons by summing up not only the products of the corresponding two bits 

of all FMs but also the products of their neighboring bits within certain range. Theoretical 

analysis is conducted to investigate the stability, attractivity and their interrelationship of the 

proposed model. It is found both theoretically and experimentally that the proposed encoding 

scheme is an ideal approach for making the FMs fixed points and thus maximizing the storage 

capacity. 、 

Within the Gaussian correlation associative memory (GCAM) - a high-capacity 

correlation-type associative memory neural network, the FMs stored are locally represented 

by two layers of connection weights of the network. The left-hand side of the Gaussian 

function (LHSGF) is used as weighting functions. Using the LHSGF has the same 
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effectiveness in maximally discriminating auto-correlations from all mutual correlations as the 

exponential function used in the ECAM (Exponential Correlation Associative Memory), but 

has no limitation of dynamic ranges in real circuits implementation from which the ECAM 

suffers. The GCAM has the same exponentially-growing storage capacity as the ECAM. 

Besides, basins of attractions of the FMs in the GCAM can he controlled through adjusting 

two parameters of the LHSGF and thus can be larger than in the ECAM. 

In the further study of the upper hound of the asymptotic storage capacity of the Hopfield 

associative memory, the upper bound of the asymptotic storage capacity of the Hopfield 

network is further investigated from two different points of view - the neural dynamic and the 

SNRG approaches. Similar results are concurrently obtained, both of which show that the 

asymptotic storage capacity of the Hopfield network in order that all the FMs are exactly 

recoverable does not grow directly proportionally or proportionally to the dimension (n) of 

the FMs but is upper hounded as n approaches infinity. Such an upper hound is not decided or 

directly decided by n, hut is directly determined by the distribution of the elements of the FMs. 

Overall, in this thesis, neural associative memories are studied not only within the 

framework of the conventional global distribution storage hut also within that of the local 

distribution storage. Moreover, within the former framework, a novel group-wise strategy is 

proposed for encoding the FMs other than the conventional point-wise method. Finally, a 

further investigation into the Hopfield model reveals some intrinsic and critical factors which 

post some open problems on the storage capacity of neural associative memories. 
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Chapter 1 Introduction 

Since Hopfield's conception of the outer-product learning based neural associative 

memory in his seminal paper [ 18], much research has been done to theoretically investigate 

the storage capacity, information capacity, and performances of the Hopfield associative 

memory from various points of view (1], [4], [5], [6], [11], [13], [16], [20], [23】，[261，[44]. 

It has been found that the storage capacity of the Hopfield network is severely constrained by the 

dimension of the fundamental memories (FMs). Empirical [18] and theoretical [26] results show 

that the storage capacity of the Hopfield network, i.e., the number of stably stored FMs, is in 

general less than 15 percent of the FMs' dimension. In general, the quantity and quality of the 

associative recall of the FMs deteriorate as the number of FMs increases. Sometimes, even when 
} 

this number is small, the associative recall of the FMs may not be all correct. 

To alleviate such a limitation, various approaches have been attempted to increase the storage 

capacity over the years. For example, Lee [24】，Soffer [41J and, Bak and Little [3】raised the order 

of the correlation matrix; Venkatesh and Psoitis [48] utilized the spectrum of a linear operator; 

Chiueh and Goodman [8], [9] presented a general model of associative memory in which a function 

is applied to the inner products of an input and the FMs; an iterative projection rule [55] was 

constructed to update the connection weights initially defined by the Hebbian rule when the FMs 

are sequentially presented to the network; Wang et al. [50], [51 ] proposed a BAM (Bidirectional 

Associative Memory) with multiple training which was further extended to a generalized BAM. 

Linear programming/multiple training and sequential multiple training are applied to find the 

weights of a generalized correlation matrix; Wang and Lee [54] put additional network structure 

20 



into the BAM in order to cancel or suppress noise terms in a retrieval process; Morita, et al. 

[28】，[59] and，Nishimori and Opris [30] made use of nonmonotonic output functions; Xu, et 

al. [56] proposed an asymmetric BAM which can cater for the logical asymmetry of 

interconnections and non-Qrthogonality of patterns. It should be pointed out that the 

aforementioned work done on the BAM is in principle also effective for the Hopfield-type 

neural associative memories. In a word, the examples cited above can improve the 

performances in terms of the storage capacity and the associative recall of a network but 

usually at the expense of extra costs such as computation complexity, network structure and 

hardware implementation. 

The main thrust of this thesis is to analyze and improve the storage capacity of the 

Hopfield network by formulating some novel encoding schemes and learning algorithms. 

Stability and attractivity of the proposed associative memories are also examined. 

The basic approach of the thesis can be described as follows: Firstly, to find out the 

critical factors and fundamental mechanism for the associative store/recall of the Hopfield 

model. Secondly, to propose learning algorithms to improve the storage capacity and to make 

these algorithms practical. Thirdly, to propose a novel encoding strategy to achieve maximum 

or extreme stability of the network. However, such achievements are obtained on the expenses 

of attractivity to some extent. Fourthly, unlike the global distribution storage used in 

conventional studies, a local distribution storage model with nonlinear dynamics is presented. 

Extreme stability and attractivity are both achieved. Finally, based on the results obtained, a 

further study of the associative store/recall mechanism of the Hopfield mode! are conducted, 

and accordingly future research topics are clearly addressed. 
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Due to the nature of the FMs, we postulate that by assigning different learning weights to 

different FMs, the storage capacity of the Hopfield network can be substantially increased. To 

achieve this goal, we put forth a Hopfield-type weighted outer-product learning associative 

memory with several adaptive algorithms. For the correct recall of an FM, a corresponding learning 

weight is attached to this FM and a parameter called signal to noise ratio gain (SNRG) is devised. 

Sufficient conditions for the learning weights and the SNRGs are derived. It is found both 

empirically and theoretically that the SNRGs have their own threshold values for the correct recall 

of the corresponding FMs. Based on the gradient-descent-search approach, several algorithms are 

constructed to adaptively find the optimal learning weights with reference to a global- or local-

error measure. 

We further propose a neural associative memory based on a novel encoding strategy. 

Unlike the conventional pointwise outer-product learning rule commonly used in the Hopfield-

type associative memories, the novel encoding method computes the connection weight 

between any two neurons (including self-feedback connections) by summing up not only the 

products of the corresponding two bits of ail the FMs, but also the products of their 

neighboring bits within a certain range as well. The widely-used SNR (Signal to Noise Ratio) 

and the neural dynamic approaches are utilized to theoretically investigate the performances of 

the proposed model in terms of stability and attract ivity. Both theoretical and experimental 

results show that the proposed encoding strategy is very powerful in maximizing the stability 

(making as many FMs as possible be fixed points) or the capability. 

Both of the aforementioned studies lie within the framework of the global distribution 

storage of the FMs. Since it has been found out that local distribution storage of the FMs has 
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an advantage over the global distribution storage in the way that the former can greatly 

supress the cross-talks among the FMs, we then make an effort in encoding the FMs by the 

local distribution storage. Based on these considerations, we propose a correlation-based 

associative memory using the left-hand side of the Gaussian function (LHSGF) as weighting 

functions - the Gaussian correlation associative memory (GCAM). It is extended from the 

RCAM (Recurrent Correlation Associative Memory) and the ECAM (Exponential Correlation 

Associative Memory) proposed by Chiueh and Goodman [8], [9]. 

The ECAM is a special case of the RCAM. When the function used in the RCAM is the 

exponential function, the RCAM is reduced to the ECAM. The storage capacity of the ECAM 

was theoretically proven to be growing exponentially with the dimension of the FMs. 

However, from the viewpoint of real circuits implementation, the storage capacity of the 

ECAM is practically limited by the dynamic ranges of the real circuits [9]. Circuits cannot give 

an infinitely large output response to an input. They have limited ranges of output response. 

As a result, the storage capacity of the real ECAM circuits will be far below the theoretical 

result. 

In order to overcome such a shortcoming, we modify the ECAM by replacing the 

exponential function with the LHSGF and thus propose the GCAM. As the weighting 

functions, the LHSGF is to be used with which the required monotonically-nondecreasing 

property [9J still holds. Using the LHSGF has the same effectiveness in maximally 

discriminating an auto-correlation (between an input pattern and its corresponding FM) from 

all mutual correlations (between the input pattern and all the other FMs) as the exponential 

function is used in the ECAM, but it has no limitation on the dynamic ranges in the real 
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circuits implementation suffered by the ECAM. The GCAM has the same exponentially-

growing storage capacity as the ECAM. Besides, basins of attractions of the FMs in the 

GCAM can be controlled through adjusting two parameters of the LHSGF and thus can be 

larger than that in the ECAM. 

In addition to the studies described above, we are still very interested in the problems like: 

why the Hopfield model has a very small storage capacity, and what factors affect its storage 

capacity. To answer these questions, a further investigation into the upper hound of the 

asymptotic storage capacity of the Hopfield network is conducted. In [26], it was shown that 

if m FMs are chosen at random (the elements of the FMs take +1 or -I with an equal 

probability of 0.5), the maximum asymptotic storage capacity in order that most of the m FMs 

are exactly recoverable, is n/(21ogn). By imposing an additional restriction that every one of 

the m FMs be exactly recoverable, tl\e maximum asymptotic storage capacity can be no more 

than n/(41ogn) as n approaches infinity. Some similar results concerning the storage capacity 

were provided in [23], [44] and [48]. The results in [20】showed that the Hopfield network 

has major limitations when applied to fixed pattern classification problems because of its 

sensitivity to the number of the FMs and the SNR of the input data. It was shown in [13] that 

for associative memories composed of n linear threshold functions without self-feedback 

connections, even when the Hamming distances between the desired memories are within yri 

and (l-y)n, there are sets of size (l-2y) 1 (for y < 1/2)，the FMs of which cannot be 

simultaneously stable. A similar phenomenon holds for the sum of outer-products connection 

matrix. It was shown in [6] that the Hopfield network can result in many spurious stable states 

-exponential in the number of the FMs - even in the case when the FMs are orthogonal. 
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We will theoretically investigate the upper bound of the asymptotic storage capacity of the 

Hopfield network from two different points of view. One is based on the neural dynamic 

approach while the other is based on the SNRG concept. Similar results are simultaneously 

obtained from both viewpoints. It is shown that the asymptotic storage capacity of the 

Hopfield network, in order that all the FMs are exactly recoverable, does not grow directly 

proportionally or proportionally to n (the dimension of the FMs) hut is upper bounded as n 

approaches infinity. Such an upper bound is not directly decided or decided by n, but is 

directly determined by the distribution of the elements of the FMs. The result by the neural 

dynamic approach shows that the upper bound of the asymptotic storage capacity of the 

Hopfield network is directly dependent upon the minimum extensive-distance between any 

two different FMs. We will see that as the number of the FMs grows larger, the Hopfield 

network has major limitation in stably storing all the FMs because of its sensitivity to the 

minimum extensive-distance between any two different FMs. A small minimum extensive-

distance can greatly deteriorate the storage capacity of the Hopfield network. 

Finally, we make a summary of this study to conclude the whole thesis. 

It is worth mentioning here that the FMs will not be pre-processed for orthogonalization 

because using such an approach to improve the stability of the FMs is not common. The FMs 

used are just randomly generated from symmetric Bernoulli trials. 

The remaining part of this thesis is organized as follows: An overview on neural 

associative memories is made in Chapter 2. In Chapter 3, we propose a weighted outer-

product learning associative memoryWOPLAM), including learning scheme, critical factors 

for associative store/recall, improvement of the storage capacity, and practical algorithms. A 
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novel encoding model with maximum or extreme stability is then constructed in Chapter 4. It 

stores the FMs with global distribution storage and lies within the framework of the Hopfield-

type models. Its attractivity, however, still needs to be improved. In Chapter 5, the GCAM 

which adopts local distribution storage with nonlinear function is discussed. In the GCAM, 

cross-taiks among the FMs are completely eliminated and the differences between auto- and 

mutual-correlations are enlarged. A further investigation into and understanding of the 

Hopfield-type models is made in Chapter 6. Results obtained reveals the intrinsic mechanism 

and critical factors for the associative store/recall. In Chapter 7, we summarise the main points 

of the thesis and outline some directions for further research. 
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Chapter 2 An Overview of Related Works in Neural Associative Memories 

2.1 Capacities of the Hopfield-Type Associative Memories 

Storage capacity has always been a major issue in the Hopfield network. Researchers with 

different backgrounds use different approaches to 

investigate the storage capacity of the 

Hopfield-type associative memories. In these studies, fundamental memories (FMs) are 

generally assumed to be randomly generated. Results discussed below on one hand can help us 

understand the Hopfield-type models, and on the other hand they reveal certain outstanding 

problems that need to be investigated. Some of the problems are addressed in this thesis. 

McEIiece, et ai. [26] theoretically deduced the asymptotic storage capacity of the Hopfield 

associative memory using the information theory. Their results told us that if m fundamental 

memories (FMs) are chosen at random, the maximum asymptotic value of m, in order that 

most of the m original memories are exactly recoverable, is n/(2logn) (n is the dimension of 

FMs). By further imposing the restriction that every one of the m FMs be exactly recoverable, 

m can reach no more than n/(4logn) asymptotically as n approaches infinity. The results 

obtained by Jacyna and Malaret [20] showed that the Hopfield network has major limitations 

when applied to fixed pattern classification problems because of its sensitivity to the number 

of coded vectors stored and the signal to noise ratio (SNR) of the input data. Some similar 

results concerning the storage capacity were provided by Kuh and Dickinson [23], Sussmann 

[44], and Dembo [13】，all of which used other approaches. It was shown in【13】that for 
* 

associative memories composed of n linear threshold functions without self-feedback 

connections, even when the Hamming distances between the FMs are within yn and (l-y)n, 
27 



there are sets of size (l-2y) 1 (for y < 1/2)，the FMs of which cannot be simultaneously stable. 

A similar phenomenon holds for the sum of outer-products connection matrix. 

Abu-Mostafa and Jacques [ 1 ] found out that the asymptotic information capacity of a 

Hopfield network of n neurons is of the order n' hit, and the number of arbitrary state vectors 

that can be made stable in a Hopfield network of n neurons was proven to be hounded above 

by n. 
i 

¥ 

Bruck and Roychowdhury [6] showed that the Hopfield network can result in many 

spurious stable states - exponential in the number of the FMs - even in the case when the FMs 

are orthogonal. 

With respect to the convergence properties of the Hopfield network, the results obtained 

in Bruck (5] revealed that they are dependent on the structure of the interconnections matrix 

and the method by which the nodes are updated. Floreen [ 16] improved the worst-case upper 

bound on the convergence time of Hopfield associative memories to half of its previously 

known value. 

Concerning similar vvbtiwi corresponding to other kinds of neural associative memories, 

Chou [11] derived an asymptotic expression for the capacity of an associative memory 

proposed by Kanerva. Ryan and Andreae [36] experimentally demonstrated a discrepancy 

between Kanerva's theoretical calculation of capacity and the actual capacity, and offered a 

correct theory. They not only suggested a modified method of reading from memory which 

results in a capacity nearly the same as that originally predicted by Kanerva, but also a 

different method of writing to memory which increases the capacity by an order of magnitude. 

In Baram [4] and [37], networks of ternary neurons are considered whose connections are 
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formed by the Hebbian storage rule. The storage capacity is derived. The number of 

connections required by a ternary network depends on the number of stored patterns and can 

be considerably smaller than that of a fully connected network. 

2.2 Improvements Based Upon Global Distribution Storage 

Global distribution storage means that each connection weight represents partial 

information of all FMs, or all the FMs are partially represented by each connection weight. 

2.2.1 Learning Scheme 

Quite a lot of researchers try to decrease noise and/or increase signal to improve storage 

capacities within the framework of the Hopfield-type models. Venkatesh and Psaltis [48] 

proposed ari associative memory that utilizes the spectrum of a linear operator to store the 

FMs. Its storage capacity is linear in the dimension of the FMs. Recurrent strategies for this 

spectral method were developed for their computation. Wang, et al. [50] presented a concept 

of the multiple training for the BAM (Bidirectional Associative Memory) which can be 

guaranteed to achieve correct recall of a single trained pair. And, the dummy augmentation 

proposed can be guaranteed to achieve recall of all trained pairs if. attaching dummy data to 

the training pairs is allowed. Wang, et al. [51 ] derived the necessary and sufficient conditions 

for the weights of a generalized BAM which guarantees the recall of all training pairs. A linear 

programming/multiple training method was proposed to determine the weights that satisfy the 

condition when a solution is feasible. A sequential multiple training method yields integers for 

the weights, where the weights are multiplicities of training of the training pairs. Yen and 

Michel [58] developed a design technique for associative memories with learning and 

forgetting capabilities utilizing the eigenstructure method. In many respects, such a model 
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constitutes significant improvements over the outer-product method, the projection learning 

rule, and the pseudo-in verse method with stability constraints. Wang, et al. [52] applied the 

multiple training concept to the hackpropagation algorithm for use in associative memories. 

The algorithm assigns different weights to various pairs in the energy function. The pair 

weights are updated using the basic differential multiplier method. Oh and Kothari [31] 

described an iterative learning algorithm by which guaranteed recall of all training pairs is 

ensured. The algorithm is based on a novel adaptation from the well-known relaxation method 

for solving a system of linear inequalities. Sudharsanan and Sundareshan |43] obtained various 
« 

results characterizing the equilibrium conditions of a very useful dynamical neural network 

model and a systematic synthesis procedure for designing associative memories with non-

symmetrical weight matrices. Perfetti [34] showed the applicability of the projection rule to 

the design of associative memories based on the neural networks with sigmoidal nonlinearities. 

The method exhibits the features of learning capability, computational efficiency, exact 

storage of binary patterns as asymptotically stable equilibrium points and global stability of the 

network. In Coombes and Taylor [ 12], it was shown how techniques in statistical mechanics 

may be used to structure connection weights which are capable of storing n patterns in a 

Hopfield network of n spins. Simulation results confirmed that n random patterns may indeed 

be stored in the Hopfield network of n spins using a set of weights that are proportional to the 

inverse of the pattern correlation matrix. Basins of attraction may he increased , up to some 

maximum, for a set of stored patterns at the expense of the stability of the remaining patterns. 

This is very similar to that proposed in the model of learning by selection. Parodi, et al. [33] 

showed that in a noise-like coding model of associative memories, the core of the information 
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-coding mechanism lies in the key-production process by which a given pattern is transformed 

into a corresponding noise-like key for both information storage and retrieval. An iterative 

projection rule [55] was constructed to update the connection weights initially defined by the 

Hebbian rule when the FMs are sequentially presented to the network. Nemoto and Kubono [29] 

proposed a complex associative memory in which input and output patterns are vectors of values 1 

and -1，and weights take on complex values. The learning rule for the complex weights was 

developed. The complex associative memory yields better performance than would be predicted by 

the increase of the degree of freedom due to complexification. Gibson and Robinson [17] proposed 

a sparse autoassociative memory model which has its origins in the biologically motivated model 

for memory storage. The network consists of randomly connected excitatory neurons, together 

with an inhibitory interneuron that sets their thresholds; both the degree of connectivity between 

the neurons and the level of firing in the stored memories can he set arbitrarily. Conventional 

statistical methods were applied to analyze its dynamics. The network dynamics are contained in a 

set of four coupled difference equations. In {46], Gibson, et al. studied its stability and bifurcation 

structure. The equilibrium properties were investigated analytically in certain limiting cases and 

numerically in the general case. The regions of parameter space corresponding to stable and 

unstable behavior were mapped. It was shown that for suitable parameter choices, the network 

possesses stable fixed points which correspond to memory retrieval. Yen【57] proposed for the 

BAMs a computationally efficient synthesis procedure which possesses possibilities of exerting 

control over the number of spurious states, estimating the basins of attraction and effectively 

storing a nurrtber of desired stable memories. Schwenker, et al. [38] investigated the pattern 

completion performance of neural autoassociative memories composed of binary thresholded 



neurons for sparsely coded binary memory patterns. By focusing on iterative retrieval, they were 

able to introduce effective threshold control strategies. In a finite-size autoassociative memory, they 

showed that iterative retrieval achieves higher capacity and better error correction capability than 

one step-retrieval. 

2.2.2 Network Structure 

Other than the learning scheme, a lot of researchers have tried to decrease noise and/or 

increase signal to improve storage capacities by means of modifying network structures of the 

Hopfield-type associative memories. 

