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Abstract 

The existing methods and commercial products for on-line Chinese character 

recognition (OLCCR) are not satisfactory when there are stroke order and stroke 

number variations. This thesis presents several methods for achieving better per-

formance of OLCCR. We address three aspects: preprocessing of input hand-

writing, representations of Chinese characters and recognition methods. 

First, we deal with the preprocessing problem. To facilitate the recognition of 

the types of strokes and segments, an input stroke is represented with a polyline. 

A method for recognizing the types of strokes with more than two segments is 

proposed by stroke chain code string matching. Some rules are presented to 

detect most of frequently-occurred connected strokes and then delete the extra 

segments in such strokes. 

Next, we formally define complete relational graphs and distances for mea-

suring the similarity between two graphs. With such graphs, we propose stroke-

based and segment-based spatially-temporally relational representations for Chi-

nese characters, using novel "don't care", "should" and "must" relational fea-

tures. 

Recognition methods are the key to OLCCR. We develop three methods in 

this thesis. The first one is a state space search method. We formulate the graph 
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matching as a state space search problem. To obtain good search efficiency, we 

use the A* algorithm to perform heuristic search and propose three schemes to 

speed up the A*: utilize a heuristic function to make the A* expand fewer nodes 

in a search tree; employ a tree pruning operation to let the A* avoid searching 

the nodes that have very little chance to be located in the optimal path in a 

tree; introduce two new criteria, together with the original one, to stop the A* 

by using the monotone of the evaluation function of the A*. 

In the two-layer assignment method, finding segment correspondences be-

tween two characters is formulated as an assignment problem (in layer 2)’ which 

can be solved by the Hungarian method. The cost matrix of this assignment 

problem is derived by the assignment problems in layer 1. To save computa-

tional time, a lower bound estimate and the geometric position features of model 

characters are used to reduce the complexity of the method from O(n^) to 0{n^). 

The third method is a fast string matching one, which incorporates the ge-

ometric position constraints of strokes (or segments) of Chinese characters into 

Wagner and Fischer's string matching algorithm. To allow more stroke order de-

viations for some characters, using two or more strings to represent one of these 

model characters is a feasible way. In this case, we present a scheme to save com-

putational time, by combining two or more separate networks into one and em-

ploying a dynamic-programming procedure to solve the shortest path problem. 

We also make comparisons of the first method with several other methods 

published recently, and find that our method is very promising. When segments 

of Chinese characters serve as primitives, the first two methods are stroke order 

and number free. The last one is stroke number free and runs much faster but 

is not stroke order free. 
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Chapter 

Introduction 

1.1 Importance of on-Line Chinese Character 

Recognition 

Recently, rapid development of computer techniques has made personal com-

puters (PCs) cheap enough for family use. To enter text into a computer, using 

a keyboard is faster than handwriting for small-alphabet languages such as En-

glish, but it is cumbersome for large-alphabet Chinese. Hundreds of millions 

who use Chinese in their daily life are bothered all along by the input of Chinese 

characters into computers, except those who have taken a lot of time to learn 

by rote some input methods that encode Chinese characters. Therefore, a good 

on-line Chinese character recognition (OLCCR) system will provide a friendly-

interface for the use of Chinese and popularize PCs in China and some other 

areas. In addition to computers, some products, such as portable electronic 

diaries, electronic Chinese-English dictionaries, multi-functional telephones and 



Chapter 1 Introduction 

simple Chinese typewriters, may also require to be able to recognize on-line 

inputted Chinese characters. 

There are two research fields of handwritten Chinese character recognition: 

on-line recognition and off-line recognition. In this thesis we only discuss the 

former study. On-line recognition means that a machine recognizes the input 

characters while one writes on a digitizer with a stylus pen. Off-line recognition 

is performed after the handwriting is completed, generally with a scanner con-

verting the image of handwriting on paper into a bit pattern. On-line devices 

can capture the temporal information of handwriting, such as the number, order 

and direction change of strokes of a Chinese character. Thus, for recognizing 

the Chinese characters written in a similar degree of distortion, on-line recogni-

tion is easier than off-line recognition. By the way, another advantage of on-line 

recognition is that a user may participate in the recognition process after the 

computer selects a small set of possible candidates for an input character. 

Recognition of handwritten Chinese characters is considered as a hard prob-

lem because of large categories, complex structure, and widely variable and 

many similar shapes of Chinese characters. Although great progress has been 

made in OLCCR since the 1970's [36 88, 97), a number of researchers are still 

involved in this topic for achieving better performance of OLCCR. From the 

review in the next section, we can see that the existing methods are not satis-

factory. Researchers hope to develop better algorithms which are stroke order 

and stroke number free, and can run on general computers (e.g. PCs) within 

an acceptable computational time. Now commercial products for OLCCR are 

available but their performance still needs improving, because they require that 

input Chinese characters should be written both in the block (not cursive) style 

2 
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and basically according to their standard stroke orders (in other words, they 

allow only very few and common stroke order deviations). 

1.2 Review of Recent Studies of the Subject 

A lot of approaches to OLCCR have been proposed since 1970's, most of which 

may be classified into one of the techniques: transform, decision tree, string 

matching, syntactic-semantic analysis, radical (component) decomposition and 

graph matching [21, 36, 60, 88 97]. There are so many approaches that we 

cannot mention them one by one. Thus, in the following we just give the review 

of recent studies, which in general, have better performance than the methods 

published earlier. For the reader who wants to know more about this topic, the 

survey papers [36 88, 97] are recommended. To evaluate an OLCCR approach, 

we consider its three aspects: tolerance of stroke order variations, tolerance of 

stroke number variations, and running time. 

In [56], Lin et al. proposed a deviation-expansion model to represent Chi-

nese characters, and dynamic programming is used to carry out the character 

matching. Their approach is stroke-based and in essence a string matching one. 

It requires that an input character should not have more than one stroke num-

ber variation and more than two connected strokes. The running time of their 

algorithm is 0(2"), where n is the stroke number of an input character. Chou 

et al. [21] extended the above model to a segment-based deviation tree, which is 

also a string matching one and is not stroke order free. It cannot tolerate more 

than two stroke order deviations. Their stroke-segment preprocessing scheme 

makes the approach allow more stroke number deviations. The computational 
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complexity is also 0(2"). 

In [17], Chen et ad. developed a stroke-sequence decision tree to represent 

Chinese characters and employed stroke positions to calculate the similarity 

between two characters. The approach is not stroke order and number free. It 

cannot handle the input characters with stroke number deviations more than 

one. Tsay and Tsai [92] used attributed string matching by split-and-merge 

for on-line Chinese character recognition. The proposed method can recognize 

cursive characters but imposes the constraint of correct stroke orders on them. 

The authors suggested that their approach could be used to design a writer-

dependent system. In [22], Chou and Tsai proposed a discrete iteration scheme 

to solve the OLCCR problem. The features used to measure the similarity 

between two characters include lengths, orientations and locations of segments. 

Their method is not stroke order and number free. The provided test characters 

are in block style and almost have no connected strokes. 

In [19], a hierarchical deformation model is proposed to describe the defor-

mation of on-line cursive Chinese characters. An elastic matching algorithm 

and a constrained parabola transformation are used to find the correspondences 

of strokes between two characters. The method requires that input characters 

should be written in correct stroke orders. The algorithm is very computation-

ally intensive. The time for recognizing a character is 4.2 seconds on a Sun 4 

SPARC workstation when there are only 20 model characters. 

In [40], Hsieh et al. employed a greedy algorithm for bipartite matching to 

carry out the recognition. The method is segment-based and stroke order free. 

The provided test characters are neatly written, some of which have one or two 

connected strokes. Their algorithm needs large amounts of computation. Its 
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running time is 0(max{n®, m®}), where n and m are the segment numbers of 

two characters under matching. The average time for recognizing a character is 

39 seconds on a Sun workstation when there are 452 model characters. 

Chen and Lee [16] proposed a fuzzy attribute graph representation for Chi-

nese characters. They used a set of segment intersection features to describe 

only the relations between segments within the same components. A maximum 

clique finding algorithm is employed to perform the graph matching. Two prob-

lems exist if the maximum clique finding algorithm is used: (1) it is NP-complete 

and so is time consuming; (2) the thresholds, which are utilized to build an asso-

ciation graph describing all possible compatible mappings between two graphs, 

may eliminate any possibility of including a given pair of nodes in the final 

clique, resulting in incorrect recognition [26]. The average time for recognizing 

a character is 2 seconds on a Sun SPARC-II workstation under the conditions: 

(1) there are 650 model characters each with a stroke number between 1 and 

12, and (2) a preclassification is employed. Obviously, when their model base 

is enlarged, the algorithm is too slow to use. The method is stroke order free, 

but its tolerance of stroke number variations is unknown since no test data or 

characters are provided. 

In summary, the above methods are not good enough. Only the last two are 

not stroke order free, but they require large amounts of computational time. In 

addition, the method in [40] can only recognize neatly written characters, some 

of which have one or two connected strokes. The tolerance of stroke number 

variations in [16] is unknown since no test characters are given. The last method 

16] uses graphs to represent Chinese characters. Besides it and our work, there 

ire several off-line recognition methods that also use graphs to represent Chinese 
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characters [13’ 18 68]. Because they are related to part of our work in Chapters 3 

and 4 we also give a brief review of them here. 

In the application of graph representations and graph matching to Chinese 

character recognition, a computational problem arises due to the large cate-

gories of Chinese characters and the inherent combinatorial explosion of graph 

matching. In order to save computational time, Chen et ai. [18] and Lu et al. 

68) used a two-layer graph to represent a Chinese character. In the first layer, 

nodes describe components (or radicals) of a Chinese character and arcs describe 

the relations among these components. In the second layer, each component of 

the first layer is represented by a graph, in which nodes and arcs represent the 

strokes and the relations among these strokes of a component, respectively. This 

strategy results in several smaller graphs for each Chinese character, so match-

ing time can be reduced. However, a new problem of how to correctly group the 

strokes of a Chinese character into its components arises. The wide handwriting 

variations and connected strokes make it very difficult to extract components 

of Chinese characters at a high rate of success. In [18], a relaxation matching 

algorithm is used to carry out the graph matching but it is still time consuming. 

Although there are only 24 models (10 numerals and 14 Chinese characters), the 

method needs 30 seconds to recognize an input character on a PC/AT compat-

ible. In [68], exhaustive search with some search rules are employed to perform 

the graph matching, but the recognition time required is not reported. 

Chan and Cheung [13] used character graphs to represent handwritten Chi-

nese characters and radical graphs to represent model radicals. The recognition 

of a character is completed from the radicals found by matching radical graphs 

with the character graph. A NP-complete maximum clique finding algorithm is 
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employed to perform the graph matching, which is expected to be computation-

ally intensive (no recognition time is reported). As we have mentioned above, 

reliably extracting radicals from the characters with stroke type distortion or 

connected strokes is a difficult work. Therefore, these three methods are only 

suitable for recognizing neatly written characters. The test characters provided 

in [13 18, 68] support this conclusion. 

In Chapter 3 we propose complete relational graph representations of model 

and input Chinese characters. In a graph, nodes denote primitives (strokes 

or segments) and their types, and arcs describe the relations between any two 

primitives. Different from the methods in [13, 18 68], we do not need to extract 

the radicals of Chinese characters. Also different from the method in [16], we use 

the relations between any two primitives in our representations, which provide 

much information that is very beneficial to the graph matching procedures (see 

Section 4.4.3). The features to describe the relations between primitives in our 

method are also different from those in [13 16, 18, 68]. In addition, we use the 

state space search and the A* algorithm to carry out the graph matching. With 

the proposed pruning strategy and stopping rules, our matching method is fast 

enough for practical application. 

1.3 Outline of the Thesis 

In the present thesis, we will address three aspects of OLCCR: preprocessing of 

input handwriting, representations of Chinese characters and recognition meth-

ods. The major contributions are shown in Fig. 1.1. The thesis is organized as 

follows. 
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Figure 1.1: The major contributions of the thesis. A line connecting two boxes 
indicates that there are some relationships between them. 

In Chapter 2 we develop several preprocessing approaches to OLCCR. First, 

we approximate input strokes with polylines by using an efficient splitting and 

merging algorithm, to facilitate the recognition of strokes and segments. Sec-

ondly, we propose a method for identify the types of strokes each with more 

than two lines, which consists of three procedures: normalization of strokes, ex-

traction. of stroke chain code strings, and matching between input code strings 

and model code strings. The method can be used not only in stroke-based 

OLCCR but also in segment-based OLCCR. Thirdly, we present some rules to 

detect frequently-occurred connected strokes and then delete the extra segments 

in such strokes. 

In Chapter 3, we formally define the complete relational graphs and the 
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distances for measuring the similarity between two graphs. With such graphs, 

we propose several relational representations for OLCCR. The representations 

incorporate the human knowledge of Chinese characters and can reflect their 

features well (except some very similar character pairs). The novel "don't care", 

"should" and "must" relational features allow us to represent unstable, stable 

and very stable primitive relations conveniently. We also deal with assigning 

costs to node and arc correspondences for calculating the graph matching dis-

tances. 

In Chapter 4, we formulate the graph matching as a state space search prob-

lem. The optimal matching between two graphs is equivalent to finding the 

best goal node in a search tree. To obtain good search efficiency, we use the A* 

algorithm to perform heuristic search and propose three schemes to speed up 

the A*: (1) a heuristic function is defined to make the A* expand fewer nodes in 

a search tree; (2) a tree pruning strategy, which employs the geometric position 

features of strokes (or segments) of Chinese characters to prune a search tree, 

is presented to let the A* avoid searching the nodes that have very little chance 

to be located in the optimal path from the initial node to the best goal node in 

a tree; (3) two new criteria are proposed to stop the A* by utilizing the mono-

tone of the evaluation function of the A*. To demonstrate the performance of 

the method, we also give the experimental results and make some comparisons 

between our method and other studies published recently. 

In Chapter 5, we propose a two-layer assignment method for OLCCR. Find-

ing segment correspondences between two characters is formulated as a weighted 

bipartite graph minimum cost complete matching problem, which corresponds to 

an assignment problem (in layer 2) and can be solved by the Hungarian method. 

9 
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The cost matrix of this assignment problem is derived by the assignment prob-

lems in layer 1. To save the computational time, a lower bound estimate and 

the geometric position features of model characters are used to reduce the com-

plexity of the method from 0(n^) to O(n^), where n = max{r2i, 712} and ni and 

712 are two segment numbers of two characters under matching. We also present 

some experimental results to show the performance of the method. 

In Chapter 6, we propose a fast string matching method, which incorpo-

rates the geometric position constraints of primitives of Chinese characters into 

Wagner and Fischer's string matching algorithm. Some experimental results are 

given. In order to allow more stroke order deviations for some characters, we 

suggest to use two or more strings to represent one of these model characters, 

and present a scheme to save computational time. It combines two or more 

separate networks into one and employs a dynamic-programming procedure to 

solve the shortest path problem. 

Finally, in Chapter 7 we summarize the contributions of the thesis and 

discuss the directions for future research. 

10 



Chapter 2 

Preprocessing 

2.1 Introduction 

A pattern recognition method, in general, requires a set of features of objects to 

represent and recognize the objects. The procedures to obtain the features prior 

the classification phase are called preprocessing. For on-line Chinese character 

recognition, some of these features — stroke (segment) numbers, orders, coordi-

nates, lengths and directions, radical relations, stroke (segment) relations, and 

so on — are employed to do the recognition job. 

A tablet digitizer can capture on-line input data while a user writes on it 

with a stylus pen. These data may contain different types of noise, arising from 

the limited accuracy of the tablet, digitizing process, erratic hand motion, etc. 

Therefore, a few common techniques have been used to reduce the noise [88 . 

Smoothing averages a point with its neighbors [3’ 4 42 43, 87, 102]. Filtering 

is utilized to eliminate duplicate points and to reduce the number of points 

3, 4, 37, 42 52]. Wi ld point correction can replace or eliminate occasional 
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spurious points [37, 72’ 87]. Dehooking eliminates hooks that occur at the 

beginning and the end of strokes [66, 87). In addition to these, normalization 

that adjusts the character size to a standard is required in many methods [3 4 

16’ 40 52, 72 94, 95 97]. 

Not all these preprocessing approaches are necessary for a recognition sys-

tem, and some new preprocessing techniques may be more suitable for different 

methods. In this thesis, we propose two graph representations of Chinese char-

acters. The former is stroke-based, i.e., the primitives are strokes, and the latter 

is segment-based, i.e., the primitives are segments. The nodes of a graph denote 

the strokes (or segments) of a character, and the arcs indicate the relations be-

tween any two strokes (or segments) of the character. Before recognition phase, 

we have to first extract the strokes (or segments) of an input Chinese character as 

efficiently and reliably as possible, and then construct its graph representation. 

A stroke is defined as the writing from pen down to pen up when one writes on 

a digitizer with a stylus pen. A Chinese character consists of a set of standard 

strokes, and each standard stroke consists of from one to four segments, as 

shown in Table 2.1.1 Segments are the smallest units that compose a Chinese 

character. On-line devices can capture the temporal information of the writing, 

such as the number, order and direction change of strokes. To conveniently 

identify strokes and segments of an input character, we represent each stroke 

with straight lines. A line splitting and merging method for reaching this goal 

is presented in Section 2.2. The stroke type recognition method is proposed in 

Section 2.3. Section 2.4 gives some schemes for obtaining the segments that 

^The standard stroke “ J “ is not given in the table. It is diflficult to define the segment 
number of this stroke. However, since it is very similar to the standard stroke “ J “ in 
handwriting, we consider they belong to the same type in stroke identification. 

12 
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Table 2.1 Standard strokes. 

One segment strokes 

z \ / 

Two segment strokes 

7 < \ J 

Three segment strokes 

V " I ^ 
Four segment strokes 

b Z T I ^ 

are used to represent Chinese characters. This chapter is concluded with the 

summary in Section 2.5. 

2.2 Stroke Approximation with Polylines 

A polyline is a concatenation of straight lines and can be used to approximate 

an object's stroke boundary in computer vision [6]. Here we use it to represent 

an input stroke. A polyline can fit a stroke to any desired degree of accuracy. 

The problem is how to find corners or breakpoints that yield a polyline we 

desire. Fig. 2.1 shows three input strokes that have one, two and four segments, 

respectively. The arrow on each stroke indicates the direction of the stroke 

writing. We hope to obtain the results of one line representing stroke (a), two 

lines representing stroke (b) and four lines representing stroke (c). 

A two-step approach is proposed to approximate a stroke with a polyline. 

Step 1 called a line splitting procedure, uses the iterated endpoint fit method 

27] to recursively find a polyline fitting of a stroke. Step 2 is a line merging 

13 
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t 

(a) (b) (c) 

Figure 2.1: Three input strokes. 

procedure that merges some connected lines according to a rule. 

To explain step 1 clearly, consider an input stroke shown in Fig. 2.2(a). The 

initial polyline is a line between the first and the end points of the stroke, marked 

by A and B (Fig. 2.2(b)). Suppose the point in the stroke that is farthest from 

the line is C. If the distance from C to the line is above a predefined threshold, 

then the line AB is split into two lines AC and CB (Fig. 2.2(c)). This procedure 

is recursively applied to lines and the points of the stroke. Note that these points 

are now partitioned into two groups corresponding to the two lines. A point D in 

the first group that is farthest from its corresponding line AC is found, and the 

line will be split again if the point is too far from the line (Figs. 2.2(c) and (d)). 

The procedure terminates when the distances, from all points of the stroke to 

their corresponding lines of the polyline, are all below the threshold. Fig. 2.2(f) 

shows the final polyline for the fitting of the stroke. In the following, we give an 

algorithm for the implementation of this recursive procedure. 

14 



Figure 2.2: Recursive procedure of stroke fitting. 

Polyline fitting algorithm 

Input: An n-point stroke, represented by two arrays- x[nl and t/[nj, where 

(x[/J,7/[/]) is the 2D coordinate of the Ith point of the stroke, 0 < / < n — 1. 

Output: An m-line polyline, represented by an array key^p[m + 1), where 

key^p[r] and key.p[r + 1] denote the beginning and the end points of the 

(r + l)-th line of the polyline, 0 < r < m - 1, keyjp[Qi\ = 0 < keyjp[l\ < 

< keyjp m =71 — 
begin 

-Throughout this thesis, if an array x[n] is given then it is meant that the size of the array 
is n and the index of the array is from 0 to n - 1. 

15 
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line^num := 1; 

key.p[Q] := 0; 

key.p[l] := n — 1; (comment; the initial line of the polyline) 

for i = 0,1,… linejnum — 1 do 

begin 

Loop the point set {{x[k€y.p[i\], j/[Aret/-p[z]]), (a:[fcei/_p(tl + 

1], y[key-p[i] + 1]), • • • ’ {x[key-p[i + 1]], y[key.pli + Ij]), find a 

point (x[Tnaxjp], y[Tnaxjp]) that is farthest from a line with 

two endpoints {(x[keyjp[i\[, y[key.p[i\[) and {(x[keyjp[i1]], 

y[keyjp[i + 1]]); 

if the distance of the point from the line is larger than a prede-

fined threshold T^ then 

begin 

linejnum := linejnum + 1; 

for j = linejnum, linejnum — 1,..., i + 2 

do key.p[j] := key.p[j — 1]; 

(comment: rearrange the lines of the polyline) 

key.p[i + Ij := max.p; 

go to Loop; 

end 

end 

end 

16 
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Algorithm Effectiveness. The main effort of the algorithm is the calculation 

of distances from the points of a stroke to their corresponding lines of the polyline 

in each iteration. Let n be the number of points of the stroke. If the last resulting 

polyline has I lines, then the algorithm will terminates after I iterations. In each 

iteration, the number of points to be visited is at most n. Thus the upper bound 

on the computational time of the algorithm is 0(ln). In general, I is much less 

than n (less than 10 in stroke fitting), so the algorithm is very efficient. 

For an input stroke, the value of the threshold Td in the algorithm determines 

the number of lines of the resulting polyline. The smaller the threshold is, the 

more lines the algorithm yields. It is desired that a stroke be fit by a polyline 

just as what we want. For example, we consider the stroke shown in Fig. 2.2(a) 

is a 4-seginent stroke and wish the algorithm had yielded a 4-line polyline. If T^ 

is larger, we can obtain such a polyline. However, too large threshold may make 

the algorithm ignore some segments of a stroke when it is written on a small 

area. In order to obtain more desirable polylines, we employ a simple and fast 

line merging procedure after the stroke fitting. 

Line merging algorithm 

Input: A polyline. 

Output: A modified polyline. 

begin 

calculate the angles of lines of the polyline; 

17 
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while the change between angles of two connected lines of the polyline 

is less than a predefined threshold Ta do 

begin 

merge the two lines into one; 

calculate the angle of the new line; 

end 

end 

The thresholds Td and Ta in the above two algorithms are determined by 

experiments. In our application, an input character is written on a 6cm x 6cm 

area of the digitizer and is normalized on a 100-pixel x 100-pixel image. Tj and 

Ta are chosen as 6 pixels and 50 degree, respectively. 

Some stroke approximations by polylines are presented in Fig. 2.3 in which 

columns (a) and (d) are input strokes, columns (b) and (e) give their fitting 

results by the polyline fitting algorithm (step 1), and columns (c) and (f) are 

the polylines after the line merging processing (step 2) of the polylines in (b) 

and (e). From the examples, we can see that in most cases, step 2 does not 

change the results of step 1, while for the strokes in rows 4-8 of column (a), step 

2 obtains improved polylines. In practical handwriting, erratic hand motion is 

easy to generate some wild points and hooks at the beginning or end of strokes 

such as those in rows 1-3 of Fig. 2.3(a). The polyline fitting algorithm can 

handle these kinds of noise. 

18 
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Figure 2.3: Stroke approximation, (a), (d) Input strokes, (b), (e) Polylines after 
fitting the input strokes ia step 1. (c), (f) Polylines after the merging processing 
of the polylines in (b) and (e). 

19 
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Table 2.2: 18 model strokes. 

Type ‘ Strokes 1 Type Strokes 
} 

1 ~ - 10 * Z 

2 : r II y/ 
3 I Z 12 b 
4 \ 13 
5 Z 14 ^ 
6 i \ 15 T ^ ? 
7 i J 16 C 
8 < 17 

9 ! L 18 

2.3 Stroke Type Recognition 

Strokes with different shapes provide very useful information for us to distinguish 

a character from the others. In the proposed stroke-based Chinese character 

recognition methods, the primitives are strokes. Therefore, recognition of types 

of input strokes is one of the important steps. The approximation of input 

strokes by polylines benefits the stroke recognition task. 

The standard strokes 1-15 and three connected strokes occurring often are 

listed in Table 2.2. They are called model strokes. A connected stroke is a 

stroke that concatenates two or more standard strokes. We group some strokes 

together since they are similar to one another. Strokes of types 1-5 appear most 

frequently in Chinese characters. By analyzing these strokes in Chinese character 

handwriting, we define the writing angle intervals of (-20°, 30°], (250 ’290 j 

(180 250 1’ 290° 340 ] and (30 75 ] as shown in Fig. 2.4 for strokes 1-5, 

respectively. 

If the polyline approximation of an input stroke has one or two lines, we can 

20 
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250 270° 290° 

Figure 2.4: Angle intervals for strokes 1-5. 

lines with those of 

for a polyline with 

identify it easily by comparing the direction changes of the 

the standard strokes having one or two segments. However, 

more than two lines, its stroke type recognition becomes complicated because (1) 

wide variations exist in handwriting, and (2) it is impossible that the polyline 

approximation of a stroke always produces a result we desire. Look at the 

two input strokes shown in Fig. 2.5(a). Comparing their fitting polylines in 

1 

Figure 2.5: (a) Two input strokes, (b) Corresponding polylines. 