Simpson [40] proposed a higher-order BAM and then a higher-order intraconnected 

BAMs. Tan [45] devised a data-driven approach by modifying the configuration of the 

Hopfield network to allow for hidden structures which are made by appended vectors. The 

correlation between the Hopfield and hidden networks is made hy the cross products of the 

FMs and appended vectors. The results showed that if the set of the FMs are mutually 

orthogonal, then all of them are fixed points (FPs). If the set of the FMs are not mutually 

orthogonal, they can be orthogonalized by appending to them the appropriate bipolar vectors. 

Wang and Lee [54] constructed a modified bidirectional decoding strategy so that all the given 

training pairs are guaranteed to be recalled successfully with the aid of the augmented 

correlation matrices, the long term memory traces and the activating functions. The model 

saves much more extra connecting weights than the dummy augmentation method [50]. Kang 

[21 ] proposed a triple-layered hybrid associative memory. The first synapse is a one-shot 

associative memory using the modified Kohonen's adaptive leaning algorithm with arbitrary 

input patterns. The second one is Kosko's BAM consisting of orthogonal input/output basis 
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vectors. The third one is a simple one-shot associative memory with arbitrary output images. 

Xu, et al. [56] proposed an asymmetric BAM. It not only can cater for the logical asymmetry 

of interconnections but also is capable of accommodating a lager number of non-orthogonal 

patterns. Buckingham and Willshaw [7] presented five different strategies for setting the 

thresholds of units in partially connected networks. Stiefvater, et a). [42] suggested a general 

design mechanism for the construction of a local neighborhood structure using a statistical 

analysis of an arbitrary given pattern set. Karlholm [22] gave a study of recurrent associative 

memories with exclusively short-range connections. Higher-order couplings were used to 

increase the capacity. Results showed that perfect learning of random patterns is difficult for 

very short coupling ranges. However, by choosing ranges longer than certain limiting sizes, 

depending on network size and order, the theoretical capacity limit can be closely reached. 

Those limiting sizes increase very slowly with the network size. It was found from simulations 

that even networks with coupling ranges below the limiting size, they are able to complete 

input patterns with more than 10% error. 

2.2.3 Nonmonotone Dynamics 

The Hopfield model uses the monotone dynamics to update neuron states. Some 

researchers adopts nonmonotone dynamics for the evolution of networks. 

Morita [28] examined the dynamics of the auto-associative memory, and presented a 

novel neural dynamics which greatly enhances the ability of the auto-associative memory. This 

dynamics works in such a way that the output of some particular neurons is reversed 

(discrete) or the output function is not sigmoid but nonmonotonic (analog). It is because both 

processing methods keep the variances of the weighted summed inputs of neurons, and thus 
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the sum of squares of the overlappings with all the FMs except the target FM, from growing 

too large. Yoshizawa, et al. [59] derived two kinds of theoretical estimates of the absolute 

capacity of the network proposed in [28]. One gave the upper bound 0.5n and the other gave 

the average value 0.4n，which fit well with computer simulations. In Nishimori and Opris [30], 

it was found that a certain type of nonmonotonic input-output relation of a single neuron 

yields an enhanced memory capacity compared with the conventional monotonic relation. The 

maximum capacity obtained is 0.22n which is quite close to the prediction made in [28], [59] 

by simulations of the particular reverse method. De Felice, et al. [15] described the process of 

the activation of a generic neuron by a nonmonotone increasing output function. An iterative 

algorithm, called Edinburgh algorithm was chosen as a learning rule as a modification of the 

Hebbian rule. Wang [49] designed a simple learning approach to store all training patterns 

with basins of attraction as large as possible. In the recall phase, a dynamic threshold rule 

which aims at reducing the probability of converging to spurious states by using a gradually 

decreased threshold was applied. Araki and Saito [2] utilized time-variant self-feedback 

connections. The synthesis procedure guarantees the storage of any desired memory set. 

Englisch and Herrmann [ 14] proposed a model which can reach the theoretically maximal 

storage capacity in the limit of strong bias when an optimized external field is introduced. The 

information processing abilities were calculated in the strongly diluted approximation, and a 

version of the model with nonlinear synapses was dealt with. In Shirazi, et al. (39], Hopfield 

network with ^n < 1) malfunctioning neurons was considered, and the asymptotic storage 

capacity of such a network was derived as a function of the parameter ^ under stability and 

attractivity requirements. 
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2.3 Local Distribution Storage 

Local distribution storage means that each connection weight represents only one element 

of an FM, or one element of an FM is represented by one connection weight. Accordingly, no 

cross-talk exists in the storage of all the FMs. The storage capacity thus obtained is without 

doubt high. Besides, some researchers adopt nonlinear dynamics to enlarge differences 

、 1 

between auto- and mutual-correlations to greatly improve storage capacities. 

Lippman [25] pointed out that the Hamming network has a number of obvious advantages 

over the Hopfield network. The Hamming network implements the optimal minimum error 

classifier, requires much fewer connections, does not suffer from spurious output patterns 

which can produce a "no-match" result. The number of connections in the Hamming network 

grows linearly with n (the dimension of the FMs) while that of the Hopfield network grows as 
% 

the square of n. Meilijson, et al. [27] showed that the activation function of the memory 

neurons in the original Hamming network may be replaced by a simple threshold function. By 

judiciously determining the threshold value, the “winner-take-all” subnet of the Hamming 

network may be altogether discarded. The storage capacity of the resulting network can grow 
r 

exponentially with n. Chiueh and Goodman [8], [9] proposed a model called RCAM 

(Recurrent Correlation Associative Memory) for a class of high-capacity auto-associative 

memories. Its structure is based on a two-layer recurrent neural network and its operation 

depends on the correlation measure. It is asymptotically stable in both the synchronous and 

asynchronous modes as long as the weighting function is continuous and monotone 

nondecreasing. The asymptotical storage capacity of the RCAM's special case - ECAM 

(Exponential Correlation Associative Memory) scales exponentially with the length of the 

35 



FMs, and the ultimate upper bound for the capacity of associative memories is met. Wang and 

Don [53] proposed an exponential BAM which provides a significantly high storage capacity 

for pattern pairs. It utilizes an exponential scheme to magnify the SNR such that the 

enhancement of the similarity between an input pair and its nearest stored pattern is feasible. 

Zhang, et al. [60] discussed the BAM from the matched-filtering viewpoint. Sufficient and/or 

necessary conditions for the stability and attFactivity of equilibrium states were presented. The 

exponential function was also used to enhance the correlations between the binary vectors of 

the retrieval key and that of the stored pattern similar to the key to improve the BAM's 

performance. 

2.4 Transformation Models 

Transformation approaches are more like those introduced in the field of signal, system 

and control. Transformation models arc conceptually different from the Hopfield-type models 

in storing the FMs. 

In Olivier [32】，a procedure for designing linear associative memories allows for exact 

data extraction from uncorrupted keys and minimizes the error between the data vector and 

the extracted vector when the key vector is corrupted hy noise. Zou and Lu [61 ] proposed an 

approach to design the linear associative memories which are optimal in rejection of general 

colored noise in the sense of the least mean square error. Hunt, et al. [19] proposed a model 

which is composed of a nonlinear transformation in the spectral domain followed by the 

association. The Moore-Pen rose pseudoinverst is employed to obtain the least-square optimal 

solution. 
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2.5 Concluding Remarks and Prospectus of this Thesis 

We have made an overall review of the related works in neural associative memories in the 

following aspects: capacities of the Hopfield-type associative memories, improvements based 

upon global distribution storage in terms of learning scheme, network structure and 

nonmonotone dynamics, local distribution storage, and transformation models. Roughly, most 

of the current studies on neural associative memories can be categorized into one of these 

aspects. The work of this thesis is also directed in these fields. 

As we have seen, in order to improve the storage capacity of the Hopfield network, much 

research has been done within its framework in the direction of improving the learning 

schemes and network structures. We consider the uniform encoding/learning of the FMs used 

in the Hopfield-type networks has room for improvement, and hence we propose weighted 

encoding/learning in which different learning weights are directed to the associative recall of 

different FMs. Thereafter, we empirically find and then theoretically prove that there exists a 

parameter, called signal to noise ratio gain (SNRG), which is critical to the successful 

store/recall of FMs. With respect to the learning scheme, several algorithms capable of 

adaptively finding learning weights and neuronal parameters are proposed to construct a 

weighted outer-product learning associative memory (WOPLAM). The WOPLAM is efficient 

in storing and recalling the FMs. 

Although much research has been conducted to improve the storage capacity of the 

Hopfield-type networks, their core processing part - the learning algorithm, still belongs to the 

simple outer-product rule. So, what these research can achieve is clearly limited. In this 

respect, we propose a novel encoding/learning strategy within the framework of the Hopfield-



type associative memories. In the novel encoding/learning method, the connection weights are 

not just decided by the summed products of the corresponding two bits of all the FMs as in 

the Hopfield-type neural associative memories. Summed products of a number of the 

neighboring bits of the corresponding two bits in all the FMs are also taken into account. This 

is the significant difference in the encoding/learning mechanism between the proposed neural 

associative memory and the Hopfield-type models. Nevertheless, the network structure of the 

proposed model is the same as the Hopfield model except that it is with self-feedback connections. 

The retrieval process is also identical to that of the Hopfield model. With the novel 

encoding/learning method being applied, an extreme stability of the FMs can be reached such 

that all of the FMs are FPs. 

Both of the aforementioned studies lie in the framework of the global distribution storage 

of the FMs. Since it has been found that the local distribution storage of the FMs has an 

advantage over the global distribution storage in greatly depressing the cross-talk among the 

FMs as in the ECAM, we make an effort towards encoding the FMs by local distribution 

storage. A Gaussian correlation associative memory (GCAM) is proposed. It is capable of 

overcoming a shortage of limited output responses in circuits implementation suffered by the 

ECAM but still has attractive performances such as the exponentially-growing storage 

capacity, and the controllable radius of attractions through adjusting parameters of the 

Gaussian function. 

In addition to the studies described above, we are still very interested in the problems like: 

Why the Hopfield network has a very small storage capacity, and what factors affect its 

storage capacity. To answer these questions, a further investigation into the upper bound of 
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the asymptotic storage capacity of the Hopfield network is presented in chapter 6. The main 

result obtained is that the asymptotic storage capacity of the Hopfield network, in order that 

all the FMs can be exactly recoverable, does not grow directly proportionally or 

proportionally to the dimension (n) of the FMs but is upper hounded as n approaches infinity. 

The upper bound is not directly decided or decided hy n, hut is directly determined by the 

distribution of the elements of the FMs. 
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Chapter 3 Adaptive Weighted Outer-Product Learning Associative Memory 

3.1 Introduction 

The storage capacity of the Hopfield network has been found to be severely constrained by the 

dimension of the ftindamental memories (FMs). Empirical【18] and theoretical [26] results show 

that its storage capacity, i.e., the number of stably stored FMs, is in general less than 15 percent of 

the FMs' dimension. Generally, the quantity and quality of the recall deteriorate as the number of 

the FMs increases. Sometimes, even when the number is small, the recalls may not be all correct 

(See section 3.5.1 )• To alleviate the limitation, various approaches have been attempted to increase 

the storage capacity over the years [3], [8】，[9], f24], [41 ], [48], [50], [51), [55]. 

Due to the nature of the FMs, we postulate that by assigning different learning weights to 

different FMs, the storage capacity of the Hopfield network can be substantially increased. To 

、 

achieve this goal, we put forth in this paper a Hopfield-type weighted outer-product learning 

associative memory (WOPLAM) with several adaptive algorithms. 

In this chapter, associative memory neural networks with adaptive weighted outer-product 

learning are proposed. For the correct recall of an FM, a corresponding learning weight is attached 

and a parameter called signal to noise ratio gain (SNRG) is devised. The sufficient conditions for 

the learning weights and the SNRGs are derived. It is found both empirically and theoretically that 

the SNRGs have their own threshold values for correct recalls of the corresponding FMs. Based on 

the gradient-descent-search approach, several algorithms are constructed to adaptively find optimal 

learning weights with reference to global- or local-error measure. 
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Section 3.2 briefly recapitulates the background of the Hopfield network and introduces the 

adaptive WOPLAM for performing associative memories. The sufficient conditions of the learning 

weights and the signal to noise ratio gains (SNRGs) are then derived in section 3.3. With respect to 

the WOPLAM, we present in section 3.4 several adaptive algorithms to dynam cally find the 

optimal learning weights on the basis of the gradient-descent approach. Computer simulation 

results are given in section 3.5 to substantiate the theoretical arguments. We then conclude the 

paper by a summary of the study. 

3.2 The Adaptive Weighted Outer-Product Learning Associative Memory 

3.2.1 The Hopfield Associative Memory 

To facilitate our discussion, we first outline in brief the Hopfield network as follows: Given a 

set of m FMs in a Hopfield network, the weight W„H (i, j = 1,2，••.，n) of the connection matrix is 

obtained as: 

in 

lu.^-u；0, if i n 
r=l 

W•丨H = { (3-1) 

where W,,H is the connection strength between neurons i and j in the Hopfield network; n is the 

dimension of the pattern vectors; u⑷，r = 1,2，…，m, are FMs. If sgn{ [W„H] u<p'} = u,p), where [ •] 

denotes a matrix, then u(p> is a fixed point (FP) of the Hopfield network; [W„H] u(p) is a matrix-

vector product; and sgn( . *) is a sign function applied to all elements in a vector resulting from the 

matrix-vector product. The block diagram of the Hopfield network is given below. 
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The block diagram of the Hopfield model. WH = [W./‘] is the connection 

W丨丨”i, j = I, 2,…，II，is the connection weight between neurons i and j. x,. i = 

the input of the network, o,. i = 1,2，“，11, is the output of the network. 



The retrieval process is as follows: 

y ^ l W . ^ x , , -
j=i 

(3-2) 

o,= sgn (y,), 

where xJf j = 1, 2, •••, n, is the network's input; y, is the summed input of neuron i, and o, is the 

output of neuron i, i = 1 , 2 ， n ; and sgn( • ) is the sign function. Assume one of the FMs, u<p), is 

taken as the network's input, we have 
n in n 

y,= I w„ H • u,^' = I I ii, W 
j= I r=l 

in n 

= ( n - l ) u r + 1 1 u : n « (3-3) 

If sgn(y,) = u,<pl, i = I, 2, n, then u<pl is called a fixed point (FP). An essential feature of any such 
a learning rule is that all the FMs must he FPs. A further desirable property is that each of these FPs 

should have a radius of attraction. These two requirements are contradictory ones. Large/small 

number of the FMs will result in small/large basin of attraction. And small/large basin of 

attraction will have large/small number of the stably stored FMs. . 

In eqn.(4-3), the first term can be regarded as a "signal” for the associative recall of u,(pl while 

the second term can be regarded as a "noise". Assume all the FMs are randomly generated from 

symmetric Bernoulli trials, i.e., Prob{ u,(" = 1} = Proh{ u丨…==-"=0.5, i = 1,2，…，n, and r = 1，2， 

...，m. Hence, the elements of the FMs are independent, identically distributed random variables. 

Therefore, we have the following signal to noise ratio (SNR) for the associative recall of u,<p>: 

E[|(n-l)u,,p,|] (n-l) ,/2 

= (3-4) 
in n 

(Var( I I u,(r, u;r) ur)) , / 2 (m-l) ,/2 . 
r= I 冲 ••沟 
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Relatively speaking, the larger is the SNR, the more stable the FMs become. 

3.2.2 The Weighted Outer-Product Learning Associative Memory 

To improve the storage capacity of the Hopfield network, we consider it necessary to allocate 

different learning weights to different FMs because of their varying nature. The model thus 

constructed is called the weighted outer-product learning associative memory (WOPLAM) in 

which the connection weights are obtained as: 

• m 

I o T i T U广， if i 关 j, 

w„w
 二 { (3-5) 

where a(rl is a learning weight associated with the recall of FM u<rl, and an i ( > 0 ) is a real number, 

r=l, 2,…，m; and W丨广 is the connection strength between neurons i and j (i, j = 1,2，…’ n) in the 

WOPLAM. Definitions for the FM and FP of the WOPLAM are the same as those of the Hopfield 

network. (In section 3.4, we will present adaptive algorithms to find the optimal learning weights.) 

To have an insight into the learning weights for successful recalls, we deduce a necessary 

condition for the learning weights as follows. 

Theorem 3-1: If FM u(s) is an FP in the WOPLAM, then its corresponding learning weight satisfies 

the following condition: 

in 

a ( s ) > ( D H - D H ' ) / [ 4 ( n - l ) ] + m - I a,r\ s = 1，2，"., m, (3-6) 

n n n n 

where D H = - I I u,<s) W"H u,,s' and DM' = - I I u；"" W"H u," are the respective 

i=I 户丨 i=i j= I 

energies of u(s) and u<s)' in the Hopfield network; and ulsU is a neighbor one Hamming distance 

away from u(s). The proof is given in Appendix I. The theorem essentially states that any learning 



weight that can lead to the correct recall of its corresponding FM should satisfy inequality (3-6). 

However, it is only the necessary but not the sufficient condition for the learning weights. 

3.3 Sufficient Conditions for the learning Weights and SNRGs 

We state in Theorem 3-2 the sufficient conditions for the learning weights and the parameters 

SNRGs for the correct recall of the FMs. The theoretical work is extended from that of Chiueh and 

Goodman [9]. The proof is given in Appendix II. 

Theorem 3-2: Given a WOPLAM with m randomly generated FMs, each of n-hit long. Start the 

WOPLAM with an input vector that is d| hits away from the nearest FM, where di = p n and p is a 

real number with 0 < p < 1/2. When the following conditions are satisfied 

z 

(m- l) l /2.oT 

G,p> 三 (3-7a) 

( I (a,k>r )l/2 

k=l ‘印 

(m— l)l/2_ a ,p' 

> 

a
印
 

( L ) 

2.(2t)l/2. q(p)- n (m- 1) 

(n - 2pn + I) 

> 

1/2 

(3-7b) 

or 

2 (2t),/2 • q(p)- n I a' 

(n-2pn+ I) 

a(p) > 

ik) 

< p < m. (3-8) 
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the asymptotic storage capacity of the WOPLAM will grow at the greatest rate so that after one 

cycle, the bit-error probability (the probability that a hit in the next-state vector is different from the 

corresponding bit in the nearest FM) is less than (4m) l/2e 'as n approaches infinity (Here t is a fixed 

and large number, and q( • ) is a nonlinear monotonically decreasing function, 0 < q( • ) < 1). 

It should be noted that the right-hand side of ^quality (3-7b) can be treated as the thresholds 

of G's. They are definite and real-valued with respect to a given set of FMs. G<f>, r = 1,2，...，m, are 

important parameters for associative store/recall. Their threshold values imply the degrees to which 

the associative store of the corresponding FMs are required. A larger (smaller) threshold value of 

an FM implies that it is more difficult (easier) to make this FM an FP (to be discussed in this 

section). The learning weights ex's can be varied and can take on different values to meet inequality 

(3-8). 

Based on the above theorem, the following four corollaries are obtained. 

Corollary 1: In a WOPLAM, any FM can be correctly recalled when its G satisfies inequality (3-

7b). 

Corollary 2: In a WOPLAM, any FM can he correctly recalled when its learning weight satisfies 

inequality (3-8). 

Corollary 3: In a WOPLAM, as many FMs as possible or all of them can be correctly recalled 

when as many corresponding G's as possihjc or all of them satisfy inequality (3-7b). 

Corollary 4: In a WOPLAM, as many FMs as possible or all of them can be correctly recalled 
A >： 

when as many corresponding learning weights as possible or all of them satisfy inequality (3-8). 

Now, let us examine the learning weights and the parameters G's. Firstly, inequalities (3-7b) 

and (3-8) imply that thresholds of all G's are equal and so are all the learning weights. However, 
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this conclusion is dependent upon the assumption that all FMs are strictly generated by symmetric 

Bernoulli trials. Actually, neither the learning weights nor the G's thresholds are equal. Given a set 

of FMs, some of them have larger G's thresholds, and need relatively larger learning weights while 

the others have smaller G's thresholds and need relatively smaller learning weights. The larger 

(smaller) the G's threshold is, the greater (smaller) the degree of associative store for the 

corresponding FM is required. 

Secondly, by examining eqn.(3-7a) and, inequalities (3-7h) and (3-8) closely, it is clear that 

given any set of FMs, generally not all of the learning weights can satisfy their conditions 

simultaneously, neither can all of the G's. To achieve the maximum number of correctly recalled 

FMs, learning weights must he chosen properly—neither too small nor too large, so that the total 

number of learning weights or G's that can meet their sufficient conditions can be maximized. This 

can be accomplished by making sonie trade-offs in deciding on the learning weights. If the G's 

threshold of an FM is high (low) then its learning weight should he large (small) as well. The 

strategy basically is to find a set of optimal G's so that the WOPLAM will give the maximum 

number of correctly recalled FMs. 

In what follows, we analyze the G's from the perspective of SNR (Signal to Noise Ratio) 

analysis [26], [48], [9], Through such analysis, we can compare the differences between the 

Hopfield network and the WOPLAM in performing associative memories, and gain an insight into 

the physical meaning of the G's. We can also see the advantages of the WOPLAM and 

consequently the mechanism of the outer-product type associative memories. 
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Assume that the FMs are randomly generated by symmetric Bernoulli trials with -1 and 1 as 

possible outcomes. Suppose one of the FMs, u<p) is taken as an input of the network, for each i = 1, 

2,…，n, 

ill n ([w"w] u<p>),=(n-"k + i i ^-ur-ur-ur. (3-9) 

With respect to the recall of the ith component of the pth FM, the first term in the right-hand side 

of eqn.(3-9) can be viewed as a "signal" while the second term as a "noise". Therefore, we obtain 

the SNR of the ith component of the pth FM as: 

E[|(n-l)a , pV p , l ] 

(Var( 1 I a(f,u:r,-u;r,-u;p,)),/2 

(n-l)a , p ' ( n - D ^ a ^ 、 

= = (3-10) 
m 111 

((n-l) I(a,r>)2),/2 ( I (aiy),c . 
r=l.*p r=l.*p 

In the case of the Hopfield network, with a uniform storage (all learning weights being set to 1) of 

all the FMs, the SNR of the ith component of the pth FM becomes 

E[|(n-l).url】 （n-丨严 
= (3-11) 

in n 

(Var( I Zu/ r).u,VP,” l /2 (m-l) , /2 . 

Considering that an FM cannot be correctly recalled by the Hopfield network but can be correctly 

recalled by the WOPLAM, then we hypothesize that there exists a gain of the SNR in the 

WOPLAM over the Hopfield network. Hence, from eqns.(3-10) and (3-11), the gain of the SNR, 

by the WOPLAM, of the ith component of the pth FM is 
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(n-l),/2a,p' ‘ 

m 

(I(a ,rV) l /2 ( m - l ^ . o T 

r=l.印 
= (3-12) 

m 

(n-D,/2 ( I (a{y) i r2 . 
r=l.*p 4 

/ l、l/2 

( m - 1 ) 

With reference to eqn.(3-7a), we can see that the definition of the G's is the same as that in eqn.(3-

12). Hence, we can consider the G's as the signal to noise ratio gain (SNRG). 

In the Hopfield network, all the FMs are equally stored. It is equivalent to the WOPLAM using 

a unit learning weight for each FM. If all the FMs are strictly generated by symmetric Bernoulli 

trials, then they will have the same SNR as in eqn.(3-l I) for their recall in a probabilistic sense. 

However, this rarely happens, especially in real applications. In fact, given any set of FMs, it might 

he easier to learn some but more difficult to learn the others. Easy-to-learn FMs might need smaller 

SNRs (might be smaller than that in eqn.(3-l I)) while difficult-to-Icarn FMs might need larger 

SNRs (might be larger than that in eqn.(3-11)). Therefore, storing the FMs equally in the Hopfield 

network is inadequate and ineffective when the FMs are not randomly generated. This problem, 

nevertheless, can be handled by the WOPLAM 

3.4 Search of the Learning Weights Through Adaptive Learning 

In this section, we present several algorithms for adaptive search of the learning weights. They 

are based on the gradient-descent approach [35]. Although this approach is subject to al! the usual 

problems such as local trapping, initialization and numerical convergence, it can still locate the 

optimal learning weights. It is worth mentioning that there are some other alternatives for 

optimization computation. For example, by combining characteristics of the simulated annealing 
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algorithm arid neural network, Van Den Bout and Miller [47】developed an algorithm for graph 

partitioning called MFA (Mean Field Annealing) which exhibits rapid convergence resulted from 

the neural network while preserving the solution quality afforded hy simulated annealing. 

Initially, we have no information on the optima) learning weights. The adaptive algorithm is 

controlled by minimizing the sum of squared errors between the FMs and their corresponding 

temporal output vectors of the network when these FMs are used as the respective inputs of the 

WOPLAM. The elements of the temporal output vectors take on real values from -1.0 to 1.0 

during the learning process. The incorporation of a continuous optimization technique into a 

bipolar design sometimes does yield a better design than methods simply based on a hard bipolar 

design process. 

s 

In the following subsections, we will describe several adaptive algorithms for optimizing the 
9 

learning weights based upon different error measures. We first present the glohal-error-measure 

algorithm which searches for the optimal learning weights based on the overall system error. To 

reduce computation complexity, we propose a local-error-rrjcasure algorithm in which the optimal 

learning weights are searched with reference to only the errors of the FMs concerned. To 

accelerate the adaptive process of both algorithms, we then construct two other algorithms by 

adaptively adjusting the key parameters in the global- and local-error-measure algorithms 

respectively. 

3.4.1 Global-Error-Measure Algorithm 

Assume that one of the FMs, u<p> (I < p < m), is taken as an input to the network, then the 

corresponding summed input of the ith neuron (1 < i < n) is: 

m n 

y,(p)= ([W.H u^), = (n- 1)- oT. u,,p) + I I a(". u,⑴-u,m- u/p,. (3-13) 

50 



To adaptively update the learning weights, a sigmoid function is adopted to produce the neuron's 

output or state as: 

2 

o,,p) = f(y,<p>) = 1 . (3-14) 

1 +exp(-p,(yi
,p,-p2)) 

The parameter Pi controls the steepness of this function which is symmetrical around (3：. For the ith 

element of the FM, u<p), the associative recall error is: 

F r = (u:p,-o,,p))2 =(ur-f(y, , p ,)) : . (3-15) 

The overall error of the system can then be written as: 
tn n m n 

F = I I F,(r) = I I(ur-f(y：')) 2. (3-16) 
r=l i=l r=l i=l 

Finding the optimal learning weights should be in such a manner that the error F of eqn.(3-!6) is 

reduced as rapidly as possible. This can he achieved hy going in the direction of the negative 

gradient of F. The incremental change of a specific learning weight a'r' is obtained hy the chain rule 

[35] as follows: 

dF 

Aa ( p ) = -r| ， (3-17) 

aa(p) 

where r| (> 0) is a real-valued parameter controlling the convergence rate of the updating process, 

dF m n dF： 0 m n dF： 0 df dy,⑴ 

一 = 1 1 一 ： X I da ( p ) ,=. aa ( p ) r=i,=i df dy, ( r > da ( p }  

m n 

= 1 I ( 一 2 ) (u,,r>- f(y,<")H-2H-pl> exp(-pl(y:"- P：)) 



iur-u; p ,-u,m 

(I +exp(-P丨(y:"- p2)))
2 

m n n 
(t) r / - . ( r K v / I f^/y.^w V . . <p) t l < p ) " � 

= (-P,) I I (u/ r ,-f(y: r ,)HI-f'(y: r ,))-Iur u r-u ; n . (3-18) 
r=l i=l j=l .*i 

Hence, we obtain a rule of updating the learning weights as follows: 

、 3F 

a(p,(t+l) = a,p,(t) - r| 

aa(p,(t) 

=ot,p,(t) + P, ri I I (Ui…-f(y,,r')) ( I 一 fiy： 0))-1 ur-u^ ur . p =1，2，..., m. (3-19) 
r=l i=l )=l.*i 

Since the algorithm is controlled by the negative gradient of the overall error F (eqn.(3-16)), we 

then call it a global-error-measure algorithm. The algorithm's computational complexity is 

estimated as follows: 

NT = {[1 + 1 + 1 + 1 + 1 +2n-3]mn}m 二 2m:n: + 2m:n, (3-20) 

where K v is the number of elementary operations (including multiplication, addition and 

subtraction) required to update all the learning weights once. Eqn.(3-20) tells us that using such an 

algorithm must bear quite a heavy burden in computation. 

3.4.2 Local-Error-Measure Algorithm 

In order to decrease the computational complexity, we make a modification to the above 

algorithm with the incremental change of any specific learning weight being controlled only by the 

error of its corresponding FM instead of the overall error of the system as in eqn.(3-16). We call 
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this modified algorithm a local-error-measure algorithm. The incremental change of a(pl is as 

follows: 

dF 

Aa ( p > = -r| (3-21) 

da! p >， 

F = i F r , 
1=1 

dF n ()F:P>
 n clfr df dyr 

一 = I 一 = I  

aoT aa ( p l ,=1 r)f cly, ( p ) doT 

n 

=-Pr(n-l)-1(u, , p )- f(y,<p,)) (I - (%广)).n,‘p丨. (3-22) 
i=i 

Hence, the rule of updating the learning weights becomes: 

dF 

a , p , ( t - f l ) = a , p , ( t ) 一 r|  

M p ,(t) 

n 

=a<p'(t) + P, n (n - I) I (u,,p)- f(y! r )))i I - r2(y,(r,)) u1
(p', p= 1,2, • m. (3-23) 

»=i 

The computational complexity of the local-error-measure algorithm now becomes: 

N<ip = [(1 +1 +1 +1 +1 )njm = 5mn. (3-24) 

From eqns.(3-20) and (3-24)，we can see that the computational complexity has been greatly 

reduced. 

3.4.3 Adjustments of Neuronal Parameters 

Although both the local- and global-error-measure algorithms are effective in terms of the 

convergence speed and computation quality, we would like to consider other possible 

improvements. In the adaptive processes previously described, the convergence speed and 



t 

computation quality are also iiffected by the parameters Pi and p2 in eqn.(3-14). Generally, they can 

simply be pre-selected and kept constant throughout the updating process. Nevertheless, keeping 

these parameters constant will affect both the convergence speed and computation quality. Hence, 

selection of proper values of (3| and (5： is crucial to the performances. We therefore propose new 

algorithms which also adaptively adjust the values of (ii and p2. Their updating processes are dealt 

with in the same manner as those of the learning weights. 

With respect to (3丨’ we have 

3F 
A(i, = -ti , (3-25) 

ap. 

3 F m n 3 F , < n in n … 

— = I I — 二 I X  

in n 

= - I Z ( U , , r ) - f(y/")).(y/r>- p:)(丨 一 f2(y广>). (3-26) 
r=l i=l 

With respect to p2，we have 

3F 
Ap2 = -r| ， (3-27) 

ap： 

d F m n 3 F , ' r > tn n O F , … ^ f 

——=11 ——=11 
邓2 r̂ l i:l 丨:l 邓： 

m n 

= P, I I (u,m - f(y,<"))•( 1 - f2(y/")). (3-28) 
r̂ l i=l 

Hence, the updating rule for Pi is: 

d F 

P,(t+l) = P , ( t ) - T l  

api(t) 
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=Pi(t) + Ti l I (u•⑴-f( W (y,‘" 一 (i2(t))- (1 - fV丨))； (3-29) 
r̂ l i=l 

and the updating rule for (3： is 

dF 

p2(t+l) = P:U)-n  

it) n 

=(3:(t) - n P . ( t )-11 (u,,r'- f(y,,r>)) ( I - f2(y/")). (3-30) 
n=!i=l 

From eqns.(3-29) and (3-30), we can estimate that the computational complexity of adjusting pi 

and P： is lOmn. Adding this improvement only leads to a slight increase in computational 

complexity, but it greatly accelerates the adaptive process while maintaining the computation 

quality. 

It should be noted that in eqns.(3-19), (3-23), (3-29) and (3-30), we, for simplicity of 

description, use a uniform real-valued parameter r| to control the convergence rates of updating the 

learning weights, |5| and P:. Actually, r\ will be different for different cases. 

The new algorithm based on the glohal-error-nieasure including the adaptive adjustments of Pi 

and p2，is described as follows: 

(a) Initially set all learning weights to 1. Initialize P and 6. Construct a WOPLAM with eqn.(3-5). 

(b) Sequentially input the FMs and compute the neurons' summed inputs and temporal outputs 

with eqns.(3-13) and (3-14). 

(c) Adjust pi and p2 with eqns.(3-29) and (3-30) respectively. 

(d) Update the learning weights using eqn.(3-19). 

(e) Reconstruct the WOPLAM with eqn.(3-5) using newly obtained learning weights. 



(f) Repeat by going back to step (b) until all the learning weights, (3 and Bconverge. 

The modified algorithm based on the local-error-measure is the same except for cqn.(3-19) in step 

(d) being replaced by cqn.(3-23). 

3.5 Experimental Results 

This section is divided into two parts. The first part involves the use of representative examples 

to visualize the importance of the SNRGs for associative store and recail. The second part shows 

computer simulation results of the WOPLAMs using adaptive algorithms to recall randomly 

generated FMs. 

3.5.1 Representative Examples 

In this subsection, we shall demonstrate the importance of the learning weights and the SNRGs 

without using any adaptive algorithm. In the computer simulations, the computation of associative 

recall is conducted in a synchronous mode. We would like to observe whether or not the FMs are 

fixed points (FPs). 

Fig.3-1(a) shows the four digital images (in black and white) used. Each has 60 rows and 40 

columns giving a total of 2400 pixels. In the simulations, the FMs are obtained by sampling every 

other pixel resulting in 1200 elements (-1 or +1) in each FM. Fig.3- 1(h) is the result using the 

Hopfield network which gives only one FP. 

Through a good number of tests, rt is found empirically that FMs 1, 2, 3 and 4 can become FPs 

when G , h , G<2), G(1) and G,4) are larger than or equal to 0.8115, 1.1882，1.2603 and 1.1547, 
« 

respectively. It because the distribution of the elements (—1 or +1) of the four FMs are different, 

their thresholds are naturally different. Although these thresholds are empirically obtained and may 
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be slightly different from the optimal ones, they can shed some light on the importance of the 

SNRGs' thresholds to the associative recall performance. The experiments are repeated with other 

sets of FMs and similar results are obtained. From these results, we conclude that the SNRGs have 

their own thresholds and the FMs can he correctly recalled when their corresponding SNRGs are 

larger than or equal to their thresholds. 

Next, we try to maximize the number of FPs by maximizing the number of the learning weights 

with their corresponding SNRGs being larger than or equal to their thresholds. By eqn.(3-12), we 

find that only three of the SNRGs can he made larger than or equal to their corresponding 

thresholds at any one time. Due to such a limitation, the maximum number of FPs is three in this 

case. We can choose any three of the FMs to be FPs by appropriately setting the learning weights 

as shown in Fig.3-2. Tables 3-1 and 3-2 give the learning weights and SNRGs for the cases shown 

in Figs.3-1 and 3-2 respectively. From the values given, we can see that the effect of using the set 

of learning weights (2，2, 2, 2) is the same as that of learning weights 11, 1, I，I). Actually, a set of 

learning weights can be normalized. 
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Figure 3-1. Expci iiiicmal results obtained hy using the WOPLAM with different sets of learning 

weights ((X111. (Xl2), (x<”,（x'“). All sets ol learning weights arc chosen arbitrarily, (a) The four FMs 

(Tlicy are taken as the network's inputs), (h)-(m) Results of the WOPLAM by different sets of 

learning weights, (h) (I, I, I, I). (The ease of the Hopfield network), (c) (2，2, 2，2). (d) (I, 2, 2, 

2). (e) (2. 3, 3, 3). (0(1 , L 1,2). (g) (2, 2, 3, 2). (h) (1,丨，2, 2). (i) (3’ 4，4’ 3). (j) (2. 3, 2’ 2). (k) 

(4, 6, 6’ 4). (I) (4, 5, 5，4). (m) (5, 6, 6, 5). 
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(a) 

里4，igure 3-2. limpirical results obtained hy clllcieiitly utilizing the WOPLAM with different sets of 

learning weights (« l h , (x<2), (/”，a"'). All sets of learning weights arc empirically found and chosen 

so that as many SNRGs as jxjssihlc aic nuidc lo he larger than or equal to their corresponding 

thresholds. In (his example, the maximum number of FFs is 3. (a) The four FMs (They are taken as 

the network's inputs), (h)-(e) Results of the WOPLAM with different sets of learning weights, (b) 

(4.2, 5.7, 5.7, 3.0). (c) (0.7, 3.4, 3.5, 3.3). (d) (3.0，4.0,0.7, 4.0). (e) (2.7, 0.7，3.4, 3.5). 
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a(1) a(2) a(3) (4i 
a ' 

G⑴ G(2) G(3) G(4) 

1 1 1 1 1.0000 1.0000 1.0000 1.0000 

2 2 2 2 1.0000 1.0000 1.0000 1.0000 

1 2 2 2 0.5000 1.1547 1.1547 1.1547 

2 3 3 3 0.6667 1.1078 1.1078 1.1078 

1 1 1 2 0.7071 0.7071 0.7071 2.0000 

2 2 3 2 0.8402 0.8402 1.5000 0.8402 

1 1 2 2 0.5774 0.5774 1.4142 1.4142 

3 . 4 4 3 0.8115 1.1882 1.1882 0.8115 

2 3 2 2 0.8402 1.5000 0.8402 0.8402 

4 6 6 4 0.7385 1.2603 1.2603 0.7385 

4 5 5 4 0.8528 1.1471 1.1471 0.8528 

5 6 6 5 0.8793 1.1206 1.1206 0.8793 
Table 3-1. Learning weights and SNRGs of the cases in Fig.3-l(bHm). The single underlined 

SNRGs are the ones sufficient for their corresponding FMs to be FPs. The double underlined ones 

are the empirically obtained thresholds for their corresponding FMs to he FPs. 

AO) A(2) A(3) A(4) G(1) G(2) G⑶ G(4) 

4.2 5.7 5.7 3.0 0.8458 1.2839 1.2839 0.5717 

0.7 3.4 3.5 3.3 0.2058 1.2115 1.2657 1.1595 

3.0 4.0 0.7 4.0 0.9116 1.3723 0.1894 1.3723 

2.7 0.7 3.4 3.5 0.9487 0.2174 1.3158 1.3785 

Table 3-2. Learning weights and SNRGs of the cases in Fig.3-2(bHe). The "underlined" has the 

same meaning as that in Table 3-1. 
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3,5.2 Computer Simulations of the Adaptive Algorithms 

In this subsection, we evaluate our adaptive WOPLAMs with randomly generated FMs. All 

experiments are conducted by varying the number of FMs (m) with the dimension (n) fixed. The 

recall results obtained by various adaptive algorithms are depicted in Figs.3-3 一 3-5. In these 

figures, "Local WOPLAM 1" and "Local WOPLAM 2" represent respectively the local-error-

measure WOPLAMs without arid with the adjustments of Pi and p： in eqn.(3-14). On the other 

hand, "Global WOPLAM I" and "Global WOPLAM 2" represent respectively the globaJ-error-

measure WOPLAMs without and with the adjustments of Pi and p2 in eqn.(3-14). Every point on 

all the curves in these figures is the mean of the results obtained from 10 different sets of data. 

Generally, the WOPLAMs perform better than the Hopfield network in terms of storage capacity 

and associative recall. From these figures, it can be observed that the storage capacities of the 

WOPLAMs with the adaptive algorithms vary approximately between 20 to 30 percent of the 

FMs' dimension. It should be mentioned that the results depend on the value of r| in eqns.(3-19), 

(3-23), (3-29) and (3-30)，and the initial values of pi and p： in eqn.(3-14). We did not fine tune 

these values in our simulations, otherwise better results could be obtained. 

When m is small there is almost no difference among the four kinds of WOPLAMs in terms of 

the storage capacity and associative recall. When m becomes large, the global WOPLAMs have 

larger storage capacities and better association abilities than the local ones. The reasons for these 

results are that in the "local" algorithm the updating of each learning weight is decided by its own 

behavior and the interactions between different learning weights are not taken into account. While 

in a "global" algorithm the updating of each learning weight is decided not only by its own behavior 

but also by that of all other learning weights. Hence, the interactions between different learning 
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weights are accounted for. When m is small those interactions are small and can almost be 

neglected, resulting in the global and local algorithms having almost equivalent performances. But 

when m is large, these interactions are great and cannot he neglected any more. Hence, the "global" 

algorithms provide better association performances than the "local" ones. The two global 

WOPLAMs，without and with the adjustments of pi and p:, have similar association performances. 