Fig. 2.5(b) with their corresponding model strokes in Table 2.2 we find the 

differences between, the line numbers of the polylines and the segment numbers 

of the model strokes. In order to identify these kinds of input strokes reliably, 

we propose a stroke recognition approach using chain code string matching in 

the following. 

21 
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(̂ ^̂ T̂nput stroke^ 

polyline fining 

line-&-segmem 
direction comparison 1 1 

CjlS^ied strokeiy^ 

Yes 

1 normalization 
1 

chain code extraction 

chain code siring matching chain code base 
of model strokes 

C^d^ificd strokejyp^ 

Figure 2.6: Stroke type recognition structure. 

2.3.1 Normalization and Chain code extraction 

The structure of stroke type recognition is shown in Fig. 2,6. For an input stroke 

approximated by a polyline with one or two lines, its type identification is an 

easy task as mentioned above, so we only consider the recognition of a stroke 

fit by a polyline with more than two lines. Strokes belonging to the same type 

may be written as having significantly different sizes. Thus normalization of 

polylines of strokes before recognizing them is reasonable. 

Let (Xmax, Vmax) and (xmin, Vmin) be the upper-right and the lower-left corner 

points of the smallest rectangle that surrounds a polyline. Let (r, y) be one of 
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the vert exes that represent the polyline. The equations 

= — (X - Xniin) (2.1) 
max min 

yi = — ~ ( y - ymm) (2.2) 

Vmax — 2/min 

will transform (x, y) to a new vertex (xi, yi) of the corresponding normalized 

polyline that is located in a square of size 100-by-100. Fig. 2.7 gives an example 

of normalization. 

- \ 5555566600000 
000066666444 

(a) (b) (c) (d) 

Figure 2.7: (a) Input stroke, (b) Polyline of (a), (c) Normalized polyline of (b). 
(d) Chain code string of (c). 

A polyline consists of several lines, and the directions and lengths of the lines 

represent the feature of the polyline. If we divide each line into a set of shorter 

lines (called line units), each with the same length, then chain codes become a 

very suitable tool for the representation of a polyline. 

Chain codes, in our application, are a notation for recording a string of line 

units along a polyline. A code specifies the direction of a line unit. There are 

eight quantized directions as shown in Fig. 2.8. Starting at the first line unit and 

ending at the last line unit of a (normalized) polyline, a string of chain codes is 

not difficult to obtain by investigating the direction and length of its every line. 

Fig. 2.7(d) presents such an example. 
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~ > 0 

5 6 7 
Figure 2.8: 8 directions of chain codes. 

The chain code base contains a set of chain code strings of the model strokes 

having two or more segments. The procedure of constructing the base is just 

like that of finding the chain code string of an input stroke to be recognized, 

including (1) fitting strokes with polylines, (2) normalizing the polylines, and 

(3) obtaining the chain code strings from the polylines. 

2.3.2 Chain Code String Matching 

A critical step in stroke type recognition is to measure the similarity between 

two strokes. Now we represent normalized strokes with chain code strings. The 

string edit operations and the string edit distance proposed by Wagner and 

Fisher [96] can be used to reach this goal. Here we introduce only the basic 

concepts and the string matching algorithm following the work of Wagner and 

Fisher. More detailed description will be given in Section 6.2. 

Let A denote a null chain code. An edit operation is a pair (a b) written 

as a —y 6, where a or 6 may be a code of a string but if a and 6 ^ A, 

both a and b must be two codes. The three edit operations on a string are code 

substitution, code insertion and code deletion, denoted by a 6, A ^ a and 

a —A, respectively. Obviously, there are infinite sequences of edit operations 
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that can transform a string to another string. Let 7 be a cost function that 

assigns to each edit operation a —6 a nonnegative real number 7(a —> 6), and 

let the cost of a sequence of edit operations be the sum of all the edit operation 

costs. Then the edit distance 6{Si, S2) between two strings Si and S2 is defined 

as the minimum cost of a sequence of edit operations that transforms Si to S2. 

Wager and Fisher provided the following efficient algorithm with the com-

plexity 0 ( m n ) for computing the distance between a string of length m and a 

string of length n. 

String matching algorithm [96 

Input: String Si -=S1S2-. Sm and string S2 =s\s\ ‘ <f/ 

Output: Distance D[m, n i] between Si and S2-

begin 

D[0,0] :=0 ; 

for i = 1,2, ... m d 0 D[i, 0] = D[i - 1,01-f- l i s i A) 

for j = 1,2, … n d< 3 D[QJ] := D[QJ - 1 -" ( A … ; ) 

for i = 1 ,2 , , m d 0 

for j = 1 , 2 , n do 

begin 

di := D[i — 1, 

6.2 = D[i-l, 

dz := D[i,j — 

+ 7(Si — 
+ l{si — A); 

+ 7(A •) 
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D[iJ] := min{di,d2,d3}; 

end 

end 

Wager and Fisher stated that after the algorithm terminates, 5 ( S i , S 2 ) = 

D[m, n] if the cost function 7 is a metric, i.e., 7 fulfills 

(a) 7(a 6) > 0 (positivity); 

(b) 7(a — 6) = 0 if and only if a = 6 (definiteness); 

(c) 7(a — 6 ) = 7 ( 6 — a) (symmetry); 

(d) 7(a 6 ) + 7 ( 6 —)• c) > 7 ( a — c) (triangle inequality). 

For our chain code string matching problem, we also have to choose reason-

able cost values with respect to different edit operations. Let s‘ Sj € { 0 , 1 , 7 } 

be two chain codes. We define 

7(5. sj) = 7(sj — Si) = min{A:i|si - sjl,ki(8 - js‘ Sj\)} (2.3) 

as code substitution costs and 

7(5. — A) 4 5,) = k2 (2.4) 

as code deletion and code insertion costs, where ki and k are two positive values. 

Theorem 2.1 The cost function 7 defined in (2.3) and (2.4) ” a metric if 

k2 > 2ki. 
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Proof. It is obvious that 7 fulfills the conditions of positivity, definiteness and 

symmetry. To proof the triangle inequality 

7(5, — s ) + 7(sj — Sfc) > ’(Si — sjk), 

let us consider two cases. 

Case 1. Suppose s,, s , Sk G {0,1,.... 7}. From (2.3) and the figure below, 

^ 2 

H a 

5 

we see that 7(5^ — Sk) is directly proportional to the angle 6 < 180° from 5, to 

Sk. If Sj is located in this interval, then the angle 1 from 5, to s j and the angle 

02 from Sj to Sk satisfy the relation + 0 and thus 

7(Si — Sj) + 7( —Sit) = 7{si — Sk). 

Otherwise, + > and 

7(Si — Sj) + 7(sj Sfc) > 7(Si — Sfc). 

Case 2. Recall that a 6 A ^ A. If 5 = A, then Sj, s^ € {0,1,… 7}. 

We have 

7(A — Sj) + 7(Sj. — Sk) = k2 + 7(5 -> Sk) > k2 = 7(A Sk). 

If Sk = A, we also have 

l{si — Sj) + 7 (s j — A) = 7(Si — Sj) -f fc2 > fcz = 7(s,- A). 
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If Sj = A, since 7(5,• Sk) < 4 ,1 (see (2.3)), we further have 

7 ( S i A ) + 7 ( A ^ S k ) = 2 k 2 > 4 k i > 7 ( 5 , — s t ) . 

Therefore the triangle inequality holds. • 

Let Pi, P2, Pq be q model strings and S be an input string to be classified. 

The solution to the problem of recognizing 5 is first to find a model string 

Pk 6 {Pi,P2,...’ Pq) such that 

S{Pk. S) = mm{6{PuS), ^(Ps, 5), ... 5)}, 

and then to classify S into the class which Pk belongs to if 5[Pk, S) is less than a 

predefined threshold; otherwise to classify it into an unknown-stroke-type class. 

Note that the number of model strings may be greater than the number of string 

classes. We use three to stand for one stroke class in our recognition scheme. 

This is beneficial to tolerating more handwriting variations. 

Before applying the string matching algorithm to Chinese character recogni-

tion, we have to determine the two parameters ki in (2.3) and ko in (2.4). In our 

learning procedure, for each class, 20 strokes written by 4 people were collected 

as the training data. The prototypes of a class consist of three strokes. One 

was written in its standard style and the other two are its generally handwritten 

deformed versions. The aim of the learning procedure is to find the optimal 

parameters ki and fc2 that maximize the following recognition rate 

^ . __ The number of strokes classified correctly 
1 ‘ 2 The total number of the training strokes ‘ ‘ 

Fig. 2.9(a) shows the relation between R and (^i, ^2)- From another view-

point we can obtain the projected surface on the ki-R plane (Fig. 2.9(b)). It is 
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(a 

OS zs 

(b) 

Figure 2.9: (a) Recognition rate as a function of (iti A:2). (b) The surface 
obtaining from another viewpoint. 
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Figure 2.10 A curve and its fitting line. The curve presents the track where 
R{ki, takes the maximum value. 

clear that there is an area where R(ki,k2) takes the maximal value. The curve 

in Fig. 2.10 is generated by connecting the discrete points (k[, k'^ys satisfying 

kî ) = max{i?(A:i ^2)}. Approximating the curve with a straight line we 

have 

k2 = 2.5Ski. (2.6) 

The figure indicates that a point [ki, k!"} that fulfills ki > 1.5 and k2 ^ 2.58ki 

has more neighbors {k", k'^Ys, where R{k'(, k'^) = max{i?(A:i, ^2)}- Therefore we 

choose ki = 2 and k2 = 5.16 as the parameters of the string matching algorithm. 

Some experiments have been carried out to test the performance of the pro-

posed stroke recognition approach. The test data contain more than 1000 strokes 

written by 5 people. Fig. 2.11 shows some of the input strokes and the classifica-

tion results, together with their corresponding stroke types. There are a variety 

30 



Figure 2.11: Stroke recognition experiments. On the left of the arrows are a 
set of input strokes. Their classification results: corresponding standard strokes 
and stroke types, are indicated on the right. 
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Figure 2.12: Four examples of misciassification. 

of handwriting stroke sizes and styles in the data. Our approach achieves a cor-

rect recognition rate of 96.2%. Fig. 2.12 gives four strokes recognized incorrectly 

in the sense that the classified stroke type of an input stroke is different from the 

type that the subject expects the stroke should be. However, the input stroke 

in Fig. 2.12(a) is similar to both type 8 stroke and type 9 stroke, and the input 

stroke in Fig. 2.12(c) is similar to both type 6 stroke and type 12 stroke. 

The stroke recognition experiments also show what pairs of strokes are easily 

confused. This information is very useful for the design of stroke-based Chinese 

character recognition methods in which assigning different costs for stroke type 

comparisons is necessary. By the way, it is not definite that misciassification of 

some strokes of a character leads to incorrect recognition of the character. 
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2.4 Segment Extraction and Processing 

In out segment-based Chinese character recognition methods, the primitives 

are segments of strokes. Segments are the smallest units that construct Chinese 

characters. Each standard stroke consists of one to four segments, (see Table 2.1) 

A connected stroke may have more than four segments. 

Six segment types are defined as the primitives: type 1 “ — ” -20°’30 

type 2 " i " (250°,290°], type 3 “ Z ” (180°,250°], type 4 “ \ ” (290°,340 

type 5 " y " (30° ,75°] and type 0 denoting an unstable short 1-segment stroke 

that is easy to be written as one of the segment types 1-4 such as the top stroke 

of the character “ ”. Actually, segment types 1-5 are just the same as stroke 

types 1-5, respectively. After approximating an input stroke by a polyline, if we 

consider a line of the polyline is equivalent to a segment, obtaining the polyline 

means that we have finished the segment extraction. 

It is important to note that segment “ ' x ” with directions ranging from 

75 ° to 180 is not included in the set of segment primitives while they exist in 

the standard strokes. By analyzing handwritten Chinese characters, we can find 

such two facts: (1) ignoring this kind of segments in Chinese characters does 

not make us be confused when we recognize them, and (2) they exist in many-

connected strokes of handwritten Chinese characters, as shown in Fig. 2.13. 

Therefore, we delete these segments before the processing described below. This 

scheme has also been used in several other methods [17 21, 64. 

From the next chapters, we can see that segment-based Chinese character 

recognition methods can deal with the problem of recognizing Chinese charac-

ters with more connected strokes better than stroke-based methods. Connected 
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Z \ X 

Figure 2.13: Several examples where bold segments “ \ ” appear in connected 
strokes. 

strokes often lead to extra segments. In order to facilitate our segment-based 

recognition, we use some rules to determine which segments of an input character 

should be employed for later recognition. 

Besides the frequently occurring connected strokes led by the segment “ \ ” 

there are many connected strokes in natural Chinese character handwriting. 

Some of them yield extra segments but some do not. Figs. 2.14(a) and (b) show-

two sets of characters or components of characters corresponding to the former 

and the latter cases, respectively. The segments of both standard strokes and 

the connected strokes that have no extra segments should be used to represent 

Chinese characters. However, some of these strokes, such as “ z ” and “ ” 

also appear in Fig. 2.14(a). Thus a trade-off must be made. We adopt such a 

scheme that all the segments of these strokes will remain. 

To summarize, we give the following rules that are used in the segment 

preprocessing. 
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Figure 2.14: (a) Examples of connected strokes leading to extra segments, (b) 
Examples of connected strokes not leading to extra segments. 
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Table 2.3: 14 Multi-segment strokes used to determine whether 
with more than two segments belongs to one of them. 

input stroke 

Stroke Stroke Stroke 
I 6 11 
2 7 w 12 M 
3 8 a 13 £ 
4 9 14 
5 10 

Rule 1. The segments “ \ “ existing in all input strokes are deleted. 

Rule 2. If the segment number of an input stroke is less than 3 all the segments 

of the stroke remain. 

Rule 3. If the segment number of an input stroke Si is greater than 2, the 

stroke recognition method presented in the last section is employed to find the 

minimum distance (5(5,-, Sj) = Si), S{Si, S2), • S{Si, 5i4)}, where Sj, 

j = 1 2 , 1 4 is one of the strokes shown in Table 2.3. 

• If S{Si, Sj) < Tr and j < 11 then all the segments of the stroke remain. 

• If (5(5i, Sj) < Tr and j = 11 or 12 then the segments “ I “ remain and the 

others are deleted. 

• If 6(Si, Sj) < Tr and j = 13 or 14 then the segments “ —> “ remain and 

the others are deleted. 

• If Sj) > Tr, then Rule 4 is used. 

Rule 4. Suppose a stroke (after the processing of deleting segment " \ ") has 

m segments. If m is odd, then the 2th, 4th, ... m — l)-th segments are deleted 
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and the others remain. If m is even, then the 2th, 4th, ... , (m — 2)-th segments 

are deleted and the others remain. 

Here TV is a predefined threshold and Rule 4 is borrowed from [21]. Clearly, 

it is impossible to delete all extra segments or to obtain all the segments that 

should remain for later character recognition. However, these rules do provide us 

satisfactory processing results, as illustrated in Fig. 2.15. The model characters 

having 9 to 11 strokes were written as their input versions having 2 to 6 strokes. 

It can been seen that the input characters, after processing, are more recogniz-

able. To break the connected strokes at proper positions, Rule 1 contributes the 

most because lots of connected strokes lead to the segments " \ 

Rule 1 is so effective that it, after modification, is also used in the stroke-

based representation and recognition of Chinese characters. The modified rule 

is delete the segments “ \ “ that exist in input strokes and are not the I cist 

segments in these strokes. 

Finally, we have to state that some segment processing errors of an input 

character (such as deleting a segment that should remain to represent the char-

acter) do not mean that a misclassification of the character must take place. To 

design robust recognition methods that can tolerate more handwriting variations 

and preprocessing errors is the aim of the next several chapters. 

2.5 Summary 

We have introduced several preprocessing approaches to on-line Chinese charac-

ter recognition in this chapter. First, we have approximated input strokes with 
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7 

CM^ ^^ at, 
f 1 

4 

\ \ V 

H S ^ 
(a) (b) (d) (e) 

Figure 2.15: Examples of segment processing. Columns (a) and (d) are input 
Chinese characters. Columns (b) and (e) are the segment processing results. 
Columns (c) and (f) show the corresponding model characters. 
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polylines by using the efficient polyline fitting and line merging algorithms, to 

facilitate the recognition of strokes and segments. Secondly, we have proposed 

a method for identify strokes each with more than two lines. It consists of three 

procedures: normalization of strokes, extraction of stroke chain code strings, and 

matching between input code strings and model code strings. The method works 

well and can be used not only in stroke-based but also in segment-based on-line 

recognition of Chinese characters. Thirdly, in the section of segment extraction 

and processing, some rules are presented to detect most of frequently-occurred 

connected strokes and then delete the extra segments in such strokes. These rules 

make our recognition methods have the ability to recognize more freely-written 

Chinese characters. 

Parts of the results presented in this chapter have been published in [58 59 

60, 61 62’ 631. 
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Relational Graph 

Representations of Chinese 

Characters 

3.1 Introduction 

What kinds of features of Chinese characters to be chosen and how to repre-

sent Chinese characters using these features are two important issues on Chinese 

character recognition. Human beings have the best ability in recognizing com-

plicated objects. Development of on-line Chinese character recognition systems 

that approach the human ability is the goal of researchers working on this field. 

Chinese characters are two-dimensional (2D) pictographic characters. In gen-

eral, the structure of a Chinese character having more than five strokes can be 

decomposed into four levels as shown in Fig. 3.1. The most basic elements con-

structing Chinese characters are strokes but the segment level is, in my opinion, 
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character 

I n -

I 

components 

strokes 

segments 

Figure 3.1: 4-layer structure of a Chinese character. 

most useful for computer recognition of freely handwritten Chinese characters. 

Let us consider how a human being distinguishes a Chinese character from 

the others. If he/she is familiar with Chinese characters, he/she recognizes a 

printed or neatly written character by identifying its each component and the 2D 

arrangement of the components. His/Her ability of quickly finding a component 

comes from his/her understanding of how the component is formed by the 2D 

arrangement of some strokes, the smaller elements. If a character is freely written 

and has several connected strokes, in order to recognize it, he/she also needs the 

knowledge of general freely handwritten styles of Chinese characters. 

Obviously, human beings use 2D relational (structural) features of Chinese 

characters to conduct the recognition activity. The structural methods that can 

capture human knowledge of Chinese characters very well should have the best 

performance. Relational graphs are a powerful tool for the representation of 

relational structures of a pattern. They have been used for 2D or 3D scene 

analyses [11 28 33, 45, 54 80 82, 84, 85 90 100 101] as well as on-line and 
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off-line Chinese character recognition [13 16 18 58 59 60 61 62 63 68 • 

In Section 3.2 we formally define the complete relational graphs and the 

distance measures for comparing the similarity between two graphs. Then, we 

propose several graph representations for on-line Chinese character recognition 

in Section 3.3, including stroke-based and segment-based spatially relational 

representations, as well as stroke-based and segment-based spatially-temporally 

relational representations. The assignments of costs to node and arc correspon-

dences for calculating distances between two graphs are presented in Section 3.4. 

The chapter ends with the summary, 

3.2 Relational Graphs and Distance Measures 

3.2.1 Complete Relational Graphs 

Definition 3.1 Let Vn be a set of node labels and Va a set of arc labels. A 

relational graph over V = V^\jVa is a 4-tuple G — {N, where 

• N is a finite nonempty set of nodes; 

• A C N X N is a set of distinct directed pairs of distinct elements in N 

called arcs; 

• fi : N — Vn is a function for labeling the node; 

• £ : A Va is a function for labeling the arcs. 

Relational graphs can be used to describe the structural information of pat-

terns. Fig. 3.2 shows a simple example of the representation of a scene, where 

nodes indicate object primitives and arcs describe spatial relations between ob-

jects. In this thesis, we use complete relational graphs to represent Chinese 
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(a) 

V)v={book cup board, clock ... 

y^ ={ above, right of left of , . . .} 

Node set={n 1, AZ2, n-^.n^] 

A r c s e t = { f l | fl2 “ 3 <24 5} 
|I(a2 i)=board, \yin 2)=cup, 
pi(/2 3)=fX(A2 4)=:bOOk 
£(a 1)= z{a 2)= z{a 5)= above 
£(«3)=e(«4)=right of. 

Figure 3.2: An example of relational graph representation of a scene, (a) A 
scene, (b) The corresponding relational graph. 

characters. 

Definition 3.2 A complete relational graph is a relational graph such that for 

any two distinct nodes rii and 112, there are two arcs: one from n\ to n2 and the 

other from no to rii, denoted by (ni, no) and (n2,ni), respectively. 

A possible complete relational graph representation of the Chinese character 

in Fig. 3.3(a) is illustrated in Fig. 3.3(b). In this example, the primitives are 

strokes of the character and their types are represented by the nodes of the graph; 
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1 I n 2 "3 " 4 "5 " 6 
(1,2.0) (2,1,0) (2.1.0) (1,1,0) (2.1.0) 

I'J. — (0.2.0) (2,1.0) (2,1.0) (2,1.0) (0,1,0) 

” 3 (2,0,0) (2,0.0) (2,2,1) (1,2,0) (2,1.0) 
r 4 (2.0,0) (2,0,0) (2,2,1) (2,1,0) (0,1.0) 
"5 (0.0,0) (2,0.0) (0,2.0) (2,0.0) (0,2,0) 

"6 (2,0.0) (1,0.0) (2,0.0) (1,0.0) (1.2.0) 

(C) 

Figure 3.3: (a) A Chinese character, (b) Corresponding complete relational 
graph, (c) Relation matrix of the graph. 

the arcs describe the relations between any two nodes (strokes). Three relation 

types are used: (1) "below" (denoted by "0"), "above" (denoted by “1 or 

"don't care" (denoted by “2” 2) “right of" (denoted by “0” ’ "left o f (denoted 

by “1”)’ or "don't care" (denoted by “2”) (3) "uncrossed" (denoted by "0"), 

"crossed" (denoted by T ) , o r "don't care" (denoted by "2"). The relations of an 

arc (rii, Uj) are described by a vector (aj: a j af,) where a? , af^ G {0,1, 2}. 

The superscripts 1 2 and 3 on respective af^, afj and a^j represent the three 

types of relations. For example, the relations of arc (ni’n2) are (1, 2,0), which 

suggest that in general handwriting, the geometric center of stroke 1 is always 
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above that of stroke 2; it is sometimes on the left of and sometimes on the right 

of that of stroke 2 these two strokes are uncrossed each other. All the relations 

among strokes of the character are shown in. Fig. 3.3(c). The reason why we use 

complete relational graphs to represent Chinese characters and the more general 

representation will be discussed in Section 3.3. 

Since we always deal with complete relational graphs in most parts of this 

thesis, we will just speak of graphs unless otherwise stated, and we use G or 

G iV", >1) to denote G = (iV, A, fi, £•) for short. In addition, the graph in 

Fig. 3.3(b) may be drawn in its simplified forms of Fig. 3.4(a) or (b). 

(a) (b) 

Figure 3.4: Two simplified forms of Fig. 3.3(b). 

Definition 3.3 An induced subgraph G' = {N\ A') of G = (N, A) is a graph 

whose node set C N and whose arc set comprises exactly the arcs of G which 

join nodes in N’. 

3.2.2 Edit Operations on Graphs 

Edit operations are commonly used to transform a string, a tree or a graph to 

another [11, 28 30 69, 79 81 90 91, 96 98]. The concept of edit distances 

is easily understood in comparison of the similarity between two strings, two 
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trees or two graphs. In this section, several edit operations on complete rela-

tional graphs are formally defined. The edit distance and the matching distance 

between two graphs are presented in the next section. 

Let A denote a null node or arc. An edit operation is written as a —> 6, 

where a — 6 # A —A, and a or 6 may be a node or an arc of a graph but if 

a \ and 6 ^ A, both a and b must be two nodes or two arcs. The following 

six kinds of edit operations are used 

• node insertion: X ^ a {a is a node) 

• node substitution: a — b (a and b are nodes) 

• node deletion: a — A {a is a node) 

• arc insertion: A —> a (a is an arc) 

• arc substitution: a — b (a and b are arcs) 

• arc deletion: a —> A (a is an arc) 

These edit operations are used to transform a graph to another. In our appli-

cation, the graphs under study are required to be complete. So some constraints 

on these operations are necessary: 

• If a node of a graph is inserted, arcs that join this node and all the existing 

nodes of the graph are also be inserted. 

• If a node of a graph is deleted, arcs that join this node and all the other 

nodes of the graph are also be deleted. 

• An arc is deleted only when one or two of its end nodes are deleted. 

• An arc is inserted only when one or two of its end nodes are inserted. 

The application of an edit operation a —> 6 to graph Ga results in Gg, which 

is written as Ga Gb via a ^ 6. Let E he a. sequence ei, 6 2 , S m of edit 
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Figure 3.5: Examples of edit operations, (a) Gi G2 via rii —> n[ and a — d. 
(b) G3 via rii ^ A, a A and 6 —)• A. (c) Gi => G4 via A -> 774,A —> 
rf, A —> e and A — / . 

operations. An edit transformation of graph G^ to graph Ge is a sequence 

of Go, G i , G t n such that Ga = Go, Gb = Gm and C?‘_i => G, via e, for 

I < i < m. The transformation is also denoted by Ga => Gb- Several edit 

operations and transformations on graphs are shown in Fig. 3.5. 