Similarly, the two local WOPLAMs also have similar association performances. 

Simulation results also reveal that the adjustments of Pi and p2 greatly accelerate the adaptation 

process without degenerating the overall association performances. Results concerning the 

convergence speeds are depicted in Figs.3-6 一 3-8. The computation speed can be improved by an 

order of magnitude. Despite the obvious higher complexity of the global model compared with that 

of the local one，the addition of the acceleration algorithm (by adjusting Pi and p：) to the global 

model results in a computation speed faster than that of local WOPLAM 1. 

We can summarize our simulation results of the WOPLAMs into two points as follows: 

(a) The accelerated global WOPLAM gains substantially in convergence speed without any loss in 

the storage capacity and hence is considered the best amongst the four new models. 

(b) Considering speed alone, the local WOPLAM with the adjustments of Pi and (3： has the fastest 

convergence but does not yield ideal storage capacity. 
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Figure 3-4. Simulation results of n=20. 
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Figure 3-5. Simulation results of n=50. 
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Figure 3-6. Convergence speed comparison between different WOPLAMs(n=1Q). 
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Figure 3-7. Convergence speed comparison between different WOPLAMs(n=20). 
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Figure 3-8. Convergence speed comparison between different WOPLAMs(n=5Q). 
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1 

Finally, it is worth mentioning that using the adaptive algorithms can achieve the minimization 

of the overall-error between network outputs and their corresponding FMs. When the number of 

FMs is small, minimizing such an overall-error is almost equivalent to having all of the FMs be FPs. 

However, when the number of FMs is large, the number of FPs achieved under such kind of error 

measure may only be a maximum one. In this case, a maximum number of FPs will he obtained by 

sacrificing a small (minimum) number of FMs (hy allocating very small learning weights to them) if 

needed. In other words, in the WOPLAM, given a set of FMs, if it is impossible to make all the 

FMs be FPs, then a maximum number ot FMs will he made to become FPs at the expense of the 

stabilities of the other remaining FMs. 

3.6 Conclusion 

The concept of adaptive weighted outer-product learning has been proposed for the encoding 

of the FMs in Hopfield-type networks. The model - WOPLAM proposed improves the 

performances of associative storage and recall of the FMs. Sufficient conditions for the learning 

weights and SNRGs are deduced in a probabilistic context. It has been demonstrated that each 

SNRG has its own threshold and any FM can be correctly recalled when its SNRG is larger than or 

equal to its threshold. In principle, the asymptotic storage capacity of the WOPLAM will grow at 

the greatest rate when all the SNRGs or learning weights satisfy the corresponding sufficient 

conditions. Several gradient-descent algorithms capable of dynamically finding the optimal learning 

weights have also been implemented. In general, the WOPLAM, with the use of an adaptive 

algorithm, has the storage capacity of up to 0.2n to 0.3n or above. 
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Chapter 4 A Novel Neural Associative Memory with Maximum Stability 

4.1 Introduction 

Hopfield proposed an outer-product based neural associative memory in his seminal paper 
• 

[18]. Since its storage capacity was found to be severely constrained both empirically [18] and 

theoretically [26], much research has been done for the improvements of the storage capacity 

and the associative recall by various approaches [3],【8], [9], [28j, [30], [48], |50], [51】，[54|, 

[56], [59], [60]. It should be pointed out that the examples listed on the BAM (Bidirectional 

Associative Memory) is in principle also effective for the Hopfield-type neural associative 

memories. In other words, the examples cited above can improve the performances in terms of 

the storage capacity and associative recall at the expense of very high extra costs, such as 

computation, network structure and hardware implementation complexities. 

In this chapter, we propose a novel neural associative memory based on a new encoding 

strategy. Unlike the pointwise outer-product rule commonly used in the Hopfield-type models, 

the novel encoding method computes the connection weight between any two neurons 

(including self-feedback connections) by summing up not only the products of the 

corresponding two bits of all the fundamental memories (FMs), but also the products of their 

neighboring bits as well. The widely-used signal to noise ratio (SNR) and dynamic approaches 

are utilized to theoretically investigate the performances in terms of stability and attractivity. 

Both theoretical and experimental results show that the proposed modeKs very^powerful in 

maximizing the stability and thus making as many FMs as possible be fixed points ^FPs). 
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In the following part of this chapter, section 4.2 presents the novel encoding strategy for 

the neural associative memory. The stability and attractivity of the proposed model are 

analyzed theoretically in detail in section 4.3. Simulation results are given in section 4.4， 

followed by some concluding remarks. 

4.2 A Novel Encoding Strategy Based Neural Associative Memory 

Assume there are m FMs, u<r', r = 1,2, .“，m, stored in the network, each with n-bit long. The 

connection weights computed by the novel encoding strategy are as follows: 

L m 

w „ = 1 l u t ^ ( t ) i , j = 1,2, ...,n, (4-1) 
t=l r=l 

where W(J is the connection weight between neurons i and j , and L is an integer in the range of 1 < 

L < n. Observing eqn.(4-1), we can see that the connection weights are not just decided by the 

summed products of the corresponding two bits of all the FMs as in the Hopfield-type neural 

associative memories. Summed products of a number of neighboring bits of the corresponding 

two bits in all the FMs are also taken into account. This is the significant difference between 

the proposed neural associative memory and the Hopfield-type models. Nevertheless, the 

network structure of the proposed model is the same as the Hopfield model except that it is with 
t * 

self-feedback connections. The retrieval process is also identical to that of the Hopfield model as 

eqn.(3-2). In other words, once the proposed model is constructed, its complexities in terms of the 

network structure and the recall operation are equivalent to those of the Hopfield modeL 

The integer parameter L in eqn.(4-l) is defined as the length of a neighboring range of each bit. 

The neighboring range of each bit can be chosen from one side (either right-hand side or left-hand 

side) or both sides. It can also be specifically designed on the basis of concrete applications. In this 



paper, without the loss of generality, only the right-hand-side neighboring range is used for 

computation. Besides, in eqn.(4-1 )，when k > n, we set iV" = u卜”⑴.In eqn.(4-1 )，when L = 1, the 

proposed neural associative memory reduces to the first-order outer-product neural associative 

memory which is the same as the Hopfield model except for the self-feedback connections. 

Suppose one of the FMs, u(p), is taken as a retrieval key input, then we have 

y,= 口|丨.1]广 (4-2) 
J=« 

Replacing W丨丨 in eqn.(4-2) with eqn.(4-1 )，we have 

L m n 

y, = 1 1 l u ^ r - u ^ r - u r 
t= I r=l i=l 

m n L - l n in 

= (n + L m - l ) u r + 1 1 u , W + I I I (4-3) 
r=l.̂ p j=l.*i |=丨 |=|,灼 r=l 

The first term in the right-hand side of eqn.(4-3) can he regarded as a "signal" for the associative 

recall of u,<p), while the last two terms can be regarded as a "noise". We make the same assumption 

as in the Hopfield model in section 3.1 that all the FMs are randomly generated from symmetric 

Bernoulli trials. Accordingly, we obtain an SNR for the associative recall of u,<p) in the proposed 

model as follows: 

E[ | (n + L m - l ) u l ' p , | ] 

m n L - 1 n m 

V a r d lur-ur-ur + 1 1 I u j r , u ^ - u r ) ) l / 2 

r=l.*pj=l.*« 丨 j=l,*jr=l 

n + Lm-丨 n + L m - l 
= (4-4) 

( ( m - l ) ( n - l ) + ( L - l ) ( n - l ) m ) , / 2 ( (n-1 ) ( L m - 1 )) l / : 
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Comparing eqns.(3-3) and (4-3), we can see that on one hand, the "signal" in eqn.(4-3) is 

greatly enhanced when L and/or m are large; on the other hand, although the number of terms 

comprising the "noise” in eqn.(4-3) also increases when L and/or m are large, relatively, the 

"noise” is not enhanced as much as the "signal” so long as all the FMs are randomly generated 

from symmetric Bernoulli trials. 

4.3 Analysis of the Stability and Attractivity 

There are two fundamental requirements for associative memories: The first one is the stability 

of the FMs, i.e., all the FMs should be FPs; and the other is the attractivity of these FPs, i.e., these 

FPs should have a radius of attraction. 

It is commonly known that when x is one of the FMs, u<p丨，we say that u,p) is an FP if and only if 

y, • u,<p) > 0, i = 1, 2, n; and when x is an "error" version of one of the FMs, u<p), we say that u(p) 

can be correctly recalled if and only if y, • u,,p' > 0, i = 1,2，…，n. Based on such a concept, we will 

derive some theoretical results to compare the performances among the Hopfield model, the first-

order outer-product model with self-feedback connections, and our proposed model in terms of the 

stability and attractivity. 

4.3.1 Stability Analysis 

First, we will analyze the stabilities of these three associative memories. Here, FM u(p) is taken 

as the network's input (The detailed proof is given in Appendix III). 

4.3.1.1 The Hopfield Model 

We have the following respective results: 

n — m 
\C(u i r\ u,p>)|trett < (4-5) 

m — 1 ， 

73 



n(m - 2) + m ‘ « ) > 

2(m - 1) 
(4-6) 

n -
m < 

n-2dmin(u ( r ,,u (p>) 
I . 

where 

|C(u(r,,u(p>)U = l l ^ ' u r u = n-2cWn<r,，U
<p>), 

r̂ p j= I r̂ p r̂ p 

d(u⑷’ u(p>) = min[ H(u(p>, u(r>), H(u,p), -u<r>)】， 

(4-7) 

(4-8) 

(4-9) 

and H stands for the Hamming distance. Hence to the Hopfield model, eqn.(4-5) or eqn.(4-6) is a 

necessary and sufficient condition for the FMs to be FPs. Eqn.(4-7) gives the maximum number 

of the FMs that can become FPs, given the minimum distance between any two FMs, dinin(u<r),u(p>), 

=1,2,…， r ru 关 p 

4.3.1.2 The First-Order Outer-Product Model with Self-Feedback Connections 

The connection weights of this model are computed as follows: 

m 
w „ = W ， U = 1,2, •，n. 

They are the same as those of the Hopfield model except the self-feedback connections being not 

set to zero. V/e have the following respective results: 

n 
|C(u⑷’ u ^ U x < (4-10) 

nep m — 1 , 

n(m - 2) 
( W u⑴，⑶ > (4-11) 
阿 2(m — U , 
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+1 
n-2dmin(u

<r,,u(p>) 
(4-12) 

Here, the definitions of |C(u,r), u(p>)|irax and d(u⑴，u<p>) are the same as in the Hopfield model. 

Hence, for this model, eqn.(4-10) or eqn.(4-l 1) is a necessary and sufficient condition for the FMs 

to be FPs. Eqn.(4-12) gives the maximum number of the FMs that can become FPs, given the 

minimum distance between any two FMs, u<r), u(p>), r = I, 2,…，m , ^ p . 

4.3.1.3 The Novel Encoding Strategy Based Neural Associative Memory 

The following theorem gives the theoretical relationship between the length (L) of the 

neighboring range of each bit and the requirement for the FMs to he FPs as well as the maximum 

number of the FMs that can be FPs. 

Theorem 4-1: (i) Assume u<rl, r = 1, 2, • •，m, are m randomly generated FMs. An FM u<pt will be 

an FP if and only if 

n + m(L — 1) 
|C(u⑴，u<p>)Ux S (4-13) 

m — 1 ， 

n (m- 2) - m ( L - I) 
d,„n(u

<rt，u<p>) > (4-14) 
r^ 2 ( m - 1) , 

where I C C u ^ ^ ^ U = 1 1 u；0• U j , p ) U = n - 2d瞧—"，u<p>), 

d(u⑴，！！明）=min[ H(u(p), u(r>), H(u<p), -u(r>)】，and H stands for the Hamming distance, 

(ii) Given the minimum distance between any two FMs, drnm(u<r>, u,p>), r = 1,2，...，m，本 p，the 

maximum number of the FMs that can become FPs is 



2n-2dmin(u ( r ) ,u (p>) 

m < (4-15) 
n _ ( L _ 1) - 2cU(uw，u<p’) • 

Theoretically, from eqn.(4-15), we can see that larger L will result in greater number (m) of the 

stably stored FMs which means that the usage of L will enhance the stability of the FMs. Given a 

set of the FMs, if a sufficiently large value of L can result in making all the FMs be FPs, then we 

define such a case an extreme stability of the associative memory. On the other hand, given a set of 

the FMs, if a sufficiently large value of L can result in making as many FMs as possible be FPs, 

then we define such a case a maximum stability of the associative memory. 

Comparing eqns.(4-5), (4-6), (4-7), (4-10), (4-U), (4-12), (4-13), (4-14) and (4-15), we can 

see that in the proposed model, the integer parameter L can be used to increase the stability of the 

FMs significantly. Eqn.(4-13) tells that the longer/shorter the L is, the greater/smaller the maximum 

mutual correlation will be allowed; Eqn.(4 14) tells that the longer/shorter the L is, the 、〜 

smaller/greater the minimum extensive distance will be allowed. In other words, the larger/smaller 

‘ t h e neighboring-range length L is, the looser/tighter the condition of the elements distribution of the 

FMs will be required for them to become FPs, and thus the greater/less the stability of the FMs will 

be. This is clearly implied by eqn.(4-15). As a result, great stability of the FMs can be achieved in 

the proposed model. By the loose condition of the elements distribution of the FMs required for 

them to be FPs, we mean that any two of the FMs can be allowed to be quite similar between 

- > 

themselves which means that they can be allowed to be quite mutually correlated or to be quite 

near in the extensive distance defined by d(u<r)，u<p>)’ r = 1,2，. •，m,本 p，and vice versa. Finally, 
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those equations also imply that the first-order outer-product model with the self-feedback 

connections performs better than the Hopfield model with respect to the stability. 

4.3.2 Attractivity Analysis 

We will analyze the attractivities of these three associative memories in the following 

subsections. Here, the network's input x is an “error” version of FM u,p>. The Hamming distance 

between x and u(p) is di bits (The detailed proof is given in Appendix III). 

4.3.2.1 The Hopfield Model 

We have the following respective results: 

n - m - (m - 1 )-Cinax 

d, < (4-16) 
2m ， 

n + Ctnax 

m < (4-17) 
1 + C„m + 2d I . 

where Cinax is the maximum correlation among ail the FMs. Hence to the Hopfield model, eqn.(4-

16) is a necessary and sufficient condition of the radius of attraction for each FM. Eqn.(4-17) gives 

the maximum number of the FMs that have the radius of attraction (d|), given the maximum 

correlation among all the FMs. 

4.3.2.2 The First-Order Outer-Product Model with Self-Feedback Connections 

We have the following respective results: 

n - ( m - D - C ^ 
d, < 丨 (4-18) 

2m ， 、 

n + C,nax I 

m < 、 (4-19) 
2d I + C , m * , 
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where Cinax is the maximum correlation among all the FMs. Hence to this model, eqn.(4-!8) is a 

necessary and sufficient condition of the radius of attraction of each FM. Eqn.(4-19) gives the 

maximum number of the FMs that have the radius of attraction (d丨)，given the maximum 

correlation among all the FMs. 

4.3.2.3 The Novel Encoding Strategy Based Neural Associative Memory 

The following theorem gives the theoretical relationship between the length (L) of the 

neighboring range of each bit and the radius of attraction of each FM as well as the resulting 

maximum number of the FMs. 

Theorem 4-2: (i) Assume u(r', r = 1 ,2，•"，m , are m randomly generated FMs. Suppose the 

network's input x is di hits away from the corresponding FM utp>. FM u(p) can be correctly recalled 

from x if and only if 

n - m(L - l ) - ( m - 1 )C,IUX 

d, < (4-20) 
2m ， 

where C„ m is the maximum correlation among all the FMs; 

(ii) Given the maximum correlation among all the FMs, the maximum number of the FMs that have 

the required radius of attraction is 

m < (4-21) 
2d丨+ L - 1 + C 舰 . 

Comparing eqns.(4-16), (4-17), (4-18)，(4-19), (4-20) and (4-21), we can see that in the 

proposed model, the integer parameter L will decrease the radius of attraction of each FM, or will 

decrease the maximum number of the stably stored FMs that have the required radius of attraction. 

Eqn.(4-18) tells that the longer/shorter the L is, the smaller/greater the di will be allowed. In other 

華 
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words, given a set of the FMs, the longer/shorter the L is, the smaller/greater the radius of 

attraction of each FM can be achieved. Eqn.(4-19) tells that given a radius of attraction of the FMs, 

d|, the longer/shorter the L is, the smaller/greater the maximum number of the stably stored FMs 

can be achieved which have the required radius of attraction. As a result, large length of the 

neighboring range (L) will decrease the radius of attraction of the FMs, or decrease the maximum 

number of the stably stored FMs that have the required radius of attraction of the FMs. Moreover, 

the equations also imply that the first-order outer-product model with the self-feedback 

connections performs better than the Hopfield model with respect to the attractivity. 

Finally, from the discussions of the above two subsections, we reach a conclusion that in the 

novel encoding strategy based neural associative memory, extreme stability of the FMs can be 

achieved at the cost of their attractivity. With the neighboring range being introduced into the 

learning/encoding of the FMs, the longer/shorter the length of the neighboring range is applied, the 

more/less stable the FMs are, and the less/more attractive the FMs are. This conforms to the 

known fact that the more/less stable the FMs are, the less/more attractive they are. 

Finally, let us check the stabilities of these three associative memories when all the FMs are 

mutually orthogonal: 

to the Hopfield model, from eqns.(3-l) and (3-2), we have 

in n 

y,• u,(p) = - m + n + I I u / r > . u,<p'. u/“ . u,,p) 

m 

= - m + n + I C(u,r), u(p>)u,,r>. u/p> = n - m > 0 , when n > m, 

which implies that all the mutually orthogonal FMs will be stable in the Hopfield model so 

long as n is not smaller than m; 
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to the first-order outer-product model with the self-feedback connections, from eqn.(3-2), we 

have 

m n 
y,.u,(p>= n + I l u ^ - u ^ u r - u r 

M•印 i=l 

m 
= n + l Q u ^ ^ ^ V - u r = n > 0， 

r=l.印 

which implies that all the mutually orthogonal FMs are stable in the first-order outer-product 

model with the self-feedback connections; 

to the proposed model, from eqns.(3-2) and (4-! )，we have 
tn n 

y,. u,<p> = n + m ( L - 1)+ I I u/“. u , ’ . u,,r' • u:p> 

r=l j=l 

m n L 
a. V V V n <r) I. (T> .1 <P» ,, <P» 
•+•2-2- 2- • ul+<-i u, . u, 

r= I j= 1 «=2 

= n + m ( L - l ) + 0 + 0 = n + m(L -丨）>0. 

Hence, the proposed model can always make all the mutually orthogonal FMs be stable. 

4.4 Computer Simulations 

The synchronous mode is adopted for the proposed network's evolution. All the FMs are 

randomly generated from symmetric Bernoulli trials, i.e., their elements take a value of +1 or 一 1 

with an equal probability of 0.5. Without the loss of generality, the right-hand-side neighboring 

range of each bit is utilized here. The computer simulations procede by gradually increasing m (the 

number of the FMs) with n (the dimension of the FMs) being fixed. Each point on all the curves 

given is obtained by ten times average under the same n, m, and L but different sets of FMs. Here, 
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we will only emphasize on checking whether the FMs can become FPs in the proposed model. In 

other words, we will only examine the stability of the FMs. 
\ 

Figs.4-1 to 4-4^how results of how many FMs can be FPs. The results of using different L 

under certain n are given to demonstrate the effect of the neighboring ranges on the stability of the 

FMs in the proposed model. From the figures, we can see that the larger the L is, the more stable 

the FMs will be. When L is sufficiently large, the proposed model is capable of making all the FMs 

be FPs, i.e.，achieving the extreme stability of the FMs. For the cases of n = 10, 20，30 and 40, in 

order to achieve the extreme or maximum stabilities of the FMs, sufficiently large values of L 

needed are 4, 10，14 and 19，respectively. (It should be pointed out that these sufficiently large 

values of L may not be the smallest ones which are necessary for the proposed model to achieve 

the maximum or extreme stability in these cases). However, given an n, when L reaches a certain 

sufficient high value, the extreme or maximum stability of the FMs can be achieved and in this case 

any longer L is no longer necessarily needed. This effect can be observed from Fig.4-5 which gives 

results of using L = 1，2，3，6，9, 14 and 23，for the case of n = 30. It is shown that when L is not 

smaller than 9’ the extreme or maximum stability of the FMs can be reached. Results corresponding 

to the cases of other values of n demonstrate the same matter, though they are not listed here. In 

general, the neighboring range required for the extreme or maximum stability of the FMs is not 

very large comparing with the dimension of the FMs. 
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Figure 4-1. The effects of different neighbouring ranges for the case of n=10. 
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Figure 4-2. The effects of different neighbouring ranges for the case of n=20. 
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Figure 4-3. The effects of different neighbouring ranges for the case of n=30. 
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Figure 4-4. The effects of different neighbouring ranges for the case of n=40. 
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Figure 4-5. The overview of the effects of using different L for the case of n=30. 
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4.5 Conclusion 

We have proposed a novel encoding strategy based neural associative memory. The proposed 

encoding method computes the connection weights by summing up not only the products of the 

corresponding two bits of all the FMs, but also the products of their neighboring bits within a 

certain neighboring range as well. Both the theoretical and experimental results show that the novel 

encoding strategy is an ideal approach for a neural associative memory to achieve the extreme or 

maximum stability of the FMs. It is worth mentioning that s«ch extreme or maximum stability of 

the FMs is achieved at the cost of their attractivity. The radius of attraction of each FM in the 

proposed model becomes smaller as the length of the neighboring range used grows larger. 
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Chapter 5 Correlation-Type Associative Memory Using the Gaussian 

Function 

5.1 Introduction 

Since the seminal paper of Hopfield [18], much research has been done on associative 

memory neural networks [8], [9】，[26], [28], [48], [51], [54], [59), [60]. Chiueh and 

Goodman proposed a general form of auto-associative memory called the RCAM (Recurrent 

Correlation Associative Memory) [8】，[9] which is based on operations of correlations. When 

the exponential function is used, the RCAM reduces to the EC A M (Exponential Correlation 

Associative Memory) [8], [9]. The storage capacity of the ECAM is theoretically proved to be 

growing exponentially with the dimension of the fundamental memories (FMs). However, 

from the viewpoint of real circuits implementation, the storage capacity of the ECAM is 

practically limited by dynamic ranges of the real circuits [9]. The circuits cannot give an 

infinitely large output response to an input. They have a limited ranges of output responses. 

In order to overcome such a shortage, we modify the ECAM by replacing the exponential 

function with the left-hand side of the Gaussian function (LHSGF). In this chapter, a new 
、 ； 

model - the Gaussian correlation associative memory (GCAM) is proposed. As weighting 

functions, the LHSGF is to be used with which the monotonically-nondecreasing property 

required is still held [9]. Using the LHSGF has the same effectiveness in maximally 

discriminating an auto-correlation between an input pattern and its corresponding FM from 

mutual correlations between the input pattern and all the other FMs as the exponential 

function used in the ECAM does, but has no limitation of the dynamic ranges in the real 
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circuits implementation from which the ECAM suffers. The GCAM has exponentially-

growing storage capacity like the ECAM. Besides, basins of attractions of the FMs in the 
V, 

GCAM can be controlled through adjusting two parameters of the LHSGF and can be larger 

than those of the ECAM. 

The organization of this chapter is as follows. In section 5.2, the GCAM is presented. 

Section 5.3 delineates analyses of several auto-associative memories including the first-order 

outer-product associative memories, the ECAM and the GCAM. Section 5.4 gives computer 

simulation results, followed by concluding remarks. 

5.2 The Gaussian Correlation Associative Memory (GCAM) 

First, let us briefly review the RCAM (Recurrent Correlation Associative Memory) and its 

variant ECAM (Exponential Correlation Associative Memory) [9]. 

5.2.1 The RCAM 

The RCAM is composed ( f three layers of input, hidden and output neurons. Inter-

connection weights exist between two neighboring layers of neurons. There are feedback links 

from output-layer neurons to the corresponding input-layer neurons. Its block diagram is 

given below. 
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The block diagram of the RCAM where from top to bottom are input, hidden, output 
layers, respectively. W = [Wjj], W" = Ui°\ i = I，2 ,…，n , j = I, 2, •••’ m, is the connection 
matrix between the input and the hidden layers; while W，= [Wj / ] , W / = Uj0), i = 1，2,..., 
n’ j = 1，2 ,…，m , is the connection matrix between the hidden and the output layers. \ i t i = 
1，2,…，ii, is the input of the network, and o„ i = 1,2，...，n, is the output of the network, f 
denotes a monotonically non-decreasing function. 



Denote u(r), r = 1，2，...，m, to be m fundamental memories (FMs) stored in the network; x 

to be an input pattern of the network; u丨…to be the ith element of FM u…，i = 1，2，…’ n, j = 1， 

2, m; W"(W丨丨=u,⑴)，i = 1,2,…，n, j = 1,2，...，m, to be the connection weights between 

the input-layer and the hidden-layer neurons; W丨丨’（W"’ = u,1"), j = 1,2,…，m, i = 1,2,…，n, to 

be the connection weights between the hidden-layer and the output-layer neurons; and o,, i = 

1, 2, ••，n，to be an output of the network. From these notations, we can see that the FMs are 

locally represented by the two layers of the connection weights of the network. 

When it is input to the input-layer neurons, x passes through the subnet [W丨J which is 

equivalent to doing the correlation operations between x and u(r), r = I，2，…，m . The hidden-

layer neurons receive the correlation values and apply functions on them. Then the functioned 

values at the hidden-layer neurons pass through the subnet [W,,1] which is equivalent to doing 

weighted summations of all the FMs where these functioned values are used as corresponding 

weights. The output-layer neurons receive the summation values and give out their signs as an 

output of the network. Summarizing the above described process involved in the RCAM, we 
o 

therefore have an evolution equation of the network as follows: 

m n 

o, = sgn{ I f d x . W,,)- W / ) 
j=l i=l 

m 

= sgn{ I f [ C ( x , u { I ) ) ] u ! n ) , i = l,2，〜，n, (5-1) 
r=l 

where f (•) is a monotonically-nondecreasing function used by the hidden-layer neurons to 

apply on the correlation values received and, C( .，.）and sgn( • ) stand for the correlation 

operation and the sign function, respectively. Finally, the network's output o (o„ i = 1,2，...’ 
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n) can be fed directly back to the corresponding input-layer neurons to cycly repeat the above 

evolving process for a final convergence. 

5.2.2 The ECAM 

In the evolution process of the RCAM as in eqn.(5-1), it is implied that the function f ( • ) 

plays a critical role in achieving high-quality associative recalls by maximally discriminating 

the auto-correlation between the input pattern and its corresponding FM from the mutual 

correlations between the input pattern and all the other FMs. When the function used in 

eqn.(5-l) is the exponential function, the RCAM reduces to the ECAM (Exponential 

Correlation Associative Memory) [9】.The storage capacity of the ECAM grows exponentially 

with n (the dimension of the FMs), which is resulted from the exponential function's high 

capability of maximally discriminating the auto-correlation from all the mutual correlations. 

It is worth mentioning that from the viewpoint of the network structure, the exponentially-

growing storage capacity of the ECAM is achieved p' , r t 'y at the cost of the structural 

complexity of the network. The number of the connection weights of the ECAM is 2mn which 

grows linearly with m (the number of the FMs). While the number of the connection weights 

of the Hopfield network is independent of m and equals to n2, constantly. However, the 

storage capacity of the Hopfield model is only less than 0.15n [18], [26]. Therefore, it is 

reasonable and acceptable for the ECAM to have the linearly-growing structural complexity 

with the exponentially-growing storage capacity being possessed. 

5.2.3 The GCAM 

Although the storage capacity of the ECAM is theoretically proved to be growing 

exponentially with the dimension of the FMs, from the viewpoint of real circuits 



implementation, the storage capacity of the ECAM is practically limited by dynamic ranges of 

the real circuits [9]. The circuits cannot give an infinitely large output response to an input. 

They have a limited ranges of output responses. As a result, the storage capacity of the real 

ECAM circuits wil l be far below the theoretical result. 

In order to overcome such a shortage, we modify the ECAM by replacing the exponential 

function with the left-hand side of the Gaussian function (LHSGF). Using the LHSGF as the 

weighting functions in eqn.(5-l), we propose a Gaussian correlation associative memory 

(GCAM). The monotonically-nondecreasing property required for the function f ( • ) [9】is still 

held for the convergence of the network. The GCAM has the same network structure and 

evolution process as the RCAM. The LHSGF used for the GCAM is as follows: 

f(t) = exp{ } , t < n -卩， 

(27C),/2a 2cr % 、 

where n - | i is a right-most peaking point of the LHSGF (or is a center of the Gaussian 

function), and a controls the slope of the LHSGF (or controls the width of the Gaussian 

function). Larger\smaller values of a make the LHSGF change more slowly\faster with the 

variable t (or make the central part of the Gaussian function wider\narrower). 

From results given in the next section, we can see that using the LHSGF has the same 

effectiveness in maximally discriminating the auto-correlation between the input pattern and 

its corresponding FM from all the mutual correlations between the input pattern and all the 

other FMs as the exponential function used in the ECAM does, but has no limitation of the 

dynamic ranges in the real circuits implementation from which the ECAM suffers. Besides, on 
t 

one hand, the GCAM has exponentially-growing storage capacity like the ECAM. On the 
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other hand, the basins of attractions of the FMs in the GCAM can be controlled through 

adjusting two parameters of the LHSGF, and can be larger than those of the EC AM. 

5.3 Analyses of Several Correlation-Type Auto-Associative Memories 

In this section, we will use neural dynamic approach [60] to analyze several correlation-

type auto-associative memories. First, we briefly review the neural dynamic approach. 

Assume one of the FMs, u(p丨，is taken as the input of the network. The output of the 

network is given as follows: 

m 

o/ p ,= sgn{ I f l Q u r u(n) ]• u,,r'} 

m 

= s g n { f [ C(u,p', u,p)) ] u,,p) + I f [ C(u'p', u,r>)]- u,,n } 

in 

= s g n { f(n)Ul ,p ) + I f [ C(u,p), u(n) ] u:" }， (5-2) 
r= I 

where C(u,p), u,p)) = n . If the output of the network, o,p>, is equal to the input of the network, 

u(p), i.e., 

o/p>.u/p> > 0 ， i = l，2，〜，n， (5-3) 

礞 

then FM u(p) is called a fixed point (FP). By eqns.(5-2) and (5-3), in order for eqn.(5-3) to be 

satisfied, we must have 
m 

{ f(n)u,(p) + I f [C (u ( p ) , u ^ J u ^ J u r > 0， i=l，2 ,…’ n. 

r=l.印 
、 - * 

Hence, 

f ( n ) + I f [ C ( u < p ) , u(r>) ] u ( , r , u l , p ) >0， i = 1,2, - , n . 
r=l.*p 

、 
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By the above inequality, we can reach a sufficient condition for FM u(p) to be an FP, or 

equivalently, a sufficient condition for the stability of the FMs, as follows: 

m 

f(n) > I |f[C(u<p>,u<r))]| . (5-4) 

This sufficient condition means that a functioned value of the auto-correlation of an FM must 

be greater than a summation of absolutely-functioned values of the mutual correlations 

between this FM and all the other FMs. Alternatively, it is implied in this sufficient condition 

that the monotonically-nondecreasing function f ( • ) used is required to have a great slope 

around the auto-correlation point in order to maximally discriminate the auto-correlation from 

all the mutual correlations. Both the exponential function and the LHSGF meet such a 

requirement. 

Below, we will separately analyze three different auto-associative memories. FM u<p> will 

be taken as the input of the network. 

5.3.1 Linear Function Model 

This is the case of the first-order outer-product neural associative memory. From the 

analysis given below, we can see that it is mathematically the same as the Hopfield model 

except with self-feedback connections. 

By substituting the linear function f(t) = t into eqn.(5-2), we have an output of the 

network as follows: 
in 

o,(p) = sgn{ nu, ,p) + I C(u<p), u⑴).u,<r)), i = 1,2, ...，n . (5-5) 

By eqn.(5-4), we accordingly require 

n > ( m - l)|C(u<r), u(p,)|max . 

Thus, a sufficient condition for an FM to be an FP in this model is as follows: 



m < 1 + 
l c ( u⑴， i i , p , )L x 

r = 1 , 2，• "，m ,其 p (5-6) 

With respect to the Hopfield model, we have its output as follows: 

o.,p, = sgn{ I W„ • u;p ) } 
j=l •爹1 

m n 

= sgn{ I Z u i W P > } 
r=l 

in 

= sgn{ (n - m)u1(p ' + l C ( u < n , u,p))- u,(r>}， i = 1,2,…，n. (5-7) 

r=l.*p 

Also by eqn.(5-4), we require 

n - m > ( m - 1)1 C(u l r ), u(p)) | I!iax , 

Therefore, a sufficient condition for an FM to be an FP in the Hopfield model is as follows: 

n+ |C(ii⑴， 

m < r = 1 ， 2 ， m , ^ p . ( 5 - 8 ) 

i + | c ( u ( r > ， u , L ， 

From eqns.(5-5) and (5-7), we can see that only their first terms in the large brackets are 

slightly different. This means that the RCAM in the case of f(t) = t is mathematically the same 

as the Hopfield model except with the self-feedback connections. From eqns.(5-6) and (5-8), 

we can see that the storage capacity of the RCAM with f(t) = t being applied is only a little 

higher than that of the Hopfield model, although the structure of the former model grows 

linearly with m while that of the latter one is independent of m and just equals to the constant 

n2. This is because the linear function f(t) = t used for the RCAM is not effective enough to 

efficiently discriminate the auto-correlation from the mutual-correlations ( f(t) = t used for the 

R C A M is not capable of maximally discriminating the auto-correlation from all the mutual 



correlations at all). So, using the linear function for the R(JAM cannot exploit the advantage 

of the RCAM in the storage capacity with certain class of nonlinear functions being used. 

5.3.2 Exponential Function Model 

This is the case of the ECAM [9】.Applying the exponential function f(t) = a1, a > 1，into 

eqn.(5-2), we have an output of the network as follows: 

in (r) (p) 

o,(p) = sgn{ an u,(p) + I a C ( u , u >. u丨…1 , i=l，2,“.，n. (5-9) 
r= I ,*p 

By eqn.(5-4), we accordingly require 

(r) (p) 
n ^ / 1 � C ( u , u ) max , ^ a > (m - 1)- a , r = l，2 , "，m ,关p . '丨 

I 

Hence, a sufficient condition for an FM to be an FP in the ECAM is obtained as follows: 

I ( r )
卟 I 

^ n - C ( u , u ) max , , � � , r v � 
m < a + 1 ， r = 1,2, • m , 关 p . (5-10) 

From the first term of the right-hand side of the above inequality, we can see that the storage 

capacity of the ECAM grows exponentially with n (9]. Such an exponentially-growing storage 

capacity is resulted from the effectiveness of using the exponential function for the RCAM to 

maximally discriminate the auto-correlation from all the mutual correlations. In the next 

subsection, we wi l l examine how about using the LHSGF for the RCAM. 

5.3.3 Left-hand-side Gaussian Function Model 

With the left-hand side of the Gaussian function (LHSGF) 

/ ( t - b ) 2 、 tt 

f⑴二 expl- / , t<b 

(2n)m o 2a 2  

being used for the RCAM, a Gaussian correlation associative memory (GCAM) is thus 

proposed. Parameter a controls the slope of the LHSGF (or determines the width of the 
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Gaussian function), arid parameter b is the right-most peaking point of the LHSGF (or is the 

center of the Gaussian function). It should be noted that in the GCAM, the function used is 

not the Gaussian function but the LHSGF which is only the left-hand side (the range of t < b) 

of the Gaussian function. Hence, the monotonically-nondecreasing property required for the 

function f ( • ) used for the RCAM is still held for the convergence of the network [9]. 

Applying the LHSGF with b = n into eqn.(5-2), we obtain an output of the GCAM as 

follows: 

1 (n - n ) : 

o,(p) = sgn{ exp[ ]• u/p’ 
(27C),/2a 2cr 

m I 

+ I ——exp{-[C(u,r), u<p>) - n ]2 / (2cr) } u,' r ), i=l，2，...，n. (5-11) 

r=l.)tp (2n)|/J 

By eqn.(5-4), we accordingly require 

1 m - 1 
> exp{ - [ |C(u , r ), u(p') | m a x - n ] 2 / ( 2 c r ) }. 

(27t),/2 (2TC),/2 

Thus, a sufficient condition for an FM to be an FP in the GCAM is obtained as follows: 

m < exp{ [ n - |C(u(r), u ,p ') | 瞧 ] 2 / ( 2 < r ) } + I， r = 1 , 2 , 关 p . (5-12) 

From the first term of the right-hand side of the above inequality, we can also see that the 

storage capacity of the GCAM grows exponentially with n, like the ECAM. The reason for it 

is that using the LHSGF has the same effectiveness in maximally discriminating the auto-

correlation from all the mutual correlations as the exponential function, and thus makes a 

great use of the linearly-growing structure of the RCAM. 
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Now, we will consider the case when the input of the network is not exactly one of the 

FMs but an “error” version of one of the FMs. 

If the input of the network is one of the FMs, u<p), then the maximum correlation between 

u<p) and u(r), r = 1，2, ...，m, is the auto-correlation of u ,p) which equals to n; If the input of the 

network is an “error” version of u<p)，then the maximum correlation between this input and 

u<r>, r = 1，2，…，m，is still the auto-correlation between this input pattern and its corresponding 

FM u(p). But in this case, such an auto-correlation is smaller than n. Considering both of the 

two cases, in order to maximally discriminate the auto-correlation between the input pattern 
I 

and its corresponding FM from all the mutual correlations between this input pattern and all 

^ ^ v ^ the other FMs no matter whether the input pattern is exactly one of the FMs or is only an 

丨 ““error’，version of one of the FMs, we modify the LHSGF as follows: " 

1 [ t - ( n - n ) ] J \ 
f(t) = exp{ }， t < n - n ， ^5-13) 

{2n)m a 2ar 

where ^ is a shift of the right-most peaking point of the LHSGF (or a shift of the center of the 

Gaussian function). Parameter \ i should be appropriately tuned so as to make the right-most 

peaking point of the LHSGF approximately catch the auto-correlation (the maximum 

correlation). In addition, parameter a should be selected to be somewhat small in order for 

almost all the mutual correlations to fall outside the range of the right-most peaking point. 

Such a range covers an area of the largest-changing slope of the LHSGF. With the parameters 

| i and a being so selected, the LHSGF will be capable of maximally discriminating the auto-

correlation from all the mutual correlations as required. 

99 



It should be pointed out that in the computer simulations here, parameters and a are 

pre-selected empirically by random trials and errors. Theoretically, they can be optimally 

found out by certain nonlinear optimization techniques such as the adaptive mean-squared-

error approaches proposed in section 3.4. The computational complexity can also be greatly 

reduced with the computational precision being kept (refer to section 3.4). Results obtained 

by those adaptive mean-squared-error approaches can be trade-offs between the stability and 

the attractivity of the FMs. In other words, basins of attraction of the FMs can be optimally 

maximized with the requirement on the stability of the FMs being satisfied. However, like 

most of the nonlinear optimization techniques, those adaptive methods proposed in section 3.4 

also suffer from the local optimum problem. The local optimum problem can be tackled by 

some other techniques, such as those in [47】.Nevertheless, the issues concerning adaptively 

finding out îs and as by certain nonlinear optimization technique will not be addressed in this 

paper. f 

5.4 Simulation Results 

In this section, we will give computer simulation results to compare the GCAM with the 

ECAM. 

In the computer simulations, the synchronous mode is used, i.e., only one evolutionary 

cycle as of eqn.(5-l) is to be carried out. In other words, no feed-back connections from the 

output neurons to the corresponding input neurons are needed. The simulations are conducted 

by varying m (the number of the FMs) with n (the dimension of the FMs) fixed. Each point on 

ail the curves given corresponds to 100 different sets of the FMs which are randomly 
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generated from symmetric Bernoulli trials (i.e., elements of ajl the FMs take +1 or - 1 with 

equal probability). 