Note that for an edit transformation, in order to fulfill the constraints men-

tioned above, Ga and Gb need to be complete relational graphs, but Gi, C?2 … 

Gm-i may not. For example, if ei is a node deletion operation, then Gi, which 

has a set of arcs each with only one node at its end, is not even any kind of 

graph defined in graph theory. However, sometimes we stiil call them graphs if 

there is no confusion. 
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3.2.3 Distances between Two Graphs 

In practical recognition problems, objects belonging to the same class may have 

different degrees of distortion compared with their model object. As a conse-

quence, the graphs representing them may also be different. To measure the 

similarity (or distance) between two graphs, costs associated with these edit 

operations are necessary. Let 7 be a cost function that assigns to each edit 

operation a — b a nonnegative real number —> 6). 7 can also be extended 

to a sequence of edit operations E = ei, 6 2 , e ^ by setting 7( = l i ^ i ) -

If m = 0, i.e., no edit operation is applied, we define j(E) = 0. 

Definition 3.4 Let Gi and Gj be two graphs. The edit distance from Gi to 

Gj is defined as 

5{Gi, Gj) = min{7( )| is a sequence of edit operations 

that transforms Gi to Gj}. (3.1) 

Theorem 3.1 S(Gi, Gj) is a metric on So if the following conditions are ful-

filled, where So is the set of all (complete relational) graphs. 

(a) 7(a —> a) = 0; 

(b) — 6 ) > 0 if a 

(c) 7(a —> 6 ) = 7 ( 6 — a). 

Proof. 

(1) (Positivity) SiGi^Gj) > 0 holds for all Gi, Gj 6 So since 7(0 - r 6) > 0. 

(2) (Definiteness) On the one hand, if Gi = Gj, we have 5(Gi, Gj) = 0 

from the definition of S{Gi, Gj). On the other hand, if Gi + Gj, in order to 
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transform G to Gj by a sequence of edit operations, at least one edit operation 

y{a —6) > 0 (a 6) in the sequence must be applied, so 5{Gi, Gj) > 0. This 

implies that if 5(Gi, Gj) = 0, Gi = Gj. 

(3) (Symmetry) Suppose <7, => Gj by a sequence of edit operations Ei = 

e i ,e2 , - ,em and 5{Gi,Gj) = 7(^1)- A sequence E2 = 6 e -1’..• ei will 

transform Gj to Gi and the transformation cost 7(^2) = 7( 1) since 7(0 — 

b) = 7(6 — a ) . Assume S{Gj, Gi) 7(«£"2). By assumption, there must ex-

ist a sequence of edit operations E3 = e'„ e'„_i . ’ e'l such that Gj => Gi and 

7( 3) < 7(>E"2). With the application of the sequence E4 = ei eS,... e“ to Gi, 

Gi => Gj will result and we have = 7( 3) < 7( i) which is in contradic-

tion to S{Gi, Gj) = 7( 1). Therefore, 5{Gj, Gi) = Gj). 

(4) (Triangle inequality) We uow show that S(Gi, Gj) < S{Gi, Gk)-i-S{Gk, Gj) 

for all Gi, Gj, Gk G Sg- Let Ex = ei, e ’ …’ ti transform G, to Gk. and Gk)== 

7(^1), and let E2 = ê  1, ef+2’ -.-’ transform Gk to Gj and S{Gk, Gj) = 7(£"2). 

Obviously, E3 = 61,62, e/, e^n transforms G, to Gj. Hence yiE^)= 

y{Ei) + 7(£ 2) = Gk) + S(Gk,Gj). By the definition of the edit distance 

6{Gi, Gj), it is immediate that Gj) < 7 (^3 )= G“ Gk) + ^(Gjk, Gj). • 

Note that the edit distance fulfills the triangle inequality even if such a 

property does not hold for the cost function 7(0 b). In other words, 7(0 —> 

6) < 7(a — c) + 7(c —> b) is not required. 

There are infinite ways to transform a graph to another. For example, the 

substitution of a for b may be done not only by a —r 6, but also by a — c and 

then c b. To simplify the problem of finding the distance between two graphs, 

a concept mapping is introduced in the following. 

49 



Chapter 3 Relational Graph Representations of Chinese Characters 

Definition 3.5 Let A, = {A} and Aj = {A} be two sets of null nodes. Let 

Gi = [Ni, Ai) and Gj — {Nj,Aj) be two graphs. A node mapping from Gi to 

Gj is a function 

In • Ni U At Nj U Aj 

satisfying the folloiving conditions: 

f s W + A; 

(b) If Ui ^ TRi then /iv( • /"(""^) for all “ G iV, and 

fN{ni),Mmi) e Nj 

(c) For a node rii e Ni, there exists a node rij € Nj U Aj such that 

fNirii) = rij 

(d) For a node rij € Nj, there exists a node rii e N] U A: such that 

/ivH^j) = "i-

In this definition, for n̂  € Ni and Uj € Nj, fi^irii) = A and = A 

indicate a node n, € Gi and a node rij G Gj are deleted. To guarantee that all 

the graphs under study are complete relational graphs, when a node is deleted, 

all arcs connecting it will be deleted too. Fig. 3.6 shows two examples of node 

mappings. From Definition 3.5 and Fig. 3.6 we can see that a node mapping f ^ 

leads to an arc mapping. 

Definition 3.6 Let A, = {A} and Aj = {A} be two sets of null arcs. Let 

Gi = [Ni Ai) and Gj = {Nj, Aj) be two graphs. An arc mapping led by a node 

mapping ( f ^ Ni U A, — Nj U \ j ) from G, to Gj is a function 

/a l A i U A i ^ Aj U Aj-

satisfying the following conditions: 
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(a) (b) 

Figure 3.6: Two node mappings, (a) /yv(ni) = A, M n ! ) = ns, / n M = Uq, 
/ " ( 4) = nr. (b) , v ( n i ) = A, = / “ =r i s , /,v(A) = rie, / " ( A ) = 

fa J For an arc (n^, m,) G # mi ni m, 6 Ni, i / / " ( n , ) /iv(mi) G Nj, 

then fAiinu Trii)) = (/jv(ni),/iv(m,)) G Aj 

(b) For an arc (n,’ m,) G A,, if fsi'^i) = ^ or •( i) = A or both 

fNirii) = A and fs{rni) = A then fA{{nu m,)) = A e Aj 

(c) For an arc (n,’ mj) € Aj, if fi^^irtj) = X or = X or both 

fN^rij) = A and f - f j U j ) = A, then f ((iy,mj)) = A G A^. 

As two examples, for Fig. 3.6(a), the arc mapping is: 

/A((ni,n2)) = A’yU((ni’n3)) = A,/.4((ni, ^4)) = A,/^((ria, "3)) = (n5 n6) 

fA((n2, ^4)) = ("5, 7)’ fA((n3, n4)) = (ne, Uy), 

and for Fig. 3.6(b), the arc mapping is: 

fA{{ni,n2)) = A,/A((ni n3)) = A,/>i((n2,713)) = {n4,ns)J^\{ne,n5)) = A, 

Here we call = n and /^((nj , mi)) = ( j i j ,mj) a node correspondence 

and an arc correspondence, respectively. The former associates node rij to node 

Hi, and the latter associates arc (uj, rrij) to arc (n,-, mi). 
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For expression simplicity, we will also use to denote node and arc 

correspondences if there is no confusion. For example, n, —> Uj is equiv-

alent to fy(ni) = TLj. Similarly, the arc correspondences fA{{ni, rrii)) = A 

and f = A will be written as (n^, mi) — A and A (rij, rrij), 

respectively, and if rii A’ mi A, n* — r i j A and m, —rrij ^ A, then 

/^((nj , m,)) = {fij, TUj) will be denoted by (rii, m,) {nj, nij). 

We can see that each of these node and arc correspondences corresponds to 

an identical edit operation, so we will also use the cost function 7 to assign costs 

to these correspondences. 

Definition 3.7 Let /yv iVjUA,- -> iV}uAj be a node mapping from Gi = (iV, /Ij) 

to Gj iVj Aj), and let /a A, U A, Aj U Aj be an arc mapping led by /jv. 

The pair (Jn, M ^ termed a matching from G, to Gj. The matching cost is 

calculated by 

PUNJA) = Yi — r i j ) + Y . ^ A) 4- Y . 7 ( A ^ rij) 
n,-f-nj€C?i n.-fAeC?? A-tn_,GQ3 

+ S rrii) {nj, rrij)) 
(n,,m,)-^(nj,mj)€Q4 

+ 7(( mi) — A) + E 7(A (nj, mj)) 

(3.2) 

where (/IV, /A) determines the sets Qi-q, i.E., Qi is the set of rii —> Nj, rij € 

Nij Uj e Nj; Q2 the set of rii A, n, e Ni Q3 the set of X nj, Uj € Nj 

Qa the set of {RII, m,) {Uj, rrij), RII, RRII € iV,, n^, RUJ G Nj, RII # t; QS the 

set of [rii, rtii) A, n,, rrii ^ Qe the set of X — (n^, mj),nj, rrij € Nj. The 

matching distance from G, to Gj is defined as 

€(Gi Gj) = mm{0{fN, /^)|(/iv, Ja) is a matching from G, to Gj}. (3.3) 
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An optimal matching (/j^, f \ ) is a matching such that / )=^(Gj, Gj). 

Comparing the definitions of the node mapping and the arc mapping with 

the definition of edit transformation, we can easily find the similarity between 

them, which implies that there is a relation between and S(Gi,Gj). 

Lemma 3.1 For a matching (Jn, /a) from Gi to Gj, there exists a sequence E 

of edit operations, which transforms G, to Gj, such that j(E) fA). 

Proof. The node mapping /jv and the arc mapping consist of a set of 

node and arc correspondences, each of which is equivalent to an edit operation. 

These edit operations comprise a sequence E that transforms Gi to Gj. Thus 

It is worth noting that for any sequence E of edit operations that transforms 

Gi to Gj, there may not exist a matching (Jn, M such that /a) = 7(E). 

The reason is that clearly, /A) is finite/ so /?( /" /A) < P where P is a 

positive value large enough, but a sequence E that transforms Gi to Gj with 

7( > P can easily be found because, say, a node correspondence n, —> Uj may 

be done by sufficiently many edit operations n,- —> m,m —> p,..., q — rij such 

that 7(71,- — m) + 7(m — p) H H 7(9 — rij) > P. 

Lemma 3.2 For any edit sequence E transforming G, to Gj, if the cost function 

fulfills the triangle inequality (7(a —c) < 7(0 — 6) + 7(6 — c)) besides the 

conditions (a), (b) and (c) in Theorem 3.1, then there exists a matching (/jv, /a) 

from Gi to Gj such that < y{E). 

În this thesis, we consider only finite positive costs of edit operations (or node and arc 
correspondences), and deal with finite graphs, i.e.’ the cardinalities of the node sets of these 
graphs are finite. 
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Proof. 

(1) Let Ni be a set of nodes in Gi, to each node of which no any edit 

operations are applied in the transformation Gi =>• Gj. This set of nodes in 

Gj is denoted by N[, where |iV\| = |iV;|. For a node ni G Ni, there is a node 

n\ € N[ such that the node correspondence cost 

7(ni — n[) = 0. (3.4) 

Similar conclusion can be drawn for a set of arcs in Gi, to each arc of which no 

any edit operations are applied. 

(2) Let N2 be a set of nodes in G, which are deleted after Gi => Gj. Let 

712 € N2 and let the sequence of edit operations applied to 712 be 773 —rrzi, rrii 

7722, "T "^r —> A. Prom the triangle inequality for edit operations, we have the 

node correspondence cost 

7(712 A) < 7(712 mi) + 7(mi m:) H f- 7(771̂  — A). (3.5) 

Similar conclusion can be drawn for a set of arcs in G, which are deleted after 

Gi Gj. 

(3) Let iVJ be a set of nodes in Gj which are inserted after Gi Gj. Let 

n ; G N'̂ , and let the sequence of edit operations applied to a null node A be 

A — Pi’Pi — p2, •••,Va — W3. We also have the node correspondence cost 

n ; ) < 7(A — P i ) + 7 ( P i — + • • . + l{p, — n[ (3.6) 

Similar conclusion can be drawn for a set of arcs in G j which are inserted after 

Gi Gj. 

(4) Let N^ be a set of nodes in Gi which are substituted after Gi Gj. Let 

714 € N4, and let the sequence of edit operations applied to 714 be 714 qi,qi 
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q2, ...,qt where n\ 6 I7V4I = and N[ C Nj. We also have the node 

correspondence cost 

7(n4 — n\) < 7(724 qi) + 7(^1 — + . • • + — < ) . (3.7) 

Similar conclusion can be drawn for a set of arcs in Gi which are substituted 

after Gi => 

The node correspondences, which correspond to the node correspondence 

costs on the left sides of (3.4)-(3.7), comprise a node mapping from Gi to 

Gj. The arc mapping Ja led by /V is not given explicitly for simplicity. The 

node edit operations, which, correspond to the edit operation costs on the right 

sides of (3.4)-(3.7)’ and the arc edit operations not given explicitly comprise the 

edit sequence E. Adding all the node and arc correspondence costs and adding 

all the edit operation costs, we obtain 

Theorem 3.2 The edit distance 5(Gi, Gj) is equal to the matching distance 

^{Gi, Gj), if the cost function 7 satisfies the conditions in Theorem 3.1 and 

the triangle inequality. 

Proof. By Lemmas 3.1 and 3.2, Theorem 3.2 follows immediately. • 

Theorem 3.2 suggests that if 7 is a metric, ^(G,-, Gj) is also a metric. In what 

follows, we will use the matching distance to measure the similarity between two 

graphs. 
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3.3 Representations of Chinese Characters 

3.3.1 Stroke-Based Spatially Relational Representation 

Since strokes are the most basic elements constructing Chinese characters, the 

idea comes first that using the standard strokes (see Table 2.2) as primitives to 

represent the structural information of Chinese characters. In the last chapter, 

We have describe the approach to recognizing input strokes. Obviously, strokes 

with different types are part of the features that are employed by human beings 

to identify Chinese characters. 

As mentioned before, each Chinese character has its standard stroke writing 

order. If people almost always write a Chinese character according to its stroke 

order, the design of on-line Chinese character recognition systems will become 

much simpler. We can arrange the strokes of each model Chinese character in 

its standard stroke order to build a model stroke string base in advance. For an 

input character, the 2D recognition problem is now transformed into a ID string 

matching problem by finding in the base the best matching string with the input 

stroke string. In general, a ID recognition is easier to be solved and needs much 

less computational effort than a 2D one. String matching based approaches have 

been used in many on-line Chinese character recognition methods [21, 38 55, 

56 64, 65, 86, 92]. 

However, there are lots of stroke order variations and stroke deformations 

in Chinese people's handwriting. These make it difficult to distinguish Chinese 

characters only by making use of the information of ID stroke strings. Consider 

the characters shown in Fig. 3.7. Strokes of the characters are labeled with 

numbers indicating the stroke orders. Character 1 is a standard one and char-
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\ 

Figure 3.7: A set of characters with their strings of decomposed strokes. A 
number near a stroke indicates the order of the stroke when the character is 
written. 
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acters 2 and 3 are its common handwritten styles. The orders of two strokes 

in character 2 are exchanged compared with character 1. Characters 4-12 are 

other different characters. In the 2D plane, we can easily find that characters 2 

and 3 are more similar to character 1 than characters 4-12. But this conclusion 

is difficult to draw if we only compare the stroke strings of these characters. 

Let Si be the zth string and D(Si, Sj) be the distance between Si and Sj, 

€ {1, 2 12}. By observing these strings, we have 

and 

D{SuS2) > D(S4,52), D(5I ,52) > D(Se,S2). 

These lead to the result that when S2 is inputted, it will be identified to be 

character 4 or 6 instead of character 1. Moreover, The strings of characters 10-

12 are almost the same. In fact, from a matching point of view, all the strings in 

Fig. 3.7 are similar to each other, even though some of the characters have 1 more 

strokes than the others. Here we just give an example with the set of characters. 

Many similar examples exist in handwriting. Therefore, in order to develop a 

good on-line Chinese character recognition system, only the information of stroke 

strings of Chinese characters is not sufficient and the 2D structural features of 

Chinese characters must be utilized. 

The relational graphs, as a tool of representation, are very suitable to repre-

sent the structural relations of Chinese characters, where nodes stand for prim-

itives (strokes here), and arcs describe relations between these primitives. It is 

easy to come to mind that stroke types are used as the features of the primitives. 
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However, what relations between strokes are able to represent the deformation-

tolerated features of a Chinese character as exactly as possible? Considering 

wide variations of handwriting, we choose three spatial relations to be the basic-

relational features. They are relation 1 "below/above", relation 2 “right of/left 

o f and relation 3 "intersect/don't intersect". More detailed description of these 

relations is given in the following. 

Let Ci and Cj be the geometric centers of stroke i and stroke j of a model 

Chinese character, respectively. A vector r^j = {ajj, a? , af^), i j , is used to 

represent the basic spatial relations from stroke i to stroke j where , a? G 

{0,1, 2,3 4} and a? € {0,1 2}. a}j = 0’ 1 2’ 3 and 4 indicate that c, is below, 

is above, may be below or above, must be below, and must be above cj, respec-

tively. Also, a j = 0’ 1 2’ 3 and 4 indicate that c, is on the right of’ is on the left 

of, may be on the right of or the left of, must be on the right of, and must be 

on the left of Cj, respectively, a? = 0,1 and 2 indicate that stroke i and stroke j 

do not intersect, intersect, and may intersect or not, respectively. Here, a^j = 0 

or 1 {k = 1,2,3) is termed the "should" feature, a* = 2 (A; 1,2,3) the “don't 

care" feature, and af = 3 or 4 (fc = 1 2) the "must" feature. 

Note that the "must" feature is not used for a^j. This is because many strokes 

in Chinese characters are easily written intersecting each other while they are 

not supposed to do so in standard writing, and on the other hand, two strokes 

that should intersect may easily written as two non-intersected ones. 

The relational graph representation of a model Chinese character is obtained 

by assigning suitable values to each relational vector Investigating hand-

written Chinese characters, we learn that a relation between two strokes can be 

2 The term "basic" means that more other relations may be added when necessary. 
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instable, stable or very stable, so we use the "don't care" "should" or "must" 

features to denote it. As an example, consider the character shown in Fig 3.8(a). 

Let Ci {i — 1,2 5) be the geometric center of stroke i. It is not difficult for 

a person familiar with Chinese character handwriting to find the fact that d 

is sometimes on the left and sometimes on the right of C2, Ci is above C2 and 

they don't intersect in very high probability. Thus we set a f j = 1, a j j = 2, 

and a\2 = 0 . Because the component “ ’ must be located on the left of the 

the "must" feature is chosen so afg, af* afg, a 3 and 035 

n in Fig 3.8(c). 

component “ 

are all set to be 4. Other relation value assignments can be 

Fig 3.8(b) shows the graph representing the character in Fig 3.8(a). A node 

of the graph represents a stroke by containing the stroke number (the upper 

number) and the stroke type (the lower number). All the standard stroke types 

are shown in Table 2.2. Note that now a new stroke type 0 which is not included 

in the table, is used to denote a short stroke that is easy to be written as a stroke 

belonging to one of the stroke types 1-4. In Fig. 3.8(a), stroke 5 is such a stroke 

so its type is set to 0. 

There is a relation between vectors r^j = (aj^ , a? ) and r) = (aj,, aj,, a 

^jx = 

= 0 

O -•= 

Q-ij = 

a^. 
u a 
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I 2 3 4 5 
1 (1,2,0) (2,4,0) (2,4,0) (2,4,0) 
2 (0,2,0) (2,4,0) (2,4,0) (2,4,0) 
3 (2,3,0) (2,3,0) (2,2,1) (4.2,0) 
4 (2.3,0) (2,3,0) (2,2,1) (2 0’2) 
5 (2,3,0) (2,3,0) (3,2,0) (2,1,2) 

(C) 

Figure 3.8: Stroke-based spatially relational representation, (a) A Chinese char-
acter. (b) Complete relational graph representing the character, (c) Correspond-
ing spatial relation matrix. A point on or near a stroke indicates the geometric 
center of the stroke. Different strokes are labeled with different numbers. A 
node of the graph represents a stroke by containing its number and type (the 
lower number). 
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where k = 1,2, and 

if 4 = 2. 

This property is useful for saving the memory space of a model graph base. 

For an input character, the computation of its graph includes extracting 

every stroke, identifying the type of each stroke, and finding the relation vector 

r'mn = (<i„ a^n) ^om stroke m to stroke n, where aSm € {0’ 1}. 

aj^n = 0 or 1 has the same relational meaning as a^j = 0 or 1, k = 1, 2,3, except 

that represents the relation from input stroke m to input stroke n while a^ 

is the relation from model stroke i to model stroke j. In addition, stroke type 

0 is not used for input strokes because in handwriting, short strokes are easily 

written as long as some long strokes, and vice versa. 

Remark 1. From Table 2.2, we can see that the table contains 18 model stroke 

types: 15 standard ones and 3 frequently-used connected ones. In creating the 

graph base of model Chinese characters, we employ only the standard stroke 

types and the new stroke type 0. If we find a stroke of an input character is of 

stroke type 16 17 or 18, we will use two standard strokes to represent it in the 

construction of the graph of the input character. 

Remark 2. The creation of a model graph base seems to be a heavy task. We 

assign relation values between two strokes mainly based on the human knowl-

edge of Chinese characters. However the fact that Chinese characters may be 

constructed by much fewer components each with less than seven strokes can 

ease this task. We will give a detailed description of how to create the graphs 
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of model Chinese characters in Section 7.2. 

3.3.2 Segment-Based Spatially Relational Representation 

There are lots of connected strokes in free fast Chinese character handwriting. 

Fig. 3.9 shows two examples. As mentioned in Section 2.4, the connected strokes 

O iz i = f 
(a) (b) 

Figure 3.9: Two model characters and their handwritten styles. 

of the handwritten characters in the examples cannot be be detected. It is clear 

that stroke-based approaches are difficult to recognize such characters. In these 

cases, segment-based methods may play an important role. 

Let us look at Fig. 3.9. The handwritten characters basically have the same 

segment types and relations that their corresponding model characters have 

except an extra segment in Fig. 3.9(a) and a segment and an extra segment 

in Fig. 3.9(b). In practice, there may be various connected strokes. With the 

help of the preprocessing, we can detect and then delete many extra segments 

in handwritten characters to facilitate the recognition. 

Segment-based representation of Chinese characters is similar to the stroke-

based representation but the primitives used are segments. An example is il-

lustrated in Fig. 3.10 in which the two-segment stroke is represented with two 

nodes (segments). Recall that we have defined six segment types: type 1 " ^ " 

(-20°,30°], type 2 » i " (250°,290°], type 3 “ Z (180°,250°], type 4 " \ " 
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1 2 3 4 5 6 
1 (2,2.1) (4,2,0) (4,2.0) (4,2,0) (4,2.0) 
2 (2,2.1) (4.2.2) (4,2.0) (4.2,0) (4,2,0) 
3 (3.2,0) (3,2.2) (4,2,2) (4.2,0) (4,2,0) 
4 (3,2,0) (3.2,0) (3,2,2) (1.2,0) (2,1,0) 
5 (3,2,0) (3,2,0) (3,2,0) (0,2,0) (2,1.2) 
6 (3.2,0) (3,2,0) (3,2,0) (2,0.0) (2.0.2) 

(C) 

Figure 3.10: Segment-based spatially relational representation, (a) A Chinese 
character, (b) Complete relational graph representing the character, (c) Corre-
sponding spatial relation matrix. 

(290°,340°], type 5 “ Z ” (30°,75°] and type 0 denoting an unstable short 1-

segment stroke that is easy to be written as a segment belonging to one of the 

segment types 1-4. Segment 6 in Fig. 3.10(a) is a short one having segment 

type 0. 

3.3.3 Spatially-Temp orally Relational Representations 

In on-line Chinese character recognition, an on-line device can capture the tem-

poral information of the writing, which lets the order of strokes (segments) of 

an input character be known. Moreover, each Chinese character has a stan-

dard stroke writing order and Chinese people write a character basically (but 
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not exactly) according to its stroke order. That is to say, most of the relative 

stroke (segment) order relations of a Chinese character are stable in daily hand-

writing. This fact makes both many methods [3 21 22, 55 56, 57, 61 92 93 

and the popular commercial products such as ‘ and in the Asian 

market utilize the temporal information to reach the recognition goal. In this 

section, we incorporate this stroke (segment) order information into the previous 

representations of Chinese characters. 

Stroke-Based Spatially-Temporally Relational Representation. Recall 

that we use a relation vector r^ = (a} af”a!j) to denote the relations from 

stroke i to stroke j. In order to represent the temporal information of strokes, 

Tij is extended to a 4-dimensionaI vector^ r” = (aj^, a? , aj^, aj^) where a\p a?, 

and have the same definitions as before, ajj = 0,1 and 2 indicate that stroke 

i is written before, after, and before or after stroke j, respectively. Similarly, 

afj = 0 or 1 is termed the "should" feature and a^j = 2 the "don't care" feature. 

In general, the rule of writing order of Chinese characters is that (1) write 

a character from its top to its bottom and from its left to its right, and (2) if a 

character consists of two or more components, finish writing a component before 

writing the next component. 

Fig. 3.11 shows an example of the spatially-temporally relational representa-

tion. Fig. 3.11(a) and (b) are the same as Fig. 3.8(a) and (b), respectively, but 

in the relation matrix (Fig. 3.11(c)), the relative order relations between strokes 

are added. The numbers labeling the strokes also indicate the standard stroke 

order of writing of the character. The character has two components “ ^ “ and 

’.Chinese people always write the former component first and then the 

3 We also use r,j to denote a 4-dimensioiial vector when there is no confusion. 
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Figure 3.11: Stroke-based spatially-temporally relational representation, (a) A 
Chinese character, (b) Complete relational graph representing the character, 
(c) Corresponding spatial-temporal relation matrix. 

latter. In addition, it is very common that stroke 1 is written before stroke 2 

and stroke 3 before stroke 5. However, we found some people may write stroke 

4 before strokes 3 and 5 

the following relation; 

the last. So set = ajg = 2. a^j and a^, have 

aji = 

= 2 . 

Segment-Based Spatially-Temporally Relational Representation. This 

representation is similar to the stroke-based spatially-temporally relational rep-

resentation, but the primitives used are segments instead of strokes. An example 

is illustrated in Fig. 3.12. 
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1 2 3 4 5 
I (1,2,0,0) (2,4,0,0) (2,4,0,0) (2,4,0,0) 
2 (0,2,0,1) (2’4 0 0) (2,4,0,0) (2’4 0 0 ) 
3 (2,3,0,1) (2,3 A I) (2,2,1,2) (4,2,0,0) 
4 (2,3.0,1) (2,3,0,1) (2,2,1,2) (2,0,2,2) 
5 (2 3 0’I) (2,3,0,1) (3,2,0.1) (2,1,2,2) 

(b) 

(C) 

4 
5 

(a) 
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I 2 3 4 5 6 
1 (2,2,1.2) (4,2,0,0) (4.2,0.0) (4,2,0,0) (4,2,0.0) 
2 (2,2,1,2) (4,2,2,2) (4,2,0,0) (4.2,0,0) (4,2.0.0) 
3 (3.2,0,1) (3.2,2,2) (4.2.2,0) (4,2,0.0) (4.2,0,0) 
4 (3.2,0.1) (3.2,0,1) (3,2.2.1) (1.2,0,0) (2.1,0.0) 
5 (3.2,0,1) (3.2,0.1) (3.2,0.1) (0.2.0.1) (2,1.2,0) 
6 (3,2,0,1) (3,2,0.1) (3.2,0,1) (2,0.0.1) (2,0,2,1) 

(C) 

Figure 3.12: Segment-based spatially-temporally relational representation, (a) 
A Chinese character, (b) Complete relational graph representing the character, 
(c) Corresponding spatial-temporal relation matrix. 

R e m a r k 1. The assignment of values to af is according to the human knowl-

edge of Chinese character handwriting. First we may put more effort on getting 

the order relations between strokes/segments of components. Since the struc-

tures of components are simpler and the number of components is much fewer 

than those of Chinese characters, this task can be done, without much difficulty, 

by people who are familiar with Chinese characters, together with the help of 

some experiments. Then, we arrange several components to form a Chinese char-

acter in the order that the components are written in standard writing, and thus 

obtain all the stroke/segment order relations between any two strokes/segments 

of the character. 
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Remark 2. The use of stroke/segment order information is beneficial to re-

ducing graph matching'' time (see Section 4.4.3). However, the Chinese charac-

ters written with great stroke order variations may not be recognized correctly. 

For tolerating such stroke order deviations, we design our recognition approach 

having two phases. Phase 1 uses both spatial and temporal relations among 

strokes/segments to do the recognition task. In phase 2, no stroke/segment or-

der relations are employed and thus writing a Chinese character in any stroke 

order is allowed. This flexible way gives a user another choice when he/she writes 

Chinese characters with too many stroke order deviations and at the same time 

obtains incorrect classification results. 

3.4 Assigning Costs to Node and Arc Corre-

spondences 

In Section 3.2.3, we have defined the matching distance between two graphs. 

The computation of the distance needs to define the costs of node and arc cor-

respondences in advance. This section introduces the assignments of these cost 

values for stroke-based relational graph matching and segment-based relational 

graph matching. 

As conventional, we use the term “graph matching" to denote the process of finding the 
distance between two graphs. 
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3.4.1 Assigning Costs for Stroke-Based Relational Graph 

Matching 

Recall that the matching distance between graphs G‘ and Gj is defined as 

^{Gi, Gj) = min{/?(/" / . M / N , / A ) is a matching from G. to 6',}, (3.8) 

where /jv and /A are termed a node mapping and an arc mapping, respectively, 

and 

P U N J A ) = E 7(NI -> NJ) + YI — A) + 7(A ^ NJ) 

+ [ 7 ( ( n „ TUi) ( J i j , rrij)) 

+ 7((ni,mi) ^ A) 4- ^ -/(A ^ (nj^mj)) 

(3.9) 

is termed a matching cost. Here 7(n,- — rij),^{ni — and 7(A —> rij) are 

node correspondence costs, and j({ni, nii) — (n), rrij)) 7((n‘ m,) —> A) and 

7(A — (rij, rrij)) are arc correspondence costs. For stroke-based graph matching, 

they correspond to stroke and stroke relation correspondence costs, respectively. 

The assignments of costs to different stroke (type) correspondences are done 

mainly according to human knowledge of the stroke type variations. Moreover, 

the stroke type recognition method presented in Section 2.3 is also helpful for 

determining whether two strokes are easily confused. We show the model strokes 

in Table 3.1 again for convenient description. 

In Chinese character handwriting, if stroke A may easily be written like 

stroke B but not like stroke C, then we should assign lower cost to the former 

case than to the latter. For example, Chinese people often use type 2 strokes to 
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Table 3.1: 18 model strokes. 

Type Strokes Type Strokes 
I 1 " 10 7 

2 11 y / 
3 , Z 12 

4 \ 13 
5 : / 14 

6 : \ 15 

7 J 16 C 
8 < 17 

9 : L 18 

stand for type 7 strokes, and vice versa. Type 1 strokes and type 4 strokes are 

also easily confused. Moreover, from the experiments given in Section 2.3 we 

know that (type 8 type 9), (type 6, type 12) and (type 11 type 15) are similar 

pairs. Table 3.2 summarizes all the stroke type correspondence costs. 

We mention again that stroke type 0 is used to denote short strokes of model 

characters, and the three frequently-used (not standard) input stroke types 16, 

17 and 18, if detected in preprocessing, are split into their corresponding stan-

dard strokes. 

In Table 3.2, there is a new stroke type 20. It is used to denote the unknown-

type input strokes that are considered unlike any model stroke in the stroke type 

recognition. Because a stroke of type 20 is generally a multi-segment stroke, we 

assign smaller costs to its correspondence with multi-segment standard strokes. 

Table 3,2 defines the cost function 7(ni —> n where n̂  A) and n) • 

are two nodes in G and Gj respectively. For the node deletion cost 7(rzi —> A) 
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Table 3.2: Costs associated with stroke type correspondences. 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 

0 0 2 2 2 2 6 6 6 6 6 6 9 9 9 9 9 9 

1 2 0 7 7 3 3 7 7 7 7 5 8 8 9 9 9 9 

2 2 7 0 3 3 7 5 3 6 7 8 8 8 9 9 9 9 

3 2 7 3 0 7 7 7 5 7 8 8 8 8 9 9 9 9 

4 2 3 3 7 0 7 4 7 7 7 8 8 8 9 9 9 9 

5 6 3 7 7 7 0 7 7 7 7 8 8 8 9 9 9 9 

6 6 7 5 7 4 7 0 7 7 5 8 8 4 9 9 9 8 

7 6 7 3 5 7 7 7 0 7 7 7 7 8 9 9 9 8 

8 6 7 6 7 7 7 7 7 0 3 7 7 5 9 9 9 8 

9 6 7 7 8 7 7 5 7 3 0 7 7 4 9 9 9 8 
10 6 5 8 8 8 8 8 7 7 7 0 4 9 9 9 5 8 
11 9 8 8 8 8 8 8 7 7 7 4 0 9 9 7 4 7 

12 9 8 8 8 8 8 4 8 5 4 9 9 0 7 9 9 7 

13 9 9 9 9 9 9 9 9 9 9 9 9 7 0 9 9 7 
14 9 9 9 9 9 9 9 9 9 9 9 7 9 9 0 9 7 

15 9 9 9 9 9 9 9 9 9 9 5 4 9 9 9 0 7 

20 9 9 9 9 9 9 8 8 8 8 8 7 7 7 7 ^ 

/ 0 
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7(A —> fij), after some experimental tests, we choose 

lini A) 7(A — rij) = 5. (3.10) 

Let Tii A) and rrii A) be two nodes in graph Gi, and n j A) and 

rrij A) be two nodes in Gj. Then the relations from Ui to m^ and the relation 

from rij to TUj are denoted by vectors r„• ‘ = a j ^ ^ ^ , aj,^^, and 

njruj — i^jijmj > ‘ ̂  nj J K respectively. The arc correspondence cost 

7((n,-, TUi) —> {rij, rrij)) is defined as 

4 
7((n“m,) — in j .m j ) ) = ^n^mj. 

jb=l 

where u/1-4 are weighting factors and t] is defined by Table 3.3. 

Table 3.3 Definition of the function 77. 

(3.11) 

0 1 2 3 4 
0 0 1 0 0 M 
1 1 0 0 M 0 
2 0 0 0 0 0 
3 0 M 0 0 M 
4 M 0 0 M 0 

In Table 3.3, = 0 suggests that the kth relation from n, to m, 

is compatible with the kth. relation from rij to m and , a^^^p = 1 or M 

means the two relations are incompatible. For example, if = 0 (denoting 

that the geometric center of stroke n, is below that of stroke m^) and aj,^^^ = 0, 1, 

2, 3 and 4 (denoting that the geometric center of stroke n) is below, is above, may 

be below or above, must be below, and must be above that of stroke m ), then 

it is clear that the relation implied by dn̂ m, = 0 is compatible with the relation 
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implied by = 0, 2 or 3, and is incompatible with the relation implied by 

a î̂ mj = 1 or 4. For the latter case, a cost (> 0) is assigned to this incompatible 

arc correspondence. Obviously, incompatible "must" relation correspondence 

should be punished by paying much higher cost, so we set M = 10. 

From the definitions of the edit operations on complete relational graphs, we 

know that arc deletions are caused by node deletions. So we set 0 to all the arc 

deletion costs 7((71‘ rrii) A) and 7(A —> (rij, mj)). 

Let us consider the matching cost in (3.9). Large weights wi-4 mean that arc 

correspondence costs play a more important role in graph similarity comparisons; 

on the other hand, small weights make the importance of node correspondences 

increase. We found in our experiments that i^i = 6,W2 = 6, W3 = 4 and W4 = 6 

can result in satisfactory recognition rate. As some strokes of Chinese characters 

are easily written intersecting each other while they are not supposed to do so 

in standard writing, we set W3 a smaller value. 

Remark. The node and arc correspondence cost function 7 defined above is not 

a metric, which leads to the fact that the matching distance ^(Gi, Gj), in general 

is not a metric either. (For example, 77(0,1) ij(0,2) + 77(2,1) makes 7 not 

satisfy the triangle inequality.) However, distances are not necessarily metrics 

in pattern recognition problems [30 34 35]. In fact, many distances (or similar 

measures) proposed in the pattern recognition literature are not metrics such as 

those in [30 34 35, 56’ 69, 79, 83], but they may still be useful in comparing the 

similarity between objects. By the way, to our knowledge, no authors claimed 

that the distance measures used in their on-line Chinese character recognition 

methods are metrics. 
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3.4.2 Assigning Costs for Segment-Based Relational 

Graph Matching 

There are only six segment types: type 1 “ ” type 2 “ type 3 

“ Z ” type 4 " \ \ type 5 “ ’ and type 0 (denoting short segments) in the 

segment-based relational graph representation. Hence the assignment of costs 

(7(n,- — nj),ni ^ X^rij A) to node (segment) correspondences is relatively 

direct, as shown in Table 3.4. 

Table 3.4: Costs associated with segment type correspondences. 

0 1 2 3 4 5 
0 0 1 1 1 1 7 
1 1 0 7 7 2 2 
2 1 7 0 2 2 7 
3 1 7 2 0 7 7 
4 1 2 2 I 0 7 
5 7 2 7 7 7 0 

Now we consider the assignment of costs to node deletions. The segment-

based recognition methods proposed in this thesis are used to recognize more 

freely written Chinese characters that in general consist of more connected and 

missing strokes. As mentioned previously, the preprocessing algorithms pre-

sented in Chapter 2 cannot detect all extra segments. Therefore, it is very often 

that the segment number of an input character (after preprocessing) is different 

from that of its corresponding model character. We regard it reasonable that 

the segment deletion costs vary with the aode numbers of the graphs under 

matching. For example, deleting any one of the segments of the 3-segment char-

acter “ 7 \ “ yields a different character or symbol, but for characters with more 
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segments (e.g., 12), it may still remain recognizable after deleting one or two of 

its segments. Obviously, higher cost should be paid for the former case than the 

latter. Therefore, the node deletion costs are defined by 

7(71, — A) = 7(A — rij) = k{p), (3.12) 

where Ui and n j are two nodes of graph G, and Gj under matching, respectively; 

p is the node number of the model graph (Gi or Gj). 

The cost k(p) is not difficult to choose with the help of some experiments. 

For example, when 9 < p < 15, we take k(p) to be 4 and when 1 < p < 5, we 

may take k(p) to be 5. 

The arc (segment relation) correspondence costs (7((ni’m‘ (rij, mj}}, 

(ui, rrii) ^ A, (rij, nij) • A) are defined the same as those in the last section, (see 

(3.11) and Table 3.3), and the arc deletion costs are also set to 0. 

3.5 Summary 

In this chapter, we have formally defined the complete relational graphs and the 

distances for measuring the similarity between two graphs. With such graphs, 

we have proposed several relational representations for on-line Chinese character 

recognition. We have also dealt with the problem of assigning costs to node and 

arc correspondences in graph matching. 

The stroke-based representations may be used to recognize relatively neat 

Chinese character handwriting while the segment-based representations will ease 

the recognition of more freely written characters. These representations have the 

following advantages: 
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• The representations incorporate the human knowledge of Chinese charac-

ters and can reflect their features well (except some very similar character 

pairs). In a complete relational graph, nodes describe primitive (stroke 

or segment) types and arcs represent the spatial and temporal relations 

between any two primitives. The proposed "don't care", "should" and 

"must" relational features allow us to represent unstable, stable and very 

stable primitive relations conveniently. Relations between any two prim-

itives give much information and are very beneficial to the matching pro-

cedures, which will be discussed in the next chapter. 

• The graph representations are directly based on strokes or segments. To 

obtain the representations, examining whether a stroke or segment be-

longs to some component is not required. However, the representations in 

[18 68], as mentioned in Section 1.2 need to correctly extract components 

of Chinese characters first. The recognition method based on the represen-

tation in [13] also need to find components before performing recognition 

of a character. In fact, wide handwriting variations make it very difficult 

to extract components of Chinese characters at a high rate of success. In 

16], the authors adopted only the relations between segments within the 

same components in their graph representation. This results in two short-

comings: (1) some relations represented in an input graph may not appear 

in its corresponding model graph, and vice versa; (2) most of the relations 

between segments are not utilized. 

• The spatial and temporal relations between primitives are, at the first 

time, unified into the graph representations, which fully captures the on-

line information of handwriting. The use of the primitive order relations 
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enhances the discrimination ability of the representations and helps to 

speed up the graph matching. Because of the "don't care" feature, the 

representations can tolerate common stroke order deviations. 

• If the weight w^ in (3.11) is set to 0 in graph match, then the stroke order 

relation will be ignored and our recognition methods presented in the next 

two chapters will be stroke order free. 

Creation of a model character base for our recognition goal mainly depends on 

the human knowledge of Chinese characters, and thus is a relatively heavy task. 

It can be eased by constructing the graphs of components of Chinese characters 

first and then combining several component graphs to form the whole graph of 

a character. 

Parts of the results presented in this chapter have been published in [58’ 59’ 

60 61 62, 63 . 
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Chapter 4 

A State Space Search Method 

4.1 Introduction 

In the last chapter, we have introduced several graph representations and de-

fined the matching distance for on-line Chinese character recognition. Now the 

problem of recognition of an input Chinese character can be transformed into 

a problem of graph matching. The term graph matching, as conventional, is 

used to denote the process of finding the distance between two graphs. Unfortu-

nately, so far there are no efficient algorithms for our graph matching problem. 

Given two graphs G, and Gj both with n nodes, a naive algorithmic approach to 

calculating the distance ^{Gi, G f j is to generate all n\ permutations of the nodes 

and test them for being a solution (suppose A, = A = 0, and Aj = Aj = 0, 

i.e., no node and arc deletions are carried out), then this algorithm has the 

computational complexity at least 0(nl) . 

Problems of such kind, which allow noise or structural deformations in practi-

cal object recognition, are extensions of the NP-complete subgraph isomorphism 
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problem in graph theory [29, 46’ 47] and are also NP-complete [33 98). All the 

problems in this class are believed to be intractable, i.e., no polynomial algo-

rithms exist for one of the problems. If there is an efficient algorithm for some 

NP-complete problem, that is to say, the worst-case complexity of the algorithm 

is bounded by a polynomial function of the problem's parameters, then there is 

an efficient algorithm for every problem in the class [25 75 . 

For our on-line recognition problem, because large categories of Chinese char-

acters and the real-time recognition requirement, an algorithm is applicable 

only when it recognizes an input Chinese character with less than three sec-

onds on some computer.^ The less computational power the computer has, 

the fast the algorithm has to be. In addition, since we are dealing with a NP-

complete problem we cannot expect to obtain fast recognition speed by running 

an exponential-time algorithm without using any heuristic information. 

Let us consider an example. As mentioned above, the exhaustive search 

for the simplified calculation of distance ^(Gi, Gj) needs at least 0(n\) time-

Assume that after a preclassification stage, the graph of an input character has 

to be matched with 300 model graphs, and the node numbers of all these graphs 

are 12- Thus the computational time to recognize the input character is at least 

A X 12! X 300 (ss X 1.4 X 10^^), where A is the time required by a computer 

to perform one basic calculation. If A denotes one addition operation, then the 

recognition of an input character will take at least 15000 seconds (> 4 hours) 

on a 166MHz PC/Pentium! It is clear that we have to seek efficient approaches 

1 In general, a Chinese needs about three seconds to write a ten-stroke character. An on-line 
recognition system can be designed to work in the way while one is writing a character, the 
system is recognizing the characters preceding it. In this case, the system should not take 
more than three seconds to finish the recognition of an input character. 
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to our graph matching problem. 

In this chapter, we propose an efficient state space search method for the 

problem. The rest of this chapter is organized as follows. In Section 4.2, the 

graph matching is formulated as a search problem in a state space tree. The 

A" algorithm that is employed to perform the search is presented in Section 4.3. 

Several schemes for increasing the search efficiency of the A* are proposed in 

Section 4.4, including a lower bound estimate, a tree pruning strategy, and 

criteria for stopping the A* algorithm. The experimental results are provided in 

Section 4.5. Comparisons of our segment-based recognition method with several 

other studies are presented in Section 4.6. The summary of this chapter is given 

in Section 4.7. 

4.2 State Space Formulation of the Graph 

Matching 

In an approach to problem solving by using state space search, a state space is a 

representation that consists of nodes and links, where each node denotes a state 

that is a description sufficient to determine the future, and each link connecting 

a tail node to a head node denotes a possible one-step transition from one state 

to another state. The goal state of a state space is where we want to be. The 

procedure to solve a problem is to find a sequence of transitions that leads from 

some initial state to the goal state. Now we transform our problem of calculating 

the distance between two graphs into a state space search problem. 

Let Gi = {Ni, Aj) and Gj — {Nj, Aj) be two graphs. The distance from G, 
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to Gj which is defined in Definition 3.7, is 

^{GuGj) = min{/?(/Ar />i)|(/;v yU) is a matching from Gi to Gj}. 

If the arc deletion costs are all set to 0 (see Section 3.4), the matching cost 

/5(/IV, / A ) is then expressed by 

/A) = E — rij) + ^ -yiui — A) + ] 
X-^-njeQs 

+ E (nj,mj)) (4.1) 
(n,,mi)->(nj,mj)6Q4 

where /^v, and Q1-4, are defined in Definitions 3.5, 3.6 and 3.7, respectively. 

Definition 4.1 Let G, = (iVj, Ai) and Gj = (Nj, Aj) be two graphs, and G\ 

(iV/, i4J) and G'j = (ATJ, AJ) be two subgraph^ of Gi and Gj, respectively. A 

state is denoted by a set of node correspondences: S = {nj — TijlfJ^(Tii)= 

rij, rii € Nl U A,, nj G Nj U Aj}, where f'^ is a node mapping from G\ to G'” 

Nl C Ni and Nj C Nj. When a state covers all the nodes in G, and Gj, i.e., 

Nl Ni and Nj = Nj, it is called a goal state,* otherwise, a middle state. 

The initial state is a state where there are no any node correspondences. If 

S = [ui — n j \ f ' ^ ( n i ) = rij, 71, € Nl U Aj, rij G iVJ U Aj} is a middle state, a new 

state Si generated by expanding S is defined by Si = S U {n^ —> nji}, where 

nn e Ni U A,, Uji G Nj U Aj, nn N , riji 0 N- and n,i — riji \ — 

An example of a state space for matching between two graphs is shown in 

Fig. 4.1. The initial state, middle states and goal states are indicated by “0 ’ 

‘V and “•” , respectively. The state space is actually a tree, so it is also called 

a state space tree or search tree, and a node^ of the tree denotes a state. 

2The definition of an induced subgraph (or subgraph for short) of a graph is given in 
Definition 3.3. Moreover, we consider that an empty graph is also one of the subgraphs of a 
graph. 
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Gi Gj 

,2 • L,>A.} 

Figure 4.1: A state space tree for matching between G and Gj. Symbols "o", 
“•’ and “•” denote the initial state, middle states and goal states, respectively. 
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From Definition 4.1 and Fig. 4.1, we can see that a goal state corresponds 

to a matching from Gi to Gj, where is an arc mapping led by f ^ 

(see Definition 3.6); a middle state corresponds to a matching (/J^, /a ) from 

subgraph of G: to subgraph G'j of Gj, where / is an arc mapping led by 

Definition 4.2 The cost of a state S = {rii —> nj\f'[^{ni) = ly rii €. N'/UAj, rij 6 

Nj U Aj} that corresponds to the matching (/Jv> I'A) ^̂  calculated by 

+ Yi 7(( t mi) — (n mj)) (4.2) 

where (/Jv> / i ) determines the sets i.e., Q'l is the set of rii — n^, n,- G 

rij e N'j Q'2 the set of rii A,nj € N ; Q^ the set of X ^ Uj^rij 6 A/}; 

the set of (rii, i) — (rij, n,, rrii G N-, nj, mj e iVJ., n̂  ^ m*; 

/a ) is actually a subgraph matching cost on condition that all arc 

deletion costs are set to 0. When (/Jv, Ia) = (/N, Ia), fHf'N, f'A) is a graph 

matching cost. Therefore, we define a best goal state in a state space tree as 

a goal state with the minimum cost among all the goal states. There may be 

several best goal states in a tree. Now the problem of computing the distance 

from Gi to Gj is transformed to the problem of finding a best goal state in a 

state space tree. We will use the heuristic algorithm, A• to perform the search. 

Îf we say such like "nodes of a graph", "node mapping" and "node correspondences", a 
node is referred to the node of a graph; otherwise, in this chapter, it stands for a node of a 
search tree. 

83 



Chapter 4 A. State Space Search Method 

4.3 The A* Algorithm 

The A' algorithm is a popular heuristic search algorithm in problem solving, 

whose purpose is to find the cheapest path cost in a network [9’ 31 71]. For our 

application, it is used to find the best state in a search tree. 

Let u be a node in a search tree, g(u) be the cost of the path from the initial 

node to u, h*(u) be the minimal cost of a path from u to a goal node or a best 

goal node, and h(u) be an estimate of h'(u). Note that there is only a path from 

the initial node to another node in the tree. Let the state of node u corresponds 

to a matching (fj^^^, J . Thus we define 

9(u) = (4.3) 

Let V — {u} be the set of the goal nodes to which there exist paths from u, and 

let 

= {“ }. (4.4) 

h*(u) is then given by 

h*(u) = g(v')-g(u). (4.5) 

The evaluation function of the A* is defined as 

/(2i) = g(u)-i-h(u). (4.6) 

It is a cost estimate of the minimal cost path constrained through node u. We call 

/ (u ) the estimated value of node u, and h a heuristic function. The computation 

of k(u) is according to some problem-dependent information. h(u) > 0 is always 

assumed. The A* algorithm for our tree search problem is presented below. 
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The A' algorithm 

Step 1. Create a search tree, consisting of only the initial node. Put it on a 

list called OPEN. 

Step 2. If the first node on OPEN is a goal node, exit with the estimated value 

and the state of the goal node. 

Step 3. Remove the first node from OPEN. Expand it, generating the set 

of its successors. Calculate the estimated values of the successors using 

(4.6). Add these nodes to OPEN, and arrange these new nodes and the 

old nodes on OPEN in increasing order of their estimated values. (Thus 

the node having the smallest estimated value is at the first.) 

Step 4. Go to Step 2. 

The above algorithm is a special version of the A* for a search graph [31, 

71]. The A* algorithm is always convergent for finite search graphs [71]. Two 

definitions and two theorems in [71] are given in the following. 