Figs.5-1, 5-2 and 5-3 show the results corresponding to the cases of n = 20’ 30 and 40’ 

respectively. In these figures, the horizontal axis corresponds to the number of the FMs stored 

in the network while the vertical axis corresponds to the number of the correctly recalled FMs. 

The results of the GCAM are plotted in solid lines while those of the EC A M are plotted in 

dotted lines. Figs.5-l(a), 5-2(a) ahd 5-3(a) show the results concerning how many FMs can 

become FPs while all the other figures show how many FMs can be correctly recovered when 

the inputs are the “error” versions of the corresponding FMs. 

The results of the ECAM are obtained under the conditions of a = 2 and without the 

limitation of the dynamic ranges. In Figs.5-l(a)(b)(d)(0, 5-2(a)(b)(d)(0 and 5-3(a)(b)(d)(f)， 

the shifts of the right-most peaking point of the LHSGF, are all set to zero. In the 

remaining figures, ^s are not zero-valued and, fis and as are empirically pre-selected with 

random trials and errors depending 

upon the given “error” percentages of the inputs. The 

objective of appropriately selecting \ i and a is to make the right-most peaking point of the 

LHSGF approach the auto-correlation and to make all the mutual correlations fall outside the 

range of the largest slope of the LHSGF, respectively. As such, the LHSGF can be fully 

exploited in maximally discriminating the auto-correlation from all the mutual correlations. 

The values of [ i and a used for the simulations are shown in Tables 5-1, 5-2 and 5-3. It is 

worth mentioning that although the “error” percentage of the input has been taken into the 

account of the selection of 卩 and a given in these tables for the computer simulations here, we 

only want to shed light on the effects of [ i and a on the associative recall performance of the 
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GCAM. In fact, the selection of | i and a can be independent of the “error，’ percentage of the 

input but can just be based upon such a requirement that the basins of attractions of the FMs 

are to be maximized with the constraint of all the FMs being FPs. In other words, the selection 

of | i and a is a trade-off between the extreme stability and the attractivity of the FMs. Since 

such a trade-off of the selection of and a can be empirically accomplished without great 

difficulties, and the selection of | i and a need not be very strict but can only be loose (loosely 

appropriate values of 卩 and a are effective enough for the GCAM to achieve ideal results), the 
觚 

proposed GCAM is thus practical. 

Finally, it should be noted here that empirically pre-selecting | i and a need not be 

separately optimized for each particular test set of the FMs (or is independent of an arbitrarily 

given test set of the FMs) since the FMs are randomly generated from the symmetric Bernoulli 

trials. The same values of pre-selected [ i and a are used at all the neurons in the hidden layer 

as well as for all the 100 sets of the FMs corresponding to a point on the graphs. 

Nevertheless, optimal values of ^ and a can be adaptively found out by some nonlinear 

optimization techniques based on some error criteria such as those in section 3.4. If so, jis and 

as obtained at the different neurons in the hidden layer can be different. Moreover, by the 

nonlinear techniques, \is and as for the different neurons can be adaptively found out, 

combiningly or separately, based upon different error functions applied (refer to section 3.4). 

The issues concerning adaptively searching jx and a wil l not be addressed here. 

Now, we will examine the simulation results. With respect to the stability of the FMs, 

Figs.5-l(a), 5-2(a) and 5-3(a) show that the GCAM has extreme capability of making the FMs 
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FPs like the EC AM. Both the EC A M and the GCAM have the extreme stability of the FMs, 

i.e., both of them are able to make (almost) all the FMs FPs. With respect to the attractivity of 

the FMs, it is shown in the remaining figures that the GCAM performs better than the EC AM, 

especially when | i and CT are appropriately selected. So, we can reach a conclusion that the 

GCAM has more powerful error-correcting ability than the ECAM with the extremely perfect 

stability being kept. 
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The shift of GF center is 0. 
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Fig.5-1(a)Error percent, of inputs is 0. 

The shift of GF center is 0. 

Figure 5-1. The simulation results of n=20. 

The horizontal axis corresponds to the number 

of the FMs and the vertical axis corresponds 

to the number of the correctly recalled FMs. 

The results of the GCAM are plotted in solid 

lines while those of the ECAM are plotted in 

dotted lines. 

The shift of GF center is not 0. 

0 0 0 ‘ » 1 01 » » ' 
0 20 40 60 0 20 40 60 

Fig.5-3(b)Error percent, of inputs is 10%. Fig.5-3(c)Error percent, of inputs is 10%. 
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The shift of GF center is 0. The shift of GF center is not 0. 
50 j 1 501 1 

0 20 40 60 0 20 40 60 
Fig.5~1(d)Error percent, of inputs is 20%. 
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The shift of GF center is 0. 

H 
Fig.5-1(e)Error percent, of inputs is 20%. 

The shift of GF center is not 0. 

0 20 40 60 
Fig.5-3(b)Error percent, of inputs is 10%. Fig.5-3(c)Error percent, of inputs is 10%. 
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The shift of GF center is 0. 

；f71 I X 1 
0 20 40 60 80 

Fig.5-2(a)Error percent, of inputs is 0. 
The shift of GF center is 0. 

；lZJ ；L/J 
0 20 40 60 80 • 0 20 40 60 80 

60 

40 

Figure 5-2. The simulation results of n=30. 

The horizontal axis corresponds to the numbe 

of the FMs and the vertical axis corresponds 

to the number of the correctly recalled FMs. 

The results of the GCAM are plotted in solid 

lines while those of the ECAM are plotted in 

dotted lines. 
The shift of GF center is not 0. 

80 
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40 

0 20 40 60 
Fig.5-2(b)Error percent, of inputs is 10%. Fig.5-2(c)Error percent, of inputs is 10%. 

106 



乂
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The shift of GF center is 0. The shift of GF center is not 0. 

Fig.5-2(d)Error percent, of inputs is 20%. 

The shift of GF center is 0. 

801 j 801   

0 20 40 60 80 0 20 40 60 80 

60 
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Fig.5-2(e)Error percent, of inputs is 20%. 

The shift of GF center is not 0. 
20 j 1 / 401 1 

V I ：[/ 1 
0 20 40 60 80 0 20 40 60 80 

30 

20 

Fig.5-3(b)Error percent, of inputs is 10%. Fig.5-3(c)Error percent, of inputs is 10%. 
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, The shift o? GF center is 0. 

t , z 1 
0 50 100 

Fig.5~3(a)Error percent, of inputs is 0. 

The shift of GF center is 0. 

Figure 5-3. The simulation results of n=40. 

The horizontal axis corresponds to the number 

of the FMs and the vertical axis corresponds 

to the number of the correctly recalled FMs. 

The results of the GCAM are plotted in solid 

lines while those of the ECAM are plotted in 

dotted lines. 

The shift of GF center is not 0. 

j x . : l z I 
0 50 100 0 50 100 Fig.5-3(b)Error percent, of inputs is 10%. Fig.5-3(c)Error percent, of inputs is 10%. 
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The shift of GF center is 0. The shift of GF center is not 0. 

' 0 ' 0 0 50 100 0 50 100 

Fig.5-3(d)Error percent, of inputs is 20%. 

The shift of GF center is 0. 

Fig.5-3(e)Error percent, of inputs is 20% 

The shift of GF center is not 0. 
60 5°l 6 r 

0 50 100 0 50 100 
Fig.5-3(f)Error percent, of inputs is 30%. Fig.5-3(g)Error percent, of inputs is 30% 



(a) (b) (c) (d) (e) (0 (g) 

p 0.0 10% 20% im 遍 30% 

0.0 0.0 3.9 0.0 7.5 0.0 11.5 

a 3.0 3.0 0.2 3.0 0.4 3.0 0.4 

nr 

Table 5-1. The values of the parameters used in the simulations corresponding to Figs.5-l(a) 

to (g) with n = 20. p is the "error” percentage of the input. 

(a) (b) (c) (d) (e) (0 (g) 

P 0.0 10% 10% 20% im 30% 307f 

0.0 0.0 5.5 0.0 11.6 0.0 17.5 

a 8.0 4.0 0.4 4.0 0.3 4.0 0.4 

Table 5-2. The values of the parameters used in the simulations corresponding to Figs.5-2(a) 

to (g) with n = 30. p is the “error” percentage of the input. 
t 

A ‘ 

(a) (b) (c) (d) (e) (0 (g) 

P 0.0 10% 隱 im im 搬 搬 

0.0 0.0 7.5 0.0 15.5 0.0 23.5 

a 12.0 5.0 0.4 5.0 0.4 5.0 0.4 

Table 5-3. The values of the parameters used in the simulations corresponding to Figs.5-3(a) 

to (g) with n = 40. p is the “error” percentage of the input. 
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5.5 Conclusion 

We have proposed a correlation-type auto-associative memory - the GCAM (Gaussian 

Correlation Associative Memory) which is extended from the ECAM (Exponential 

Correlation Associative Memory) [9]. The LHSGF (Left-Hand Side of the Gaussian Function) 

is used as the weighting functions. The real GCAM circuits will not have the limitation of the 

dynamic ranges in the real circuits implementation from which the real ECAM circuits suffer. 

The GCAM not only has the extreme stability of the FMs like the ECAM, but also has more 

powerful error-correcting ability (or stronger attractivity of the FMs) than the ECAM so long 

as the two parameters of the LHSGF are (loosely) appropriately selected. 



Chapter 6 A Further Investigation into the Upper Bound of the Asymptotic 

Storage Capacity of the Hopfield Associative Memory 

6.1 Introduction 

Hopfield empirically estimated the storage capacity of his model to be not greater than 

0.15n [18]. Since then, many other investigation have been conducted to theoretically search 

for the storage capacity of the Hopfield network by various approaches. The typical results 

among them were those given in [26] in which the asymptotic storage capacity of the Hopfield 

network was theoretically derived through the information theory. It was shown that if m FMs 

are chosen at random (the elements of the FMs take +1 or -1 with an equal probability of 0.5), 

the maximum asymptotic storage capacity, in order that most of the m FMs are exactly 

recoverable, is n/(21ogn). Furthermore, under the additional restriction that every one of the m 

FMs be exactly recoverable, the maximum asymptotic storage capacity can be no more than 

n/(41ogn) as n approaches infinity. Most of the other results obtained in [1】，[6】，【13】，[20], 

[23], [44], [48】are also similar. The results of theoretical investigations in [20] showed that 

the Hopfield network has major limitations when applied to fixed pattern classification 

problems because of its sensitivity to the number of fundamental memories stored and the 

SNR (Signal to Noise Ratio) of the input data. It was shown in (13] that for associative 

memories composed of n linear threshold functions without self-feedback connections, even 

when the Hamming distances between the desired rqemories are within yn and ( l - y )n , there 

are sets of size (l-2y)_丨(for y < 1/2)，the elements of which cannot be simultaneously stable. 

A similar phenomenon holds for the sum of outer-products connection matrix. It was shown 
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in [6] that the Hopfield network can result in many spurious stable states-exponential in the 

number of the FMs - even in the case when the FMs are orthogonal. 

In this chapter, we wil l theoretically investigate the upper bound of the asymptotic storage 

capacity of the Hopfield network from two different points of view. One is based upon the 

neural dynamics approach while the other is based upon the signal to noise ratio gain (SNRG) 

concept (discussed in chapter 3). Similar result is obtained from both viewpoints which is 

further supported by simulation results. It is shown that the asymptotic storage capacity of the 

Hopfield network, in order that all FMs are exactly recoverable, does not grow directly 

proportional or proportional to the dimension (n) of the FMs as described in [18], [26] (Here, 

"directly proportional" means that the storage capacity is approximately equal to 0.12-0.15n 

[18] while “proportional，，means that the storage capacity is equal to those obtained in [26]), 

but is directly determined by the distribution of the elements of the FMs. The result by the 

neural dynamics approach even shows that the upper bound of the asymptotic storage 

capacity of the Hopfield network is directly determined by the minimum extensive-distance 

between any two different FMs. We wil l see that the Hopfield network has major limitations in 

stably storing all the FMs because of its sensitivity to the minimum extensive-distance between 

any two different FMs. A small minimum extensive-distance between any two different FMs 

wi l l greatly deteriorate the storage capacity of the Hopfield network. 

The organization of this chapter is as follows. Section 6.2 briefly describes the two 

analysis methods. Section 6.3 theoretically investigates the upper bound of the asymptotic 

storage capacity of the Hopfield network from two different points of view. Section 6.4 is a 

concluding remark. 
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6.2 Two Analysis Methods 

In this section, we will describe two methods for the purpose of analyzing the Hopfield 

network. 

6.2.1 The Neural Dynamics Method (60] 

Assume vector x is the input of the network which corresponds to FM u,p). The output of 

the network is computed as follows: 

( 6 - 1 ) 

o, = sgn (y丨）， 

where y, and o, are respectively the summed input and the output of neuron i, i = I，2，…，n. It 

is well known that FM u(pl can be correctly recalled from input x if and only if 

y, • u,(p) > 0 , i=l，2，“ ’ n ; (6-2) 

and when the input x is exactly FM u'p), FM u<p) can become an FP if and only if eqn.(6-2) is 

satisfied. 

6.2.2 The SNRG Method (Refer to section 3.3) 

To the Hopfield model, the SNR [26], [48] for the associative recall of the ith element of 

u(p) is obtained as follows: 

E[ | (n- l )u , ( p , | ] (n-l) , / 2 

(Var( I Iu i ( r ,.uJ ( r ).uJ (p> ))1/2 (m-”丨72 

(6-3) 
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To the WOPLAM, the corresponding SNR for the associative recall of the ith element of u(p) 

in the WOPLAM is obtained as follows: 

E[ | (n_l>ot吶 u ,叫] 

(Var( I Zc r .u / r > . i i / r , . u , ' p’）严 

e : 

( n - l ) a (p) (n - l ) l / 2 -a(p> 

(6-4) 

( ( n - l ) I ( a < p , ) 2 ) l / 2 ( I ( a ( p , ) 2 ) , / 2 

Considering that an FM cannot become an FP in the Hopfield network but can become an FP 

in the WOPLAM, we hypothesize that there should exist a gain in the SNR in the WOPLAM 

over the Hopfield network. Hence, from eqns.(6-3) and (6-4)，the gain of the SNR, named the 

SNRG, by the WOPLAM, for the pth FM is as follows: 

( n - l ) , / 2 a ( p ) 

I (a1 <P>、2、l/2 1/2 ^(p) 

(n -1 ) 1/2 

,1/2 

( m - D ' ^ a 1 

in 
( K a ^ ) 2 ) ^ 
r=l.印 

三G卟’ (6-5) 

( m - 1 ) r=丨印 0 

where G ,p) is defined as the SNRG of FM u<p>, p = 1, 2, . . . ， m . The SNRGs play an important 

role in the perfect associative recall of the FMs. In the WOPLAM, when the SNRG of an FM is 

greater than or equal to its threshold value, this FM can be correctly recalled. Moreover, when the 

SNRGs of all the FMs are greater than or equal to their corresponding threshold values, these FNlS 

can be correctly recalled. This condition for the stability and attractivity of the FMs can be regarded 

as a limitation on the number of the FMs that can be stably stored in the Hopfield network. The 
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reason can be found in eqn.(6-5). An SNRG is dependent upon all the learning weights. All the 

It 

SNRGs mutually affect each other. We must avoid to get the SNRG of an FM to be so large that 

the other SNRGs will naturally be lower or much lower than their thresholds. In fact, the choice of 

all SNRG values is a compromise that as many FMs as possible or even all the FMs are to be 

correctly recalled. Consequently, the asymptotic storage capacity of the Hopfield network is upper 

bounded. 

In the following section, we will use the above two methods to investigate in details the upper 

bound of the asymptotic storage capacity of the Hopfield network. 

6.3 Investigation into the Upper Bound of the Asymptotic Storage Capacity of the 

；Hopfield Network 

6.3.1 By the Neural Dynamics Method 

We have the following result (Refer to Appendix IV for its proof): 

n 一 1 

m < + I 
1 + n - 2dm m (u⑴，u , 

ntp 

n - 1 
= + 丨， （6-6) 

1 + n - 29 n 

where dmu^u⑴，u(p)) is the minimum extensive-distance between u<r) and u(pl, r 关 p，and is 

equal to 0 n, and, 

e = d - d i ⑴ ’ u < p V n ’ 

n 

|C(u(r), u ^ U = 11U；0• 11广u = n-2d,„n(ii…，u(p>), (6-7) 
r̂ p j=l r̂ p r̂ p 
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d(u(r)，u(p)) = mintHCu^，u⑴)，H(u,p', -u,r,)J， 

where H stands for the Hamming distance. Here, d ( u " , u<pl) is defined as an extensive 

distance between u(r) and u(p>. From eqn.(6-7), we can see that 0 falls into the range of (0, 

0.5). As n approaches infinity, the right-hand side of eqn.(6-6) approaches 1/(1-29) whose 

maximum value can be obtained as 0 reaches 0.5. It is implied in eqn.(6-6) that the value of m 

gets larger as 6 gets closer to 0.5, under the restriction that all of the m FMs should be FPs. 

Now, the question is what is the maximum value of 6 in the range of (0.0, 0.5) that can be 

reached which corresponds to the maximum value of m, under the restriction that all of the m 

FMs should be FPs. 

To find an answer to this question, a lot of simulation arc conducted. The results are given 

in section 6.4 (refer to that section for simulation details). From the results shown, we can see 

that the trend of the simulation conforms with the analysis that large values of m will be 

obtained when 9 becomes large, under the restriction that all of the m FMs should be FPs. 

Furthermore, it can obviously he observed that B will he smaller as m grows larger. When m 

grows relatively larger, the approximate value of 6 reached will not he greater than 0.46. But, 

we can also see that in order for all of the m FMs to be FPs, the approximate value of 0 

cannot be less than 0.45. So, empirically, it is reasonable to have such an assumption that to a 

set of randomly generated FMs (the elements of the FMs take +1 or - 1 with an equal 

probability of 0.5), the number of which is not very small, 0.45 (on an average) can be 

regarded as a maximum value of 9. In other words, it means that the maximum value of the 

minimum extensive-distance between any two different FMs is empirically assumed to be not 
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greater than 0.45n, on an average. By such a consideration, we can reach a conclusion that the 

maximum value of m shall be 10 (on an average) in order that all the m FMs are to be exactly 

recoverable. Consequently, from the viewpoint of neural dynamics, we can see that the 

asymptotic storage capacity of the Hopfield model has a constant (on an average) as its upper 

bound and does not grow directly proportionally or proportionally to the dimension of the 

6.3.2 By the SNRG Method 

In the weighted outer-product learning associative memory (WOPLAM) (refer to Chapter 3)， 

it is known that when the SNRG of an FM is greater than or equal to its threshold value, the FM 

can be correctly recalled; and when the SNRGs of a set of or even all of the FMs are greater than 

or equal to their thresholds, they can thus be correctly recalled. With respect to this, we try to find 

out a learning weight for an FM so that its SNRG is maximised under the constraint that the total 

sum of all learning weights is a constant. Or, the problem is to maximise G(p)，p = I，2, • •，m, 

subject to the constraint 

m 

I a(r) = a m , (6-8) 

where a is an average value of the learning weights. The introduction of the constraint reflects the 

fact that the choice of all SNRGs is a compromise among all of them which is implied by eqn.(6-5). 

Generally, it must be avoided that the SNRG of an FM is so large that the other SNRGs will not be 

greater than or equal to their thresholds. A procedure for finding out appropriate learning weights 

for the FMs under the above consideration is discussed below. 

Define a function O such that 
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<D = (G(p))2 + T - ( I a ( r , - a m ) 

(m-lHa<p>)2 m 
= + T ( I a ( r , - a m ) , (6-9) 

where x is a real-valued parameter and eqn.(6-5) has been undertaken. The optimal solution of 

eqn.(6-9) (The optimisation procedure is given in Appendix IV) is obtained as follows: 

in I (a,r))2 

m 

A i n(l(a i r )) 2) i r' 
r=\.*{) 

= ( I (a ( rV ),/2 • ( A m ) , p = l,2，".,m, (6-10) 
r=l.*p 3 A 

m 
a ! p ] > A m - ( l ( a l t ) ) 2 )1/2 -

r=l.*T> 

where 

A = + (6-11) 
2 (m- l ) 3 'M(rT>-l) , / 2 . 