Definition 4.3 A search algorithm is called admissible i f , for any search graph, 

it always terminates in an optimal path from an initial node to a goal node when-

ever a path from the initial node to a goal node exists. 

For a search tree in our application, the goal node in an optimal path is one 

of the best goal nodes we search for. 
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Theorem 4.1 The A* algorithm is admissible i f , for every node u of a search 

graph being examined, the following inequality is satisfied: 

h(u) < hr[u). (4.7) 

Definition 4.4 A heuristic function h is monotonlc i f , for every node u and 

any of its successors w, 

h{u) - h(w) < c{u,w) (4.8) 

with 

h{v) = 0, (4.9) 

where v is any goal node, and c{u, w) is the path cost from u to w. 

Theorem 4.2 If the monotone restriction is satisfied, the estimated f values of 

the sequence of nodes expanded by the A* is nondecreasing. 

In our tree search problem, w) = g{w) — g{u). Theorem 4.1 guarantees 

that the A* algorithm can find the best node if (4.7) is satisfied. Theorem 4.2 

is useful for reducing computational time when the A* is used in our on-line 

Chinese character recognition, which will be described in Section 4.4.3. 

The search effectiveness of the k* algorithm relies heavily on how precise the 

estimate of/i* is. If h{u) = h*{u), the fewest nodes are expanded. Setting h{u) 

0 assure admissibility but results in an inefficient breadth-first search. Although 

great efforts have been made to find good heuristic functions, in general, precise 

estimates of h'{u) are quite difficult for most applications [9, 44, 71, 76, 77, 78, 

89 90, 101], and thus the A* algorithm has exponential complexity [9 104, 105 . 

From a probabilistic point of view, Pearl has made a thorough study about 

the relations between the precision of the heuristic estimates and the average 

complexity of the A* in [77 . 
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4.4 Schemes for Speeding up the A* Algorithm 

As mentioned above, the search efficiency of the A* algorithm is not satisfactory 

(or is even pessimistic). However, the schemes proposed in this section, which 

do not guarantee that the A* always finds optimal solutions, can greatly speed 

up the A* when it is used in our on-line Chinese character recognition. 

4.4.1 A Lower Bound Estimate 

The use of problem-dependent heuristic information, which is represented by the 

estimate function h, will make the A* expand fewer nodes than a search with 

h = 0. 

From Definition 4.2 and (4.3), we know that the cost of a node in a search 

tree is equal to a subgraph matching cost. Let a middle node be u, and two 

graphs under matching be Gi = (A ,̂-, Ai) and Gj == (iV),/!)). Let the state 

of u correspond to a matching (/J^u / \u) from subgraph G -- (iV/, -4J) of G, 

to subgraph G'j = (iVj, A'j) of Gj. We use the costs of node correspondences 

from subgraph G" to subgraph. G'j as an estimate h(u) of h*{u), where G" 

= Ni \ Nl (G'J = = Nj \ N'” respectively) is the 

subgraph of Gi {Gj, respectively) by deleting the nodes of G\ from G, {G'j 

from Gj respectively) and deleting all the arcs connecting these nodes. h(u) is 

expressed by 

= min^ ^j) + H 7( —A) 

+ E (4.10) 
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where /{J^ is a node mapping from G" to G" and it determines the sets Q"_3(it): 

Q'{{u) is the set of th Uj, n, € iVf, Uj e N"; Q'i^u) the set of n, A, rii e JV"; 

Qsiu) the set of A -v nj, n e N';. 

Theorem 4.3 Let u be a node in a search tree. h(u) defined in (4.10) is a lower 

bound on h*{u) defined in (4.5)’ i.e., h(u) < h*{u). 

Proof. Let V = {u} be the goal nodes to which there are paths from node u. 

By (4.4) and (4.5) we have 

"•(u) = - g(u) 

= m m s I Z — Tij) + ‘ - > A) 
“ ln,~mj€C?i(t ) n,-rAGQ2(u) 

+ 7(A Tij) + [ 7((ni rrii) — (nj, m))) \ 
A-)>nj€Q3(u) {rt”mj)€C?4(t ) J 

- \ ^ 7(ni — n,) + — A) 
njeQ'i(u) n,— 

+ Z rij) + m‘) — (nj, m,)) I ’ 
A—nj€Q'3(ti) (nj,mj)€Q'4(u) J 

where Qi-4(v) are defined in Definition 3.7 and Q[_4(u) are defined in Defini-

tion 4.2. Let us look at Fig. 4.2. There is only one path from the initial node 

to node u and all the paths from the initial node to nodes in V go through u. 

Therefore 

Q'MQQ.iv), ’ 1 2 3’4. 

Therefore 

= mms H — n j ) + ^ 7(n,- ^ A) 
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initial node 

• • 
• • 

i i 
• … • V 

Figure 4.2: A search tree, u is a middle node and u is a goal node that can be 
reached from u. 

+ E 7(A-> rij) 

+ Y . (4.11) 

Since 7((71“ m,) — (rij, rrij)) > 0’ we have 

"•(u) > mm< — )+ 12 — A) 

+ E 7 ( A - > n , ) i (4.12) 
A— eQ3(t;)\Q'3(u) J 

The right term in above inequality is an alternative expression of h(u) in (4.10). 

Thus the theorem follows. • 

Theorem 4.4 The heuristic function h defined in (4.10) is monotonic. 

Proof. 

Case 1. Let u be a middle node in a search tree and w be one of its 

successors generated by expanding u, as shown in Fig. 4.3. Let the states of u 
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Figure 4.3: A search tree, u is a middle node, w, x and y are successors of u. 

and w be S(u) and respectively. Then by definition 4.1 we have S(w)= 

S{u) U {Uia Tija}- Therefore 

c(u, w) - g(w) - g{u) 

= P U ' ^ . J A J - P U m u J A J 

= { E nj) + ^ 7(ni — A) 

+ H 7(A — nj) + rUi) (uj, m,)) \ 

- { E - ^ r i j ) + T ( n i — A) 

+ 7(A TIJ) + [ 7((n“ m,) (n)-’ MJ)) > 

= H 7 ( " » — r i j ) + Y . 7 ( " i — A) 

Uj) 

+ Y. l{(ni,mi) {rij.mj)) ( 4 . 1 3 ) 

> I ] 7 ( n i U j ) + Y . — A) 
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Y1 7(A — rij] 

= 7 ( a — 

( 4 . 1 4 ) 

( 4 . 1 5 ) 

By definition, 

h{u) 

have 

= = m m + E -yi^i — ) 

+ E 7 ( A - > n , ) l , 

= min I — rij) + — ) 
« lri,-^njeQ'i'(w) n.->A6Q'j'(u7) 

+ E nj) I 

where / ^, is a node mapping from G = ( A ^ , ^ ^ to = and 

rir is a node mapping from G'^ = (iV , ^ ) to G ; = …A';J (see the 

definition of h{u) in (4.10) for more detailed description). 

Suppose is the optimal node mapping from G"^ to Gj^ such that 

h{w)= — n - + E 7(ni A) 

+ 

E 70 

Z 7 ( A — nj), 

where Qi^^iw*) are determined by / j j^ , . If rz, 6 N"̂  and nja € then 

= N^w U {"ia} and = N'J^ U {rija}- Therefore, we can find a node 

mapping /JJ^. from G' to such that 

7(ni — rij) + Yi — A) Z 7 ( A — rij) 

= — ^jc E — rij) + 
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where Qi'_3(u*) are determined by which suggests 

h{u) < E rij] 

+ S 7(A n, 

=liriia — Tlja) + h{w). 

• i — A) 

Thus, it follows that 

h(u) - h(w) < 7("iQ rija] 

< c(u,w). 

(4.16) 

(4.17) 

The same result 

nja e 

be obtained if 6 iV". and Uja = A or if n,a = A and 

Case 2. Let w and i be successors of u, where w is generated by expanding 

u and X is generated by expanding w (see Fig. 4.3). Then we have 

h(u) - h(w) < c(u, w), 

and further 

h(w) - h(x) < c(w, x] 

h(u) — h{x) < c(u, ly) -f c(w, x] 

= g M -gW + gix) -9(w) 

= - 9M 

—c(u, r ) . 

The same conclusion can be obtained when y is any successor of u. Finally, for 

any goal node v, by (4.10), it is clear that h(v) 0. Therefore the theorem 

follows. • 
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Nilsson showed that, if hi{xi) < h*(u), h2(u) < h*{u) and hi(u) < /i2(u), 

then the A J using hi(u) expands at least as many nodes as does the A using 

h2(u) [71]. From (4.10) we know that only the costs of node correspondences 

from G" to G" are employed to estimate h'{u). The costs of arc correspondences 

from G" to G" are not considered. Such a scheme results in a relatively simple 

calculation of h{u), but the heuristic power of h{u) is not good enough. If the 

costs of arc correspondences are also used to estimate h'{u), the calculation of 

of the estimate might become another NP-compiete graph matching problem, 

which is also time-consuming. 

Even though we use only the costs of node correspondences to estimate h'{u), 

the calculation of h{u) is not trivial. The optimization problem in (4.10) can 

be transformed to a minimum weight matching problem in a weighted bipartite 

graph [75 . 

A graph B = (Vi U V2, E) with vertex set Vi U V2 and edge set E is called a 

bipartite graph if all its nodes can be partitioned into two subsets, Vi and V ,̂ 

such that every edge in the graph connects some node in Vi to some node in Vo. 

If a bipartite graph has weights associated with its edges, it is called a weighted 

bipartite graph. A matching'* in B is a subset of edge K C E such that no 

two edges of K are adjacent. Here we use the terms "vertex" and "edge" for 

bipartite graphs instead of "node" and "arc" to avoid possible confusion. 

Now we consider an example. Let be a node mapping from G"= 

(N ', A' ) to G' = (A7, A' ) (see (4.10)). Suppose N;' = {n,i n‘2 ",3} and 

4 Note the difference between a matching defined here and the term "matching" we use 
previously. The former denoting a matching in a bipartite graph is a conventional term in 
graph theory while the latter defined in Definition 3.7 represents a node mapping and an arc 
mapping from a complete relational graph to another complete relational graph. 
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VV(Vi,V2 ) 

V, V-

(a) 

V, 

Figure 4.4: (a) A bipartite graph B = {Vi U V̂2 ) where V^ = N^' U A,, 
I Ail = liV/l, V2 = N' U Aj, and |Aj| = (b) A matching in the bipartite 
graph. 

N" = {riji, nj2}. All possible node mappings can be represented by the match-

ings of the weighted bipartite graph shown in Fig. 4.4(a) where Vi = N" U A,, 

I A,-1 = Vb = iVj'uA” and |Aj| = A vertex in Ki is connected to all the 

vertexes in V2. We denote by e(vi, V2) an edge connecting Vi € Vi and V2 € V2. 

A weight associated with e{vi, V2) is defined as the cost of node correspondence 

7(1 1 —V2) when e(vi,v2) • e{A, A) and as 0 when e{vi, V2) = e(A, A). Now the 

calculation of h(u) in (4.10) is equivalent to the problem of finding a matching in 

B such that the sum of the weights associated with the edges of the matching is 

the smallest. The polynomial-time Hungarian method with complexity 0(|V'i|^) 

( = 0 ( ( | i V f | + lA^i'l)^)) is a solution to this problem [75]. A matching in B of 
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Fig. 4.4(a) is shown in Fig. 4.4(b), which corresponds to such a node mapping: 

{nil — rii2 A, 71,3 — ^ji}-

The effort to computer /i(u) is one of the important factors that influence 

the search efficiency of the A' [71]. In our experiment, we found that if for 

every generated node in a search tree, the Hungarian method with complexity 

+ lATj 1)̂ ) is used to calculate h{u), the speed of the A* is too slow to 

accept. Therefore, we propose the following greedy algorithm to approximately 

calculate h{u). 

Greedy algorithm for calculating h{u) 

Input: Node sets N" and N". (comment: suppose \N"\ < |iVj'|) 

Output An approximate value of h. 

begin 

h := 0; 

while N ' # 0 do 

begin 

choose a node rii in iV"; 

remove n, from N"; 

find a node n) in N" such that 

— Tij) = min {7{nj — n^)}; 

if 7(ni Tij) < 7(ni — A) then 

begin 

h := h + 7(ni — rij); 
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remove rij from iV" 

end 

else 

h :— h + A); 

end 

while # 0 do 

begin 

choose a node n/ in N"\ 

h := k + 7(A Til)] 

remove rti from N": 

end 

end 

It is not difficult to analyze the running time of the greedy algorithm. Assum-

ing \N"\ < The main computation is, for every remaining node in iV", to 

find a remaining node rij in N" such that 7(72̂  — Uj) = —> HA )}. 

This requires 0{\N"\. |iV"|) time, which is also the complexity of the algorithm. 

Remark. Let us denote the estimate of h*{u) by h'{u) obtained with the 

greedy algorithm. Since h'(u) is an approximate value of h(u) defined in (4.10), 

we have h'{u) > h{u). Theoretically, there exists a possibility that h'(u) is not 

a lower bound on h*{u) when h'{u) > h{u). However, by (4.11) and (4.12) in 

the proof of Theorem. 4.3 we have 

h*{u) = h{u) + ^ 7((… m) -> {rij, nij)), 
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where the last term is the sum of some arc correspondence costs. Because of 

this terra, we observed in our experiments that h'{u) < h'{u) holds for almost 

all nodes w in a search tree. Even if h'(u) > h'(u) for some nodes u, it is not 

meant that the A* must not find the best goal node. Nilsson has pointed out 

that heuristic power can often be gained at the expense of admissibility by using 

some function for h that is not a lower bound on h* [71 . 

4.4.2 A Tree Pruning Strategy 

In Section 4.5 we will give some experimental results to show that the A' 

algorithm using only the evaluation function f(u) = g{u) + h{u) to guide its 

search is too slow in on-line Chinese character recognition. To increase the 

search efficiency of the A• we propose a tree pruning strategy that imposes 

geometric position constraints on strokes of Chinese characters and thus avoids 

expanding lots of nodes that are very impossible to be located in the optimal 

path from the initial node to the best goal node in a search tree. 

Let us look at the two characters shown in Fig. 4.5. When one is asked 

to identify between the two characters the stroke pairs that he/she considers 

compatible, it is easy for he/she to get the correct answer: {1 —2, 2 3, 3 

(b) 

Figure 4.5: A model character (a) and its handwritten version (b). 
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initial node 

uio« depth I 

Mil "12 "13 «I4 
11-2.2-6) "15 

Figure 4.6: A partial tree for matching from the character 
character in Fig. 4.5(b). 

depth 

Fig. 4.5(a) to the 

4 4 — 1 5 — 5,6 — 6 7 — 8 8 — 7 9 9}. The reason why we can find the 

answer easily and quickly is that we have a bird's eye view of the two characters. 

A tree search is hard just because a search algorithm does not have this function. 

Consider the partial search tree (Fig. 4.6) for matching from the graph of 

the character in Fig. 4.5(a) to the graph of the character in Fig. 4.5(b). The 

states of the nodes are shown near the nodes, which represent corresponding 

stroke correspondences. At depth 1 nodes wi_io are generated by expanding 

the initial node. Determining which node will be expanded next is according to 

the estimated f values of the nodes. For this example, the A' algorithm will 

find 

f{u2) = /(U3) = / = / (Ue) = / ). 

Thus every node in the set {u2, u^, u^, uq, ug} may be a candidate to be expanded. 

Similarly, at depth 2 the calculated estimated values /{uu) , /(W12), /(wia), 

/(UH), and /{uis) are all the same. Node un that is in the optimal path has 
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0 

(c) 
Figure 4.7: (a) A Chinese character and the smallest rectangle ABCD surround-
ing the character, (b) Geometric illustration of Do_3(2). (c) 8 directions. 

no priority over nodes Ui2_i5 in being expanded first. We have observed that in 

the matching between a model character and its handwritten character having 

stroke type and relation deformations, the A* tends to spend much time to 

discriminate among the paths whose costs do not vary significantly, and thus 

it is very possible that all nodes at depth 1 are expanded in order to find the 

optimal path. However, glancing at Fig. 4.5 we are easy to know only U2 and 

uii in Fig. 4.6 are located in the optimal path. The objective of the pruning 

strategy presented below is to add more or less the function of this bird's eye 

view into the A* algorithm. 

In on-line recognition, an input Chinese character as a whole can be regarded 

as no rotation variety. Hence a lot of information about the geometric positions 

of strokes of the character may be used to assist the A* algorithm when searching. 

Fig. 4.7(a) shows a Chinese character and the smallest rectangle ABCD that 

surrounds it. What are the stable geometric position features of the strokes 

of the character in daily handwriting? Intuitively, strokes 1 and 2 are written 

near the upper side of the ABCD; strokes 3-7 in the middle; stroke 8 near the 
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lower side or the lower-left corner; stroke 9 near the lower side or the lower-right 

corner. Now we formulate these character- and stroke-dependent features in the 

following. 

Let abed be the smallest rectangle that surrounds stroke j of an input char-

acter with t strokes (Fig. 4.7(b)). Eight directions shown in Fig. 4.7(c) are used 

to denote the directions of eight distances Dq-tO ), where D _3(j) are distances 

from aio A,b to S , c to C, and d to D, respectively, as shown in Fig. 4.7(b), and 

Z>4_7(j) are the distances from the geometric center of abed to the respective four 

sides of the ABCD. A notation od(Dq(j)), q € { 0 , 1 , 7 } , is used to denote 

that Dq(j) is the od{Dq{j))-th. smallest distance among … Dq(t)}. 

For example, od(Dq{j)) = 1 means that the distance Dq(j) of stroke j is the 

smallest, and od{Dq{j)) = m,m < t, means that there are m — 1 distances 

among Dq{t)} which are smaller than 

Definition 4.5 The geometric position features (GPF) of the strokes of a model 

Chinese character with s strokes is defined as a set of s 3-tuples 

GPF = {(d“ yi)\i = 1 2,… s}, (4.18) 

where di G { 0 , 1 , 7 } denotes one of the 8 directions, and x , and jji are two 

end points of the integer interval [xj,?/,], Xi, xji € { 1 , 2 , 5 } . {di, x,, i/i) gives a 

geometric position constraint on input strokes in the sense that only the input 

strokes j 's, satisfying x, < od(Dd,{j)) < y,, can have the chance of being as the 

node (stroke) correspondences i j or j —i in matching. A model stroke i 

and an input stroke j are called compatible if Xi < od{Dd^(j)) < yi. 

An example is given for better understanding of the GPF. For the character 
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shown in Fig. 4.7(a), a possible assignment of its GPF is 

GPF = {(4 1 2) 4,2’ 4) (4 3’ 6) (0 1 4), (4 4 8) 

(6, 4,7), (6, 2, 5), (6,1,3), (6,1,2)}. (4.19) 

Here (di,xi,yi) = (4,1,2) denotes that the two input strokes j i and j2 written 

at the top of an input character and satisfying 1 < od{D^{jk)) < 2, k = 1,2 are 

compatible with stroke 1 of the model character. 

Now, for each model Chinese character, in addition to the features of its 

stroke number, stroke types and relation matrix, a new feature GPF is added. 

For an input character with t strokes, we not only recognize its t stroke types 

find the relations between any two strokes, and create its relational graph, but 

also calculate its od(Dg{j)), j == 1 2 ’ t ; q = 0,1,7. 

The GPF can be used to prune the search tree efficiently. When searching 

the tree for the optimal matching from graph G, = (iV“ Ai) of a model character 

to graph Gj = (Nj, Aj) of an input character, the A* algorithm runs with a 

pruning operation inserted. The generation of a successor node in the tree 

means that besides the node mapping from subgraph G: = (N!’ A'j) of Gi to 

subgraph G'j = (iVJ, o i G j in its father node in. the tree, a new node (stroke) 

correspondence i —> j is yielded, where i € {Ni \ iV/) U Aj, j € (Nj \ iVj) U Aj, 

and i j ^ X —r X. Now suppose i ^ X and # A. Let the fth element of 

the GPF of the model character be (d,-, x,, yi). If x, < od(Dd,(j)) < Vu i.e., the 

stroke i is compatible with stroke j , then the newly-generated node will be put 

on the OPEN of the A*; otherwise, the node is pruned away. 

For the partial search tree in Fig. 4.6, with the GPF in (4.19), since {di,xi, yi)= 

(4,1,2) and , 2,1/2) = (4,2,4), the tree after pruning will become a much 
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initial node 

depth 1 

depth 2 

Figure 4.8: A partial tree obtained by pruning the tree in Fig. 4.6. All possible 
nodes at depths 1 and 2 are shown. 

smaller tree as shown in Fig. 4.8, where all the nodes at depths 1 and 2 are 

given. As can be seen, only three nodes at depth 1 have the chance to be ex-

panded but ten nodes do before pruning. Also expanding a node at depth 1 in 

Fig. 4.8 generates three or four successors, while expanding u“ i e {1 2,… 9} in 

Fig. 4.6 yields nine successors and expanding Uio yields ten. Comparing the two 

trees, we see that the nodes uq and uis in Fig. 4.6 which are very possible to be 

expanded but are impossible to be located in the optimal path from a human 

view, now no longer appear on the OPEN of the A*. In this sense, the A* has 

more or less the function of a bird's eye view. 

The above content of this section discusses the tree pruning strategy for the 

stroke-based graph matching problem, where the GPF is the geometric position 

features of strokes of model characters and is used to impose constraints on 

input strokes. The same idea is also suitable for dealing with the segment-based 

graph matching problem. But the GPF is the geometric position features of 
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segments of model characters and is used to impose constraints on segments 

of input characters. For the character shown in Fig. 4.7(a), its GPF in (4.19) 

can be used in both the stroke-based Chinese character recognition and the 

segment-based Chinese character recognition since the strokes of the character 

are also the segments of the characters. By the way, it is unnecessary for the 

Chinese characters with less than five strokes (or segments) to have the GPF. 

The search trees used for matching between these characters are small. 

R e m a r k . The construction of GPF for each model is based on the human 

knowledge of stroke (segment) structure of Chinese characters. Obviously, it 

is not unique and is character- and stroke-dependent. We hope that for the 

GPF = = 1 , 2 , 5 } of a model character with s strokes, inter-

vals [ii’yil’i = 1 , 2 , s , are designed as small as possible. In the case of 

Xi — yi, i = 1,2, ...,5, the fastest search is obtained. However, considering 

wide stroke variations in daily handwriting, the GPF of a character should be 

designed carefully. Too strict constraints on stroke positions may result in in-

correct recognition. Therefore, in the construction of GPF, we prefer to give 

looser constraints to facilitate higher recognition rate. 

4.4.3 Criteria for Stopping the A* Algorithm 

The A* algorithm will stop if it finds a best goal node in a search tree. The 

best goal node corresponds to the optimal matching between two graphs. A 

fact in Chinese character recognition is that the number of model characters 

similar to an input character are much less than that of the other characters. It 

is unnecessary to obtain the final optimal matching between two characters (in 
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other words, we may terminate the A* before it reaches the best goal node) if we 

know they are dissimilar while searching. Here, “two similar characters" means 

that the distance between the graphs of the two characters is relatively small. 

On the contrary, the distance between the graphs of two dissimilar characters 

are expected to be large. Theorems 4.2 and 4.4 can help reduce much search 

time. 

From Theorem 4.2 we know that if a heuristic function h satisfies the mono-

tone restriction, the estimated / values of the sequence of nodes expanded by 

the A* is nondecreasing. The estimated value of the best goal node equals the 

distance for which the A* searches. Theorem 4.4 states that the heuristic func-

tion h in (4.10) is monotonic. However, before giving the criteria for stopping 

the A•’ we would like to clarify whether the approximate values h'{u) of h{u) 

obtained with the greedy algorithm presented in Section 4.4.1 is also monotonic. 

Let u be a node in a search tree and w be a successor of u generated by 

expanding u. Let h'{u) be the estimate of h*{u) and h'{w) be the estimate of 

h*(w), obtained by the greedy algorithm. By (4.13)-(4.17), we have 

c{u, w) = j{nia Uja) + ^ j{{ni, rrii) — (nj, rrij)), 

(4 ,20) 

and 

h(u) - h(w) < 7… ,-a — rija) < c(u, w). (4 .21) 

Since h'(u) and h'(w) are the approximate values of h(u) and h(w), respectively, 

we cannot derive that h' is also monotonic from the statement of h being mono-

tonic. However, because of the right most item in (4.20), we have observed that 

h'{u) — h'(w) < c(u, w) holds in all the experiments we did for checking this 
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monotone restriction. We have also observed that the estimated / values of the 

sequence of nodes expanded by the A* are indeed nondecreasing. 

Three examples are given in Figs. 4.9-4.11. Figs. 4.9(a)-4.11(a) show three 

pairs of characters to be matched. The curves in Figs. 4.9(b)-4.11(b) illustrates 

the aondecreasing characteristic of the estimated f values with respect to the 

sequences of nodes expanded by the A•’ when the A* searches for finding the 

optimal matching between two characters of each pair. The A* algorithm 

runs with the pruning operation introduced in the last section. In the experi-

ments, the primitives used for representing characters are strokes and thus the 

matching procedure is a stroke-based recognition method. The two characters 

in Fig. 4.9(a) are the most similar. The two characters in Fig. 4.10(a) belong to 

the same class but the input character has a connected stroke. The two char-

acters in Fig. 4.11(a) belong to different classes and are most dissimilar. From 

Figs. 4.9(b)-4.11(b), we can clearly see that in these experiments, the more dis-

similar the two characters under matching, the greater their matching distance 

and the more the nodes expanded by the A* to reach a best goal node. By the 

way, the number of nodes generated by the A* is greater than the number of 

nodes expanded by the A* in a search. In general, expanding a node generates 

several successors of it in a tree. For the three examples, the node numbers 

generated by the A* are 27, 43 and 58, respectively. 