Consequently, we have 

(m- l ) , / 2 o T 
G(p, =  

m 
( K a ( r V y a 

> (m-\) i r l • (A i n )， p = l，2, . " ,m . (6-12) 

The right-hand side of eqn.(6-12) can be viewed as a threshold of the SNRGs. It should be 

mentioned again that the result about the SNRGs in eqn.(6-12) is a consequence of the two 
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fundamental assumptions: one is that all the FMs are generated at random and the other is that the 

dimension of the FMs approaches infinity. Accordingly, from the viewpoint of the SNRG, we can 

see that when the dimension of the FMs is sufficiently large, the quality of the associative recall of 

the randomly generated FMs is not decided or directly decided by the dimension of the FMs but is 

dependent upon the number of the FMs. Intuitively, as n is sufficiently large, the maximum number 

of the FMs that can all be correctly recalled is definitely upper bounded. 

Depending upon the basic fact that a threshold value of the SNRG is greater than zero, the 

second term of the right-hand side of eqn.(6-12) is thus required to be greater than zero. As such, it 

is finally found that to have all the m FMs to be exactly recoverable, the maximum value of m 

should not be greater than the value of 10, on an average. (The meaning of “on an average，，lies in 

the fact that the upper-bound value (10) is optimally obtained under the specific constraint of 

eqn.(6-8). The upper-bound value may not exactly be 10 while imposing some other constraints). 

Therefore, we can see from the two different points of view, the neural dynamics and the 

SNRG concept, that the asymptotic storage capacity of the Hopfield network in order that all the 

FMs stored in the network are exactly recoverable, does not grow directly proportionally or 

proportionally to n but is bounded from above by a constant (on an average) as n approaches 

infinity. The constant (on an average) upper-bound is not decided or directly decided by n but is 

directly determined by the distribution of the elements of the FMs. The resulting upper bound is 

found out to be 10 on an average. In addition, by the first point of view, we further reach a 

conclusion that the upper bound of the asymptotic storage capacity of the Hopfield network is in 

effect determined by the minimum extensive-distance between any two different FMs. Since such a 

minimum extensive-distance actually cannot quite be able to approach 0.5n (the empirically 
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obtained optimal estimate is 0.45n, on an average), then the upper bound of the asymptotic storage 

capacity of the Hopfield network is thus very low (according to eqn.(6-6)). 

Besides, although the upper bound of the asymptotic storage capacity of the Hopfield network 

is not indicated in all related literature [20】，[48】，[49】，[50], [51 ]，[56], [60], (a lot of literatures are 

not listed), the trend of such an upper bound can clearly be observed in their simulation results. 

The existence of the upper bound of the asymptotic storage capacity and its dependence upon 

the minimum extensive-distance can be used to explain why the Hopfield network cannot perfectly 

store a very small number of FMs even with a large dimension (refer to the representative examples 

given in Chapter 3). The reason is that although the dimension of the FMs is very large and its 

number is very small, a small minimum extensive-distance is strong enough to severely deteriorate 

the associative recall performance of the Hopfield network [50], [54], (60] (there are a lot of 

literatures not listed here). Therefore, in addition to the dimension and the number of FMs, the 

distribution of the elements of FMs, or saying, 

different FMs, can be regarded as another 

performance of the Hopfield network. 

the minimum extensive-distance between any two 

very important factor that greatly affects the 

6.4 Computer Simulation 

In this section, a lot of computer simulation results are given to show the relationships among 

the number of the FMs, the number of the FMs being FPs, 0 (in eqn.(6-7)), and the dimension of 

the FMs. 

In all the computer simulation, the synchronous mode is used. The simulation is conducted 

by varying m (the number of the FMs) with n (the dimension of the FMs) fixed. Each point on 
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all the curves given corresponds to 100 different sets of the FMs which are randomly 

generated from symmetric Bernoulli trials (i.e., elements of all the FMs take +1 or - 1 with 

equal probability). In all the figures, the horizontal axis, in both (a) and (b), corresponds to the 

number of the FMs. The vertical axis in figures (a) corresponds to the number of the FMs 

being FPs, while that in figures (b) corresponds to 0 (denoted by THETA). 

From the results shown, we can see that the trend of the simulations conforms with the 

above analysis that large value of m can be obtained when 8 is relatively large, under the 

restriction that all of the m FMs should be FPs. Furthermore, it can obviously be observed that 

9 gets smaller as m grows larger. When m grows larger, the approximate value of 9 reached 

wi l l not be greater than 0.46. But, we can also see that in order for all of the m FMs to be FPs, 

the approximate value of B reached cannot be less than 0.45, on an average. So, empirically, it 

is reasonable to conclude that to a set of randomly generated FMs (the elements of the FMs 

take +1 or - 1 with an equal probability of 0.5), the number of which is not very small, 0.45 

can be regarded as a maximum value of 9, on an average. In other words, the maximum value 

of the minimum extensive-distance between any two different FMs is empirically found to be 

not greater than 0.45n, on an average. 

We can also see from all of the simulation results that with the strict restriction of all of 

the m FMs being FPs, this number m does not conform with the well-known result of 0.12 ~ 

0.15n. It is not directly decided or decided by n but is directly determined by 8 or the 

distribution of the elements of the FMs. Moreover, Figs. 6-1 to 6-4 show that the maximum 

value of m，with the strict restriction of all of the m FMs being FPs, is less than 10. Although 

such a maximum value of m in Figs. 6-5 to 6-9 is greater than 10, this phenomenon does not 
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contradict the theoretical analysis. Since the upper bound of 10 is based upon the condition of 

6 beVpg 0.45 (by neural dynamics approach) or of imposing the constraint of eqn.(6-8) (by 

SNRG approach). I f the assumed condition is varied, the upper bound obtained will be slightly 

different. The neural dynamics approach tells us that the upper bound approaches l/( 1-20) as 

n approaches infinity (refer to section 6.3.1). This can be observed in Figs. 6-5 to 6-9. In these 

figures, the values of 6 are obviously greater than those in Figs. 6-1 to 6-4，and are above 0.45 

which correspondingly increases the upper bound of the storage capacity. But, the upper 

bound of the storage capacity thus achieved is still much smaller than 0.12 - 0.15n. 

Consequently, we can see that the asymptotic storage capacity of the Hopfield model does 

not grow directly proportionally or proportionally to n but has a constant (on an average) as 

its upper bound. Such an upper hound is directly determined by the distribution of the 

elements of the FMs (the minimum extensive-distance between any two different FMs). 
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Figure 6-1. Simulation results of n=20. 
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Figure 6-2. Simulation results of n=50.  
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Figure 6-3. Simulation results of n=100. 
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Figure 6-4. Simulation results of n=150. 
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Figure 6-5. Simulation results of n=200. 
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Figure 6-6. Simulation results of n=250.  
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Figure 6-7. Simulation results of n=300. 
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Figure 6-8. Simulation results of n=350. 
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Figure 6-9. Simulation results of n=400. 
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6.5 Conclusion 

From the viewpoints of the neural dynamics and SNRG, with the restriction that all the 
I 

FMs be exactly recoverable, it is simultaneously found that the asymptotic storage capacity of 

the Hopfield network does not grow directly proportionally or proportionally to n but has a 

constant (on an average) upper bound as n approaches infinity. Such an upper bound is not 

decided or directly decided by n, hut is directly determined by the distribution of the elements 

of the FMs. 
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Chapter 7 Concluding Remarks, Evaluation, and Outlook for Future 

Research 

In this dissertation, four main topics - the adaptive weighted outer-product learning associative 

memory, the novel encoding strategy based neural associative memory with maximum stability, the 

Gaussian correlation associative memory (GCAM), and the further investigation into the upper 

bound of the Hopfield associative memory have been discussed. 

With respect to the adaptive weighted outer-product learning associative memory, the concept 

of adaptive weighted outer-product learning is proposed for the encoding of the fundamental 

memories (FMs) in Hopfield-type networks. The weighted outer-product learning associative 

memories (WOPLAMs) proposed improve the performances of associative store and recall of the 

FMs. The sufficient conditions for the learning weights and the signal to noise ratio gains (SNRGs) 

are derived in a probabilistic context. It is demonstrated that each SNRG has its own threshold and 

that any FM can be correctly recalled when its corresponding SNRG is larger than or equal to its 

threshold. In principle, the asymptotic storage capacity of the WOPLAM will grow at the greatest 

rate when all the SNRGs or learning weights satisfy their sufficient conditions. It appears that the 

WOPLAM can achieve correct recall of all the FMs by the appropriate setting of the learning 

weights. In practice, however, given a set of FMs, one might only correctly recall as many FMs as 

it is possible to make the corresponding SNRGs or learning weights satisfy their sufficient 

conditions. Several gradient-descent-search algorithms capable of dynamically finding out the 

optimal learning weights are also proposed and implemented. The objective functions used for 

these algorithms are based upon the global- or local-error-measure. The algorithms can be further 
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accelerated by the adaptive adjustments of the neuronal parameters. Faster convergence is achieved 

without losing any computation quality and memory capacity. In general, the WOPLAMs, with the 

use of adaptive algorithms, have the storage capacity of up to 0.2n to 0.3n or above. It should be 

emphasized that to achieve these improvements, only the computation complexity of the learning 

phase is increased while that of the recall phase remains unchanged. 

It is worth mentioning that using the adaptive algorithms can achieve the minimization of the 

overall-error between network outputs and their corresponding FMs. When the number of FMs is 

small, minimizing such an overall-error can make all the FMs FPs. However, when the number of 

FMs is large, the number of FPs achieved using such kind of error measure can only be maximized. 

In this case, a maximum number of FPs can be obtained by sacrificing a small (minimum) number 

of FMs (by allocating very small learning weights to them) if needed. In other words, in the 

WOPLAM, given a set of FMs, if it is impossible to make all the FMs he FPs, then a maximum 

number of FMs will be made to become FPs at the expense of the stabilities of the other remaining 

FMs. In order to improve the performance, we may use some other alternatives for optimization 

computation. For example, by combining characteristics of the simulated annealing algorithm and 

neural network, Van Den Bout and Miller [47] developed an algorithm for graph partitioning 

called MFA (Mean Field Annealing) which exhibits rapid convergence resulted from the neural 

network while preserving the solution quality afforded by simulated annealing. 

With respect to the novel encoding strategy based neural associative memory with the extreme 

or maximum stability of the FMs, a novel encoding strategy for neural associative memories is 

proposed. Unlike the conventional outer-product learning rule used in the Hopfield-type memories, 

the proposed encoding method computes the connection weights by summing up not only the 
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products of the corresponding two bits of all the FMs, but also the products of their neighboring 

bits within a certain range. Theoretical analysis has been carried out to investigate the performances 

of the proposed model in terms of its stability and attractivity which are compared with those of the 

Hopfield-type models. Both the theoretical and experimental results show that the novel encoding 

strategy is an ideal approach for a neural associative memory to achieve the extreme or maximum 

stability of the FMs. 

It should be pointed out that such extreme or maximum stability of the FMs is achieved at the 

cost of their error-correcting ability. The radius of attraction of each FM in the proposed model 

becomes smaller as the length of the neighboring range used grows larger. How to deal with the 

contradiction between this extreme or maximum stability and degenerating radius of attraction is an 

interesting future research topic. 

Regarding the local storage distribution of the FMs, we have proposed the correlation-

type autoassociative memory - the GCAM, which is extended from the ECAM (Exponential 

Correlation Associative Memory) [9]. The left-hand-side Gaussian function (LHSGF) is used 

as weighting functions. It is effective enough for the LHSGF to maximally discriminate the 

auto-correlation (between the input pattern and its corresponding FM) from all the mutual 

correlations (between the input pattern and all the other FMs), like the exponential function 

used in the ECAM. But the real GCAM circuits will not have the limitation of dynamic ranges 

in the real circuits implementation from which the real ECAM circuits suffer. Besides, the 

basins of attractions of the FMs in the GCAM can be controlled through adjusting two 

parameters of the LHSGF and thus can be larger than those of the ECAM. As a conclusion, 

the GCAM not only has the extreme stability of the FMs like the ECAM, but also has higher 
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error-correcting ability (or stronger attractivity of the FMs) than the ECAM as long as the 

two parameters of the LHSGF are (loosely) appropriately selected. 

How to adaptively find the two parameters of the LHSGF comprises our future work on 

this research. Theoretically, they can be optimally found out by certain nonlinear optimization 

techniques such as the adaptive mean-squared-error approaches proposed in section 3.4. The 

computational complexity can also be greatly reduced with the computational precision being 

kept (refer to section 3.4). Results obtained by those adaptive mean-squared-error approaches 

can be trade-offs between the stability and the attractivity of the FMs. In other words, basins 

of attraction of the FMs can be optimally maximized with the requirement on the stability of 

the FMs being satisfied. However, like most of the nonlinear optimization techniques, the 

adaptive methods in section 3.4 also suffer from the local optimum problem. The local 

optimum problem can be tackled by some other techniques, such as those in [47], 

Finally, we further investigate the upper bound of the asymptotic storage capacity of the 

Hopfield network from two different points of view - the neural dynamics approach and the 

SNRG concept. With the restriction that all the FMs be exactly recoverable, similar results are 

obtained simultaneously from both approaches showing that as n approaches infinity, the 

asymptotic storage capacity of the Hopfield network does not grow directly proportionally or 

proportionally to n but is bounded from above (on an average). Such an upper bound is not 

decided or directly decided by n, but is directly determined by the distribution of the elements 

of the FMs. 

The future effort to be directed on this research includes finding a closed form solution of 

the asymptotic storage capacity of the Hopfield network versus the distribution of the 
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elements of the FMs; on the basis of this solution, to construct a novel encodingMearning 

algorithm which is expected to be insensitive to the distribution of the elements of the FMs 

and thus to greatly increase the storage capacity; to make the encodingMearning algorithm 

additive, i.e., not thorough, but only additive encodingMearning is needed when a new FM 
i 

appears; and based on the encodingMearning algorithm obtained, to set up a novel network 

architecture for neural associative memories. 

Since the Hopfield-type networks have really been found to have severe limitation in their 
> 

storage capacities, we believe that in order to greatly improve the associative recall 

performance of the associative memories, some other novel nonlinear dynamics should be 

adopted and evaluated for their evolution. The most important thing we should do next is to 

propose some other frameworks or mechanisms for neural associative encodingMearning. 
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Appendix I The Proof of Theorem 3-

Let u(s>, be a neighbor one Hamming distance away from u<M. They are only different in the pth 

element, i.e., Up<s“ = -up(s), in a bipolar case. The energies of u…and u<M’ in the Hopfield 

n n n n 

network are DM = - 1 I u,,s)- W„M u,^' and DH ' 二 - U ： u ? • W"H u广，respectively. 

1=1 I 1=1 I 

n n n n 

D w = - 1 1 u,⑷• W t J
w. u,(M and Dw' = - 1 1 u；"'1 • W"w • are the respective energies of 

i= I j= I i= I j= I 

u<s) and u(s)' in the weighted outer-product learning associative memory (WOPLAM). Suppose that 

u(s) is not a fixed point (FP) in the Hopfield network and Dh~ Dm' > 0, one wishes to make it an FP 

by the WOPLAM, i.e., Dw - D w ' < 0, namely 

n n hi it n in 

t “ l ^ a UjFj u, u, 
1 1 r= I I=|.*J r=| 

Drv • v V ••⑴〜⑴••⑴.•⑴••⑴ 1 V V V ..,sh .A.'" , . , r l . . 
w — Dw = - 2- L L u, a u, u, u, 2- L u, a u, u, 

n n in n � n in 

= - I I I (a , r ) - \ y u r \ { t ) u ! s ) u r + I I 5：( 0 ^ - " . 1 1 : % / % . % 1广+ D h - D h _ 
i = I I .右 r=丨 I •芍户 I •灼 n= • 

in n n 

= - K a ( r ) - D i i ur ur (ur ur — u r . u , ' ’ + Dm - Dh ' 

r=l 丨=丨.芍 j= I.^i 

m n 

= - K a ( r ) - 1 ) 1 2 u^ ur-2 u^-ur + D h - DH ' 
n=l j= 1,灼 

m n 

= - 4 1 I (a , r ) - 1).<".11/"‘11广.11广 + D h - Dh ' < 0 , 
r=l 

thus. 

in n m n 

I I ^ u ^ - u r - u ^ u r > ( D „ - D H V 4 + I I up,r, u;r, u;s, u,,s) 

r= I j= I r = 1 j= ••沟 
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n - f - ( n - [ (a(r) - I) 
r=l 

in 
<r) m(n 一 1) - (n - I )• X a1 

m - X o! 

( n - 1 )ais) > (Dh - D h ' ) / 4 

= ( D H - D H ' ) / 4 

> (D H - D H ' ) / 4 

= (Dh - D „ ' ) / 4 

therefore, we have 

o ^ 〉 ( D H - D H ' ) / [ 4 ( n - l ) l 

Cv 
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Appendix II The proof of Theorem 3-2 

The proof is conducted by following the approach in [9]. For a given p, 0 < p < 1/2, suppose 

that the weighted outer-product learning associative memory (WOPLAM) is started with a bipolar 

vector x that is d| (= pn) bits away from the nearest fundamental memory (FM), say u(p), i.e.. 

where e has di nonzero (+2 or -2 ) components. Without loss of generality, assume that …明二 -1 . 

Furthermore, because the bit-error probability is larger for the case where x,关 u,lp) (x, = +1, e, = 2) 

than when x,= u,<p>(x, = —L e,= 0)，only the-former case will he studied here. Thus, we have 

n 

x,'= sgn{ I W „ W . x,) 
j=i 

n in 

= s g n { I W W } 

in in 

= sgn{ Ia (k ,-<u ( k ,,x>-u:k>- I a , k , x,} 
k=l k=l 

in in 

= sgn{ -a(p, n(l - 2 p ) - I a ' k , x, + I a<k)-<u,kJ, x> u；11} 
k-丨 K 邛 

m 

= sgn{ -a<p) n(l - 2 p ) - I a (k ' + Z } 
k=l 

= sgn{ v }, (A2-1) 

where <u(k), x> denotes the correlation of u<k) and x, and 
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Zk = < U , X > U , , ，m. 

Z = Ia ( k , - z k , (A2-2) 

m in 

v ^ I a ^ - z , - I a ( k ) x, 
k:l k=l 

f 
m m in 

= Ia , k , - z k - 1 a ,k) = -«<p,-n(l - 2 p ) + Z - I a , k ' . 
k=l k=l k=l 

Since u<p) is the nearest FM to x, all other m - 1 FMs must he at least d( + 1 hits away from x. 

Define 

d,' = d, + 1 <n, p' = d,7n= p + l/n < I. 

The probability distribution function of the random variable z、when e, = 2 (i.e., x, = 1) can be 

formulated as 

Prob[ z, = n - 2j ] = ( l /K)C n V, j = d丨•，d,'+l, ...，n-1, 

Prob[ z, = - < n - 2 j - 2 ) ] = ( 1/K).C,,V， j = d , ' - l , d,,，••., n - 1 , (A2-3) 

where C denotes combinations. The first formula applies to the case where u丨丨"=+1 and, u(,) and x 

differ at j positions, while the second applies to the case where u,lh = — I and, u (h and x differ at j+1 

positions. The constant K is a normalizing factor and K > 2"1 [9】.The expectation of Z| can be 

roughly bounded as follows: 

n-l n-1 
E[z,] = I Prob[ z, = n - 2j] (n - 2j) - I Prob[ z, = - ( n - 2 j - 2)] (n - 2j - 2) 

J=di' J=di'-I 

n-1 n-1 S 

= (1/K) { l C r H , ( n - 2 j ) — l C n , ' ( n - 2 j - 2 ) } 

J=d." j=<li-l 

n-1 n-1 

{ lC f , , J ( n - 2 j ) 一 - Cn.,d' 1 (n - 2d,') } 
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n 
Hn-2) < 2 ' n - , l C n J 

j=« 

=4. (A2-4) 

Similarly, 

n-l n.I 

E[z,2] = (1/K)- { l C n V (n -2 j ) 2 + l C „ V ( n - 2 j - 2 ) : 

n-l n-f 

<2仙._).门2.(1；<：,,—丨丨 + I C n V ) 

< ,-(n-l) J(p) n2 •( l C n ' + I C „ V ' ) 

<2^ - 2 , -q 2 (p )n 2 lC n J 

<2似•_〜•！(：„丨 
H) 

= 4q2(p).n2， (A2-5) 

where q(p) is a nonlinear and monotonically decreasing function of p, and 0 < q(p) < 

Accordingly, the variance of Z| is 

Var[z,] = E[z,2] - E2[z,] < E[z,2] < 4q :(p) n2 • (A2-6) 

Since z^, k = 1, 2, ••，m, ^ p, are independent, identically distributed random variables, according to 

eqn.(A2-2), the expectation and variance of Z are respectively: 
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in m (k) ^ ^ a E[Z] = I a ( k ) E[z,] < 4 l a ' (A2-7) 

m m 
Var[Z] = I(a< k ))2 Var[z,] < 4q :(p) n2 • I ( a , k , ) : (A2-8) 

Now let 

G , p ) = 

1/2 (p) ( m - D ' ^ a 1 

(Ka , k > ) 2 ) , / 2 

(m-l) l / 2-a , p> 

> 

I a ( k ) 

2(2 t ) , / 2 q(p)n (m- ] ) l / 2 

> 

n - 2pn + I 

where t is a fixed and large number. Thus 

(A2-9) 

2(2t) l / 2q(p)n l a 1 

k=l.3tp 

n 一 2pn + 1 
o T > (A2-10) 

By inequalities (A2-8) and (A2-9), we have 

( k ) , 2 Var[Z]<4q‘(p)rT 
k=l.*p 

4q ' : (p )n- : [a , p , (n -2pn+ I)]' 
< 

[2(2t) , / 2q(p)n]2 

[ a , p ) ( n - 2 p n + 1)]* 

2t 
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[a(p, n (l -2p) + I a ( (kh 
<=\ 

< 
2t 

Considering inequalities (A2-7) and (A2-9), we have 

E [ Z ] < 4 l a , k ) 

4a ( p ) (n-2pn+ 1) 
< 

2(2t) , / 2q(p)n 

(A2-I1) 

4[a ,p) n (l -2p ) + Ia , L ) 
k=l 

< 
2(2t) l /2q(p)n 

« a ( p ) n (l -2p ) + Ia , k > 
k=l 

(A2-12) 

as n —> oo, t is a fixed and large number. 

Therefore, the expectation of Z is significantly smaller than a<pl n( I - 2p) + Z a l k ) as n 
k=l 

approaches infinity and t is a fixed and large number, arid thus can be ignored when compared with 

m in 
a ,p , n( 1 - 2p) + 1 a , k ) . The variance of Z is bounded by [a(p, n( 1 - 2p) + I ot00】2/ (2t). Since the 

k=l k=l 

random variable Z is the weighted sum of (m -1) independent, identically distributed random 

variables, as n and m approach infinity, Z can be approximated by a normal distribution according 

to the central limit theorem. So the bit-error probability of the WOPLAM can be estimated as 

follows. 
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Prob[ v > 0 】 

=Prob[ Z > a,p) n( 1 - 2 p ) + I a , k ' ] 
k=l 

m 

= P rob [Z -E [Z ] > ot(p、n(l-2p) + Xcx…】 
k=l 

in 

a(p) n(l - 2 p ) + I a , k > 
k=l 

=Q{ } 

(Var[ Z ] 严 

<Q{ (2i)]r2l (A2-I3) 

Because t is large, we can use the asymptotic formula for Q{ • }: 
s'1 exp(-s2/2) 

Q ( s } =  
(2K)"2 . 

By the above formula and (A2-13), one has the bit-error probability of the WOPLAM: 

in 

P, = Probf v > 0 ] = Prob[ Z > oT n( I - 2p> + X a<u 】 < (々泔)…^. # 
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Appendix ID The Stability and Attractivity Analysis of the Three Associative 

Memories 

There are two fundamental requirements Cor associative memories: The first one is the stability 

of the fundamental memories (FMs) which should all he fixed points (FPs); and the other is the 

attractivity of these FPs which should have a radius of attraction. 

It is commonly known that when x is one of the FMs, u(p>, we say that u,p) is an FP if and only if 

y, • u,^' > 0, i = 1,2，."’ n; and when x is an ‘‘error，，version of one of the FMs, u<p>, we say that u(p) 

can be correctly recalled if and only if y,. u,(pl > 0, i = 1, 2, • •，n. Based on such a concept，we will 

derive some theoretical results to compare the performances among the Hopfield model, the first-

order outer-product model with self-feedback connections, and our proposed model in terms of the 

stability and attractivity. 

A3.1 Stability Analysis 

First, we will analyze the stabilities of these three kinds of associative memories. Here, FM u(p) 

is taken as the network's input. 

A3.1.1 The Hopfield Model 

By eqns.(4-1) and (4-2), we have 

n in n in n 

y , = i W(JH . Xj = I I = i l u r - u r - u r . 
j=l n：I j= 1 r=丨丨=1.沟 

Therefore, 

m n 

r=l 
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= - I u,,r>. 11,⑴.u,(p)- u,,p) + I u r - u,^'. u;p) •u,"1' + I I u,,r)- U|<". u;p> • u,(p) 

1=1 

m n 

= - m + n + I K u / W i 
n=l.*p p i 

> n - m - (m - 1 ) |C(u⑷，u(p’)| 

= n - m ~ n ( m - l ) + 2 ( m - 1 )dIllin(u<r>, u,p>) 

f̂ p 
n - K . d m > 0 

(A3-1) 

(A3-2) 

(A3-3) 

where 

|C(u(r u(p))U = IIu;r,-u,<p,U = n-2dfnn(ulr),u{p\ 
r̂ p j= 1 ntp r̂ p 

d(u(r), u(p)) = min[ H(u (p), u(r)), H(WP>，-u,r>)], 

(A3-4) 

(A3-5) 

and H stands for the Hamming distance. From eqns.(A3-l), (A3-2) and (A3-3), we have the 

following respective results: 

n - m 
|C(u<r,,u(p,)U < 

pep m — 1 , 

n(m - 2) + m 
d , K ) > 

î p 2(m 一 1) 

n -

m < 

n-2dm i n (u ( r , ,u ( p ) ) 

+ I 

(A3-6) 

(A3-7) 

(A3-8) 

A3.1.2 The First-Order Outer-Product Model with Self-Feedback Connections 

The connection weights of this model are computed as follows: 

W I J = Iu, ( r ) - u; r ), i , j = 1’ 2，…，n. 
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They are the same as those of the Hopfield model except the self-feedback connections being not 

set to zero. From the above equation and eqn.(4-2), we have 

n m n m n 

y,= = i z u / w = z i u r - u r - u ^ . 
j = l r=l j = l r=l j = l 

Therefore, 

m n 

>',.u,<p> = z i u r - u ^ u ^ u r 

(p)
 

u,
 

P
I
 

u
l
 

u.
 

m
 

u,
 

n
 z
i
=
l
 

I
I
 

m n 
(r) (p) (r) (p) = n + I 

r=l.印 j=l 

> n - ( m - l ) |C(u< r > ,u ( p >)U (A3-9) 

= n - n ( m - l ) + 2 ( m - 1 ).d隱(u("’ u<p>) (A3-10) 

= 2 n - 2dm,n(u(r)，u(p)) - I n - 2dnnn(u,r), u,p>) ]m > 0 . (A3-11) 

Here, the definitions of |C(u…，u<p>)|inax and d(tT，u(p>) are the 

same as in the Hopfield model. From 
eqns.(A3-9), (A3-10) and (A3-11), we have the following respective results: 

n 
|C(u(r>，u<p>)|瞧 S (A3-12) 

m — 1 ’ 

n(m 一 2) 

d_(u…，！！糾）> (A3-13) 

師 2 ( m - 1 )， 

m < + I . (A3-14) 
n-2dmin(u ( r t ,u ( p>) 
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A3.1.3 The Novel Encoding Strategy Based Neural Associative Memory 

Proof: From eqns.(4-2) and (4-5), we have 

n in n L in n L 

y,=： i w . - x , = 1 1 l u ^ u ^ r - x , = n l u ^ r - u ^ r - u ^ 
j=l r= 1 j= I i= I r=l j=l 1=1 

Therefore, 

m n L 

v ,, <p> _ y V V ,, 'r> ,, …n<p) <p» y. • u, - L L L . u)+1_i • u, u, 
n=l j=l 1=1 

m n in n L 
_ V y n M(r) , , (p» . . (p> , Y V V .. (D (r) n(p> .. <P> 
-2L Z u , • Uj • u, • u, + 2 - 2 - 2 - ul+1_i . u … • u, • u, 

ri l j=l n= I |= I t=2 

n in n 

= I u,(p>- u/p)- u;p) •u1,p) + I I u;r)- u;p)- u,,r>- u；^ 
J=l r= I j= I 

m L m n L 

. • ‘ … v . ZY .. <f) .. <f> <p> n ip> . V v V ,, (r» .. "> ,, 'p> ,, <r» L ul+4_i • i W i • u, • u, + 2 - 2 - L • u,+, -i • u, • u, 
I 1=2 r= I j= I l=： 

in n L 

= n + m ( L - l ) + Z C ( n ( r W f , . i ^ + I I K - u — W 1 

n=l r=l 』=•.沟 t=2 

> n + m ( L - l ) - ( m - 1 )|C(u,r>, u , p , ) U (A3-15) 

= n + m(L - 1) - n(m - 1) + 2(m - I )山仙(11⑴，u<p>) (A3-16) 

= 2 n - 2 d m i n ( u ( r ) , u < p , ) - [ n - ( L - 1) - 2dnnn(u,r>, u<p>) ]m > 0 . (A3-17) 

From eqns.(A3-15), (A3-16) and (A3-17)，we have the following respective results: 

n + m(L - I) 
|C(u…，u<p>)|瞧 S (A3-18) 

m — 1 , 

n(m - 2) - m(L - 1) 

c W , , u , > ： (A3-19) 

n̂p 2 ( m - !) , 
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m < (A3-20) 
n - ( L - l)-2d rn,n(u ( r t,u (p)) . # 

A3.2 Attractivity Analysts 

We will analyze the attractivities of these three kinds of associative memories in the following 

subsections. Here, the network's input x is an "error" version of FM u<p). The Hamming distance 

between x and u(p) is di bits. 

A3.2.1 The Hopfield Model 

From eqns.(4-1) and (4-2), we have 

n m n 

y,= i w ^ x ^ I S u / W . 
j二 1 n= I j= I •右 

Therefore, 

rn n 

y , - u r = I I u 1 ( r ) . u l ( r , - x , .u r 
r= I j= I .̂ i 

m n in n 

= - I U,(r) • 11,⑴.X, • u,(p) + I u广• x. - u , ^ + I I u,,r'. u；' • X, • u广 

= - i x , u I
(p) + l u ^ - x , + 1 lur-ur-^-ur 

j=l r= I.̂ p j= 1 

m 
> - m + n -2d, - 1 C(x，u(r)) 

r=l.*p 

> - m + n - 2d, - (m - " (C瞧+ 2d丨） 

= n - m - ( m - l ) C I i m - 2 m d , (A3-21) 

= n + C n m - [ 1 + Cnstt + 2d,】m 2 0， (A3-22) 
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where Cmax is the maximum correlation among all the FMs. In the above derivation, the relation of 

C(x, < C,nax + 2dI [60] has been applied. From eqns.(A3-2l) and (A3-22), we have the 

following respective results: 

n - m - (m - 1 ).C,mx 

d, < (A3-23) 
2m , 

n 
m < (A3-24) 

1 + C 隱 + 2d I . 

A3.2.2 The First-Order Outer-Product Model with Self-Feedback Connections 

From eqn.(4-2) and the connection weights rule given in section A3.1.2，we have 

n m n 

y,= iw.-x, = I W . x ’ . 
j = l r=l j = l 

Therefore, 

m n 

y , u r = i i u r - u r ^ - u r 

n in n 

= K x , + I K v W , 
in 

= n - 2d, + ! C ( x , u(r))- u,,r, u r 

m 

> n - 2 d , - l C ( x , u⑷） 

> n - 2 d , - ( m - l ) ( C n m + 2d,) 

= n - (m - 1 )Ctnax - 2 1 ^ (A3-25) 

= n + Crnax - (2d, + C瞧)m > 0 , (A3-26) 

152 



where 匸匪 is the maximum correlation among all the FMs. Also, in the above derivation, the 

relation of C(x, u(r>) < C u i a x + 2d| has been used. From eqns.(A3-25) and (A3-26), we have the 

following respective results: 

< 
n - ( m - 1 )C„ 

2m 
(A3-27) 

n + C 
m < 

2d I + C n m 

(A3-28) 

A3.2.3 The Novel Encoding Strategy Based Neural Associative Memory 

Proof: By eqns.(4-2) and (4-5), we have 

m n L 

y,= l w i r X j = 1 1 ( r ) “ (r) 
j-H-l … 

户I j=l 1=1 

Therefore, 

m n L 

y,-ur= I I K rW r ,. v u, ( p, 
r=l >=1 1=1 

in n in n L 
= i i u ,⑴. ic . x,. u , ^ + 1 1 1 ii …—r). u … x ( - u r 

1=1 ^ ‘ r=l )二1 1=2 

= I u,(p) • < ) . X】• u, ( p ) + 1 1 u , , n - X, . u:°. u,,p) 

m L 

i l 
I ( = 2 

in n L 

I l u ^ u ^ ^ - u r - x , + I I l u , ,r) " (f' 
1 1=2 

in L 

I • • Xj - U 

n rn 

= I u ; p ) • X, + IC (x ,u ( r ) ) . u,<r). u:p) + I Ix , -u , ( p ) 

j = l r=l.*p n=l 1=2 

<P> 

> n - 2 d , - m ( L - I) - 1 C ( x , u<r丨） 
r=l.*p 

> n - 2 d , - m ( L - l ) - ( m - l ) (C I i m + 2d,) 
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= n - (m - 1 )-Cirew - m(L - 1) - 2md| (A3-29) 

= n -»- C ^ - m[ 2d, + (L - I) -f CM„X 1 > 0 , (A3-30) 

where the relation of C(x, u<r>) < C„m + 2d| has been used. From eqns.(A3-29) and (A3-30), we 

have the following respective results: 

n - m ( L - l ) - ( m - 1 )CIIUX 

< 

m < 

2m 

n + C,磁 

2d, + L - 1 + C, 

(A3-31) 

(A3-32) 
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Appendix IV Investigation into the Upper Limit of the Asymptotic Storage 

Capacity of Hopfield Associative Memory from two Different Viewpoints 

A4.1 By the Neural Dynamic Method 

Assume fundamental memory (FM) ulpl is taken as the network's input. By eqns.(6-l) and 

(6-2), we thus have the summed input of neuron i as follows: 

n in 1 n 

y ^ l w . - x ^ I Z C W . 
户丨 r=l j=l,灼 

Therefore, 

m n 

y, • U,,p> = 1 111.<" • 11,⑴• u r . U,…丨 

z
f
 

u
l
 

u,
 

I
H
 

I
I
 r

 

+
 

u,
 

p
 

H.
 

u,
 

p
)
 

u,
 

+
 

p
>
 

^
 

u,
 

u,
 

u,
 

I
 r
 

I
I
 

m n 

= - m + n + I I u广• u,<p’. u/【丨.u1
,f1» 

r=l.*p j=! 

>n-m-(m-l)|C(u(r)
 ,u , p , ) l m a x 

= n - m - n ( m - l ) + 2(m—1 >dmm(u⑴，u,p') 

= 2 n - 2dlmn(u
<r)，u<p)) - [ 1 + n - 2dmin(u

,r), u ,p ,)]m > 0 , (A4-1) 

where eqn.(6-3) has been undertaken and. 

I C(u<r)，u<p)) I 隱=I l u；0 . u广
,
I ,職=n - 2d,議（u⑴，u,p>)]， (A4-2) 

r̂ p j= I r̂ p r̂ p 

d(u(r)，u<p)) = min[H(u,p)，u,r)), H(u(p)，-u,r>)]， (A4-3) 
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and H stands for the Hamming distance. Here, d(u l"，u lp )) is defined as an extensive distance 

between u<r) and u<p). From eqn.(A4-l )，we have the following result: 

m < 
1 + n - 2dmin(u

,r)，u,p') 

n -

1 + n - 26 n 
(A4-4) 

where dmm(u…，u(p>) is the minimum extensive-distance between u'n and uip), r ^ p, and is 

equal to 0 n. 

A4.2 By the SNRG Method 

We try to find out a learning weight for an FM so as to make its signal to noise ratio gain 

(SNRG) be maximised subject to a constraint that a total summation of all the learning weights be a 

constant. Or, the problem is to maximise G ,p ' , p = I, 2, •••, m. with the constraint of 

m 

I a , r ) = a m , (A4-5) 
r=! 

r 

” where a is implied to be an average value of the learning weights. The introduction of the 

constraint reflects the fact that all the SNRGs are a compromise between them implied in eqn.(6-9). 

All the SNRGs mutually affect themselves and not a single SNRG will be too large to make other 

SNRGs be greater than or equal to their thresholds. A procedure for finding out appropriate 

learning weights for the FMs under the above consideration is discussed below. 

Define a function <l> such that 

in 

<D = (G(p))2 + T ( I a < r , - a m ) 
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(m-l)(a (p))2 m 
+ t ( I a , r , - a m ) , (A4-6) 

m r=l 
I ( a ( r y 

r=l,*p 

where T is a real parameter and cqn.(6-9) has been undertaken. Let the derivative of • with respect 

to a<p) be zero: z - 、 

2 ( m - l ) ( a l 

aa,p> I ( a < r y 

T = 0 (A4-7) 

We thus have 

a , p , = I (a,r)) (A4-8) 
2 ( m - l ) 

Replacing a<r)，r == •’ m, in eqn.(A4-5) with eqn.(A4-8), we obtain the parameter T as follows: 

- 2 a m 
I = (A4-9) 

I (a,r)) 

Substituting T in eqn.(A4-8) with eqn.(A4-9), we thus have the relationship among all the learning 

weights as follows: 

a m I (a(")2 

a ( p ,=. m. (A4-10) 

m-1 I (a , r ) )2， 

Rearranging eqn.(A4-10), we then have the following equation about a,p), p = -，m, as 

follows: 
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Ill a m rn 
(pK3 (I (a,r>) a,p> -

m-1 r=l.*k 
I ( a , r r = 0 (A4-11) 

Its solution is obtained as follows: 

a l p ) = q ] n-Q/qm  (A4-12) 

in which 

I («<r>) 
=i.印 

Q = (A4-13) 

and 

I (a,rV 
= I.*T a m a m 

((一)
： 

m-1 

4 

I (a
,r)
) (r)x2 il/： 

m~l 27 r=i.*p 

I (a(r>)2 
a m 

> 
m-1 

a m 

1 3>/3 r=l 邛 
K ^ ' V ) (r)v2 J/2 il/2 

m tn 
川、 / V / J”、2 J/2 Since a m = S a' > ( Z (a1"厂）•，we accordingly have 

r^l n=l 

tn m 
川、2 / v /̂ ,(rK2J/2 K a ( l 

=1•印 

q > 

( K a ( r V ) ' 

m-1 

川、2、l/2 , ( I ( a , r y ) ' 
4 nH m  

( I ( a , r > ) : ) 1 / 2 ] , / 2 } 
m—I i^i.^r 

m m 
,(rK2 / v /〜⑴、2、l/2 ,a
 

(
t
-

> 

( I (a(' 

m-1 

I ( a , r , r 
4 

3V3 ITh-1 
,1/2 
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I ( a ' 
=i.印 

⑴、2 ( I (a , r > ) 2 ) 1 / 2 

m - I 

(rK2、l/2 •( I (a ( rV ) 

l V J ( m - l ) , / 2 

= ( I (a⑴)2 严 • A (A4-14) 

where 

A = (A4-15) 

2 (m- l ) 3 ^ ( m - l ) l / 2 

From eqns.(A4-12), (A4-I3) and (A4-I4), we obtain a final solution to eqn.(A3-l I) as follows: 

I (a<fV 

a ( p ) > A i n - ( K a < r > ) 2 ) , / 2 -
r=l,印 

r=l.*p 

A1^ - ( I (a , ry ) 
r=l *P 

,(r)x2 ,1/2 

1
/
2
 

\
l
/
 

2
 K

i
/
 

a
a
 

(
邛
 

I
L
 

I
I
 (A…一 

A 
\ r \ 

)， ni (A4-16) 
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