Now we continue discussing the criteria to stop the A*. Fig. 4.11(b) shows 

that the estimated f value reaches 40 quickly and then increases slowly in the 

matching between the two dissimilar characters. If we terminate the A* when 

the current estimated f value is greater than a threshold (say, 40) much search 

time will be saved. Therefore, we use the following criteria for stopping the A*. 



0 2 4 6 8 10 12 14 16 18 
expanded node u 

Figure 4.9: Example 1 for showing the nondecreasing estimated f values, (a) A 
model character and one of its handwritten characters, (b) Estimated f values. 
The node numbers denote the sequence of the nodes expanded by the A•’ when 
the A* searches a tree for the optimal matching between the two characters. 
The A* terminates after expanding 14 nodes. The matching distance between 
the two characters is 7. 
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8 10 12 14 16 18 
expanded node u 

Figure 4.10: Example 2 for showing the nondecreasing estimated f values, (a) A 
model character and one of its handwritten characters, (b) Estimated f values. 
The node numbers denote the sequence of the nodes expanded by the A•’ when 
the A* searches a tree for the optimal matching between the two characters. 
The A* terminates after expanding 16 nodes. The matching distance between 
the two characters is 15. 

107 

Chapter 4 A State Space Search Method 

i 

y ft f 
(a) 



10 15 20 25 30 35 40 
expanded node u 

(b) 

Figure 4.11: Example 3 for showing the nondecreasing estimated f values, (a) A 
model character and the input character in Fig. 4.10(a). (b) Estimated / values. 
The node numbers denote the sequence of the nodes expanded by the A*, when 
the A* searches a tree for the optimal matching between the two characters. 
The A* terminates after expanding 36 nodes. The matching distance between 
the two characters is 57. 
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Criterion 1. The A* algorithm will be terminated if it reaches a best goal node. 

Criterion 2. The A* algorithm will be terminated if the current estimated / 

value is greater than a global threshold Tg. 

Criterion 3. The A* algorithm will be terminated if the current estimated / 

value is greater than a varied threshold Ty. 

The global threshold Tg is a constant and is usually set not to be too small 

so that the model character corresponding to an input character may not be 

missed. Criterion 3 is used to further speed up the A* algorithm. In Chinese 

character recognition, even after a preclassification procedure, in general, there 

are still many model characters, ranging from tens to hundreds, which need to 

be matched with an input character. Suppose there are m such model characters 

Gi, G 2 , G m - Let the matching distance between a model Gi and an input G 

be ^(Gj, G). If a model character G, is more similar to the input than all the 

remaining characters G^+i Gi+2 …’ (that have not been matched with G 

yet), then we have 

’ G) < G), J• “ 1, i + 2 , m . 

Now suppose the first i model characters have been matched with the input 

character. If we let 

T” = ’ G) = G)}’ (4.22) 
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then we can reduce the search time of the A* in successive matchings when 

Tu < Tg. For example, the A' is now searching a tree for the optimal matching 

between and G. If the current estimated / value is greater than Tv{i), then 

that f is nondecreasing implies 

+i’G) > 7 = G) 

and thus no more search for the current matching is needed. 

It is conventional that after finishing the recognition of an input character, 

an on-line recognition system gives several model characters that are considered 

most similar to the input, in order that the real model may not be missed. To 

reach this goal, we may set 

T, = T,{i) = e + mmi^Gk, G)}’ (4.23) l<k<i 

where e > 0 is a predefined value. 

Remark. Criteria 2 and 3 utilize the nondecreasing characteristic of the esti-

mated / values of the sequence of expanded nodes to speed up the A*. In a search 

for the optimal matching between two dissimilar characters, if / increases very 

slowly, the two criteria may produce little effect. Recall that we use complete 

relational graphs to represent Chinese characters. The spatial and temporal rela-

tions between any two primitives (strokes or segments) give much information for 

the matching aim. In the matching between two dissimilar characters, with the 

help of the GPF constraints on input primitives, many relations between model 

primitives are not compatible with those between input primitives and thus large 

estimated f values yield quickly. Fig. 4.11 clearly shows such an example, in 

which if we set Tg = 40 then the A' will stop after expanding 5 nodes instead of 
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expanding 36 nodes. Therefore, the Criteria 2 and 3 are very efficient for speed-

ing up the A.. It is also worth noting that in the other two common methods 

for graph matching, maximal clique-based approaches [5’ 7 10, 12, 13 16] and 

relaxation labeling approaches [18, 23, 33 41, 51, 54, 99 106], the iteration pro-

cedures of the algorithms of these approaches are not directly relative to their 

corresponding distance measures. Whether or not a matching distance is large 

can be known only when an algorithm has terminated. This is one of the reasons 

why these approaches require large computational time when they are applied 

to on-line Chinese character recognition (13, 16, 18 . 

4.5 Experimental Results 

In this section, we give some recognition results to demonstrate the performance 

of the graph matching based on-line Chinese character recognition method. We 

also provide some data to show the search efficiency of the A* with the pruning 

operation. All algorithms, including the preprocessing algorithms, are imple-

mented in C. The computer used is a PC/Pentium at 166MHz. 

4.5.1 Stroke-Based Recognition 

In the stroke-based recognition method, the primitives are strokes and the stroke-

based representation of Chinese characters is employed. 300 frequently-used 

Chinese characters each with stroke number between 9 and 11 are selected for 

testing the performance of the proposed method. (A Chinese character has an 

average of 10 strokes [88].) Some of the model character are shown in Fig.4.12. 

The global threshold Tg and the parameter e (see (4.23)) are set to be 40 and 
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15 respectively. More than 7000 Chinese characters written by 10 people were 

used as test data. The subjects were asked not to write the characters in their 

cursive styles, but there were no stroke order constraints on their writing. A set 

of handwritten characters having correct stroke numbers are shown in Fig.4-13, 

in which their corresponding model characters are also given. These characters 

are all recognized correctly. For such characters with no connected strokes, the 

recognition rate is about 98.7%. 

Fig.4.14 shows another set of correctly-classified characters each having one 

or two connected/split strokes. For such characters, the recognition rate is 

about 91.2%. If we consider the first 5 model candidates that are regarded as 

the most similar to an input character, we obtain a recognition rate of 93.6%. 

Stroke-based recognition methods cannot tolerate too many connected strokes. 

The reason is that connected strokes change the stroke types, stroke spatial 

relations and stroke numbers of characters, all of which make the matching 

distance between an input character having several connected strokes and its 

model increase greatly. 

The average time for classifying an input character is about 0.3 second. Such 

a satisfactory recognition speed is due to the heuristic estimate, the pruning 

strategy and the criteria for stopping the A*. We have explained how Criteria 2 

and 3 can save the computational time of the A* in Section 4.4.3. Now we 

will present three matching examples each in three cases to demonstrate the 

usefulness of the pruning operation and the heuristic function h. The pairs of 

characters in Figs. 4.9-4.11 are employed in the experiments. Three cases are 

considered: (1) neither heuristic information nor the pruning operation is used 

{h = 0 GPF = 0); (2) the heuristic estimate defined in (4.10) but not the 
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^ t r 
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/ ^^ 
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m 
Figure 4.12: Some model Chinese characters for testing the stroke-based recog-
nition method. 
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1 / f 1 J , 

r f I 

Figure 4.13: Some test characters having correct stroke numbers, together with 
their corresponding models. 
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1 % / i 

# 0U 

I 
c f e . 

f 

Figure 4.14: Some test characters having one or two connected strokes, together 
with their corresponding models. 
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Table 4.1 Numbers of nodes generated by the A* for three matching examples 
each, in three cases. 

-
= 0 GPF = 0 780 1202 5540 

114 380 2458 
27 43 58 

pruning operation is used (h • 0, GPF = 0); (3) both the heuristic estimate 

and the pruning operation are used {h 0, GPF 0). Table 4.1 gives the 

numbers of nodes generated by the A* algorithm in search. As can be seen, the 

A* needs to generate a lot of nodes to obtain the optimal matching between 

two characters in case 1. In case 2 the A* can be speeded up by using the 

heuristic information, but the results are still not satisfactory, especially when 

two characters are not similar. In case 3, the search efficiency of the A* is 

improved significantly by adding the tree pruning operation. 

4.5.2 Segment-Based Recognition 

In the segment-based recognition method, the primitives are segments and the 

segment-based representation of Chinese characters is employed. 54 Chinese 

characters (a subset of the models in the stroke-based recognition experiments) 

each with stroke number between 9 and 11 are used for testing. The values of 

the global threshold Tg and the parameter e are also chosen to be 40 and 15 

respectively. 

More than 6000 Chinese characters written by 9 people were used as test 

data. No stroke number and order constraints were imposed on the writing. 
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The recognition rate mainly varies with the numbers of connected strokes ap-

pearing in the handwritten characters. For the characters each having less than 

3 connected strokes such as those in Figs.4.13 and 4.14, the recognition rate 

achieves 98.2%. For the characters written each with 4 to 7 strokes, as shown 

in Fig.4.15 the recognition rate is 94.2%. For the characters written each with 

only 1 to 3 strokes, as shown in Fig.4.16, the recognition rate is 88.6%. The 

average recognition rate is about 95%. These results are very promising. 

Compared with the stroke-based recognition method, the segment-based 

recognition method can allow more connected strokes in freely-written char-

acters. This is because (1) most spatial relations among the segments (not 

including extra segments in connected strokes) of an input character remain 

unchanged, and (2) the rules in the segment preprocessing are very useful for 

breaking connected strokes and deleting some of the extra segments (see Sec-

tion 2.4). 

In the experiments, we found that the assignment of temporal relations be-

tween strokes/segments of the model characters almost tolerated all the hand-

writing order deviations in the test data, thanks to the "don't care" temporal 

relations. Of course, incorrect recognition will occur if too many stroke order 

deviations exist in input characters. For example, Fig. 4.17 shows a Chinese 

character, the strokes of which are labeled with the numbers indicating their 

standard order of writing, and one of its handwritten characters having many 

stroke order deviations.^ In this case, a user may choose the re-classification 

phase, which do not utilize the stroke/segment order information of Chinese 

^One who is not familiar with Chinese characters such as a foreigner may write the character 
that stroke order. 
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nJ 

Figure 4.15: Some test characters written each having 4 to 7 strokes, together 
with their corresponding models. 
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Figure 4.16: Some test characters written each having 1 to 3 strokes, together 
with their corresponding models 
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(a) (b) 

Figure 4.17: (a) A Chinese character whose strokes are labeled with the numbers 
that indicate their standard order of writing, (b) A handwritten version of (a) 
which has many stroke order deviations. 

characters for recognition,® to obtain a correct recognition result, without the 

need to write the character again. Therefore, our segment-based recognition 

method is stroke number and stroke order free. 

The average time for classifying an input character is about 0.09 second 

when there are 54 model characters. The stroke-based recognition method re-

quires 0.06 second to classify an input if the 54 models are also used. The 

reason why the segment-based method takes more time is that (1) the number 

of segments of a character is greater than or equal to the number of strokes of 

the same character, and allowing more freely written characters often leads to 

extra segments (the more the node numbers of two graphs under matching, the 

larger the state space tree for the graph matching) (2) the heuristic function 

h in the stroke-based method is more precise than that in the segment-based 

method because the stroke-based method uses more stroke types (15 standard 

stroke types), which provide more information of Chinese characters than the 

5 segment types. Comparing the segment-based and the stroke-based methods, 

6The recognition method of the re-classification is the same as the original one except that 
the weight in (3.11) is set to be 0. 

120 

5 

9 

1 

\ 
6 

0 

4 6 
I \ /y5 
\ 

\ n 0 



Chapter 4 A State Space Search Method 

we prefer the former if the computer running it is not too slow to accept. 

4.6 Comparisons of the Segment-Based Recog-

nition Method with Several Other Studies 

In this section, we will make some comparisons between our segment-based 

recognition method and several other methods published recently in interna-

tional journals. Generally speaking, it is difficult, if not impossible, to compare 

the recognition results of various methods for on-line Chinese character recog-

nition. This is because of different subjects in different experiments, different 

constraints imposed on handwriting, no standard on-line captured Chinese char-

acter databases for testing a method, and so on. A Chinese may write the Chi-

nese characters that is very difficult to be recognized by others if there are no 

constraints on his/her writing. For example, our method fails to recognize the 

characters shown in Fig. 4.18, which are written either too cursively or having 

great distortions in shape. Thus we cannot say a method is absolutely better 

than another just according to the recognition rates reported. Besides the recog-

nition rate we also have to consider more factors such as recognition time, stroke 

_ * f f L 

Figure 4.18: Some handwritten characters that the segment-based method can-
not recognize. Their corresponding model characters are also shown. 
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number and stroke order constraints, and degrees of deformation of handwritten 

characters. 

Lin et ad. [56] proposed a deviation-expansion model to represent Chinese 

characters. The dynamic programming is used to perform the character match-

ing. Their approach is stroke-based and in essence a string matching one. The 

approach requires that an input character should not have more than one stroke 

number variation and more than two connected strokes. There were 5400 mod-

els in their experiments. A preclassification step was employed. A recognition 

rate of 87.4% and an average recognition time of 2.5 seconds per character on a 

PC/386 at 25MHz were reported. 

Chou et ai. [21] extended the above model to a segment-based deviation 

tree. The approach is also a string matching one, so cannot tolerate more than 

two stroke order deviations. There were 5104 models in the experiments and a 

preclassification step was employed. They reported a recognition rate of 94.88% 

for untrained characters and a recognition time of 0.7 second per character on 

a PC/486 at 25MHz. 

In [17], Chen et ai. developed a stroke-sequence decision tree and position 

matching method, which can only recognize the handwritten characters with less 

than two stroke number variations and is not stroke order free. No recognition 

rate and recognition time were reported. 

Tsay and Tsai [92] used attributed string matching by split-and-merge for 

on-line Chinese character recognition. The proposed method can recognize cur-

sive characters but imposes the constraint of correct stroke orders on them. 

There were 3100 model characters with stroke numbers ranging from 1 to 24. A 

recognition rate of 96.2% and a recognition time of 2.5 seconds per character on 
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a PC/AT were reported. 

Chou and Tsai [22] proposed a discrete iteration scheme to solve the problem. 

Their method is not stroke order free. The provided test characters are in block 

style and almost have no connected strokes. There were 5401 models in their 

experiments. A preclassification stage was used. A recognition rate of 91.8% 

and a recognition time of less than 2 seconds were reported. But the authors 

did not mention what kind of computer was used. 

In [40], Hsieh et al. employed a greedy algorithm for bipartite matching to 

complete the recognition. The method is stroke order free. The provided test 

characters each with less than 10 strokes are neatly written, some of which have 

one or two connected strokes. There were 452 models in the experiments. No 

preclassification stage was used. A recognition rate of 89.7% was reported. If 

the first three candidates were considered, they obtained a recognition rate of 

96.29%. The average recognition time was 39 seconds per character on a Sun 

workstation. 

Chen and Lee [16] proposed a fuzzy attribute representation, for Chinese char-

acters and used a NP-complete maximum clique finding algorithm to perform 

the graph matching. There were 650 models each with a stroke number between 

1 and 12 in their experiments. A preclassification stage was utilized to reduce 

the number of models required to be matched with an input. A recognition rate 

of 95.64% and a recognition time of 2 seconds per character on a Sun SPARC-II 

workstation were reported. The method is stroke order free, but no test data 

was provided. 

In summary, the above methods except the last two are not stroke order 

free and impose basically correct stroke order constraint on handwriting. The 
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method in [40] is stroke order free but it can only recognize the neatly written 

characters, some of which have one or two connected strokes. The tolerance of 

stroke number variations in the method of [16] is difficult to judge since no test 

data was given. In general, when there are several thousand model characters 

in a recognition system, a preclassification stage is required to save the overall 

recognition time. 

Our segment-based method is stroke order and stroke number free. From the 

test data provided in our and the other experiments, it is seen that our method 

can recognize more cursively written characters, and at the same time imposes 

no stroke order constraint on the handwriting. There is not much difference 

between the recognition rate obtained in our experiments and the others. As 

mentioned above, the recognition rate is just one of the factors to judge how 

good a recognition method is. 

When there are several thousands of model characters added in our recogni-

tion system, a preclassification stage is also necessary. We will discuss the pre-

classification problem, in Section 7.2. If 500 models are required to be matched 

with an input character after preclassification, our segment-based method can 

complete a recognition within one second on average. Now we compare the 

recognition time required by our method and those in [40] and [16], all of which 

are stroke order free. Since the computational power of the PC/Pentium is sim-

ilar to that of the Sun workstations used in [40] and [16], our method requires 

much less recognition time than the method in [40]. It is also faster than that 

in [16]. The recognition time of 2 seconds per character reported in [16] was 

obtained under the conditions: there were 650 models each with stroke number 
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from. 1 to 12 and a preclassification stage was employed/ while our method can 

have a recognition time of about 1 second per character if there are 500 models 

each with stroke number from 9 to 11 and no further preclassification is per-

formed. From the above comparisons, we see that our segment-based recognition 

method is very promising. 

4.7 Summary 

In this chapter, we have formulated the graph matching as a state space search 

problem. The optimal matching between two graphs is equivalent to finding 

the best goal node in a search tree. State space search itself do not change the 

NP-complete property inherent in the graph matching problem. To obtain good 

search efficiency, we have used the A* algorithm to perform the heuristic search, 

and proposed the following schemes to speed up the A*. 

• A heuristic function h which has been proved to be a lower bound on h* 

and monotonic, is defined to make the A* expand fewer nodes in a search 

tree. 

• A tree pruning strategy, which employs the geometric position features 

of strokes (or segments) of Chinese characters to prune a search tree, is 

proposed to let the A* have more or less the function of a bird's eye view, 

in other words, to let the A* avoid searching the nodes that have very little 

chance to be located in the optimal path from the initial node to the best 

goal node in a tree. 

Obviously, the recognition speed of this method is too slow when there are several thou-
sands of models. 

125 



Chapter 4 A State Space Search Method 

• Criteria 2 and 3 are presented to stop the A•’ together with Criterion 1 

by utilizing the monotone of the estimated / value. The two criteria are 

based on the fact that in Chinese character recognition, finding the final 

optimal matching between two dissimilar characters is not necessary if we 

have known their distance is great enough. 

The experimental results show that the recognition speeds of our stroke-

based and segment-based recognition methods are sufficiently fast for practical 

applications, even if the frequently-used 5000 or more Chinese characters are 

added. In common recognition of input Chinese characters (the first phase), the 

methods can tolerate most of the stroke order variations due to the "don't care" 

temporal relations between strokes (segments). To deal with a character with 

great stroke order deviations, the re-classification stage (the second phase) can be 

effected (without the need to write the character again), which ignores the stroke 

(segment) order information to perform recognition. Therefore, the methods 

are stroke order free. The results also show that the segment-based method can 

recognize the handwritten characters having many connected strokes, so it is 

stroke number free too. 

We have made some comparisons between, our segment-based method and 

several other studies published recently in international journals. Considering 

their recognition rates, recognition time and tolerances of stroke order and stroke 

number variations, we see that out method is very promising. 

Parts of the results presented in this chapter have been published in [58, 59, 

60 61, 62 63 . 
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Chapter 5 

A Two-Layer Assignment 

Method 

5.1 Introduction 

The assignment problem is a well known one in operations research and can be 

solved by the Hungarian method [39, 70, 75]. In this chapter, we propose a two-

layer assignment method for the on-line Chinese character recognition problem. 

The objective of the first layer assignment is to estimate the costs of primitive 

(stroke or segment) correspondences between two Chinese characters according 

to their primitive types and spatial-temporal relations, and the objective of the 

second layer assignment is to find the primitive correspondences between the 

two characters such that the total correspondence cost is minimized. We also 

present two schemes to save computational time, which reduce the complexity 

of the method from 0(n^) to O(n^), where n is the greater number between the 

two primitive numbers of two characters. 
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In Section 5.2, we briefly review the assignment problem and the methods 

to solve it. The two-layer assignment formulation of on-line Chinese character 

recognition is given in Section 5.3. The two complexity reduction schemes are 

discussed in Section 5.4. Some experimental results are presented in Section 5.5. 

In the last of this chapter is the summary. 

5.2 The Assignment Problem 

The assignment problem is a special type of the linear programming problem. 

An assignment is useful for modeling a situation, in which there are two distinct 

sets of objects of equal numbers (say, n), and we need to form them into pairs 

on a one-to-one base. There is a cost c^j associated with mapping object i to 

object j, i j = 1, 2 , n . We call [cijJ„xn a cost matrix. Given [c,: 

assignment problem of order n is to find a permutation matrix^ P = [x to 

Minimize cost(P) = ^ JZ Gj ij 
:1 7 = 1 

(5.1) 

Subject to ^ Xij = 1 for i = 1 to n (5.2) 

^ = 1 for j = 1 to n 
i=l 

€ { 0 , 1 } . 

(5.3) 

(5.4) 

^ A permutation matrix is a square matrix 
U E i = i ij = 1 and Xij = 0 or 1. 

whose elements satisfy 
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(a) (b) 

Figure 5.1: (a) A complete bipartite graph, (b) A complete matching of a 
bipartite graph corresponding to the assignment in (5.5). 

connected to each right vertex by an edge. The cost of an edge joining left 

vertex i with right vertex j is defined as d j . A complete matching^ of the 

2In graph theory, a matching in a graph is a set of edges, no two of which share a vertex. 
When the cardinality of a matching is the largest possible the matching is termed complete. 
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We call min{cosf(P)} the minimum total assignment cost. Here is a feasible 

solution for an assignment of order 4: 

0 1 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 1 

(5.5) 

The cost matrix [ l„xn can be represented by a complete bipartite graph, 

(see Fig. 5.1(a)). The vertexes in the left column denote a set of objects and 

those in the right column denote the other set of objects. Each left vertex is 

o 

• 0 

• 0 

© 
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bipartite graph corresponds to an assignment, and vice versa. For example, 

the matching in Fig. 5.1(b) corresponds to the assignment in (5.5). Thus the 

assignment problem in (5.1)-(5.4) is equivalent to that of finding a minimum 

cost complete matching in the bipartite graph of Fig. 5.1(a). That is why it is 

also known as the weighted bipartite graph minimum cost complete matching 

problem. We also call [c,j]nxn an edge cost matrix. 

The Hungajicm method is a popular one with the complexity O(n^) for solv-

ing the assignment problem [75]. In addition, there are several other methods 

for it, such as the cost scaling algorithm [32], the auction algorithm [8j and the 

auction algorithm incorporating scaling [74 . 

5.3 A Two-Layer Assignment Formulation of 

on-Line Chinese Character Recognition 

The similarity comparison between two characters can be made by the two steps: 

(1) find the segment^ correspondences between the two characters; (2) use a 

measure to calculate their similarity based on the segment correspondences. We 

will discuss these two steps respectively in the following. 

5.3.1 Finding Segment Correspondences between Two 

Characters 

Fig.5.2 shows a model character and its handwritten character after the prepro-

cessing. We want to obtain such segment correspondences: 

3 In the rest of this chapter, the segments of characters are used as primitives. 
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(a) (b) 

Figure 5.2: A model character (a) and its handwritten character (b). 

1 — 1’ 2 — 2’ 3 — 3 4 — 4’ 5 — 5,6 — 6 7 — 8’ 8 4 9,9 4 10 A — 7’ 5.6) 

where A — 7 denotes a correspondence between a dummy segment in character 

(a) and the extra segment in character (b). Now we represent various segment 

correspondences using a bipartite graph, as shown in Fig.5.3. Segments 1-9 in 

Figure 5.3: A bipartite graph formulation of segment correspondences between 
the two characters in Fig. 5.2. 

character (a) are denoted by vertexes 1-9 in the left column, respectively, and 

segments 1-10 in character (b) are denoted by vertexes 1-10 in the right column, 

respectively. Vertex A (a dummy segment) is added in the left column to make 

the segment numbers of the two characters equal. 
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To sum up, for obtaining the segment correspondences between character 1 

with segment number ni and character 2 with segment number n2 (assume 

ni < 712 without loss of generality), a complete bipartite graph is constructed 

by two vertex columns each with n vertexes. There is an edge joining a vertex 

in the left column with a vertex in the right column, rii vertexes in the left 

column denote ni real segments of character 1 and the other 712 — Ui vertexes 

denote 712 — n! dummy segments. In the right column, 712 vertexes denote 722 

real segments of character 2, 

Now a critical issue is how to derive the edge costs of a bipartite graph 

such that after solving the corresponding assignment problem, we can have the 

desirable segment correspondences between two characters. The idea in graph 

matching discussed in the last two chapters may be borrowed, the goal of which, 

roughly speaking, is to find an optimal matching between two characters such 

that the sum of all the costs of segment type correspondences and the costs 

of relation correspondences between segments is minimized, in other words, to 

make the segment type correspondences and the relation correspondences be-

tween two characters as compatible as possible. Keeping this in mind, we will 

propose an approach for deriving the costs of edges of a bipartite graph, i.e., 

the cost matrix [ctj)„xni where Cij is the cost of edge joining vertex i in the left 

vertex column with vertex j in the right column in the bipartite graph. 

First, we define = d r if i denotes a dummy segment and j a real segment, 

or vice versa, where dr is a positive value and is determined by experiment. Let 

Bn be the bipartite graph created with character 1 and character 2, and its edge 

cost matrix be [ctjjnxn- Let i and j be two real segments in characters 1 and 2 

respectively. The information used to derive [Cijj„xn is the segment types and 
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the spatial-temporal relation matrixes of the two characters. We define 

Cij = l(i j ) + Pij, (5.7) 

where 7(2' —> j) is the correspondence cost between the type of segment i and 

the type of segment j as defined in Table 3.4 4 and is the minimum cost 

of a complete matching in a new bipartite graph B (or the minimum total 

assignment cost of the new assignment problem corresponding to The 

left column of consists of all the vertexes except vertex i in the left column 

of Bjij and the right column of consists of all the vertexes except vertex j in 

the right column of The edge cost matrix [c^„_i)x(rt_i} of B^J î is directly 

derived by 

4 = (5.8) 

where k and I are two real segments in characters 1 and 2 respectively, 7(fc 

is the segment type correspondence cost, (z, k) and (j, /) are the spatial-temporal 

relation from i to k and from j to I respectively, and 7((i fc) —> (j, i)), called 

relation correspondence cost, is defined the same as the arc correspondence cost 

in (3.11). If there is one dummy segment between segment k and segment I, we 

define cĵ / = . 

Now we explain the meaning of the definition of Cij. Cij is equal to a sum 

of two terms. The first is a segment type correspondence cost. When the 

type of segment i is the same as that of segment j, this term costs the least 

(7(2 —> j) = 0). To better understand the second term ptj, more description 

is needed. In the following, by using an example, we will state that if the two 

•*Note that in this chapter, Cij is called a segment correspondence cost, and 7(1 — j) is 
called a segment type correspondence cost. 
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a 

Figure 5.4: A Chinese character (a) and its very similar handwritten style (b). 

characters under comparison is very similar to each other and if segment i is just 

the segment that should correspond to segment j in character 2 then Pij = 0. 

Consider two very similar characters, character 1 and character 2 as shown 

in Figs.5.4(a) and (b). The segment correspondences: 

1 — 1,2 2’ 3 — 3 4 4 5 — 5’ 6 4 6’ 7 — 7’ 8 — 8’ 9 — 9 (5.9) 

are what we want to obtain. We say they are very similar in the sense that 

(1) the costs of segment type correspondences in (5.9) are all equal to 0; (2) the 

relation correspondence cost 7((2i f2) —> (ji, J2)) = 0, where z'l, j i , 22,72 satisfy 

the condition that ii —> j i and 22 —>• j i are any two different segment correspon-

dences in (5.9). Now suppose i = 9 and j = 9. Then C99 = 7(9 -)> 9) + pgg. 

P99 corresponds to a new assignment problem of order 8. Let [c x8 be the 

cost matrix of the assignment problem. Without loss of generality, suppose the 

subscripts k and I on cj® denote just segment k and segment I in character 1 

and character 2 respectively. By (5.8), we then have 

cZn = l{m — rn) + 7({9, m) — (9, m)) = 0 ’ m = 1,2, ... 8. (5.10) 

Thus all diagonal elements in [cjjjgxs are 0. A permutation matrix P ' = [arjt/Jsxs 

with Xmm = 1, m = 1, 2, ... 8 and Xki = 0’ fc is a solution to the assignment 
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problem and the minimum total assignment cost pgg = 0. 

Obviously, if the two characters are not so similar, the costs of the segment 

type correspondences or segment relation correspondences discussed above will 

not be 0 and we have pgg 0. Besides, if i = 9 and j = 1 by (5.8) we can see 

that all the elements of the cost matrix [cjfjgxs (of another assignment problem) 

will be greater than 0 because of the incompatible segment type correspondences 

and relation correspondences. This results in a minimum total assignment cost 

P9l > 0. 

Table 5.1 gives the whole matrix [Ajl9x9 by solving the 81 assignment prob-

lems of order 8 and Table 5.2 shows the corresponding cost matrix [Cjj]9x9’ for 

finding the segment correspondences between the two characters in Fig. 5.4. By 

applying the Hungarian method to the assignment problem with this cost ma-

trix [cjjJgxQ, we can obtain the segment correspondences in (5.9). Therefore Cij 

defined in (5.7) better reflects the degree of incompatibility between segment i 

and segment j. 

Fig.5.5 shows the structure for obtaining segment correspondences between 

two characters. There are n x n assignment problems of order n — 1 in layer 1 

and there is one assignment problem of order n in layer 2. Obtained by solving 

the assignment problem with the cost matrix [c!j{](n-i)x(n-i) in layer 1, pij is 

used together with the segment type correspondence cost 7(2 —> j) to estimate 

the cost Cij in the assignment problem in layer 2. The cost cjj is calculated by 

utilizing the information of segment types and relations of the two characters. 

Note that if one of the segments i and j is a dummy segment, c,j is simply set 

to be dr. We do not specify these cases in the figure for simplicity. By Fig. 5.5, 

we call the proposed method a two-layer assignment method. 
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Table 5.1: Matrix [/9ij]9x9 for estimating the cost matrix [cij 

1 2 3 4 5 6 7 8 9 
1 0 12 30 39 48 58 72 85 96 
2 12 0 12 21 30 40 56 67 78 
3 24 12 0 15 18 28 44 55 72 
4 21 15 15 0 37 37 59 50 91 
5 54 36 42 57 0 26 30 67 48 
6 64 52 34 55 20 0 16 35 50 
7 72 60 48 63 36 16 0 7 30 
8 79 67 55 56 41 23 7 0 29 
9 96 84 78 103 42 38 24 35 0 

Table 5.2: Cost matrix [QjJgxg for finding the segment correspondences between 
two characters in Fig. 5.4. 

2 3 5 6 7 8 9 
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segment types 
of character 1 
and character 2 

relation matrixes 
of character I 

and character 2 

)/ layer 

layer 2 

Figure 5.5: The structure for obtaining segment correspondences between char-
acter 1 and character 2. 
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It is not difficult to estimate the computational complexity of the two-layer 

assignment method. Let the numbers of segments of two characters under com-

parison be rii and 712 respectively, and n = max{7ii, 722}. Then the n x n 

assignment problems of order n — 1 in layer 1 can be solved by applying the 

Hungarian method n x n times, each requiring 0( (n - 1)3) time. The effort 

to create the cost matrix of each assignment problem in layer 1 is 0((n — 1)-). 

Thus the total effort made in layer 1 is O(n^). There is only one assignment 

problem of order n in layer 2, which can be solved in O(n^) time. Therefore, 

the complexity of the entire two-layer assignment method is O(n^). 

5.3.2 Calculating the Similarity of Two Characters 

After solving an assignment problem in layer 2 we obtain a permutation matrix 

P* that denotes a set of segment correspondences between two characters. With 

the P* = [x'jjnxn and the cost matrix [cijjnxn of the assignment problem, we 

have the minimum total assignment cost {MTAC): 

M T A C i P n ^ E Z ^ i j ^ h - (5.11) 
i=lj=l 

It can be used as a distance to compare two characters. However, in our exper-

iments we found that it is not good enough. 

Suppose A and B are two model characters and C is an input handwritten 

character belonging to the class of A. Let and P*BC be the permuta-

tion matrixes for segment correspondences between. A and C and for segment 

correspondences between B and C respectively. In general, MTACi^*ac) < 

MTACi^*Bc)i but sometimes, when C is not very similar to A, we may have 

MTAC(V*AC) > MTACCP^BC)- However, if the matching cost 0 defined in 
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the following (5.12) is used, we will still have 0AC < where (3AC and 0BC 

are the matching cost between A and C and the matching cost between B and 

C respectively. 

By Definitions 3.5 and 3.6 it is not difficult to see that P* corresponds to 

a node mapping /jy (and an arc mapping / led by /y ) . Therefore, we use the 

following matching cost, which is similar to (4.1) and is a simplified version of 

(3.2) in Definition 3.7, to calculate the distance between two characters: 

^U^^.Ta) = E — E A) + Y. 7(A ^ i ) 
i^j^Qx î AeQa 

+ E — ( j ’ 0 ) (5-12) 

where Qi is the set of correspondences between real segments; Q2 and Q3 are 

the sets of correspondences between real segments and dummy segments; Q4 is 

the set of relation, correspondences from (i, k) to (J l) i + \ i \ k A, 

I ^ A. Compared with MTAC, (3 reflects more directly and fully the relation 

compatibility of segment correspondences between two characters. 

5.4 Two Complexity Reduction Schemes 

Although the two-layer assignment method can be implemented in polynomial 

time 0(n®), we find that an algorithm with such running time is not suitable 

for on-line recognition of Chinese characters. Hence, we propose two complexity-

reduction schemes for the recognition problem. 
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5.4.1 A Lower Bound Estimate 

In the two-layer assignment method, the main computational effort is to solve 

the n X n assignment problems of order n — 1 with the Hungarian method. 

This results in an 0(n®) algorithm in layer 1 the aim of which is to obtain pij 

(f, j = 1, 2 …’ n) and then derive the cost matrix [ci_,]„xn- The following theorem 

is useful for obtaining an estimate of p”’ 

Theorem 5.1 Given an assignment problem: 

n n 
Minimize cos (Q) = ^ ^ dijXij, 

1=1 j=i 

where Q = [:Eijjnxn aTid [dijjnxn a permutation matrix and a cost matrix 

respectively, a lower hound estimate e of the minimum value of cost{Q), i. e., 

imn{co5i(Q)} > e (5.13) 

can be found by 

e = ^ min-Ti + ^ min.Cj, (5 .14) 
1=1 j=i 

where minjTi = mm{rfii, d i 2 , i s the smallest element in row i in the cost 

matrix [rf,j]nxn» an^f min.Cj = d'2j ..” d'^^} is the smallest element in col-

umn j in the cost reduction matrix [dy„xn, where d\j dij—min-ri, for all z, j = 

X12 ••” Th* 

Proof. Investigating the Hungarian method in [48], after steps (a) and (b) of 

the method, we have a reduction of costs that is exactly equal to e. Let the 

total reduction of costs in the steps following step (b) be e'. Then we have 

inin{co5^{Q)} = e -h e'. (5.15) 
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Since e' > 0, (5.13) holds. • 

Theorem 5.1 provides us an approach to approximately obtain pij (and thus 

Cij), by using (5.14) instead of the Hungarian method. Calculating e from an 

n X n matrix needs O(n^) time. With this estimate, the effort made in layer 1 

now becomes which is also the complexity of the two-layer assignment 

method. 

5.4.2 Geometric Position Constraints 

The derivation of the cost matrix [Cjjjnxn consumes the most computational time 

in the two-layer assignment method. Cij is the correspondence cost between 

segment i of a character and segment j of another character. In fact, with 

the help of the geometric position features (GPF) of a model character, which 

are defined in Definition 4.5,5 we can reduce much computational time spent in 

layer 1, Look at Fig.5.4, the correspondences between segment 1 in character (a) 

and one of the segments 5-9 in character (b) is obviously unreasonable. Now we 

can use the GPF of a model character to decide whether a cost Cij in the cost 

matrix in layer 2 needs to be estimated in layer 1. Let i be a segment of a model 

character and j be a segment of an input character. Let the zth element of the 

GPF of the model be If Xi < od(Dd,(j)) < pi, i.e., the geometric 

position of segment i and that of segment j are compatible, then c" will be 

estimated in layer 1; otherwise, just set Cij a sufficiently large positive value. 

With the geometric position constraints, the computational complexity of 

the two-layer assignment method can be reduced further. In general, an integer 

®In Definition 4.5, the primitives are strokes of Chinese characters. When it is applied to 
the segment-based recognition method, the primitives should be segments. 
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interval [xi, y,] (see Definition 4.5) satisfies y, — Xi < K (say, 5). In this case, at 

most Kn elements in a cost matrix [c,j]„xn need further computation. Therefore, 

by using the above two complexity reduction schemes, the time required by the 

two-layer assignment method is O(Kn^) — O(n^). 

5.5 Experimental Results 

The two-layer assignment method has been implemented in C on a PC/Pentium 

at 166MHz. The primitives of the method are segments. Before an input char-

acter is recognized, its segment types and the relations between its segments 

are extracted first in the preprocessing procedure. 54 Chinese characters, which 

have been used in the experiments for testing the segment-based state space 

search for graph matching method (see Section 4.5.2), are also used here. The 

parameter dr is chosen to be 5 which is equivalent to the cost of a segment 

deletion in graph matching. 

The test data consists of more than 3000 Chinese characters written by 6 peo-

ple. No stroke number and stroke order constraints were imposed on their writ-

ing. Fig. 5.6 shows a set of the test characters that are all recognized correctly. 

The recognition rate varies with the numbers of connected strokes appearing in 

the handwritten characters. The stroke numbers of the model characters are 

between 9 and 11. For the characters each having less than 3 connected strokes, 

the recognition rate is 96.3%. For the characters written each having 4 to 7 

strokes, the recognition rate is 92.0%. The average recognition rate is 93.8%. 

The average time for recognizing an input character is 0.085 second. If the 

two complexity reduction schemes are not used, the recognition time is about 
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Figure 5.6: Some test data in the experiments. 
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Table 5.3: Performance comparison of three methods 

method average recognition rate average recognition time 
stroke-based 
state space 

search 
90.9% 0.06 second 

segment-based 
state space 

search 
95.6% 0.09 second 

segment-based 
two-layer 

assignment 
93.8% 0.085 second 

1 second, but the recognition rate almost remains the same. This is because 

(1) even if the lower bound estimate is not precise in some cases, the segment 

correspondences obtained by solving an assignment problem with an estimated 

cost matrix in layer 2 are still correct, and (2) the geometric position constraints 

of model characters are loose enough to tolerate most of the segment position 

variations in handwriting. 

The set of test data was also used to test the stroke-based and segment-

based state space search methods. Table 5.3 shows the results. Comparing 

these three methods, we can see that the stroke-based state space search method 

runs fastest but the recognition rate is lowest, and the segment-based state space 

search method runs slightly slower than the segment-based two-layer assignment 

method but has the highest recognition rate. 
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5.6 Summary 

In this chapter, we have proposed a two-layer assignment method for on-line 

Chinese character recognition. Finding segment correspondences between two 

characters is formulated as a weighted bipartite graph minimum cost complete 

matching problem, which corresponds to an assignment problem of order n and 

can be solved by the Hungarian method in O(n^) time, where n is the greater 

number between the two segment numbers of the two characters. In order to 

derive the cost matrix of the assignment problem in layer 2, n x n assignment 

problems of order n — 1 are created in layer 1. The costs of segment type corre-

spondences and relation correspondences between the two characters are used to 

generate the cost matrixes in layer 1. To save the computational time, a lower 

bound estimate is employed to obtain the approximate value of the minimum 

total assignment cost of each assignment problem in layer 1. In addition, the 

geometric position features of model characters are used to avoid wasting com-

putation on unreasonable segment correspondence costs. These two schemes 

reduce the complexity of the method from 0(n®) to O(n^). 

The experimental results are satisfactory. Compared with the segment-based 

state space search for graph matching method, the method in this chapter runs 

slightly faster and has a little lower recognition rate when they were used to 

recognize the characters with an approximate degree of deformation. 



Chapter 6 

A Fast String Matching Method 

6.1 Introduction 

We have proposed two methods for on-line Chinese character recognition in 

the last two chapters. They all use both the types of primitives (strokes or 

segments) of Chinese characters and relations between primitives to carry out 

recognition. The experimental results have shown that they have the ability to 

tolerate wide stroke order and stroke number deviations in handwriting. How-

ever, they require relatively large amounts of computation and are suitable to 

be implemented on relatively high-end CPUs such as a PC/486 or above. In 

various practical applications, many products such as portable electronic di-

aries, electronic Chinese-English dictionaries, multi-functional telephones and 

simple Chinese typewriters, may need fast small-memory-requirement recogni-

tion methods, due to their low-end CPUs and limited memory space equipped. 

Each Chinese character has a standard stroke writing order and Chinese peo-

ple write a Chinese character basically according to its standard stroke order. 
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On-line devices can capture the temporal information of the writing, including 

the order, number and direction changes of strokes. If model characters and 

input handwritten characters are all represented by their corresponding primi-

tive (stroke or segment) strings, then the twodimensionct! character recognition 

problem can be transformed to a relatively simple one-dimensional string match-

ing problem. This fact makes some researchers study string matching based 

recognition methods [21 22 55 56, 57, 92] ‘ 

In this chapter, based on Wagner and Fischer's string matching (WFSM) 

algorithm [96], we propose a recognition method that incorporates the geometric 

position constraints of primitives into the WFSM algorithm. The method is 

very fast. Its running time is 0(mn) for matching two characters with primitive 

numbers m and n. 

In Section 6.2, we briefly review the WFSM algorithm. Its application, to on-

line Chinese character recognition is presented in Section 6.3. Some experimental 

results are given in Section 6.4. In Section 6.5, we propose an extension of the 

string matching method when there may be several primitive strings to represent 

a model character. The summary in Section 6.6 ends this chapter. 

6.2 The WFSM Algorithm 

In [96], Wagner and Fischer discussed the string-to-string correction problem 

and suggested the application of the WFSM algorithm to spelling correction. 

Let S = SiS2--.Sjn be a finite string of m symbols. A null symbol is denoted 

by A. An edit operation is a pair (a, b) ^ (A, A) and is written as a — 6, where 

a and b are two strings of length 0 or 1. Three edit operations on strings are as 
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follows: 

• code insertion: A -> a 

• code substitution: a —> 6 

• code deletion: a —> A 

The application of an edit operation a — 6 to string S results in string R’ 

which is written ds S R via a — b. Let be a sequence ei,e2,Cp of p 

edit operations. An edit transformation of string S to string is a sequence of 

strings Sq, Si, ...’ Sp such that S = Sq, R = Sp and 5,-_i 5, via e, for 1 < z < p. 

In order to measure the similarity (or distance) between two strings. Costs 

associated with the edit operations are necessary. Let 7 be a cost function that 

assigns to each edit operation a —> 6 a nonnegative real number 7(a —> 6). 

7 can also be extended to a sequence of edit operations E = Ci, 6 2 , C p by-

setting 7( = 7 ( e , ) . If p = 0 i.e., no edit operation is applied, we define 

7(£") = 0. The edit distance (or distance for short) between strings S and R is 

defined as 

5(5, R) = min{7(£')|£^ is a sequence of edit operations 

that transforms 5 to i?}. (6.1) 

To simplify the calculation of the edit distance ^2) between two strings 

5i = SiS2-- Sjn and S2 = Wagner and Fischer defined a structure called 

a trace as follows. A trace from Si to S2 is a triple ( T , ^ 2 ) (or simply T 

when the strings 5i and S2 are understood), where T is any set of ordered pairs 

of integers (2, j) satisfying: 

(a) 1 < t < m and I < j <n; 
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(b) for any two distinct pairs ( " j i ) and (2.2’ J2) in T 

(1) ii Z2 and j i j.2; 

(2) ii < 22 if and only if j i < j2-

A pair (i, j) denotes a line joining the ith symbol of Si and the jth symbol of Si. 

Condition (a) ensures that the lines touch the symbols of the respective strings. 

Condition (bl) ensures that each symbol of either string is touched by at most 

one line; and condition (b2) ensures that no two lines cross. Fig. 6.1 shows an 

example of a trace (T, 5i, 52). 

String Si -̂ i J? 

’ ^ 
String 52 <̂3 

r = { ( l l) (2 3) (5 4)’(7’5)} 

Figure 6.1: A trace (T, 5i,52). 

Let T be a trace from Si = to S2 = ^is^'-^n- Let I and J be the 

sets of symbols in Si and S2 respectively not touched by any line in T. The cost 

of T is defined by 

cost{T) = Y. + ^ 7(5,- A) + 7(A ^ s'j). (6.2) 

( iJ )€T iei jeJ 

Wagner and Fischer proved that if the cost function 7 is a metric, then 

(5(5i,52) = mm{cost(T)\T is a trace from Si to S2}. (6.3) 

We may call the process of finding the distance between two strings string 

matching. The following WFSM algorithm is used to calculate 6{Si, S2) of a 
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trace from Si to 82-̂  

The W F S M algorithm [96] 

Input: String 5i = and string S2 = sis^.. 

Output: The least cost D[m, n\ of a trace from Si to S2. 

end 

D[0,0] = 0; 

for I = 1,2,, 

for j = 1,2, 

for i = 1,2,. 

m do D[i, 0] D[i - 1,0] + j(si A); 

,n do D[QJ] := D[OJ - 1] +7(A — s'j) 

m do 

for j = 1, 2,…’ n do 

begin 

di - - 1] + 7(5,-— 

d2 = D[2 - l ’ j j + 7 ( S i — A); 

ck := D [ i ’ j - l l + 7 ( A — s ; 

end 

^We give the algorithm here again for the convenient description following it, although it 
has been shown in Section 2.3.2. 
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It is clear that the running time of the WFSM algorithm is 0(mn) for ob-

taining 5{Si, S2) = D[m, n] for string Si of length m and string S2 of length n, 

and the memory space required is 0(mn) . If the least cost trace T from Si to 

S2 is required, the following algorithm with running time 0(m + n) will print 

the pairs in T using the information stored in array D of the above algorithm. 

Least cost trace printing algorithm [96 

Input: Array D. 

Output: Printed results of T. 

begin 

i := m; j := n; 

while (i # 0 J. 0) do 

if j] - 1 , j] + 7(si —> A) then i := i - 1; 

else 

if D[i,j] = D[iJ - 1] 4- 7(A — s;) then j j - 1; 

else 

begin 

print((2,j)); 

i i — 1; j := j — 1; 

end 

end 
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6.3 Application of the WFSM Algorithm to on-

Line Chinese Character Recognition 

Wagner and Fischer suggested that the WFSM algorithm can be applied to 

spelling correction. In fact, it may also be applied to some pattern recognition 

problems such as the chain code string matching given in Section 2.3.2 and the 

on-line Chinese character recognition presented in this section. 

For better understanding traces, the WFSM algorithm, and the extension of 

the WFSM algorithm to be presented in Section 6.5 we construct a network as 

shown in Fig. 6.2 in which each path from the source node (0,0) to the target 

node (m, n) corresponds to a trace from Si siSa-.-STn to S2 = s'ls^—s'^. For 

example, the bold path P from node (0,0) to node (7,5) 

@ 
Fig. 6.3 corresponds 

Figure 6.2: A network for calculation of the distance between a string of length 
m and a string of length n. 

to the trace T in Fig. 6.1. We may assign a cost 7(5, — A) to the arc from 

node (i — 1, j ) to node (i, j), a cost 7(A — s'j) to the arc from node (i, j — 1) to 

node (z, j ) , and a cost 7(5^ — Sj) to the arc from node ( f - 1 , J - 1 ) to node (z,j), 
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q Y O ^ ^ @ 
yis^^x) 

@ ~ ‘ @ 

@ —— —— 

@ ~ ^ ( 5 ) ~ 

p={(0,0),( 1 1 ) ( 1 ’ 2)’(2’3) (3 3) (4 3)’(5 4)’(6 4)’(7 5)} 

Figure 6.3: A network for calculation of the distance between two 
strings in Fig. 6.1. The bold path P corresponds to the trace T = 
{(1,1), (2, 3), (5,4), (7, 5)}. 
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for all i = 1,2 ..., m and j = 1 , 2 ’ n , as shown in Fig. 6.3. If the cost cost(P) 

of a path from the source node to the target node is defined as the sum of the 

costs of all the arcs in the path, it is easy to see that 

cost{P) = cost{T), (6.4) 

where P corresponds to T. Therefore, the calculation of the distance between 

two strings is equivalent to finding the least cost of a path from the source 

node to the target node in the corresponding network. We call such a path the 

shortest path. 

Considering Fig. 6.3, we see that the problem of finding the shortest path in 

the network can be divided into 8 stages in the vertical direction (or 6 stages 

in the horizontal direction). Such an optimization problem can be solved by a 

dynamic-programming algorithm with the following recursive relationship be-

tween two successive stages: 

D[i, j] = mm{D[i - 1, j - 1] + y(si — s'j),D[i - 1 j l -f- -yisi A), 

+ (6.5) 

where D[i,j], D[i - 1, j — 1], D[i - 1, j j and D[i, j — 1] are the least costs of the 

paths from node (0,0) to node (t, j ) , to node (i— — 1), to node (z - l . j ) , and 

to node — 1), respectively. Comparing (6.5) with the algorithmic equations 

in the two-layer for-loops in the WFSM algorithm, we will find that the WFSM 

is actually a dynamic-programming algorithm. 

The application of the WFSM algorithm to the on-line Chinese character 

recognition problem is direct. We represent a model character with a string 

S — 5i52...5Tn> where 5i, 52, Sm are the primitive (stroke or segment) types 
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of the m primitives of the character, arranged in its standard order of writing. 

We also represent an input character having n primitives (after preprocessing) 

with a string R = rir2..,r„, where ri, r 2 , r „ are the primitive types of the n 

primitives of the character, arranged in its input order of writing. Then the 

comparison of similarity between S and R can be formulated as the problem of 

calculating the least cost of a path from the source node to the target node in 

the network formed with S and R. The WFSM algorithm can be used to carry 

out the calculation. 

If the primitives are strokes (segments, respectively), then the stroke (seg-

ment, respectively) type correspondence costs in Table 3.2 (Table 3.4 respec-

tively) may be used as the stroke (segment, respectively) substitution cost 

7(Si —> Sj), and the stroke (segment, respectively) insertion cost and the stroke 

(segment, respectively) deletion cost are defined as 7(5,- ^ A) = 7(A —5^) = idl 

{id2, respectively). 

However, using only the information of primitive (type) strings of Chinese 

characters is not sufficient to distinguish a character from the others when there 

are stroke type variations and connected strokes in handwriting, as mentioned in 

Section 3.3.1. We have found that it is true after we implemented the WFSM al-

gorithm. Now we propose a scheme in the following to make the string matching 

method have better ability to do the recognition work. 

Recall that we have defined the geometric position features (GPF) of a model 

character in Definition 4.5. In the string matching method, the GPF of a model 

character can help to assign a cost to the primitive substitution between a model 

primitive and an input primitive. 

Let i denote the fth primitive of a model character and j a primitive of an 
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input character. Let the zth element of the GPF of the model be (</“ “ j/i). 

If Xi < od{D(i^(j)) < yi, i.e., the geometric position of segment i and that of 

segment j are compatible, then the primitive substitution cost 7(5^ s'j) is the 

same as that defined above, where Si and Sj are the primitive types of i and j 

respectively; otherwise, set 7(5^ s ) a sufficiently large positive value. 

This scheme incorporates partial 2D geometric primitive position information 

into the ID string matching, but only slightly increases its running time. The 

WFSM algorithm with the geometric position constraints on input primitives is 

given as follows. Its running time is still 0{mn). 

The W F S M algorithm with geometric position constraints 

Input: A model string Si = sis2...sm, an input string S2 = sis^.-.s^, the GPF 

of the model: GPF = {(di,Xi,yi)\i = l’2’.. .’m} and the od(Dq{j)), 

j = 1 2 n, g = 0,1 ..” 7, of the input character (see Section 4.4.2). 

Output: The least cost D[m, n\ of a path from node (0,0) to node (m, n) in the 

network formed with Si and 82-

begin 

D[0,0] = 0; 

for i = 1,2,.. 

for j 1 2 .. 
for i = 1,2,.. 

for j = 1, 

m do D[i, 0] = D[i - 1 0] + 7(5,- A); 

. ’ndo D[QJ] := D [ 0 , j - + s .); 

,m do 

2 … n do 
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begin 

ifxi< odiD^U)) < yi 

then di := D[i - 1,; - 1] + y{si — 5 )̂; 

else di = M (a sufficient large positive value); 

d2 = D [ i - l j l+7 (S i —A); 

d3 = j - 1 1 + 7 ( A ) 

end 
end 

6.4 Experimental Results 

In this section, we give the experimental results to demonstrate the perfor-

mance of the string matching method, respectively for stroke-based recognition 

and segment-based recognition. All algorithms are implemented in C. The pa-

rameters idl and id2 are all set to be 4. 

6.4.1 Stroke-Based Recognition 

When the primitives are strokes and the stroke type string of a Chinese charac-

ter is used to represent it, the recognition method is called stroke-based string 

matching method. 300 Chinese characters each with stroke number between 9 

and 11 are selected to be models, which have been used in the experiments for 
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testing the stroke-based state space search for graph matching method (see Sec-

tion 4.5.1). The test data consist of about 3000 Chinese characters written by 

6 people. The subjects were asked to write the characters in their own habitual 

stroke writing orders, but not in their cursive styles. 

Fig. 6.4 shows a set of testing characters, all of which were recognized cor-

rectly. For these characters each having less than three connected strokes, the 

recognition rate is about 91.8%. If we consider the first three model candidates, 

we obtains a recognition rate of 93.6%. The recognition rate is not sensitive 

to idl (the stroke insertion cost and stroke deletion cost). It almost remains 

unchanged when idl varies between 3 and 5. If connected strokes in each input 

character increases, the recognition rate decreases quickly because of too many-

stroke type variations. 

The average time for recognizing a character is about 0.017 second on a 

PC/Pentium at 166 MHz. It is about 0.068 second on a PC/486 at 50 MHz. 

Compared with the stroke-based graph matching method, the stroke-based string 

matching method is about 17 times faster. 

Now let us see how the deviations of stroke order affect the recognition 

results. Fig. 6.5 shows a model character (a) and its handwritten characters (b)-

(j) having different stroke orders. We denote by x o y that a standard stroke 

X in the model character corresponds to an input stroke y. Then the deviations 

of stroke order in these input characters are listed as follows: 

character (b) 2 3, 3 o 2; 

character (c) 2 4, 3 2, 4 3; 

character (d) 1 ^ 3, 2 4, 3 <-> 1, 4 -h- 2; 

character (e) 7 8, 8 ^ 7; 
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/ 
ZI 

a . 

Figure 6.4: Some test characters each having less than three connected strokes. 
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Figure 6.5: A model character (a) and a set of its input handwritten characters 
(b)-(j) having different stroke orders. 

character (f) 8 9, 9 8; 

character (g) 2 3, 3 ^ 2, 7 8, 8 7; 

character (h) 5 -e)- 6, 6 5, 

character (i) 2 -h- 3, 3 ^ 2, 8 9, 9 8; 

character (j) 1 3, 2 4, 3 ^ 1, 4 ^ 2, 7 ^ 8, 8 7; 

Let (model p, input q) be the distance between model character p and input 

character q. Then we have 

J(model a, input k) = min{(J(model 1, input 5(model 2, input k), 

(5(model 300, input fc)} 

where model a is the model character in Fig. 6.5(a), and input k, k E {6, c, d, e, / ’ 

g, h} is one of the input characters in Figs. 6.5(b)-(h). This means that these 

characters are recognized correctly. However, <J(model a, input i) ranks the 3rd 

smallest among 

{(J(model 1, input i), J(model 2’ input f),… (J(inodel 300, input 2)}, 

Chapter 6 A Fast String Matching Method 
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and (^(model a, input j ) ranks the 5th smallest among 

{J(model 1 input j ) , (model 2 input j),…’ J(model 300’ input j)}. 

From these results we see that the string matching method can tolerate some 

stroke order deviations, but in general, too many stroke order deviations may 

cause incorrect classifications. 

Note that if the WFSM algorithm without the stroke position constraints is 

used to perform the recognition, (^(model a, input c) will rank the 2nd smallest 

among 

{J(model 1, input c), (model 2 input c), model 300, input c)}, 

(5(model a, input d) rank the 5th smallest among 

{(^(model 1, input d), J(model 2, input d),(5(model 300, input d)}, 

(^(model a, input i) rank after the 5th smallest among 

{(^(model 1, input i),6{mode\ 2, input z ) , ( ^ ( m o d e l 300 input z)}, 

and (5(inodel a, input j ) also rank after the 5th smallest among 

{^(model 1, input j), J(inodel 2 input j),(^(model 300, input j)}. 

Therefore, the geometric position constraints on input strokes are helpful for 

enhancing the recognition ability of the string matching method. 

6.4.2 Segment-Based Recognition 

When the primitives are segments and the segment type string of a Chinese 

character is used to represent it, the recognition method is called segment-based 
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string matching method. 54 Chinese characters each with stroke number be-

tween 9 and 11 are selected to be models, which have been used in the ex-

periments for testing the segment-based state space search for graph matching 

method (see Section 4.5.2). The test data consist of about 2500 Chinese char-

acters written by 6 people. The subjects were asked to write the characters in 

their own habitual stroke writing orders. 

For the input characters each having less than three connected strokes, as 

shown in Fig. 6.4 the recognition rate is 93.7%. For the character having more 

connected strokes, as shown in Fig. 6.6, the recognition rate is about 91.5%. 

The incorrect recognition results are caused mainly by too many stroke order 

deviations in input characters. 

The average time for recognizing a input character is about 0.0036 second 

on a PC/Pentium at 166 MHz. If the number of model characters were 300 the 

time would be 0.02 second. The segment-based string matching method is just 

slightly slower than the stroke-based string matching method, and is about 25 

times as fast as the segment-based graph matching method (see Section 4.5.2). 

The stroke-based string matching method cannot recognize most of the char-

acters in Fig. 6.6. The reason that the segment-based string matching method 

has better ability to recognize more freely-written characters is because (1) most 

connected strokes do not change the types of the segments (not including extra 

segments) in the connected strokes, and (2) the rules in the segment preprocess-

ing are very efficient for breaking connected strokes and deleting some of the 

extra segments. 



Figure 6.6: Some test characters written freely, all of which are recognized cor-
rectly. 
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N 
6 
- V \ 

(a) 

Figure 6.7: (a) A model character with, the numbers labeling its standard stroke 
order, (b) The same character as (a) but with different stroke order. 

6.5 Extension of the String Matching Method 

A characteristic of string-matching-based approaches is that input characters 

are required to be written (basically) in their standard stroke orders. Our 

string matching method can tolerate some stroke order deviations, but too many 

stroke order deviations will cause incorrect recognition. Consider the character 

in Fig. 6.7(a), where the numbers labeling the strokes denote the standard or-

der of writing of the character. However, some people write the character in 

the stroke order as illustrated in Fig. 6.7(b). Because of too many stroke or-

der deviations in the character, it cannot be recognized by the string matching 

method. 

A scheme to solve this problem is to represent the character with two prim-

itive (say, stroke) type strings: 

Si = 5152^3545556575859, S2 = s[SoS3S4SgSgSjSgSg, 

where si-9 are the stroke types of corresponding strokes in Fig. 6.7(a) and s'^.g 

are the stroke types of corresponding strokes in Fig. 6.7(b). If the time for 

recognizing an input character with a low-level CPU is acceptable after enlarging 

the model string base, the string matching method can be used without any 

modification. If not, we have to seek some approaches to reduce computational 
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Figure 6.8: (a) Combining strings S[ and So together, (b) An input string R. 

time. In the following, a scheme is proposed to reach this goal. 

Considering the characters in Fig. 6.7 and the two strings Si and 52, we 

have Si = sj, i = 1,2,3,4, i.e., a part of Si is the same as a part of S2 at the 

same positions. For convenient description below, we use two shorter strings 

S[ = S1S2S3S4 and S'2 — 51S2S354 instead of Si and S2. and S'2 can be 

combined together as shown in Fig. 6.8(a). Let R = 7*1 2 3 4 be an input string 

(Fig. 6.8(b)). Two networks for finding 5{S[,R) and 5(S'2, R) are shown in 

Figs. 6.9(a) and (b), respectively, where idl is the stroke insertion or deletion 

cost. Using the dynamic-programming algorithm (the WFSM algorithm), the 

computational time for finding the least cost of a path among all the paths from 

node (0,0) to node (4,4) in network (a) and from node (0,0)' to node (4,4) in 

network (b) is proportional to the number of arcs in the two networks, which 

equals 112. 

Now we combine the two networks together to form a network as illustrated 

in Fig. 6.9(c), where not all the arc costs are given for simplicity, and the costs of 

the two arcs joining the end (target) node E are set to 0. Comparing Figs. 6.9(a) 

and (b) with Fig. 6.9(c), we see that for a path Pi from node (0,0) to node (4,4) 

in network (a) or from node (0,0)' to node (4,4)' in network (b), there exists 

a corresponding path P[ from node (0,0) to node E in network (c) such that 
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Figure 6.9 (a) A network for calculating <5(5; R). (b) A network for calculating 
5(52, (c) A network obtained by combining (a) and (b). 
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© - 1 r - © — © 

(a) (b) 

Figure 6.10: (a) Combining strings Si, So, S3 and S4 together, (b) An input 
string R. 

cost{Pi) = cost(P[), where cost(P[) is the sum of all the costs of the arcs in P(. 

Let P' be any path from node (0,0) to node E in network (c). Then the 

problem of finding min{S{S[, R), 6(82, R)} respectively in networks (a) and (b) 

is now transformed to the problem of finding min{co5i(P')} in network (c). 

Network (c) is also a multi-stage one. Obviously, this optimization problem 

can be solved by a dynamic-programming algorithm. As the arc number in 

network (c) is 84 (< 112), the new problem requires less time to be solved. 

Let us consider a more complicated example. Suppose a model character is 

represented by the following four strings: 

Si = S1S2S3S4SS, S2 — 51S2535455, 

S3 = S4 = S'iS'2S3S:S'5’ 

Combining 5i_4 as shown in Fig. 6.10(a). Now we want to find 

mm{5iSuR). 6(82, H), R), 5{S4, /?)} 

where R = 7*1 2 3 4 is an input string (Fig. 6.10(b)). The WFSM algorithm 

can be used to calculate 5(Si, R), <5(52, R)J{S3, R) and 5(54, H), respectively. 

The corresponding four networks (a)-(d) are shown in Fig. 6.11. There are 276 

arcs in the four networks. Combining these networks together, we obtain the 
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Figure 6.12: A network obtained by combining networks (a)-(d) in Fig. 6.11. 
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network in Fig. 6.12 in which there are 132 arcs. 

Comparing Fig. 6,11 with Fig. 6.12 it is not difficult to see that for a path 

P2 from node Bi to node Ei in network (a), from node Bo to node E2 in net-

work (b), from node B^ to node E3 in network (c), or from node S4 to node E4 

in network (d) there exists a path P, from node B to node E in the net-

work in Fig. 6.12 such that cos (P2) = cost{p2). Therefore, using a dynamic-

programming algorithm and the network, we can also obtain the solution to the 

problem of finding niin{5(5i, R), 6(82, R), SiS^, R), 5(84, R)}. 

6.6 Summary 

In this chapter, we have proposed a fast string matching method for on-line Chi-

nese character recognition, which incorporates the geometric position constraints 

of primitives of Chinese characters into Wagner and Fischer's string matching 

algorithm. The experiments show that when input characters are written not 

having great stroke order deviations, the method can obtain good recognition 

results. Moreover, the segment-based method may tolerate more cursive hand-

writing than the stroke-based one. To allow more stroke order deviations for 

some characters, using two or more strings to represent one of these model char-

acters is necessary. In this case, we suggest a scheme to save computational 

time, which combines two or more separate networks into one and employs a 

dynamic-programming procedure to solve the shortest path problem. 

The string matching method is very fast and requires small memory space. 

When the primitives used are segments, it runs 25 times as fast as the segment-

based graph matching method does. Therefore, this method can be implemented 
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low-end CPUs. 
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Chapter 

Conclusions and Suggestions 

7.1 Contributions of this Thesis 

The aim of this thesis is to derive efficient methods for on-line Chinese character 

recognition. We have addressed the three aspects: preprocessing of input hand-

writing, representations of Chinese characters, and recognition methods. Now 

we summarize our major contributions and results as follows. 

1. Preprocessing of input handwriting 

• In order to facilitate the recognition of the types of strokes and segments, 

an input stroke is represented with a polyline by using the efficient poly-

line fitting algorithm and the line merging algorithm. This approach can 

handle some handwriting noise (such as wild points and hooks) well. 

• A method for recognizing the types of strokes with more than two segments 

is proposed, which consists of three procedures: normalization of strokes, 

extraction of stroke chain code strings, and matching between input code 
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strings and model code strings. The experimental results show that the 

method works well. It can be used not only in stroke-based but also in 

segment-based on-line recognition of Chinese characters. 

• Some rules are presented to detect most of frequently-occurred connected 

strokes and then delete the extra segments in such strokes. These rules 

make our recognition methods have the ability to recognize more freely-

written Chinese characters 

2. Representations of Chinese characters 

we have formally defined the complete relational graphs and the distances for 

measuring the similarity between two graphs. With such graphs, we have pro-

posed the stroke-based and segment-based spatially-temporally relational rep-

resentations for on-line inputted Chinese characters. We have also dealt with 

assigning costs to node and arc correspondences for calculating the graph match-

ing distances. 

The stroke-based representations may be used to recognize relatively neat 

Chinese character handwriting while the segment-based representations will ease 

the recognition of more freely written characters but make a recognition method 

need more computational time and memory space. These representations have 

the following advantages: 

• The representations incorporate the human knowledge of Chinese charac-

ters and can reflect their features well (except some very similar character 

pairs). The novel "don't care” "should" and "must" relational features 

allow us to represent unstable, stable and very stable primitive relations 
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conveniently. Relations between any two primitives give much information 

and are very beneficial to the matching procedures. 

• The proposed complete graph representations are directly based on strokes 

or segments. To obtain the representations, examining whether a stroke or 

segment belongs to some component is not required. However, the graph 

representations in [18 68] need to correctly extract components of Chinese 

characters first. The recognition method based on the graph representation 

in [13] also needs to find components before performing recognition of 

a character. In fact, wide stroke type variations and connected strokes 

make it very difficult to extract components of Chinese characters at a 

high success rate. In [16], the authors adopted only the relations between 

segments within the same components in their graph representation. This 

results in two shortcomings: (1) some relations represented in an input 

graph may not appear in its corresponding model graph, and vice versa; 

(2) most of the relation information between segments are not utilized. 

• The spatial and temporal relations between primitives axe, at the first 

time, unified into the graph representations, which fully captures the on-

line information of handwriting. The use of the primitive order relations 

enhances the discrimination ability of the representations and helps to 

speed up the graph matching. Because of the "don't care" feature, the 

representations can tolerate common stroke order deviations. 

• If the weight w^ in (3.11) is set to 0 in graph match, then the stroke order 

relations will be ignored and our recognition methods will allow writing a 

Chinese character in any stroke orders. 
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The disadvantage of our representations is that the creation of a model char-

acter base is a relatively heavy task. It can be eased by constructing the graphs 

of components of Chinese characters first and then combining several component 

graphs to form the whole graph of a character. We will discuss this problem in 

the next section. 

3. A state space search method 

We have formulated the graph matching as a state space search problem. The 

optimal matching between two graphs is then equivalent to finding the best goal 

node in a search tree. To obtain good search efficiency we have used the A* 

algorithm to perform heuristic search, and proposed the following schemes to 

speed up the A*. 

• A heuristic function h which has been proved to be a lower bound on h* 

and monotonic, is defined to make the A' expand fewer nodes in a search 

tree. 

• A tree pruning strategy, which employs the geometric position features 

of strokes (or segments) of Chinese characters to prune a search tree, is 

proposed to let the A* have more or less the function of a bird's eye view, 

in other words, to let the A* avoid searching the nodes that have very little 

chance to be located in the optimal path from the initial node to the best 

goal node in a tree. 

• Two new criteria, together with the original one, are presented to stop the 

A* by utilizing the monotone of the evaluation function of the A*. They 

are based on the fact that in Chinese character recognition, finding the 
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final optimal matching between two dissimilar characters is not necessary 

if we have known their distance is great enough. 

The experimental results show that the recognition speeds of our stroke-

based and segment-based recognition methods are sufficiently fast in practical 

applications, even if the frequently-used 5000 or more Chinese characters are 

added. In common recognition of input Chinese characters (the first phase), 

the methods can tolerate most of the stroke order variations due to the "don't 

care" temporal relations between strokes (segments). To deal with a character 

with great stroke order deviations, the re-classification stage (the second phase) 

can be effected (without the need to write the character again), which ignores 

the stroke (segment) order information and takes a little more time to perform 

a recognition. Therefore, the methods are stroke order free. The results also 

show that the segment-based method can recognize the handwritten characters 

having many connected strokes, so it is stroke number free too. 

We have made some comparisons between our segment-based method and 

several other studies published recently in international journals. Considering 

their recognition rates, recognition time and tolerances of stroke order and stroke 

number variations, we see that out method is very promising. 

4. A two-layer assignment method 

Finding segment correspondences between two characters is formulated as a 

weighted bipartite graph minimum cost complete matching problem, which cor-

responds to an assignment problem (in layer 2) and can be solved by the Hun-

garian method. The cost matrix of this assignment problem is derived by the 

assignment problems in layer 1. The costs of segment type correspondences and 
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relation correspondences between two characters are used to generate the cost 

matrixes in layer 1. To save the computational time, a lower bound estimate 

is proposed to approximately solve each assignment problem in layer 1. In ad-

dition, the geometric position features of model characters are used to avoid 

wasting computation on unreasonable segment correspondence costs. These two 

schemes reduce the complexity of the method from 0{n^) to O(n^). 

The experimental results are satisfactory. Compared with the segment-based 

state space search method, the two-layer assignment method runs slightly faster 

and has a little lower recognition rate when they were used to recognize the char-

acters with an approximate degree of deformation. The two-layer assignment 

method is also stroke order and stroke number free. 

5. A fast string matching method 

Incorporating the geometric position constraints of strokes (or segments) of Chi-

nese characters into Wagner and Fischer's string matching algorithm, we have 

proposed a fast string matching method for on-line Chinese character recogni-

tion. The experiments show that when input characters are written not hav-

ing great stroke order deviations, the method can obtain good recognition re-

sults. Moreover, the segment-based string matching method can recognize cur-

sive handwriting, so it is stroke number free. 

To allow more stroke order deviations for some characters, using two or more 

strings to represent one of these model characters is necessary. In this case, we 

have proposed a scheme to save computational time, which combines two or more 

separate networks into one and employs a dynamic-programming procedure to 

solve the shortest path problem. 
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The string matching method is very fast and requires small memory space. 

When the primitives are segments, it runs 25 times as fast as the segment-

based graph matching method does. Therefore, this method can be used in 

the products that are required to be able to recognize on-line inputted Chinese 

characters but equipped with low-end CPUs and small memory, such as portable 

electronic diaries, electronic Chinese-English dictionaries, and multi-functional 

telephones. 

7.2 Suggestions for Further Research 

Several methods for on-line Chinese character recognition have been proposed 

in this thesis. They are ready for practical applications. However, to develop 

a whole perfect system, more work needs to be done. Below we would suggest 

some directions for further research. 

1. Creation of a model graph base 

The creation of a model graph base for out state space search method or two-

layer assignment method is a relatively heavy task. There may be three ap-

proaches to this goal. 

• Completely based on the human knowledge of Chinese characters, this 

work is done by the people who are familiar with Chinese character hand-

writing. In this case, machine learning is not necessary, but the creation 

and modification of a base are heavy and boring. 

• The second scheme consists of two steps. In step 1 first, for each model 

character, collect a set of learning samples which are written in correct 
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stroke orders and without connected strokes, and then with each set of 

learning samples, build corresponding model graph by examining the prim-

itive types and spatially-temporally relations between primitives using a 

simple program. The relation features generated in step 1 only contain 

the "don't care" and "should" features. In step 2 some of the "should" 

features are changed to "must" features by people who are familiar with 

Chinese character handwriting. This scheme needs to collect a large set 

of Chinese characters. Changing and modifying the features by people are 

also a heavy and boring task. 

• The third approach is based on the fact that Chinese characters are con-

structed by a set of components (radicals). Because the number (< 250) of 

the components are much less than that of frequently-used Chinese charac-

ters and the stroke number of each component is less than seven/ building 

the complete relational graphs of these components is much easier. 

Using the components, we can form a Chinese character on the screen 

of a computer. Then by moving the components, we obtain the "don't 

care" and "should" relations between the primitives of two components. 

To further obtain the "must" features, we may select two sets of primitives 

and then choose one of the “must” features ("left o f "right o f "above" 

and "below") to be the relations between the primitives in the two sets. 

The movement of components can be completed by one using a mouse or 

by a program according to some rules. We have estimated that a model 

graph can be generated within a minutes. This scheme makes the creation 

1 Traditionally, there are components with more than six strokes. These components can 
be constructed by the components with fewer strokes. 
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of a model base easier. In addition, if we change the relations of some 

component, the modification of relations for all the characters containing 

this component may be made automatically. We are now developing a tool 

for this goal. 

2. Preclassification and detailed recognition problems 

There are about 4000 Chinese characters which cover more than 99.9% of the 

daily-used ones [102]. To extend our state space search method or two-layer as-

signment method to recognizing 4000 or more Chinese characters, a preclassifi-

cation stage is required for saving computational time. The numbers of segments 

of Chinese characters is a useful features for choosing primary model character 

candidates. Estimating some possible components (radicals) in input charac-

ters is also a common approaches to preclassification. Many methods have been 

proposed for the preclassification purpose in on-line or off-line Chinese charac-

ter recognition [14, 20, 21, 22, 50, 52, 57 67, 93 102, 103]. By comparing the 

performances of these methods and combining some features of them, it is not 

difficult to obtain a good preclassification method. 

There are some pairs of very similar characters, such as ( )’ , and 

( £ , £ ) . The methods proposed in this thesis, like other general recognition 

methods, cannot distinguish them. Adding an ad hoc detailed recognition stage, 

we may solve this problem. 

3. Improvement of performance of the proposed methods 

• In the graph representations of Chinese characters, using more spatial 

relations between, some primitives will enhance its ability to distinguish 



Chapter 7 Conclusions and Suggestions 

between very similar characters. The new relations may be the relative 

spatial relations between the beginning points of two primitives, between 

the beginning point of a primitive and the end point of another primitive, 

and so on. Of course, that will increase the work load to build a graph 

base. 

• Finding more precise heuristic function /i is a way to farther speed up the 

A* algorithm. Besides the primitive types, we might use spatial and tem-

poral information among primitives to estimate h*. In this case, we have 

to test whether the total search time is reduced because more computation 

for calculating h is needed. 

• In the two-layer assignment method, the spatial and temporal relations 

between segments are employed to estimate the cost matrixes of the as-

signment problems in layer 1. An alternative way is to use the information 

of segment coordinates. It is worth making a comparison between them 

to see which is better in the future. 

4. Extension to off-line Chinese character recognition 

Off-line Chinese character recognition is a more difficult task than on-line Chi-

nese character recognition. The existing methods can only recognize very neatly-

written Chinese characters. By ignoring the temporal relations between primi-

tives, our state space search, method and two-layer assignment method can be 

extended to off-line Chinese character recognition if an approach for extract-

ing the segments of a Chinese character is available. Many researchers have 

investigated the segment or stroke extraction problem [1 2 15’ 24, 49, 53 73 
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Therefore, we expect that our methods will also yield good results when they 

are applied to off-line Chinese character recognition. 
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